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Two-Photon Fluorescence Imaging Super-Enhanced 
by Multishell Nanophotonic Particles, with Application 
to Subcellular pH

  Aniruddha   Ray  ,     Yong-Eun Koo   Lee  ,     Gwangseong   Kim  ,     and   Raoul   Kopelman   *   
A novel nanophotonic method for enhancing the two-photon fl uorescence signal 
of a fl uorophore is presented. It utilizes the second harmonic (SH) of the exciting 
light generated by noble metal nanospheres in whose near-fi eld the dye molecules are 
placed, to further enhance the dye’s fl uorescence signal in addition to the usual metal-
enhanced fl uorescence phenomenon. This method enables demonstration, for the fi rst 
time, of two-photon fl uorescence enhancement inside a biological system, namely live 
cells. A multishell hydrogel nanoparticle containing a silver core, a protective citrate 
capping, which serves also as an excitation quenching inhibitor spacer, a pH indicator 
dye shell, and a polyacrylamide cladding are employed. Utilizing this technique, 
an enhancement of up to 20 times in the two-photon fl uorescence of the indicator 
dye is observed. Although a signifi cant portion of the enhanced fl uorescence signal 
is due to one-photon processes accompanying the SH generation of the exciting 
light, this method preserves all the advantages of infrared-excited, two-photon 
microscopy: enhanced penetration depth, localized excitation, low photobleaching, 
low autofl uorescence, and low cellular damage.
  1. Introduction 

 Multiphoton fl uorescence is a very powerful technique for 

spectroscopic measurements and for biomedical imaging in 

cells or tissues. Multiphoton excited fl uorescence is a non-

linear optical process in which two or more photons, typically 

in the near-infrared (NIR) region, are absorbed simultane-

ously and the fl uorescence occurs at a shorter wavelength 

(higher frequency), typically in the visible region. Two-

photon fl uorescence is the most commonly used option, due 

to its relatively higher absorption cross section than other 

multiphoton fl uorescence modes. Multiphoton fl uorescence 

has higher spatial resolution than one-photon fl uorescence, 
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because the fl uorescence’s quadratic (two-photon) [or cubic 

(three-photon)] dependence on the excitation intensity turns 

it into a highly localized and spatially confi ned excitation. It 

also allows the use of NIR radiation for exciting fl uorescent 

dyes in the visible range, thus enabling a much enhanced pen-

etration depth, on the order of several millimeters, in tissues. 

Furthermore, it also signifi cantly reduces both autofl uores-

cence from, and photodamage to, the cells/tissues, and thus 

increases further the signal-to-noise ratio. [  1–3  ]  However, one 

of the biggest disadvantages of using nonlinear excitation 

is its extremely low absorption/fl uorescence cross section. 

The probability of simultaneously absorbing two low-energy 

photons is quite low. Thus, for most dyes, the two-photon 

fl uorescence signal is much weaker, by many orders of mag-

nitude, than the one-photon fl uorescence signal. The weak 

nature of this two-photon fl uorescence emanating from the 

dye molecules has severely limited in vivo applications, pen-

etration depth, and choice of dye, thus preventing it from 

achieving its full potential. 

 Several methods have been utilized to enhance the two-

photon fl uorescence signal, [  4–13  ]  some of which have indeed 

shown orders of magnitude enhancements in the two-photon 

fl uorescence signal, and also enabled optical microscopy 
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     Figure  1 .     a) Potential two-photon fl uorescence enhancement mechanisms. b) Schematic of 
the second harmonic generation and reabsorption of the second harmonic photon by the 
dye. IR: infrared, SH: second harmonic, NP: nanoparticle. c) Jablonski diagram showing the 
mechanism of enhancement utilizing the second harmonic photon.  
beyond the diffraction limit. Most of these 

near-fi eld optics or nanophotonic tech-

niques have used metallic fi lms, nanopar-

ticles, fractal nanoislands, or tips, which, 

however, would all be limited to the cel-

lular membrane or tissue surface, and thus 

would not be suitable for intracellular or 

deep in vivo imaging. Also, some of the 

above techniques use total internal refl ec-

tion fl uorescence (TIRF) microscopy to 

couple the light into the surface plasmon 

resonance (SPR) modes. TIRF microscopy 

is a very sensitive technique that has a 

very high signal-to-noise ratio but, unfor-

tunately, it is unable to exploit one of the 

main advantages of using NIR light—its 

large penetration depth. In TIRF micro-

scopes the penetration depth is determined 

by the decay of the evanescent waves, 

which is typically only several hundred 

nanometers. One possible way to enhance 

the two-photon fl uorescence, which would 
overcome the above limitations, was introduced using the 

technique of resonance energy transfer between semicon-

ductor nanocrystals and probes; [  14  ]  however, this technique 

has not been demonstrated in cells or tissues. So far, no tech-

nology has been established that can enhance two-photon 

fl uorescence signals inside cells, or deep inside tissues. 

 The two-photon fl uorescence enhancement in the pre-

vious studies is mostly based on SPR, also known as the 

metal-enhanced fl uorescence (MEF) effect. The presence of 

metallic nanoparticles can either enhance or quench the fl uo-

rescence of a fl uorophore adsorbed on its surface, with a deli-

cate dependence on the distance from the metal surface [  15–17  ]  

and, presumably, the molecular orientation. The enhance-

ment in fl uorescence generally occurs when fl uorophores are 

present close enough to the metal surface, due to the pres-

ence of the metal’s surface plasmons (SPs), which lead to an 

enhanced local electric fi eld near the metal surface. SPs are 

oscillating free electrons on the surface of the metal. If the 

dye molecules are too close to the metal surface (0–5 nm), 

their fl uorescence is quenched, because the excitation fl uo-

rescence energy is transferred to the metal surface and is dis-

sipated as heat. [  15  ]  For larger separations there is an increase 

in fl uorescence, either due to an enhancement of the incident 

light fi eld, especially around the edges of the nanoparticles, 

or due to an increase in the radiative decay rate. [  16,17  ]  Apart 

from SPR, Förster resonance energy transfer (FRET) has 

also been utilized to enhance the two-photon fl uorescence 

from fl uorophores. [  14  ]  The fl uorescence is enhanced due to 

a direct resonance energy transfer from the oscillating elec-

trons of the donor to the fl uorophore, due to a transition-

dipole–transition-dipole coupling. 

 Herein, we present a new strategy to enhance two-photon 

fl uorescence in parallel with the MEF effect, by exploiting the 

hyper-Rayleigh scattering (HRS) of the excitation light in the 

presence of metal nanoparticles, as shown in  Figure    1  . This 

is the fi rst demonstration of such fl uorescence enhancement 

inside living cells. HRS is a second-order nonlinear process 
4 www.small-journal.com © 2012 Wiley-VCH V
that leads to  incoherent  second harmonic generation (SHG), 

that is, production of light at half the wavelength of the excita-

tion laser. The phenomenon of HRS arises from the induced-

dipole polarization and the quadrupole polarization, due to 

the surface-induced nonlinear susceptibility. The quadrupole 

contribution is more signifi cant for nanoparticles greater than 

30 nm. [  18  ]  Metal nanoparticles such as gold or silver have 

been used for HRS due to their large hyperpolarizability (  β  ), 

which gives rise to very large second harmonic signals. [  19–23  ]  

HRS has been used for certain biological applications, such as 

the detection of the Tau protein, identifi cation of  Escherichia 
coli  bacteria, sequence-specifi c HCV RNA quantifi cation 

etc., by looking at the change in the scattering intensity of the 

second harmonic signal. [  24–26  ]  However, this technique has 

not been used so far to enhance multiphoton fl uorescence. 

For two-photon fl uorescence, the excitation wavelength used 

is twice the wavelength of the normal (single-photon) excita-

tion of the fl uorescent dye. By combining the dyes with metal 

nanoparticles, the second harmonic of the same excitation 

light frequency used for the two-photon fl uorescence can be 

used to excite the fl uorescent dye. This second harmonic is 

generated by the metal nanoparticles. Since the one-photon 

fl uorescence cross section is orders of magnitude larger than 

the two-photon fl uorescence cross section, this technique has 

the potential to bring about a signifi cant enhancement in the 

fl uorescence of the indicator dyes, compared to normal two-

photon fl uorescence.

   Although a signifi cant contribution of the fl uorescence 

signal is due to single-photon excitation, this nanophotonic 

technique still exploits all the advantages of NIR-excited 

multiphoton fl uorescence, such as reduced scattering, larger 

penetration depth, highly localized excitation, low autofl uo-

rescence, and high signal-to-noise ratio. The technique can 

be applied using any type of metal nanoparticle that has a 

large hyperpolarizability value, such as gold or silver. We 

note that metal core/polymer shell type nanoparticles [  27–29  ]  

or gold nanoparticles [  30  ]  have already been used to enhance 
erlag GmbH & Co. KGaA, Weinheim small 2012, 8, No. 14, 2213–2221
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     Figure  2 .     Characterization of the nanoparticle. a) Second harmonic generated by the 60 nm 
silver nanospheres, irradiated at 900 nm. b) pH-dependent two-photon excitation spectra 
from the nanoparticles. c) XRD pattern recorded from the nanoparticles with silver core. 
The peaks corresponds to the (111) and (200) refl ections of the face-centered cubic silver. 
d) TEM image of the nanoparticles containing silver; scale bar: 100 nm. Inset: magnifi ed 
image of the nanoparticle (3 × ).  
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the one-photon fl uorescence signal [  27,28  ]  and 

second harmonic signal [  29,30  ]  but not yet for 

two-photon fl uorescence. 

 To demonstrate the in vivo applicability 

of this technique, we prepared a core/shell 

nanoparticle pH sensor by encapsulating into 

an inert polyacrylamide matrix a pH-sensitive 

dye, 8-hydroxypyrene-1,3,6-trisulfonic acid 

(HPTS), adsorbed onto citrate-coated silver 

nanospheres. The citrate coating helps 

maintain some distance between the dye 

molecules and the metal surface. The polyacr-

ylamide matrix shell of our nanoparticles has 

several chemical and biological advantages, 

as reported previously, [  31–34  ]  in addition to 

obviating metal nanoparticle clusterization. 

We observed a maximum enhancement of 

20 times for the fl uorescence intensity of 

HPTS, when irradiated with focused femto-

second pulses at a selected NIR wavelength, 

compared to free dye or nanoparticles con-

taining dye only. We applied this nanopar-

ticle sensor to intracellular pH sensing, which 

demonstrates the feasibility of these nanosen-

sors for imaging applications in cells and tis-

sues, and for future in vivo sensing. We note 

that nanoparticle-based fl uorescence sensors, 

called PEBBLEs (photonic explorers for bio-

analysis with biologically localized embed-

ding), which have been demonstrated to have 
numerous advantages over fl uorescent molecular probes, such 

as better sensitivity, selectivity, and targetability, [  31–34  ]  can be 

seamlessly combined with this new multishell approach for 

enhancing two-photon biochemical imaging. 

   2. Results and Discussion 
  2.1. Characterization of Nanophotonic Particles 

 We confi rmed the presence of HRS by irradiating the silver 

nanoparticles, without the dye and polymer coating, with a 

high-intensity femtosecond laser and collecting the second 

harmonic generated signal using a photomultiplier tube 

(PMT).  Figure    2  a shows the second harmonic spectrum gen-

erated by the 60 nm silver nanoparticles, when irradiated by 

the 900 nm laser line. Under biologically relevant laser inten-

sity conditions we see a weak second harmonic signal gener-

ated by the 60 nm silver nanospheres, which is quite easily 

distinguishable from the background. However, we did not 

see second harmonic signals generated from 10 nm silver 

nanospheres. This is due to the much lower SHG, possibly 

because of the low   β   (hyperpolarizability) value of the 10 nm 

spheres relative to the 60 nm ones.

   To utilize the HRS, that is, the second harmonic signal 

generated by the silver nanoparticles, to enhance the fl uores-

cence intensity, we prepared nanosensors by encapsulating 

dye-adsorbed silver nanoparticles (10 or 60 nm) into a 

polyacrylamide matrix. Encapsulating the silver in the 
© 2012 Wiley-VCH Verlag Gmsmall 2012, 8, No. 14, 2213–2221
polyacrylamide matrix prevents the nanoparticles from 

aggregating, which is one of the main challenges with metallic 

nanoparticles. The small pore size of the matrix prevents not 

only the silver but also the dye molecules from interacting 

with the proteins or other macromolecular components 

present inside the cell compartments. However, the hydrogel 

pores allow free fl ow of small ions and molecules, such as 

H  +  , Ca 2 +  , K  +  , or O 2 , thus enabling the nanoparticle core to 

act as a chemical sensor. [  31–34  ]  The prepared nanoparticle sen-

sors show pH-dependent two-photon fl uorescence excitation 

spectra, as presented in Figure  2 b. The inductively coupled 

plasma (ICP) measurements show a high amount of silver 

encapsulation inside the nanoparticles. This is also confi rmed 

by looking at the powder X-ray diffraction (XRD) pattern, as 

shown in Figure  2 c. The size of the nanoparticles containing 

a silver core varies from 90 to 130 nm, according to the trans-

mission electron microscopy (TEM) images. A typical TEM 

image of a nanoparticle containing silver is shown in Figure  2 d. 

The surface charge of the nanoparticles was measured to be 

about  + 18 mV. 

 We confi rmed the absence of silver nanosphere clusters in 

our nanoparticles by looking at the bulk absorption spectra of 

these nanoparticles. Free silver nanospheres, when clustered, 

have a second absorption peak in the range 600–700 nm. 

But for our nanoparticles we do not observe any absorp-

tion band at 600–700 nm. This bulk absorption study further 

confi rms that most, if not all, of the embedding polyacryla-

mide nanoparticles contain a single silver nanosphere and 

not a cluster of nanospheres. From our fl uorescence and 
2215www.small-journal.combH & Co. KGaA, Weinheim
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absorbance measurements we fi nd that the concentration of 

dye in the nanoparticles with 60 nm core was about 1.1% by 

weight, while the 10 nm core nanoparticles had only 0.57% 

dye (by weight) encapsulated in them. The nanosensors are 

highly soluble in water and phosphate-buffered saline (PBS). 

The dye leaching from the nanoparticles was extremely low. 

Generally, dye leaching is very signifi cant when the dye is 

just encapsulated and not covalently linked to the matrix. 

With the silver core the dye leaching from the nanoparticles 

was about 0.2%, under constant stirring in water for 24 h, 

which is 50 times less than for nanoparticles without a silver 

core. [  34  ]  This reduction in dye leaching is because the dye gets 

adsorbed onto the surface of the silver cores. This low degree 

of leaching out is quite remarkable, and comparable to the 

low leaching of dyes that are covalently linked to the matrix. 

We tested the toxicity of the nanoparticles by performing 

MTT assays. These toxicity assays show that the nanoparticles 

are practically nontoxic to cells, after 4 h of incubation at a 

1 mg mL  − 1  concentration, and exhibit a higher than 98% cell 

viability. 

   2.2. Two-Photon Fluorescence Enhancement 

 The enhancement of the two-photon signal was observed 

by comparing the fl uorescence signal from the nanopar-

ticles with a silver core to that from equivalent amounts 

of free dye as well as nanoparticles containing dye but no 

nanoparticle. HPTS has multiply peaked, broad absorp-

tion bands around 370, 405, and 450 nm, and an emission 

maximum at 510 nm. The nanoparticles were excited at 

different wavelengths from 740 to 920 nm, and the fl uores-

cence emission between 480 and 580 nm was measured. The 

wavelength-dependent enhancement of the fl uorescence 

signal is shown in  Figure    3  . For the 60 nm silver core there is 

a maximum enhancement of about 20 times (Figure  3 a) and 

for the 10 nm silver core the enhancement is only 2.2 times 

(Figure  3 b). We also found a similar enhancement trend for 

the nanoparticles with a 60 or 10 nm silver core, by meas-

uring the fl uorescence intensity between 560 and 600 nm, 

which was carried out to avoid any error due to possible 

interference at shorter wavelength, despite the much weaker 

fl uorescence signal intensity.
6 www.small-journal.com © 2012 Wiley-VCH V

     Figure  3 .     Two-photon fl uorescence enhancement of the HPTS–nanopa
silver core (a) and 10 nm silver core (b). For the 60 nm silver the maxim
20 times whereas for the 10 nm silver the maximum enhancement is onl
   We hypothesize that the major reason for the higher 

enhancement (about 10 times) in the fl uorescence signal of 

the nanoparticles with the 60 nm silver cores—compared to 

the nanoparticles with 10 nm silver cores—may be the gen-

eration of second harmonic photons by the silver core, which 

in turn excites the fl uorescent dye in the core’s vicinity. This 

latter process is a one-photon fl uorescence process and thus 

is much more effi cient than the two-photon fl uorescence, 

and has the potential to lead to a many-fold increase in the 

fl uorescence signal. This hypothesis is mainly based on the 

wavelength-dependent enhancement trend, as well as on a 

comparison with a dye (rhodamine 6G) that does not have an 

overlapping absorption spectrum with the second harmonic 

of the exciting light. It has been shown previously that the 

hyperpolarizability (  β  ) of the silver nanoparticles increases 

with particle size, [  19  ,  26  ]  which is in accord with the difference 

in the fl uorescence enhancement between the nanoparticles 

with a 60 nm silver core and those with a 10 nm core. Figure  3  

shows that the enhancement of the fl uorescence is about 

a factor of 3–5 from 740 to 820 nm and then, from 820 nm, 

it starts to increase until the enhancement factor reaches a 

maximum value of 20. The reduced enhancement at lower 

wavelengths is probably due to reabsorption of the second 

harmonic wavelength generated by the silver nanoparticles. 

Silver has a strong absorption around 400 nm and thus most 

of the second harmonic photons when excited at 800 nm are 

reabsorbed by the silver and thus cannot be used to excite 

the dye molecules. In contrast, from 900 nm onward excita-

tion, the second harmonic generated is completely utilized to 

excite the dye molecules, while there is no absorption by the 

silver nanoparticles. In addition, silver has high refl ectivity 

around 450 nm, thus increasing the path length of the pho-

tons, around 450 nm, inside the solution. This multirefl ection 

phenomenon has also been shown to enhance the fl uores-

cence of dyes. [  35  ]  We see this trend for both the 60 and 10 nm 

silver nanoparticles. We also compared nanoparticles con-

taining different dye concentrations ranging from 0.5 to 1.1%. 

However, no major difference in enhancement was observed. 

 The above enhancement method preserves all the advan-

tages traditionally associated with two-photon fl uorescence. 

The use of NIR radiation to generate the second harmonic 

ensures a large tissue penetration depth. Also, the “second 

harmonic” generated is highly localized, which is then 
erlag GmbH & Co. KGaA,

rticles with 60 nm 
um enhancement is 
y 2.2 times.  
absorbed only by the dye in the vicinity of 

the silver; thus we still get automatic image 

cross-sectioning, which is one of the biggest 

advantages of two-photon microscopy. [  1–3  ]  

The localized excitation also minimizes 

photobleaching. The second harmonic 

generated is localized and relatively weak 

and thus does not cause autofl uorescence 

from, or photodamage to, the cells. 

 To determine the contribution of the 

other MEF effects, such as SPR and res-

onance energy transfer, we tested silver 

nanoparticles with the dye rhodamine 6G, 

to see the effect of SPR on the enhance-

ment of the fl uorescence generated by 

the dye molecules. Rhodamine and its 
 Weinheim small 2012, 8, No. 14, 2213–2221
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derivatives (especially rhodamine 6G and rhodamine B) are 

commonly used dyes that have been extensively utilized pre-

viously to study the MEF effects. [  7  ,  9  ,  16  ,  36  ]  The nanoparticles 

containing rhodamine dye were around 170 nm in size and 

contained 0.7% dye (by weight). We did not see much silver-

induced enhancement of the fl uorescence signal emanating 

from the rhodamine dye. We observed a maximum fl uores-

cence signal enhancement of 1.4 and 2.8 times with the 10 

and 60 nm silver spheres, respectively. Thus, SPR or FRET 

does not seem to be the major contributor to the overall 

enhancement observed with HPTS. Notably, the absorption 

spectrum of the rhodamine does not overlap with the second 

harmonic wavelength of the incident light, and thus enhance-

ment due to HRS is excluded here. The comparison between 

the enhancement factor for HPTS and rhodamine is shown 

in  Table    1  .  

 One point of interest here is the distance and the interac-

tion between the HPTS dye and the silver nanospheres. To get 

a rough estimate of the distance between the dye molecules 

and the silver surface, we looked at the one-photon fl uores-

cence enhancement. Here, we observed a slight quenching of 

the fl uorescence signal for the polyacrylamide-coated silver-

containing dye, as compared to the free dye at equal concen-

tration. The fl uorescence signal intensity of the nanoparticle 

was about 80% that of the free dye at 405 nm. This indicates 

that the dye molecule is in very close proximity to the silver 

nanosphere surface, as for the quenching/enhancement theory 

described before; [  15  ]  though the molecules may be in an 

altered orientation, they may not be quite “touching”, which 

might have resulted in total quenching of the fl uorescence 

(see more on this below). That the dye is physically adsorbed 

near the silver surface is also corroborated by the fact that 

we do not observe any dye leaching from the polyacrylamide 

nanoparticles embedded with silver in them, whereas without 

the silver there is as much as 8% dye leaching under similar 

conditions. [  34  ]  Interestingly, total quenching is not observed. 

This may be explained in two ways: 1) the silver nanospheres 

employed have a citrate cap, so the capping citrate molecules 

may prevent the dye molecules from being totally quenched 

by helping to maintain a certain minimal distance between 

the metal and the dye; 2) the quenching may also depend on 

the orientation of the dye with respect to the metal surface, 

so if the orientation of the dye is nearly perpendicular to 

the silver surface then it might prevent it from being totally 

quenched, even though it is still in close proximity to that sur-

face. This distance between the dye and the silver surface is 

not optimal for our enhancement studies and the two-photon 

enhancement obtained from our method could probably be 

much higher, upon optimization, than the factor of 20 that 

was observed. A quantitative study on this effect is planned. 
© 2012 Wiley-VCH Verlag Gmb

   Table  1.     Comparison of fl uorescence enhancement from HPTS and 
rhodamine-containing nanoparticles. 

Nanoparticle size 60 nm silver 10 nm silver

Dye HPTS Rhodamine 6G HPTS Rhodamine 6G

 Maximum enhancement factor 20 2.8 2.2 1.4

small 2012, 8, No. 14, 2213–2221
Importantly, although the close distance between the dye and 

the metal surface causes some loss of fl uorescence signal, it 

still prevents the dye from leaching, which is also a very sig-

nifi cant point. We plan to address this question of optimal dis-

tance, to prevent any fl uorescence quenching yet to minimize 

the dye leaching, by using different techniques to control the 

distance between the dye and the silver, in a separate study. 

The lack of single-photon enhancement for the HPTS nano-

particles with silver core further demonstrates that the MEF 

effect is not so prominent. Thus, it does not play a major role 

in the two-photon fl uorescence enhancement as well. 

   2.3. Intracellular pH Mapping 

 These nanoparticles were tested for pH sensing in cells. As 

most of the drug-delivery mechanisms depend on the pH, 

pH is an extremely important physiological parameter. Many 

anticancer drugs are designed to release their contents at 

low pH, and thus the knowledge of the exact pH inside the 

cells or tissues should be very helpful for drug design. The 

two-photon excitation spectra of the nanoparticles show a 

pH-dependent peak at 900 nm. It corresponds to the single-

photon absorption peaks at 450 nm. The one-photon absorb-

ance peaks of HPTS are highly pH sensitive. The absorption 

at 370 nm (between 350 and 410 nm) increases at lower pH, 

whereas the absorption at 450 nm (410 to 490 nm) decreases 

at lower pH. A dramatic pH-dependent change is observed 

at 900 nm, but, contrary to the one-photon pH response, we 

do not see much change elsewhere around 800 nm, or for 

lower wavelengths. The fl uorescence intensity ratio between 

the peaks of the two two-photon excitation wavelengths, at 

900 nm and at an isosbestic point (740 nm), increases linearly 

over the pH range between 6.0 and 8.0 for these nanopar-

ticle sensors. The pH calibration curve, based on the ratio of 

fl uorescence intensities with excitations at 900 and 740 nm, 

is shown in  Figure    4  . It is nearly linear, with an  R  2  value of 

0.98. We also checked the response of the nanoparticles to 

ions such as K  +   and Na  +  , which are abundantly present in 

the cell. This was done by using various concentrations (0 to 

0.5  m ) of KCl and NaCl in a buffer solution. We did not 

observe any changes in the response of the nanoparticles to 

K  +   and Na  +   in these solutions.

   MDA-MB-435 cancer cells were incubated with the nano-

particles for 3 h, then washed and used for imaging. The 

nanoparticles were taken up by endocytosis. A two-photon 

fl uorescence image of the live MDA cells containing the 

nanoparticles is shown in  Figure    5  . Using the ratio of the 

fl uorescence intensity when excited at 900 and 740 nm, an 

average intracellular pH value of 6.5  ±  0.2 is obtained using 

the 60 nm silver core particles. The low pH value measured 

is probably because these nanoparticles are trapped in acidic 

vesicles, such as late endosomes or lysosomes, which are acidic 

in nature. The absence of any targeting peptide on the nano-

particle surface precludes the involvement of receptor-medi-

ated endocytosis in the cellular uptake of the nanoparticles. 

However, the highly positive surface charge of the nanoparti-

cles ( ≈  + 18 mV by zeta potential measurement) confers their 

strong affi nity for the negatively charged cellular membrane, 
2217www.small-journal.comH & Co. KGaA, Weinheim
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     Figure  4 .     pH calibration curve of the nanoparticles. The curve was 
constructed by taking the ratio of the fl uorescence when excited by 900 
and 740 nm photons.  R  2   =  0.98.  
and promotes their uptake into the cell. Once endocytosed, 

the nanoparticles are destined for the lysosomes due to the 

absence of a targeting signal on their surface.

   To check this preferential nanosensor trapping hypoth-

esis, we looked at the co-localization of the nanoparticles 

with the acidic compartments, using Lysotracker. The Lys-

otracker probes specifi cally stain the acidic compartments of 

the cells and have been widely used to visualize lysosomes, 

which are strongly acidic, relative to other compartments of 

the cell. [  34  ]  The fl uorescence images were obtained by exciting 
www.small-journal.com © 2012 Wiley-VCH Ve

     Figure  5 .     Two-photon fl uorescence image of MDA-MB-435 cells with 
pH-sensing core/shell nanoparticles, excited at 900 nm; scale bar: 
20  μ m. Monitored is the pH of the acidic endosomes/lysosomes in 
which the nanosensors are preferentially localized/trapped, in contrast 
to other cell locations.  
the nanoparticles at 405 and 450 nm, and the Lysotracker at 

568 nm, while collecting the fl uorescence emission at 510 and 

600 nm, for the nanoparticle and Lysotracker dye, respec-

tively. The overlaid image is shown in  Figure    6  . Signifi cant 

co-localization of the nanoparticles with the acidic compart-

ments is observed. A rough estimate shows that about 50% of 

the nanoparticles are in acidic compartments. This estimation 

was performed using the Image J software and by comparing 

the pixel intensity of the red and green colors.  

    3. Conclusion 

 We have demonstrated a large intensity enhancement in 

the two-photon fl uorescence emission of HPTS dye mol-

ecules by silver nanospheres. The silver nanospheres and 

dye molecules were co-encapsulated inside a polyacrylamide 

hydrogel matrix of larger nanoparticles. Signal enhancement 

by a factor of 20 was observed with 60 nm silver nanosphere 

cores, when excited at a wavelength of 900 nm. We also tested 

10 nm silver nanosphere cores but observed an enhancement 

of only 2.2 times. In addition to the usual MEF effect, the 

large observed enhancement is attributed to the excitation of 

the dye molecules by the second harmonic of the excitation 

light generated from the surface of the silver nanoparticles, 

when irradiated with NIR light. The generated second har-

monic signal depends on the hyperpolarizability of the silver 

nanoparticles, which has been shown to increase with par-

ticle size. This method can be employed for any dye having 

an absorption in the visible region. Potentially this technique 

can also be used to generate and deliver visible light at tissue 

depths that are beyond the visible-light penetration depth. 

Consequently, this could be highly important for in vivo, deep 

in tissue, multiphoton imaging, sensing, or light-activated 

therapy, such as photodynamic therapy. 

 The polymeric cladding prevents silver nanoparticle 

aggregation, and thus any corresponding complicating optical 

effects; the polymeric matrix also protects the silver and the 

dye from interacting with proteins and other potentially inter-

fering cell components. The embedding nanoparticle not only 

shields the silver and the dye but also potentially enables a 

long plasma lifetime, even longer if used with a polyethylene 

glycol (PEG) coating. [  32  ]  In addition it allows potential spe-

cifi c targeting to any type of cell by surface engineering, such 

as attaching suitable targeting moieties to the matrix. [  32  ]  

 We applied this nanoparticle sensor to image the intracel-

lular pH in MDA-MB-435 cancer cells. Intracellular measure-

ments showed that most of these nanoparticles end up inside 

acidic endosomes and we obtained an average pH value of 

6.5. Such nanosensors could further be used for work on live 

tissues in vivo. 

 The HRS-based technique enables one to benefi t from 

all the advantages of multiphoton fl uorescence, such as good 

penetration depth, highly localized excitation, low autofl uo-

rescence, and high signal-to-noise ratio, even though a signifi -

cant part of the fl uorescence originates from a single-photon 

absorption mechanism. Furthermore, the required multishell 

nanoparticle structure fi ts seamlessly with the recent devel-

opment of smart nanoparticle-based biosensors, such as 
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     Figure  6 .     Fluorescence images from the cells. a) Fluorescence signal from the nanoparticles inside the MDA cells; b) fl uorescence signal from the 
Lysotracker dye used to stain the acidic vesicles; and c) overlay of the fl uorescence from nanoparticles (green) and the Lysotracker (red). Orange/
yellow shows the position of nanoparticles overlapping with acidic vesicles. Many of the nanoparticles are inside acidic vesicles; scale bar: 20  μ m. 
This image was taken in the confocal mode.  
nanoPEBBLES, as well as nanoactuators, such as targeted, 

theranostic, multifunctional, biodegradable, and bioelimi-

nable nanoparticles for therapy, diagnostics, and surgical 

delineation. [  32  ]  

   4. Experimental Section 

  Materials : Acrylamide, methylenebisacrylamide (MBA), 
dioctylsulfosuccinate (AOT), Brij 30, hexane, ammonium per-
sulfate (APS),  N , N , N  ′ , N  ′ -tetramethylethylenediamine (TEMED),  N -(3-
dimethylaminopropyl)- N  ′ -ethylcarbodiimide hydrochloride (EDC) 
were all acquired from Sigma–Aldrich (St. Louis, MO). 3-(Amino-
propyl)methacrylamide hydrochloride salt (APMA) was obtained 
from Polysciences Inc. (Warrington, PA). Ethanol (95%) was 
acquired from Decon Laboratories, Inc. (King of Prussia, PA). 
HPTS was obtained from Invitrogen (Carlsbad, CA). The silver 
nanoparticles (Biopure) were obtained from Nanocomposix Inc. 
(San Diego, CA). All solutions were prepared in 18 M Ω  water 
purifi ed in a Barnstead 1 Thermolyne Nanopure II system. All the 
chemicals and materials were used as received. 

  Preparation of the Nanoparticles : The nanoparticles were prepared 
using a microemulsion and radical polymerization technique. The core 
was prepared by fi rst adding HPTS (19 mmol) to a solution (1.6 mL) 
of silver nanospheres (10 or 60 nm) in citrate buffer (1 mg mL  − 1  
concentration). The silver nanospheres had a citrate capping. Cit-
rate is a small molecule and a relatively weak capping agent, so it 
may not prevent, but possibly limit, dye molecule adsorption. After 
the dye was adsorbed into the silver, the monomers acrylamide 
(8.6 mmol), APMA (0.25 mmol), and MBA (1.2 mmol) were added to 
it. This solution was then added to a hexane solution (36 mL) con-
taining Brij 30 (6.85 mmol) and AOT (2.88 mmol). The two solutions 
were emulsifi ed by stirring for 20 min under an inert atmosphere. 
The reaction was initiated by using TEMED (0.54 mmol) and APS 
(28  μ mol), freshly prepared (10%, w/v) in water. The solution was 
further stirred for 2 h under an inert atmosphere to complete the 
polymerization. Hexane was removed by rotary evaporation using 
Rotavapor-R apparatus (Brinkmann Instruments), and then the res-
idue was suspended in ethanol. The surfactants and excess dye were 
removed by washing the particles fi ve times with ethanol and fi ve 
times with water for over 2 days in an Amicon ultrafi ltration cell (Mil-
lipore Corp., Bedford, MA), using a fi lter (300 kDa), and then freeze-
drying with a 5L ModulyoD freeze dryer (ThermoFisher Scientifi c). 
© 2012 Wiley-VCH Verlag Gmsmall 2012, 8, No. 14, 2213–2221
 The rhodamine-containing nanoparticles were prepared by 
post-loading the rhodamine dye into blank polyacrylamide nano-
particles containing a silver core. Rhodamine is extremely soluble 
in ethanol and leached out of the nanoparticles while washing in 
ethanol. Therefore we post-loaded the dye into the nanoparticle 
by stirring it in an aqueous solution containing blank nanoparti-
cles overnight. The nanoparticles were then washed thoroughly in 
water a few times to remove any extra dye and freeze dried. 

  Particle Size and Zeta Potential : The particles were diluted in 
water at a concentration of 1 mg mL  − 1  and the particle size distri-
bution in aqueous solution and the zeta potential were measured 
by dynamic light scattering (DLS), using a Beckman–Coulter Delsa 
Nano C zeta potential/submicron size analyzer. 

  Silver Encapsulation :  ICP Spectroscopy : The amount of silver 
encapsulated was determined by inductively coupled plasma 
(ICP)–optical emission spectroscopy using a Perkin–Elmer Optima 
2000 DV machine. The nanoparticle sample concentration was 
2 mg mL  − 1  in water. 

  X-Ray Diffraction : Powder XRD experiments were performed by 
using a Bruker D8 Advance powder X-ray diffractometer. 

  Dye Concentration : The amount of dye encapsulated in the 
nanoparticles was determined by comparing the fluorescence 
and absorbance from a known concentration of the nanoparti-
cles in water to the fluorescence signals obtained from a set of 
known concentration of dye and silver nanoparticles in water. 
We first determined the amount of silver nanospheres present 
in the nanoparticle solution by performing ICP analysis. Calibra-
tion samples containing the same amount of free silver nano-
spheres were prepared while varying the concentration of the 
dye. We constructed the calibration curve by looking at the 
absorbance (and fluorescence) using the (free silver  +  dye) 
calibration solution and then comparing it with the absorb-
ance/fluorescence of the nanoparticle solution. This was a bulk 
measurement and was quite accurate. The fluorescence meas-
urements were performed in a FluoroMax-3 spectrofluorometer 
(JobinYvon-Spex). 

  Leaching : The nanoparticle solution was diluted in water at a 
concentration of 5 mg mL  − 1  and kept for 48 h under constant stir-
ring. It was then centrifuged at 4000 rpm. The fi ltrate was collected 
and the concentration of the dye was determined by comparing 
the absorbance of the fi ltrate with the absorbance of a known con-
centration of dye. The absorption studies were carried out using a 
Shimadzu UV/Vis spectrometer. 
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  Calibration and Optical Characterization : The nanoparticles 

were dissolved in buffers of different pH at a concentration of 
6.5 mg mL  − 1 . The calibration was performed using a widely tunable 
femtosecond Ti:sapphire (Mai-Tai, Spectra Physics) laser. The laser 
had a pulse width of less than 100 fs and operated at a frequency 
of 80 MHz. The central wavelength could be tuned from 690 to 
950 nm. The light was focused onto the sample using a 10 ×  objec-
tive. Two excitation wavelengths, 900 and 740 nm, were used and 
the fl uorescence signal between 480 and 580 nm at each excita-
tion wavelength was collected through the same objective and 
passed through a tunable acoustic fi lter before being collected 
using a photomultiplier tube (PMT). The ratio of the two fl uores-
cence intensities was used for calibration. The enhancement was 
measured by taking the ratio of the fl uorescence signal from the 
silver and dye encapsulated nanoparticle and an equal concentra-
tion of free dye by exciting them between 740 and 920 nm. TEM 
was performed by using nanoparticle solutions (0.01 mg mL  − 1 ) 
and the negative staining of the polyacrylamide was achieved with 
uranyl acetate. The TEM was performed using a Philips CM-100 
TEM microscope. 

  Cell Culture Procedures : MDA-MB-435 was chosen for intracel-
lular sensing. MDA cells were cultivated in a Roswell Park Memorial 
Institute medium (RPMI-1640), supplemented with 10% heat-
inactivated fetal bovine serum (Hi-FBS). The cells were plated on 
an eight-well chambered cover glass (Nunc. Lab-Tek) and grown for 
a few days before incubation with nanoparticles. 

  Cellular Uptake Procedures : The cells were incubated with nano-
particles of 1 mg mL  − 1  fi nal concentration for 3 h. After incubation, 
unbound nanoparticles were removed by gentle rinsing with fresh 
cell medium three times. Then the cells were treated with a lyso-
somal staining probe, Lysotracker Red DNB-99 for 10 min. The 
excess Lysotracker probe was removed by washing with colorless 
Dulbecco’s modifi ed Eagle’s medium (DMEM) one more time. 

  Fluorescence Microscopy : The two-photon and single-photon 
images of the cells loaded with nanoparticles were taken using 
a Leica confocal microscope (SP-5X), located at the Microscopy 
and Image Analysis Laboratory of the University of Michigan. The 
single-photon images were taken with the diode laser at 405 and 
450 nm, and the fl uorescence emission was detected at 510 nm. 
The single-photon images were acquired in the confocal mode with 
a slit width of 1 Airy unit. The two-photon images were taken by 
exciting the nanoparticles with 740 and 900 nm laser lines from the 
femtosecond Ti:sapphire laser, and the fl uorescence emission was 
collected around 510 nm. The two-photon images were acquired 
using either a 10 ×  or 20 ×  objective, whereas the single-photon 
images were acquired using a 40 ×  or 60 ×  oil-immersion objective. 
PMTs were used to collect the fl uorescence in both cases. 

  MTT Assay for Toxicity Testing : Cells were cultivated on 96-well 
plates. For each treatment with nanoparticles and for a control 
(cells without any treatment), a total of 12 wells were used for reli-
able measurements. The nanoparticles containing silver and dye 
were added to cell medium to make the nanoparticle concentra-
tion 1 mg mL  − 1 . For comparison, blank polyacrylamide nanoparti-
cles were also added to cell medium at a similar concentration of 
1 mg mL  − 1 . After 4 h of incubation, the treated cells were washed 
three times with fresh cell medium to remove any unbound nano-
particles. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) solution (100  μ L, 2.5 mg mL  − 1  in PBS) was added 
20 www.small-journal.com © 2012 Wiley-VCH 
to each treated well and control. The cells were incubated for 
4 h at 37  ° C, the cell medium was removed, and dimethyl sulfoxide 
(DMSO, 100  μ L) was added to solubilize the water-insoluble for-
mazan that was formed by reduction of the MTT agent by live cell 
enzymes. The cell viability was determined by measuring the light 
absorbance of each well at a wavelength of 550 nm and comparing 
the results with those from the controls. 
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