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Summary. In the analysis of clustered categorical data, it is of common interest to test for the correlation
within clusters, and the heterogeneity across different clusters. We address this problem by proposing a
class of score tests for the null hypothesis that the variance components are zero in random effects models,
for clustered nominal and ordinal categorical responses. We extend the results to accommodate clustered
censored discrete time-to-event data. We next consider such tests in the situation where covariates are mea-
sured with errors. We propose using the SIMEX method to construct the score tests for the null hypothesis
that the variance components are zero. Key advantages of the proposed score tests are that they can be
easily implemented by fitting standard polytomous regression models and discrete failure time models, and
that they are robust in the sense that no assumptions need to be made regarding the distributions of the
random effects and the unobserved covariates. The asymptotic properties of the proposed tests are studied.
We illustrate these tests by analyzing two data sets and evaluate their performance with simulations.
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1. Introduction
Clustered nominal and ordinal categorical responses are ob-
served frequently in biomedical and social sciences studies. For
instance, in multicenter cancer clinical trials, several levels of
tumor responses are often recorded; in school asthma inter-
vention studies, asthma severity is often classified into multi-
ple categories (e.g., mild, moderate, and severe). Analysis of
such data requires accounting for the within-cluster correla-
tion and the multinomial nature of the data. Random effects
models are commonly used for analyzing clustered nominal
and ordinal categorical data (Harville and Mee, 1984; Hedeker
and Gibbons, 1994). In some applications, clustered censored
discrete time-to-event data are observed. See Ten Have and
Uttal (1994) for an example. These authors proposed frailty
discrete proportional hazard models for such data.

In the analysis of such clustered categorical and censored
discrete time-to-event data, it is of common interest to test for
the correlation within clusters and the heterogeneity among
clusters. Such tests have been proposed by using score statis-
tics for the null hypothesis that variance components are zero
for clustered continuous, binary, and Poisson outcomes within

the random effects model framework (Commenges et al., 1994;
Lin, 1997), and for clustered censored continuous survival
data using frailty models (Gray, 1995). However, such tests
have not been developed for clustered polytomous data, nor
for clustered censored discrete time-to-event data.

In the first part of this article (Sections 2 and 3), we develop
tests for the within-cluster correlation for clustered polyto-
mous and censored discrete time-to-event data by deriving
score tests for the null hypothesis that variance components
are zero in random effects models. Since the null hypothe-
sis is on the boundary of the parameter space—unlike the
Wald and likelihood ratio tests whose asymptotic distribu-
tions are mixtures of chi-squares—an advantage of the score
tests is that their asymptotic distributions are still chi-square.
Another advantage of the score tests is that no distribution
on the random effects needs to be assumed—except for their
first two moments. Hence, they are robust to misspecification
of the distributions of the random effects. Further, the Wald
tests and the LR tests require fitting random effects models
that involve numerical integration; the score tests, however,
only require fitting standard models under the null hypothesis
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using existing standard software, and do not require numeri-
cal integration.

A common problem in the analysis of clustered data is
the presence of covariate measurement errors. For example,
in nutritional studies, fat intake is often measured with er-
ror using a 24-hour food recall (Carroll et al., 1995); in AIDS
studies, CD4 counts are often measured with error (Tsiatis,
Degruttola, and Wulfsohn, 1995). Valid statistical inference
needs to account for measurement errors in covariates. The
second part of this paper (Section 4) will extend the proposed
score tests for variance components to the situation where
covariates are measured with errors. We propose using the
SIMEX method (Cook and Stefanski, 1994) to correct for
measurement errors and develop SIMEX score tests for vari-
ance components. These tests are an extension of the SIMEX
score test of Lin and Carroll (1999) to clustered polytomous
and discrete time-to-event data with covariate measurement
error.

We evaluate the finite sample performance of the proposed
tests using simulations, and apply the proposed tests to two
data sets: a longitudinal study on nasal drainage (Macknin,
Mathew, and Medendorp, 1990) and a Kenya parasitaemia
study (McElroy et al., 1997).

2. The Variance Component Score Tests
for Clustered Categorical Data

Random effects generalized logistic models and cumulative
probability models have been proposed to model clustered
nominal and ordinal categorical data (Harville and Mee, 1984;
Hedeker and Gibbons, 1994). Our main interest in this sec-
tion is to develop score tests for the null hypothesis that the
variance components are zero in such models, to test for the
within-cluster correlation.

2.1 The Variance Component Score Test in Random Effects
Generalized Logistic Models

Suppose that, for the jth (j = 1, . . . ,ni ) subject in the ith
(i = 1, . . . ,m) cluster, a categorical response Y ij belongs to
one of N categories indexed by 1, . . . ,N . Conditional on the
cluster-level random effect bi , the observations Y ij are inde-
pendent, and the conditional probability P ij,k = P (Y ij =
k | bi ) depends on a p × 1 covariate vector Xij , through a
generalized logistic model

log

(
Pij,k

Pij,N

)
= αk +X ′

ijβk + bi = X ′
ij,kβ + bi,

k = 1, . . . , N − 1, (1)

where βk is a p × 1 vector of fixed effects, bi ∼ F (bi ; θ) for
some distribution function F that has mean 0 and variance θ,
X ′

ij,k = e′k ⊗ (1, X ′
ij), where ⊗ denotes a Kronecker product,

ek is an (N − 1) × 1 vector with the kth component equal
to 1 and the rest of the components equal to 0, and β = (α1,
β′

1, . . . ,αN−1, β
′
N−1)

′.
The marginal log-likelihood function for (β, θ) is

�(β, θ) =

m∑
i=1

log

∫
exp{�i(β, bi)} dF (bi; θ), (2)

where �i(β, bi) =
∑ni

j=1

∑N

k=1 yi j,k logPi j,k, yij,k = I(Y ij =
k), and I(·) is an indicator function. The magnitude of θ mea-
sures the degree of the within-cluster correlation. We are in-

terested in testing H0 : θ = 0 vs. H1 : θ > 0, where H0 : θ = 0
implies no within-cluster correlation. Since the null hypothe-
sis is on the boundary of the parameter space, the likelihood
ratio test and the Wald test do not follow a chi-square distri-
bution asymptotically (Self and Liang, 1987). We consider a
score test for H0, and show that it still follows a chi-square
distribution asymptotically.

Using L’Hôpital’s rule, some calculations show that the
score statistic of θ evaluated under H0 : θ = 0 is

Uθ(β) =
∂�(β, θ)

∂θ

∣∣∣∣
θ=0

=

m∑
i=1

1

2

[
∂2�i(β, bi)

∂b2i
+

{
∂�i(β, bi)

∂bi

}2
]∣∣∣∣∣

bi=0

(3)

=
1

2

m∑
i=1

[{
ni∑
j=1

(Ỹ ij − P̃ ij)

}2

−
ni∑
j=1

P̃ ij(1 − P̃ ij)

]
,

(4)

where Ỹ ij =
∑N−1

k=1 yij,k = I(Yij ≤ N − 1), and P̃ ij =∑N−1
k=1 exp(X ′

ij,kβ)/{1 +
∑N−1

k=1 exp(X ′
ij,kβ)} is the mean of

Ỹ ij under H0. The detailed derivation of (4) is given in Ap-
pendix A.1. It is interesting to note that the form of (4) re-
sembles the variance component score statistic for clustered
binary data (Commenges et al., 1994). It can easily be shown
that, under H0 : θ = 0, E{Uθ(β)} = 0 and m−1/2Uθ(β) is
asymptotically normal N(0, Iθθ), where Iθθ is given in (6).

To study the properties of Uθ(β) under H1 : θ > 0, we

expand E(Ỹ ij | bi) as a quadratic function of bi . Some cal-
culations show that, under H1 : θ > 0,

E{Uθ(β)} ≈ 1

2

m∑
i=1

{
ni∑
j=1

ni∑
k �=j

aijaik +
1

2

ni∑
j=1

aij(a
′
ij)

2

}
θ,

where aij = P̃ ij(1 − P̃ ij), and a′ij = 1 − 2P̃ ij . It follows that
E{Uθ(β)} is an increasing function of θ. The test is consistent,
and one would expect a large value of Uθ(β) for a large value
of θ.

Since β is unknown under H0 and needs to be estimated,
the score statistic for testing H0 is

S = Uθ(β̂)
/
Ĩ

1/2
θθ (β̂), (5)

where β̂ is the MLE of β under H0. It can be easily obtained
by fitting the generalized logistic model log (P ij,k/P ij,N ) =

X ′
ij,kβ. Ĩθθ = Iθθ − Iθβ′I−1

ββ′Iβθ is the efficient information of
θ evaluated under H0 : θ = 0. Using L’Hôpital’s rule, some
calculations show that

Iθθ = E

{(
∂�

∂θ

)2
}

=
1

4

m∑
i=1

{
ni∑
j=1

P̃ ijQ̃ij(1− 6P̃ ijQ̃ij)+2

(
ni∑
j=1

P̃ ijQ̃ij

)2 }
,

(6)

Iββ′ =

m∑
i=1

E

(
∂�i
∂β

∂�i
∂β′

)
=

m∑
i=1

X ′
iΣiXi, (7)
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Iθβ′ =

m∑
i=1

E

{
∂�i
∂θ

∂�i
∂β′

}
=

1

2

m∑
i=1

P ′
i(IN−1 ⊗Gi)Xi, (8)

where the expectations are taken under H0, IN−1 denotes
an (N − 1) × (N − 1) identity matrix, and Xi , Gi , Σi, Pi

are given in Appendix A.1. Standard asymptotic calculations
show that S is asymptotically N(0, 1) under H0, and one re-
jects H0 if S is large and the test is one-sided.

The score test S for H0 : θ = 0 has several attractive fea-
tures. It can be easily obtained by fitting the generalized
logistic model log (P ij,k/P ij,N ) = X ′

ij,kβ, which is model
(1) under H0, using standard software, e.g., SAS PROC
CATMOD. Hence, calculations of S do not involve any nu-
merical integration. Second, it can be shown that it is the
locally most powerful test. Finally, it is robust in the sense
that no distribution is assumed for the random effect bi .

2.2 The Variance Component Score Test in Random Effects
Cumulative Probability Models

For clustered ordinal data, a widely used model is the cu-
mulative probability random effects model, by modeling the
cumulative probabilities rij,k = P (Y ij ≤ k) as

g(rij,k) = αk +X ′
ijβx + bi = X ′

ij,kβ + bi, k = 1, . . . , N − 1

(9)
where g(·) is a link function, Xij,k = (e′k, X

′
ij)

′, β = (α1, . . . ,
αN−1, βx

′), and bi ∼ F (·, θ) for some distribution function F
with mean 0 and variance θ. For g(r) = logit (r) and g(r) =
log {−log(1 − r)}, we have proportional odds and complemen-
tary log-log models.

Define zij,k = I(Y ij ≤ k). Denote rij = (rij,1, . . . , rij,N−1)
′,

Ri = (r ′
i1, . . . , r

′
ini

)′, and zij , Zi similarly. Some calculations
show that the score statistic of θ under H0 : θ = 0 is

Uθ(β) =
1

2

m∑
i=1

{
(Zi−Ri)

′Γ−1
i Hi1i1

′
iHiΓ

−1
i (Zi−Ri)−1′

iW̃ i1i

}
,

(10)

where 1i is an ni (N − 1) × 1 vector of ones, andHi , Γi and W̃ i

are given in Appendix A.2. Note that (10) compares the
empirical variance of the weighted responses to its nominal
variance.

The score statistic for testing H0 : θ = 0 is S = Uθ(β̂)/

Ĩ
1/2
θθ (β̂), where β̂ is the MLE of β under H0, which can be

easily obtained by fitting the standard cumulative probability
model g(rij,k) = X ′

ij,k β, and Ĩθθ(β̂) is the efficient informa-
tion of θ, defined similarly to that in Section 2.1. The explicit
expressions of the information matrices are rather compli-
cated, since their calculations involve the third and fourth cu-
mulants of a multinomial distribution. Specifically, it is shown
in Appendix A.2 that, under H0 : θ = 0,

Iθθ =
1

4

m∑
i=1

{
ni∑
j=1

N−1∑
k,l,m,q=1

ξij,kξij,lξij,mξij,q

×κ4(zij,k, zij,l, zij,m, zij,q)

+2

ni∑
j=1

N−1∑
k,l,m=1

ξij,kξij,lvij,mκ3(zij,k, zij,l, zij,m)

+V ′
i ΓiVi + 2T 2

i

}
,

Iββ′ =

m∑
i=1

X ′
iHiΓ

−1
i HiXi,

Iθβ′ =
1

2

m∑
i=1

(
O′

iΓ
−1
i HiXi + V ′

iHiXi

)
,

where κ3 and κ4 are the third and fourth cumulants of zij
(see equation (5.13) of McCullagh and Nelder (1989)), and
ξij,k, Ti , Oi , and Vi are given in Appendix A.2.

Standard asymptotic calculations show that the score
statistic S follows N(0, 1) asymptotically under H0, and has
the same optimality and robustness properties stated at the
end of Section 2.1. It can be easily calculated by fitting the
standard cumulative probability model g(rij,k) = X ′

ij,kβ us-
ing existing software, e.g., SAS PROC CATMOD, and does
not require any numerical integration. Again, a one-sided test
is used, and H0 is rejected for a large value of S.

3. The Variance Component Tests for Clustered
Censored Discrete Time-to-Event Data

In this section, first we introduce frailty models for clustered
censored discrete time-to-event data, which are an extension
of the random effects models for clustered categorical data,
discussed in Section 2, to accommodate censoring. We then
derive a score test for the within-cluster correlation. We as-
sume that survival times are discrete and subject to right
censoring, and that censoring is noninformative. Let tij =
min(vij , dij) be the observed time for the jth subject (j
= 1, . . . ,ni ) in the ith cluster (e.g., family) (i = 1, . . . ,m),
where vij is the true survival time and dij is the censoring
time. Let δij = I(vij ≤ dij) be the noncensoring indicator,
which takes value 1 if a failure is observed and 0 otherwise.
The survival time vij and the censoring time dij take discrete
values at the τk (1 ≤ k ≤ N), where 0 ≤ τ 1 < τ 2 < . . . <
τN ≤ ∞.

Conditional on the cluster-level frailty bi , the observations
(tij , δij) are independent, with conditional hazard λij,k =
P (vij = τk | vij ≥ τk, bi ) satisfying

g(λij,k) = αk +X ′
ijβx + bi = X ′

ij,kβ + bi, (11)

for k = 1, . . . ,N − 1, where g(·) is a link function, and bi ∼
F (bi ; θ) for some distribution F (·) with mean 0 and variance θ.
For g(x) = logit (x), equation (11) corresponds to a discrete
logistic hazard model; for g(x) = log{log(1 − x)}, it corre-
sponds to a discrete proportional hazard model (Kalbfleisch
and Prentice, 1980). In the absence of censoring, these two
special cases are reduced to the logistic and complemen-
tary log-log models discussed in Section 2.2. Ten Have and
Uttal (1994) discussed parameter estimation using the MLE
in (11) by assuming F (·) to be a normal distribution. The
log-likelihood function of (tij , δij) conditional on the frailty
bi is

�(tij , δij | bi) =

N−1∑
k=1

{
δijyij,klog

(
λij,k

1 − λij,k

)

+Yij,klog(1 − λij,k)
}
, (12)

where yij,k = I(tij = τk), and Y i j ,k = I(tij ≥ τk) is the at-risk
indicator.
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For the sake of convenience in expressing the score and the
information matrix of θ, we rewrite model (11) as

log

(
λij,k

1 − λij,k

)
= h(X ′

ij,kβ + bi), (13)

where there is a one-to-one correspondence between g(·) and
h(·). Notice that yij,k = Y ij,k − Y ij,k+1, and Y ij,1 ≡ 1. It
follows that (12) can be rewritten as

�(tij , δij | bi) =

N∑
k=1

{δijYij,k(hij,k − hij,k−1) − Yij,ksij,k} ,

where hij,k = h(X ′
ij,kβ + bi ) when k = 1, . . . ,N − 1, hij,k =

0 when k ∈ {0, N}, sij,k = log {1 + exp(hij,k)} when k =
1, . . . ,N − 1, and sij,N = 0. The marginal log-likelihood of
(β, θ) can be obtained by integrating out the random effects
bi as

�(β, θ) =

m∑
i=1

�i(β, θ)

=

m∑
i=1

log

∫
exp

{
ni∑
j=1

�(tij , δij | bi)
}
dF (bi; θ). (14)

Using equation (3), some calculations show that the score
of θ under H0 : θ = 0 is

Uθ(β) =

m∑
i=1

∂�i
∂θ

=
1

2

m∑
i=1

[{
ni∑
j=1

N∑
k=1

Yij,k(φij,k − ωij,k)

}2

−
ni∑
j=1

N∑
k=1

Yij,k(ψij,k − πij,k)
]

(15)

where h
(l)
ij,k = h(l)(X ′

ij,kβ), φij,k = δij{h(1)
ij,k −h

(1)
ij,k−1}, πij,k =

δij{h(2)
ij,k − h(2)

ij,k−1}, ωij,k = h
(1)
ij,k exp(hij,k)/{1 + exp(hij,k)}

when k = 1, . . . ,N − 1 and ωij,N = 0, and

ψij,k =

[
h

(2)
ij,k{1 + exp(hij,k)} +

{
h

(1)
ij,k

}2
]

exp(hij,k)

{1 + exp(hij,k)}2 ,

when k = 1, . . . ,N − 1 and ψij,N = 0. Here, h(l)(·) denotes
the lth derivative of h(·). It can be shown that E {Uθ(β)} =
0 under H0. When there is no censoring, i.e., δij ≡ 1, noticing
Y ij,k+1 = 1 − zij,k for k = 1, . . . ,N − 1, it can be shown that
(15) reduces to (10).

The score statistic for testing H0 : θ = 0 is S = Uθ(β̂)/

Ĩ
1/2
θθ (β̂), and the test should be one-sided. Here, Ĩθθ is the effi-

cient information of θ evaluated under H0. β̂ is the MLE of β
under H0, and can be easily calculated by fitting the standard
discrete failure time model g(λij,k) = X ′

ij,kβ. Calculations of
the expected information matrices are difficult, because they
involve the censoring distribution. Hence, we propose using
the observed information calculated under H0:

Îθθ =

m∑
i=1

(
∂�i
∂θ

)2

, Îθβ =

m∑
i=1

∂�i
∂θ

∂�i
∂β
, Îββ =

m∑
i=1

∂�i
∂β

∂�i
∂β′ ,

where ∂�i/∂θ is given in (15), and ∂�i/∂β =∑ni

j=1

∑N

k=1 Yij,k(νij,k − ρij,k). Here νij,k = δij{h(1)
ij,kXij,k −

h
(1)
ij,k−1Xij,k−1}, and ρij,k = h

(1)
ij,k exp (hij,k)Xij,k/

{1 + exp(hij,k)} when 1 ≤ k ≤ N − 1 and ρij,N =0.
Standard asymptotic calculations show that S follows

N(0, 1) asymptotically underH0. The score statistic S has the
same attractive optimality and robustness properties as those
laid out at the end of Section 2.1. It can be easily calculated
by fitting standard discrete failure time models g(λij,k) =
X ′

ij,kβ, using, e.g., SAS PHREG, and requires no numerical
integration.

4. The Variance Component Tests in the Presence
of Measurement Errors in Covariates

In this section, we extend the variance component score tests
developed in Sections 2 and 3 to the situation when covari-
ates are measured with error. Denote by Xij a vector of unob-
served covariates (e.g., the true CD4 count), and by Cij other
accurately measured covariates. For simplicity, we concen-
trate on random effects cumulative probability models (Sec-
tion 2.2), and frailty discrete failure time models (Section 3).
The results in this section apply directly to random effects
generalized logistic models (Section 2.1).

The random effects cumulative probability model (9) and
the frailty discrete failure time model (11) can be written in
a unified form

g(pij,k) = αk +X ′
ijβx + C ′

ijβc + bi, (16)

where bi follows some distribution F (·, θ), with mean 0 and
variance θ. For the random effects cumulative probability
model (9), pij,k = rij,k. For the frailty discrete failure time
model (11), pij,k = λij,k.

Suppose the observed covariates W ij (e.g., the observed
CD4 count) measure Xij with error. We postulate a
nondifferential additive measurement error model for W ij

(Carroll et al., 1995),

Wij = Xij + Uij , (17)

where the U ij are independent measurement errors follow-
ing N(0, Σu). Suppose that the measurement error covari-
ance Σu is known, or is estimated as Σ̂u, e.g., using repli-
cates or validation data. We are interested in testing for no
within-cluster correlation H0 : θ = 0 in the random effects
measurement error models (16) and (17). We propose using
the SIMEX method, by extending the results in Sections 2 and
3 to construct score tests for H0 to account for measurement
errors.

Simulation extrapolation (SIMEX) is a simulation-based
functional method for inference on model parameters in mea-
surement error problems (Cook and Stefanski, 1994), where
no distributional assumption is made about the unobserved
covariates Xij . We first briefly describe parameter estimation
in random effects measurement error models (16)–(17) using
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the SIMEX method, then discuss how to use the SIMEX idea
to develop SIMEX score tests for H0 : θ = 0.

The SIMEX method consists of two steps: the simulation
step and the extrapolation step. In the simulation step, one
generates data W ∗

ij by adding to W ij a random error follow-
ing N(0, ηΣu), for some constant η > 0. One then calculates
naive parameter estimates by fitting (16) withXij replaced by
W ∗

ij . This would give the naive estimates if the measurement
error covariance is (1 + η)Σu. This procedure is repeated for
a large number B times (e.g., B = 100), and the mean of the
resulting B naive parameter estimates is calculated. One does
this for a series of values of η (e.g., η = 0.5, 1, 1.5, 2). In the
extrapolation step, a regression (e.g., quadratic) model is fit
to the means of these naive estimates as a function of η, and is
extrapolated to η = −1, which corresponds to zero measure-
ment error variance. These extrapolated estimates give the
SIMEX estimates of the model parameters. For details of the
SIMEX method, see Cook and Stefanski (1994) and Carroll
et al. (1995).

We now apply the SIMEX idea to constructing score tests
for H0 : θ = 0 in the random effects measurement error models
(16) and (17), by extending the results in Sections 2 and 3.
The proposed SIMEX score tests are an extension of the work
of Lin and Carroll (1999) to random effects measurement error
models for clustered polytomous and censored discrete failure
time data.

When there is no measurement error, the score statis-
tics for testing H0 : θ = 0 under (16) take the same form

Uθ(β̂)/Ĩ
1/2
θθ (β̂), where Uθ(β̂) is given in (10) for random ef-

fects cumulative probability models, and in (15) for frailty

discrete time-to-event models. The denominator Ĩθθ(β̂) is in

fact the variance of Uθ(β̂). The main idea of the SIMEX vari-
ance component score test is to treat the score statistic in
the numerator Uθ(·) as if it were a parameter estimator, and
then use the SIMEX variance method (Section 4.3.5 of Carroll
et al., 1995) to calculate the variance of this “estimator.”
Specifically, in the SIMEX simulation step, one simply cal-
culates naive score statistics using the score formula (10) and
(15), by replacing Xij with the simulated data W ∗

ij . The rest
of the steps parallel those in the standard SIMEX method for
parameter estimation. Denoting the results by Usimex (·) and

Ĩθθ,simex , respectively, the SIMEX score statistic is simply

Ssimex = Usimex/ Ĩ
1/2
θθ,simex , (18)

which follows N(0, 1) asymptotically when the true extrapo-
lation function is used. Since in practice the true extrapola-
tion function is unknown, an approximation (e.g., quadratic)
is used. Our simulation study in Section 5 shows that the
proposed SIMEX score tests perform well. The theoretical
justification of the SIMEX score tests is similar to that in Lin
and Carroll (1999), and is omitted.

The proposed SIMEX score test has several key features.
First, it can be easily calculated by fitting standard cumula-
tive probability models, or discrete failure time models, using
available software, such as SAS PROC CATMOD and SAS
PROC PHREG. Second, it is robust, in the sense that no dis-
tribution needs to be assumed for the frailty bi , nor for the
unobserved covariates X.

5. Simulation Studies
5.1 The Random Effects Generalized Logistic

and Cumulative Probability Models
We performed simulation studies to evaluate the sizes and
the powers of the variance component score tests proposed in
Sections 2.1 and 2.2. We assumed the number of clusters m =
100 and the cluster size ni = 5. We consider a trichotomous
response variable (N = 3) and two covariates Xij = (Xij1,
Xij2)

T , where Xij1 is 0 for half of the clusters and 1 for the
rest, and mimics a treatment indicator, and Xij2 = j − 3
(j = 1, . . . , 5). The true parameter values are α1 = α2 = −1,
β1 = (0.5, 1), and β2 = (2, 1) for model (1); and α1 = 0.5,
α2 = 1, and βx = (1, 2) for model (9).

Following Lin (1997), we generated bi from a normal
mixture

F = πN{−(1 − π)µ, σ2} + (1 − π)N(πµ, σ2), (19)

which has mean 0 and variance θ = π(1 − π)µ2 + σ2. Three
cases for F were considered: 1) normal: µ = 0 , σ2 = 1;
2) unimodal normal mixture: π = 0.25, µ = 0.5 , σ2 =
θ − π(1 − π)µ2; and 3) bimodal normal mixture: π = 0.50,
µ = 1, σ2 = θ − π(1 − π)µ2. In each simulation, we gen-
erated 500 trichotomous observations from model (1) or (9).
We varied θ from 0 to 1.0, to study the sizes and the powers
of the score tests for the variance components. The experi-
ment was replicated 2000 times for each parameter configura-
tion. The nominal size was set to be 0.05. The empirical sizes
and powers of the tests under the two models are given in
Table 1.

The results in Table 1 show that the empirical sizes of the
tests are very close to the nominal level of 0.05. As the vari-
ance component increases, the powers quickly approach 1.
Greater powers are associated with the distribution deviat-
ing further from normality. We speculate that higher power
is obtained because the curvature of the score function might
be larger when the distribution of the random effect deviates
from normality.

5.2 The Frailty Discrete Failure Time Model
We next conducted simulation studies to assess the sizes and
powers of the variance component score tests in frailty discrete
time-to-event models. We considered frailty discrete logistic
and proportional hazard time-to-event models, i.e., g(x) =
logit (x) and g(x) = log {−log(1 − x)} in (11). We assumed
the number of distinct failure times N = 5. The covariate
Xij in (11) was assumed to be a scalar, and was simulated

Table 1
Empirical sizes and powers of the variance component score

test in the random effects generalized logistic and proportional
odds models observed in 2000 simulations

θ

Model Distribution of bi 0.0 0.3 0.5 0.6 0.8 0.9 1.0

Logistic Normal 0.052 0.10 0.20 0.33 0.64 0.77 0.87
Unimodal normal mixture 0.052 0.13 0.23 0.35 0.67 0.80 0.90
Bimodal normal mixture 0.052 0.15 0.25 0.37 0.68 0.82 0.92

Prop. Normal 0.046 0.14 0.48 0.70 0.81 0.88 0.96
odds Unimodal normal mixture 0.046 0.16 0.51 0.73 0.82 0.92 0.97

Bimodal normal mixture 0.046 0.17 0.54 0.75 0.85 0.94 0.98
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Table 2
Empirical sizes and powers of the variance component score
test in the frailty discrete logistic and proportional hazard

models observed in 2000 simulations

θ
Dist. # of

Model of bi clusters 0.0 0.1 0.3 0.5 0.6 0.8 1.0

Logistic Normal m = 40 0.047 0.08 0.12 0.21 0.27 0.35 0.68
m = 80 0.058 0.09 0.14 0.31 0.42 0.52 0.81
m = 160 0.054 0.10 0.24 0.64 0.81 0.90 1.00

Bimodal m = 40 0.053 0.09 0.17 0.28 0.37 0.46 0.75
m = 80 0.058 0.10 0.21 0.45 0.58 0.69 0.90
m = 160 0.054 0.13 0.32 0.73 0.86 0.94 1.00

PH Normal m = 40 0.054 0.06 0.13 0.37 0.45 0.57 0.83
m = 80 0.056 0.07 0.16 0.49 0.63 0.74 0.95
m = 160 0.052 0.15 0.52 0.94 0.95 1.00 1.00

Bimodal m = 40 0.055 0.10 0.20 0.45 0.56 0.81 0.92
m = 80 0.056 0.14 0.36 0.74 0.83 0.90 0.99
m = 160 0.052 0.23 0.63 0.97 0.99 1.00 1.00

independently from N(0, 1), (α1, α2, α3, α4) = (−0.2, −0.3,
−0.4, −0.5), and βx = 0.5. We generated the frailty bi from
(19), and considered F to be normal (case (1)) and bimodal
normal mixture (case (3)). We varied θ from 0 to 1 to study
the sizes and powers of the score tests.

In our experiments, we considered the following combina-
tions: the number of clusters:m = 40, 80, 160; the cluster size:
n = 3; and the censoring proportion = 20%. For each setting,
2000 simulated data sets were generated. The nominal size
was set to be 0.05. Table 2 displays the empirical sizes and
powers of the variance component score tests under the two
models.

The proposed score tests perform well. The actual sizes of
the tests are close to 0.05, and their performance improves

Table 3
Empirical sizes and powers of naive and SIMEX score tests for variance component observed in

2000 simulations in the frailty discrete logistic and proportional hazard (PH) measurement
error model

θ# of
Model Dist. of bi clusters Method 0.0 0.1 0.3 0.5 0.6 0.8 1.0

Logistic Normal m = 40 Naive 0.063 0.11 0.16 0.28 0.33 0.55 0.82
SIMEX 0.052 0.09 0.14 0.24 0.29 0.51 0.77

m = 80 Naive 0.073 0.12 0.20 0.43 0.52 0.64 0.91
SIMEX 0.054 0.10 0.18 0.38 0.47 0.57 0.87

m = 160 Naive 0.103 0.15 0.26 0.71 0.85 0.93 1.00
SIMEX 0.053 0.14 0.24 0.65 0.83 0.91 1.00

Bimodal m = 40 Naive 0.071 0.13 0.18 0.29 0.36 0.58 0.87
SIMEX 0.055 0.11 0.15 0.26 0.33 0.53 0.81

m = 80 Naive 0.087 0.14 0.23 0.44 0.57 0.66 0.91
SIMEX 0.058 0.12 0.21 0.43 0.54 0.64 0.87

m = 160 Naive 0.098 0.16 0.37 0.71 0.87 0.94 1.00
SIMEX 0.057 0.14 0.34 0.67 0.83 0.92 1.00

PH Normal m = 40 Naive 0.061 0.08 0.17 0.37 0.54 0.65 0.92
SIMEX 0.052 0.07 0.15 0.33 0.51 0.61 0.85

m = 80 Naive 0.065 0.09 0.21 0.52 0.65 0.77 0.97
SIMEX 0.053 0.07 0.18 0.45 0.62 0.72 0.93

m = 160 Naive 0.102 0.16 0.50 0.94 0.96 1.00 1.00
SIMEX 0.053 0.13 0.46 0.93 0.94 0.98 1.00

Bimodal m = 40 Naive 0.082 0.16 0.24 0.58 0.68 0.79 0.90
SIMEX 0.056 0.11 0.21 0.53 0.62 0.73 0.87

m = 80 Naive 0.095 0.17 0.37 0.72 0.82 0.90 0.99
SIMEX 0.054 0.11 0.33 0.69 0.79 0.86 0.97

m = 160 Naive 0.093 0.29 0.60 0.95 0.97 1.00 1.00
SIMEX 0.052 0.22 0.59 0.93 0.94 1.00 1.00

as the number of clusters increases from 40 to 160. As the
variance component increases, the powers of the tests quickly
approach 1. When the number of clusters is smaller, e.g., 40,
the power is lower. Similar results are obtained when we allow
the number of clusters ni to vary across clusters, ranging from
1 to 5, with an average of 2 observations per cluster. This
setting mimics the Kenya data.

5.3 The Frailty Measurement Error Discrete Failure
Time Model

We next performed simulation studies to assess the sizes and
powers of the SIMEX variance component score tests in frailty
discrete failure time measurement error models (16) and (17).
We considered both logistic and proportional hazard models.
The parameter configurations were the same as in the frailty
discrete failure time models with no measurement error, in
Section 5.2, except that we assumed Xij was not observed,
and was measured with error by W ij = Xij + U ij , where
(U ij , Xij) were generated independently from N(0, 0.5) and
N(0, 1), respectively.

The results of the empirical sizes and powers, based on
2000 simulations assuming bi to be normal or normal mixture,
are displayed in Table 3. For the purpose of comparison, we
studied the performance of the naive score tests, which ignore
the measurement error by replacing Xij with W ij , and the
performance of the SIMEX score tests. A quadratic extra-
polation function was used in the SIMEX extrapolation step.
Our simulation results show that the levels of the naive score
tests, calculated by ignoring the measurement error, are too
high—and almost double the nominal value when the number
of clusters is large. In contrast, the SIMEX score tests perform
well, and their levels are very close to the nominal value. As
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the variance component θ increases, the powers of the SIMEX
score tests increase and quickly approach 1. One may also
note that the powers of the SIMEX test are lower than are
the naive tests; however, this could be due to the inflated
size of the naive tests. As a referee pointed out, this could
also be a consequence of the fact that SIMEX shrinks the
variance component estimate, while increasing its variance.
Similar results are obtained when we vary the measurement
error variance σ2

u, e.g., from 1/9 to 1.

6. Applications
6.1 Application 1: The Nasal Drainage Study
To illustrate the variance component score tests for clustered
polytomous data discussed in Section 2, we examined data
from a longitudinal study on the efficacy of steam inhalation
for treating common cold symptoms conducted by Macknin
et al. (1990). This study involved 30 patients who had colds of
recent onset. For each patient, two 20-minute steam inhala-
tion treatments, spaced 60–90 minutes apart, were admin-
istered at the time of enrollment. Assessment of subjective
response was made on an individual daily score card by the
patient from day 1 (baseline) to day 4. On each day, the sever-
ity of nasal drainage was calibrated into 4 ordered categories
(no symptoms, mild, moderate, and severe). One was inter-
ested in examining whether the severity improved following
the treatment, and in testing whether the observations over
time, for each subject, were likely to be correlated.

We considered models (1) and (9), with the time from
the baseline as a covariate. When the random effects logistic
model (1) was assumed, the variance component score statis-
tic was 5.32 (p-value < 0.001), which provided strong evi-
dence for within-subject correlation over time. Similar results
were found when the random effect proportional odds model
(9) was fit (score statistic = 9.70, p-value < 0.001). Note
that these two tests assumed no distribution for the random
effect bi .

To examine the time effect, we fit (9) by further assuming
that the random effect bi followed N(0, θ). The MLE of the
coefficient of time was −0.33 (SE = 0.21). This suggests that
the severity improved following the treatment, but the im-
provement was not statistically significant (p-value = 0.11).
The estimated variance component was 2.31 (SE = 0.45). This
result was consistent with the score test result.

6.2 Application 2: The Kenya Parasitaemia Study
To illustrate the SIMEX score test for within-cluster corre-
lation in the presence of measurement error in covariate dis-
cussed in Section 4, we considered a study for the effect of the
infective mosquito bite exposure on the risk of parasitaemia
among children in Western Kenya (McElroy et al., 1997). A
total of 542 children, aged from six months to six years, from
309 households, were enrolled into the study between Febru-
ary 1986 and July 1987. Upon entry into the study, each child,
regardless of his/her parasitaemia status, was treated to elim-
inate blood-stage infection. Their blood films were examined
two weeks later to check whether or not their parasitaemia
infections were eliminated. Twenty-three children, whose ob-
servation times were less than two weeks, were excluded from
the analysis. The blood films of the rest of the children were
found to be negative. These children were then followed for up
to 10 weeks for the first recurrence of parasitaemia. The ob-

servations from different children within the same household
were likely to be correlated.

The investigators were interested in studying the effects
of cumulative infective mosquito bites in the first two-week
period on the risk of recurrent parasitaemia. It was also
of interest to test whether the observations from different
children within the same household were likely to be cor-
related. The number of infective mosquito bites was mea-
sured only one night in each of the first two weeks. The
cumulative infective bites in the first two weeks were cal-
culated using the sum of the two night measures times 7.
Hence, they were measured with substantial error. The other
covariates included sex (1 = F, 0 = M), age, and base-
line parasitaemia density. About 90% of the children experi-
enced recurrent parasitaemia during the follow-up. The aver-
age number of total two-week bites was 12. As children were
scheduled to be visited every other week after accrual, the
observed event times were categorized into five categories: 1
(2 weeks), 2 (3–4 weeks), 3 (5–6 weeks), 4 (7–8 weeks), and
5 (8+weeks). There were 86 failures and 4 censored subjects
at 2 weeks, 149 failures and 3 censored subjects between 3
and 4 weeks, 119 failures and 3 censored subjects between
5 and 6 weeks, 73 failures and 3 censored subjects between 7
and 8 weeks, and 33 failures and 46 censored subjects after
8 weeks. The baseline parasitaemia density was log trans-
formed (LNBPD), and the cumulative two-week bites were
quartic-root transformed (BITE).

We considered the frailty discrete logistic, and proportional
hazard measurement error, models (16) and (17) with X =
true BITE and C = (AGE, GENDER, LNBPD). Since there
were no validation data available, and there were no repli-
cates, the measurement error variance σ2

u cannot be estimated
from the available data. We fit a linear random intercept
model to the observed BITE (W). This only allowed us to
estimate the sum of σ2

x and σ2
u, which was 0.20. We then

conducted a sensitivity analysis, by varying σ2
u from 0 (naive

analysis), to moderate (σ2
u = 0.08), to severe (σ2

u = 0.20)
measurement error.

To test for the within-household correlation, we calculated
the SIMEX score test for the variance component equal to
0 under the frailty discrete logistic and proportional hazard
measurement error models. Under the frailty logistic measure-
ment error model, the naive score statistic for H0 : θ = 0 cal-
culated by ignoring the measurement error (σ2

u = 0) was 0.93
(p-value = 0.18). The SIMEX score statistics, by assuming
that σ2

u = 0.08 and 0.20, were 0.63 (p-value = 0.26) and 0.34
(p-value = 0.37), respectively. Under the frailty proportional
hazard measurement error model, the naive score statistic was
1.02 (p-value = 0.15), while the SIMEX score statistics, by
assuming σ2

u = 0.08 and 0.20, were 0.66 (p-value = 0.25)
and 0.43 (p-value = 0.33), respectively. These results suggest
that the within-household correlation is not significant. Note
that no distributional assumptions about the frailty and the
unobserved true BITE are made in the SIMEX score tests.
A quadratic extrapolation function is used in the extrapola-
tion step. To examine whether this is appropriate, we plot
in Figure 1 the naive scores in the simulation step against
η in squares, and then superimpose the quadratic extrapola-
tion function. Figure 1 shows that the quadratic extrapolation
function works well. Our simulation study also supports this
finding.
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Figure 1. SIMEX extrapolations for the score U when
σ2
u = 0.08 in the Kenya malaria study.

To evaluate the effect of the cumulative infective mosquito
bites in the first two-week period on the risk of recurrent
parasitaemia, we fit models (16) and (17) using the MLE, by
further assuming the frailty bi was normally distributed as
N(0, θ). The results are presented in Table 4. Our analyses
show that a higher level of exposure to infective mosquito
bites significantly increases the risk of parasitaemia. Ignoring
the measurement error attenuates the regression coefficient
estimates and inflates the variance component estimates.

7. Discussion
We have proposed in this paper testing the within-cluster cor-
relation, using the score tests for the variance components in
random effects generalized logistic and cumulative probabil-
ity models for clustered polytomous data. The results are ex-

Table 4
Parameter estimates (SEs in parentheses) for the Kenya parasitaemia data using frailty discrete logistic and

proportional hazard (PH ) measurement error models. Naive means assuming σ2
u = 0.0. Moderate error

means assuming the measurement error variance σ2
u = 0.08, while severe error means assuming σ2

u = 0.20.

Naive Moderate Error Severe Error

Parameter Logistic PH Logistic PH Logistic PH

INTERCEPT1 −2.59 (0.31) −2.45 (0.25) −2.67 (0.32) −2.50 (0.26) −2.89 (0.33) −2.65 (0.27)
INTERCEPT2 −1.52 (0.29) −1.55 (0.24) −1.61 (0.30) −1.60 (0.24) −1.81 (0.31) −1.73 (0.25)
INTERCEPT3 −1.09 (0.29) −1.21 (0.23) −1.19 (0.30) −1.27 (0.24) −1.39 (0.31) −1.40 (0.25)
INTERCEPT4 −0.86 (0.31) −1.04 (0.25) −0.96 (0.32) −1.10 (0.26) −1.16 (0.33) −1.24 (0.26)
INTERCEPT5 −1.05 (0.36) −1.16 (0.28) −1.17 (0.37) −1.24 (0.29) −1.39 (0.38) −1.40 (0.30)
BITE 0.47 (0.14) 0.34 (0.11) 0.57 (0.17) 0.41 (0.14) 0.88 (0.21) 0.63 (0.17)
AGE 0.05 (0.04) 0.04 (0.03) 0.06 (0.04) 0.05 (0.03) 0.07 (0.04) 0.05 (0.03)
GENDER 0.09 (0.12) 0.07 (0.10) 0.09 (0.12) 0.08 (0.10) 0.10 (0.13) 0.08 (0.10)
LNBPD 0.12 (0.06) 0.09 (0.05) 0.13 (0.06) 0.10 (0.05) 0.13 (0.06) 0.10 (0.05)
θ 0.12 (0.11) 0.09 (0.07) 0.09 (0.13) 0.07 (0.09) 0.05 (0.17) 0.04 (0.16)

tended to clustered censored discrete failure time data. A key
feature of the proposed score tests is that they can be easily
calculated by fitting standard generalized logistic and cumula-
tive probability models or standard discrete failure time mod-
els using existing software, such as SAS PROC CATMOD and
PROC PHREG. Further, they are robust in the sense that no
distribution for the random effects needs to be assumed. Our
simulation studies show that the proposed score tests perform
well in terms of both sizes and powers.

In this paper, we have also considered testing the within-
cluster correlation in the presence of covariate measurement
error, using the SIMEX score tests. The SIMEX score tests
enjoy all the properties of the variance component score tests
in the no measurement error case. Furthermore, no distribu-
tion for the unobserved error-prone covariate is assumed. Our
simulation studies show that the proposed SIMEX score tests
perform well in terms of sizes and powers.

Although our score tests are robust to misspecification of
the distributions of the random effects and the distribution
of the unobserved error-prone covariates, they might be less
powerful compared to fully parametric tests (e.g., Wald or
likelihood ratio tests) calculated by assuming parametric dis-
tributions for the random effects and for the unobserved error-
prone covariates. Unlike the score tests, these parametric tests
do not have closed-form expressions and require numerical in-
tegration. Further research is needed to compare the robust-
ness and the powers of these two classes of tests.

As pointed out by a referee, even when the null hypothesis
of homogeneity is not rejected, the data may lend support
to varying degrees of clustering. Hence, when the parametric
assumption of the random effects is reasonable and there is
some evidence of clustering, instead of fully relying on the
variance component score test, it is a good practice to fit the
random effects models to estimate the variance component—
which will provide information about the magnitude of
clustering.

Résumé

Dans l’analyse des données catégorielles en grappe, on cherche
souvent à tester la corrélation intra-grappe, et l’hétérogénéité
entre grappes. Nous proposons une classe de � score tests �
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dont l’hypothèse nulle est la nullité des composantes de
la variance dans des modèles à effet aléatoire, pour des
données catégorielles nominales ou ordinales en grappe. Nous
généralisons les résultats pour prendre en compte des données
de survie censurées à pas de temps discrets. Nous considérons
ensuite le cas de covariables avec erreur de mesure. Nous pro-
posons l’utilisation de la méthode du SIMEX pour calculer le
score test de l’hypothèse nulle de nullité des composantes de
la variance. Les avantages principaux des tests proposés sont
leur facilité d’implémentation, par ajustement de modèles de
régression polytomique standard, et leur robustesse, puisque
aucune hypothèse sur la distribution des effets aléatoires ou
des covariables non observées n’est nécessaire. Les propriétés
asymptotiques des tests proposés sont étudiées. Nous ap-
pliquons ces tests à deux jeux de données, et évaluons leur
performance par simulations.
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Appendix

A.1 Derivation of the Variance Component Score Test in the
Random Intercept Generalized Logistic Model
Since

�i(β, bi) =

ni∑
j=1

N∑
k=1

yij,k logPij,k

=

ni∑
j=1

[
N−1∑
k=1

yij,k(X
′
ij,kβ + bi)

− log

{
1 +

N−1∑
k=1

exp(X ′
ij,kβ + bi)

}]
,

it follows that

∂�i(β, bi)

∂bi

∣∣∣∣
bi=0

=

ni∑
j=1


N−1∑
k=1

yij,k

−

N−1∑
k=1

exp(X ′
ij,kβ)

1 +

N−1∑
k=1

exp(X ′
ij,kβ)


=

ni∑
j=1

(Ỹ ij − P̃ ij)

∂2�i(β, bi)

∂b2i

∣∣∣∣
bi=0

=

ni∑
j=1

−

N−1∑
k=1

exp(X ′
ij,kβ){

1 +

N−1∑
k=1

exp(X ′
ij,kβ)

}2

=

ni∑
j=1

−P̃ ij(1 − P̃ ij).

Equation (4) follows immediately.
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We next calculate the information matrices Iββ′ , Iθβ′ ,
Iθθ under H0 : θ = 0. First,

Uβ =
∂�(β, θ)

∂β

∣∣∣∣
θ=0

=

m∑
i=1

ni∑
j=1

N−1∑
k=1

(yij,k − Pij,k)Xij,k.

We next define Xi = (X ′
i, . . . ,X

′
ini

)′, where Xij =

(Xij,1, . . . ,Xij,N−1)
′, Q̃ij = 1 − P̃ ij , and Σi = {Σi,rl}, which

is an (N − 1) × (N − 1) block matrix whose (r, l)th block is

Σi,rr = diag
{
Pi1,r(1 − Pi1,r), . . . , Pini,r(1 − Pini,r)

}
,

Σi,rl = diag (−Pi1,rPi1,l, . . . ,−Pini,rPini,l) , r �= l.

Let Gi = diag(2P̃ 2
ij − 3P̃ ij + 1, . . . , 2P̃ 2

ini
− 3P̃ ini

+ 1) and
Pi = (P ′

i,1, . . . ,P
′
i,N−1)

′, where P i,r = (P i j ,r , . . . ,P ini,r)
′.

Then under H0 : θ = 0, we have

Iββ′ = E(UβU
′
β) =

m∑
i=1

ni∑
j=1

{
N−1∑
k=1

Pij,k(1 − Pij,k)Xij,kX
′
ij,k

−
N−1∑
l=1

∑
l�=m

Pij,lPij,mXij,lX
′
ij,m

}
,

Iθβ′ = E{UθU
′
β}

=
1

2

m∑
i=1

E

([{
ni∑
j=1

(Ỹ ij − P̃ ij)

}2

−
ni∑
j=1

P̃ ij(1 − P̃ ij)

]

×
{

ni∑
j=1

N−1∑
k=1

(yij,k − Pij,k)X
′
ij,k

})

=
1

2

m∑
i=1

ni∑
j=1

(
2P̃ 2

ij − 3P̃ ij + 1
)N−1∑

k=1

Pij,kX
′
ij,k,

which can be written in the matrix form given in (7) and
(8). The term Iθθ can be derived in a similar way and its
derivation is omitted.

A.2 Derivation of the Score Tests in the Random Intercept
Cumulative Probability Models
Using the results in McCullagh and Nelder (1989), we have
∂�ij(β, bi )/∂rij = Γ−1

ij (zij − rij) and ∂2�ij(β, bi )/∂rij∂r
′
ij =

Ωij − Γ−1
ij , where the kth column of Ωij is ∂Γ−1

ij /∂rij,k(zij −
rij), and Γij = cov(zij). Using equation (3), the score of θ
under H0 : θ = 0 is

Uθ(β)

=
1

2

m∑
i=1

[
ni∑
j=1

{
∂2r′ij
∂b2i

Γ−1
ij (zij − rij)

+

N−1∑
k=1

∂rij,k
∂bi

∂r′ij
∂bi

∂Γ−1
ij

∂rij,k
(zij − rij)

−
∂r′ij
∂bi

Γ−1
ij

∂rij
∂bi

}

+

{
ni∑
j=1

∂r′ij
∂bi

Γ−1
ij (zij − rij)

}2]∣∣∣∣∣
bi=0

.

Let h(·) = g−1(·), h(j)(·) denote the jth derivative of h(·),
and

Hi = diag
{
h(1)(X ′

i1,1β), . . . , h(1)(X ′
i1,N−1β), . . . ,

h(1)
(
X ′

ini,1β
)
, . . . , h(1)

(
X ′

ini,N−1β
)}
,

h
(2)
i =

{
h(2)(X ′

i1,1β), . . . , h(2)(X ′
i1,N−1β), . . . ,

h(2)
(
X ′

ini,1β
)
, . . . , h(2)

(
X ′

ini,N−1β
)}′
,

and 1i be an ni(N − 1) × 1 vector with ones. Let Γi =
diag{Γi, . . . , Γini

} and

Vi = Γ−1
i h

(2)
i + diag

{
−

N−1∑
k=1

h(1)(X ′
i1,tβ)Γ−1

i1
∂Γi1

∂ri1,t
Γ−1
i1 , . . . ,

−
N−1∑
k=1

h(1)
(
X ′

ini,t
β
)
Γ−1
ini

∂Γini

∂rini,t

Γ−1
ini

}
Hi1i.

Then Uθ(β) can be written in a simple matrix form

Uθ(β) =
1

2

m∑
i=1

{
(Zi −Ri)

′Γ−1
i Hi1i1

′
iHiΓ

−1
i (Zi −Ri)

− 1′
iW̃ i1i

}
,

where W̃ i = HiΓ
−1
i Hi − diag (Vi) diag (Zi −Ri).

We next calculate the information matrices. Let

Mi = Γ−1
i Hi1i1

′
iHiΓ

−1
i , Ti = 1′

iHiΓ
−1
i Hi1i,

ξi = Γ−1
i Hi1i =

(
ξ′i1, . . . , ξ

′
ini

)′
,

where ξ′ij = (ξij,1, . . . , ξij,N−1) = {h(1)(X ′
ij1 β), . . . ,

h(1)(X ′
ij,N−1 β)}Γ−1

ij . Under H0 : θ = 0, we have

Iθθ = E
{
U 2

θ(β)
}

=
1

4

m∑
i=1

[
E{ξ′i(Zi −Ri)}4 − T 2

i

+E{V ′
i (Zi −Ri)}2

+ 2E{ξ′i(Zi −Ri)

× ξ′i(Zi −Ri) × V ′
i (Zi −Ri)}

]
=

1

4

m∑
i=1

{
ni∑
j=1

∑
t,l,m,q

ξij,kξij,lξij,mξij,qκ4

× (zij,k, zij,l, zij,m, zij,q)

+ 2

ni∑
j=1

∑
t,l,m

ξij,kξij,lvij,mκ3

× (zij,k, zij,l, zij,m)

+V ′
i ΓiVi + 2T 2

i

}
.
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It can be easily shown that under H0, Uβ(β) =
∑m

i=1 XiHi

Γ−1
i (Zi − Ri ). It follows that

Iββ′ = E{Uθ(β)U ′
β(β)} =

m∑
i=1

X ′
iHiΓ

−1
i HiXi,

Iθβ′ = E{Uθ(θ)U
′
β(β)}

=
1

2

m∑
i=1

E
{
(Zi −Ri)

′Mi(Zi −Ri)

×(Zi −Ri)
′Γ−1

i HiXi

}
+

1

2

m∑
i=1

E
{
V ′
i (Zi −Ri)(Zi −Ri)

′Γ−1
i HiXi

}
(A.1)

The second term in (A.1) is 1
2V

′
iHiXi. For the first term,

calculate

oij,k = E{(Zi −Ri)
′Mi(Zi −Ri)(zij,k − rij,k)}

= E
[
{ξ′ij(zij − rij)}2e′t(zij − rij)

]
=

∑
u,l

ξij,uξij,lκ3(ziju, zij,l, zij,k).

Let Oi = (oi1,1, . . . , oi1,N−1, . . . , oini,1, . . . , oini,N−1)
′; then the

first term in (A.1) is 1
2

∑m

i=1O
′
iΓ

−1
i HiXi.


