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Principal interactions analysis for
repeated measures data: application to
gene—gene and gene—environment
interactions
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Many existing cohorts with longitudinal data on environmental exposures, occupational history, lifestyle/
behavioral characteristics, and health outcomes have collected genetic data in recent years. In this paper, we
consider the problem of modeling gene-gene and gene—environment interactions with repeated measures data
on a quantitative trait. We review possibilities of using classical models proposed by Tukey (1949) and Mandel
(1961) using the cell means of a two-way classification array for such data. Although these models are effective
for detecting interactions in the presence of main effects, they fail miserably if the interaction structure is
misspecified. We explore a more robust class of interaction models that are based on a singular value decom-
position of the cell-means residual matrix after fitting the additive main effect terms. This class of additive main
effects and multiplicative interaction models (Gollob, 1968) provide useful summaries for subject-specific and
time-varying effects as represented in terms of their contribution to the leading eigenvalues of the interaction
matrix. It also makes the interaction structure more amenable to geometric representation. We call this analysis
‘principal interactions analysis’. While the paper primarily focuses on a cell-mean-based analysis of repeated
measures outcome, we also introduce resampling-based methods that appropriately recognize the unbalanced
and longitudinal nature of the data instead of reducing the response to cell means. We illustrate the proposed
methods by using data from the Normative Aging Study, a longitudinal cohort study of Boston area veterans
since 1963. We carry out simulation studies under an array of classical interaction models and common epistasis
models to illustrate the properties of the principal interactions analysis procedure in comparison with the
classical alternatives. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Statistical methods for analysis of interactions are receiving considerable attention in the
post-genome-wide association study era where different consortia are examining gene—gene (G x G)
and gene—environment (G x E) interactions [1]. Whereas much of the more recent literature has evolved
around case—control association studies, less attention has been devoted to longitudinal cohort stud-
ies with rich lifetime exposure data and repeated measures on outcomes. Typically, a naive analysis of
repeated measures data attempts to model G x E effects by fitting a regression model to the conditional
mean structure of the outcome Y with main effects of G, E, and G x E terms after adjusting for other
confounders. A random intercept term capturing within subject correlation will commonly be introduced
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in a standard linear mixed model analysis [2, 3] . However, while incorporating longitudinal effects of
time in the model for mean response, one is often confronted with the issue of time-varying effects of
interaction with a three-way G x E X time term turning out to be statistically significant in a routine
mixed model analysis. It is hard to interpret the interaction parameter in such instances. One can try
to model the time-varying coefficient corresponding to the interaction term in the generalized additive
mixed model framework [4], but tests for such nonparametric, smoothed interaction terms will have little
or no power for studies with moderate sample size.

In this paper, we first present an alternate approach to explore interaction structures for cohort studies
by first considering the average of repeated measures across subjects as a single observation per subject
and then examining the cell-mean structure corresponding to the G = g, E = e in a two-way geno-
type x environment classification array (G; = g1, G, = g5 for a two-way gene X gene array). Because
of the two-way repeated measures analysis of variance (ANOVA) formulation, the methods presented are
applicable to genotype data on single nucleotide polymorphisms (SNPs) and categorical environmental
exposures. Although we study the methods in the context of G x E or G X G interactions, they can be used
for exploring interactions in any two-way classification array. We then proceed to extend our treatment
of the problem to account for individual level repeated measures, beyond the initial cell-means-based
approach.

The statistical interaction term, as described by the inclusion of a product term in a regression model,
reflects that the effect of the row variable and the column variable may not be additive in their contri-
bution to the quantitative trait. Researchers have described a variety of models on the structure of this
non-additivity. Tukey [5] proposed his well-known single degree of freedom (df) test for non-additivity
where the interaction is modeled as being proportional to the product of the main effects . Mandel [6]
proposed two other more general interaction models where the interaction is proportional to the row main
effects or column main effects. Along with these classical models, the newer class of models we explore
for repeated measures data is the additive main effects and multiplicative interaction model (AMMI) first
introduced by Gollob [7] and then developed by several authors [8—14]. The AMMI models also target
towards a sparse representation of interaction terms but not through main effects. This class of models
has been used to analyze data from a balanced experimental design to study genotype x environment in
agriculture and crop sciences [15, 16]. Recently, Barhdadi and Dubé applied this class of models to obser-
vational studies of gene—gene interaction [17]; Alin and Kurt also contained an overview [18]. All of the
aforementioned work were primarily developed for cross-sectional data with fixed effects. Researchers
extended the AMMI model to the situation when one of the two factors is fixed, and the other is random,
again for cross-sectional data [19-21]. Meyer also considered multiple correlated quantitative traits on
the same subject in a mixed model framework [22].

We first focus on developing simple screening tools for interactions with repeated measures longitu-
dinal data based on cell means where both row factor and column factor are considered as fixed effects.
The fitting of an AMMI model is based on a singular value decomposition (SVD) of the residual matrix,
after removing row and column main effects and retaining the ‘leading’ (in many cases, the first) com-
ponent of this representation. The interaction is then represented by the largest characteristic root and
the corresponding right and left singular vectors of the interaction matrix, and the remainder terms are
attributed to residual noise. Thus, by considering a reduced rank approximation (rank one approximation
if only the first component is retained) to the interaction matrix, one is able to save df and enhance effi-
ciency when compared with the saturated interaction model. To this end, we call this method ‘principal
interactions analysis’ (PIA) because of its similarity with ‘principal components analysis’. We provide
visual/diagnostic tools to isolate subject-specific and time-specific contributions to the principal interac-
tion factors. We carry out a comparative simulation study of the AMMI model with the more traditional
models proposed by Tukey and Mandel for repeated measures data, which is not present in the literature.
The simulation results illustrate that the AMMI models perform well across a spectrum of scenarios
and offer far superior protection against model misspecification than the Tukey/Mandel models. Specif-
ically, for detecting epistasis in the absence of main effects of any of the genetic loci, the AMMI model
outperforms models that attempt to parameterize interaction as a function of main effects.

We base the primary investigation in this paper on averaging the response per subject and per cell
and then applying the Tukey/Mandel/AMMI models. This approach is appealing in terms of its simplic-
ity, fast computation due to closed-form analytic expression of the test statistics, and can be applied
on the basis of simple summaries of the data. However, this approach is certainly limited in terms
of its applicability and statistical adequacy if there is varying time effect on the response. The cell-
mean approach also fails to properly account for unbalanced nature of the data because of the assumed
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homoscedasticity on the error distribution of cell means. To ameliorate this criticism, we propose a
more sophisticated analysis that uses individual level data in a mixed-effects regression model setting,
followed by a resampling-based test for interaction. Maximum likelihood (ML) and restricted maxi-
mum likelihood (REML) estimations under these complex nonlinear correlated outcome models are
extremely hard, with non-standard asymptotic distribution theory under the null. We adopt two-step pro-
cedures and resampling-based tests to circumvent this problem. As expected, the regression approach
using individual level data is more powerful than the cell-mean-based approach and provides right con-
trol of type I error under unbalanced designs. For cross-sectional studies, Barhardi and Dubé [18] note
that a standard generalized linear model regression with saturated interaction terms that uses individ-
ual level data is more powerful than the reduced df tests based on cell-means model. However, they
do not propose any alternative to account for unbalanced data or use individual level observations
under Tukey/Mandel/AMMI models, even in cross-sectional studies. Thus, the paper makes several
original contributions.

The example we consider comes from the Normative Aging Study (NAS), a multidisciplinary longi-
tudinal study of aging in Eastern Massachusetts established by the Veterans Administration in 1963. We
consider hearing threshold as measured by pure-tone audiometric examinations at every visit until 1996
as our outcome of interest. Up to eight repeated measures of hearing threshold per subject are available,
with 60% subjects having four or more measurements. We explore interplay of two genes, catalase (CAT)
and heme-oxygenase 1 (HMOX-1), both involved in the oxidative stress pathway and an occupational
noise variable that was derived from lifetime history on job titles. This environmental exposure has five
ordinal categories. We illustrate both G x G and G x E analysis and investigate changing contribution
of the interaction term over time. We compare results of cell-mean-based analysis with resampling tests
using individual level data.

We organize the rest of the paper as follows. In Section 2, we describe the three classical models,
Tukey’s 1-df and Mandel’s row and column models. We present the test statistics and the corresponding
df/asymptotic null distribution. In Section 3, we discuss the PIA via using the AMMI model. We propose
diagnostics for follow-up analysis in terms of subject-specific and time-window-specific contributions
to the interaction term. Sections 2 and 3 are based on responses reduced to cell means. In Section 4, we
propose analytic approaches that uses individual level data under a mixed-effects regression setup, fol-
lowed by a resampling-based test statistic for the interaction term. This strategy accounts for unbalanced
repeated measures data. In Section 5, we present the data analysis results from the NAS. Section 6 has
three parts. Sections 6.1 and 6.2 consider simulation studies on cell-mean-based approaches. Section 6.1
presents simulations to study robustness across the classical interaction models for a general / x J table.
Section 6.2 specifically considers common epistasis models for studying gene—gene interaction [23].
Section 6.3 presents simulation results corresponding to the resampling tests proposed in Section 4, as
compared with the cell-means approach. Section 7 concludes with a discussion.

We highlight the new contributions of the paper: (1) application/introduction of the PIA to study G x E
and G x G effects for repeated measures on quantitative traits; (2) compare with classical interaction
models such as Tukey and Mandel’s models as applied to repeated measures data; (3) develop visual and
diagnostic tools for a better understanding of interaction structures with longitudinally varying outcomes;
and (4) introduce novel resampling-based tests for AMMI models (as well as Tukey/Mandel interaction
models) that account for unbalanced data structures, uses individual level data under a mixed effects
regression modeling framework. The comprehensive simulation studies and the data analyses indicate
that the ‘PIA’ is a promising tool to understand interaction structures and also to trade-off between bias
and efficiency in a data-adaptive way under model misspecification.

2. Classical models for interaction

Because the methods are generic to any two-way table, instead of using G and E for the two factors, we
use R to denote the row variable with [ levels and C to denote the column variable with J levels. Let
Yhiji be the hth observation corresponding to the kth subject in the (7, j)th cell of this (/ x J) array.
Here,k =1,...,Nand h = 1,...,ng, with N denoting the total number of subjects and n; denoting
the number of observations corresponding to the kth subject. We consider the following general model:

Yhije = 1+ Sk + Ri + Cj + vyij + Oik + 7jic + Tiji + €hijk- (D
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Here, u describes the overall mean, R; and C; are the row and column main effects, and y;; describes
the interaction between the row and column factors. The standard constraints, >, R; = > ; C; =
>.ivij = >.;vij = 0, are placed on the fixed effects parameters. We assume that the possible ran-
dom effects associated with components {Si } (subject effect), {6;x} (row x subject), {7} (column x
subject), and {7;jx } (row x column x subject) are jointly normal with zero means and covariance matrix
Y 5. The random errors {ej;;i | are independently and identically distributed with mean zero and vari-
ance 02. A special case of this particular model is the simpler model with only one subject-specific
random intercept, namely, S, normally distributed with mean zero and variance UZ. We consider this
simpler model in our simulation studies and data analyses.

We create a two-way cell-means array, first averaging all observations corresponding to the kth sub-
ject in the (7, j)th cell, namely, ¥ ;. and then averaging y ;x, over all subjects in the (i, j)th cell, to
obtain {y ;; },i = 1,...1 and j = 1,...J. These cell means will have differing degree of variability,
depending on the random effects structure specified in (1) and the number of observations per subject as
well as the number of subjects per cell. In a typical observational study, we will certainly have an unbal-
anced data structure. In the following text, we abuse our notations slightly by dropping the {-} suffixes
corresponding to subjects and observations corresponding to a subject and describe the models in terms
of the I x J array of cell means y;; = ;;.

2.1. A general saturated model for interaction

The implied mean model by (1) for the two-way table in terms of cell means y;; is
Viy=nr+tR +Cj+yjtei=1...1,j=1...J, 2

where the interpretation of the fixed effects parameters are as that mentioned previously, but &;; is the
mean of the errors of &p;x in (1), by first taking averages over errors associated with observations for the
kth subject and then over all k& subjects within the (7, j)th cell. In the following text, we denote y;; by
vij, pretending they represent a single observation corresponding to the 7 x J cell [17]. We assume that
g~ N(O, 72). This assumption does not recognize the nonconstant variance in the cell means because
of an unbalanced nature of the data. The ML estimates of main effects are then given by the following:

A A

A=y ,Ri=yi.—y.,.Ci=y;j—y. (3)

Let us define the estimated residual contrast after fitting the additive terms as

Zij=yij——Ri—=Cj=yij—yi.—y;+y.

The df attributed to testing interaction in a saturated model is (/ —1)(J —1) and, in that case, y;; = Z;j.
With more than one replication per cell, one can test for interaction in a saturated model; however, with
a single observation or no replication per cell, one exhausts the df for a saturated interaction model, with
no df left for errors. Thus, a test of non-additivity cannot be carried out. In such a situation, researchers
have proposed several reduced df tests by imposing special structures on the interaction parameters.
These structures can be used for testing interactions in general regression models for a more powerful
test with reduced df [24,25].

2.2. One degree of freedom test for non-additivity [5]

The essential idea behind this model is to think of interaction as y;; = 0R;C; + &;;, namely, a leading
term and some residual noise &;; that can be absorbed with the error term ¢;;. Thus, of the (/ —1)(J —1)
df attributed to the interaction term, only one is used to test Hy : 6 = 0 and the rest is attributed to the
residual error term, making it possible to test for non-additivity with no replication. Tukey’s model is
given by the following:

Vij =+ Ri + C; +0R;Cj + &5, “

where 0 is the coefficient for the linear-by-linear interaction effect. The least square estimate of 6,
denoted as 6, is given by

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2531-2551
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where z;; = y;j —yi.—y.j + .. is again the estimated residual contrast after removing the additive main
effects. This essentially reduces to regressing the cell residuals after fitting the additive terms on the
product of the estimated row and column main effects [26]. The model is not identifiable if there are no
main effects present as any value of 6 yields the same likelihood. Tukey’s single df test for non-additivity
is obtained by using the test statistic F = M S;;/M SE as presented in Table 1 in the Supplementary
material® that has an F distribution with 1 and (I —1)(J —1)—1 df under the null hypothesis Hy : § = 0.

2.3. Column (row) regression model [6]

Mandel proposed the column regression model and row regression model for testing interactions. In the
column regression model, the interaction effect is a linear function of the column main effects, that is,

yij =p+ Ri +Cj +4iCj + ¢, ©)
where A; is the coefficient corresponding to the ith row and ) ; A; = 0. The ML estimate of A;, denoted
as A;, is
522G
= .
2
2. ¢

The ML estimates of x and R; remain unchanged. A test of non-additivity is obtained by constructing
an F-statistic for the hypothesis

Ho:Ai=0,i=1,...1

Under the null hypothesis and normality, this test statistic, as described in Table 1 of the Supplementary
material, has an F' distribution with (/ —1) and (/ —1)(J —1)— (I —1) df. Table 2 of the Supplementary
material presents the ANOVA table for this model. By replacing the columns with the rows, one can
equivalently posit a row regression model of the following form:

yij = p+ Ri + Cj + Rinj +¢&ij, (6)

with ;jnj = Oandtesting Ho : n; = 0,j = 1,...,J, with the resultant F-statistic having df
{(J-1L,d-DJ -1 —=( -}

Note that models (4)—(6) hierarchically build increasing order of complexity in the interaction struc-
ture in a nested manner. For a large two-way array, say a 9 x 5 array [with saturated interaction df
(I — 1)(J — 1) = 32], the interaction tests will have 1 (Tukey’s 1-df), 8 (Mandel’s column), and 4
(Mandel’s row) for the numerator of the F'-statistic and 31, 24, and 28 df for the denominator,
respectively, thus providing different degrees of efficiency gain and model robustness.

However, all of the aforementioned three models have a particular structure of interaction, specified
in terms of main effects. Thus, when there are no main effects, the models encounter problem with like-
lihood identifiability. Even in the presence of main effects, under any form of misspecification of this
specific structure, all of the aforementioned three tests lose tremendous power as discussed in Section 6.

Remark 1 (Tukey’s row—column regression model [26])
Tukey extended Mandel’s column or row regression model in his seminal paper in 1962 where he intro-
duced the vacuum cleaner strategy for analyzing two-way arrays where a row regression is followed up
with a column regression (or vice versa).

Vij =+ Ri +C; +0R;C; + 4;C; + Rinj + &ij, (M

where A; and n; are the row-specific and column-specific coefficients, with additional constraints
A=) ;nj=0and}; A;R; =3 ;n;C; = 0. The MLEs of 11, R;, and C; remain unchanged.
The ML estimates of 6, A;, and ; are obtained as follows:

>z RiC; 5o Y 2i;C;
i) RiC?
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Table 3 of the Supplementary material presents the ANOVA table corresponding to this model. The
F-statistic for testing Hy : 6 = A; = n; = 0, V i, j under the aforementioned constraints have
numerator df 1+ (/ —2)+(J —2) = (I +J —3). The denominator df is thus (/ —1)(J —1)— (I +J —3).

For completeness, we provide the description of this more general model but refrain from discussing
it any further. For a 3 x 3 table for G x G interaction, the Tukey row—column model has df 3, offering
little power gain over the saturated model, which has 4 df, another reason for not including this model
in our simulation studies.

3. Principal interactions analysis via the AMMI model

Gollob [7] proposed a factor ANOVA model to decompose a two-way table. The essential idea is to
represent the / x J rectangular interaction matrix I" with interaction parameters y;; as entries, by the
following representation:

I'=ADB'.

Here, A = ((¢im)) and B = ((Bxm)) are I x R and J x R orthonormal matrices (4’A = B'B = I)
and D is an R x R diagonal matrix with elements d; = d,... = dg. The maximum rank of I is
min(/ — 1, J — 1) because of the sum-zero constraints on the parameters y;;. This makes the matrix I
doubly centered. Let / < J, thus the maximal rank of ['is / — 1. Let P = AD'/? and Q = D'/2B’,
then ' = PQ’ = Y, pimqjm. Where the pi, and g, satisfy the orthonormalization constraints
> PimPit = 2. ; qjmqji =0form #land Y-, p7, =343, =1form=1,....R.

By this factor representation, for a saturated model, y;; is perfectly reproduced by,

I1—1 I—1
Yij = Z dm%imPBjm = Z Pim4jm-

However, one can think of a sparse representation of the interaction matrix by retaining the first
M < I — 1 components of this representation, namely,

M
Vij=E AmimPBim +  Gij
m=1 o
random noise

leading term

This representation gives rise to the following general class of AMMI models [9-12, 14].

M
yii=n+Ri +C; + Z AdmtimPBim + €ij 9
m=1
M
=1+ Ri +Ci+ ) pimdjm+ €. (10)
m=1

Eckart and Young [27] showed that, for a fixed M, the least square estimates of (4, B, D), equivalently,
{¢tim}, {Bjm}, and {dp,} can be found by expressing the estimated matrix I' of interaction parameters
with entries y;; = y;j — yi. — y.; + y.. in terms of a SVD as specified by the factor model,

['=ADB.
An alternative interpretation is that the interaction parameter is expressed as a sum of several suc-

cessive multiplicative contrasts W, = >, ) % mBjimYij such that each contrast is orthogonal to all

previous contrasts and accounts for a maximum of the remaining variance. Let \ifpm denote the esti-
mated normalized orthogonal multiplicative contrast among the interaction parameters {y;; } and S S
denote the sum of squares due to the mth interaction factor. Then, from classical contrast theory, we
know that SSg,, = \i!%,m. To this end, v Fm can be obtained by

li’Fm = Z Z&imﬁjm?ij = Z Z&iMﬁAjmyif‘
i i

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2531-2551
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Because ' = ADB’, we have D = A'T'B, implying c?m = Zj &im,BAjm)?ij. So, g, and c?m
are equivalent. They both are }; > &,-m,éjm 7ij. Hence, SSgm = \iJ%m = c?,%, Let S Sgc denote the
total sum of squares due to row—column interaction. The sum of squares corresponding to the residual
interaction after M -successive interaction factors being extracted from {y;; } is therefore

M M I-1
SSres =SSrc— . SSEm=SSrc— Y _di= Y dp.

m=1 m=1 m=M+1
-1
as S Ske :Z Z(y,-j —yi.— Yy +y.)? =Z Z )75 = Trace(I''T") = Trace(D'D) = Z d?.
i i m=1

Table 4 of the Supplementary material contains the ANOVA table corresponding to the AMMI
model. The use of pseudo F-tests with various prescriptions for the df is based on heuristic approxi-
mations [7,9]. Essentially, corresponding to the mth interaction factor, there are / + J + 1 parameters
Qim,Bjm. and d,,, but there are 2m + 2 orthonormality constraints due to orthogonality to prior
m — 1 contrasts and being normalized to unity. Thus, the mth interaction factor has numerator df:
df(m) = (I +J +1—(2m +2)). The set of M factors together have df = Z%:] df(m). The remaining
interaction df after fitting first M factorsis (/ —1)(J — 1) — Z,tl:l df(m) = —-1-M)(J —1—-M).
Because this pseudo F-test does not have desirable operating characteristics, we relegate the details to
Table 4 of the Supplementary material.

A special case of (9) is of particular interest when M = 1. Namely,

Vij=pn+Ri +Cj+dieifj + e,

doai=) Bi=0: Y of=) pi=1 (11)
i J i j

Thus, the test of no interaction is equivalent to testing Hy : d; = 0. Johnson and Graybill [10] derived
the distributional properties for the likelihood ratio test (LRT) of Hy : d; = 0 . They show that the ML
estimate of dy, d 1 say, is given by the square root of the largest characteristic root of T, say [;. The
maximum value of the likelihood is attained when {e; } and {;} are given by the normalized character-
istic vector corresponding to /; in [T and T'T7, respectively. Consequently, the LRT for Hy : d; = 0
versus H, : dy # 0 is given by

N 1J/2
A= M (12)
YUDW 5

where [] = d 12 again is the maximum non-zero (characteristic) root of [T, That is, /1 is the maximum
value of (3_; >~ i B; yi7)* with respect to o; and B; subject to the restriction that }_; o; = >.;Bi=0
and ) ; aiz => i ,Bf = 1. The critical region for Hy : d; = 0 can equivalently be expressed as follows:

I d?
A¥ = 1 = 1 > constant.

DIy S S £

The asymptotic distribution for the LRT statistic is not y2. Critical points of A* for several choices of /
and J are provided previously [11,28]. The theory is based on deriving asymptotic property of the ratio
of largest characteristic to the trace of a Wishart matrix. We present the details of ML estimation in the
Supplementary material.

Remark 2

In general, the number of components M should be chosen in such a way that the residual ¢;; repre-
sents noise and can again be absorbed with ¢;; leading to a more powerful test with reduced df. Several
studies have investigated cross-validation and significance testing approaches for determining M, the
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appropriate number of multiplicative interaction terms to be retained [29-31]. When the aforementioned
model is saturated, M = [ — 1. We focus on the model with M = 1 in the remainder of the paper and do
not address the issue of data-adaptive selection of M . In our data example, including M = 1 component
was sufficient.

3.1. Biplot and subject-specific and time-specific contributions

In this section, we describe certain graphical diagnostics to provide insight into interaction structures.
In particular, we discuss the best rank-two approximation to an interaction matrix as presented by a
biplot [32]. We then introduce diagnostics to assess subject-specific contribution and time varying
contribution to the leading interaction term.

3.2. Biplot

The biplot is a graphical planar display of the elements, rows and columns of a matrix. Any matrix of
rank two can be displayed as a biplot which is defined through a vector for each row and a vector for
each column, such that the inner product represents each matrix element. For a matrix with higher rank,
one may use the biplot correspondmg to the best rank-two approximation to the original matrix. With
the factor analytic representation [' = ADB’, cach entry of the estimated interaction matrix can be
approximated by the first two terms of the corresponding factor representation by

Vij = di@i1Bj1 + d2diafja.

For G x G interaction, for example, the matrix of interest is a (/ = 3) x (J = 3) matrix with maximal
rank / — 1 = 2, and this representation is exact. There are several choices of defining the vectors; we
define the points P; = (all/zoz,l,alz1 2&,'2) representing row i and the points Q; = (c?ll/zﬁjl,cizl/zﬁjz)
describing column ;.

Bradu and Gabriel [33] explained the use of biplots for interaction models. The patterns of the points
indicate certain models: additivity (the case of two orthogonal lines), Mandel’s row regression model
when P; are collinear and Q; are scattered, or column regression when Q ; are collinear and P; are
scattered. The AMMI model typically will give rise to a configuration where P; and Q; are both scat-
tered. For the special case of AMMI with M = 1, the points are not collinear but co-planar on the
three-dimensional plane. We use this representation for repeated measures data with the cell-means
residual, as described before, to visualize the interaction structure.

3.3. Measures that summarize subject-specific and time-specific contributions of interaction

The question that we stated at the onset was to capture varying effects of time and subject to the interac-
tion term. We take a very different approach than a standard mixed model regression setting as described
in the introduction. We utilize the PIA framework and construct measures that summarize variation due
to individual differences in the size of the contribution to the leading interaction factors. Variation due
to individual differences can be investigated by defining a contrast using the estimated factor weights
(@, ,éj) and the individual person level means for the kth subject in the (7, j)th cell, namely, y ;ix, by
computing the following N subject-specific regression weights for the mth interaction factor [7]:

djm = ZZ&im,éjmy,ijk, k=1,...,N.
i

The larger the value {d,,} for the kth subject, the larger the absolute contribution of the mth factor
to determine the subject’s mean y ;jx. For the mth interaction factor, the variation in the contribution

of each individual can be calculated by a squared term, (Cikm - czm)z, where a?m is ﬁ Dk cikm. The

aggregate measure of squared deviation Z,jcvzl (c?km — dA.m)2 captures total subject-specific variability in
the mth interaction term around the average regression weight.

Variation of different time contributions can be investigated in a similar manner. We may define T’
time intervals of a given width w to cover the study period. We calculate y;;; (t = 1,...,T), which is
the averaged score of all observations in the 7th row and the jth column over the w year follow-up
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period. Then, the variation due to time can be investigated by computing the 7 quantities for the

mth factor
dim = Zz&imﬂjmytij., t=1,....T.
J

1

We can calculate the relative contribution of each time by using a squared term, (c?tm — cf,m)z, where
d ;1S now % > dim. The aggregate measure of squared deviation ZtT:l(d,m —d m)? captures time
variability in the mth interaction term around the average regression weight across the study period. We
illustrate these diagnostics and graphical representation in the following section through analyzing data
from the NAS.

4. Resampling-based interaction tests using mixed models

In Sections 2 and 3, we discussed treatment of the interaction testing problem in terms of reducing the
response in a crude way to average per person and per cell and then thinking of the cell mean as a
single observation per cell. Although this approach is fast and simple, it has many limitations such as
ignoring the time variation in response and ignoring the unbalanced nature of the study design. How-
ever, because of nonlinear structure in the parameters, for example, terms of the form 6R; C; for Tukey’s
model, A; C; for Mandel’s column regression model, and d;«; ; in AMMI model, ML estimation and
establishing asymptotic theory for a general random effects model are hard. There is very little litera-
ture for unbalanced data situations with these models and almost non-existent literature in the repeated
measures observational study setting. Maity et al. [25] presented the most general treatment of Tukey’s
model but only considered the testing problem. Meyer [22] considered balanced data but correlated mul-
tiple response. Solving the testing problem for each of the Tukey/Mandel/AMMI models for a general
random effects structure and unbalanced data, accompanied with analytical asymptotic theory, remains
beyond the scope of the paper. In this section, we develop a set of novel resampling-based tests for
this class of models, which have not been proposed in the literature. The permutation tests use individ-
ual repeated measures and utilize a general mixed effects ANOVA/regression framework followed by a
permutation-based null distribution of the test statistic.

4.1. Two-step regression procedure for Tukey/Mandel models

In step 1, we fit a standard saturated interaction model with y;; using all (/ — 1)(J — 1) df by including
product terms of row and column indicators in the model. For example, with a random intercept structure
for subject k, we first fit a linear mixed effects model

Yhijk = 0+ Sk + Ri + Cj + vij + €niji, (13)

where S ~ N(0, olf) and ep;jk ~ N(0,02). We obtain REML estimates of fixed effects /i, R;, and (f_,-
and variance components 65 and 62 under this model. We then construct the marginal residuals:

Thijk = Yhijk — [ — Ri — Cj.

Recall that even for cross-sectional unbalanced data, there are no closed-form expressions of IQ,- and
C; as in the two-way balanced ANOVA. Using dummy variable regression model is the best way to
express the model estimates in the unbalanced case. In step 2, residuals from step 1, 75« , are regressed
on Iéi é i s

s
rhijk = ORiCj + &,

At step 2, we have used compound symmetry covariance structure, but one can allow for a user-defined
covariance structure in 8;”]. o depending on assessment of model fit criterion. Note that one can alterna-

tively use the subject-specific residuals from step 1, namely, r} ik = Yhijk — n— §k — IQ,- -C i, and use
them as outcomes in a second-stage regression model. Irrespective of the choice of residuals (marginal
or subject specific) that changes the estimation/choice of variance covariance matrix for ¢, the estimate
of 6 at step 2 appears to remain unbiased under the two-step procedure if the original generating model
had the structure y;; = OR;C;. Note that we are exploiting the idea that, after removing the additive
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term, we are expressing the residual variability attributable to both interaction and random error through
a second-step correlated outcome model. To test Hy : 6 = 0, we used a test statistic that has an analogous
form to what we used in the cell-means approach, namely, T7ykey = 62 / 63. To elicit the null distribu-
tion under the two-step approach, we adopt the following resampling strategy. Note that this exercise of
simulating the null can be tricky as one would like to still preserve the main effects and simply eliminate
the interaction pattern. Permuting the Y values or subjects across cells will remove the interaction but
will destroy the main effects structure as well. To bypass this problem, we generate pseudo data Y*
under Hy : 0 =0,

Yo =0+ + Ri+C; + Ehies St~ N©.62). ey~ N©0.62). (14)

where Ié,-, ¢ j,élf, and 63 are REML estimates obtained from step 1 model. We generate 1000 such
pseudo datasets reflecting the null. For each such pseudo dataset (containing N individuals, each with
number of repeated measures as recorded in the original dataset), we fit a two-step regression approach

exactly as our analysis of original data to compute 7,. = 6*2/ 622, We then compare our observed

ukey
value of TT"IE’]fey on the basis of the original data with the sample percentiles of these 1000 test statistics
generated under the null to obtain the p-value corresponding to the test statistic.

Similarly, for Mandel’s column regression model, we regress the residuals from step 1 saturated
interaction model to obtain a set of / — 1 second-step regression coefficients:

1
Phijk = 2iCj + ehyowith )4 =0.

i=1

Again, we consider the familiar form of a multiple of the F-type test statistic to test Hyg : Ay = -+ =
A; = 0. Compute it for pseudo data Y* as in (14) Ty, 0 = Y1, ifz/(}e*z. We then compare the
observed value of the test statistic with the distribution of the test statistics obtained by analyzing the
1000 pseudo datasets generated under the null. The vast literature on choosing appropriate covariance
matrices at the steps 1 and 2 linear mixed effects model can be applied to a particular data analysis as
long as the pseudo datasets are generated and analyzed under the same choices. One could also postulate
alternative forms of the test statistics instead of the ones we borrowed from the cell-means model.

5. Exploring G x G and G x E in the normative aging study

The NAS is a multidisciplinary longitudinal study of aging in Eastern Massachusetts established by the
Veterans Administration in 1963 [34]. Data were collected every 3-5 years, including extensive physical
examination, laboratory, anthropometric, and questionnaire data. The outcome we consider is hearing
threshold as measured by pure tone average of thresholds at frequencies of 0.5, 1, 2, and 4 kHz. Smaller
threshold represents better hearing ability [35]. The dataset contained a total of 662 individuals. Each
individual had at least two measurements, and 62% of them had at least four measurements over time.
Table I shows descriptive characteristics of the study population. We considered two SNPs on genes
related to oxidative stress pathway and one environmental exposure, namely, occupational noise. The
two genetic markers were rs2071746 (T/A) on HMOX-1, a stress response protein, which may offer
protection against oxidative stress, and rs1001179 (C/T) on CAT, a gene that decomposes hydrogen per-
oxide. Mordukhovich et al. have studied both of these SNPs in NAS as an effect modifier in a recent
study of black carbon on blood pressure [36]. However, the role of these genetic markers related to
oxidative stress defense has not been studied for hearing threshold outcomes. Park et al. [37] created an
ordinal measure for lifetime exposure to noise with five levels (1 reflecting lowest noise exposure and 5
indicating highest) on the basis of prior literature.

The estimated minor allele frequencies for the SNPs considered on CAT and HMOX-1 were 0.19 and
0.46, respectively and both SNPs were in Hardy—Weinberg equilibrium (p = 0.30 and 0.67, respec-
tively). There can be a maximal number of M = I — 1 = 3 — 1 = 2 principal interaction factors here,
and the biplot representation is exact. The upper panel of Figure 1 shows the cell means corresponding
to the G x G cross-classification, the matrix I, and the corresponding SVD along with the corresponding
biplot. The plot of cell means suggest evidence for interaction. In the biplot, the points representing the
column array appear to be nearly collinear, suggesting possible evidence for Mandel’s column regression
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Table I. Descriptive characteristics of 662 study participants in the
Normative Aging Study considered in our data analysis.

Variable Mean SD
PTA hearing threshold (dB) (Y) 10.86 6.54
Age (years) 41.66 8.77
Body mass index (kg/m?) 25.71 2.76
N Percent

Race (white) 645 97.43
Education (>12 years) 381 57.55
Type 2 diabetes 13 1.96
Hypertension 28 4.23
Pack years of cigarettes

0 205 30.97

<30 336 50.76

=30 121 18.28
Genes (G)
CAT (C/T) rs1001179

CcC 403 65.96

CT 179 29.3

TT 29 4.75
HMOX-1 (T/A) rs2071746

TT 171 27.67

TA 320 51.78

AA 127 20.55

Environment (E)

Level of noise exposure

1 120 18.13
2 95 14.35
3 182 27.49
4 153 23.11
5 112 16.92

Number of repeated measures

on PTA per subject
2 129 19.49
3 122 18.43
4 155 2341
5 147 22.21
6 85 12.84
7 20 3.02
8 4 0.60

Age, body mass index, health status, and smoking variables are measured
at baseline. Pure tone average (PTA) hearing threshold is averaged over all
repeated measures.

model. Table II presents the results from the different fitted models along with a random intercept mixed
model (under a compound symmetry covariance) with main effects of both SNPs and saturated G x G
interaction. The interaction is marginally significant in only Mandel’s column regression model where
the interaction is assumed to be proportional to the main effect of rs2071746 on HMOX-1 (p = 0.06)
and not significant in any other model. There is evidence of main effect of HMOX-1 as well in the
column regression model (p = 0.05) and from the descriptive statistics.

The AMMI model using the LRT with M = 1 has a p-value between 0.1 and 0.2 for the leading prin-
cipal factor, whereas the pseudo F-test [9] used in the AMMI macro in SAS (SAS Institute Inc., Cary,
NC, USA) [38] has a much larger p-value of 0.61. The 5% upper critical value of AMMI-LRT [10] for
a 3 x 3 array is 0.9994, whereas our observed value is 0.9533. The leading characteristic root of 1,
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Figure 1. Cell means, residuals after eliminating additive row and column main effects, and the SVD of the
estimated I' matrix for G x G (top panel) and G x E (bottom panel) analyses. The numerical arrays are accom-

panied by graphical displays of the cell means, entries of f' and the biplot representation. Results are based on
the Normative Aging Study data.

namely, /; = a’Al2 is 6.82 and [, = 5222 = (0.33. Because the LRT statistic also represents the fraction of

the total variability due to the interaction term explained by the first component, (LRT = d 2/ (ci o+ c?zz)),
we note that the first principal interaction component explains 95% of the interaction sum of squares and
the second principal interaction component can be attributed to random noise.

We carried the same analysis for G x E model with a 3 x 5 table for HMOX-1 and occupational noise
exposure. The maximal number of interaction factors is still 3 — 1 = 2. The lower panel of Figure 1 dis-
plays the cell means corresponding to the G x E cross-classification, the matrix I, and the corresponding
biplot. We observed no obvious pattern in the cell-means plot and biplot. Table II also shows the results
of fitting different models for the interaction between HMOX-1 and noise exposure and fitting a mixed
model with random intercepts. We detected no main effects of gene, exposure, or G x E interaction in
any of the models. The AMMI model using the LRT with M = 1 has a p-value greater than 0.4 for
the leading principal factor, whereas the pseudo F-test used in the AMMI macro in SAS has a larger
p-value of 0.50. The 5% upper critical value of AMMI-LRT from Johnson and Graybill for a 3 x 5 array
is 0.9648, whereas our observed value is 0.8476. The leading characteristic root of T, equivalently,
I = d 12 is4.14 and [, = 6222 = 0.74. Thus, only the first principal interaction component explains 85%
of the interaction sum of squares and the second principal interaction component explains the remaining
noise. An LRT based on fitting the two nested models also supports the same conclusion.

5.1. Subject-specific and time-specific contributions to the principal interaction factors
The left column in Figure 2 displays the contribution of the 662 individuals to the first interaction fac-
tor for G x G and G x E analysis as computed by the (dg; — d.1)? term as described in the previous
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Table II. Analysis results for gene—gene and gene—environment interactions in the Normative Aging Study.
p-Value p-ValueJr

Model Hypothesis Numerator df F (cell mean)  (resampling)

Analysis results for

CAT (C/T) x HMOX-1 (T/A)

Tukey’s 1-df for nonadditivity Hyp:60=0 1 0.87 0.20 0.13

Mandel’s row (CAT) regression ~ Hgp:n; =0 2 0.91 0.52 0.32

Mandel’s column Hyp:1; =0 2 14.84 0.06 0.03

(HMOX-1) regression

AMMI First PI 3.57 F*=0.11 0.61 0.41

AMMI First PI LRT =0.9533 0.1<P <0.2

Mixed model CAT x HMOX-1 4 1.07 0.37

(random intercept, saturated)

Analysis results for

HMOX-1 (T/A) x noise exposure

Tukey’s 1-df for nonadditivity Hy:6=0 1 1.06 0.34 0.25

Mandel’s row Ho:nj=0 4 0.19 0.93 0.85

(HMOX-1) regression

Mandel’s column Ho:1; =0 2 0.97 0.43 0.25

(noise) regression

AMMI First PI 6.36 F*=1.43 0.50 0.69

AMMI First PI LRT = 0.8476 p > 0.40

Mixed model HMOX-1 x noise 8 0.61 0.77

(random intercept, saturated)

Two SNPs, rs2071746 on HMOX-1 and rs1001179 on CAT gene, are considered for G x G analysis. The
G x E analysis considers the interaction between the same SNP on HMOX-1 and occupational noise expo-
sure. We preset results from the four models Tukey’s 1-df, Mandel’s row, Mandel’s column, and PIA via AMMI
with one component. The last column presents the results of resampling-based tests as discussed in Section 4.
F* is the pseudo F-value with fractional df [9]. LRT is the likelihood ratio test statistic [10].

TResults from resampling-based tests using individual level data.
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Figure 2. Subject-specific and time-specific contributions to the first interaction factor in HMOX-1 x CAT
(upper panel) and HMOX-1 x occupational noise interaction (lower panel). Each point in the plot presents the
squared deviations as described in Section 3. Results are based on the Normative Aging Study data.
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section, for k = 1,...,662. One can note that there appears to be more subject-specific variability in
the G x G analysis than the G x E analysis from this plot. The sum of squared deviations, namely,

Z6=21 (C?kl — 42,1)2, has value 7663 for G x G analysis and 4524 for G x E analysis. Figure 1 of the
Supplementary material presents similar plots corresponding to the second interaction factor that reflects
much lesser magnitude of subject-specific variability.

We can investigate variation of different time contributions in a similar manner. We considered 10
time intervals of 2.5 years each to cover the entire study period of 1963-1996. The last time interval
contained all observations after 25 years of follow-up. We then calculated y;;; (f =1, ..., 10), which is
the averaged score of all observations in the 7th 2.5-year follow-up period for all subjects in that (i, j)th
cell. Because of the width of the time interval, there was one observation per individual in each inter-
val. The right column in Figure 2 shows the variation due to different time periods in the contribution
of the first interaction factor. For the gene—gene interaction (CAT and HMOX-1), time has less varying
contribution to the interaction factor as the curve indicates. On the other hand, time had a substantial
effect on the interaction between gene HMOX-1 and occupational noise exposure. It appears that the
time window around 10-20 years of follow-up shows strongest contribution than the period of 0-10 or
20-25 years. With progressing age, the onset of hearing loss becomes more common and the variation
in the quantitative trait is highest in the intervening period. The results suggest that the effect modifi-
cation of cumulative noise exposure is most relevant in that ‘window of vulnerability’ where average
age of the study subjects were in the age group of 55-65 years. The sum of squared deviations, namely,
Z,lcil(a?tl — (2_1)2, has value 23.2 for G x G analysis and 49.9 for G x E analysis. Figure 1 of the
Supplementary material presents similar plots corresponding to the second interaction factor, showing
almost no time-specific variability.

Although these graphical diagnostics do not establish a ‘statistical significance’ of a G x G x Time or
G x E x time term, they do provide important insight into longitudinal features of the interaction factor.
In fact, by fitting a mixed effects model with a compound symmetry error structure, a fixed main effects
of G, E, and continuous time, all pairwise interactions between G, E, and time, and G x E X time, the
three-way term is highly significant with p < 1073,

We also used the resampling-based tests described in Section 4 that uses individual observations to
explore G x G and G x E effects in the NAS data. The HMOX-1 x CAT interaction is significant in
Mandel’s column regression model (p = 0.03). For G xG analysis, the AMMI (M = 1) model using per-
mutation test with Gollob’s statistic has a p-value of 0.41 for the leading principal interaction factor. The
observed value of the two characteristic roots of [ f‘, namely, [, = 6212 =627,1, = 4222 = 0.38 based
on the SVD of I" under a saturated interaction model. Thus, the first interaction factor contributes 94%
of the total contribution of the interaction term. On the other hand, no significant interaction is detected
for G x E interaction analysis for HMOX-1 and occupational noise exposure. The AMMI model using
resampling test has a p-value of 0.69 for the leading principal interaction factor. The observed value of
L = 6212 =3.83,1, = a’Az2 = 0.48. Thus, the first interaction term explains 89% of variability attributed
to interaction term.

6. Simulation study

We carried out a simulation study to assess the power and type I error properties of the four tests for
interaction (Tukey’s 1-df, Mandel’s row and column, and AMMI-LRT with M = 1). We also considered
common epistasis models beyond these four models. We generated individual level data on outcome Y
with ny = 4 repeated measures on each subject k for a total of N subjects. The general description of
the model, following the notations of Section 2, is given by,

Ypijk = 0+ Sk + Ri + Cj + vij + epijks (5)

with the error ek ~ N(0,02), the subject-specific random intercepts Sg ~ N(0, 0,3), and {e, S} are
mutually independent. Thus, the correlation between any two observations on the same subject is given
by p= 05 / (cxe2 + alf). We changed the structure of y;; according to the different simulation models. We
first generated the cell means and then the vector of observations per individual with given mean and
covariance structure from a multivariate normal distribution.

Section 6.1 presents simulation design and results when the data are generated from each of the four
interaction models for a general 7 xJ table. We consider a 3x3 and a 9x5 setting. Section 6.2 specifically
focuses on simulation under common epistasis models [23, 39, 40] for studying gene—gene interaction
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(thus, 3 x 3 tables) with repeated measures on quantitative traits. In all analyses in Sections 6.1 and 6.2,
we summarized data by first computing person level average and then by taking the average over all
individuals in each cell. We then fitted the four models under consideration and implemented tests
for interaction as described in Sections 2 and 3. Under each simulation setting, we generated 1000
datasets, each with N individuals and each individual having four repeated measures. We recorded the
percentage of rejections for the null hypothesis of no interaction. For evaluating the type I error, we
generated data under the additive model. We considered two settings regarding the variance compo-
nents: aez =4, alf =1 and oez =4, olf = 4, leading to p = 0.2 and 0.5, respectively. We considered
N = 900, 1800, 3600, 7200 but only present results for N = 3600 in the main text, as the relative per-
formance of the tests remains the same across all sample sizes, only the absolute power increases or
decreases with increase/decrease in sample size. The Supplementary material contains the results under
some additional settings.

Section 6.3 presents simulation results that compare the cell-mean-based models of Sections 2 and 3
with the resampling tests from Section 4. Because the Section 4 resampling tests have more power as a
result of using individual level data, to obtain variation in the power curves, we use the same parame-
ter/effect size setting as in Section 6.1 but increase the variance component values to 62 = 8, olf =2
and 0 = 8,07 = 8.

6.1. Simulation under the general two-way interaction models

6.1.1. Design and parameter setting. We simulated data according to each of the four interaction mod-
els with the parameters satisfying the constraints described in Sections 2 and 3: Tukey’s 1-df, Mandel’s
row, Mandel’s column, and AMMI (M = 1). Under each of the four models, for a 3 x 3 table, the inter-
action terms were scaled in such a way that they contributed to 15% of the total variation explained by
the model, whereas the remainder is attributed to row and column main effects. We describe the specific
details of the parameter setting for the 3 x 3 table the Supplementary material.

While simulating data under the AMMI model, we assigned the entire contribution due to interaction
effect to the first interaction factor. We simulated cell frequencies as if we had two unlinked causal loci
with allele frequency 0.3 and 0.4 for all 3 x 3 tables. For the larger 9 x 5 table, we pretended as if we
are considering combinations of the two loci with allele frequency 0.3 and 0.4, respectively, along with
an environmental exposure with five categories with prevalence 0.2 in each category. For the 9 x 5 table,
interaction terms were scaled to contribute 20% of the total variability explained by the model, whereas
the rest was attributed to main effects. For simulation under the AMMI model, 75% of the variation due
to interaction was attributed to the first component in the 9 x 5 case. We describe the specific parameter
setting for the 9 x 5 table in the Supplementary material.

6.1.2. Main results. The header on each Figure 3 states the true simulation model while all four ‘test’
models are fitted under each simulation scenario. The left panel in Figure 3 shows the simulation results
corresponding to four tests for a 3 x 3 table. When the true model is Tukey’s 1-df, surely Tukey’s 1-df is
the most powerful test (100% for Ulf = 1,4). Mandel’s row and Mandel’s column models, being more
general than Tukey’s 1-df, can capture the interaction structure as well. AMMI is the worst in this setting
but has a power around 33% for Ulf = 1 and around 21% for 013 = 4. For simulation under Mandel’s
row regression model, Mandel’s row model obviously has highest power (98% and 85% for UZ =1,4
respectively), whereas Tukey’s 1-df and Mandel’s column model can not detect any interaction and has
zero power. Again AMMI is less powerful, with power 25% and 16% for (713 = 1, 4 respectively. Similar
feature holds for Mandel’s column model where Tukey’s 1-df and Mandel’s row fail completely with
zero power but AMMI still can capture some interactions (AMMI: 18% and 11% for ob2 = 1, 4 respec-
tively). With AMMI as the simulation model, all other alternatives fail to capture the interaction in the
3 x 3 setting except the true model. Note that power decreases as og increases in all cases.

The right panel in Figure 3 presents simulation results for the 9x5 array. The same pattern as described
for the 3 x 3 remain except for the case of Tukey’s row—column as the simulation model. For this larger
array, Tukey 1-df, Mandel’s row, and Mandel’s column can capture interactions that are generated by
Tukey’s row—column model, so does AMMI to a lesser extent. All models fail when data is generated
under a general pattern under the AMMI model. Tables 4 and 5 of the Supplementary material present
the numerical percentage of rejected null hypotheses corresponding to Figure 3.

To assess the false positive rates or type I error in the absence of interaction, we generated data with
only additive main effects and no interaction with N = 1800, 3600. Figure 4 presents the percentage of
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Figure 3. Percentage of interactions detected (or null hypotheses of no interaction rejected) by each of the four

tests in the simulation settings corresponding to 3x3 and 9x5 array from 1000 simulated datasets with N = 3600.

Details are described in Section 6.1. The top label within each box represents the true simulation model, whereas

the horizontal axis labels indicate the tests carried out. The error variance o is set at 4 in all cases. Results are
based on cell-means model.
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N = 1800 N = 3600
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T-1DF M-R M-C AMMI T-1DF M-R M-C AMMI
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Percentage of False
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Figure 4. Empirical estimates of type I error rates corresponding to the four interaction tests in a 3 x 3 array
setting based on cell means. Data are generated under additive model, which has only main effects and the set of
tests applied to 1000 simulated datasets under each setting. Simulation settings are described in Section 6.1.

false rejections from 1000 simulated datasets at 5% significance level. All type I error rates are inflated
than the nominal 5%, especially Tukey’s 1-df model. This is due to the use of the cell-mean-based model
and ignoring the unbalanced nature of the data. Note that because of asymmetry in genotype frequency,
the type I error inflation levels for Mandel’s row and column models are not symmetric.

As a summary, the AMMI model follows the ‘mediocrity’ principle of not being the best but performs
reasonably across a spectrum of general interaction models, a robustness feature that is desirable in
agnostic search for interaction. None of the other four models possess this robustness property according
to our simulation study.

6.2. Simulation under common epistasis models

6.2.1. Design and parameter setting. To evaluate the performance of these five models for studying
plausible structures of gene—gene interaction in 3 x 3 tables with repeated measures on quantitative
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traits, we simulated data according to 10 general epistasis models [17]: (1) dominant or dominant (Dom
or Dom); (2) dominant or recessive (Dom or Rec); (3) modified model; (4) dominant and dominant
(Dom and Dom); (5) recessive or recessive (Rec or Rec); (6) dominant and recessive (Dom and Rec);
(7) recessive and recessive (Rec and Rec)[(1)—(7) from [23]]; (8) checkerboard; (9) additive and additive
(Add and Add) [(8) and (9) from [40]]; and (10) a general model. The general model has an arbitrary
interaction pattern, which was simulated without main effects. The left panel in Figure 5 presents a visual
representation of the interaction pattern with true cell means overlayed. In all epistasis models, the grand
mean was set to 12. Minor allele frequencies for the two loci are still set at 0.3 and 0.4, respectively.

6.2.2. Main results. Figure 5 shows the results. Tukey’s 1-df model and Mandel’s row and column
models perform well for epistasis models with main effects (1)—(8). Tukey’s 1-df model and Mandel’s
models are substantially more powerful at detecting interactions in model (1)—(8) than the AMMI model.
When the main effects do not exist (models 9 and 10 represented in the first row), the AMMI model is
the only model that can detect interaction. Thus, in situations where there may not be any main effect of
either loci, the AMMI model is able to capture the interaction as it is more flexible than the other four
contenders that parameterize interaction in terms of main effects.

Thus to conclude, the AMMI model or performing the PIA does not appear to be a desirable choice
for common epistasis structures when compared with Tukey’s 1-df, Mandel’s row, and Mandel’s column
models except for the case when there is no main effects of either loci, but epistasis is present.

6.3. Simulation to evaluate the resampling tests

Because the primary goal of the paper is to introduce screening tools in terms of cell-means approach,
we conducted limited simulations to compare the performance of the resampling-based tests introduced
in Section 4 with the ones in Sections 2 and 3. We considered N = 1800 and the 3 x 3 parameter settings
described in Section 6.1. Because tests of interaction accounting for individual observations have much
greater power than the tests using cell means, we increased the magnitude of the variance components
so that performances of different models can be distinguished. We generated data under two settings:
(1) o = 2and 07 = 8; and (2) 0 = 8 and 07 = 8, both with N = 1800. The within-subject
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Figure 5. Number of interactions detected (or null hypotheses of no interaction rejected) by each of the four tests

in 1000 simulated datasets under 10 common epistasis models. The true models with cell means are displayed

in different colors on the left hand panel. The top label within each box represents the true simulation model,

whereas the horizontal axis labels indicate the tests carried out. The error variance 062 is set at 4 in all cases.
Simulation settings are described in Section 6.2.
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correlations were still 0.2 and 0.5, respectively. Table III shows the power comparison of each of the
four interaction models (Tukey’s 1-df, Mandel’s row, Mandel’s column, and AMMI model) to detect
interactions based on cell-mean approach and the resampling-based testing approach using individual
data.

6.3.1. Main results. As we transition from cell-mean-based model to individual data regression mod-
els, all power values generally tend to increase. Especially the power gain for the AMMI model is quite
impressive. When the true model is Tukey’s 1-df, all models perform reasonably well with Ulf =2
(we detected over 80% interactions). With an increase in olf to 8, the powers decline and range from
48-60%. For simulation under Mandel’s row regression model, the AMMI can detect the interaction,
whereas Tukey’s 1-df and Mandel’s column model have low power (17%, 18% and 10%, 14% for
alf = 2,8 respectively). Similar feature holds for Mandel’s column model where Tukey’s 1-df and
Mandel’s row can hardly detect the interaction, but the AMMI maintains 94% power for (flf = 2 and
58% power for Ulf = 8. With the AMMI as the simulation model, Tukey’s 1-df model can hardly detect
the interaction (28% for GZ = 2), whereas Mandel’s row and column models have power 49% and 60%,
respectively, with UZ = 2. The AMMI has power 89% in this case, which is expected as it is the true
generation model.

Table III. Comparison of estimated power (percentage of significant interactions detected in 1000

simulations) of resampling-based tests accounting for repeated measures with that of F'-statistic-based
test using cell means (N = 1800, 062 =8).

Cell means Repeated measures

True/test model T-1 M-R M-C AMMI T-1 M-R M-C AMMI
ob2 =2

Tukey-1df 90.8 70.7 65.0 18.8 89.0 89.0 90.2 86.1
Mandel-Row 0.0 65.0 0.0 12.5 17.4 93.4 18.4 91.8
Mandel-Col 0.0 0.0 50.6 10.0 9.4 9.7 94.7 93.9
AMMI (M =1) 0.3 0.0 0.0 12.9 28.2 49.1 62.6 89.4
Additive * 13.7 10.6 8.0 4.8 3.6 3.9 4.2 4.1
crg =38
Tukey-1df 69.8 42.7 39.5 9.9 48.8 54.5 59.0 51.0
Mandel-Row 1.3 39.1 0.2 7.5 10.3 55.4 14.0 51.1
Mandel-Col 0.5 0.1 334 8.0 9.5 124 65.7 58.1
AMMI (M =1) 2.7 1.3 1.7 10.2 11.3 25.7 29.6 53.1
Additive * 18.0 15.4 12.6 5.6 3.1 52 5.8 6.0

*Only main effects but no interaction effect.

Power of AMMI Model

Figure 6. Estimated power of the AMMI (M = 1) resampling tests based on individual repeated measures with
dy €(0.1,2.2) under og = 062 = 8ina 3 x 3 array from 1000 simulated datasets with N = 1800. The simulation
settings are described in Section 6.3.
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To assess the false positive rates or type I error of the resampling-based tests, we generated data
with only additive main effects without interaction. The last row (additive) presents the number of false
rejections from 1000 simulated datasets at 5% significance level. When alf = 2, all type I error rates
are maintained at the nominal 5% for the resampling-based tests. Note that the type I error for the
cell-mean-based models again are inflated under the additive null.

We investigated in more detail the power curve of the AMMI (M = 1) model with repeated measures
data to repeated measures with various d; values. Figure 6 displays the power curve of AMMI where
dy ranges from 0.1 to 2.2 under alf =02 = 8in a3 x 3 array setting with 1000 simulated datasets with
N = 1800. One can notice that the repeated measures AMMI test is a valid test, maintaining nominal
error rate and reasonable power across plausible alternatives.

7. Discussion

In this paper, we have made an initial attempt to explore the idea of principal interaction analysis for
repeated measures data on quantitative traits. We compared the proposed approach with other alternative
reduced df tests for interaction and established robustness properties of the AMMI model via simulation
studies across a spectrum of general interaction models. Our simulation study indicates that the AMMI
test may not be very powerful for common epistasis models unless epistasis occurs in the absence of
main effects. In our data analyses, we have provided graphical diagnostics to visualize the time-specific
and subject-specific contributions to interaction terms.

We have concentrated on the AMMI model with M = 1 and used the LRT [10]. We have downplayed
the issue of formal selection of the number of interaction components M given the limited scope and
length of the paper. That is an interesting question in itself that requires further research and appropriate
strategies for inference.

We have primarily adopted a different and somewhat naive route of summarizing the data in terms of
cell means in the / x J configuration and apply classical interaction models for testing non-additivity
that are designed for single observations per cell. However, we then have developed new resampling-
based tests that used a mixed effects regression framework and fully capitalize on the repeated measures
data structure, account for unbalanced data structure in Section 4 for all the models we considered. Our
simulation study indicates that the resampling-based tests are valid tests maintaining nominal error levels
and have substantially increased power over the cell-mean-based approach, especially when olf is large.
One can incorporate complex covariance structures, time-varying exposure, longitudinal effects of time,
and adjust for covariates by extending the first-step mixed effects regression model in Section 4. One can
explore using generalized estimating equation instead of mixed models in Section 4. We have focused
on testing; estimation-related properties of these procedures need to be studied as well.

A proper ML approach with repeated measures data and an unbalanced design setting will be more
appealing if closed-form expressions for test statistics and their analytic distribution could be obtained
instead of the resampling-based approach. Viele and Srinivasan [41] adopted a Bayesian methodology
to bypass the complexities to fit the AMMI under complex/unbalanced data structure. One can also fit
the AMMI model in a restricted ML framework for mixed models [21,22]. Tests developed for Tukey’s
model under a general regression setup (including nonlinear models) can be extended to the more general
Mandel’s row/column and Tukey ’s row—column models [24,25].

The cell-mean-based approach can be viewed as a screening tool to obtain exploratory/preliminary
idea about the interaction structure. In that sense, the PIA for this problem is not just the AMMI test but
the accompanying simple visuals and diagnostics as well. The idea of first fitting additive terms and then
representing the residual matrix via a sparse decomposition appears to be a promising approach to study
non-additivity. Further development of ML-based or REML-based estimation approaches with proper
asymptotic theory are warranted to follow-up the current study.
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