
Econometrica, Vol. 80, No. 5 (September, 2012), 2231–2267

IMPROVING THE NUMERICAL PERFORMANCE OF STATIC AND
DYNAMIC AGGREGATE DISCRETE CHOICE RANDOM

COEFFICIENTS DEMAND ESTIMATION

BY JEAN-PIERRE DUBÉ, JEREMY T. FOX, AND CHE-LIN SU1

The widely used estimator of Berry, Levinsohn, and Pakes (1995) produces esti-
mates of consumer preferences from a discrete-choice demand model with random
coefficients, market-level demand shocks, and endogenous prices. We derive numeri-
cal theory results characterizing the properties of the nested fixed point algorithm used
to evaluate the objective function of BLP’s estimator. We discuss problems with typical
implementations, including cases that can lead to incorrect parameter estimates. As a
solution, we recast estimation as a mathematical program with equilibrium constraints,
which can be faster and which avoids the numerical issues associated with nested inner
loops. The advantages are even more pronounced for forward-looking demand models
where the Bellman equation must also be solved repeatedly. Several Monte Carlo and
real-data experiments support our numerical concerns about the nested fixed point ap-
proach and the advantages of constrained optimization. For static BLP, the constrained
optimization approach can be as much as ten to forty times faster for large-dimensional
problems with many markets.

KEYWORDS: Random coefficients logit demand, constrained optimization, numeri-
cal methods, dynamics.

1. INTRODUCTION

DISCRETE-CHOICE DEMAND MODELS have become popular in the demand es-
timation literature due to their ability to accommodate rich substitution pat-
terns between a large array of products. Berry, Levinsohn, and Pakes (1995;
hereafter BLP) made an important contribution to this literature by accommo-
dating controls for the endogeneity of product characteristics (namely, prices)
without sacrificing the flexibility of these substitution patterns. Their method-
ological contribution comprises a statistical, generalized method-of-moments
(GMM) estimator and a numerical algorithm for implementing this estimator.
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As in Berry (1994), the evaluation of the GMM objective function requires
inverting the nonlinear system of market share equations. BLP and Berry sug-
gested nesting this inversion step directly into the parameter search. BLP pro-
posed a contraction mapping to solve this system of equations. Their estima-
tion algorithm consists of an outer-loop optimization over the structural pa-
rameters and a nested inner-loop call to the contraction mapping each time
the GMM objective function is evaluated. We refer to this approach as the
nested fixed point, or NFP, approach.2 Following the publication of Nevo’s
(2000) “A Practitioner’s Guide” to implementing BLP, numerous studies have
emerged using BLP’s algorithm for estimating discrete-choice demand systems
with random coefficients.

Our first objective consists of exploring the numerical properties of BLP’s
nested contraction mapping algorithm. Each time the GMM objective func-
tion is evaluated, the predicted market share equation may be called hundreds
or thousands of times before the contraction mapping converges. Therefore, it
may be tempting to use a less stringent stopping criterion for the contraction
mapping to speed up the estimation procedure. We derive theoretical results
to show the adverse effects of a less stringent stopping criterion for the inner-
loop on the outer-loop parameter estimates. The inner-loop error propagates
into the outer-loop GMM objective function and its derivatives, which may
cause an optimization routine to fail to converge. To induce the convergence of
an optimization routine, the researcher may then loosen the outer-loop stop-
ping criterion. Consequently, even when an optimization run converges, it may
falsely stop at a point that is not a local minimum.

Our second objective consists of a new computational algorithm for imple-
menting the BLP estimator. Following Su and Judd (2012), we recast the op-
timization of BLP’s GMM objective function as a mathematical program with
equilibrium constraints (MPEC). The MPEC algorithm minimizes the GMM
objective function subject to the market share equations as constraints. The
smoothness of the GMM objective function and the constraints ensure that
our formulation gives a standard constrained optimization problem. From a
statistical perspective, the MPEC algorithm generates the same estimator as
the correctly implemented NFP approach. Therefore, the theoretical results on
consistency and statistical inference in Berry, Linton, and Pakes (2004) apply
to both NFP and MPEC. Our focus is on the numerical accuracy and relative
speed of the two algorithms.

We prefer the MPEC algorithm over NFP for a couple of reasons. First,
there is no nested inner loop and, hence, no numerical error from the inner-
loop propagated into the objective function. This aspect eliminates the incen-
tive for adjusting the outer-loop stopping criterion and avoids convergence to a

2We borrow the term “nested fixed point” from Rust (1987), on the estimation of dynamic
programming models.
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point that is not a local minimum.3 Second, by eliminating the nested calls to a
contraction mapping, the procedure can be faster. The potential speed advan-
tage and capability of MPEC are enhanced further if the exact first-order and
second-order derivatives are provided to the optimizer. MPEC’s speed advan-
tages can become even more pronounced for very large-dimensional problems
with many markets because the constraint Jacobian and the Hessian of the
Lagrangian are sparse. However, the speed advantage of MPEC will diminish
for large-dimensional problems with very few markets and a large number of
products because the Jacobian and Hessian are dense.

To illustrate the potential numerical issues with NFP when it is implemented
poorly, we conduct an experiment with one simulated data set and one pseudo-
real data set. We document cases where a loose tolerance for the contraction
mapping in the NFP approach leads to incorrect parameter estimates and the
failure of an optimization routine to report convergence. We observe this prob-
lem with optimization routines using closed-form and numerical derivatives.
The errors in the estimated own-price elasticities are found to be large in both
pseudo-real field data and simulated data. In the example with pseudo-real
data, we show that the parameter estimates are always around the same in-
correct point—a point that is not even a local minimum. In this case, using
multiple starting points may not be able to diagnose the presence of errors in
the parameter estimates. We also use this example to show that an alternative
Nelder–Meade or simplex algorithm usually converges to the wrong solution.

In a second set of sampling experiments, we explore the relative perfor-
mance of the correctly implemented NFP approach and MPEC. We calculate
a lower bound on the Lipschitz constant of the contraction mapping that de-
pends on the data and the parameter values from the demand model. A re-
searcher would not be able to compute the Lipschitz constant for a given data
set in practice because it depends on the model parameters. However, we can
use the Lipschitz constant to guide us in the construction of Monte Carlo ex-
periments for which MPEC becomes several times faster than NFP when we
generate the data in ways that increase the Lipschitz constant. As expected,
MPEC’s speed is relatively invariant to the Lipschitz constant because a con-
traction mapping is not used. When MPEC and NFP are implemented cor-
rectly with analytic gradients and Hessians as well as their respective sparsity
structures, we find that MPEC tends to be faster than NFP. As we increase
the number of products, markets, and/or simulation draws, the relative speed
of MPEC is enhanced to as much as ten to forty times faster than NFP. How-
ever, MPEC does not retain this speed advantage for large-dimensional, dense
problems with many products and very few markets.

The theoretical results we derive can be generalized to some dynamic ver-
sions of the BLP model, where the numerical problems associated with NFP

3Petrin and Train (2010) used a control function to avoid the inner loop. Unlike MPEC, their
estimator has different statistical properties than the original BLP GMM estimator.
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will be magnified. Consider the recent empirical literature on durable and
semidurable goods markets, where forward-looking consumers can alter the
timing of their purchase decision based on expectations about future products
and prices (Carranza (2010), Gowrisankaran and Rysman (2011), Hendel and
Nevo (2007), Melnikov (2001), Nair (2007), Schiraldi (2011)). Estimating de-
mand using the NFP algorithm now involves three numerical loops: the outer
optimization routine, the inner inversion of the market share equations, and
the inner evaluation of the consumer value function (the Bellman equations),
for each heterogeneous type of consumer.

MPEC extends naturally to the case with forward-looking consumers. We
optimize the statistical objective function and impose consumers’ Bellman
equations and market share equations as constraints. Our approach eliminates
both inner loops, thereby eliminating these two sources of numerical error
when evaluating the outer-loop objective function. We produce benchmark re-
sults that show that MPEC is faster than NFP under realistic data-generating
processes. We expect the relative performance of MPEC to improve for more
complex dynamic demand models that nest more inner loops (Lee (2010)) or
for specifications that do not have a contraction mapping for inverting the
share equation (Gowrisankaran and Rysman (2011)).

The remainder of the paper is organized as follows. We discuss BLP’s model
in Section 2 and their statistical estimator in Section 3. Section 4 provides a
theoretical analysis of the NFP algorithm. Section 5 presents our alternative
MPEC algorithm. Section 6 presents numerical examples of practices leading
to errors in the estimates of parameters. Section 7 provides Monte Carlo ev-
idence for the relative performances of the NFP and MPEC algorithms. Sec-
tion 8 discusses the extension to a dynamic analog of BLP. We conclude in
Section 9.

2. THE DEMAND MODEL

In this section, we present the standard random coefficients, discrete-choice
model of aggregate demand. Consider a set of markets, t = 1� � � � �T , each pop-
ulated by a mass Mt of consumers who each choose one of the j = 1� � � � � J
products available, or opt not to purchase. Each product j is described by its
characteristics (xj�t� ξj�t�pj�t)� The vector xj�t consists of K product attributes.
Let xt be the collection of the vectors xj�t for all J products. The scalar ξj�t is
a vertical characteristic that is observed by the consumers and firms, but is un-
observed by the researcher. ξj�t can be seen as a market- and product-specific
demand shock that is common across all consumers in the market. For each
market, we define the J-vector ξt = (ξ1�t � � � � � ξJ�t). Finally, we denote the price
of product j by pj�t and the vector of the J prices by pt .

Consumer i in market t obtains the utility from purchasing product j

ui�j�t = β0
i + x′

j�tβ
x
i −βpi pj�t + ξj�t + εi�j�t �(1)
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The utility of the outside good, the “no-purchase” option, is ui�0�t = εi�0�t . The
parameter vector βxi contains the consumer’s tastes for the K characteristics
and the parameter βpi reflects the marginal utility of income, i’s “price sensitiv-
ity.” The intercept β0

i captures the value of purchasing an inside good instead
of the outside good. Finally, εi�j�t is an additional idiosyncratic product-specific
shock. Let εi�t be the vector of all J+ 1 product-specific shocks for consumer i.

Each consumer picks the product j that gives her the highest utility. If
tastes, βi = (β0

i �β
x
i �β

p
i ) and εi�t� are independent draws from the distributions

Fβ(β;θ), characterized by the parameters θ, and Fε(ε), respectively, the mar-
ket share of product j is

sj(xt�pt� ξt;θ)=
∫

{βi�εi�t |ui�j�t≥ui�j′�t ∀j′ �=j}
dFβ(β;θ)dFε(ε)�

To simplify aggregate demand estimation, we follow the convention in the liter-
ature and assume ε is distributed Type I extreme value so that we can integrate
it out analytically,

sj(xt�pt� ξt;θ)(2)

=
∫
β

exp(β0 + x′
j�tβ

x −βppj�t + ξj�t)

1 +
J∑
k=1

exp(β0 + x′
k�tβ

x −βppk�t + ξk�t)
dFβ(β;θ)�

This assumption gives rise to the random coefficients logit model.
The empirical goal is to estimate the parameters θ characterizing the dis-

tribution of consumer random coefficients, Fβ(β;θ). For practicality, BLP as-
sumed that Fβ(β;θ) is the product ofK independent normals, with θ= (μ�σ),
the vectors of means and standard deviations for each component of theK nor-
mals.4 The integrals in (2) are typically evaluated by Monte Carlo simulation
with ns draws of β from the distribution Fβ(β;θ):

ŝj(xt�pt� ξt;θ)(3)

= 1
ns

ns∑
r=1

exp(β0�r + x′
j�tβ

x�r −βp�rpj�t + ξj�t)

1 +
J∑
k=1

exp(β0�r + x′
k�tβ

x�r −βp�rpk�t + ξk�t)
�

In principle, other numerical integration methods could be used (Judd (1998),
Chapters 7–9).

4In principle, one could proceed nonparametrically (Fox, Kim, Ryan, and Bajari (2012), Berry
and Haile (2011), Chiappori and Kommunjer (2009), Fox and Gandhi (2011)).



2236 J.-P. DUBÉ, J. T. FOX, AND C.-L. SU

3. THE BLP GMM ESTIMATOR

We now briefly discuss the GMM estimator used to estimate the vector of
structural parameters, θ� To the extent that firms observe the demand shocks,
ξt , and condition on them when they set their prices, the resulting correlation
between pt and ξt introduces endogeneity bias into the estimates of θ.

BLP addressed the endogeneity of prices with a vector of instrumental
variables, zj�t , that are excluded from the demand equation. They proposed
a GMM estimator based on the conditional moment condition E[ξj�t | zj�t�
xj�t] = 0. The instruments zj�t can be product-specific cost shifters, although
frequently other instruments are used because of data availability. Usually the
K non-price characteristics in xj�t are also assumed to be mean independent of
ξj�t and hence to be valid instruments. Computationally, the researcher often
implements the moments as E[ξj�t · h(zj�t� xj�t)] = 0 for some known, vector-
valued function h that gives C moment conditions.

To form the empirical analog of E[ξj�t · h(zj�t� xj�t)], the researcher needs to
find the implied values of the demand shocks, ξj�t� corresponding to a guess
for θ. Let Sj�t be the observed market share of product j in market t. Denote
St = (Sj�t)Jj=1. The system of market shares defines a mapping between the vec-
tor of demand shocks and the observed market shares: St = s(xt�pt� ξt;θ)� or
St = s(ξt;θ) for short. Berry (1994) proved that s has an inverse, s−1� such that,
for a given θ, any observed vector of shares can be explained by a unique vector
ξt(θ)= s−1(St;θ). Let ξ(θ)= (ξt(θ))Tt=1 denote the vector of demand shocks in
all markets. We can compute ξ(θ) using the contraction mapping proposed in
BLP. To summarize, the researcher’s data consist of {(xj�t�pj�t� Sj�t� zj�t)Jj=1}Tt=1
for J products in each of T markets.

A GMM estimator can now be constructed by using the empirical analog of
the C moment conditions,

g
(
ξ(θ)

) = 1
T

T∑
t=1

J∑
j=1

ξj�t(θ) · h(zj�t� xj�t)

= 1
T

T∑
t=1

J∑
j=1

s−1
j (St;θ) · h(zj�t� xj�t)�

For some weighting matrixW� we define the GMM estimator as the vector, θ∗�
that solves the problem

min
θ
Q

(
ξ(θ)

) = min
θ
g
(
ξ(θ)

)′
Wg

(
ξ(θ)

)
�(4)

The NFP algorithm consists of an outer-loop to minimize the GMM objec-
tive function Q(ξ(θ)) and an inner loop to evaluate this objective function at a
given θ by inverting the market share equations for ξt(θ)= s−1(St;θ).
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The statistical efficiency of the GMM estimator can be improved by using
more functions of zj�t in the vector of moments, finding more instruments, us-
ing an optimal weighting matrix in a second step, or using an efficient one-step
method such as continuously updated GMM or empirical likelihood.

4. A THEORETICAL ANALYSIS OF THE NFP ALGORITHM

In this section, we analyze the numerical properties of the NFP algorithm.
From a practical perspective, the speed of the NFP algorithm is determined
by the number of calls to evaluate the objective function and the computation
time associated with the inner loop for each function evaluation. While we
do not know a priori how many calls to the GMM objective function will be
needed, we can analyze the speed of convergence of the inner loop. We then
show how numerical error from the inner loop can propagate into the outer
loop, potentially leading to incorrect parameter estimates.

4.1. Error in the NFP Contraction Mapping

For a given θ, the inner loop of the NFP algorithm solves the share equations
St = s(ξt;θ) for the demand shocks ξ(θ) by iterating the contraction mapping

ξh+1
t = ξht + logSt − log s

(
ξht ;θ

)
� t = 1� � � � �T�(5)

until the successive iterates ξh+1
t and ξht are sufficiently close.5 Formally, one

chooses a small number, for example, 10−8 or 10−14, for εin as the inner-loop
tolerance level and requires ξh+1

t and ξht to satisfy the stopping rule∥∥ξht − ξh+1
t

∥∥ ≤ εin(6)

for the iteration h + 1 when we terminate the contracting mapping (5). Let
ξt(θ� εin) denote the first ξh+1

t such that the stopping rule (6) is satisfied. We
then use ξt(θ� εin) to approximate ξt(θ)�

The contraction mapping theorem (e.g., Dahlquist and Björck (2008)) pro-
vides a bound on the error in (5)

∥∥ξh − ξ(θ)∥∥ ≤ ∥∥ξh − ξh−1
∥∥ L(θ)

1 −L(θ) ≤ ∥∥ξ1 − ξ0
∥∥ L(θ)h

1 −L(θ)�

The Lipschitz constant,L(θ)� characterizes an upper bound involving the num-
ber of calls to the share equation.

5In our implementation of NFP, to conform with Nevo (2000) we iterate over exp(ξ). However,
depending on the magnitude of ξ, the use of the exponentiated form exp(ξ) in a contraction
mapping can lose three to five digits of accuracy in ξ, and as a result, introduce an additional
source of numerical error. For example, if |ξht | = −8 and |exp(ξht ) − exp(ξh+1

t )| = 10−10, then
|ξht − ξh+1

t | = 2�98 × 10−7.



2238 J.-P. DUBÉ, J. T. FOX, AND C.-L. SU

For the inner loop, BLP defined the Lipschitz constant as L(θ) =
maxξ∈Ξ ‖I − ∇ξ(log s(ξ;θ))‖∞,6 where

∂ log(sj(ξt;θ))
∂ξlt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ns∑
r=1

[Tj(ξt;θr)− T j(ξt;θr)2]
ns∑
r=1

Tj(ξt;θr)�
� if j = l,

−
ns∑
r=1

[Tj(ξt;θr)Tl(ξt;θr)]
ns∑
r=1

Tj(ξt;θr)
� if j �= l,

and Tj(ξt;θr)= exp(β0�r+x′
j�tβ

x�r−βp�rpj�t+ξj�t )
1+∑J

k=1 exp(β0�r+x′
k�t
βx�r−βp�rpk�t+ξk�t )

� BLP proved thatL(θ) < 1. The

Lipschitz constant is related to the matrix of own and cross demand elasticities
with respect to the demand shocks, ξ. In Section 7, we use the Lipschitz con-
stant to distinguish between simulated datasets where we expect the contrac-
tion mapping to perform relatively slowly and rapidly.

4.2. Ensuring Convergence for the Outer Loop in NFP

In this subsection, we show how inner-loop numerical error propagates into
the GMM objective function and its gradient, and characterize the correspond-
ing numerical inaccuracy.

For a given θ, we denote by ξ(θ�0) and ξ(θ� εin) the true demand shocks
and the approximated demand shocks with an inner-loop tolerance εin, respec-
tively. Let Q(ξ(θ� εin)) be the GMM objective function with the inner-loop
tolerance εin. For εin = 0, we use the compact notation Q(ξ(θ)) = Q(ξ(θ�0)).

The following lemma states that the biases in evaluating the GMM objective
function and its gradient at a vector of structural parameters are of the same
order as the inner-loop tolerance, adjusted by the Lipschitz constant for the
inner-loop contraction mapping.

LEMMA 1: Let L(θ) be the Lipschitz constant for the inner-loop contraction
mapping at structural parameters θ. Given an inner-loop tolerance εin,

(i) |Q(ξ(θ� εin))−Q(ξ(θ�0))| =O( L(θ)

1−L(θ)εin),
(ii) ‖∇θQ(ξ(θ))|ξ=ξ(θ�εin) − ∇θQ(ξ(θ))|ξ=ξ(θ�0)‖ =O( L(θ)

1−L(θ)εin),
assuming both ‖ ∂Q(ξ(θ))

∂ξ
|ξ=ξ(θ�0)‖ and ‖ ∂∇θQ(ξ(θ))

∂ξ
|ξ=ξ(θ�0)‖ are bounded.

6The matrix norm ‖ · ‖∞ is used in BLP (1995).
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The proof is in Appendix A.
Given the inner-loop tolerance, εin� and the corresponding inner-loop er-

ror, an optimization solver is searching for a vector of structural param-
eters θ̂(εin) such that ∇θQ(ξ(θ))|ξ=ξ(θ̂(εin)�εin)

= 0. The notation θ̂(εin) indi-
cates its dependence on the inner-loop tolerance εin. In practice, conver-
gence is achieved when the norm of the gradient, ‖∇θQ(ξ(θ))|ξ=ξ(θ̃�εin)

‖, at
some parameters θ̃ is smaller than a predetermined outer-loop tolerance, εout:
‖∇θQ(ξ(θ))|ξ=ξ(θ̃�εin)

‖ ≤ εout. The next theorem gives a bound on the gradient
of the GMM objective function at θ̃ in the neighborhood of θ̂(εin).

THEOREM 2: Given the inner-loop tolerance εin, let θ̂(εin) be a vector of struc-
tural parameters such that ∇θQ(ξ(θ))|ξ=ξ(θ̂(εin)�εin)

= 0. For any θ̃ near θ̂(εin),∥∥∇θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̃�εin)

∥∥
≤O

((
L(θ̂(εin))

1 −L(θ̂(εin))
+ L(θ̃)

1 −L(θ̃)
)
εin + ∥∥θ̃− θ̂(εin)

∥∥)
�

assuming ‖∇2
θQ(ξ(θ))|ξ=ξ(θ̂(εin)�0)‖ is bounded.

The proof is in Appendix A. Theorem 2 indicates that, for the outer-loop
GMM minimization to report convergence around θ̂(εin), the outer-loop tol-
erance εout should be chosen to be of the same order as εin.

Researchers often use numerical gradients, which introduce an additional
source of bias. We can use Lemma 9.1 in Nocedal and Wright (2006) to charac-
terize the bound on the error of the gradient when the optimizer uses a central
difference derivative ∇dQ(ξ(θ� εin)) with difference interval d:∥∥∇dQ

(
ξ(θ� εin)

) − ∇θQ
(
ξ(θ)

)∥∥
∞(7)

≤O(
d2

) + 1
d

sup
θ̃:‖θ̃−θ‖≤d

∣∣Q(
ξ(θ̃� εin)

) −Q(
ξ(θ̃�0)

)∣∣�
The O(d2) term represents the error from a finite difference approximation.
The second “noise” term arises from the numerical error in the objective func-
tion for a given εin. It is ambiguous whether reducing the difference interval,
d, reduces the numerical error in the gradient. However, Nocedal and Wright
noted that “if the noise term dominates the difference interval � � � it will only
be pure luck if [−∇dQ(ξ(θ� εin))] turns out to be a direction of descent for
[Q]�” It also follows from Theorem 2 that if the bound on the error in the gra-
dient is large, one may need to choose a larger outer-loop tolerance, εout� to
induce the solver to report convergence. We illustrate these points in our first
empirical example in Section 6. We show that the combination of a loose in-
ner loop, numerical derivatives, and a loose outer-loop tolerance (to ensure
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convergence) produces estimates that are not a local optimum of the objective
function. Given that closed-form derivatives can be constructed for static BLP,
we recommend that users avoid numerical derivatives.

In practice, we have found cases where the BLP algorithm was implemented
with loose inner-loop tolerances, εin, to speed up the convergence of the con-
traction mapping.7 The resulting imprecision in the gradient could prevent
the optimization routine from detecting a local minimum and converging. In
turn, the researcher may need to use a loose outer-loop tolerance, such as
εout = 10−2, to ensure the convergence of the outer-loop optimization. Raising
εout reduces precision in the estimates and, worse, could generate an estimate
that is not a local minimum. In our Monte Carlo experiments below, we illus-
trate how a loose stopping criterion for the outer loop can cause the optimiza-
tion routine to terminate early or produce incorrect point estimates that do not
satisfy the first-order conditions for a local minimizer.

The default value for εout in most optimization solvers is 10−6. Since we do
not know the exact magnitude on the bound of the gradient, we choose εin =
10−14 in our implementation. This is a conservative choice of tolerance that will
ensure that convergence in the outer-loop optimization problem is reliable and
robust.

4.3. Bias in Parameter Estimates From the Inner-Loop Numerical Error

In this section, we discuss the small-sample biases associated with inner-loop
numerical error. Let θ∗ = arg minθ{Q(ξ(θ�0))} be the minimizer of the finite-
sample objective function without the inner-loop error. We study the bound on
the bias in the estimates, θ̂(εin)− θ∗, from using an inner-loop tolerance εin.

THEOREM 3: Assuming ‖ ∂Q(ξ(θ))
∂ξ

|ξ=ξ(θ̂(εin)�0)‖ is bounded, the following inequal-
ity holds:

O
(∥∥θ̂(εin)− θ∗∥∥2) ≤ ∣∣Q(

ξ
(
θ̂(εin)� εin

)) −Q(
ξ
(
θ∗�0

))∣∣
+O

(
L(θ̂(εin))

1 −L(θ̂(εin))
εin

)
�

7Some researchers have customized an adaptive version of the inner-loop tolerance. The
procedure consists of using a loose inner-loop tolerance when the parameter estimates appear
“far” from the solution, and switching to a tighter inner-loop tolerance when the parameter
estimates are “close” to the solution. The switch between the loose and tight inner-loop toler-
ances is usually based on the difference between the successive parameter iterates: for exam-
ple, if ‖θk+1 − θk‖ ≤ 0�01, then εin = 10−8; otherwise, εin = 10−6. Suppose that the following se-
quence of iterates occurs: ‖θk+1 − θk‖ ≥ 0�01 (εin = 10−6), ‖θk+2 − θk+1‖ ≤ 0�01 (εin = 10−8), and
‖θk+2 −θk+1‖ ≥ 0�01 (εin = 10−6). The NFP objective value can oscillate because of the use of two
different inner-loop tolerances. This oscillation can prevent the NFP approach from converging.
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The proof is in Appendix A. The first term on the right-hand side of the
inequality is the bias in the GMM function evaluated at the finite-sample true
and estimated parameter values. The second term arises from ξ(θ̂(εin)� εin)−
ξ(θ̂(εin)�0), the bias in the demand shocks with and without inner-loop error.

The bound in Theorem 3 is not always sharp. Ackerberg, Geweke, and Hahn
(2009, Theorem 2) studied the case where the approximated objective function
is differentiable in parameters that are similar to the inner-loop tolerance, εin,
and found a tighter bound. However, in the NFP context, the approximated
GMM objective function, Q(ξ(θ� εin)), is not differentiable with respect to the
inner-loop tolerance εin because a continuous change in εin can cause a dis-
crete change in the approximate demand shocks ξ(θ� εin) and hence the GMM
objective function Q(ξ(θ�εin)). Furthermore, we conjecture that, for a fixed
εin > 0, ξ(θ� εin) and Q(ξ(θ�εin)) are not differentiable with respect to θ. In
our proof for Theorem 3, we take this nondifferentiability into account and
obtain a square-root upper bound.

The numerical error from the inner loop persists even in large samples. In-
creasing the sample size T → ∞ will not cause θ̂(εin)→ θ∗

0, where θ∗
0 is the

true parameter in the data-generating process.

5. MPEC: A CONSTRAINED OPTIMIZATION APPROACH

In this section, we propose an alternative algorithm to compute the GMM
estimator based on Su and Judd’s (2012) constrained optimization approach,
MPEC. Su and Judd used this approach to estimate single-agent dynamic dis-
crete models. We use this same insight to solve for the fixed point associated
with the inversion of market shares.

Let W be the GMM weighting matrix. Our constrained optimization formu-
lation is

min
θ�ξ
g(ξ)′Wg(ξ)(8)

subject to s(ξ;θ)= S�
The moment condition term is g(ξ)= 1

T

∑T

t=1

∑J

j=1 ξj�t ·h(zj�t� xj�t). The market
share equations are imposed as nonlinear constraints to the optimization prob-
lem. The objective function is a quadratic function of the demand shocks ξ. We
optimize over both the demand shocks ξ and the structural parameters θ.

Su and Judd (2012) showed that the MPEC and NFP algorithms compute
the same statistical estimator. Hence, any statistical property of the original
BLP estimator applies to the estimator when computed via MPEC. The follow-
ing proposition further indicates that the first-order conditions of the GMM
problem (4) and the MPEC (8) are equivalent.

PROPOSITION 4: Let ξ∗ = ξ(θ∗) be the corresponding demand shock at given
structural parameters θ∗. The vector (θ∗� ξ∗) satisfies the first-order conditions to
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the MPEC (8) if and only if θ∗ satisfies the first-order conditions of the GMM
problem (4).

The proof appears in Appendix A.
The MPEC defined by (8) can be solved using a modern nonlinear opti-

mization package. There are two main advantages of MPEC relative to NFP.
First, there is no inner-loop error that propagates into the objective function.
For MPEC, the error in the estimates is of the same order as the optimality and
feasibility tolerances (see Robinson (1974), Theorem 2.2).8 Researchers do not
need to adjust the default settings on feasibility and optimality tolerances to in-
duce the solver to report convergence. In contrast, NFP requires a customized
nested fixed point calculation, including the choice of tolerance, which could
result in potential errors. As we showed previously, loosening the inner-loop
to speed computation could require loosening the outer-loop to ensure that
convergence is reported by the solver. Second, MPEC may be faster than NFP.
One source of speed improvement comes from the fact that MPEC allows con-
straints to be violated during optimization. Modern optimization solvers do
not enforce that the constraints are satisfied at every iteration. The constraints
only need to hold at a solution. This feature allows MPEC to avoid wasting
computational time on iterates far away from the true parameters. In contrast,
the NFP algorithm requires solving the share equation (3) exactly for every
θ examined in the optimization outer-loop. Consequently, the share equation
needs to be evaluated hundreds or thousands of times at each θ examined.

One potential criticism of the MPEC approach is that it embodies a much
larger-dimensional optimization problem, which could offset the speed benefit
mentioned above. This concern can be addressed by exploiting the sparsity
structure of the Jacobian of the market share equations: the demand shocks for
market t do not enter the constraints for other markets t ′ �= t. We can exploit
sparsity even further by treating the moments as additional parameters and
reformulating the problem in (8) as

min
θ�ξ�η

η′W η(9)

subject to g(ξ)= η�
s(ξ;θ)= S�

It is easy to see that the two formulations, (8) and (9), are equivalent. The
additional constraint g(ξ)−η= 0 is linear and, hence, does not increase com-
putational difficulty. The advantage with this alternative formulation is that, by
introducing additional variables and linear constraints, the Hessian of the La-
grangian function is sparse. In general, supplying exact first-order and second-
order derivatives to the optimizer will decrease computational time substan-
tially. In addition, the capability of MPEC will be enhanced further when the

8We thank Jorge Nocedal for pointing to us this result and the reference.
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sparsity patterns of first-order (Jacobian) and second-order (Hessian) deriva-
tives are provided to the optimizer. Exploiting the sparsity of the optimization
problem will both increase the speed of MPEC and enable MPEC to handle
larger-dimensional problems. We discuss the speed improvements associated
with sparsity and analytic Hessians and constraint Jacobians in the Supplemen-
tal Material (Dubé, Fox, and Su (2012)), where we also provide formal deriva-
tions. In our Monte Carlo experiments below, we show that increasing the sam-
ple size and, hence, the dimension of the optimization problem, does not ap-
pear to disadvantage MPEC relative to NFP, except for very large-dimensional,
dense problems with very few markets and a very large number of product al-
ternatives. The applicability of MPEC is not limited to GMM estimation. In
the Supplemental Material, we present an MPEC formulation for likelihood-
based approaches that require inverting the market share system and, hence,
have typically been estimated using NFP.

6. PARAMETER ERRORS FROM LOOSE INNER-LOOP TOLERANCES IN NFP

In this section, we provide empirical support for the numerical issues dis-
cussed in Section 4. We present examples in which parameter errors can arise
both in the context of sampling experiments and with pseudo-real field data.

6.1. Synthetic Data, Numerical Derivatives, and False Parameter Estimates

In this section, we use a single synthetic dataset to study the performance of
different implementations of NFP. Details about the data-generating process
are provided in Appendix B. For estimation, we use a one-step GMM esti-
mator with the weighting matrixW = (Z′Z)−1, where Z is the matrix of instru-
ments. Our NFP code is written in the MATLAB programming environment. We
use the TOMLAB interface to call the KNITRO optimization package (Byrd,
Hribar, and Nocedal (1999), Byrd, Nocedal, and Waltz (2006)) in MATLAB.9

We compare three implementations of the NFP algorithm, each initialized
with the same starting values. In the first scenario, “loose inner,” we use a tight
outer-loop tolerance, εout = 10−6� and a loose inner-loop tolerance, εin = 10−4.
In the second scenario, “loose both,” we use a loose outer-loop tolerance,
εout = 10−2� and a loose inner-loop tolerance, εin = 10−4� We think of this sce-
nario as representing the attempt of the researcher to loosen the outer-loop to
promote convergence. In practice, the converged point may not actually satisfy
the first-order conditions. In the third scenario, “tight both,” we implement
best practice settings for the NFP algorithm with εin = 10−14 and εout = 10−6.
We construct 100 independent starting values for the nonlinear model parame-
ters SD[βi] by drawing them from a uniform distribution U(0�7). We run each

9We found that MATLAB’s included solvers, fminunc and fmincon, often fail to converge to a
local minimum.
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TABLE I

THREE NFP IMPLEMENTATIONS: VARYING STARTING VALUES FOR ONE SYNTHETIC DATA SET,
WITH NUMERICAL DERIVATIVESa

NFP NFP NFP
Loose Inner Loose Both Tight Truth

Fraction convergence 0�0 0�54 0�95
Frac. < 1% > “global” min. 0�0 0�0 1�00
Mean own-price elasticity −7�24 −7�49 −5�77 −5�68
Std. dev. own-price elasticity 5�48 5�55 ∼0
Lowest objective 0�0176 0�0198 0�0169

aWe use 100 starting values for one synthetic data set. The NFP loose inner-loop implementation has εin = 10−4

and εout = 10−6. The NFP loose-both implementation has εin = 10−4 and εout = 10−2. The NFP-tight implementa-
tion has εin = 10−14 and εout = 10−6. We use numerical derivatives using KNITRO’s built-in procedures.

of the three NFP implementations with these starting values, using numerical
derivatives in the outer-loop optimization.

We report the results in Table I. The first row reports the fraction of runs
for which the routine reports convergence. Supporting Theorem 2, we find in
column one that the optimization routine will never report convergence if the
inner-loop tolerance is loose, εin = 10−4� even when the outer-loop tolerance
has the default tight tolerance of εout = 10−6. In contrast, column two indicates
that the algorithm is more likely to converge (54% of the runs) when we also
loosen the tolerance on the outer-loop. Below, we will show that convergence
in this case is misleading; the estimates are far from the truth. Finally, NFP
with tight tolerances converges in 95% of the runs.

To diagnose the quality of the estimates, the second row of Table I shows the
fraction of runs where the reported GMM objective function value was within
1% of the lowest objective function that we found across all three NFP imple-
mentations and all 100 starting values for each case. In the first two columns,
corresponding to the scenario with a loose inner loop and the scenario with a
loose inner loop and a loose outer loop, respectively, none of the 100 starting
values produced the lowest objective value. In contrast, NFP tight found the
lowest objective value in each of the 100 runs.

The third and fourth rows of Table I report the estimated mean and standard
deviation of the own-price elasticities across products, observations, and start-
ing values to show how naive implementations could produce misleading eco-
nomic predictions. The final column of row three reports the own-price elas-
ticity of demand evaluated at the true parameter values: −5�68. As expected,
NFP with a tight tolerance produces an estimate near the truth, −5�77, but our
two loose implementations do not. The mean of the NFP loose-inner imple-
mentation is −7�24, higher in absolute value than the true value of −5�68. The
loose-both mean is −7�49. The standard deviations of own-price elasticities
for the loose inner-loop tolerances are huge: 5.48 and 5.55. The loose imple-
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mentations often fail to converge to a local optimum and produce unreliable
estimates that are very sensitive to starting values. We do not observe these
problems with tight tolerances.

6.2. Parameter Errors With Nevo’s Data and Closed-Form Derivatives

In this section, we apply the three implementations of NFP from the last
section to the pseudo-real cereal dataset from Nevo (2000). For this example,
we use closed-form derivatives, which should improve the performance of all
three NFP implementations. For each of the three implementations (loose in-
ner, loose both, and tight both), we use the same set of 50 starting values.10

We report the results in Table II. In row one, we find that none of the loose-
inner starting values converge. In the second column, we find that loosening
the outer-loop increases the convergence rate to 76% of the starting values. All
of the starting values converge for NFP tight. The second row shows that all of
the NFP-tight starting values also find the same local minimum with objective
value 0.00202. In contrast, neither the loose-inner nor loose-both implemen-
tations of NFP find this solution, terminating at points with higher objective
value (especially the loose-both implementation). We inspected results from
all 50 runs and found that only one of the 50 runs using the loose inner loop
was anywhere near the best solution for NFP tight.

The loose-inner and loose-both implementations find a mean own-price
elasticity of −3�82 and −3�69, respectively. These are about half the value of

TABLE II

THREE NFP IMPLEMENTATIONS: VARYING STARTING VALUES FOR NEVO’S CEREAL DATA SET,
WITH CLOSED-FORM DERIVATIVESa

NFP NFP NFP NFP Tight
Loose Inner Loose Both Tight Both Simplex

Fraction reported convergence 0�0 0�76 1�00 1�00
Frac. obj. fun. < 1% greater than “global” min. 0�0 0�0 1�00 0�0
Mean own-price elasticity across all runs −3�82 −3�69 −7�43 −3�84
Std. dev. own price elasticity across all runs 0�4 0�07 ∼0 0�35
Lowest objective function value 0�00213 0�00683 0�00202 0�00683
Elasticity for run with lowest obj. value −6�71 −3�78 −7�43 −3�76

aWe use the same 50 starting values for each implementation. The NFP loose inner-loop implementation has
εin = 10−4 and εout = 10−6. The NFP loose-both implementation has εin = 10−4 and εout = 10−2. The NFP-tight
implementation has εin = 10−14 and εout = 10−6. The Nelder–Meade or simplex method uses a tighter inner-loop
tolerance of εin = 10−14 and MATLAB’s default values for the simplex convergence criteria. We manually code closed-
form derivatives for all methods other than for Nelder–Meade, which does not use derivative information.

10We pick our starting values by taking 50 draws from the standard normal distribution. We
also experimented with multiplying the starting values by the solution reported in Nevo (2000).
The results were similar.
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−7�43 found with NFP tight. Because all 50 starting values of NFP with tight
settings converge to the same point, we see no variance in its elasticity esti-
mates. In contrast, the loose inner-loop implementations are very sensitive to
starting values, leading to standard deviations of 0.40 and 0.07.

Recent work has critiqued the robustness of BLP’s GMM estimator. Us-
ing these same data, Knittel and Metaxoglou (2008) found that many solvers
stopped at different points and that these points were often sensitive to start
values. Nevo’s (2000) “Researcher’s Guide” reported estimates that were not
a local optimum because of the use of a loose outer-loop tolerance. Using our
implementation above with a state-of-the-art solver and 50 starting points, we
found the same local minimum each run. Moreover, our local minimum coin-
cided with the point with the lowest objective function value, 0�00202� reported
by Knittel and Metaxoglou. We conclude that with multiple starting values,
careful implementation of the numerical procedures (a tight inner loop and
tight outer loop), and a state-of-the-art optimization solver, the BLP estimator
produces reliable estimates.

Other work has used non-derivative-based solvers. We use the Nelder–
Meade, or simplex algorithm, using the same 50 starting values as above and
a tight inner loop and a tight outer loop. In column four of Table II, none
of the 50 runs of the simplex algorithm finds the global minimum. Moreover,
none of these runs satisfies the first-order optimality conditions. The point esti-
mates using Nelder–Meade are systematically different (and at a higher objec-
tive function value) from the NFP tight implementation using a gradient-based
search. The elasticity estimate of −3�76 is around half of the −7�43 found with
tight NFP settings, and the elasticity’s standard deviation across the 50 starting
values is a relatively tight 0.35. See McKinnon (1998) and Wright (1996) for
discussion of the problems with the Nelder–Meade algorithm.

7. SPEED COMPARISONS OF MPEC AND NFP

In this section, we run several Monte Carlo experiments using synthetic data
to compare the speed of MPEC and NFP with a tight inner-loop tolerance.
Details about the data-generating process are provided in Appendix B. We
construct several sampling experiments that vary the mean of the intercept,
E[β0

i ]� from −2 to 4, which also varies the Lipschitz constant from 0.90 to 0.99.
The shares of the outside good range from 91% to 35%, consistent with most
empirical applications of BLP.11

We use the MPEC formulation in (9). Similarly to our NFP implementa-
tion, the MPEC estimation code is written in the MATLAB programming en-
vironment and uses the TOMLAB interface to call KNITRO. We derive and
code the closed-form first-order and second-order derivatives for both NFP

11In the original autos application in BLP (1995), the share of the outside good is around 90%
in every year of the data. In Nevo (2001), the mean outside share across markets is 52%.
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and MPEC.12 We also supply the sparsity patterns of the constraint Jacobian
and of the Hessian of the Lagrangian to the optimization routine for MPEC.13

The derivation of first-order and second-order derivatives for NFP and MPEC
and the relevant sparsity patterns are provided in the Supplemental Material.
For both NFP and MPEC, we use the default optimality tolerance 10−6 in KNI-
TRO. For MPEC, we use the default feasibility tolerance 10−6. As mentioned
above, the inner-loop tolerance for NFP is εin = 10−14. For all implementations
of NFP and MPEC, we use the interior point algorithm with algorithm op-
tion ALG = 1 in KNITRO, which is a direct decomposition of the first-order
Karush Kuhn Tucker (KKT) matrix. For detailed descriptions of algorithm op-
tions in KNITRO, see Waltz and Plantenga (2009). One could probably further
increase the speed performance of both NFP and MPEC with parallelization,
but this is beyond the scope of the current analysis.

We report our results in Table III. In all cases, the lowest objective func-
tion corresponded to a case where the algorithm reported that a locally opti-
mal solution had been found. We assess the estimates by looking at the mean
own-price elasticities. For each algorithm, we also report the total CPU time
required across all the five starting values. All numbers in Table III are means
across 20 replications, each with a new dataset.

As expected, NFP and MPEC converged in all scenarios. MPEC and NFP
almost always generated identical point estimates. We compute the root mean-
squared error (RMSE) and the bias of the own-price elasticities. In all cases,
the RMSE is low and the bias is moderate at around 0.08, in comparison with
a base elasticity of around −10�5, suggesting that the BLP estimator is capable
of recovering true demand elasticities.

Run times for NFP tight vary with the level of the Lipschitz constant. For the
lower Lipschitz case with E[β0

i ] = −2� the average run time across the 20 repli-
cations is roughly 20 minutes for NFP and for MPEC. As we increase E[β0

i ],
the run times for NFP increase, while the run times for MPEC change little.
When E[β0

i ] = 4� the highest Lipschitz case, a single run with five starting val-
ues of NFP takes, on average, 5 hours, whereas MPEC takes only 12 minutes.
MPEC is 24 times faster. Table IV provides the underlying intuition for the
source of the speed improvement. For both NFP and MPEC, we see almost
no change across the various experiments in the number of major iterations,
function evaluations, and gradient and Hessian evaluations. Furthermore, NFP
requires fewer iterations and function evaluations than MPEC.14 As indicated
in the last column in Table IV, the main reason for NFP’s time increases is

12In the Supplemental Material, we show that supplying these derivatives increases the speed
of both algorithms 3 to 10 times.

13In our examples, using sparse matrices in the analytic derivatives and providing the sparsity
patterns reduce memory use by 90%.

14The function evaluations for both algorithms consist of the objective function, gradients, and
Hessian. The function evaluations for MPEC also include the constraints.
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TABLE III

MONTE CARLO RESULTS VARYING THE LIPSCHITZ CONSTANTa

Elasticities
Intercept Lipsch. Runs CPU Time Outside
E[β0

i ] Const. Imple. Converged (min) Bias RMSE Truth Share

−2 0.891 NFP-tight 100% 21�7 −0�077 0.14 −10�4 0.91
MPEC 100% 18�3 −0�076 0.14

−1 0.928 NFP-tight 100% 28�3 −0�078 0.15 −10�5 0.86
MPEC 100% 16�3 −0�077 0.15

0 0.955 NFP-tight 100% 41�7 −0�079 0.16 −10�6 0.79
MPEC 100% 15�2 −0�079 0.16

1 0.974 NFP-tight 100% 71�7 −0�083 0.16 −10�7 0.69
MPEC 100% 11�8 −0�083 0.16

2 0.986 NFP-tight 100% 103 −0�085 0.17 −10�8 0.58
MPEC 100% 13�5 −0�085 0.17

3 0.993 NFP-tight 100% 167 −0�088 0.17 −11�0 0.46
MPEC 100% 10�7 −0�088 0.17

4 0.997 NFP-tight 100% 300 −0�091 0.16 −11�0 0.35
MPEC 100% 12�7 −0�090 0.16

aThere are 20 replications for each experiment and reported means are across these 20 replications. Each repli-
cation uses five starting values to do a better job at finding a global minimum. For each NFP starting value, we run
the inner-loop once and use this vector of demand shocks and mean taste parameters as starting values for MPEC.
The NFP-tight implementation has εin = 10−14 and εout = 10−6. There is no inner-loop in MPEC; εout = 10−6 and
εfeasible = 10−6. The same 1000 simulation draws are used to generate the data and to estimate the model. NFP and
MPEC use closed-form first- and second-order derivatives. We supply the sparsity patterns of the constraints and
derivatives to the optimization routine for both methods.

that the total number of contraction mapping iterations and, hence, the num-
ber of evaluations of market share equations, increases dramatically with the
Lipschitz constant.

We conduct several additional Monte Carlo experiments to ensure that the
relative performance of MPEC is robust to larger datasets and to more simula-
tion draws. Table V reports the results from varying the number of markets T ,
products J, and simulation draws ns. MPEC’s relative speed advantage is not
only robust to these large problems, it appears to be enhanced; MPEC is about
ten to forty times faster than NFP. For 250 markets, 25 products, and 3000
simulation draws, NFP took 80 hours or 3.3 days to complete five runs, while
MPEC took only 3 hours. The results in Table VI indicate that NFP requires
fewer major iterations and function evaluations than MPEC. However, NFP
requires hundreds of thousands of calls to the predicted market share equa-
tions. The sparsity structure is critical for these large-dimensional problems.
In the Supplemental Material, we show that MPEC can handle a problem with
T = 2000 markets and J = 15 products using only 500 MB of RAM when spar-
sity information is supplied. The program runs out of memory on a computer
with 12 GB of RAM when sparsity information is not supplied.
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TABLE IV

ADDITIONAL RESULTS FOR VARYING THE LIPSCHITZ CONSTANT

Intercept Major Function Gradient/Hessian Contraction
E[β0

i ] Imple. Iterations Evaluations Evaluations Iterations

−2 NFP-tight 57 80 58 10,400
MPEC 125 184 126

−1 NFP-tight 59 82 60 17,100
MPEC 143 274 144

0 NFP-tight 55 77 56 29,200
MPEC 112 195 113

1 NFP-tight 53 71 54 55,500
MPEC 93 148 94

2 NFP-tight 49 68 50 84,000
MPEC 106 188 107

3 NFP-tight 48 68 49 146,000
MPEC 84 144 85

4 NFP-tight 49 81 50 262,000
MPEC 99 158 100

TABLE V

MONTE CARLO RESULTS VARYING THE NUMBER OF MARKETS, PRODUCTS, AND SIMULATION
DRAWSa

# Markets # Products # Draws Lipsch. Runs CPU Time Outside
T J ns Const. Imple. Converged (hours) Share

100 25 1000 0.999 NFP-tight 80% 10�9 0.45
MPEC 100% 0�3

250 25 1000 0.997 NFP-tight 100% 22�3 0.71
MPEC 100% 1�2

500 25 1000 0.998 NFP-tight 80% 65�6 0.65
MPEC 100% 2�5

100 25 3000 0.999 NFP-tight 80% 42�3 0.46
MPEC 100% 1

250 25 3000 0.997 NFP-tight 100% 80 0.71
MPEC 100% 3

25 100 1000 0.993 NFP-tight 100% 5�7 0.28
MPEC 100% 0�5

25 250 1000 0.999 NFP-tight 100% 28�4 0.07
MPEC 100% 2�3

aThere is one data set and five starting values for each experiment. The mean intercept is 2. MPEC and NFP
produce the same lowest objective value. See the footnote to Table III for other details.
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TABLE VI

ADDITIONAL RESULTS FOR VARYING THE NUMBER OF MARKETS, PRODUCTS, AND
SIMULATION DRAWS

# Markets # Products # Draws Major Function Gradient/Hessian Contraction
T J ns Imple. Iterations Evaluations Evaluations Iterations

100 25 1000 NFP-tight 68 130 69 372,248
MPEC 84 98 85

250 25 1000 NFP-tight 58 82 59 246,000
MPEC 118 172 119

500 25 1000 NFP tight 52 99 53 280,980
MPEC 123 195 124

100 25 3000 NFP-tight 60 171 61 479,578
MPEC 83 114 84

250 25 3000 NFP-tight 55 68 56 204,000
MPEC 102 135 103

25 100 1000 NFP-tight 54 71 55 198,114
MPEC 97 145 98

25 250 1000 NFP-tight 60 126 61 359,741
MPEC 75 103 76

We run a final set of Monte Carlo experiments to assess the limits of MPEC’s
speed advantage for dense problems. Recall that the sparsity of the problem
arises from the fact that there is no interdependence between inverting the
econometric error terms across markets. Thus, an MPEC problem with a very
large number of markets will have a very sparse Hessian and constraint Jaco-
bian. For relatively sparse problems, we have already shown above that MPEC
performs very well even with a large-dimensional parameter vector (e.g., with
a large number of ξj�t). We now focus on a dense problem with only T = 2
markets. We then vary the number of products, J� and hence the number of
demand shocks, ξj�t . Results are reported in Table VII. For small problems
with 250 or fewer products, we find that NFP and MPEC have comparable
CPU times, although MPEC maintains its speed advantage for the smallest
cases. However, once we consider very large problems with 500 or more prod-
ucts, NFP is found to be faster than MPEC. Therefore, for settings like BLP’s
(1995) automobile data with a large number of products and very few mar-
kets, MPEC’s speed advantages can be offset in large-dimensional problems
for which we cannot exploit the sparsity structure. Whether this will limit the
attractiveness of MPEC for actual empirical applications is unclear. At least for
the specific Monte Carlo setting we study, the number of products we would
need to consider before MPEC loses its speed advantage is considerably larger
than what is typically studied in actual empirical settings (e.g., BLP have only
around 100 products in their automobile data in any given market).
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TABLE VII

MONTE CARLO RESULTS FOR DENSE PROBLEMS WITH TWO MARKETS AND MANY PRODUCTS

# Products Runs CPU Time
J Imple. Converged (hours)

25 NFP-tight 100% 0�63
MPEC 100% 0�51

100 NFP-tight 100% 1�99
MPEC 100% 1�55

250 NFP-tight 100% 12�59
MPEC 100% 11�77

500 NFP-tight 100% 104�8
MPEC 100% 119�56

750 NFP-tight 100% 266�93
MPEC 100% 433�13

1000 NFP-tight 100% 457�96
MPEC 100% 660�39

In the Supplemental Material, we include results from additional Monte
Carlo experiments in which the speed advantage of MPEC is shown to be ro-
bust to manipulations of the power of the instruments.

8. EXTENSION: DYNAMIC DEMAND MODELS

An even more promising frontier for MPEC lies in the application of dy-
namic demand estimation. Starting with Melnikov (2001), a new stream of
literature has considered dynamic analogs of BLP with forward-looking con-
sumers making discrete-choice purchases of durable goods (Dubé, Hitsch, and
Chintagunta (2010), Gordon (2009), Gowrisankaran and Rysman (2011), Lee
(2010), Nair (2007), Schiraldi (2011)). The typical implementation involves a
nested fixed point approach with two nested inner loops. The first inner-loop
is the usual numerical inversion of the demand system to obtain the demand
shocks, ξ� The second inner-loop is the iteration of the Bellman equation to
obtain the consumers’ value functions. In this section, we describe how MPEC
can once again serve as a computationally more attractive approach than NFP.

8.1. Dynamic BLP Model and Algorithms

We specify a simple model of discrete choice demand for two competing,
durable goods with falling prices over time. There is a mass M of potential
consumers at date t = 1. Consumers drop out of the market once they make a
purchase. Abstracting from supply-side specifics, prices evolve over time as a
function of the lagged prices of both firms:

pj�t = ρj�0 +ρj�1pj�t−1 +ρj�2p−j�t−1 +ψj�t = p′
t−1ρj+ψj�t� j = 1� � � � �2�(10)
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where ψj�t is a random supply shock. This supply shock is jointly distributed
with the demand shock, (ξj�t�ψj�t)∼N(0�Ω)� and is independent across time
periods, firms, and markets.

A consumer with tastes indexed by r = 1� � � � �R derives the following flow
utility from adopting product j = 1� � � � � J at time t:

uj�t(pt;θ)= βrj − αrpj�t + ξj�t + εrj�t�

where θ = (βr1� � � � �β
r
J�α

r) are taste parameters, ξj�t is a time-varying prod-
uct characteristic, and εrj�t is an independent and identically distributed (i.i.d.)
Type I extreme value utility shock. We normalize the expected flow utility from
no-purchase to be zero. We assume consumers are forward looking and have
rational expectations in the sense that their beliefs about future prices coincide
with (10). A consumer r’s expected value of delaying adoption at time t is

vr0
(
pt;θr

)
(11)

= δ
∫ (

log
(

exp
(
vr0

(
p′
tρj +ψ;θr))

+
∑
j

exp
(
βrj − αr

(
p′
tρj +ψ

) + ξj
)))

dFψ�ξ(ψ�ξ)�

which satisfies this version of Bellman’s equation.15 The parameter δ ∈ (0�1) is
a discount factor.

We use a discrete distribution with R mass points to characterize the con-
sumer population’s tastes at date t = 1,

θ=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ1� Pr(1)= λ1,
���

���

θR� Pr(R)= 1 −
R−1∑
r=1

λr ,

where θr = (αr�βr). This heterogeneity allows for certain types of consumers to
systematically purchase earlier than others. The remaining mass of consumers
of type r who have not yet adopted at the beginning of period t, Mr

t � is

Mr
t =

{
Mλr� t = 1,
Mr

t−1S
r
0

(
Xt−1;θr

)
� t > 1,

15We normalize the location parameter of the Type I extreme value distribution to −0�577.
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where Sr0(Xt−1;θr) is the fraction of consumers of type r who purchase the
outside good. In a given period t� the market share of product j is

sj(pt;θ)=
R∑
r=1

λt�r
exp(βrj − αrpj�t + ξj�t)

exp(vr0(pt;θr))+
J∑
k=1

exp(βrk − αrpk�t + ξk�t)
�(12)

j = 1� � � � � J�

where

λt�r =

⎧⎪⎨
⎪⎩
λr� t = 1,
Mr

t∑
r

Mr
t

� t > 1,

is the remaining probability mass associated with type r consumers at date t�
The assumption of finite types eases dynamic programming because there is
only one unknown value-of-waiting function for each type.

The empirical model consists of the system (10) and (12),

ut ≡
[
ψt
ξt

]
=

[
pt −p′

t−1ρ
s−1(pt� St;θ)

]
�

The multivariate normal distribution of ut induces the following density on the
observable outcomes, Yt = (p�St):

fY (Yt;θ�ρ�Ω)= 1
(2π)J|Ω|1/2

exp
(

−1
2
u′
tΩ

−1ut

)
|Jt�u→Y |�

where Jt�u→Y is the (2J×2J) Jacobian matrix corresponding to the transforma-
tion-of-variables from ut to Yt . We provide the derivation of the Jacobian in
Appendix D.

An NFP approach to maximum likelihood estimation of the model parame-
ters consists of solving the optimization problem

max
{θ�ρ�Ω}

T∏
t=1

fY (Yt;θ�ρ�Ω)�(13)

This problem nests two inner loops. Each stage of the outer-loop maximization
of the likelihood function in (13) nests a call to compute the fixed point of
the Bellman equations, (11), so as to obtain the expected value of delaying
adoption. There is also a nested call to compute the demand shocks ξt as the
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fixed point of the BLP contraction mapping, (5). Numerical error from both of
these inner loops propagates into the outer loop. Thus, the numerical concerns
regarding inner-loop convergence tolerance discussed for static BLP may be
exacerbated with dynamic analogs of BLP.

Let D be the support of the state variables. An MPEC approach to max-
imum likelihood estimation of the model parameters amounts to solving the
optimization problem

max
{θ�ρ�Ω�ξ�v}

T∏
t=1

1
(2π)J|Ω|1/2

exp
(

−1
2
u′
tΩ

−1
u ut

)
|Jt�u→Y |

subject to st(ξt;θ)= St ∀t = 1� � � � �T and

vr0(pd)

= δ log
(

exp
(
vr0

(
p′
dρj +ψ

)) + · · ·

+
∑
j

exp
(
βrj − αr

(
p′
dρj +ψ

) + ξj
))
dFψ�ξ(ψ�ξ)

∀d ∈D�r = 1� � � � �R�

In this formulation, we now optimize over the demand shocks, ξ� and the ex-
pected value of waiting evaluated at each point, vr(pd). In this case, D ⊂ R

2
+

is the support of the two products’ prices. While this approach increases the
number of parameters in the outer-loop optimization problem substantially
compared to NFP, MPEC eliminates the two inner loops. Chebyshev approx-
imation of vr0(pt;θr) (Judd (1998)) reduces the dimension of this problem by
searching over the Chebyshev weights, rather than over the value function at
each point in a discretized state space. For details, see Appendix C.

8.2. Dynamic BLP Monte Carlo Experiments

We construct several Monte Carlo experiments to assess the relative perfor-
mance of MPEC versus NFP in the context of the dynamic demand model.
Details about the data-generating process are provided in Appendix B. It is
straightforward to show that the speed of the fixed point calculation associated
with the consumer’s expected value of waiting is related to the discount fac-
tor. Therefore, we compare performance with two different discount factors,
δ= 0�96 and δ= 0�99, corresponding to the annual rate and the quarterly rate,
respectively, for an annual interest rate of 4%.

It is difficult to derive closed-form expressions for the Jacobian of the outer-
loop optimization associated with dynamic BLP, under both NFP and MPEC.
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However, due to its formulation as a standard constrained-optimization prob-
lem, the MPEC algorithm can exploit automatic differentiation to obtain exact
derivatives for the outer loop (Griewank and Corliss (1992)).16 Supplying auto-
matic derivatives to the NFP formulation will slow the algorithm considerably
due to the large number of calls to the value function during the inner loop.17

In practice, this presents the researcher using NFP with a difficult trade-off
between speed and numerical accuracy. In our results below, we compare NFP
using automatic and numerical derivatives.

Results from the Monte Carlo experiments using δ= 0�99 and δ= 0�96 are
presented in Tables VIII and IX, respectively. As expected, with tight inner-
and outer-loop tolerances, each algorithm produces very similar estimates.
However, on average, MPEC is considerably faster than NFP. With δ= 0�99�
MPEC is twice as fast as NFP with a numerical gradient and more than ten
times as fast as NFP with an analytic gradient. With five starting values, a typ-
ical run of MPEC requires 0.89 hours, whereas NFP requires 11.0 hours with
an automatic gradient and 1.83 hours with a numerical gradient. Given our
findings for the static BLP estimator, we expect the relative speed of MPEC to
increase considerably as automatic differentiation algorithms improve. A note
of caution is in order for NFP with a numerical gradient. Even though it pro-
duced comparable estimates of the structural parameters, the algorithm failed
to achieve convergence in the majority of replications. The lack of reliability
in convergence for NFP with a numerical gradient poses a problem to the re-
searcher who would not know the true parameter values in practice.

Our results are quite comparable using δ = 0�96� with MPEC still emerg-
ing as the fastest algorithm. As expected, the speed of NFP with numerical
derivatives improves in this case because the lower discount factor speeds the
convergence of the Bellman equation iteration. As before, the NFP algorithm
fails to diagnose convergence to a local optimum in the majority of replications
when a numerical gradient is used. We also compared NFP and MPEC for the
homogeneous logit with R= 1� Because the market shares can be inverted an-
alytically, this case isolates the role of the iteration of the Bellman equation.
Here, too, we find a large relative speed advantage for MPEC. Results for the
R= 1 case are available in the Supplemental Material.

9. CONCLUSIONS

In this paper, we analyze the numerical properties of the NFP approach
proposed by BLP to estimate the random coefficients logit demand model. In
practice, inverting the market share equations in NFP’s inner-loop using con-
traction mapping iterations may be time consuming. Consequently, researchers

16We use the MAD (MATLAB Automatic Differentiation) package, which is part of TOMLAB.
17It is important to impose tight inner-loop convergence of both the levels and gradients.
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TABLE VIII

MONTE CARLO RESULTS FOR DYNAMIC BLP WITH TWO CONSUMER TYPES AND δ= 0�99a

MPEC NFP Auto. NFP numerical

CPU Time (hours): 0.8964 10.9582 1.8306

Parameters TRUE Mean RMSE Mean RMSE Mean RMSE

Utility intercept, product 1 4 4�0648 0.6967 4�0648 0.6967 4�0647 0.6966
Utility intercept, product 2 3 3�0904 0.6798 3�0904 0.6798 3�0902 0.6797
Utility price coefficient, type 1 −1 −1�0049 0.0215 −1�0049 0.0215 −1�0049 0.0215
Utility price coefficient, type 2 −2 −2�4481 1.3784 −2�4481 1.3784 −2�4481 1.3784
Frequency, type 1 0�7 0�7008 0.0724 0�5580 0.2497 0�6660 0.1383
Price, product 1, constant 0�2 0�1915 0.0710 0�1915 0.0710 0�1915 0.0710
Price, product 1, lagged price of product 1 0�8 0�7876 0.0407 0�7876 0.0407 0�7876 0.0407
Price, product 1, lagged price of product 2 0 0�0060 0.0379 0�0060 0.0379 0�0060 0.0379
Price, product 2, constant 0�2 0�2300 0.0949 0�2300 0.0949 0�2300 0.0949
Price, product 2, lagged price of product 1 0 0�0010 0.0297 0�0010 0.0297 0�0010 0.0297
Price, product 2, lagged price of product 2 0�8 0�7907 0.0345 0�7907 0.0345 0�7907 0.0345
Demand shocks, Cholesky variance term 1 0�9952 0.0226 0�9952 0.0226 0�9952 0.0226
Supply shocks, Cholesky variance term 0�8660 0�8605 0.3615 0�8605 0.3615 0�8605 0.3615
Covariance btw supply and demand, 0�5 0�5048 0.3637 0�5048 0.3637 0�5048 0.3637

Cholesky variance term
Mean of obj function at solution −1269�4908 −1269�4908 −1269�4908
% of replications routine reports convergence 100 100 20

aThere are 20 replications. Each replication uses five starting values to do a better job at finding a global minimum. There is no inner loop in MPEC; εout = 10−6 and
εfeasible = 10−6. For NFP, we use the tolerance ε = 10−14 for both inner loops. The data have T = 50 periods and M = 5 distinct markets. Each market has two competing
products. The Chebyshev regression approximation to the value function uses a fourth-order polynomial and four interpolation nodes. The numerical integration of future states
uses Gauss–Hermite quadrature with three nodes. The code uses TOMLAB’s MAD package for automatic differentiation.
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TABLE IX

MONTE CARLO RESULTS FOR DYNAMIC BLP WITH TWO CONSUMER TYPES AND δ= 0�96a

MPEC NFP MAD NFP numerical

CPU Time (hours): 0.7978 11.4687 1.3712

Parameters TRUE Mean RMSE Mean RMSE Mean RMSE

Utility intercept, product 1 4 4�0203 0.4393 4�0203 0.4392 4�0203 0.4392
Utility intercept, product 2 3 3�0453 0.4185 3�0453 0.4185 3�0453 0.4185
Utility price coefficient, type 1 −1 −1�0029 0.0247 −1�0029 0.0247 −1�0029 0.0247
Utility price coefficient, type 2 −2 −2�0549 0.2742 −2�0549 0.2742 −2�0549 0.2742
Frequency, type 1 0�7 0�6985 0.0689 0�5079 0.2845 0�6985 0.0689
Price, product 1, constant 0�2 0�1926 0.0707 0�1926 0.0707 0�1926 0.0707
Price, product 1, lagged price of product 1 0�8 0�7887 0.0354 0�7887 0.0354 0�7887 0.0354
Price, product 1, lagged price of product 2 0 0�0043 0.0332 0�0043 0.0332 0�0043 0.0332
Price, product 2, constant 0�2 0�2314 0.0963 0�2314 0.0963 0�2315 0.0963
Price, product 2, lagged price of product 1 0 0�0016 0.0292 0�0016 0.0292 0�0016 0.0292
Price, product 2, lagged price of product 2 0�8 0�7896 0.0354 0�7896 0.0354 0�7896 0.0354
Demand shocks, Cholesky variance term 1 0�9959 0.0235 0�9959 0.0235 0�9959 0.0235
Supply shocks, Cholesky variance term 0�8660 0�8602 0.3612 0�8602 0.3612 0�8602 0.3612
Covariance btw supply and demand, 0�5 0�5039 0.3645 0�5039 0.3645 0�5039 0.3645

Cholesky variance term
Mean of obj function at solution −694.5832 −694.5832 −694.5832
% of replications routine reports convergence 100 100 40

aThere are 20 replications. Each replication uses five starting values to do a better job at finding a global minimum. There is no inner loop in MPEC; εout = 10−6 and
εfeasible = 10−6. For NFP, we use the tolerance ε = 10−14 for both inner loops. The data have T = 50 periods and M = 5 distinct markets. Each market has two competing
products. The Chebyshev regression approximation to the value function uses a fourth-order polynomial and four interpolation nodes. The numerical integration of future states
uses Gauss–Hermite quadrature with three nodes. The code uses TOMLAB’s MAD package for automatic differentiation.



2258 J.-P. DUBÉ, J. T. FOX, AND C.-L. SU

may be tempted to use a loose inner-loop stopping criterion. Using numerical
theory and computational examples with both pseudo-real and synthetic data,
we demonstrate that setting loose inner-loop tolerances can lead to incorrect
parameter estimates or a failure of an optimization routine to report conver-
gence.

We propose a new constrained optimization formulation, MPEC, which
avoids the inner loop for repeatedly inverting the market share equations and,
hence, eliminates the numerical error in evaluating the objective function and
its gradient. MPEC produces good estimates relatively quickly for most of the
data-generating processes that we consider. Its speed is invariant to the Lips-
chitz constant of the inner-loop contraction mapping used in NFP, as expected.
In the case of a very dense, large-dimensional problem with few markets and
many products, we lose MPEC’s speed advantage over NFP. A caveat to our
findings is that we have focused on the standard implementation of BLP’s logit
demand system. We cannot rule out that our relative speed findings for MPEC
versus NFP could change for more complex demand systems.

We adapt the MPEC approach to a new class of applications with forward-
looking consumers. The relative advantage of MPEC remains strong with dy-
namics because two inner loops must be solved: the dynamic programming
problem and the market share inversion. This burdensome collection of three
loops (optimization, market shares, dynamic programming) makes the tradi-
tional BLP approach nearly untenable in terms of computational time. Auto-
matic differentiation is extremely slow with NFP due to the inner-loop. Al-
ternatively, using numerical derivatives with NFP can produce convergence
problems with the outer loop. Current work (Lee (2010)) further extends the
number of inner loops being solved in estimation. As demand models become
richer, we conjecture that the computational benefits of MPEC over NFP will
become greater.

While we have conducted our analysis in the context of demand estima-
tion, our numerical theory results, along with several of our insights, can be
extended to broader empirical contexts using a nested fixed point approach.
In future research, we see strong potential for MPEC in the context of de-
mand models where there is a unique vector of demand shocks that rationalize
the market shares, but no contraction mapping (e.g., Berry, Gandhi, and Haile
(2011)). For example, one can theoretically recast the estimator of Berry and
Pakes (2007) as a mathematical programming problem with complementarity
constraints (Luo, Pang, and Ralph (1996), Leyffer, Lopez-Calva, and Nocedal
(2006), Leyffer and Munson (2009)). While the dimension of the problem re-
mains beyond the capabilities of current solvers, we expect this example to be
an interesting future extension of our work.
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APPENDIX A: PROOFS

PROOF OF LEMMA 1: By a Taylor series expansion around ξ(θ�0), we have

Q
(
ξ(θ� εin)

) −Q(
ξ(θ�0)

)
=

[
∂Q(ξ(θ))

∂ξ

∣∣∣∣
ξ=ξ(θ�0)

]′(
ξ(θ� εin)− ξ(θ�0)

)
+O(∥∥ξ(θ� εin)− ξ(θ�0)

∥∥2)
and

∇θQ
(
ξ(θ)

)|ξ=ξ(θ�εin) − ∇θQ
(
ξ(θ)

)|ξ=ξ(θ�0)
=

[
∂∇θQ(ξ(θ))

∂ξ

∣∣∣∣
ξ=ξ(θ�0)

]′(
ξ(θ� εin)− ξ(θ�0)

)
+O(∥∥ξ(θ� εin)− ξ(θ�0)

∥∥2)
�

Because ‖ξ(θ� εin)− ξ(θ�0)‖ ≤ L(θ)

1−L(θ)εin by the contraction mapping theorem,
and assuming both∥∥∥∥∂Q(ξ(θ))∂ξ

∣∣∣∣
ξ=ξ(θ�0)

∥∥∥∥ and
∥∥∥∥∂∇θQ(ξ(θ))

∂ξ

∣∣∣∣
ξ=ξ(θ�0)

∥∥∥∥
are bounded, we obtain

∣∣Q(
ξ(θ� εin)

) −Q(
ξ(θ�0)

)∣∣ =O
(

L(θ)

1 −L(θ)εin

)
�

∥∥∇θQ
(
ξ(θ)

)|ξ=ξ(θ�εin) − ∇θQ
(
ξ(θ)

)|ξ=ξ(θ�0)∥∥
=O

(
L(θ)

1 −L(θ)εin

)
� Q.E.D.

PROOF OF THEOREM 2: Because ∇θQ(ξ(θ))|ξ=ξ(θ̂(εin)�εin)
= 0, the second re-

sult in Lemma 1 gives

∥∥∇θQ
(
ξ(θ)

)|ξ=ξ(θ̂(εin)�0)

∥∥ =O
(

L(θ̂(εin))

1 −L(θ̂(εin))
εin

)
�(14)

Note that we evaluate the gradient of the GMM objective function with no
numerical error at θ̂(εin).

Let θ̃ be any value of the structural parameters near θ̂(εin). By first the in-
verse triangle inequality, then the regular triangle inequality, and then finally
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a Taylor series expansion, we have∥∥∇θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̃�εin)

∥∥ − ∥∥∇θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̂(εin)�0)

∥∥
≤ ∥∥∇θQ

(
ξ(θ)

)∣∣
ξ=ξ(θ̃�εin)

− ∇θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̂(εin)�0)

∥∥
= ∥∥∇θQ

(
ξ(θ)

)∣∣
ξ=ξ(θ̃�εin)

− ∇θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̃�0)

+ ∇θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̃�0) − ∇θQ

(
ξ(θ)

)∣∣
ξ=ξ(θ̂(εin)�0)

∥∥
≤ ∥∥∇θQ

(
ξ(θ)

)∣∣
ξ=ξ(θ̃�εin)

− ∇θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̃�0)

∥∥
+ ∥∥∇θQ

(
ξ(θ)

)∣∣
ξ=ξ(θ̃�0) − ∇θQ

(
ξ(θ)

)∣∣
ξ=ξ(θ̂(εin)�0)

∥∥
≤O

(
L(θ̃)

1 −L(θ̃)εin

)
+ ∥∥∇2

θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̂(εin)�0)

∥∥∥∥θ̃− θ̂(εin)
∥∥

+O(∥∥θ̃− θ̂(εin)
∥∥2)
�

Assuming ‖∇2
θQ(ξ(θ))|ξ=ξ(θ̂(εin)�0)‖ is bounded, the second-order term O(‖θ̃−

θ̂(εin)‖2) can be ignored. By rearranging the above inequality, we obtain∥∥∇θQ
(
ξ(θ)

)∣∣
ξ=ξ(θ̃�εin)

∥∥
≤ ∥∥∇θQ

(
ξ(θ)

)∣∣
ξ=ξ(θ̂(εin)�0)

∥∥ +O
(

L(θ̃)

1 −L(θ̃)εin

)
+O(∥∥θ̃− θ̂(εin)

∥∥)

=O
(

L(θ̂(εin))

1 −L(θ̂(εin))
εin

)
+O

(
L(θ̃)

1 −L(θ̃)εin

)
+O(∥∥θ̃− θ̂(εin)

∥∥)

=O
((

L(θ̂(εin))

1 −L(θ̂(εin))
+ L(θ̃)

1 −L(θ̃)
)
εin + ∥∥θ̃− θ̂(εin)

∥∥)
�

Q.E.D.

PROOF OF THEOREM 3: First, we can quantify the bias between Q(ξ(θ̂(εin)�
εin) and Q(ξ(θ∗�0)):

Q
(
ξ
(
θ̂(εin)� εin

)) −Q(
ξ
(
θ∗�0

))
=Q(

ξ
(
θ̂(εin)� εin

)) −Q(
ξ
(
θ̂(εin)�0

))
+Q(

ξ
(
θ̂(εin)�0

)) −Q(
ξ
(
θ∗�0

))
=

[
∂Q(ξ(θ))

∂ξ

∣∣∣∣
ξ=ξ(θ̂(εin)�0)

]′(
ξ
(
θ̂(εin)� εin

) − ξ(θ̂(εin)�0
))

+O(∥∥ξ(θ̂(εin)� εin

) − ξ(θ̂(εin)�0
)∥∥2)



RANDOM COEFFICIENTS DEMAND ESTIMATION 2261

+ [∇θQ
(
ξ
(
θ∗))]′(

θ̂(εin)− θ∗) +O(∥∥θ̂(εin)− θ∗∥∥2)
=

[
∂Q(ξ(θ))

∂ξ

∣∣∣∣
ξ=ξ(θ̂(εin)�0)

]′(
ξ
(
θ̂(εin)� εin

) − ξ(θ̂(εin)�0
))

+O(∥∥ξ(θ̂(εin)� εin

) − ξ(θ̂(εin)�0
)∥∥2) +O(∥∥θ̂(εin)− θ∗∥∥2)

�

because ∇θQ(ξ(θ
∗))= 0 at the true estimates θ∗.

Rearranging the equality involving Q(ξ(θ̂(εin)� εin)) − Q(ξ(θ∗�0)) to focus
on the O(‖θ̂(εin)− θ∗‖2) term, we have

O
(∥∥θ̂(εin)− θ∗∥∥2)
=Q(

ξ
(
θ̂(εin)� εin

)) −Q(
ξ
(
θ∗�0

))
−
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ξ
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ξ
(
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)) −Q(
ξ
(
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ξ=ξ(θ̂(εin)�0)

∥∥∥∥∥∥ξ(θ̂(εin)� εin

) − ξ(θ̂(εin)�0
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−O(∥∥ξ(θ̂(εin)� εin

) − ξ(θ̂(εin)�0
)∥∥2)

�

Assuming ‖ ∂Q(ξ(θ))
∂ξ

|ξ=ξ(θ̂(εin)�0)‖ is bounded, the second-order term O(‖ξ(θ̂(εin)�

εin)− ξ(θ̂(εin)�0)‖2) can be ignored. From the contraction mapping theorem,
we know

∥∥ξ(θ̂(εin)� εin

) − ξ(θ̂(εin)�0
)∥∥ ≤ L(θ̂(εin))

1 −L(θ̂(εin))
εin�

Hence, we obtain

O
(∥∥θ̂(εin)− θ∗∥∥2) ≤ ∣∣Q(

ξ
(
θ̂(εin)� εin

)) −Q(
ξ
(
θ∗�0

))∣∣
+O

(
L(θ̂(εin))

1 −L(θ̂(εin))
εin

)
�

Q.E.D.

PROOF OF PROPOSITION 4: The first-order condition of the GMM estima-
tion problem (4) is

dQ(ξ(θ))

dθ
= dξ(θ)

dθ

′ ∂Q
∂ξ

= 0�(15)
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The Lagrangian of the constrained optimization problem (8) is L(θ�ξ�λ) =
Q(ξ)+λ′(S− s(ξ;θ)), where λ is the vector of Lagrange multipliers. The first-
order conditions of (8) are

∂L(θ�ξ�λ)
∂θ

= −∂s(ξ;θ)
∂θ

′
λ= 0�(16)

∂L(θ�ξ�λ)
∂ξ

= ∂Q(ξ)

∂ξ
− ∂s(ξ;θ)

∂ξ

′
λ= 0�

∂L(θ�ξ�λ)
∂λ

= S − s(ξ;θ)= 0�

First, we prove that the matrix ∂s(ξ;θ)
∂ξ

′
evaluated at (θ∗� ξ∗) is nonsingular.18

Recall that the Lipschitz constant of the contraction mapping (5) is defined as
L(θ)= maxξ∈Ξ ‖I − ∇ξ(log s(ξ;θ))‖∞. Consequently,∥∥I − ∇ξ

(
log s

(
ξ∗;θ∗))∥∥

∞ ≤L(
θ∗)< 1�

To simplify the notation, denoteA= ∇ξ(log s(ξ∗;θ∗))�We claim thatA is non-
singular. Suppose A is singular so that a v �= 0 solves Av= 0. It follows that

0 = ‖Av‖∞ = ∥∥v− (I −A)v∥∥∞ ≥ ‖v‖∞ − ∥∥(I −A)v∥∥∞
≥ ‖v‖∞ − ‖I −A‖∞‖v‖∞ > 0�

which gives a contraction. Because ∂s(ξ∗;θ∗)
∂ξ

= (diag(S))∗A� the matrix ∂s(ξ∗;θ∗)
∂ξ

′
is

nonsingular.
Solving the second set of first-order conditions for λ gives λ∗ = ( ∂s(ξ∗;θ∗)

∂ξ

′
)−1 ×

∂Q(ξ∗)
∂ξ

. Then, by the implicit function theorem, we have

0 = ∂L
∂θ

= −∂s(ξ
∗;θ∗)
∂θ

′(∂s(ξ∗;θ∗)
∂ξ

′)−1
∂Q(ξ∗)
∂ξ

= dξ(θ∗)
dθ

′ ∂Q(ξ∗)
∂ξ

= dQ(ξ(θ∗))
dθ

= 0� Q.E.D.

APPENDIX B: THE SYNTHETIC DATA-GENERATING PROCESS

B.1. Static Model

We base our synthetic datasets on the demand model in Section 2. We con-
struct T = 50 independent markets, each with the same set of J = 25 products.

18We thank Kenneth Judd and John Birge for pointing out this property. Rust (1988, p. 1016)
showed the same result for dynamic discrete-choice models using the Banach inverse theorem.
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Each product j has K = 3 observed, market-invariant characteristics that are
generated as[

x1�j

x2�j

x3�j

]
∼N

([0
0
0

]
�

[ 1 −0�8 0�3
−0�8 1 0�3
0�3 0�3 1

])
�

In addition, each product j has a market-specific vertical characteristic: ξj�t ∼
i�i�d�N(0�1). Finally, each product j has a market-specific price generated as

pj�t =
∣∣∣∣∣0�5 · ξj�t + ej�t + 1�1 ·

3∑
k=1

xk�j

∣∣∣∣∣�
where ej�t ∼ N(0�1) is an innovation that enters price. For the Monte Carlo
experiments in Section 7, we change the pricing process as follows: pj�t = 3 +
ξj�t · 1�5 + uj�t + ∑3

k=1 xk�j�t , where uj�t is a uniform(0�5) random variable.
For each product j in market t, there is a separate vector, zj�t� of D = 6

underlying instruments generated as follows: zj�t�d ∼ U(0�1) + 1
4(ej�t + 1�1 ·∑3

k=1 xk�j�t), where U(0�1) is the realization of a uniform random variable and
ej�t is the price innovation. In addition, we also use higher-order polynomial
expansions of the excluded instruments, zjt� and the exogenous regressors,
xj: z2

j�t�d , z
3
j�t�d , x

2
j�k, x3

j�k,
∏D

d=1 zj�t�d ,
∏K

k=1 xj�k, zj�t�d · xj1, and zj�t�d · xj�t�2. There
are 42 total moments.

There are five dimensions of consumer preference, βi = {β0
i �β

1
i �β

2
i �β

3
i �β

p
i }

(an intercept,K = 3 attributes, and price), each distributed independently nor-
mal with means and variances E[βi] = {−1�0�1�5�1�5�0�5�−3�0} and Var[βi] =
{0�5�0�5�0�5�0�5�0�2}.

We simulate the integral in the market share equation, (3), with ns = 1000
independent standard normal draws. Because our focus is not on numerical
integration error, we use the same set of 1000 draws to compute market shares
in the data-generation and estimation phases.

B.2. Dynamic Model

For the dynamic model, we allow for a distribution of tastes with two mass
points over the sensitivity to prices:

(β1�β2�α)
′ =

{
(4�3�−1)� with probability λ= 0�7,
(4�3�−2)� with probability (1 − λ)= 0�3.

We assume that prices are generated as follows:

p1�t = 5 + 0�8p1�t−1 + 0�0p2�t−1 +ψ1�t �

p2�t = 5 + 0�0p1�t−1 + 0�8p2�t−1 +ψ2�t �
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Finally, we assume the supply and demand shocks satisfy (ψj�t� ξj�t) ∼ N
(
0�[ 1

0�5
0�5
1

])
and are independent across markets and time periods. For our

Chebyshev approximation of vr0(pt;θr), we use six nodes and a fourth-order
polynomial. For the NFP algorithm, we use a tolerance of 10−14 for both inner
loops. We use data on M = 5 independent markets and T = 50 time periods
per market.

APPENDIX C: CHEBYSHEV APPROXIMATION OF THE EXPECTED VALUE
OF WAITING

First, we bound the range of prices as p= (p1�p2)
′ ∈ [0� b] × [0� b], where b

is large (b is 1.5 times the largest observed price in the data). We then approx-
imate the expected value of delaying adoption with Chebyshev polynomials,
vr0(p;θr) ≈ γr

′
Λ(p), where γr is a K × 1 vector of parameters and Λ(p) is a

K× 1 vector of K Chebyshev polynomials. Therefore, we can rewrite the Bell-
man equation as

γr
′
Λ(p)= δ

∫
log

(
exp

(
γr

′
Λ(pρ+ψ))

+
∑
j

exp
(
βrj − αr

(
p′ρj +ψ

) + ξj
))
dFψ�ξ(ψ�ξ)�

To solve for the Chebyshev weights, we use the Galerkin method described in
Judd (1992). We define the residual function

R(p;γ)= γr
′
Λ(p)(17)

− δ
∫

log
(

exp
(
γr

′
Λ(pρ+ψ))

+
∑
j

exp
(
βrj − αr

(
p′ρj +ψ

) + ξj
))
dFψ�ξ(ψ�ξ)�

Next, we let X be the matrix of K Chebyshev polynomials at each of the G
points on our grid (i.e., G nodes). Our goal is to search for parameters, γ� that
set the following expression to zero:

X ′R(p;γ)= 0�

We use an iterated least squares approach for NFP:
(i) Pick a starting value γr�0, vr�00 (p;Θr)= γr�0′

ρ(p).
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(ii) Use quadrature to compute

Y
(
p;γr�0) = δ

∫
log

(
exp

(
γr�0

′
Λ(pρ+ψ))

+
∑
j

exp
(
βrj − αr

(
p′ρj +ψ

) + ξj
))
dFψ�ξ(ψ�ξ)�

(iii) Solve the least squares problem: minγR(p;γ)′R(p;γ) or

min
γ

(
Xγr −Y (

p;γr�0))′(
Xγr −Y (

p;γr�0))
for which the solution is γr�1 = (X ′X)−1X ′Y(p;γr�0).

(iv) Compute vr�10 (p;Θr)= γr�1′
Λ(p).

(v) Repeat steps (ii) and (iii) until convergence.

APPENDIX D: JACOBIAN OF THE DENSITY OF (pt� St) IN THE DYNAMIC
BLP MODEL

The Jacobian is defined as

Jt�u→Y =
⎡
⎢⎣
∂ψt

∂pt

∂ψt

∂St
∂ξt

∂pt

∂ξt

∂St

⎤
⎥⎦ �

Since ∂ψt
∂ log(pt )

= IJ and ∂ψt
∂ log(pt )

= 0J (a square matrix of zeros), we only need to
compute the matrix of derivatives, [ ∂ξt

∂St
]� We can simplify this calculation by

applying the implicit function theorem to the system

G(St� ξt)= s(p�ξt;θ)− St = 0

and computing the lower block of the Jacobian as

Jt�ξ→S = −
[
∂G

∂ξt

]−1[
∂G

∂St

]
=

[
∂s

∂ξt

]−1

�

where the (j�k) element of ∂sj�t

∂ξk�t
is

∂Sj�t

∂ξk�t
=

⎧⎪⎪⎨
⎪⎪⎩

∑
r

λr�tsj
(
pt�ξt;θr

)(
1 − sj

(
pt�ξt;θr

))
� if j = k,

−
∑
r

λr�tsj
(
p�ξt;θr

)
sk

(
p�ξt;θr

)
� otherwise.
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