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Resiliency in Adolescents at High Risk for Substance Abuse:
Flexible Adaptation via Subthalamic Nucleus and Linkage
to Drinking and Drug Use in Early Adulthood

Barbara J. Weiland, Joel T. Nigg, Robert C. Welsh, Wai-Ying W. Yau, Jon-Kar Zubieta,
Robert A. Zucker, and Mary M. Heitzeg

Introduction: The personality trait resiliency is the ability to flexibly adapt impulse control relative
to contextual demand. Low resiliency has been linked to later alcohol/drug problems. The underlying
psychological and neural mechanisms are unknown, but neurocomputational models suggested rela-
tions between resiliency and working memory. Cortical-striatal connectivity has been proposed to
underlie adaptive switches between cautious and risky behaviors.

Methods: Working memory was probed in sixty-seven 18- to 22-year-olds from a larger community
study of alcoholism, using the n-back task during functional magnetic resonance imaging. Functional
connectivity between task-related regions was investigated with psychophysiological interaction analy-
sis. Resiliency was measured in early teen years and related to early adulthood measures of drinking/
drug use, task activation, and connectivity. Relationships with risk factors, including family history,
age of drinking onset, and number of alcohol problems, were also investigated.

Results: Higher resiliency was related to lower levels of substance use, fewer alcohol problems, and
better working memory performance. Whole-brain regression revealed resiliency negatively correlated
with activation of subthalamic nucleus (STN) and pallidum during the n-back. High and Low resiliency
quartile groups (n = 17 each) differed in coupling strength between STN and median cingulate cortex, a
region of reduced activation during working memory. The high resiliency group had later onset of
drinking, fewer alcohol problems, had used fewer illicit drugs, and were less likely to smoke cigarettes
than their low resiliency counterparts.

Conclusions: These findings suggest that resiliency in early adolescence may protect against alcohol
problems and drug use, although the direction of this effect is currently unknown. This protective factor
may relate to executive functioning as supported by the finding of a neural link shared between
resiliency and working memory in basal ganglia structures. The STN, a key basal ganglia structure,
may adaptively link flexible impulse control with cognitive processing, potentially modulating
substance use outcomes.

Key Words: Resiliency, Substance Use, Working Memory, Subthalamic Nucleus, Functional
Magnetic Resonance Imaging, Psychophysiological Interaction.
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ESILIENCY IS DEFINED as the ability for flexible
adaptation of psychological control functions appro-
priate to local context (Block et al., 1988; Eisenberg and
Morris, 2002). For example, someone with high resiliency
could be both impulsive at a party and appropriately
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controlled in a classroom and able to cope with stress by
modulating impulse control. Conversely, someone with low
resiliency might be over- or undercontrolled in all settings,
adapting less effectively to stress and unable to modulate
behavior.

We previously examined developmental trajectories of
resiliency relative to substance use (Wong et al., 2006) as
part of the Michigan Longitudinal Study (MLS), an ongo-
ing, prospective community study of families with parental
alcoholism and contrast nonalcoholic families (Zucker et al.,
1996, 2000). That study found low resiliency, measured at 3
to 4 years, was associated with early alcohol use (by age 14)
and drunkenness by age of 17 years (Wong et al., 20006), sim-
ilar to a general community study that found low resiliency
in preschoolers related to drug use in early adolescence
(Block et al., 1988). Resiliency, which remained stable from
preschool through adolescence (Wong et al., 2006), may rep-
resent an important component among the psychological
strategies needed to cope with the range of personal, social,
and cognitive challenges facing today’s youth.

1355



1356

As temperament and executive function have been identi-
fied as precursors and mediators of psychopathology (Bark-
ley, 1997; Eisenberg et al., 2000; Nigg, 2000), another MLS
study investigated and found consistent relations between
resiliency and executive functioning (Martel et al., 2007).
Resiliency may share underpinnings with executive abilities,
perhaps enhancing its development, or interacting with it, to
shape cognition and social adaptation. Indeed, resiliency and
executive functioning contributed to adolescent outcomes in
an additive, incremental fashion, as opposed to overlapping
in their effects (Martel et al., 2007), supporting the hypothe-
sis that they are to some degree separable.

However, executive function is itself a broad, under-
specified construct, likely including response suppression,
planning, mental set shifting, and working memory (e.g.,
Pennington and Ozonoff, 1996). This study examines neural
responses during working memory which has been identified
as relevant to impulsive behavior (Finn et al., 1999) and sub-
stance use outcomes (Corral et al., 1999; Ozkaragoz et al.,
1997). Neuroimaging studies show that working memory
processes involve activation of a network including the basal
ganglia and anterior cingulate, parietal, and prefrontal
cortices (Chang et al., 2007, Owen et al., 2005; Smith and
Jonides, 1997) accompanied by deactivation in the “default
network™ including posterior cingulate and medial frontal
cortices (Greicius and Menon, 2004; Raichle et al., 2001;
Spadoni et al., 2008), similar to other executive tasks. It
has been suggested that resiliency is related to an anterior
attention system involving cingulate and prefrontal cortices
and their projections to the basal ganglia and thalamus
(Eisenberg et al., 2003; Rothbart et al., 2000).

Neurocomputational models propose the basal ganglia
performs dynamic gating of working memory via disinhibi-
tion to allow the prefrontal cortex to focus on task demands
(O’Reilly and Frank, 2006). Inhibitory control of the basal
ganglia is influenced by the subthalamic nucleus (STN) whose
activity produces slower more accurate choices (Frank et al.,
2007). The STN is believed to be dynamically modulated
through “proactive inhibition” of sensorimotor responses by
the medial prefrontal cortex, precuneus/posterior cingulate,
inferior parietal cortex, as well as the dorsal anterior cingulate
based on the degree of decision conflict (Ballanger et al.,
2009; Botvinick et al., 2001; Bush et al., 1998; Frank, 2006;
Yeung et al., 2004). In addition, changes in cortical-striatal
connectivity are proposed to underlic adaptive switches
between cautious and risky behaviors (Forstmann et al.,
2010). We hypothesized, then, that resiliency may influence
substance use outcomes via flexible adaptation entailing some
of the same neural networks as working memory.

To test this hypothesis, resiliency, measured by observer
ratings during early teen years, was examined in relation to
brain activation during working memory and with self-
reported drinking and drug use in young adulthood. We
expected resiliency to be negatively related to both substance
use and inhibitory activity in the cortico-striatal working
memory pathway. We also hypothesized that resiliency
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would be linked with the measures of vulnerability to sub-
stance abuse, including family history of alcoholism
(National Institute on Alcohol Abuse and Alcoholism,
2000), early onset of drinking (Grant and Dawson, 1997;
Hingson et al., 2006), and higher levels of alcohol-related
problems (Bonomo et al., 2004; Dick et al., 2011; Viner and
Taylor, 2007). Using psychophysiological interaction (PPI)
analysis (Friston et al., 1997), we evaluated functional cou-
pling of regions associated with resiliency, proposing differ-
ences by level of resiliency (High vs. Low quartiles).

MATERIALS AND METHODS
Participants

Participants were 67 right-handed youth (43 men/24 women),
aged 18.0 to 22.3 years (mean, 20.2 + 1.2), recruited from the MLS
of families with parental alcoholism (FH+; 2/3 of sample) and con-
trast nonalcoholic families (FH—; 1/3 of sample). Parental alcohol-
ism was based on DSM-IV criteria. A detailed description regarding
MLS recruitment strategy/assessment procedures can be found else-
where (Zucker et al., 1996, 2000). Exclusionary criteria were the fol-
lowing: (i) any neurological, acute, uncorrected, or chronic medical
illness; (ii) any current or recent (within 6 months) treatment with
centrally active medications; or (iii) a history of psychosis or schizo-
phrenia in first-degree relatives. Presence of most Axis I psychiatric
or developmental disorders was also exclusionary. However, exter-
nalizing disorders (i.e., conduct disorder, attention deficit/hyperac-
tivity disorder [ADHD], or prior substance use disorder) were
not exclusionary, as these are on the same developmental spectrum
with alcoholism risk (Krueger, 1999). In addition, participants were
given a multidrug 5-panel urine screen before scanning and those
with a positive drug screen were not included in this study. Partici-
pants gave written informed consent after explanation of the experi-
mental protocol, as approved by the local Institutional Review
Board.

Measures

Resiliency Measure. Resiliency was assessed by observer ratings
using the California Child Q-Sort common language version (Block
and Block, 1980; Caspi et al., 1992) for participants when they were
12 to 15 years (mean, 13.5 + 0.9) as part of the ongoing MLS (Mar-
tel et al.,, 2007). The Q-sort was completed by clinically trained
assessors, blinded to family history status of subjects, following a 3-
to 4-hour interview/testing protocol with the child (Shedler and
Block, 1990). The Q-sort consists of 100 cards that must be placed
in a forced-choice, 9-category normal distribution. The assessor
described the subject by placing descriptive cards in 1 of the catego-
ries, ranging from 1 (least descriptive) to 9 (most descriptive). The
resiliency scale was indexed by 11 items suggested by Eisenberg and
colleagues (1997, 2003), for example, is resourceful in initiating
activities, uses, and responds to reason. All items scored are listed in
Supplemental Table S1. Scores are means of item totals with high
scores indicative of more resiliency. Resiliency has been shown rela-
tively stable over time (Hart et al., 1998), which was also true in our
sample (3.0 to 17.9 years, r = 0.27, p < 0.01; Martel et al., 2009).
We chose an early adolescence time point as predictor to outcome
in early adulthood. To maximize variance, low and high resiliency
groups were defined as lower and upper quartiles (n = 17 each).

Drinking and Drug Use Measures. The self-report Drinking and
Drug History (DDHXx, Zucker and Fitzgerald, 1994; Zucker et al.,
1990) was completed by participants annually since age 11. Data
used were collected (mean 0.83 + 1.04 years) from scan and reflect
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extent of drug involvement since age 11. Total drinking in past
6 months was calculated from DDHx counts of drinking days/
month multiplied by drinks usually consumed/drinking day. Alcohol
problems (AP) were number of drinking problems (of possible 37
items) ever reported by the subject since age 11. Number of illicit
drugs ever used was quantified from a list of 18 drugs ever reported
using over their lifetime. Cigarette smoking was determined from
DDHx assessment or the more proximal prescan screening question,
“Do you smoke?”, and coded: 0 (nonsmoker, n = 23) and 1 (smoker,
n =44). Substance use data were not normally distributed
(Kolmogorov—Smirnov [KS] test, p-values < 0.032) and were not nor-
malized with standard transformations (square root, inverse; KS test,
p-values < 0.035), and were therefore treated as a nonparametric vari-
ables. Age of onset was determined from the first annual DDHx on which
the target reported first drink age and was normally distributed (KS test,
p = 0.160).

Functional Magnetic Resonance Imaging (fMRI) Task. The n-
back task (Callicott et al., 1999) required subjects to continually
update their mental set while responding to previously seen stimuli.
Subjects viewed stimuli consisting of numbers (1 to 4) shown in ran-
dom sequence displayed on a diamond-shaped box (see Fig. 1). On
each trial, subjects press 1 of the 4 buttons to indicate the appropriate
numeral. In the 0-back condition, the correct response is the numeral
currently displayed on the screen; for 2-back, the correct response is
the numeral seen 2 screens back. The actual task included 5 condi-
tions (0-, 1-, 2-, 3-back, and rest); each of 5 runs consisted of 30-sec-
ond blocks of each load, pseudo-randomly ordered, with 15 stimuli
per block. Total task time was approximately 15 minutes with all
responses recorded.

MRI Data Acquisition. Whole-brain BOLD fMRI data were
acquired on a 3.0 Tesla GE Signa system, Excite2 release (Milwau-
kee, WI), standard radio frequency coil. Functional imaging was
performed using T2*-weighted single-shot combined spiral in/out
acquisition (Glover and Law, 2001): repetition time = 2,000 ms,
echo time = 30 ms, flip angle = 90°, field-of-view = 0 cm, 64 x 64
matrix, slice thickness = 4 mm, 29 slices. High-resolution anatomi-
cal T1 scans were acquired for spatial normalization. Motion was
minimized with foam pads and emphasis on the importance of keep-
ing still.

Data Analysis

Resiliency, Performance, and Drinking and Drug Use. Perfor-
mance was measured by (i) response time (RT); and (ii) performance

RESPONSES:

0-Back: 4

\ 4
(delay = 1500 ms)

(stimulus = 500 ms)
TIME >

Fig. 1. Depiction of n-back working memory task showing correct
responses for the 0-back and 2-back conditions. The 0-back response
requires identifying the numeral currently presented while the 2-back
response involves updating, temporarily maintaining, and storing informa-
tion to recall numbers previously seen.
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decrement (PD) defined as the difference in correct response rates in
0-back and 2-back conditions (Jansma et al., 2000). The 2-back
load was utilized as it maintained cognitive demand without exceed-
ing capacity constraints (Callicott et al., 1999; Sweet et al., 2008),
with satisfactory accuracy (77.9 + 16.7% here). RTs <100 ms were
considered anticipatory responding and removed from subsequent
analyses. All performance measures were normally distributed (KS
test, p > 0.07) in SPSS version 17 (Chicago, IL).

Bivariate Pearson’s or Spearman’s rank correlations were used to
test the associations between resiliency and performance and sub-
stance use measures. Significance (2-tailed) was established at
p < 0.025 accounting for multiple comparisons; RT and PD were
highly correlated (r = —0.332, p = 0.008), as were all substance use/
vulnerability measures (p > 0.692, p < 0.004). Independent sample
t-tests were used to investigate differences in resiliency, performance,
substance use, and vulnerability by gender, family history, and resil-
iency groups.

fMRI Data Preprocessing. Functional data were reconstructed
using iterative image reconstruction (Fessler et al., 2005; Sutton
et al., 2003) and motion-corrected using FSL 4.0 (Analysis Group,
FMRIB, Oxford, UK). Runs exceeding 2-mm translation or 2°
rotation were excluded: 6 subjects had 1 run; 5 subjects had 2 runs
removed. Number of subjects with excluded runs did not differ by
resiliency or family history (p > 0.203), but trended by gender
(% = 3.62, p = 0.073). Age of onset and substance use did not differ
between subjects with/without excluded runs (p > 0.234). Image
processing was completed using statistical parametric mapping
SPM2 (Wellcome Institute of Cognitive Neurology, Oxford, UK).
Functional images were spatially normalized to standard stereotac-
tic space as defined by the Montreal Neurological Institute (MNI).
A 6-mm full-width-half-maximum Gaussian spatial smoothing
kernel was applied.

Individual Task Statistical Maps and Group Correlation Analy-
sis. A general linear model using SPM’s canonical hemodynamic
response function (HRF), modeled each condition (rest, 0-, 1-, 2-,
and 3-back), and 6 motion regressors. Linear contrasts compared
task load and 0-back. A second-level 1-sample ¢-test investigated
task effect using 2-back versus 0-back contrasts. A second-level lin-
ear regression used individual resiliency scores as covariate and the
same contrasts as dependent variable. To test our hypotheses, an a
priori regions-of-interest (ROIs) mask (frontal-cingulate-parietal-
basal ganglia; Bogacz et al., 2010; O’Reilly and Frank, 2006) was
created using WFU Pickatlas (Maldjian et al., 2003). Regions of sig-
nificant correlation within this mask were identified using a voxel-
wise threshold of p < 0.005 uncorrected, combined with cluster size
threshold of 61 contiguous voxels. This combined threshold provides
protection against type I error (Forman et al., 1995) and was esti-
mated with Monte Carlo simulation using AlphaSim (Douglas
Ward, http://afni.nimh.nih.gov/pub/dist/doc/program_help/Alpha-
Sim.html), giving an overall corrected threshold of p < 0.05. For
identified clusters, activation data were extracted from individual
contrast maps for correlation with behavioral measures.

Individual and Group Functional Connectivity Analysis. PPI
determines regions whose time series of activation exhibit significant
covariance with the seed region as a function of task manipulation,
that is, 2-back versus 0-back. Regressing out the contribution of the
seed region time series and the experimental context, the interaction
is the contribution-dependent change in regional responses to the
experimental factor (Friston et al., 1997), here working memory
load. The clusters identified in the regression analysis (see Results),
right pallidum, and STN, were used for PPI seed ROIs. For these
ROlIs, the time series data from the primary model were extracted
for 5-mm-diameter spheres centered at [MNI coordinates: 20, —2, 6]
for right pallidum and [10, —14, —8] for STN. Anatomical
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validation of STN is based on work by Aron and Poldrack (2006).
Each ROI time series was deconvolved with the canonical HRF to
create neuronal time series (Gitelman et al., 2003). The PPI interac-
tion term was the product of the neuronal time series and a contrast
vector coding for main effect of task (1 for 2-back; —1 for 0-back).
This term was convolved with the HRF; PPI model regressors con-
sisted of the interaction term, contrast vector and extracted time ser-
ies plus motion regressors from the original design (Friston et al.,
1997). Single-subject contrasts for the first regressor (interaction
term) were calculated and used for second-level 2-sample ¢-tests
evaluating low and high resiliency groups.

Significant group differences in functional coupling with seed
ROIs, masked with the a priori mask described earlier, were deter-
mined using a voxelwise threshold of p < 0.005, cluster threshold of
71 voxels, from an additional Monte Carlo estimation as previ-
ously described. For identified clusters, connectivity data were
extracted from individual PPI maps for correlation with behavioral
measures.

RESULTS
Resiliency, Demographic, and Performance Data

Table 1 presents demographic and working memory per-
formance data for the entire group and the Low- and High-
quartile resiliency groups separately. Mean resiliency score
for the entire sample was 5.5 + 1.2 (range, 3.1 to 7.2), in line
with that of the entire MLS population: 5.8 + 0.8 (range, 3.1
to 7.6), n = 496. Performance and RTs were in agreement
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with previous work using the same n-back task (Jansma
et al., 2000). No family history or gender effects were found
for performance (p > 0.18). Resiliency did not differ by fam-
ily history (¢ = 0.06, p = 0.952), but women showed a trend
for higher resiliency (z = 1.81, p = 0.075); therefore, gender
was added as a covariate in subsequent analyses.

Consistent with previous work from the entire MLS sam-
ple (Martel et al., 2007), Pearson’s correlations showed posi-
tive correlation between resiliency and 1Q (r = 0.39,
p = 0.001); IQ was added as a covariate in subsequent analy-
ses. Resiliency had negative correlations with RT and PD
(Table 2) maintaining significance when controlled for gen-
der and IQ (p < 0.045).

Resiliency, Vulnerability, and Substance Use Data

There were no differences in AP, total drinking, illicit
drugs used, or smoking by family history (z < 1.45,
p > 0.151) or gender (r < 1.58, p > 0.158). There was a
trend for a difference in age of onset by family history (FH—/
FH+: 15.6 £2.2/14.3 + 2.7, p = 0.056) but not gender (M/F:
14.6 £ 2.0/14.7 £ 2.8, p = 0.939). Resiliency negatively cor-
related with number of AP and number of illicit drugs used,
was significantly lower in cigarette smokers, and showed a
positive trend with age of onset (Table 2).

Table 1. Subject Characteristics

Low/high group
differences
Low Resiliency High Resiliency
Entire sample quartile quartile yort p
n 67 17 17
Males/females 43:24 10:7 5:12 2.98 0.084
Family history of alcoholism (Neg: Pos)? 20:47 6:11 7:10 0.13 0.724
Age (years) 20.2(1.2) 20.3(1.2) 20.1 (1.5) 0.50 0.624
Wechsler intelligence scale 1Q 111 (11) 105 (10) 113 (12) 0.90 0.042
Resiliency (California Q-Sort) 55(1.2) 4.4(0.8) 6.7 (0.2) -11.97 0.000
Alcohol abuse or dependence 5 2 1 0.30 0.582
Marijuana abuse or dependence 4 3 0 3.11 0.078
Other drug abuse or dependence 2 2 0 2.00 0.157
Any substance use disorder Dx° 7 4 1 1.91 0.166
Conduct disorder Dx 1 1 0 0.97 0.325
Attention deficit disorder Dx 2 2 0 2.00 0.157
Any Dx® 7 4 1 1.91 0.166
Age of drinking onset (years) 14.7 (2.6) 13.9(2.3) 16.0 (2.2) 2.59 0.005
Number of alcohol problems 5.2(5.6) 6.9 (5.8) 2.8(5.2) 217 0.038
Cigarette smoker (No:Yes) 23:44 2:15 12:5 12.14 0.000
lllicit drugs used 1.5(1.9) 25(2.9) 0.5(0.9) 2.73 0.010
Total drinking past 6 months (drinks) 29.9 (41.5) 32.5(33.5) 20.4 (39.7) 1.91 0.065
n-back working memory performance
Response time (ms)
0-back 601 (114) 688 (121) 515 (49) 5.41 0.000
2-back 290 (104) 349 (156) 241 (62) 2.62 0.014
Correct response rate (%)
0-back 86 (7) 88 (5) 85 (8) 1.57 0.127
2-back 78 (15) 74 (18) 82 (17) —-1.26 0.216
Performance decrement (%)
0-back to 2-back 8(17) 15(19) 3(19) —1.68 0.103

Neg, negative; Pos, positive; Dx, diagnosis; numbers displayed as: mean (standard deviation).

Bold text indicate significant differences between groups.

@Family history positive: At least one parent with an alcohol use disorder based on DSM-IV criteria over the course of the youth’s life.

BIncludes alcohol, marijuana, and/or other drug abuse or dependence.

®Includes conduct disorder, attention deficit disorder, and/or any substance use disorder.
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Table 2. Statistics for Relationships Between Resiliency with Working
Memory Performance, Age of Onset, and Drinking and Drug Use for Entire
Sample (n = 67)

Correlations

torp p
Response time, 0-back —0.504 <0.001%
Response time, 2-back —-0.371 0.003?*
Performance decrement (0-back to 2-back) —0.335 0.0072
Age of drinking onset 0.216 0.08
Number of alcohol problems —0.292 0.0172
lllicit drugs used —0.336 0.005%
Total drinking past 6 months —0.199 0.11

Independent sample

test
t p

Cigarette smoker (Yes: No) 2.97 0.0042

aSurvives correction for multiple comparisons.

Low and High resiliency groups did not differ by gender
or family history, but did differ in reaction times and all sub-
stance use measures except total drinking in the past
6 months.

Neuroimaging Results

Effect of Task in 2-Back Working Memory. Second-level
analysis for the entire sample (n = 67) revealed working
memory task activation occurred in right prefrontal and
anterior cingulate cortices, inferior parietal lobe, and left
inferior frontal gyrus similar to previous studies (Braver
et al., 1997; Callicott et al., 1999; Jansma et al., 2000; Owen
et al., 2005). Task-related reductions in activation were
found in posterior cingulate cortex, medial frontal regions,
and bilateral pre-/postcentral gyri similar to previous work
(Hampson et al., 2006). See Fig. 2 for 2-back versus 0-back
contrast mappings and Table S2.

Correlation of Resiliency with 2-Back Task-Related
Regions. Resiliency correlated with reduced activation in
rightpallidumand STN (see Table 3). Atamorelenient thresh-
old, p < 0.005uncorrected, voxel extent 50, this effect also held
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in the left STN and pallidum. Figure 3 shows STN and
pallidum ROIs and extracted data plotted against resiliency.

Post hoc analysis of extracted ROI data was conducted
excluding subjects with any diagnosis of substance use disor-
der, conduct disorder, or ADHD (n=7: 2 FH—/5 FH+,
resulting in n = 60). Resiliency remained significantly corre-
lated with both regions at p < 0.005, confirming that the
effects of externalizing disorders were not driving these corre-
lations. Additional post hoc regression of resiliency with
STN and pallidum activation maintained significance con-
trolling for IQ (p < 0.001) and gender (p < 0.028).

Relationship Between Activation Data and Behavioral
Measures. Right STN activation showed a positive trend
with 2-back PD (r = 0.22, p = 0.089) and no correlations
with RT. No correlations were found between substance use,
AP, age of onset, and activation across the entire sample
(p > 0.68) or within gender, family history, or resiliency
groups (p > 0.14).

PPI Analysis of Functional Connectivity with Right Palli-
dum. The test comparing Low and High resiliency quartiles
revealed no clusters having connectivity differences meeting
significance criteria.

PPI Analysis of Functional Connectivity with Right
STN. The Low and High resiliency contrasts revealed the
Low group had stronger connectivity between right STN
and a cluster in right median cingulate (Brodmann Area
[BA] 23), an area with reduced activation during 2-back
demand, see Table 3. Post hoc regression maintained signifi-
cance when controlling for IQ and gender (F = 19.03,
p <0.001). At a more lenient threshold, p < 0.005 uncor-
rected, voxel extent 25, a cluster in left median cingulate was
identified, see Fig. 4. The High and Low contrasts had no
clusters meeting significance criteria.

Relationship Between Connectivity Data and Behavioral
Measures. For the entire sample, right STN-right median
cingulate connectivity correlated with 0-back RT (r = 0.30,
p =0.016), but with no other performance measures

Fig. 2. Group whole-brain contrast maps for 2-back versus 0-back contrast for working memory task, displayed at a threshold of p < 0.05 false discov-
ery rate corrected and minimum cluster size of 10, coordinates in Montreal Neurological Institute space. Orange region represents regions more activated
during 2-back working memory relative to the 0-back task while blue regions reflect the opposite relationship.
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Table 3. Brain Regions Identified in Whole Brain Analyses During 2-Back Versus 0-Back Working Memory Task

MNI space
XYz

Cluster extent t

Peak
Voxel level p (uncorrected)

Correlation with resiliency
for entire sample (n = 67)°
Negative correlations
R Pallidum
RSTN
PPl analysis for Low and High
resiliency group differences in
functional connectivity with
R STN (n = 17 each group)®
Low > High resiliency
R median cingulate (BA 23)

20,-2,6
10, —14, -8

8,-24,34

<0.001
<0.001

247 4.1
77 3.7

129 4.8 <0.001

MNI, Montreal Neurological Institute; R, right; STN, subthalamic nucleus; PPI, psychophysiological interaction; BA, Brodmann Area.
Statistical threshold: corrected p < 0.05, determined by dual threshold of voxel level p < 0.005 uncorrected and cluster size k > 61 contiguous voxels.
PStatistical threshold: corrected p < 0.05, determined by dual threshold of voxel level p < 0.005 uncorrected and cluster size k > 71 contiguous voxels.

N

0 oR Pallidum R>-0.43
o | aLPalidum R=-0.38

ol
Palidun

(9]

. Effect Size

Resiliency

oRSTN R=-0.44
aL STN R=-0.43

5 6
Resiliency

Fig. 3. (A) Subthalamic nucleus (STN) and pallidum regions of interest
with negative correlation with resiliency measures from whole-brain group
analysis displayed at a threshold of p < 0.005 and minimum cluster size of
50, coordinates in Montreal Neurological Institute space. (B) Extracted
bilateral pallidum and STN activity during 2-back versus 0-back condition
of working memory plotted against individual resiliency measures for all
subjects (n = 67).

(p > 0.169). There were no other correlations between connec-
tivity and substance use or vulnerability measures (p > 0.077),
across the entire sample or within family history/resiliency
groups; therefore, these data do not support the hypothesized
relationship between connectivity and substance use despite
connectivity differences by resiliency group.

DISCUSSION

Resiliency has been defined as the ability to modulate
impulses, affect expression, and behavior to adapt to envi-
ronment context (Eisenberg et al., 2003) and identified as
protective against behavioral and substance use problems
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Fig. 4. (A) Bilateral median cingulate regions with different connectivity
between Low and High resiliency groups (n = 17 each), displayed at a
threshold of p < 0.005, voxel extent = 25, coordinates in Montreal Neuro-
logical Institute space. (B) Connectivity strength with right subthalamic
nucleus (STN) for bilateral median cingulate regions of interest for Low
(n=17), Mid (n = 33), and High (n = 17) Resiliency Groups for 2-back
versus 0-back working memory: Left cingulate region was identified at
more lenient threshold as shown earlier. The Low resiliency quartile exhib-
ited positive connectivity defined as stronger functional connectivity
between regions for 2-back versus 0-back working memory, while the High
resiliency had negative connectivity reflecting less functional connectivity
between regions for 2-back versus 0-back task. Error bars: +1 standard
error.

(Block et al., 1988). Its neural basis has not been explored
but may help identify developmental biomarkers of risk in
psychiatric disorders. As earlier behavioral research linked
resiliency in early childhood with later drinking and drunk-
enness onset in mid-adolescence, we anticipated a similar
relationship in this study. It was present: resiliency in early
adolescence was associated with a later onset of drinking,
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fewer AP, and less substance use in the transition years.
These findings thus extend the continuity of this relationship
from early childhood to early adulthood. Resiliency also cor-
related with faster reaction times and less decrement during
increased cognitive demand, supporting a link between this
trait and executive function. Therefore, resiliency in adoles-
cence and drinking and drug use behaviors appear to be
related; though, further study is needed to determine the
direction of this association. Possibly, those who engage in
early use of substances have cognitive changes that lead to
altered working memory and reduced resiliency, a trait that
is highly related to executive functioning. Alternatively, those
who are most resilient when entering adolescence may resist
the use of substances most efficiently.

The novel finding reported is a neural link shared between
resiliency and working memory. Negative relationships were
found between resiliency and activity in the interconnected
basal ganglia structures, the STN and pallidum, during
working memory. Likely because of their size and partial vol-
ume averaging with surrounding white matter, these nuclei
were not detected in first-level task analyses, but were promi-
nently localized in subsequent correlational analyses.

Investigation of task-related functional connectivity found
Low and High resiliency groups differed in connectivity
strength between the STN and median cingulate. The Low
resiliency group had significantly more substance use, earlier
onset of drinking, and more AP than the High group, as
expected. However, these use and vulnerability measures were
not related to connectivity; therefore, it is unclear whether this
functional coupling represents a pathway linking resiliency,
working memory, and substance use as predicted.

Resiliency and Basal Ganglia During Working Memory

Working memory is a limited capacity, constantly
updated, system that temporarily maintains and stores infor-
mation and interfaces thought processing, perception, and
action (Baddeley, 2003) and suggested as the core cognitive
element of higher-order regulation (Unsworth et al., 2009).
The negative correlation between the regulatory trait
resiliency and neural function of the STN and pallidum dur-
ing working memory suggests an association with flexible
adaptation of control during cognitive challenge. The STN,
as a key basal ganglia structure, has reciprocal connections
with the pallidum as part of the thalamocortical pathway
and influences information processing within the basal
ganglia and through projections to the frontal regions (Aron
and Poldrack, 2006; Temel et al., 2005). The pallidum is
considered the main output structure from the limbic system
(Temel et al., 2005; Zhang et al., 2005).

Although the present study found only a trend for an
association between STN activation and working memory,
the findings are consistent with, and add to, an emerging lit-
erature. Experimental and clinical studies have highlighted
interactions between higher-order cognitive processing and
the STN. Animals with STN lesions show impaired working
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memory (ElI Massioui et al., 2007) and with disconnections
between the STN and prefrontal cortex show reduced
accuracy, increased perseveration, and slowed response
(Chudasama et al., 2003). In patients with Parkinson’s
disease, deep brain stimulation of the STN has improved
motor and some executive performance, including working
memory, suggesting that STN stimulation was “releasing the
brake” on frontal function (Jahanshahi et al., 2000, p. 1142)
and supporting a role for the STN in higher-order cognitive
regulation (Marceglia et al., 2011).

STN and Substance Use

The STN’s influence may have relevance to substance use
through regulation of behavior. Animals with STN lesions
exhibit increased impulsive action, decreased impulsive
choice (Uslaner and Robinson, 2006), and changes in moti-
vation (Baunez et al., 2005; Winstanley et al., 2005). The
lesion-induced changes increased motivation for natural
(food) rewards and reduced motivation for drug (cocaine)
rewards suggesting influence on incentive salience. Further,
in “high-drinker” rats, STN lesions enhanced motivation for
alcohol but further decreased it in “low-drinker” rats, sug-
gesting a role involving motivation and individual preference
(Lardeux and Baunez, 2007) with the authors proposing the
STN as a target for treatment of addiction (Baunez et al.,
2005). Again, patients with Parkinson’s disease provide com-
plementary information; STN stimulation, combined with
reduction in dopaminergic treatment, has decreased patho-
logical gambling (Ardouin et al., 2006; Bandini et al., 2007)
and addiction (Witjas et al., 2005) in patients.

In this present study, there was no association found
between STN or pallidum activation and levels of substance
use as would be expected if resiliency were influencing these
behaviors via this basal ganglia pathway. However, during
this transition period into adulthood, drinking and drug use
are at their highest (Johnston et al., 2004; Substance Abuse
and Mental Health Services Administration, 2006), which
may be overshadowing this relationship. Further studies are
needed to determine who continues heightened use, who
desists, the impact of liability over time, and whether the
relationship between resiliency and basal ganglia activation
may manifest as a protective factor.

Connectivity of the STN During Working Memory

Using PPI analysis, we found group differences in connec-
tivity between the STN and median cingulate cortex, a
default network region (Fransson and Marrelec, 2008), when
contrasting a low-level (0-back) and a cognitively demanding
(2-back) task. In the High resiliency group, these regions
showed greater coupling in 0-back than in 2-back condition,
whereas the Low resiliency group showed the opposite pat-
tern. A recent PET study showed that stimulation of the
STN decreased metabolism in a large region of the cingulate
gyrus, centered in BA 24 and encompassing the median
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cingulate region identified in the present study, substantiat-
ing a link between these regions (Le Jeune et al., 2010). Ana-
tomically, in nonhuman primates, the cingulate regions of
BA 23 (controlling movement execution) and BA 24 (con-
trolling higher cognitive aspects of movement) both send
projections to the STN providing integrated motor informa-
tion to the basal ganglia (Takada et al., 2001). Consistent
with this, we found that connectivity between the STN and
median cingulate was related to increased processing speed
during the low demand 0-back condition. As an influence on
interregional communication efficiency, this connectivity
may represent a pathway linking resiliency and flexible
implementation.

Limitations

Some limitations to this study should be noted. First, PPI
does not yield information regarding causal relationships.
The coupling between the STN and median cingulate infers
interregional correlations, but does not identify direction or
even whether other, unmeasured regions are driving activa-
tion at both loci. Additionally, resiliency could be argued to
influence motivation, instead of, or in addition to, working
memory. However, previous work by our group found con-
sistent relationships between resiliency and other measures
of executive functioning including response inhibition, inter-
ference control, and planning (Martel et al., 2007), support-
ing a relationship with performance. In addition, we did not
find differences in current levels of substance use based on
family history. Some studies have found increased drinking
during young adulthood in FH+ subjects (Harford et al.,
1992; LaBrie et al., 2010) while others have not (Engs, 1990;
Schuckit and Sweeney, 1987). As density of family history
has been shown to moderate alcohol outcomes (Conway
et al., 2003), the definition of liability one uses may impact
findings. Familial risk is defined in this study as at least 1 par-
ent with alcohol abuse or dependence, in contrast to other
definitions (e.g., any biological relative with a “‘significant”
drinking problem; LaBrie et al., 2010) or graduated scales
(i.e., Engs, 1990; Harford et al., 1992; Schuckit and Sweeney,
1987). Importantly, another longitudinal study, which used
FH criteria similar to this study, found that despite the
absences of a family history effect on drinking at baseline
(mean, 18.5 years), FH+ subjects were less likely to transition
out of heavy drinking (Jackson et al., 2001). We expect that
continued longitudinal examination of outcomes, which is
under way in this sample, will reveal the family history, as
well as the resiliency, groups diverging as they exit the cur-
rent high-usage period. We did find a trend for earlier age of
onset of drinking in the FH+ sample, suggesting that they
are indeed at heightened liability for poor outcome.

CONCLUSION

Alcohol and drug use are outcomes of decisions supported
by both cognitive and behavioral functions; the young adults
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in our study with early high resiliency were less likely to
smoke, had tried fewer illicit drugs, and had fewer AP than
their less resilient counterparts independent of familial liabil-
ity. The STN may represent a neural link between individual
resiliency and cognitive processing, potentially influencing
substance abuse risk. Our PPI analysis linking resiliency with
connectivity strength between the STN and cingulate regions
potentially represents efficiency of communication between
salience assigned by limbic regions and flexible adaptation
facilitated by cognitive neural circuits. The extensive devel-
opmental time span of the resiliency/substance involvement
relationship suggests that neural connections may be present
considerably earlier than observed here. Other studies will
need to examine this possibility.
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