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Summary

We report here the first instance of a complete
replacement of vertically inherited luminescence
genes by horizontally acquired homologues. Different
strains of Photobacterium aquimaris contain homo-
logues of the lux-rib genes that have a different evo-
lutionary history. Strain BS1 from the Black Sea
contains a vertically inherited lux-rib operon, which
presumably arose in the ancestor of this species,
whereas the type strain NBRC 104633T, from Sagami
Bay, lacks the vertically inherited lux-rib operon and
instead carries a complete and functional lux-rib
operon acquired horizontally from a bacterium related
to Photobacterium mandapamensis. The results indi-
cate that the horizontal acquisition of the lux genes
expanded the pan-genome of P. aquimaris, but it did
not influence the phylogenetic divergence of this
species.

Introduction

Bioluminescent bacteria are widespread in the marine
environment and play important roles in marine ecosys-
tems (Dunlap and Kita-Tsukamoto, 2006; Dunlap, 2009;
Widder, 2010). Most marine luminous bacteria are
members of Vibrionaceae and can be found in the genera
Vibrio, Aliivibrio and Photobacterium (Baumann et al.,
1984; Dunlap and Kita-Tsukamoto, 2006; Urbanczyk
et al., 2007; 2011a; Ast et al., 2009; Dunlap, 2009). Bac-
terial luminescence is an activity coded for by the lux
genes, which in Photobacterium are joined with the rib

genes to form a lux-rib operon (Lee et al., 1994; Lin et al.,
2001; Ast et al., 2007; Urbanczyk et al., 2011a).

In addition to luminous members of Vibrionaceae, cer-
tain species of Enterobacteriaceae and Shewanellaceae
are luminous (Jensen et al., 1980; Forst et al., 1997;
Makemson et al., 1997; Dunlap and Kita-Tsukamoto,
2006; Waterfield et al., 2009). In most of these bacteria,
the lux genes have been vertically inherited, whereas
some species acquired these genes by horizontal transfer
(Ast et al., 2007; Kasai et al., 2007; Urbanczyk et al., 2008;
2011a). The incidence of lux gene horizontal transfer
appears to be rare, however, and in contrast to widely
held views (e.g. Ochman et al., 2000; Gogarten et al.,
2002) apparently has not led to speciation of the recipient
strain based on current data (Urbanczyk et al., 2008).

The recent description of Photobacterium aquimaris,
the described strains of which carry an apparently hori-
zontally acquired luxA gene (Yoshizawa et al., 2009), pro-
vides a possible exception to the view that horizontal
transfer of the lux genes does not contribute to divergence
of the recipient. Analysis of P. aquimaris housekeeping
genes revealed this species to be closely related to Pho-
tobacterium kishitanii and Photobacterium phosphoreum,
whereas the luxA gene apparently was acquired from a
bacterium related to Photobacterium mandapamensis
(Yoshizawa et al., 2009). In this study, we examined the
evolutionary relationships of different strains of P. aquima-
ris to test the possibility that the phylogenetic divergence
(i.e. divergence of lineages inferred from phylogenetic
analysis of gene sequences) of this species was influ-
enced by horizontal acquisition of the lux genes.

Results and discussion

Two strains of P. aquimaris, both thought to carry a hori-
zontally acquired luxA gene, have been described
(Yoshizawa et al., 2009). To attempt to identify additional
strains of this new species for analysis of the evolutionary
origin of its luxA gene, we surveyed a wide diversity of
luminous strains for new P. aquimaris isolates. Two lumi-
nous strains, BS1 and BS2, isolated from the Black Sea
and provisionally identified as P. phosphoreum based
on hybridization analysis (Wimpee et al., 1991), were
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identified through analysis of housekeeping genes as
likely members of P. aquimaris (data not shown), and one
strain, BS1, was examined in greater detail here.

A multi-gene phylogenetic analysis based on house-
keeping genes (16S rRNA gene, gyrB, ftsZ, mreB, pyrH
and topA) revealed that BS1, like the type strain of
P. aquimaris, NBRC 104633T, is closely related to but
distinct from P. phosphoreum and P. kishitanii (Fig. 1).
However, analysis of the lux-rib operon genes (luxABFE)
of these bacteria revealed a different relationship (Fig. 1).
Whereas the luxABFE genes of NBRC 104633T are

phylogenetically affiliated with P. mandapamensis, as
reported for luxA by Yoshizawa and colleagues (2009),
the placement of the luxABFE genes of BS1 was concor-
dant with the P. aquimaris housekeeping genes. We inter-
pret this concordance as indicating that the lux-rib genes
of BS1 were vertically inherited from the ancestor of
P. aquimaris, which was luminous, whereas those of
NBRC 104633T were horizontally acquired from a bacte-
rium apparently closely related to P. mandapamensis.

To gain further insight into this issue, we cloned and
sequenced the lux-rib operons of BS1 and NBRC 104633T,
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Fig. 1. Relationship between luminous Vibrionaceae based on housekeeping genes (left tree) and luxABFE genes sequences (right tree).
Sequence data were analysed in PAUP* (Swofford, 2003) using the parsimony criterion. Jackknife support percentage values (after 1000
replicates) are shown at the nodes. The housekeeping genes were amplified as described in Ast and colleagues (2007), Urbanczyk and
colleagues (2008) and Yoshizawa and colleagues (2009). Strains of P. aquimaris are shown in bold. For the housekeeping genes analysis,
sequences of six genes, gyrB, pyrH, 16S, ftsZ, mreB and topA were concatenated and then aligned. The alignment had a total of 5362
characters (631 phylogenetically informative characters); the analysis resulted in a single most parsimonious tree. Analyses based on the
individual genes were qualitatively similar to concatenations. Analyses of the concatenated housekeeping genes alignment were also carried
out using neighbour-joining and maximum-likelihood algorithms, as done by Yoshizawa and colleagues (2009), and the results were congruent
with the parsimony analysis (data not shown). For the luxABFE sequences analysis, only protein coding sequences were used. luxF, absent in
Photobacterium leiognathi and Aliivibrio fischeri, was treated as missing data. The alignment had a total of 2495 characters (1106
phylogenetically informative characters), and the analysis resulted in two equally parsimonious trees. Photobacterium aquimaris strains are
shown in bold. Roman numerals I and II refer to P. mandapamensis clades I and II respectively (Kaeding et al., 2007). Some jackknife support
values were omitted for clarity. GenBank accession numbers for the sequences used in both analyses can be found in Table S1.
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including flanking DNA (Fig. 2). The genes upstream of the
lux-rib operon of BS1 are homologous to a lumazine
protein gene, lumP, and a proline transporter gene, opuE,
which are also upstream of the luxC gene of P. phospho-
reum (Kasai et al., 2007). Downstream of ribA in BS1 is a
gene homologous to a hybrid cluster protein, which in
P. phosphoreum is also located downstream of ribA (Kasai
et al., 2007). This apparently conserved pattern of flanking
genes suggests that the lux-rib operon is in the ancestral
genomic position for these genes in the P. phosphoreum/
kishitanii/aquimaris clade. This conclusion was supported
by phylogenetic analysis of complete lux-rib operons from
representative luminous Photobacterium strains, including
sequences of lux-rib operons of BS1 and NBRC 104633T

(Fig. S1). In contrast, the genes upstream of the lux-rib
operon of NBRC 10463T are a putative resolvase and a
plasmid transport protein (traH) (genes downstream of ribA
were not recovered). The resolvase and traH genes have
no homology to sequences found in P. mandapamensis
strain svers.1.1 genome (Urbanczyk et al., 2011b), or
sequences flanking luminescence genes in other Vibrion-
aceae, and they have no role in light production. Instead,
they apparently function in horizontal transfer of genes via
superintegrons or plasmids (Hazen et al., 2010). The pres-
ence of these two genes upstream of luxC in NBRC
104633T is further support for horizontal acquisition of the
lux-rib genes in NBRC 104633T.

The results obtained here (Fig. 1) and previously
(Yoshizawa et al., 2009) indicate that the source of the
lux-rib genes of NBRC 104633T was likely to be a bacte-

rium closely related to P. mandapamensis. Two phyloge-
netically distinct clades, I and II, however, comprise this
species (Wada et al., 2006; Kaeding et al., 2007), and
certain strains of this species acquired a second lux-rib
operon, lux-rib2, by horizontal transfer (Ast et al., 2007;
Urbanczyk et al., 2008). Therefore, the likely source of
the NBRC 104633T lux-rib genes is not obvious. To attempt
to identify which of these lineages might have been the
source of these genes, we carried out a detailed sequence
analysis of the luxABFE genes in luminous members of
Vibrionaceae, including the horizontally transferred lux-rib2

operon of P. mandapamensis ajapo.4.20 (Fig. 1). The
results confirm that the lux-rib operon of NBRC 104633T

originated in bacterium closely related to extant members
of P. mandapamensis, but the donor bacterium apparently
belongs to neither clade I nor clade II. Furthermore, the
analysis revealed that the horizontal transfer of lux-rib
genes of NBRC 104633T was not a second example of the
horizontal gene transfer (HGT) event that gave rise to the
lux-rib merodiploidy of P. mandapamensis ajapo.4.20.
These results indicate that the donor of the lux-rib operon
of NBRC 104633T could belong to a previously unrecog-
nized clade of P. mandapamensis that either has gone
extinct or has not yet been sampled. Alternatively,
sequence divergence observed in the analysis shown in
Fig. 1 is a result of rapid lux-rib operon evolution in recipi-
ent P. aquimaris since the HGT event.

Only a single lux-rib operon was found in NBRC
104633T and BS1 in the amplification and sequencing
work carried out here. Furthermore, attempts to PCR-
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Fig. 2. Gene organization of the lux-rib operons of P. aquimaris BS1 (upper panel), NBRC 104633T (middle panel) and P. phosphoreum (lower
panel). The P. phosphoreum lux-rib operon gene organization was determined based on sequences of strains ATCC 11040T (GenBank
accession number DQ988873) and NBRC 13896 (AB104437 and AB065117). Genes shaded grey are homologous, and hashed rectangles
indicate sequences homologous between BS1 and P. phosphoreum. Cloning and sequencing of the genomic DNA followed the procedure
described by Ast and colleagues (2007), except that genomic DNA cloned into pWEB-TNC cosmid (Epicentre) was sheared and the resulting
fragments were religated into the pUC118-HincII/BAP (Takara Biosciences) before sequencing.
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amplify lux-rib sequences from NBRC 104633T genomic
DNA with primers based on BS1 or from BS1 genomic
DNA with primers based on NBRC 104633T were unsuc-
cessful (data not shown). We also attempted to amplify
lux-rib genes of NBRC 104633T and BS1 using specific
primers designed for amplification of P. phosphoreum/
P. kishitanii or P. mandapamensis lux-rib operons (Ast
et al., 2007), and all amplicons had the same sequence
as the cloned lux-rib operons of each strain (data not
shown). We also designed universal primers that can
amplify luxA sequence in NBRC 104633T, BS1, as well as
in P. phosphoreum and P. mandapamensis. The product
of PCR amplification with the universal primers always
resulted in a single sequence of luxA in all strains used.
Cloning and analysis of seven random fragments of
NBRC 104633T luxA amplified using universal primers
also resulted in the same sequence (data not shown).
These observations and the results presented above indi-
cate that the horizontally acquired lux-rib genes com-
pletely replaced the vertically inherited luminescence
genes in NBRC 104633T. Whether this acquisition pre-
ceded, coincided with or followed loss of the vertically
inherited genes is unknown.

In order to better understand the loss of the vertically
inherited lux-rib operon from the NBRC 104633T, we
attempted to amplify sequences flanking the lux-rib
operon of BS1 using the NBRC 104633T genomic DNA as
a template. Only sequences located adjacent to ribA were
amplified, but no sequences from the luxC side of the BS1
lux-rib operon were amplified (data not shown). Therefore,
the mechanism under which the vertically inherited lux-rib
operon of the NBRC 104633T was lost remains unknown.
In this regard, however, gene replacement by homo-
logues horizontally acquired from a distantly related
species can reduce fitness of the recipient (Lind et al.,
2010), so loss of the vertically inherited lux genes might
have preceded their horizontal acquisition. Furthermore,
there are several instances of strains lacking lux genes in
otherwise luminous species of Vibrionaceae (Kaeding
et al., 2007; O’Grady and Wimpee, 2008; Wollenberg
et al., 2012). Therefore, it is possible that along with
NBRC 104633T, both non-luminous strains of P. aquimaris
lacking the lux genes and luminous strains of this species
that carry the vertically inherited lux genes exist. Regard-
less of those issues, we note that here as well as in
previously described instances (Urbanczyk et al., 2008),
the horizontal acquisition of the lux genes has expanded
the pan-genome of P. aquimaris but has not led to phylo-
genetic divergence of this species.

Conclusion

The results presented here provide the first observation of
a complete replacement of vertically inherited lumines-

cence genes by horizontally acquired homologues. Differ-
ent strains of P. aquimaris contain homologues of the
lux-rib genes that have a different evolutionary history.
Strain BS1 contains the vertically inherited lux-rib operon,
which presumably arose in the ancestor of this species,
whereas the type strain NBRC 104633T lacks the verti-
cally inherited lux-rib operon and instead carries a com-
plete and functional lux-rib operon acquired horizontally
from a bacterium related to P. mandapamensis.
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Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Relationship between luminous Vibrionaceae based
on housekeeping genes (left tree) and luxCDABFEG-
ribEBHA genes sequences (right tree). The housekeeping
tree was repeated from the Fig. 1 for reference. For the
lux-rib sequences analysis, only protein coding sequences
were used. Sequence data were analysed in PAUP* (Swof-
ford, 2003) using the parsimony criterion. Treated as missing
data were: luxF, absent in P. leiognathi and A. fischeri; ribE,
absent in P. phosphoreum; and ribEBHA, absent in A. fis-
cheri. The lux-rib sequence alignment had a total of 9453
characters, of which 2539 were phylogenetically informative.
The analysis resulted in a single, most parsimonious tree,
and analyses based on the individual genes gave the same
phylogenetic placement. The trees were visualized using
FigTree v. 1.3.1. Analyses of the housekeeping genes were
also carried out using neighbour-joining and maximum-
likelihood algorithms, as done by Yoshizawa and colleagues
(2009), and the results were congruent with the parsimony
analysis (data not shown). GenBank accession numbers for
the sequences used in both analyses can be found in
Table S1.
Table S1. GenBank accession numbers for sequences used
in phylogenetic analyses. For A. fischeri ES114 gene locus
tags from whole genome sequencing project (CP000020)
were used.
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