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Atovaquone is an important second-line therapeutic and 
prophylactic agent for Pnezrmocystis currnir pneumonia although it was 
originally developed as an antimalarial [ 133. For malaria, atovaquone 
is now only used in combination with proguanil, another antimalarial. 
This combination (Malaronew) is used because atovaquone 
monotherapy leads to resistance [ 101. 

Atovaquone is structurally similar to ubiquinone (CoQ) (Fig. 1). 
UHDBT and stigmatellin (Fig. 1) are other CoQ analogs that have been 
well studied in experimental systems [2, 31. Both UHDBT and 
stigmatellin are known to inhibit electron transport by binding to the Qo 
site of the cytochrome bcl complex. Atovaquone probably acts at the 
same site, since it has also been shown to inhibit electron transport in 
both malaria and P. currnii [4, 61. This mechanism could also explain 
the rapid emergence of resistance to monotherapy; mutations could 
arise easily in cytochrome b, since it is encoded in the mitochondria1 
genome where the spontaneous mutation rate is lox higher than in 
nucleus [ I ] .  

Fig. I Structures of ubiquinone and its analogs 

In experimental systems, resistance to UHDBT and stigmatellin 
has been shown to arise by mutations leading to changes in amino acids 
in cytochrome b that line the Qo site [2, 31. In 1998, we found 
mutations in the P. curinri cytochrome b Qo site in isolates from 
patients exposed to atovaquone f 161. Subsequently, mutations in the 
cytochrome b Qo site were found to be associated with atovaquone 
resistance in laboratory strains of plasmodium and toxoplasmosa [8, 1 I ,  
14, 151. We recently demonstrated a significant association between 
mutations in the P. curlnil cytochrome b Qo site and exposure to 
atovaquone in a retrospective cohort study suggesting that these 
mutations confer clinical resistance [7]. The mutation sites found in 
this and the previous study are shown in Figure 2. 

Our goal now was to  determine the location of these mutated 
amino acids in relation to the probable binding site of atovaquone. 
Since the P. currnir cytochrome bc, complex has not been crystallized, 
we used the yeast and chicken bc, complexes, whose 3-dimensional 
structures are known (PDB ID codes 2BCC and IEZV) as models [5, 
171. 
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Fig 2 Mutations found in the P carinii cytochrome b QO site [7, 161 

We first used a molecular mechanics energy minimization 
gram, MacSpartan Pro, to obtain the lowest energy conformation of 
vaquone (Fig 3) 
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Fig. 3. Conformational energy profile for atovaquone. 

Model-building based on the stigmatellin complexes suggests that 
atovaquone could bind to the bc, complex in either o f  two similar 
orientations. The correct binding mode will probably be unknown until 
co-crystals are obtained; however both orientations fit in the same 
cavity (data not shown). The interactions between atovaquone and the 
cytochrome bc, complex are shown for the yeast (Fig. 4) and chicken 
(Fig. 5) complexes in models made using Molscript [9] and Raster3D 
[ 121. Amino acids which are homologous to the mutated amino acids 
are shown with bonds that are yellow (for P. curmir) and green (for 
Toxoplusmu and Plasmodium). Amino acids in the yeast complex 
which are homologous to 5 of the P. currnii mutations (1147, T148, 
L150, Sl52, L275) in close proximity to atovaquone, while 2 (TI27 
and P266) are not. These latter mutations may affect atovaquone 
binding indirectly. For comparison, amino acids which are mutated in 
toxoplasma (MI39 and 1269) and plasmodium (1269, F278, Y279, 
L282, and R283) are also shown as is the iron-sulfa protein (purple) 
and the active site histidine (H181). This pattern is the same for the 
chicken structure (Fig. 5). 
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Fig.4. Interaction of atovaquone with yeast cytochrome bct complex 

Fig.5. Interaction of atovaquone with the avian cytochrome bc, complex. 

We have also begun studying the effects of atovaquone on the 
yeast and bovine cytochrome bc, complexes. As is shown in Figure 6, 
atovaquone is a competitive inhibitor. At a concentration of 0.1 pM, 
which inhibits the yeast enzyme approximately SO%, atovaquone 
increases the apparent K, for ubiquinol and has no effect on V,,,. In 
titration experiments. atovaquone causes 50% inhibition of the yeast 
enzyme at 90 nM and of the bovine enzyme at 170 nM. Thus, 
atovaquone appears to be selective for the yeast enzyme compared to 
the bovine enzyme. Of interest, yeast, P. carmu, Toxop/asma and 
Plasmodium (“sensitive”) cytochrome b’s have aromatic residues at 
position 278, while the bovine, chicken and human cytochrome b’s do 
not. In Plasmodium, resistance develops when this aromatic amino 
acid is changed to isoleucine. These data suggest that a pi-pi 
interaction between this residue and atovaquone might promote 
binding. 
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Fig. 6. Lineweaver-Burke plot showing competitive inhibition of the yeast 
cytochrome bcl complex by atovaquone (ATV). 

Further studies on the interaction between atovaquone and 
cytochrome bc, may lead to a better understanding of the mechanism of 
resistance and aid in the development of new chemotherapeutic agents. 
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