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1 Synoptic station information

Table 1 provides some supplemental information on the seventeen SMHI synoptic stations

used in the analysis.

2 Predictive process models

In this section we briefly review predictive process models [see also Banerjee et al., 2008] and

we discuss how they are used in the statistical model for downscaling.

Let Y(s) be a spatial process decomposed as:

Y(s) = ul(s) +n(s) +e(s)  e(s) % N(0,72), (1)



Table 1: The seventeen SMHI synoptic stations used in the analysis. The end date is 2007-

11-30 for all sites.

SMHI ID Name Start Date Days Missing
2731 Sundsvalls Flygplats 1962-12-01 2
12226 ~ Tannas A 1995-11-23 0
12402  Sveg 1962-12-01 1
11743 Kuggoren A 1995-12-17 0
10657  Amot A 1995-08-01 12
10341 Malung 1962-12-01 0
10714  Films Kyrkby A 1982-02-02 129
9322 Karlstad Flygplats 1962-12-01 0
9720 Stockholm-Bromma 1962-12-01 14
9419 Kilsbergen-Suttarboda A 1995-08-01 0
9710 Tullinge A 1995-12-17 66
8226 Satenas 1962-12-01 1
8524 Malmslatt 1962-12-01 0
8714 Harstena A 1996-04-02 0
7446 Jonkopings Flygplats 1965-03-02 0
7840 Visby Flygplats 1962-12-01 0
7524 Malilla 1965-01-02 61



where p(s) denotes the mean of Y(s), n(s) is a mean-zero Gaussian process and €(s) is
independent and identically distributed (IID) Gaussian noise. If the spatial dependence in
n(s) is modeled using a covariance function C(-,-; @), inferring upon 6 is computationally
challenging if the number of sites with observations is large. The predictive process modeling
framework alleviates the computational burden by projecting n(s) onto a lower dimensional
space spanned by a realization of 7(s) at selected sites.

Specifically, let rj,...,r; be a set of m knots and let n* be the m x 1 random vector

*

(n(r%),...,n(rs)). Then, n* has a multivariate normal distribution with mean 0 and co-

variance matrix C*(0) induced by the covariance function C(-,-; 0).

The predictive process 7(s) derived by the parent process 7(s) is defined at each site s via

the following kriging equation:
i(s) = (s:0)-C"(6) -’ (2)

where ¢(s; 0) is a m x 1 vector with i-th component equal to C(s, r}; 0). It is clear then that

inferring upon 7(s) is less cumbersome than inferring upon the parent process 7(s) since it

only requires inverting an m X m covariance matrix.

In our statistical model for downscaling we use predictive processes to alleviate the com-
putational burden associated with inferring upon the spatial process Q(r,t) that define the
spatially and temporally varying weights wy(s, t). Thus, we select m=308 knots by system-
atically subsampling the set of g=2,640 climate model grid boxes centroids and we define

the weights by replacing Q(r,t) with the predictive process Q(r,t).



3 Downscaling model fitting details

We fit the downscaling model presented in Section 3 using a Markov Chain Monte Carlo
(MCMC) algorithm. The priors placed on the model parameters are all conjugate priors,
and thus all the parameters, with the exception of the quarter-specific decay parameter ¢ ¢
and the latent spatio-temporal predictive process Q(r, t) are updated using a Gibbs sampling
algorithm. To update the decay parameters ¢, we use a Metropolis-Hastings algorithm:
in each MCMC iteration, for each t = 1,...,T, we sample a candidate value ¢, from a
discrete uniform distribution placed on a grid of 200 values ranging from 0.005 to 0.5. We
compute the Metropolis-Hastings ratio and we accept or reject the proposed value according

to the usual Metropolis-Hastings scheme.

To update the predictive process @(r, t),t=1,...,T at each MCMC iteration, we simply
need to update, for each ¢ = 1,...,T, the m-dimensional (m=308) random vector Q*,
realization of the parent process Q(r,t). We achieve this by proposing at each iteration a
candidate value Q* from an m-dimensional multivariate normal distribution centered around
the current value of Q* and with a diagonal covariance matrix with standard deviation chosen
so to have an acceptance rate of 25-40%. The proposed value is then accepted or rejected
according to the usual Metropolis-Hastings scheme and the corresponding predictive process

Q(r,t) is derived according to (2).



4 Downscaling model predictions over grid boxes

In this section we briefly discuss the approach undertaken to generate predictions over grid
boxes under the downscaling model framework. Let B,, v =1,..., g, denote a climate model
grid box, and let ¢ denote the i-th MCMC iteration. To generate predictions over grid boxes
we sample from the posterior predictive distribution. Thus, at the -th MCMC iteration we

predict the annual average temperature Y (B,,t) over grid box B, via:

1

Bi(s.t) + B (s,1) + €9 (s, t)ds, (3)

where the superscript denotes the value of the parameter at the i-th MCMC iteration.

We compute the integral in (3) via numerical integration by taking a systematic sample of
q sites sy, ...,s, within grid cell B, replacing (3) with

q

V(i)(Bv,t) _ %Z [B(@(Sp ) +ﬁ1 D (s, 1) +€D(s5,1)| - (4)
j=1

Given the large number of climate model grid boxes, g, computing (4) is computationally
challenging within the downscaling model framework. Thus, we further approximate (4)

with the prediction at the centroid of the grid box, r, say:
YO (r,, 1) = 8 (ry, 1) + BPED (1, 8) + €D (x,, 1), (5)
This approximation of v )(BU7 t) with Y@ (r,,t) is valid only in expectation, that is:
E [Y(B,,t)|data] ~ E[Y (r,,t)|data] .

We now show that such an approximation is warranted within the downscaling model frame-
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work. ! Since Bo(s,t) is decomposed as [y; + Po(s,t) with [y(s,t) mean-zero Gaussian
process:

—Zﬁo Sj, 1) BOt+ Zﬁoz Sj: 1)
On the other hand, Béi) (ry,t) = ﬁO,t + 601)(1"1,, t). Averaging across MCMC iterations warrants
that we can approximate % ;1.:1 Béi)(sj, t) with B((]i)(rv, t). Similar arguments can be used to

justify approximating 1 Z e (s;,t) with e®(r,,t), in expectation.

We are now left to show that %Z?Zl ﬂfi)if(i)(sj, t) can be approximated with Bl @ (r,,1).

For each s and ¢t = 1,..., T, the smoothed climate model output z(s,t) is defined as

E(s,t) = > wi(s, t)a(By, 1),

where x (B, t) is the climate model output at grid box By for quarter ¢t and wy(s, t) are the

site-specific weights defined as:

exp(—Als — ry|) - exp(Q(r, t))
>tz exp(=Als — 1) - exp(Q(r1, 1))

wy(s, ) = (6)

Thus, to show that % > i By)i(i)(sj, t) can be approximated with ﬂl @) (r,,t) is sufficient

to show that % > i i@ (s;,t) ~ i (r,,t), or equivalently that

1 q
QZwk(Sj,t)zwk(rv,t) k=1,...,9. (7)

Since the ¢ points s; are a systematic sample in the 12.5 kmx12.5 km grid box B, with

centroid r, and A = 0.08, it follows that for k=1,...,¢g

exp(—Als; — ra) ~ exp(=Alr, — ).

'We remark here that the same numerical integration method is used for producing grid box predictions

with the upscaling model, but that no approximation of the average is used for that model.



Hence (7) holds and { 377, B30 (s;, 1) can be approximated with 80 (x,,t).

Further research will be needed to quantify the difference in the variability of Y(i)(Bv, t) and

Y@ (r,,t).

5 Posterior summaries for the downscaling model

In this section we present estimates of the model parameters for our downscaling model.
Figure 1 shows the posterior mean of the additive calibration term [y, along with its 95%
credible interval for each quarter during the study period 1962-2007. The additive term
Bo. provides information on the additive bias of the regional climate model output. Spatial
adjustment to the overall calibration term fy; is accounted for by [y(s,t). Figure 2 displays
the posterior predictive mean of fy(s,t) for each quarter in year 2002 over the entire spatial
domain while Figure 3 presents the posterior predictive standard deviation of (Gy(s,t) for

each quarter in 2002.

Finally, Table 2 presents the posterior mean along with the 95% credible interval for all the
time invarying model parameters: the multiplicative bias term [i; the variance aé of the
latent spatio-temporal process Q(s,t) used to construct the spatio-temporal set of weights
wg(s, t); the variance a%o of the spatially-varying additive bias fy(s,t); and the residual
variance 72 in the seasonal temperature data that cannot be accounted for by the smoothed

regional climate model output.
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Figure 1: Posterior mean of the additive calibration term /3y, (black solid line) and 95% cred-

ible interval (gray bands) for each quarter during between December 1, 1962 and November

30, 2007.



63

62

61

60

59

58

57

63

62

61

60

59

58

57

Winter 2002

1.0

0.5

- 0.0
+
-0.5
T T T T
12 14 16 18
Summer 2002
1.0
0.5
0.0
"
-0.5
T T T T
12 14 16 18

63

62

61

60

59

58

57

63

62

61

60

59

58

57

Spring 2002

12 14 16 18

Autumn 2002

12 14 16 18

1.0

0.5

0.0

1.0

05

0.0

Figure 2: Posterior predictive mean of the spatially varying additive calibration term (5y(s, t)

for each quarter in year 2002.
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Figure 3: Posterior predictive standard deviation of the spatially varying additive calibration

term [y(s, t) for each quarter in year 2002.
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Table 2: Posterior means and 95% credible intervals for all the parameters of the downscaling

statistical model that are constant in time.

Parameter | Posterior mean | 95% credible interval
B4 0.93 (0.91, 0.95)
022 1.33 (1.18, 1.50)
0/230 0.61 (0.43, 0.80)
72 0.31 (0.17, 0.46)

6 Posterior summaries for the upscaling model

Tables 3, 4, and 5 display numerical posterior summaries of a subset of the trend, seasonal,
and noise hyperparameters in the upscaling model. Graphical summaries of the daily pos-
terior distributions of the trend component {u(s,t} is shown in Figure 4 and the seasonal
component {1(s,t} is show in Figure 5. Figures 6 and 7 show, respectively, posterior sum-
maries of the parameters characterizing the short and long range dependence in the noise,

and the parameters of the space-time volatility term.

7 Comparison of predicted seasonal fields

Figure 8 presents the average difference between the average quarterly temperature fields
predicted by the downscaling model over the entire region and the average quarterly tem-

perature predicted by the RCM for each quarter in the study period December 1, 1962-
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Trend | Parameter ~ Mean  95% credible interval
V.(s) | mean 117.45 (106.39, 128)
AR(1) par.  0.42 (0.02, 0.83)
sill 1452.99 (540.39, 2264.46)
range 7.5 (5.09, 10.72)

Table 3: Posterior summaries (means and 95% posterior credible intervals) for the trend

hyperparameters in the model.

November 30, 2007, and the analogous difference between the average quarterly temperature
fields predicted by the downscaling model over the entire region and the average quarterly
temperature predicted by the RCM. In both cases, the average difference between the pre-

dictions has been computed over the RCM grid cells that cover the spatial domain.

References
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Seasonal | Parameter Mean 95% credible interval
7(8) mean -3.49 (-4.56, -2.43)
sill 0.38 (0.06, 1.16)
range 9.93 (4.80, 17.07)
Y2(8) mean -8.92 (-12.95, -4.61)
sill 7.17 (2.36, 18.27)
range 9.81 (4.67, 17.06)
v3(8) mean 0.24 (-0.68, 1.21)
sill 0.3 (0.03, 1.07)
range 9.86 (4.68, 16.92)
v4(8) mean 0.62 (0.07, 1.17)
sill 0.10 (0.02, 0.33)
range 10.22 (5.19, 17.31)

Table 4: Posterior summaries (means and 95% posterior credible intervals) for the seasonal

hyperparameters in the model.
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Noise | Parameter Mean 95% credible interval
k(8) | mean 1.28 (0.87, 1.68)
sill 0.06 (0.01, 0.19)
range 10.25 (5.08, 16.98)
01(s) | mean 0.97 (0.65, 1.31)
sill 0.04 (0.01, 0.11)
range 10.05 (4.8, 17.13)
05(s) | mean 0.28 (0.12, 0.42)
sill 0.01 (0.00, 0.02)
range 11.7 (6.05, 19.46)

Table 5: Posterior summaries (means and 95% posterior credible intervals) for the noise

hyperparameters in the model.
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Figure 4: By location, the daily posterior mean of the trend {u(s,t)} at each observed

location (black line), as well as 95% credible intervals for the parameter (blue lines).
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Figure 5: Posterior mean fields (left panels) and standard deviation fields (right panels) for

the parameters characterizing the seasonality in daily temperatures.
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Figure 6: Posterior mean fields (left panels) and standard deviation fields (right panels) for

the parameters characterizing the short and long range dependence in the noise.
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