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CHAPTER I

Introduction

The maturation of quantum physics in recent decades has seen a shift from the

passive description of quantum phenomena to the active viewpoint of manipulation

and engineering. Two broad areas of study, both taking root in the eighties, played

a key role in this shift. Firstly, the promise of quantum computation [35], originally

imagined by Feynman [18], has prompted a wide search for means to implement a

quantum computer. A quantum computer, consisting of qubits (two-level quantum

systems) instead of ordinary zero-one bits, would allow the implementation of al-

gorithms that would be impractical on a classical computer. Despite considerable

effort, experimental progress towards this end has been slow. Secondly, the devel-

opment of the laser has given us a powerful and precise tool to manipulate chemical

systems, and this has suggested the potential for coherent control of molecular re-

actions (Tannor and Rice [57, 42] as well as Shapiro and Brumer [47, 48] provided

the foundation). “Coherent control” here means the use of quantum interferences to

favor certain pathways in chemical reactions by shaping the attributes of the laser

beam. The development and success of mathematical control theory as applied to

classical systems (for example, in robotics and aeronautics), suggests the parallel

study of quantum control, in which one determines what is mathematically possible
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to do to, and with, quantum systems.

Controlling quantum systems when they are exposed to an environment has

proven to be a thorny problem. There are of course issues with how to model the

interaction with the environment and what assumptions to use. Even after pinning

down a model, however, the mathematics is generally much more challenging. In par-

ticular, the theory of closed systems relies heavily on the unitary group of evolution

operators. The group structure is generally spoiled by exposing the system to the

environment, and one is left with only a semi-group structure. This thesis considers

a common model for open systems called the Lindblad equation and addresses the

question of controllability under this model.

Before diving into original work, this introduction will discuss (1) basic notions

of controllability, (2) the main results for control of closed quantum systems, (3) the

dynamics of open quantum systems, particularly Lindbladian systems, and (4) an

example of a physical quantum control system, the trapped ion.

1.1 Notions of controllability

There are four general questions that one can ask about controlling the evolution

of dynamical systems:

1. Can we get there? (controllability)

2. How do we get there? (trajectory planning)

3. What is the best way to get there? (optimal control)

4. How do we stay there? (stabilization)

The first three questions fall under the study of open-loop control, in which no

observation or measurement need be included in the control process. The fourth
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question involves closed-loop control, as it requires a feedback mechanism. While

very interesting questions arise in the study of closed-loop quantum control (because

the measurement postulate, which is not even fully understood in epistemic terms,

plays a fundamental role), this thesis does not consider research in this direction (see

[32] and [8] for references).

Furthermore, the second question above is often subsumed as a particular optimal

control question in the quantum setting. The payoff functional is often defined to

be the overlap of the final state with a target state: J = |〈ψf |ψtarget〉|2. Trajectory

planning is then reduced to the problem of attaining a payoff of one. A lot of work

has gone into quantum optimal control: Peirce et al. [37] and Tannor et al. f[56]

were seminal works. Zhu and Rabitz [61] laid out a numerical algorithm for control

of closed systems. Rangan and Bucksbaum [41] and later Palao and Kosloff [36]

connected optimal quantum control with quantum computation. Khaneja, Brockett

and Glaser [23, 24] considered time optimal control in the context of spin systems.

Carlini et al. studied the time optimal control of mixed systems under Lindblad

dissipation, and Xu et al. [59] considered control under non-Markovian dissipation.

Tannor, Sklarz, Bartana and Khaneja [55, 49] studied the laser cooling problem.

Sugny and co-workers studied optimal control of pure systems in [53] and control of

mixed systems in [52, 54].

While questions of optimality are important, this work deals primarily with the

first question, namely whether attaining a target state from an initial state is even

possible. Two notions of controllability will dominate the analysis: global controlla-

bility and small-time local controllability. First, we establish the general notion of a

control system [17]:

Definition I.1. A control system is a quadruple (M,T,U ,Θ). M is the state space,
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and is often a differentiable manifold. T is the time set − while discrete-time control

systems exist, this work presumes that T = [0,∞). U is the set of control functions,

which map from T to some control set U. These functions will be assumed to be

piecewise continuous. Finally, Θ is the transition function which maps the initial

state to final states: Θ :M×T×T×U →M. That is, given an initial state, initial

time, final time, and control function, Θ produces a final state. For continuous-time

control systems, Θ is usually defined implicitly using a differential equation.

One can define an equivalence relation onM: m1 ∼ m2 if and only if there exists

a control function u12 ∈ U that steers m1 to m2 in finite time, and a control function

u21 that steers m2 to m1. By definition, this relation satisfies the symmetry property.

It is reflexive since any state is steered to itself in zero time. It is transitive only

if we assume the following closure property of U : if u1(t), u2(t) ∈ U , then, for any

0 ≤ a ≤ b, θ(a− t)u1(t)+θ(b− t)u2(t−b) is also in U , where θ(t) is the step function.

In this way, we can turn control functions off and on. If we assume this property, ∼

is an equivalence relation and partitions M into equivalence classes.

Definition I.2. A subset M′ of M is globally controllable (GC) if it is a subset

of such an equivalence class. M′ is maximally globally controllable (MGC) if it is

identical to an equivalence class.

While it is a priori possible to have many sets that are maximally globally control-

lable, in the systems we consider such a set is typically unique (neglecting singleton

sets of course). Note that global controllability imposes no condition on the time to

transition between states. The following stronger notion of controllability takes this

into account:

Definition I.3. Let Rt(m) be the set of states reachable from state m in time t or
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less. A control system is small-time locally controllable (STLC) at a state m if and

only if, for any t > 0, m is in the interior of Rt(m).

Essentially, if one has STLC, one may reach nearby states in short times. If

one has GC but not STLC, one may be able to reach nearby states but only using

circuitous routes.

1.2 Control of closed systems

While much work has gone into developing the theory of quantum control, the

large majority of progress has been with respect to closed quantum systems. Math-

ematically, these systems are cleaner because of the group structure that unitary

dynamics provides. Thus, the seminal work of Jurdjevic and Sussmann [22], as well

as Brockett [10, 11] on controllability of Lie groups can be applied, as introduced by

Ramakrishna, Rabitz et al. [39]. The time-evolution operators for open systems, on

the other hand, form only a semi-group. But before discussing the dynamics of open

systems, we present a quick survey of the control of closed systems.

The state space of a closed quantum system is a complex projective Hilbert space

H. Throughout this work, we will assume this Hilbert space is finite-dimensional.

Typically, we consider a state to be a vector in the non-projective space with norm

one. To preserve norm, the evolution between two distinct times is described by a

unitary operator U(t1, t2)

U(t1, t2) |ψ(t1)〉 = |ψ(t2)〉

where the bra-ket notation defines |ψ〉 to be a vector and 〈ψ| to be its algebraic dual.

The differential version of this evolution is the Schrödinger equation:

d

dt
|ψ(t)〉 = −iH(t) |ψ(t)〉
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where H(t) is Hermitian and called the Hamiltonian operator, and d
dt
U(t, t1) =

−iH(t)U(t, t1). In the control perspective, the control functions often appear as

part of the Hamiltonian: H(t, u(t)) = H0 + Σui(t)Hi, and U is some subset of Rn.

Henceforth, the time dependence shall be suppressed and the Hamiltonian will be

abbreviated H(u).

The preceding formulation is known as the Schrödinger picture. An alternate

formulation, known as the Heisenberg picture, considers states to be stationary and

makes operators dynamical. In this picture, the unitary evolution operator, as well as

the Hamiltonian, carry over, and the dynamical equations for an arbitrary operator

A(t) are

A(t2) = U †(t1, t2)A(t1)U(t1, t2)

d

dt
A(t) = [−iA(t), H(t)].

When one wants to consider ensembles of states (i.e. quantum statistics), as well

as open systems, the density operator picture is introduced. The density opera-

tor ρ corresponding to a single state |ψ(t)〉, is the rank-one operator |ψ(t)〉〈ψ(t)|.

An ensemble of such orthogonal states is a linear combination of such operators∑
i pi|ψi(t)〉〈ψi(t)|, where

∑
i pi = 1. Any ensemble can be represented by a positive-

semidefinite density operator with trace one, and the probability that a system is in

state |ψi(t)〉 is 〈ψi(t)|ρ|ψi(t)〉.

There are various measures of purity, which measures how close a density operator

is to a single quantum state, but the most common is: P2(ρ) =
√

Tr(ρ2). For an

n-dimensional system, P2(ρ) ∈ [ 1
n
, 1], where the operator with minimal purity is

unique: P2( 1
n
I) = 1

n
. The latter state is known as the completely mixed state.

The extension of the Schrödinger equation to density operators is the von Neu-
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mann equation:

d

dt
ρ(t) = [−iH(u), ρ(t)] .

Note this equation preserves rank and purity.

D’Alessandro [15, 1] has specified some notions of controllability that relate to

these evolution equations. Operator controllability is defined as the condition that,

for any unitary operator Uf acting on H, there exist a (finite) time T and admissible

control(s) u(t) such that the solution to the evolution equation specifies U(T, 0) = Uf .

A weaker notion of controllability relates to the Schrödinger equation: pure state

controllability is the condition that, for any pair of initial and final states |ψi〉 and

|ψf〉, there exist a time T and admissible control(s) u(t) such that the Schrödinger

equation, using the initial condition |ψ(0)〉 = |ψi〉, gives |ψ(T )〉 = |ψf〉.1

D’Alessandro adds a third notion: density matrix controllability is the condition

that given any two unitarily equivalent2 density matrices ρi and ρf , there exist a

time T and control(s) u(t) such that ρ(0) = ρi under the von-Neumann equation is

steered to ρ(T ) = ρf . This is only a useful definition for closed systems, however,

since open systems involve non-unitary dynamics. One can show that operator and

density matrix controllability are equivalent, whereas pure state controllability may

be satisfied even when the stronger conditions are not.

In finite dimensions, the dynamics occurs on a compact Lie group. The compact-

ness is essential in what follows: one can directly apply established classical results for

control over spheres [11] to quantum systems. The standard procedure to determine

controllability on a compact Lie group is to evaluate the dynamical Lie algebra. First

1D’Alessandro defines pure state controllability as controllability on the non-projective Hilbert space, as distin-
guished from equivalent state controllability, which applies to the projective space. Using theory of Lie groups and
algebras, however, one can show that either notion implies the other.

2that is, there exists a unitary U such that ρf = UρiU
†
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one chooses a basis for the linear space spanu∈U{−iH(u)}. For a bilinear3 system,

this basis can be {−iH0,−iH1...}. The dynamical Lie algebra L is then just the Lie

algebra generated by this basis set. This Lie algebra can be calculated iteratively by

taking commutators of increasing depth, a procedure which clearly must terminate

for a finite dimensional system (although it may be tedious for high dimensions).

One then uses the following theorem [15] to determine controllability:

Theorem I.4. An n-dimensional quantum control system is operator controllable if

and only if L = u(n) or L = su(n).

A simple dimension count suffices to decide whether this criterion is satisfied: dim (L)

must be n2 or n2 − 1.

For a system to be pure state controllable, it suffices that the Lie group eL is

transitive on the complex sphere Sn−1
C . Results from Lie group theory can be used

to prove the following theorem[15].

Theorem I.5. An n-dimensional quantum control system is pure state controllable

if and only one of the following conditions holds:

1. The system is operator controllable.

2. L is conjugate to the symplectic Lie algebra sp(n
2
).

3. L = span{iId} ⊕ L̄, where L̄ is conjugate to sp(n
2
).

Once the reachable set has been determined (that is, the Lie group eL which contains

all operators U(t, 0) that can be achieved in finite time), one can use the following

proposition [15].

3Bilinear in this case means the system is linear in both the control variables, as well as the state, so that
d
dt
|ψ〉 = −i(H0 +

∑
k ukHk)|ψ〉.
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Proposition I.6. If eL is a compact Lie group, whose algebra is generated by a set

{A1, A2...}, then any element of the group may be expressed as a finite product of

exponentials eAiti.

This means any operator that is reachable can be reached using a finite sequence

of piecewise constant controls. Determining the order in which the generators should

be applied, and for how long, may not be straightforward. Also, a practical concern

for quantum control is that piecewise constant control functions may involve very

high frequency components, corresponding to transitions between widely separated

energy levels that have been neglected in the modelling process.

1.3 Lindblad dissipation

Downplaying the influence of the environment is not an option if quantum control

theory is to be useful with respect to interesting applications. Fighting decoherence

(that is, the tendency of the environment to destroy quantum coherences) has long

been recognized as the primary barrier to building a practical quantum computer:

while quantum computations have been performed for a very small number of qubits,

the influence of the environment grows with size, and neutralizing this influence

is necessary to scale these computations up into those of practical use. Similarly,

modelling the control of chemical reactions as a closed system is also unrealistic.

Many reactions take place in solution and can be very sensitive to temperature.

Indeed, biomolecules such as proteins require a solvent and a narrow temperature

range to function as they do.

As mentioned, in studying open quantum systems, there is much work in choosing

how to model the environment, before the mathematics can be studied. The most

general dynamical equation incorporating the environment is an integro-differential



10

equation called the Nakajima-Zwanzig (NZ) equation [9]. Essentially, if there is

coupling between system and environment, the dynamics of the system depends on

the state of the environment and the entanglement between system and environment.

Both of these are affected by the history of the system, so an integro-differential

equation is required.

For simplification purposes, one often makes the two following assumptions, which

allow us to work with a differential equation instead:

1. The dynamics is Markovian. That is, the evolution of the system at time t1

depends on ρ(t1) and not on its past history.

2. The dynamics is time-invariant.

If these two conditions are met, one has what is called Lindblad dissipation. This

work only considers this type of open system dynamics.

A derivation of the Lindblad and Lindblad-Kossakowski equations, which de-

scribe Lindblad dissipation, can be found in [9]. Lindblad’s work can be found in

[30], although Gorini, Kossakowski and Sudarshan concurrently studied the finite-

dimensional case in [20, 19]. I will present here a derivation based on Preskill’s notes

[38] that relies on Kraus operators. This derivation is slightly less rigorous but will

be helpful for the interpretational framework that will be presented in the following

chapter.

A superoperator $(·) is a completely positive4 map from the set of density oper-

ators to itself: $ : ρ → ρ′. In particular, the time-evolution of a density operator

is described by a superoperator $t1,t2(ρ(t1)) = ρ(t2). It can be shown [35] that any

4$ is completely positive if it is positive and if Ik ⊗ $ is positive for all k. In other words, the map is still physical
when a non-interacting environment is introduced.
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superoperator has an operator-sum representation:

$(ρ) =
∑
j

MjρM
†
j

where the Mj’s are called Kraus operators. For the superoperator to be trace-

preserving, the Kraus operators must satisfy the normalization condition
∑

jM
†
jMj =

I. Note that if there is only one Kraus operator, it must be unitary, so the single-

operator case describes the dynamics of a closed system, while open systems require

more than one operator. The operator sum-representation is also not unique; how-

ever, any two such representations can be connected by a unitary operation on the

space of matrices: M
(2)
j =

∑
k ujkM

(1)
k , with

∑
j uikūjk = δij.

Now consider a density operator at time t + δt. The assumption of Markovicity

means it is completely determined by ρ(t). We can write it as

ρ(t+ δt) = $t,t+δt(ρ(t)) = ρ(t) +O(δt) = M0ρ(t)M †
0 +

∑
j=1,2...

Mjρ(t)M †
j

where M0 = I + O(δt), and Mj = Lj
√
δt + o(

√
δt) for j ≥ 1. We must satisfy the

normalization condition, so we write M0 = I + (−iH + K)δt + o(δt), where H and

K are Hermitian. We then have

∑
j=0,1...

M †
jMj = I + 2Kδt+

∑
j=1,2...

L†jLjδt+ o(δt).

It is clear that K = −1
2

∑
j=1,2... L

†
jLj. Note that we are treating H, K and the Lj’s

as constant matrices, which follows from the time-homogeneity assumption.

By taking δt→ 0, we can turn the operator-sum representation into a differential

equation, known as the Lindblad equation:5

(1.1)
dρ

dt
= [−iH, ρ] +

∑
j=1,2...

(
LjρL

†
j −

1

2
{L†jLj, ρ}

)
.

5Throughout this thesis, square brackets indicate a commutator, and curly braces an anti-commutator: [A,B] :=
AB −BA and {A,B} := AB +BA.



12

The operator H is the total Hamiltonian, but it may not be identical to the system

Hamiltonian. There may be a contribution from the system-environment coupling.

The operators Lj are known as Lindblad operators, or jump operators. Note we

have not imposed any upper bound on the number of Lindblad operators, but for

a finite-dimensional system, any Lindblad equation can be written with at most

N2 − 1 traceless operators that are orthogonal to each other (with respect to the

Hilbert-Schmidt inner product (A,B) = tr(A†B)).

To see this, we introduce the Lindblad-Kossakowski equation. Pick a basis {lk :

k = 0, 1, 2 . . . N2−1} for the N2-dimensional space of operators on the Hilbert space

that (1) is orthonormal to the Hilbert-Schmidt inner product and (2) has l0 = 1√
N
I,

with the remaining lk’s traceless. If Lj =
∑

k ajklk, then

LjρL
†
j −

1

2
{L†jLj, ρ} = [

1√
N

∑
k=1,2...

1

2
(aj0ājkl

†
k − ajkāj0lk), ρ]

+
∑

k,l=1,2...

ajkājl

(
lkρl

†
l −

1

2
{l†l lk, ρ}

)
.

The first term just adds to the total Hamiltonian, and the second gives a non-

diagonal version of the dissipative term in the Lindblad equation. The ajkājl’s form

a (rank-one) positive-semidefinite matrix of coefficients. When the contributions of

all Lindblad operators are summed, their corresponding matrices will combine to

also give a positive-semidefinite matrix A, with entries Akl =
∑

j ajkājl, which is

called the Gorini-Kossakowski-Sudarshan (GKS) matrix. We can now write down

the Lindblad-Kossakowski equation:

dρ

dt
= [−iH, ρ] +

N2−1∑
j,k=1

Ajk

(
ljρl

†
k −

1

2
{l†klj, ρ}

)
.

Note that the H may be different than in the first version of the Lindblad equation,

as some of the Lj’s could have components in the l0 direction.
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Since A is positive-semidefinite, it may be diagonalized. Its eigenvalues will be

non-negative and it has an orthonormal eigenbasis. It follows that any Lindblad

equation can be written in diagonal form:

dρ

dt
= [−iH, ρ] +

M≤N2−1∑
j=1

(
LjρL

†
j −

1

2
{L†jLj, ρ}

)
.

We now have a different set of M Lindblad operators {Lj}; they are the eigenvectors

(in the space of operators) of A corresponding to its M non-zero eigenvalues, with

norm equal to the square root of its eigenvalue. Note that these Lindblad operators,

besides being mutually orthogonal, are traceless, as the non-traceless parts can al-

ways be absorbed into the total Hamiltonian. Henceforth, we will refer to both this

“diagonal” version, as well as (1.1), as the Lindblad equation. If we require orthogo-

nality of the Lindblad operators, we shall say so. For all versions, the superoperator

LD(ρ) will be used to abbreviate the dissipative term.

Lindblad superoperators can be characterized as unital or non-unital. LD(ρ) is

unital if LD(I) = 0 (in other words, the completely mixed state is stationary). In

terms of the Lindblad operators, the superoperator is unital if and only if all Lindblad

operators are Hermitian, since LD(I) =
∑

k[Lk, L
†
k]. In terms of the GKS matrix,

the superoperator is unital if and only if the GKS matrix is symmetric. It follows

that the space of unital systems has dimension n(n+1)
2

, while the space of all Lindblad

systems has dimension n2.

Control of Lindblad systems typically presumes that control variables only ap-

pear in the Hamiltonian piece. There has been work towards engineering quantum

decoherence, particularly Markovian decoherence [45, 31, 2], that has been experi-

mentally supported [3] recently. This thesis however will presume that the Lindblad

operators are not engineered (or changing in time).
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1.4 Physical example: the trapped ion

An example of a physical system that captures various features of interest is the

trapped ion system (see Wineland and co-workers [58, 27] for an overview). Cirac

and Zoller [14] proposed this system as a possible platform for quantum computation.

The ion itself is a finite-dimensional system: Cirac and Zoller proposed a three-level

system, although Monroe et al. showed that only two levels are necessary [33]. These

finite dimensions are internal degrees of freedom, e.g. electron or nuclear spin. An

ion can be cooled in a trap, so that there is an external vibrational degree of freedom,

which can be modelled as a linear harmonic oscillator. The system Hamiltonian is

given by:

Hsys = Hion +Htrap =

(
1

2
E0σz

)
⊗ Id+ Id⊗

(
νa†a

)
.

Here, the Hilbert space is a direct product of a two-level system with the infinite-

dimensional harmonic oscillator Hilbert space. The annihilation and creation opera-

tors for the oscillator are a =
∑∞

j=0

√
j + 1|j〉〈j+ 1| and a† =

∑∞
j=0

√
j + 1|j+ 1〉〈j|,

so that a†a =
∑∞

j=0 j|j〉〈j|. E0 is the energy-level separation between the internal

states of the ion, and ν is the separation between the oscillator states. To distinguish

states of the ion, we shall designate σz above as | ↑〉〈↑ |−| ↓〉〈↓ |, so that |n = 0, 1 · · · 〉

represent oscillator states.

The ion can be controlled by addressing it with a laser (for a quantum computer

with multiple ions, each ion can be addressed by a separate laser). One can use two

traveling-waves, in the direction of the vibrational motion:

Hint = (λσ+ + λ∗σ−)⊗ E(t)

E(t) = Ec(t)eikcxe−iωct + Er(t)eikrxe−iωrt + h.c.
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where h.c. denotes the Hermitian conjugate of the preceding terms, λ is the coupling

strength and E(t) is the electromagnetic field. The frequencies are tuned so that the

so-called carrier frequency ωc = E0 and the red-sideband frequency ωr = E0 − ν.

The position operator for a harmonic oscillator is x = 1√
2mωr

(a+ a†), so if we define

ηi := ωi
c
√

2mωr
, which are called the Lamb-Dicke parameters, we have

E(t) = Ec(t)eiηc(a+a†)e−iωct + Er(t)eiηr(a+a†)e−iωrt + h.c.

Now if one transforms into the interaction picture (i.e. using a time-dependent basis),

where |ψ〉 = e−iHsyst|ψ〉I , the interaction Hamiltonian can be written, after using a

rotating-wave approximation [25],

Hint = λσ+ ⊗
(
Ec(t)e−ηc(ae

−iνt+a†eiνt) + Er(t)e−ηr(ae
−iνt+a†eiνt)

)
+ h.c.

Furthermore, ν is typically much larger than the magnitude of the interaction Hamil-

tonian, so the interaction Hamiltonian can be approximated as [25]:

Hint = σ+ ⊗
(
∞∑
n=0

cn(t)|n〉〈n|+ rn(t)|n〉〈n+ 1|
)

+ h.c.

cn(t) = λEc(t)e−η
2
c/2L(0)

n (η2
c )

rn(t) = λEr(t)
iηr√
n+ 1

e−η
2
r/2L(1)

n (η2
r)

where L
(m)
n (·) are the generalized Laguerre polynomials.

We now have an infinite-dimensional system (see figure 1.1 for a schematic), sub-

ject to two control fields. Ec(t) and Er(t) are the control functions. Law and Eberly

[26, 25] (see also Yuan and Lloyd [60]) provided a scheme to steer an arbitrary initial

finite superposition of states (i.e. in the energy-eigenbasis, only a finite number of

components are non-zero) to an arbitrary final finite superposition. Bloch, Brockett

and Rangan [4] extended this by providing criteria by which any infinite-dimensional
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system has this property, a result they call the Finite Controllability Theorem. One

can steer an arbitrary superposition to the ground state | ↓, 0〉 by alternating the car-

rier and red-sideband fields. A state with the top populated component | ↑, n〉 can be

steered using the carrier frequency to one with top populated component | ↓, n〉. Sim-

ilarly, if the top populated component is | ↓, n〉, the red-sideband frequency can be

used to depopulate the top component, so that the new top component is | ↑, n− 1〉.

Once the ground state is reached, the process of sequential application of fields can

be reversed to attain an arbitrary final (finite) superposition.

n=0

n=3
n=4

n=1

n=2
S=

S=
ω

ω

c

r

Figure 1.1: Schematic of a spin-half particle coupled to a harmonic oscillator, subject to control
fields with the carrier and red-sideband frequencies.

This thesis considers only finite-dimensional systems, however, and in fact the

trapped ion can be made effectively finite [40]. The trap strength can be tuned to

manipulate the Lamb-Dicke parameters ηc and ηr, and if either η2
c or η2

r corresponds

to a root of L
(0)
n or L

(1)
n , respectively, that transition is turned off. For example, if

L
(0)
n (η2

c ) = 0, then a (2n + 1)-dimensional Hilbert space is sequestered from higher

levels, in the sense that a superposition of the states {| ↓,m〉 : m ≤ n} ∪ {| ↑,m〉 :

m < n} can only be steered to other superpositions of these states. This “finitized”
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trapped ion is controllable, so we may consider it as a model system for controllable

quantum systems of arbitrary finite dimension.

The central question that this thesis tackles is: how much controllability do

we retain if such a system is subject to Lindblad dissipation? One mechanism of

dissipation is the eigenstate jump, which is modelled with the Lindblad operator

√
γs1s2n1n2|s1, n1〉〈s2, n2|. Under such an operator, the state |s2n2〉 will jump to the

state |s1n1〉 at a rate γs1n1s2n2 . For example, a state | ↑, n〉 may spontaneously emit

a photon of frequency ωc, thereby jumping to the state | ↓, n〉. Conversely, a state

| ↓, n〉 may absorb a photon of frequency ωc and jump to the state | ↑, n〉.

Much of the research in this thesis is inspired by the work of Tannor and co-

workers [55, 49] who studied laser cooling of atoms. “Cooling” in this sense meant

driving a mixed state, in the presence of spontaneous emission, to the (pure) ground

state. It was noted that, without emission, the purity could not be increased. While

the Hamiltonian control could not directly influence purity, it could be used to steer

the system to states where the emission process was optimized. This idea will recur

throughout this thesis: Hamiltonian control fields, in the absence of dissipation, can

only steer density operators along a unitary orbit. Only through dissipation can the

system transition between orbits, thereby changing purity. The question is: how do

we steer along the orbit so that this motion between orbits is to our liking?

Previous work of my adviser Anthony Bloch has also motivated me. His work

with Brockett and Ratiu [5] as well as with Krishnaprasad, Marsden and Ratiu [6]

used nonlinear double bracket terms as a way of modeling dissipation. In certain

instances, for example when the Lindblad operators are Hermitian, the dissipation

superoperator in the Lindblad equation can be written as a sum of (linear) double

brackets. In Bloch and Rojo [7], the control of squeezed quantum states was studied,
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including the case where the system is exposed to an an infinite bath of oscillators.

Other important work that contributed to my thinking include that of Solomon

and Schirmer, who studied Lindblad dissipation and control on finite-dimensional

systems [50, 51]. Dirr, Helmke and co-workers [16] studied control of finite-dimensional

Lindblad systems using a Lie-semigroup structure. Li and Khaneja [28, 29] also stud-

ied finite-dimensional quantum control involving ensembles of Bloch balls.

1.5 Overview of thesis

With preliminaries out of the way, we now lay out the results of this thesis. The

second chapter covers our analysis of the two-dimensional case. We begin with a

classification of possible Lindblad operators, and then proceed to the first main result:

how to isolate the dynamics between unitary orbits from the dynamics along unitary

orbits. This results in a new control system, consisting of a one-dimensional ODE

and a control set homeomorphic to S1. We proceed to analyze the controllability

of this system, and this analysis allows us to classify the purifiable systems in two

dimensions. This work has been submitted for publication and can be found on the

ArXiV [43].

Chapters three and four consider three-dimensional systems. We proceed with

isolating the inter-orbit dynamics and come up with differential equations. As the

control set is more complicated than for two dimensions, we instead consider a re-

duced control set consisting of just six controls. This leads to some interesting

analysis of both small-time local controllablility and global controllability. In partic-

ular, we discover some beautiful combinatorial formulas that describe certain points

on the set of STLC.

The final chapter lays out what we can generalize to arbitrary finite dimensions.
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In particular, we are able to write down differential equations that describe the

inter-orbit dynamics. Moreover, we are able to generalize the small-time local con-

trollability result. We are also able to show that our first combinatorial formula

result holds for arbitrary dimension.

This thesis proceeds from two to three to higher dimensions for pedagogical rea-

sons. The two-dimensional case is fairly well developed, and the set of density ma-

trices can be visualized as a closed ball in R2. The three-dimensional case is consid-

erably more challenging. The set of density matrices is not easy to visualize as it is

eight-dimensional. The set of unitary orbits however can be visualized as a closed

subset of R2. This allows us to use some visual intuition in our proofs. Proceeding

to higher dimensions, we see a lot of the results closely follow the three-dimensional

case, although here we have to work more abstractly in some of our proofs.



CHAPTER II

Two-Dimensional Systems

2.1 Interpretation of Lindblad operators

It would be helpful to have a more intuitive interpretation of a given Lindblad

operator, and we begin by providing one for the n = 2 case. We will do this by

considering what a Lindblad operator L does to an arbitrary pure state |ψ〉. In a

short time interval δt, this pure state becomes M0|ψ〉〈ψ|M †
0 + M1|ψ〉〈ψ|M †

1 , which

is a mixture of two pure states. So we can think of the pure state as branching

into one of two states at every given time. M1 is just the Lindblad operator L

times
√
δt, and we can think of the second term as representing a jump to a state

1√
〈ψ|L†L|ψ〉

L|ψ〉 with probability 〈ψ|L†L|ψ〉δt. It is considered a “jump” because the

destination state does not tend to the original state as δt → 0. With probability

1 − 〈ψ|L†L|ψ〉δt, there is no jump, but that does not mean the state is stationary.

We have M0 = I− 1
2
L†Lδt, which means the branch that has stayed behind may still

drift (we use the word “drift” to emphasize the fact that the distance between the

old and new states is of order δt).

Since we are dealing with two-dimensional traceless operators, the Lindblad op-

erator must fall into one of three cases:

1. Its only eigenvalue is zero.

20
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2. It has two distinct eigenvalues ±λ, and its eigenvectors are orthogonal.

3. It has two distinct eigenvalues ±λ, and its eigenvectors are not orthogonal.

2.1.1 Case 1: the degenerate Lindblad operator

Neglecting the trivial case of a Lindblad operator that is the zero operator, we are

left with the case of an operator with a one-dimensional eigenspace. Such a Lindblad

operator can be written L =
√
γ|a〉〈b|, where |a〉 and |b〉 form an orthogonal basis

for the Hilbert space. This means that the destination of the jump is always |a〉, and

the probability a state |ψ〉 = ca|a〉+ cb|b〉 jumps to |a〉 is γ|cb|2δt. As for the drifting

branch, M0 = I − 1
2
L†Lδt = I − γ

2
|b〉〈b|δt, which can become a differential equation

of an un-normalized vector:

d

dt
|ψ〉 = −γ

2
(|b〉〈b|) |ψ〉.

which has the general solution |ψ〉 = ca(0)|a〉 + cb(0)e−γt/2|b〉. The norm of this un-

normalized vector is the square root of the probability the state is still in the drift

branch. The normalized vector clearly tends to |a〉 over time, unless the initial state

is |b〉, in which case the drifting branch is stationary. There are two possibilities

then:

1. If the initial pure state is |b〉, the drift branch is stationary, but there is a

constant probability rate of jumping, γ, as time progresses. The overall state is

in a mixture of |a〉 and |b〉, with the respective fractions being 1−e−γt and e−γt.

2. If the initial pure state is anything other than |b〉, the state drifts toward |a〉:

ca(0)|a〉+ cb(0)e−γt/2|b〉√
|ca(0)|2 + |cb(0)|2e−γt

.

with a positive, but decreasing, probability rate of jumping ahead to |a〉,

γ |cb(0)|2e−γt
|ca(0)|2+|cb(0)|2e−γt .
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This type of Lindblad operator is used to describe spontaneous emission of a

photon by an excited state, in which case |b〉 is the excited state and |a〉 is the

ground state. Conversely, it can also describe absorption of a photon, where |b〉 is

now the ground state and |a〉 is the excited state. We will refer to this process as

a “population jump”, since a jump results in a state completely populating |a〉 and

de-populating |b〉.

2.1.2 Case 2: orthogonal eigenvectors

If the eigenvalues of L are non-zero, they must have opposite sign since L is

traceless. Furthermore, we can choose them to be real: multiplying a Lindblad

operator by an overall phase does not change the Lindblad equation. If |a〉 and |b〉 are

the orthogonal eigenvectors, the Lindblad operator can be written
√
γ(|a〉〈a|−|b〉〈b|),

where ±√γ are the eigenvalues. This Lindblad operator will send an arbitrary pure

state ca|a〉+ cb|b〉 to the pure state ca|a〉− cb|b〉 with probability γδt. In other words,

the amplitudes with respect to the eigenbasis of L do not change, but the relative

phase jumps by π. Because the eigenvectors are orthogonal, L†L is a multiple of the

identity, which means that the drifting branch is actually stationary: M0 = (1−γ
2
δt)I.

Therefore, a system that starts in the state ca|a〉+ cb|b〉 will always be in a mixture

of that state and ca|a〉 − cb|b〉 (since each state is the jump destination of the other,

and there is no drift). The relative populations (of the states ca|a〉±cb|b〉) are 1±e−γt
2

,

so as t→∞, this will become a fifty-fifty mixture.

This type of dissipation is often called “de-phasing”, since the populations in

states |a〉 and |b〉 do not change, but a coherent super-position of two states with

well-defined phase evolves into an incoherent mixture where the phase is completely

random. We will refer to this process as a “balanced phase jump”, since it results in

back-and-forth jumping between two states of opposite phase.
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2.1.3 Case 3: non-orthogonal eigenvectors

If the eigenvectors are not orthogonal, so that αeiβ := 〈a|b〉 6= 0, then L =
√
γ

1−α2 (|a〉〈a| − |b〉〈b| − αeiβ|a〉〈b| + αe−iβ|b〉〈a|). As before, this sends an arbitrary

superposition ca|a〉+cb|b〉 to its phase-flipped partner ca|a〉−cb|b〉, and vice versa, with

probability γδt. Unlike the α = 0 case, however, the drifting branch is not stationary,

since L†L is not a multiple of the identity. The evolution of ρ is more complicated

in this case, as the phase jump destination changes as the drifting branch migrates,

and each state in this migration generally has a different phase partner. There is

a unique pair of phase-flipped partners that do not drift: |±〉 := 1√
2
(|a〉 ± e−iβ|b〉),

which are the eigenvectors of L†L. If the initial pure state is one of these two, there

is back-and-forth jumping, and the state relaxes to a mixture with fractions 1
2
∓ α

1+α2 .

In general, an initial density matrix (in the |±〉 basis) 1+z0
2

x0−iy0

2

x0+iy0

2
1−z0

2


will evolve as  1

2
− α

1+α2 0

0 1
2

+ α
1+α2



+

 e−2γ(1+α2)t/(1−α2)( z
2

+ α
1+α2 ) x0

2
e−2γα2t/(1−α2) − iy0

2
e−2γt/(1−α2)

x0

2
e−2γα2t/(1−α2) + iy0

2
e−2γt/(1−α2) e−2γ(1+α2)t/(1−α2)(− z

2
− α

1−α2 )


which relaxes to the same asymptotic mixture as before.

We will refer to this process as an “unbalanced phase jump”, since the Lindblad

operator flips the phases, but the drift disrupts the see-saw jumping between all but

one phase-flipped pair.
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2.1.4 Cholesky decomposition of Lindblad dissipation

Every Lindblad dissipation can be described uniquely by three orthogonal Lind-

blad operators, but since orthogonality of operators does not have an immediate

intuitive interpretation, this decomposition is not necessarily the most appropriate.

A different factorization of a positive-(semi)definite matrix is the Cholesky decompo-

sition A = RR†, where R is lower-triangular. If A has full rank, this decomposition

is unique. If A has rank m less than the full rank, R is unique if one demands only

the first m columns are non-zero. In this description, we have m Lindblad oper-

ators corresponding to the m non-zero columns of R. Since Ajk =
∑

l rjlr̄kl , the

Lindblad-Kossakowski equation becomes

dρ

dt
= [−iH, ρ] +

m∑
j,k=1

Ajk

(
ljρl

†
k −

1

2
{l†klj, ρ}

)

= [−iH, ρ] +
m∑

j,k,l=1

rjlr̄kl

(
ljρl

†
k −

1

2
{l†klj, ρ}

)

= [−iH, ρ] +
m∑
l=1

(
LCl ρL

C†
l −

1

2
{LC†l LCl , ρ}

)
.

where LCl =
∑

j rjllj are the new Lindblad operators, where the lth operator has at

most n2 − l components.

Note that the Cholesky decomposition is basis-dependent: we must choose which

directions we want to “have the most zeros”. The reason for using the Cholesky

decomposition is to privilege certain operators, and in our case we wish to privilege

the three operators with the most intuitive use to physicists: (1) the de-phasing

operator in the energy eigenbasis, also known as the z Pauli matrix σz, and (2) the

raising and lowering operators σ±:

σz =

 1 0

0 −1

 σ+ =

 0 1

0 0

 σ− =

 0 0

1 0

 .
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The lowering operator can describe spontaneous emission, where an excited state

spontaneously emits a photon and drops to the ground state. The raising operator

can describe stimulated absorption, where a ground state is excited by absorbing a

photon. The de-phasing operator describes the loss of coherence between the energy

eigenstates.

If we use the order above, for the case of full rank we have decomposed the

dissipation into three processes:

1. LC3 can only have a component in the σ− direction, so it must correspond to a

population jump from the excited state to ground state, akin to spontaneous

emission.

2. LC2 must have a component in the σ+ direction. If there is no component in the

σ− direction, this corresponds to a population jump from the ground state to

the excited state. If there is a σ− component, we have a phase jump. The fact

that there is no σz component means this phase jump is relative to a basis of

states with equal energy and opposite phase, i.e. |a, b〉 = c1|0〉 ± c2|1〉.

3. LC1 must have a component in the σz direction, and may or may not have

components in the other directions. This operator can describe any of the cases

not covered by LC2 and LC3 : it may be a population jump to any non-energy

eigenstate, or it may be a phase-jump relative to two states that aren’t of equal

energy and opposite phase.

If the rank m is less than full, the dissipation is described by a selection of m processes

among these three possibilities.
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2.2 Projection of dynamics

Having discussed the uncontrolled aspects of two-dimensional Lindblad dissipa-

tion, we now want to investigate controlling such systems. In quantum control theory,

the control variables typically appear in the Hamiltonian operator − the dissipation

piece is considered “external”. Unfortunately, this type of control can only move the

system along unitary orbits: ρ at any time t is U(t)ρ(0)U †(t). Moreover, the unitary

orbits of ρ correspond one-to-one to the possible spectra of ρ, so the spectrum is

invariant under non-dissipative dynamics. This is unfortunate since it restricts us

to controlling only N − 1 of the possible N2 − 1 directions, and in particular it pre-

vents us from controlling the mixture fractions (the eigenvalues of ρ) and the purity√
tr(ρ2) =

∑
λ2
j . To move between unitary orbits, we need the dissipative dynamics.

With this in mind, we would like to isolate the dynamics between orbits from

the overall dynamics. First, let’s derive the overall dynamics on the Bloch ball.

The density operator can be written in terms of the Pauli matrices: ρ = 1
2
(I +∑

j=x,y,z njσj), where the nj’s are the coordinates on the Bloch ball, and the x and

y Pauli matrices are σx = σ+ + σ− and σy = −iσ+ + iσ−. We will assume we

have unbounded Hamiltonian control in all directions: H =
∑
ujσj, where uj ∈ R.

Adding multiples of the identity to the Hamiltonian does not change the dynamics,

so we can set the trace to zero. Also, we neglect the drift Hamiltonian, since it only

shifts uz by half the energy level separation. Substituting these expressions into the

Lindblad-Kossakowski equation (where we use the Pauli matrices times 1√
2

as our

basis), we get

1

2

∑
j

dnj
dt
σj =

∑
j,k

[−iujσj,
1

2
nkσk] +

1

4

∑
jk

ajk[σj, σk] +
1

4

∑
jkl

ajknl(σjσlσk −
1

2
{σkσj, σl})
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=
∑
jk

(
−i
2
ujnk +

1

4
ajk)[σj, σk] +

1

4

∑
jkl

ajknl(σjσlσk −
1

2
{σkσj, σl}).

The Pauli matrices obey the relations

[σj, σk] = 2i
∑
l

εlσl

{σj, σk} = 2δjkI

σjσlσk −
1

2
{σkσj, σl} = δklσj + δjlσk − 2δjkσl.

Using these relations, the Lindblad-Kossakowski equation above becomes

1

2

∑
l

dnl
dt
σl =

∑
j,k,l

εjklujnkσl +
∑
j,k,l

1

2
iajkεjklσl +

1

4

∑
jl

(ajl(njσl + nlσj)− 2ajjnlσl).

If we define bl =
∑
iajkεjkl, and aSjk =

ajk+akj
2

, we have

∑
l

dnl
dt
σl = 2

∑
j,k,l

εjklujnkσl +
∑
l

blσl +
∑
jl

(aSjlnjσl − aSjjnlσl).

In vector notation, we can write:

(2.1)
d~n

dt
= ~b+ ~u× ~n+ (AS − tr(AS)I)~n.

where AS is the matrix with elements aSij.

Now we want to decompose this equation into dynamics along and between unitary

orbits. For a given Bloch vector ~n, the density matrix is ρ = 1
2
(I +

∑
njσj). ρ has

the eigenvalues 1±r
2

, where r := |~n| and eigenvectors

|ψ±〉 :=

√
1 + nz

2
|1〉+

√
1− nz

2
enx+iny |2〉.

Note the spectra correspond one-to-one with the values of r, the Bloch radius. It

follows that the unitary orbits are concentric spheres, except for the completely
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mixed state, which corresponds to the point r = 0. So we can parametrize the

orbits by r, which lives on the closed interval [0, 1], and characterize the motion

along orbits with the unit vector n̂ = ~n/r. We must be careful with respect to the

innermost orbit however. The unit vector n̂ is not defined there, which means that

the differential equations which we will derive for r and n̂ will have solutions that

exist for finite times (those solutions correspond to trajectories of ρ that pass through

the completely mixed state).

Since r2 = ~n · ~n, we have 2r dr
dt

= 2~n · d~n
dt

and therefore dr
dt

= n̂ · d~n
dt

. So,

dr

dt
= n̂ ·~b+ n̂ · (~u× ~n) + n̂ · (AS − tr(AS)I)~n.

The middle term vanishes, the first term is constant in r and the third is linear in r.

We can write

(2.2)
dr

dt
= n̂ ·~b+ r(n̂ · (ASn̂)− tr(AS)).

To find the ODE for n̂, we use ~n = rn̂, which gives dn̂
dt

= 1
r
(d~n
dt
− dr

dt
n̂). So we get

dn̂

dt
= 2~u× n̂+

1

r
(~b− (~b · n̂)n̂) + (AS − n̂ · (ASn̂))n̂.(2.3)

Our goal here is to view equation (2.2) as a control ODE where n̂ is the control. This

view requires that we have full control over n̂, and we claim that we do, in terms

specified by the following lemma.

Lemma II.1. Let S be the sphere centered at the origin with radius one, let B be

the associated closed ball, and let B∗ be the closed ball with the origin removed. Let

n̂(t) be a piecewise differentiable function from a time interval [0, T ] into S such that

the corresponding solution r(t) of equation (2.2) is contained in the interval (0, 1].

Then there are piecewise continuous control functions ux(t), uy(t) and uz(t) such

that equation (2.1) has the piecewise differentiable solution ~n(t) = r(t)n̂(t) on B∗.
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Proof. First re-write equation (2.3):

~u× n̂ =
1

2

(
dn̂

dt
− 1

r
(~b− (~b · n̂)n̂)− (AS − n̂ · (ASn̂))n̂

)
.

Any equation of the form ~x×~a = ~b, where ~a ·~b = 0, has solution ~x = ~a×~b. It follows

that we can choose the controls to be

~u(t) = n̂× 1

2

(
dn̂

dt
− 1

r
(~b− (~b · n̂)n̂)− (AS − n̂ · (ASn̂))n̂

)
=

1

2

(
n̂(t)× ˙̂n− 1

r(t)
n̂(t)×~b− n̂(t)× (ASn̂(t))

)
.

Since n̂(t), ˙̂n(t) and r(t) are piecewise continuous, so is ~u(t).

Note that the prescription for ~u(t) is unbounded as r → 0 because of the middle

term. This is because the system cannot approach the completely mixed state from

any direction: when ~n = ~0, d~n
dt

is fixed to be ~b regardless of the controls ~u(t).

We finish this section by writing down an alternate version of (2.2) in terms of

the eigenvalues of AS, which allows us to specify a given system in terms of six real

parameters. Let a1 ≥ a2 ≥ a3 be the eigenvalues of AS. Let {bj : j = 1, 2, 3} and

{nj : j = 1, 2, 3} be the components of ~b and ~n relative to the intrinsic axes of AS

(whereas the subscripts x, y and z denote the components relative to the eigenvectors

of the Pauli matrices). This gives

(2.4)
dr

dt
=

3∑
j=1

bjnj − r
3∑
j=1

aj(1− n2
j).

The six parameters obey the following inequality, which arises from the positive

semi-definiteness of A:

(2.5) a1b
2
1 + a2b

2
2 + a3b

2
3 ≤ 4a1a2a3.

The positive semi-definiteness of A also ensures the positive semi-definiteness of AS,

so we also have a1, a2.a3 ≥ 0.
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2.3 Controllability analysis

To analyze controllability of (2.4), we look at the functions fM(r) and fm(r),

which give the maximum and minimum attainable values of ṙ for a given r ∈ (0, 1].

It is clear that (2.4) is controllable on a closed subinterval of (0, 1) if fM > 0 and

fm < 0 everywhere on the subinterval. To steer between two points ri and rf , we

choose our controls so that ṙ(r) = fM(r) if ri < rf , or ṙ(r) = fm(r) if ri > rf .

Some properties of fM and fm can be gleaned from inspection of the differential

equation, which we collect into a proposition:

Proposition II.2. If fM(r) := sup{ṙ(r)} and fm(r) := inf{ṙ(r)},

1. fM and fm are non-increasing.

2. limr→0+ fM(r) = |~b| and limr→0+ fm(r) = −|~b|.

3. fM(1) ≤ 0.

4. fm(r) ≤ 0 for all r and system parameters. fm(r) = 0 for r > 0 only for the

trivial case where a1 = 0 (which requires that all aj’s and bj’s are zero).

5. If ~b has non-zero magnitude, fM(r) has an isolated intercept rT ∈ (0, 1].

Proof. 1. If a control vector n̂∗ achieves the maximum ṙ at r = r∗, then choosing

that control for all r < r∗ can only achieve a larger or equal ṙ, since the coef-

ficient of r in the differential equation,
∑3

j=1 aj(1− n2
j), must be non-negative.

Similarly, if a control ~n∗ achieves the minimum at r = r∗, then choosing that

control for all r > r∗ can only achieve a smaller or equal ṙ. Furthermore, if a1

and a2 are positive, the coefficient of r cannot be made zero, so in this case, we

can strengthen “non-increasing” to “decreasing”.
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2. As r → 0+, the linear term in (2.4) can be neglected, and we must extremize

~b · ~n. The range of this is clearly [−|~b|, |~b|].

3. Since r cannot exceed one, ṙ|r=1 ≤ 0.

4. Non-positivity follows from 1. and 2. If a1 > 0, ṙ can be always made negative

by choosing ~n = 〈0, 0, 1〉.

5. Non-zero~b implies that at a1 and a2 are positive, which means that fM is strictly

decreasing on (0, 1). This, together with 2. and 3. imply the existence of rT .

Corollary II.3. If ~b is nonzero, there is an interval (0, rT ), which we call a trap,

inside of which the system is controllable. Outside of the trap, on [rT , 1], the system

is one-way controllable; that is, ri can be steered to rf in finite time if and only if

rf ≤ ri.

Proof. The statements in the proposition imply that fm(r) < 0 < fM(r) on (0, rT ), in

which case we can steer ri to rf ≥ ri by choosing the control that satisfies ṙ = fM(rf )

provided rf < rT . Conversely, to steer ri to rf ≤ ri, we can choose the control that

satisfies ṙ = fm(rf ). On the interval [rT , 1], fM(r) ≤ 0, so ri cannot be steered to

rf > ri, but can be steered to rf < ri by choosing the control that satisfies ṙ = fm(ri),

which must be negative.

In the case that |~b| = 0, there is no trap: ṙ ≤ 0 for all r, and in fact we can say

that

(2.6) −r(a1 + a2) ≤ ṙ ≤ −r(a2 + a3)

where we can achieve the upper and lower bounds by choosing ~n to be 〈±1, 0, 0〉 and

〈0, 0,±1〉, respectively. In the case that a2 = a3 = 0, the decay of r may be halted,
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but otherwise r will decay exponentially to zero at a rate above or equal to a2 + a3.

It is evident, then, that the presence of an asymmetric part in the dissipative term

(represented by ~b) significantly enhances the possibility of control.

In order to calculate fM and fm for a given r, we can use the method of Lagrange

multipliers. In some cases, we can solve the resulting equations analytically, but

in general one must find the roots of a sixth-order polynomial, so we must resort

to numerics. Before considering the general case, we will look at a particular case

that can be treated analytically. We consider the possibility that a two-level system

can undergo one of two population jumps represented by the raising and lowering

operators σ+ and σ− at rates α+ and α−, respectively. If one constructs the Lindblad

equation using this scenario, and expresses it in the basis of the Pauli matrices, one

finds that a1 = a2 = |α+−α−|
2

, a3 = 0, b1 = b2 = 0 and b3 = α+ − α−. The fact that

~b has only one non-zero component simplifies the equations so that we can treat the

system analytically.

If we apply the method of Lagrange multipliers to the right-hand side of (2.4) and

set b1 = b2 = 0 and a1 = a2, we get

2ra1n1 = 2λn1

2ra1n2 = 2λn2

b3 = 2λn3

n2
1 + n2

2 + n2
3 = 1

where λ is the Lagrange multiplier. This has the following solutions:

n̂ = 〈0, 0,±1〉(2.7)

n̂ =

〈
n1, n2,

b3

2a1r

〉
(2.8)



33

where n1 and n2 in (2.8) can be any pair that satisfies the normalization condition.

Solutions (2.8) do not exist for all r, since the magnitude of n3 must not exceed one.

They exist only on [ |b3|
2a1
, 1]. To determine which solutions correspond to fM and fm,

we substitute back into (2.4). Solutions (2.7) give

(2.9) ṙ = ±|b3| − 2a1r

and solutions (2.8) give

(2.10) ṙ =
|b3|2
4a1r

− ra1.

We can easily conclude that fm(r) = −|b3| − 2a1r. Furthermore, fM(r) = |b3| − 2a1r

on the interval (0, |b3|
2a1

), where solution (2.8) does not exist. Where it does exist,

however,

(2.11)
|b3|2
4a1r

− ra1 ≥ |b3| − 2a1r

and this inequality is saturated only where (2.9) and (2.10) touch. It happens that

rT in this case coincides with this touching point, i.e. rT = |b3|
2a1

. This is not a general

phenomenon, however: if a3 > 0, the touching point and the trap radius would not

coincide. Fig. 2.1 depicts these solutions for a1 = a2 = 10 and b3 = 12.

More generally, one can perform this analytical treatment in the following cases:

(1) if ~b has one non-zero component, (2) if ~b has two non-zero components, and the

corresponding aj’s are equal, and (3)~b has three non-zero components, and a1 = a2 =

a3. If the system does not fall into any of those three categories, Lagrange multipliers

lead to either a fourth-degree polynomial in λ (technically solvable, but inordinately

messy) or a sixth-degree polynomial (generally not solvable). The fourth-degree

polynomial arises in the cases (1) ~b has two non-zero components but corresponding

aj’s are not equal and (2) ~b has three non-zero components and a1 = a2 > a3 or



34

0 0.2 0.4 0.6 0.8 1
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

20

r

dr
/d

t

Minimum achievable dr/dt

Maximum achievable dr/dt

Figure 2.1: Maximum and minimum achievable dr/dt vs. r for a case that can be solved analytically.
System parameters: a1 = a2 = 10, a3 = 0, b1 = b2 = 0, b3 = 12. Solid lines represent fM and fm.
Blue and purple indicate solutions (2.7) and (2.8), respectively. Dotted lines indicate where these
solutions do not coincide with fM .
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a1 > a2 = a3. The sixth-degree polynomial arises if ~b has three non-zero components

and a1 > a2 > a3.

In those cases, we can find the real roots of the polynomial numerically. Then

we can compute the corresponding values of ṙ, choose the maximum and minimum

values, and assign the values to fM and fm. In fig. 2.2, fM and fm are shown for a

particular system that required solving a sixth-order polynomial. We have computed

the curves for 10,000 points apiece. rT can be found by numerically interpolating

fM . For the case depicted in fig. 2.2, rT was computed to be 0.544387876644064 (to

machine precision).

2.4 Purifiable systems

An important goal in quantum control is purification: the process of steering

a mixed state to a pure state, which can be characterized by a purity tr(ρ2) =

1. Alternatively, a system is pure if the leading eigenvalue is one, with remaining

eigenvalues being zero. In terms of the above analysis, we say a system is purifiable

if and only if the trap radius rT = 1. In other words, the function fM(r) has an

isolated intercept at r = 1. This section is devoted to proving the following theorem,

which characterizes the possible purifiable systems.

Theorem II.4. A two-level Lindblad system is purifiable if and only if it can be

described as one of the following:

• A population jump

• An unbalanced phase jump

• A population jump and any number of phase jumps between the destination of

the population jump and other states
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• Any number of phase jumps that share a common eigenvector

Proof. We are required to show two things to prove a system is purifiable: fM(1) = 0,

and a2 > 0. a2 ≥ 0. The latter ensures that fM is strictly decreasing rather than

constant in r. When combined with the former condition, this implies that fM is

positive for all r < 1, and therefore controllable.

We will make use of the following lemma:

Lemma II.5. ṙ = 0 at r = 1 if and only the system is in a state that is an eigenvector

of all contributing Lindblad operators.

Proof. Write the Bloch radius r = λ+− λ−, where λ+ ≥ λ− are the eigenvalues of ρ.

We have

λ̇j = 〈ψ̇j|ρ|ψj〉+ 〈ψj|ρ|ψ̇j〉+ 〈ψj|ρ̇|ψj〉

= λj(〈ψ̇j|ψj〉+ 〈ψj|ψ̇+〉) + 〈ψj|ρ̇|ψj〉

= λj
d

dt
(〈ψj|ψj〉) + 〈ψj|[−iH, ρ]|ψj〉+ 〈ψj|LD(ρ)|ψj〉

= 〈ψj|LD(ρ)|ψj〉.(2.12)

In the last step, we have used the fact [−iH, ρ] is skew-Hermitian and thus its diagonal

elements are zero.

Now, if the dissipation is characterized by a collection of Lindblad operators

{Lj}’s, which are not necessarily orthogonal, we can use (1.1) to specify LD(ρ):

dr

dt
=
∑
j

(
〈ψ+|LjρL†j|ψ+〉 −

1

2
〈ψ+|L†jLjρ|ψ+〉 −

1

2
〈ψ+|ρL†jLj|ψ+〉

−〈ψ−|LjρL†j|ψ−〉+
1

2
〈ψ−|L†jLjρ|ψ−〉+

1

2
〈ψ−|ρL†jLj|ψ−〉

)
.
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We are interested in ṙ when r = 1, so insert ρ = |ψ+〉〈ψ+|. We get

dr

dt
=
∑
j

(
〈ψ+|Lj|ψ+〉〈ψ+|L†j|ψ+〉 − 〈ψ+|L†jLj|ψ+〉 − 〈ψ−|Lj|ψ+〉〈ψ+|L†j|ψ−〉

)
.

(2.13)

If we insert the identity operator between L†j and Lj in the middle term, we get the

expression

dr

dt
= −2

∑
j

|〈ψ−|Lj|ψ+〉|2.

For ṙ to vanish, we need |〈ψ−|Lj|ψ+〉|2 to vanish for each Lj. This is only possible

however if |ψ+〉 is an eigenvector of each Lj, since otherwise Lj|ψ+〉 would have some

component in the |ψ−〉 direction. This proves the lemma.

It follows from the lemma that a system is purifiable only if all contributing Lind-

blad operators share a common eigenvector, or else fM(1) will be strictly negative.

This is only a necessary condition however and not a sufficient one, since the condi-

tion implies only that fM(1) = 0. We also require that a2 > 0. So consider the case

a2 = 0. This implies that a3 and ~b are also zero (due to (2.5)), so that A has only

one non-zero entry in its natural basis. We claim that A in this form corresponds

to a balanced phase jump. It is a rank-one real positive matrix, and therefore can

be written A =
∑

ij=x,y,zmimj for some real 3-vector ~m. When one diagonalizes the

Lindblad equation, however, only a single Lindblad operator L =
∑

j=x,y,zmjσj re-

mains. This operator is Hermitian and therefore must have two distinct, orthogonal

eigenvectors. Such an operator describes a balanced phase jump.

In other words, as long as the system obeys the terms of the lemma, and does not

consist of a single balanced phase jump operator, the system is purifiable. The first

two cases in the theorem cover the remaining possible single-operator cases. The
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remaining two cases can be seen by noting that two population jumps cannot share

eigenvectors, since they have only one (we consider two operators that are multiples

of each other to be essentially one process). The third case covers the possibility of

one population jump: its eigenvector is its destination state, and that eigenvector

must be shared with the other phase jumps. The fourth case in the theorem covers

the possibility of no population jumps but more than one phase jump. Note that the

phase jumps in the third and fourth cases do not need to be unbalanced.



CHAPTER III

Three-Dimensional Systems

3.1 Projection of the three-dimensional Lindblad equation

Generalizing results from the two-dimensional case is not as straightforward as

one would hope. There are several features that do not carry over to three or higher

dimensions:

· The boundary of Dn, the set of density matrices for an n-dimensional Hilbert space,

is not the set of pure states in the same way that the set of pure states is the

boundary of the Bloch ball. Dn has (real) dimension n2−1, so its boundary must

have dimension n2−2. The set of pure states, however, is a (2n−2)-dimensional

manifold.

· The Bloch vector may be defined for three dimensions: rj = Tr(ρλGMj ), where

the λGMj ’s are the Gell-Mann matrices. A similar formula applies for higher

dimensions, with the Gell-Mann matrices being replaced by some orthonormal

basis of sl(n,C). The generalized Bloch vector must lie within a closed ball,

as in two dimensions:
√∑

r2
j ≤ 1. However, this ball includes vectors that do

not correspond to physical density matrices. Dn is homeomorphic to a proper

closed subset of the ball for n ≥ 3.

· In two dimensions, the rate of optimal purity increase/decrease could be written

39
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as a function of purity. In higher dimensions, there are distinct orbits with

equal purity. In order to increase purity, it may be necessary to steer along an

isopurity set (or first decrease purity) before finding an orbit where purity can

be increased.

The first step is to understand the decomposition of D3 into its unitary orbits

(much of what follows is inspired by Schirmer et al. [44]). The set of orbits can be

indexed by the eigenvalues of ρ: λ1 ≥ λ2 ≥ λ3 = (1− λ1− λ2) ≥ 0. We can map the

set of orbits to a compact subset of R2, T3 : D3 → R2, ~x = T3(ρ) := (x1, x2)T :

(3.1)
x1 = λ1 − λ2

x2 = 1√
3
(λ1 + λ2 − 2λ3) = 1√

3
(1− 3λ3)

.

This mapping has the advantage of matching two of the components of the Bloch

vector when ρ is diagonal with decreasing elements, in which case x1 = r3 and

x2 = r8. This mimics the n = 2 treatment: when the 2-dimensional density matrix

was diagonal, r matched the third component of the Bloch vector.

The image of this mapping is a 2-simplex. The three vertices are:

· (x1, x2) = (1, 1√
3
) corresponding to (λ1, λ2, λ3) = (1, 0, 0). This point corresponds

to the orbit of pure states, which is a four-dimensional manifold.

· (x1, x2) = (0, 1√
3
) corresponding to (λ1, λ2, λ3) = (1

2
, 1

2
, 0). This point corresponds

to the orbit of states that are completely mixed in a two-dimensional subspace,

but do not populate the third orthogonal direction. It is also a four-dimensional

manifold.

· (x, y) = (0, 0) corresponding to (λ1, λ2, λ3) = (1
3
, 1

3
, 1

3
). This point corresponds to

the completely mixed state, which is a zero-dimensional manifold.

As for the edges of the simplex:
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· the vertical leg consists of orbits with λ1 = λ2, so that there is equal mixing between

the two most populated eigenstates. Each orbit, except for that of (0, 0), is a

four-dimensional manifold.

· the hypotenuse consists of orbits with λ2 = λ3, so that there is equal mixing between

the two least populated eigenstates. Each orbit, except for that of (0, 0), is a

four-dimensional manifold.

· the top horizontal leg consists of orbits with λ3 = 0, so that there are only two

populated eigenstates. Apart from its endpoints, each orbit is a six-dimensional

manifold.

All interior points correspond to orbits that have distinct non-zero eigenvalues: λ1 >

λ2 > λ3 > 0. Each of these orbits is a six-dimensional manifold (note that the

dimensionality of these orbits is determined by the multiplicity of the eigenvalues).

It will be of some use to consider an enlarged space, where instead of considering

the set of unitary orbits, which corresponds to the set of unordered triples of eigen-

values, we look at the set of ordered triples of eigenvalues. In this case, the image of

the mapping is an equilateral triangle, plus interior, with vertices (1,
√

3), (−1,
√

3)

and (0,− 2√
3
), which correspond to the spectra (1, 0, 0), (0, 1, 0) and (0, 0, 1). This

simplex contains six copies of the previous simplex, corresponding to the six permu-

tations of the eigenvalues. The original and extended simplices will henceforth be

referred to as T3 and TE3 , respectively. They are shown in fig. 3.1.

To each point in T3 and TE3 belongs an orbit. The six-dimensional orbit is a com-

plete flag manifold. Each point on the orbit is a complete flag 0 ⊂ span(|ψ1〉) ⊂

span(|ψ1〉, |ψ2〉) ⊂ span(|ψ1〉, |ψ2〉, |ψ3〉), where |ψj〉 is an eigenvector of ρ corre-

sponding to λj. Let V3 be the set of such flags. The four-dimensional orbit is
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composed of partial flags: 0 ⊂ span(|ψ1〉) ⊂ span(|ψ1〉, |ψ2〉, |ψ3〉) if λ2 = λ3 and 0 ⊂

span(|ψ1〉, |ψ2〉) ⊂ span(|ψ1〉, |ψ2〉, |ψ3〉) if λ1 = λ2. Henceforth, flg(|ψ1〉, |ψ2〉, |ψ3〉)

denotes the complete flag generated by the vectors in its argument.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

II

IV V

VIIII

I

Figure 3.1: TE
3 . The shaded region is T3. The central point corresponds to the completely mixed

state and the three vertices correspond to the orbit of pure states. The “sextants” have been
numbered for future reference.

The next step is to find differential equations for ~x. The calculation in (2.12) is

valid for all dimensions, so we have

(3.2)
ẋ1 = 〈ψ1|LD(ρ)|ψ1〉 − 〈ψ2|LD(ρ)|ψ2〉

ẋ2 = −
√

3〈ψ3|LD(ρ)|ψ3〉
.

Now we can write

ρ =
1

3
I +

x1

2
(|ψ1〉〈ψ1| − |ψ2〉〈ψ2|) +

x2

2
√

3
(I − 3|ψ3〉〈ψ3|).

Inserting this into (3.2), we get
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ẋ1 =
1

3

∑
k

(〈ψ1|[Lk, L†k]|ψ1〉 − 〈ψ2|[Lk, L†k]|ψ2〉)

+
x1

2

∑
k

(〈ψ1|Lk|ψ1〉〈ψ1|L†k|ψ1〉+ 〈ψ2|Lk|ψ2〉〈ψ2|L†k|ψ2〉

− 〈ψ1|Lk|ψ2〉〈ψ2|L†k|ψ1〉 − 〈ψ2|Lk|ψ1〉〈ψ1|L†k|ψ2〉 − 〈ψ1|L†kLk|ψ1〉 − 〈ψ2|L†kLk|ψ2〉)

+
x2

2
√

3

∑
k

(〈ψ1|[Lk, L†k]|ψ1〉 − 〈ψ2|[Lk, L†k]|ψ2〉

− 3〈ψ1|Lk|ψ3〉〈ψ3|L†k|ψ1〉+ 3〈ψ2|Lk|ψ3〉〈ψ3|L†k|ψ2〉)

ẋ2 = − 1√
3

∑
k

〈ψ3|[Lk, L†k]|ψ3〉 −
√

3

2
x1

∑
k

(〈ψ3|Lk|ψ1〉〈ψ1|L†k|ψ3〉 − 〈ψ3|Lk|ψ2〉〈ψ2|L†k|ψ3〉)

− x2

∑
k

(〈ψ3|[Lk, L†k]|ψ3〉 − 3〈ψ3|Lk|ψ3〉〈ψ3|L†k|ψ3〉+ 3〈ψ3|L†kLk|ψ3〉).

If one inserts I =
∑

j |ψj〉〈ψj| between Lindblad operators, and abbreviates wij =∑
k |〈ψi|Lk|ψj〉|2, we get the following system of differential equations:

ẋ1 =
1

3
(2w12 − 2w21 + w13 − w23 + w32 − w31)

(3.3)

− x1

2
(2w12 + 2w21 + w32 + w31)− x2

2
√

3
(2w21 − 2w12 + 2w13 − 2w23 + w31 − w32)

ẋ2 =
1√
3

(w13 + w23 − w32 − w31)−
√

3x1

2
(w31 − w32)− x2

2
(2w13 + 2w23 + w31 + w32).

LetW3 ⊂ R6 be the image of the mapW : V3 → R6, such thatW(flg(|ψ1〉, |ψ2〉, |ψ3〉)) =

~w := (w12, w21, w23, w32, w31, w13). If ~w is held constant, (3.3) is an affine differential

equation:

~̇x = ~b(~w)− A(~w)~x =: F(~x, ~w).(3.4)
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We can sum up the situation as follows:

D3 ⊂ T3 × V3 ⊂ TE3 × V3

TE3 × V3
Id×W−−−→ TE3 ×W3

F−→ TTE3 .

The first inclusion in the first line is not proper however, because on the boundary

of T3, multiple complete flags map to the same density matrix.

The control aspect of these differential equations must be clearly defined. Ulti-

mately, we wish to control the state space D3 with Hamiltonians taking values in

the control set SU(3). To do this, we want to “pull back” to one of the state spaces

T3 or TE3 , using the control set of the flags V3. These control problems are not quite

equivalent, however. In the interior of T3, which we will denote T o3 , each orbit is

homeomorphic to V3. On the boundary of T3, however, some orbits have dimension

4 or 0. As in the two-dimensional case, we will make the assumption that we have

sufficient control of the Hamiltonian piece of the Lindblad equation that we may

choose the position along the orbit on an arbitrarily short timescale. But because

the orbits along part of the boundary of T3 lose dimensionality, we lose control there.

For example, at the completely mixed state, we have no control: ρ̇ = 1
3

∑
k[Lk, L

†
k],

and there is no dependence on the structure of the Hamiltonian. Similarly, whenever

two eigenvalues cross, we may choose the eigenvector with the distinct eigenvalue,

but we do not have the ability to choose a basis of the degenerate sector. The choice

of the former, but not the latter, restricts us to a four-dimensional manifold, rather

than a six-dimensional one.

With this in mind, we modify our objective somewhat. Instead of controllability

over D3, we seek controllability over Do3, the set of density matrices with distinct,

non-zero eigenvalues. To do this we look for controllability on TE3 using controls
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found in V3.The intersection of the controllable sets with T o3 can then be used to

infer controllability on Do3. To make this precise, let us state the following theorem:

Theorem III.1. Let U be a maximally globally controllable open subset of TE3 , where

the control functions are piecewise-differentiable function taking values in V3. Let ~x1

and ~x2 be in U ∩ T o3 . The trajectory between them may exit (and re-enter) T o3 . Then

any density matrix ρ1 ∈ T −1
3 (~x1) may be steered arbitrarily close to ρ2 ∈ T −1

3 (~x2).

Proof. We start with a trajectory ~xE(t) through TE3 which is effected by the trajectory

through V3 defined by the vector trajectories {|ψEi 〉(t)}. ~xE(t) may exit and re-enter

T3, but we can alway find a trajectory that does not exit by permuting the vectors.

Any piece of the trajectory that is in sextants II through VI can be transformed by

applying elements of the symmetric group S3. For example, a trajectory piece in

sextant II that starts at ~x(ta) and finishes at ~x(tb) can be reflected across the x2 axis

into sextant I by exchanging |ψE1 〉(t) and |ψE2 〉(t), which in turn exchanges w12 with

w21, w31 with w32 and w13 with w23. It can be checked that this sends ẋ1 to -ẋ1 and

fixes ẋ2. So a trajectory starting at (−x1(ta), x2(ta)) will finish at (−x1(tb), x2(tb))

using these permuted controls. Similarly, we can take care of sextants III through VI

by exchanging indices 1 and 3 (sextant IV), exchanging indices 2 and 3 (sextant VI),

cycling 1 to 2 to 3 to 1 (sextant III) and cycling 1 to 3 to 2 to 1 (sextant V). Using

this procedure, we have a new trajectory ~x(t), using different controls flg({|ψi(t)〉}),

that is now entirely contained in T3.

The next problem is the sections of the trajectory that lie on the boundary of T3.

Here we will resort to the fact that under (3.3), two nearby points will stay nearby:

d

dt
||~xa − ~xb||2 = 2(~xa − ~xb) · (~̇xa − ~̇xb)

= −2(~xa − ~xb)A(~w)(~xa − ~xb).
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Since A(~w) can only have eigenvalues with non-negative real part (see chapter four),

this derivative must be non-positive. Therefore, even though ~x(t) may contain points

on the boundary of T3, we can find a nearby trajectory ~xo(t) that does not. If ~x(t)

hits the boundary at time ti, we can deal with this by removing a gap from the control

function: for t ≥ ti−δt, let |ψi(t)〉 = |ψi(t+δt)〉. The new trajectory will stay within

a distance ||~x(ti)−~x(ti−δt)||. Note that if ~x(t) travels along the boundary for a time

period longer than zero, the new trajectory will not hit the boundary during that

time. That would require ||~xnew−~xold|| = 0, which cannot happen for a time-varying

affine system. Of course, the new trajectory may hit the boundary at different times

than the old, but we can always repeat the process.

So we have a trajectory ~xo(t) that is controlled by flg({|ψi(t)〉}). Now we want to

show there is a Hamiltonian trajectory that effects the flag trajectory, and it turns

out we have an explicit formula. The diagonal elements in the {|ψi(t)〉} basis can be

taken to be zero, and the off-diagonal elements are

〈ψj|H|ψk〉 =
λj〈ψ̇j|ψk〉+ λk〈ψj|ψ̇k〉 − 〈ψj|LD(ρ)|ψk〉

i(λj − λk)
.

Notice the formula is only defined for distinct λj, which of course is not a surprise.

To show this formula works, we can decompose the time-derivative of ρ into the

time-derivatives of its eigenvalues and eigenvectors (which only works when there

are distinct eigenvalues), and work backwards by using our Hamiltonian formula to

reconstruct the Lindblad equation:

ρ̇ =
∑
j

λ̇j|ψj〉〈ψj|+
∑
j

λj(|ψ̇j〉〈ψj|+ |ψj〉〈ψ̇j|)

=
∑
j

〈ψj|LD(ρ)|ψj〉|ψj〉〈ψj|+
∑
j,k

λj(|ψk〉〈ψk|ψ̇j〉〈ψj|+ |ψj〉〈ψ̇j|ψk〉〈ψk|)

= LD(ρ) +
∑
j 6=k

(λk〈ψj|ψ̇k〉|ψj〉〈ψk|+ λj〈ψ̇j|ψk〉|ψj〉〈ψk| − 〈ψj|LD(ρ)|ψk〉|ψj〉〈ψk|)
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= LD(ρ) +
∑
j 6=k

λj〈ψ̇j|ψk〉|ψj〉〈ψk|+ λk〈ψj|ψ̇k〉|ψj〉〈ψk| − 〈ψj|LD(ρ)|ψk〉|ψj〉〈ψk|
i(λj − λk)

i(λj − λk)

= LD(ρ) +
∑
j 6=k

〈ψj|H|ψk〉|ψj〉〈ψk|i(λj − λk)

= LD(ρ) +
∑
j 6=k;l

[−i〈ψj|H|ψk〉|ψj〉〈ψk|, λl|ψl〉〈ψl|]

= LD(ρ) + [−iH, ρ].

Going from the second to third line, we’ve use the fact that 〈ψ̇j|ψj〉+ 〈ψj|ψ̇j〉 = 0.

We now have shown that we can steer a density matrix unitarily equivalent to

ρ1 arbitrarily close to a density matrix unitarily equivalent to ρ2. Let these unitary

equivalent matrices be ρ′1 and ρ′2. They are determined by the initial and final points

of flg{|ψj(t)〉}. To steer ρ1 to ρ2, we want to “book-end” the trajectory prescribed

by ~xo(t) by two fast unitary transformations. These will not connect precisely, but

we can show that the error is quite manageable. In summary, we will quickly drive ρ1

to ρ̄′1 which is near ρ′1, then steer ρ̄′1 to ρ̄′2 which is near ρ′2, and finally quickly drive

ρ̄′2 to ρ̄2, which hopefully will be near ρ2. Let the transit times be ∆t1 and ∆t2 for

the fast transitions, and T for ~xo(t). Let ρ′j = e−iHjρje
iHj , so that any Hamiltonian

of the form
Hj
∆tj

can connect the two. We have

||ρ̄2 − ρ2|| =||ρ1 +

∫ ∆t1

0

[−i H1

∆t1
, ρ]dt+

∫ ∆t1

0

LD(ρ)dt+

∫ ∆t1+T

∆t1

[−iH, ρ]dt

+

∫ ∆t1+T

∆t1

LD(ρ)dt+

∫ ∆t1+T+∆t2

∆t1+T

[−i H2

∆t2
, ρ]dt+

∫ ∆t1+T+∆t2

∆t1+T

LD(ρ)dt− ρ2||

=||ρ′1 +

∫ ∆t1

0

LD(ρ)dt+

∫ ∆t1+T

∆t1

[−iH, ρ]dt+

∫ ∆t1+T

∆t1

LD(ρ)dt

+

∫ ∆t1+T+∆t2

∆t1+T

[−i H2

∆t2
, ρ]dt+

∫ ∆t1+T+∆t2

∆t1+T

LD(ρ)dt− ρ2||

=||ρ′2 +

∫ ∆t1

0

LD(ρ)dt+

∫ ∆t1+T+∆t2

∆t1+T

[−i H2

∆t2
, ρ]dt

+

∫ ∆t1+T+∆t2

∆t1+T

LD(ρ)dt− ρ2||
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=||
∫ ∆t1

0

LD(ρ)dt+

∫ ∆t1+T+∆t2

∆t1+T

LD(ρ)dt||

≤ (∆t1 + ∆t2) · sup
ρ∈D3

||LD(ρ)||

≤ (∆t1 + ∆t2) · sup
ρ∈D3

∑
k

(||LkρL†k||+ || −
1

2
{L†kLk, ρ}||)

≤ (∆t1 + ∆t2) · 2
∑
k

||Lk||2.

Note that the preceding technically only applies if ~xE(t) and ~xo(t) coincide, but the

modifications to include the other case are straightforward.

The preceding theorem covers global controllability, but the concept of small-time

local controllability will be covered more in this thesis. While STLC is a stronger

condition, this theorem is much less involved:

Theorem III.2. If one has STLC at a point ~x0 ∈ T o3 , then one has STLC at any

density matrix ρ0 ∈ T −1
3 (~x0).

Proof. A point is STLC if one can generate a set of tangent vectors in its tangent

space whose convex cone is the entire tangent space (see chapter four). The tangent

space at ρ0 is the product of the tangent space at ~x0 with the tangent space of the

unitary orbit at ρ0. Vectors in the latter are generated by the Hamiltonians, and

since we’ve assumed we can generate any Hamiltonian, and we’ve assumed STLC at

~x0, STLC at ρ0 follows.

Henceforth, we will look for controllability over open subsets of TE3 where our

control set is taken to be V3, even on the points where eigenvalues cross, with the

understanding that we will later restrict to T o3 .
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3.2 Using a discrete control set

The procedure used in the previous chapter for the two-dimensional case could in

principle be used for three dimensions. Our controls can be written in terms of three

Bloch vectors ~m, ~n and ~p:

|ψ1〉 =

√
1 +m1

2
|1〉+

m2 + im3√
2(1 +m1)

(√
1 + n1

2
|2〉+

n2 + in3√
2(1 + n1)

|3〉
)

|ψ′2〉 = −
√

1−m1

2
|1〉+

m2 + im3√
2(1−m1)

(√
1 + n1

2
|2〉+

n2 + in3√
2(1 + n1)

|3〉
)

|ψ′3〉 = −
√

1− n1

2
|2〉+

n2 + in3√
2(1− n1)

|3〉

|ψ2〉 =

√
1 + p1

2
|ψ′2〉+

p2 + ip3√
2(1 + p1)

|ψ′3〉

|ψ3〉 = −
√

1− p1

2
|ψ′2〉+

p2 + ip3√
2(1− p1)

|ψ′3〉.

where
∑
m2
j =

∑
n2
j =

∑
p2
j = 1. The six coefficients wjk could be computed in

terms of the nine components and the elements of the Lindblad operators. If the

Lindblad operators are broken down according to the GKS matrix, which has 64 real

components, one would need to compute 6 × 64 = 384 different expressions, which

may or may not be polynomials. Given co-ordinates (x1, x2), we can then ask what

tangent vectors (ẋ1, ẋ2) we can achieve in a given direction. This would yield four

constraints (three for the Bloch vectors, one to constrain the direction) to optimize

the quantity ẋ1
2 + ẋ2

2. The method of Lagrange multipliers would yield thirteen

equations in terms of thirteen variables (four multipliers and three Bloch vectors).

Instead of tackling such a daunting mess of algebra, we will consider a less am-

bitious problem. To motivate this, we will return to the two-dimensional case. In

general, optimizing ṙ at the left endpoints r = 0 is much easier than for r > 0.

There, ṙ = ~b · n̂, and clearly the optimal values are ±|~b| and these are achieved by
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the two controls n̂ = ±~b/|~b|. One can then easily compute the size of the globally

controllable set using only those two controls: rRT = |~b|3

tr(A)|~b|2−
∑
j ajb

2
j

, where the super-

script R denotes “pertaining to the reduced control set”. fRM(r) = |~b|(1 − r
rRT

) and

fRm(r) = |~b|(−1 − r
rRT

). The difference between them is 2|~b|, which is independent of

r. Fig. 3.2 shows a typical comparison of fm and fM with fRm and fRM . The globally

controllable set is reduced, but not by more than 25%. Note the latter pair are the

linearizations of the former about r = 0. This is true in general, and we will now

show this.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

 

 

r
t
R=0.5514

r
T
=0.7107

Figure 3.2: fRM and fRm are shown (in green) for a two-dimensional system with a1 = 15, a2 = 8,
a3 = 1, b1 = 3.7101, b2 = 2.9331, b3 = 10.6537. fM and fm are shown in blue for contrast.

Proposition III.3. For the control system described in (2.2),

f ′M(r) = f ′m(r) = −|
~b|
rRT
.

Proof. Let r = δr be small. Using Lagrange multipliers on equation (2.2), we get
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bj + 2δrajnj = 2λnj. This yields nj =
bj

2(λ−δraj) '
bj
2λ

(1 +
δraj
λ

). Substituting into the

normalization constraint
∑
n2
j = 1, and re-arranging, we get the cubic polynomial:

4λ3 − |~b|2λ− 2δr
∑

ajb
2
j = 0.

For δr = 0, the roots are λ = 0,± |~b|
2

. Linearizing the cubic polynomial about those

points, we find the perturbed roots are λ = −2δr
∑
ajb

2
j

|~b|2
,± |~b|

2
+δr

∑
ajb

2
j

|~b|2
. The first root

leads to nj’s that are unbounded, so we can neglect it. The other two give, to first

order, nj = ± bj

|~b|
(1±2δr(

aj

|~b|
−

∑
akb

2
k

|~b|3
)). And in turn,

∑
j bjnj = ±|~b|. There is no linear

term in the latter expression, which means, for small δr, ṙ = ±|~b|+ δr
∑
aj(

bj

|~b|
− 1).

This, however, is just fRM and fRm, so we are done.

So at least for two dimensions, trimming our control set from a sphere to a pair al-

lows us to greatly simplify the mathematics, while still retaining a significant portion

of the globally controllable set. The simplicity is due to the fact that, regardless of

dimension, the Lindblad term reduces nicely when the density matrix is completely

mixed: LD( 1
n
I) = 1

n

∑
k[Lk, L

†
k]. In three dimensions, we can precisely describe

F(~0,W3), the set of tangent vectors ~̇x we can achieve when ~x = (0, 0). We lay this

out in the following proposition:

Proposition III.4. Consider the differential equations (3.3). Let {|Λj〉, j = 1, 2, 3}

be the eigenvectors of the operator
∑

k
1
3
[Lk, L

†
k], with eigenvalues λLCj . Assume the

eigenvalues are indexed in descending order, and since the Lindblad operators are

traceless, they must sum to zero. If the eigenvalues are distinct, F(~0,W3) is bounded

by the hexagon with vertices

(±(λLC1 − λLC2 ),
√

3(λLC1 + λLC2 ))

(±(λLC1 − λLC3 ),
√

3(λLC1 + λLC3 ))
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(±(λLC2 − λLC3 ),
√

3(λLC2 + λLC3 )).

This is a tight bound: every point on the hexagon can be achieved. The six vertices

are achieved by setting {|ψj〉} to one of the six permutations of {|Λj〉}.

If there is a double eigenvalue, the vertices converge so that the hexagon becomes

a triangle. If there is triple multiplicity, all eigenvalues are zero, which means the

system is unital, and the hexagon is now just the zero point.

Proof. First, ẋ2 = −
√

3〈ψ3|LD(1
3
I)|ψ3〉. Since λLC3 ≤ 〈ψ3|LD(1

3
I)|ψ3〉 ≤ λLC1 , we

have the bounds

−
√

3λLC1 = −
√

3(λLC2 + λLC3 ) ≤ ẋ2 ≤ −
√

3λLC3 = −
√

3(λLC1 + λLC2 ).

These bounds are saturated when |ψ3〉 = |Λ1〉 and |Λ3〉, respectively.

If we choose |ψ3〉 = |Λ3〉, |ψ1〉 and |ψ2〉 must be orthogonal superpositions of |Λ1〉

and |Λ2〉. In fact if |ψ1〉 = cos(φ
2
)|Λ1〉 + eiθ sin(φ

2
)|Λ2〉 and |ψ2〉 = − sin(φ

2
)|Λ1〉 +

eiθ cos(φ
2
)|Λ2〉, we have

ẋ = 〈ψ1|LD(
1

3
I)|ψ1〉 − 〈ψ2|LD(

1

3
I)|ψ2〉 = cos(φ)(λLC1 − λLC2 ).

This traces out the top, horizontal edge of the hexagon, and we can do the same for

the bottom by choosing |ψ3〉 = |Λ1〉. The remaining four edges can be treated by

noting they always have the slopes ±
√

3. It follows that the quantities ẋ2 ±
√

3ẋ1

have constant bounds in the same way ẋ1 and ẋ2 do.

Figure 3.3 shows some examples. The hexagon is regular when λLC2 = 0, so that

λLC1 = −λLC3 , which is shown in the upper left frame. The upper right shows what

happens for λLC2 > 0: the hexagon is no longer regular but there is still a non-trivial

group of symmetries. Namely, there are three reflections and two rotations that leave

it invariant, so that the symmetry group is the symmetric group S3. This is natural,
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considering one moves between vertices of the hexagon by permuting the eigenbasis

{|ψj〉}.
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Figure 3.3: Possible F(~0,W3) for various LD(ρ). The sets are superimposed on TE
3 . The spectra for

LD( 1
3I) are: {0.1, 0.05,−0.15} (upper left), {0.1, 0,−0.1} (upper right), {0.05, 0.05,−0.1} (lower

left), {0.1,−0.05,−0.05} (lower right)

The next chapter will consider the problem of controlling the state space TE3 using

the discrete control set {flg({|Λσ(j)〉) : j = 1, 2, 3} : σ ∈ S3}. Our results however

will hold for any set of six permuted flags. We will refer to the system with the

control set {flg({|ψσ(j)〉) : j = 1, 2, 3, σ ∈ S3}, where {|ψσ(j)〉) : j = 1, 2, 3} is any

eigenbasis, as the VR3 -control problem. We will finish this chapter with a proposition

on the symmetry properties of this reduced problem. Let WR
3 be the image of VR3

under W . We are essentially considering six vector fields on TE3 , F(·, ~w), where ~w

is one of the six elements of WR
3 . One can generate all six vector fields from one by

using rotations and reflections:
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Proposition III.5. Let ~w0 = W(flg(|Λ1〉, |Λ2〉, |Λ3〉)), the element of W3 corre-

sponding to the vertex of F(~0,W3) in T3. This control leads to the vector field

~̇x = ~b(~w0) − A(~w0)~x =: ~b0 − A0~x =: V0(~x). Define the reflection matrices about

the interior lines of TE3 (x1 = 0 and x1 = ±
√

3x2):

R1 =

 −1 0

0 1

 R2 =

 1/2
√

3/2

√
3/2 −1/2

 R3 =

 1/2 −
√

3/2

−
√

3/2 −1/2

 .

and let R0 := I, R4 := R3R1 and R5 := R3R2, i.e. the rotation matrices by angles

of 0, 2π/3 and 4π/3. These matrices form a representation of the symmetric group

S3. Then the remaining vector fields generated by the five remaining elements of W3

can be written Vj(~x) = Rj
~bR − (RjARR

−1
j )~x, j = 1 . . . 5.

Proof. We will prove the case for V2(~x), as all the remaining cases would proceed in

a similar fashion. One finds V2(~x) from VI(~x) by exchanging |ψ2〉 and |ψ3〉. Taking

(3.3) and exchanging the indices 2 and 3, we get

ẋ1 = 1
3
(2w0

13 − 2w0
31 + w0

12 − w0
32 + w0

23 − w0
21)

−x1

2
(2w0

13 + 2w0
31 + w0

23 + w0
21)− x2

2
√

3
(2w0

31 − 2w0
13 + 2w0

12 − 2w0
32 + w0

21 − w0
23)

ẋ2 = 1√
3
(w0

12 + w0
32 − w0

23 − w0
21)−

√
3x1

2
(w0

21 − w0
23)− x2

2
(2w0

12 + 2w0
32 + w0

21 + w0
23).

On the other hand,

R2
~b0 =

 1/2
√

3/2

√
3/2 −1/2


 2

3
w0

12 − 2
3
w0

21 + 1
3
w0

13 − 1
3
w0

23 + 1
3
w0

32 − 1
3
w0

31)

1√
3
w0

13 + 1√
3
w0

23 − 1√
3
w0

32 − 1√
3
w0

31)


=

 1
3
w0

12 − 1
3
w0

21 + 2
3
w0

13 − 1
3
w0

23 − 2
3
w0

32 − 1
3
w0

31)

1√
3
w0

12 − 1√
3
w0

21 − 1√
3
w0

23 + 1√
3
w0

32)

 .

Also,

R2A0R
−1
2 =

 1
2

√
3

2

√
3

2
−1

2

×
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 1
2
(2w0

12 + 2w0
21 + w0

31 + w0
32) 1

2
√

3
(2w0

21 − 2w0
12 + 2w0

13 − 2w0
23 + w0

31 + w0
32)

√
3

2
(w0

31 − w0
32) 1

2
(2w0

13 + 2w0
23 + w0

31 − w0
32)


 1

2

√
3

2

√
3

2
−1

2


=

 1
2
(2w0

31 + 2w0
13 + w0

21 + w0
23) 1

2
√

3
(2w0

12 + 2w0
31 − 2w0

32 − 2w0
13 + w0

21 − w0
23)

√
3

2
(w0

21 − w0
23) 1

2
(2w0

12 + 2w0
32 + w0

21 + w0
23)

 .

The two components of R2
~b0 and the four components of R2A0R

−1
2 match the com-

ponents in (3.5), so we are done.



CHAPTER IV

Control of Three-Dimensional Systems using the Discrete
Control Set

4.1 Small-time local controllability

For the VR3 control system, we can specify a condition for STLC in terms of convex

cones. The convex cone generated by a collection of vectors is the set of all linear

combinations of those vectors with non-negative coefficients.

Proposition IV.1. TE3 is STLC at a point ~x0 if the cone generated by the vector

fields {Vj(~x0)} is R2. Equivalently, if we partition the interval [0, 2π] by considering

the angular separations of angularly adjacent vectors, then the system is STLC at ~x0

iff the largest angular separation is strictly less than π.

Proof. One can generate motions by switching between the vector fields for very short

time intervals. Turning on the ith vector field for time interval δt1, followed by the

jth vector field for δt2, yields, to first order, a displacement δt1Vi(~x0) + δt2Vj(~x0 +

δt1Vi(~x0)) ' δt1Vi(~x0)+δt2Vj(~x0). Since δt1 and δt2 are arbitrary non-negative small

numbers, we can generate small forward motions that lie in the cone generated by

Vi(~x0) and Vj(~x0). The same follows for a collection of six vector fields, instead of

two. For STLC however we need to be able generate small motions in any direction.

Therefore, the cone generated by the six vector fields must contain all directions, i.e.

56
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it must be R2.

Concerning the equivalent statement, a pair of vectors can be described by an

angular separation α ≤ π, so that one vector is an angle α counter-clockwise from

the other. The cone generated by this pair includes only vectors with a counter-

clockwise angle from the first vector taken in the interval [0, α] and excludes vectors

with angles in the interval (α, 2π). That is, vectors can’t generate other vectors in

the sector that has an angle of π or greater. This fact generalizes to a collection of

vectors. One can only generate vectors in sectors that have an angle less than π. If

one orders the vectors in counter-clockwise order, and there is a sector with an angle

larger than π, one cannot generate vectors there. Vectors can be generated in all

other sectors. Fig. 5.3 contrasts an example where the generated cone is R2 with a

counter-example.

Figure 4.1: The cone generated by the six vectors on the left is R2, while the cone generated on
the right is not.

We will now apply this to find STLC sets. We will first start with the degenerate

systems, then proceed to the non-degenerate systems.

4.2 The degenerate cases

First, let us note the following formulas that can be calculated directly from (3.3):

tr(A(~w)) = w12 + w21 + w31 + w32 + w13 + w23 ≥ 0

det(A(~w)) = w12w13 + w21w23 + w31w32

+ w21w13 + w31w12 + w32w21 + w12w23 + w13w32 + w23w31 ≥ 0.
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Since all wij’s are non-negative, it follows that the trace and determinant are also

non-negative. This means the eigenvalues of −A(~w) must have non-positive real

part. This is natural, of course, since otherwise there would be trajectories that go

to infinity, escaping TE3 . Inspecting the determinant formula, one can see there are

three cases where the determinant of A0 fails to be non-zero, ignoring the trivial case

where all wij’s are zero:

· There is only one non-zero wij.

· There are two non-zero wij’s, and they share their second index (e.g. w12 and w32).

· There are two non-zero wij’s whose indices are flipped (e.g. w12 and w21).

We will examine each of these cases in turn. Without losing generality, we need

only consider one sub-case each. For example, in the first case, we only have to

consider what happens when w12 is non-zero. We can draw conclusions for the other

sub-cases by permuting indices. A key property in each case is that while the vector

fields vary over TE3 , they vary only in magnitude and not in direction (although they

do reverse direction). This means one can find the STLC by considering where the

vector fields change direction.

4.2.1 w12 6= 0, but other components of ~w are zero.

In this case, ~b0 =

 2
3

0

w12 and A0 =

 1 − 1√
3

0 0

w12. This vector field is

horizontal everywhere, since ẋ2 = 0. Furthermore, ẋ1 = 2
3
− x1 + 1√

3
x2, which is

zero only along the line passing through the right edge of TE3 , positive to the left

of it, and positive to the right. At ~x = (0, 0)T , under the reflections and rotations

generated by the symmetric group, the remaining vector fields are equally spaced

at angles of π
3
, so the generated cone is clearly R2. This will remain true until at



59

least two vector fields reverse direction. However, the images of the right edge of TE3

under the action of the symmetric group are other edges, so we can conclude that

we have STLC everywhere in the interior of TE3 . The boundary of TE3 however can

never be reached in finite time.

4.2.2 w12 6= 0, w32 6= 0 but other components of ~w are zero.

In this case, we have

~b0 =

 2
3
(w12 + 1

2
w32)

− 1√
3
w32


A0 =

 w12 + 1
2
w32 − 1√

3
(w12 + 1

2
w32)

−
√

3
2
w32

1
2
w32

 .

This can be re-written

V0(~x) =

 2w12+w32

3

−w32√
3

 (1− 3x1

2
+

√
3x2

2
).

Once more the direction does not depend on ~x, and the magnitude only becomes

zero on the right edge of TE3 . The only difference here is that the angular separa-

tions between the vector fields are not equally spaced, but not that does not affect

controllability. As in the previous case, one has STLC in the interior of TE3 .

4.2.3 w12 6= 0, w21 6= 0 but other components of ~w are zero.

Assume, without loss of generality, that w12 ≥ w21 (inverting the order is equiva-

lent to reflecting across x1 = 0). In this case,

~b0 =

 2
3

0

 (w12 − w21)

A0 =

 (w12 + w21) − 1√
3
(w12 − w21)

0 0

 .
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Just as in the two previous cases, the direction of the vector field is constant, but

this time the magnitude becomes zero inside TE3 , namely at the line x2 = − 2√
3

+

√
3
(
w12+w21

w12−w21

)
x1. This line intersects the bottom vertex of TE3 but has slope greater

than
√

3 (if w12 = w21, the line is just the x2 axis). Note also that the vector field is

horizontal: this means, as in the first case, that the vector fields have equal angular

separation at each point, i.e. π
3

radians.

The line above, and its five cousins under the symmetric group, divide TE3 into

regions, and we can determine STLC in each of them. Figure 4.2 shows an example of

how the vector fields reverse direction as we cross these lines. Crossing one line does

not destroy STLC, but as soon as we cross another, there is an angular separation of

exactly π radians, which forbids STLC. We can conclude that we have STLC in the

center region, and the six peripheral regions where only one vector field has reversed

direction. Elsewhere, there is no STLC.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.2

−1

−0.8
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0

0.2

0.4

0.6

Figure 4.2: The STLC set (light blue) when w12 = 3, w21 = 1, w31 = w32 = w13 = w23 = 0. The
blue lines indicate where vector fields reverse direction, and the pictograms show which directions
can be generated in each region.

As is turns out, we have global controllability on a larger set (which happens to
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be the convex hull of the STLC set). For example, note that in the bottom-most

diamond in fig. 4.2, we can still go horizontally in either direction. Therefore we can

include all points in between two STLC points that are horizontally separated. This

logic extends to the other outer regions in fig. 4.2 that have pictograms: in those

regions we can always travels bidirectionally parallel to nearest edge of TE3 , so we

can fill in all points between two STLC points whose separation is parallel to that

edge. See figure 4.3 to see the new regions of global controllability. Since all vectors

point inward on the boundary of this set, this set is maximally globally controllable

(MGC). To be precise, the MGC set is the interior of the set bounded by the lines

shown.
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Figure 4.3: The controllable set when w12 = 3, w21 = 1, w31 = w32 = w13 = w23 = 0. The blue
region indicates points of STLC. The green region indicates points that are not STLC but within
the maximally globally controllable set.

We can specify formulas for the six vertices of the MGC set. The vertex in sextant
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I has co-ordinates

x1 =
w12(w12 − w21)

w2
12 + w12w21 + w2

21

x2 =
x1√

3
+

2√
3

w21(w12 − w21)

w2
12 + w12w21 + w2

21

.

Note that when w12 = w21, these formulas give zero. In that case, the STLC and

MGC sets vanish.

4.2.4 STLC of non-degenerate systems

It is clear that there is always STLC at the point ~x = (0, 0), since every sextant

has a vector field pointing into it (assuming of course that the system isn’t unital

which would make Vj(~0) = ~0). Furthermore, since the vector fields vary continuously,

the boundary of the locally controllable set occurs when two of the six vector fields

are anti-parallel, since the largest angular separation must pass from < π to ≥ π.

The following proposition identifies the set of points where this is true.

Proposition IV.2. Consider the vector fields Vj = ~bj − Aj~x and Vk = ~bk − Ak~x,

j 6= k and j, k ∈ {0, . . . , 5}. These vector fields are collinear, but with non-positive

dot product, on the following curve and only on the following curve:

~xjk(s) = (sAj + (1− s)Ak)−1(s~bj + (1− s)~bk) s ∈ [0, 1].

Proof. Note at the endpoints, this is trivially true since Vj(~xjk(1)) = ~bj−Aj(A−1
j
~bj) =

~0 = Vk(~xjk(0)) so the dot product is zero, and any vector is collinear with the zero

vector. For s ∈ (0, 1), Vj(~x) and Vk(~x) are nonzero and collinear with opposite

orientation iff there is a linear combination of them, using positive coefficients, that
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is zero. Let cj and ck be these coefficients. So we have

cjVj(~x) + ckVk(~x) = ~0

cj~bj + ck~bk = cjAj~x+ ckAk~x

cj~bj + ck~bk = (cjAj + ckAk)~x

~x = (cjAj + ckAk)
−1(cj~bj + ck~bk)

= (
cj

cj + ck
Aj +

cj
cj + ck

Ak)
−1(

cj
cj + ck

~bj +
ck

cj + ck
~bk).

If we define s :=
cj

cj+ck
, we have arrived at the conclusion of the proposition. Note that

the positivity of the coefficients requires s ∈ (0, 1). Also note that we’ve assumed the

inverse operation in the fourth step can be done for any cj, ck. This is an essential and

non-obvious assumption: without it, the curve wouldn’t be a continuous bounded

arc, a property we will want later. We will prove this fact for a pair separated by

a reflection (V0 and V1) and a pair separated by a rotation (V0 and V4), and from

symmetry extend to all other pairs.

First note, for two matrices A and Ā with equal, positive determinant, det(sA+

(1− s)Ā) = s2 det(A) + (1− s)2 det(Ā) + s(1− s)(det(a1ā2) + det(ā1a2)), where the

det(a1ā2) means the determinant of the matrix formed from the first column of A

and the second column of Ā. This is a quadratic function in s with critical point

s = 1
2
. Since the determinants we are interested in are positive at s = 0 and s = 1,

if we can show they are positive at s = 1
2
, then we can conclude they are positive for

all s ∈ (0, 1). In fact, we can show this by brute calculation using Mathematica:

det(
1

2
A0 +

1

2
R1A0R

−1
1 ) = A011A022

det(
1

2
A0 +

1

2
R4A0R

−1
4 ) =

5

8
det(A0) +

3

16
||A0||2.

The first determinant is positive since the diagonal elements of A0 are positive, and

the second is positive since the determinant of A0 is positive.
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We can use this proposition to construct AE3 . There are 6 × 5 = 30 curves

~xij(s) = (sAj + (1− s)Ak)−1(s~bj + (1− s)~bk) for i 6= j, although ~xji(s) and ~xij(s) are

parametrizations of the same curve, so there are at most 15 unique loci of points.

Also, there are six endpoints to these curves: ~x∞,j := A−1
j
~bj, where the ∞ is used

since these points are the asymptotic endstates of each vector field − since the matrix

Aj is invertible, all initial states are driven to ~x∞,j as t → ∞. It is possible for the

~x∞,j’s to coincide, but symmetry dictates they coincide in one of two ways: (1) if the

system is unital, they all coincide at ~x = (0, 0) or (2) three pairs converge so that

each pair lies on one of the three inner legs of TE3 . We will ignore the first case since

it means there is no local or global controllability, and in the second case at least

three of the arcs become trivial in that they map to a single point. The following

theorem describes how to build AE3 :

Theorem IV.3. For a triple of distinct indices (j1, j2, j3), one can form a closed

curve with the domain s ∈ [0, 3] (which may not be simple):

~xj1j2j3(s) =


(sAj2 + (1− s)Aj1)−1(s~bj2 + (1− s)~bj1) s ∈ [0, 1]

(sAj3 + (1− s)Aj2)−1(s~bj3 + (1− s)~bj2) s ∈ [1, 2]

(sAj1 + (1− s)Aj3)−1(s~bj1 + (1− s)~bj3) s ∈ [2, 3].

This closed curve lies entirely within TE3 , and partitions it into the interior and exte-

rior of the curve (include the curve itself with the exterior). Call the interior region

A(j1,j2,j3). Then AE3 =
(⋃

j1 6=j2 6=j3 6=j1 Ā(j1,j2,j3)

)o
, where the bar indicates closure, and

the o indicates interior.

Proof. The system can clearly not be STLC on the boundary of TE3 , or else we could

achieve non-physical states. Similarly, the endpoints ~x∞,j must lie in TE3 since we

can approach these points asymptotically. It follows that the exterior of ~xj1j2j3(s)
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contains points on the boundary of TE3 . But since the system can only switch from

STLC with controls j1, j2 and j3 to non-STLC after passing through ~xj1j2j3(s), it

cannot be STLC using those controls anywhere on the exterior.

Furthermore, the system must be STLC on the interior. To see this consider

the function zjk(~x) = Vj(~x)TJVk(~x), where J =

 0 1

−1 0

, which gives the cross

product of the vector fields at each point. This must be zero where the fields are

anti-parallel, but more importantly, zjk(~x) must change sign if one gains STLC when

crossing curve ~xjk(s). If we were to cross ~xj1j2j3(s) from exterior to interior and not

gain STLC, zjk would have to be zero on the curve, and have the same sign on either

side. That is, z would have a one-dimensional locus of local extrema on ~xj1j2j3 . But

note that zjk(~x) is a quadric surface, and the only quadric surfaces that have such

a feature are degenerate. But since we are assuming Aj and Ak are non-degenerate,

ATj JAk is non-degenerate, and therefore zjk is a non-degenerate quadric surface, and

can only have isolated local extrema. It follows that it changes sign at almost all

points along ~xj1j2j3(s). Therefore one has STLC in the interior A(j1,j2,j3).

Once one has identified the STLC regions for triples of vector fields, we must

extend. Clearly, if the system is STLC using just a particular triple of the vector

fields, it is STLC using a sextuple. It is technically possible to have STLC with six

field without STLC for any triple, and this happens on the arcs ~xj1j2(s) that are on

the interior of AE3 . These line are not part of Aj1,j2,j3 , which is why the theorem

invoked the closure and interior operations. Note that if one starts with a collection

of m vectors in R2 with angular separations ∆θj so that
∑

∆θj = 2π, one can always

remove a vector so that the largest angular separation is no more than 4π
m

: find the

two adjacent angular separations with the smallest sum, which must be less than or
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equal to 4π
m

, and remove the middle vector. If one does this three successive times

starting with six vectors, one can end with a maximum angular separation of 4π
4

= π

(see the top process in fig. 4.4). Of course, we need it to be strictly less than π,

and this is where one can have STLC with six vector fields, without STLC with any

triple.

There is only one way for the above procedure to yield a maximum angular sepa-

ration of π: when the quadruple before the final removal has four angular separations

of π
4

(see the bottom process in fig. 4.4). This only happens however when there

are two pairs of vectors that are anti-parallel, i.e. we are on the intersection of two

of the arcs ~xjk(s). Such points must only occur on the interior of the closure of

the union of A(j1,j2,j3): it is clear that perturbing the quadruple of vectors does not

ruin STLC, therefore one has STLC at least in a neighborhood of the intersection

point. Therefore, if we close the union, and then take the interior, such points will

be included in AE3 .

Figure 4.4: Removing vectors from an STLC sextuple to end with an STLC triple. The top row
shows the typical case. The bottom row shows the case where the final triple has an angular
separation of π.

The above theorem pins down the procedure for finding AE3 . We have written a

MATLAB procedure for plotting AE3 when the Lindblad operators are of the form
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√
γ|j〉〈k|, and Figure 4.5 shows some examples. One can see that we can get qualita-

tively different regions, and one can ask how this variation depends on the Lindblad

operators. We address that question in the next section.

Figure 4.5: AE
3 for dissipations with the Lindblad operators (top). The figures on the left show the

arcs, and the ones the right show AE
3 . The Lindblad operators are:

√
2|1〉〈2|, 2|2〉〈1|, |3〉〈1| and√

5|3〉〈2| (middle): |1〉〈2|,
√

2|2〉〈1| ,
√

2|3〉〈1| ,
√

3|2〉〈3| and 2|3〉〈2| (bottom):
√

2|1〉〈2|,
√

5|1〉〈3|,√
3|3〉〈1| and

√
6|3〉〈2|.

4.3 Characterizing AE3

We would like to study the relationship of the shape of AE3 with the wij’s. First, it

should be noted that the boundary of AE3 is formed from segments of conic sections:

the curves ~xjk(s) are parametrizations of the algebraic varieties zjk(~x) = 0, which are

quadratic in x1 and x2. We claim that there are four parameters that are important to

the shape, and one other that may be of interest depending on the system. Since there
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are six coefficients in the vector field Vj(~x) = ~bj −Aj~x, reducing to six parameters of

interest would be natural, but we have yet to identify a sixth. The five parameters

are:

• The two co-ordinates that describe the positions of the ~x∞,j’s. While this point is

not always the highest-purity point inAE3 , it gives a good indication of its spatial

extent. The co-ordinates that we will use will not be x1 and x2, but z1 = x1

and z2 := −1
2
x1 +

√
3

2
x2 = λ2−λ3, for reasons that will make our result simpler.

Note that these co-ordinates can be used to define a different measure of purity.

Typically, purity-squared is defined to be trρ2 = λ2
1 + λ2

2 + λ2
3 = 1

3
+ 2

3
(x2

1 + x2
2).

Instead, we can define purity-squared to be (λ1 − λ2)2 + (λ2 − λ3)2 = z2
1 + z2

2 .

It is important to note that ~x∞,j may not fall in the same sextant as Rj
~b does,

and in particular, ~x∞,0 = A−1
0
~b0 may not fall in sextant I. However, there is a

~x∞,j that does − let us call this point ~x∞,I = A−1
I
~bI , with co-ordinates zI1 and

zI2 , and let zkj refer to the coordinates of its cousin in the kth sextant.

• If one looks at fig. 4.5, one sees that the connecting arcs can “sag” to various

degrees. The system at the top has straight arcs when exchanging the leading

indices, and significantly curved arcs when exchanging the lagging indices, while

it is the reverse for the system in the middle. To measure this, we look at the

intercepts of these arcs at the interior axes. While there are fifteen arcs in total,

only arcs that are symmetric about a given axis can have a maximal (most

positive or negative) intercept. There are three such arcs for any given axis,

and because of symmetry, each axis has the same three intercepts. We only

need to consider the three intercepts along an axis of our choosing, and we will

look at the x1 = 0 axis, where λ1 and λ2 cross. As above, we will consider
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the intercepts in the z1, z2 co-ordinate system, as it conveniently eliminates a

multiplicative constant.

zI,II2 := (
1

2
AI +

1

2
R1AIR1)−1(

1

2
~bI +

1

2
R1
~bI)

zIII,V I2 := (
1

2
R4AIR5 +

1

2
R2AIR2)−1(

1

2
R4
~bI +

1

2
R2
~bI)

zIV,V2 := (
1

2
R3AIR3 +

1

2
R5AIR4)−1(

1

2
R3
~bI +

1

2
R5
~bI)

The superscripts denote which sextants the arc endpoints lie in. We typically

expect only zI,II2 and zIV,V2 to be of interest, since they connect adjacent sex-

tants. However, it is possible for the middle arc to “peek” past one of the

others, so that its intercept is either the most negative or positive. Essentially,

the spatial extent of AE3 along a short leg of a sextant can be quantified by

sup(zI,II2 , zIII,V I2 , zIV,V2 ) and along the long leg by | inf(zI,II2 , zIII,V I2 , zIV,V2 )|.

Our main result in this section, and in fact the most interesting result in this

thesis, connects these parameters to rooted trees. To introduce this connection we

recall the expression for the determinant of A(~w) (and its symmetric images):

det(A(~w)) = w12w13 + w21w23 + w31w32

+ w21w13 + w31w12 + w32w21 + w12w23 + w13w32 + w23w31.

It is the sum of products in the form wijwkl, but not all possibilities are represented.

If one excludes wij’s with repeated indices as well as products with repeated factors,

there are fifteen possibilities (six choose two), but only nine appear. One way to

describe the ones that do appear are in terms of rooted trees. A tree is a connected

graph without closed cycles. A rooted tree is a directed tree where one vertex (the

root) has only edges that direct into it, and all other vertices have only one edge that

direct away from it. Cayley’s formula [13] says that the number of (unrooted) trees
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on n vertices is nn−2. Since there are n rooted trees for every tree (one can choose

any of the vertices to be the root), there are nn−1 of them, and therefore nn−2 rooted

trees for every choice of root.

For every product Πm
i=1wjiki , associate a directed graph with three vertices and m

edges where edge i directs from vertex ki to vertex ji. Physically, wjk is the rate at

which state |ψk〉 will jump to state |ψj〉. So the product Πm
i=1wjiki can be thought of

as the rate of the mth order process whereby states |ψki〉 jump to states |ψji〉. Using

Cayley’s formula, there are 33−2 = 3 possible trees on 3 vertices, and 33−1 = 9 rooted

trees. Let ΓS be the set of all rooted trees with vertices in the set S ⊂ N, and let ΓSp

be the set of all such trees with root at vertex p ∈ S. For tree t̄ ∈ ΓS, let E(t̄) be the

|S|-tuple of edges (ji, ki) corresponding to t̄. Then we have the following formula:

det(A(~w)) =
∑
t̄∈ΓZ3

∏
e∈E(t̄)

we.

Note that we don’t see a product such as w12w21. This product corresponds to a

graph with a 2-cycle. Similarly, there are no products such as w13w23. If one were

to ignore directionality, this product would correspond to a tree. However, it is not

a rooted tree since there isn’t a unique root. Fig. 4.6 shows some directed graphs

that do not correspond to rooted trees.

|ψ3〉

|ψ2〉

|ψ1〉

|ψ3〉

|ψ2〉

|ψ1〉

|ψ3〉

|ψ2〉

|ψ1〉

Figure 4.6: Examples of directed graphs that are not rooted trees. On the left, w13w31 corresponds
to a 2-cycle. In the center, w32w12 is a tree but has two roots. On the right, w22w13 is both
disconnected and has a 1-cycle.

This gives a description of the determinant in terms of trees, but we can extend

this to our five shape parameters. If we compute zI1 and zI2 , we get the following



71

formulas:

zI1 =
w12w13 + w12w23 + w13w32 − w21w23 − w21w13 − w23w31

det(AI)

zI2 =
w21w23 + w21w13 + w23w31 − w31w32 − w31w12 − w32w21

det(AI)
.

We’ve already addressed the determinant, but notice the numerators also can be

described in terms of trees, although now we need to sort the trees according to their

root. Let us define

Jj :=
∑
t̄∈Γ

Z3
j

∏
e∈E(t̄)

we.

Essentially, Jj is the sum of the second order tree processes with root corresponding

to |ψj〉. Fig. 4.7 shows the three trees that contribute to J1.

|ψ3〉

|ψ2〉

|ψ1〉

|ψ3〉

|ψ2〉

|ψ1〉

|ψ3〉

|ψ2〉

|ψ1〉

Figure 4.7: The three trees that contribute to J1.

We can now write down zI1 and zI2 :

z1 =
J1 − J2

J1 + J2 + J3

z2 =
J2 − J3

J1 + J2 + J3

.(4.1)

The denominators we have already seen. The numerators show that the relative

magnitudes of the second order rates belonging to different vertices affect the position

of the ~x∞,j’s.

We can also describe the remaining parameters in terms of trees, but these are

two-vertex trees instead of three-vertex trees. Since these trees only have one edge,

this description may seem like overkill, but work in higher dimensions suggests this
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pattern continues, so we believe it worthwhile. The reason there are only two vertices

is because these trees connect equivalence classes induced by the degeneracy λ1 = λ2.

Instead of vertices Z3 = {1, 2, 3}, we have vertices Z3/ ∼:= {[1, 2], [3]}. Of course,

there is only one such tree and two rooted trees on two vertices. But the trees on two

vertices induce graphs on the larger vertex set: an edge directing between equivalence

classes of m and n elements induces mn possible directed edges on the elements. In

our case, the two rooted trees on Z3/ ∼ induce four directed graphs consisting of one

edge: the tree with root [1, 2] induces edges 1← 3 and 2← 3, and the tree with root

[3] induces edges 3← 1 and 3← 2 as seen in fig. 4.8. Note that the induced graphs

are not trees because they are disconnected, although the connected components are

trees since there are no closed cycles.

Figure 4.8: The rooted trees on Z3/ ∼ and the directed graphs they induce on Z3.
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The formulas for the parameters are:

zI,II2 =
w13 + w23 − w31 − w32

2w13 + 2w23 + w31 + w32

zIII,V I2 =
w12 + w32 − w21 − w23

2w12 + 2w32 + w21 + w23

(4.2)

zIV,V2 =
w21 + w31 − w12 − w13

2w21 + 2w31 + w12 + w13

.

Each formula contains four first-order rates, corresponding to the four induced di-

rected graphs. The equivalence relation is different in each case: ∼I,II sets 1 ∼I,II 2,

∼III,V I sets 1 ∼III,V I 3 and ∼IV,V sets 2 ∼IV,V 3. This has to do with the fact

that the equivalence classes don’t refer to the subscripts of degenerate eigenvalues

(which are 1 and 2 for all three intercepts ), but to the eigenvalues pertaining to the

swapped eigenvectors. In each of the three cases, we are swapping |ψ1〉 and |ψ2〉,

but in sextant V for example, these have the eigenvalues of λ2 and λ3 respectively

(because of the reordering that happens when one crosses an interior leg), and vice

versa in sextant IV . So ∼IV,V puts 2 and 3 in the same equivalence class.

Also note the coefficient 2 in the denominator. It turns out that in higher dimen-

sions the terms in the denominator are multiplied by the multiplicity of their root.

Since we have a double degeneracy here, trees directing to [1, 2] lead to a coefficient

of 2 and those directing to [3] lead to a coefficient of 1.

To rewrite our formulas, let Γ̄S be the set of directed graphs on S with 1 edge,

and let the map YS,∼ : Γ̄S → Γ̄S/∼ map a directed graph on S to its induced graph

on S/ ∼. Similarly, let yS,∼ : S → S/ ∼ map p ∈ S to its equivalence class [p]∼.

Now define

J ∼[j] :=
∑

t̄∈Γ
Z3/∼
[j]

∑
ḡ∈Y −1

Z3,∼
(t̄)

∏
e∈E(ḡ)

we.
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We can now write

zI,II2 =
J ∼I,II[1,2] − J

∼I,II
[3]

2J ∼I,II[1,2] + J ∼I,II[3]

zIII,V I2 =
J ∼III,V I[1,3] − J ∼III,V I[2]

2J ∼III,V I[1,3] + J ∼III,V I[2]

zIV,V2 =
J ∼IV,V[2,3] − J ∼IV,V[1]

2J ∼IV,V[2,3] + J ∼IV,V[1]

.

We will deal with how to generalize these formulas in the following chapter.

We now want to design STLC sets by playing around with our wij’s. We start

with a proposition regarding purifiable STLC sets.

Proposition IV.4. The boundary of AE3 contains the pure orbit (zI1 , z
I
2) = (1, 0) iff

w21 and w31 = 0. Furthermore, AE3 = TEo3 iff w21, w31 and either w23 or w32 is zero.

A complementary case where (zI1 , z
I
2) = (1, 0) but sup(zI,II2 , zIII,V I2 , zIV,II2 )� 1

2
occurs

when w12, w13 and |w23 − w32| are much less than w23 + w32.

Proof. zI1 = 1 implies that −2J2 = J3, and zI2 = 0 implies that J2 = J3. Both

conditions demand that J2,J3 = 0. For J2 = 0, one of the following must be true:

1. w21, w31 = 0 2. w21, w23 = 0 3. w23, w13 = 0.

In the first case, J3 will automatically vanish. In the second case, for J3 = 0, we

need one of the following:

A. w31 = 0 B. w12, w32 = 0.

In the third case, for J3 = 0, we need one of the following:

A. w21, w31 = 0 B. w31, w32 = 0 C. w12, w32 = 0.

This gives us six cases, but note that cases 2A and 3A are subsumed by case 1, so

only cases 1, 2B, 3B and 3C remain. Since we are assuming that J1 + J2 + J3 6= 0,
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however, we need that J1 > 0. Cases 2B, 3B and 3C violate this condition, so only

case 1 remains, which proves the first statement in the proposition.

To prove the second statement, we need w21, w31 = 0 so that AE3 contains the

pure orbit. If this is the case, note we have ~x∞,I = ~x∞,V I , so that the arcs connecting

sextants I and II, and sextants III and VI have coincident endpoints. For AE3 = TEo3

we need one of these arcs to coincide with the straight top edge of TE3 . Since the arcs

are quadratic curves, which do not have inflection points, it suffices to show that one

of zI,II2 , zIII,V I2 = 1. Since w21, w31 = 0, we have

zI,II2 =
w13 + w23 − w32

2w13 + 2w23 + w32

zIII,V I2 =
w12 + w32 − w23

2w12 + 2w32 + w23

.

The top expression becomes one if w32 = 0 and the bottom is one if w23 = 0.

To prove the third part of the proposition, we need both of these expressions

to become arbitrarily small (note that we don’t have to worry about the intercept,

since zIV,V2 = −1 if w21 and w31 = 0). We can’t make them both zero, since this

requires that w12 and w13 be zero, which makes the system degenerate. If we set

both expressions � 1
2
, we can re-arrange to get

4w13 + 3(w23 − w32)� 4w13 + 3(w23 + w32)

4w12 + 3(w32 − w23)� 4w12 + 3(w32 + w23).

Both of these are true if and only if w13, w12 and |w23 − w32| are � w23 + w32.

Figure 4.9 shows examples of purifiable systems, contrasting various extents of

controllability along the short leg. The example in the center has AE3 = TEo3 . The

figure on the right shows an example of the third part of the proposition. What is

remarkable about these types of systems is that one can achieve the completely mixed
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state and the pure states, but one cannot reach states that are completely mixed in

only two directions. The next proposition concerns systems where this type of state

is the endstate.
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(a) w23 = 9 and w32 = 7
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(b) w23 = 9 and w32 = 0
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(c) w23 = 51 and w32 = 50

Figure 4.9: Examples of AE
3 for purifiable systems. w21 = w31 = 0 in all three cases. Additionally,

w12 = 5 and w13 = 6, chosen arbitrarily.

Proposition IV.5. (zI1 , z
I
2) = (0, 1

2
) iff w31 = w32 = 0 and w12 = w21. Given this,

sup(−zIV,V2 ,−zIII,V I2 ) → 1 if either 2w12+w21

w23
→ 0 or 2w21+w12

w13
→ 0. Conversely,

sup(−zIV,V2 ,−zIII,V I2 )→ 0 if both of those fractions go to infinity.

Proof. zI1 = 0 iff J1 = J2 and J1 > 0. Given this, z2 = 1
2

iff J3 = 0 and J2 > 0.

Now, J3 = 0 iff one of the following are true:

1. w31, w32 = 0 2. w31, w21 = 0 3. w32, w12 = 0.

However, case 2 implies J2 = 0, and case 3 implies J1 = 0. So we are left with only

case 1, which implies

J1 − J2 = w12w13 + w12w23 − w21w23 − w21w13 = (w12 − w21)(w13 + w23).

The second factor cannot be zero, since that would imply J1, so we require w12 = w21,

which proves the first part of the proposition. The second and third parts of the
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proposition follow from the expressions

zI,II2 =
w13 + w23

2w13 + 2w23

=
1

2

zIII,V I2 =
−w23

2w12 + w21 + w23

zIV,V2 =
−w13

2w21 + w12 + w13

.

Figure 4.10 shows examples, contrasting various extents of controllability along

the long leg. The example in the center is notable because AE3 occupies most of TE3 ,

even though the endstate is completely mixed in two directions. The example on

the right complements that in the last set of examples: one can achieve the states

that have no population in one component, yet one cannot separate the two leading

directions.
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(a) w13 = 0.3 and w23 = 2
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(b) w13 = 31 and w23 = 30
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(c) w13 = 0.05 and w23 = 0.1

Figure 4.10: Examples of AE
3 for systems where (zI1 , z

I
2) = (0, 12 ). w31 = w32 = 0 and w12 = w21 = 1

in all three cases.

Our final proposition concerns the concavity of the connecting arcs.

Proposition IV.6. The arc connecting sextants I and II is straight iff w31 = w32,

convex if w31 > w32 and concave w31 < w32. The same statements extend to the arc

connecting sextants I and VI if w31 and w32 are replaced by w13 and w12 respectively.
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The intermediate arc connecting sextants III and VI peeks above that between I and II

iff w31+w32

w13+w23
> w21+w23

w12+w32
. It peeks below the arc between IV and V iff w31+w32

w13+w23
> w21+w23

w12+w32
.

Proof. The arc connecting sextants I and II is straight if the x2 component of the

intercepts equals that of the endstate. That is, 2√
3
zI,II2 = 2√

3
zI2 + 1√

3
zI1 . Moreover,

the arc in question is convex (concave) if the left-hand side is greater (less) than the

right. If we insert the relevant formulas, we obtain

(w31 − w32)(J1 − J2)

(2J ∼I,II[1,2] + J ∼I,II[3] )(J1 + J2 + J3)
= 0.

Since, the other factors in question must be positive, this is only zero (positive /

negative) if w31 is equal to (greater than / less than) w32. A similar calculation holds

for the second part of the proposition.

To see how the intermediate arc crosses the arc crossing the short leg, we set

zIII,V I2 ≥ zIV,V2 , which gives

w13 + w23 − w31 − w32

2w13 + 2w23 + w31 + w32

≥ w12 + w32 − w21 − w23

2w12 + 2w32 + w21 + w23

3w13w21 + 3w13w23 + 3w21w23 + 3w2
23 ≥ 3w12w31 + 3w12w32 + 3w31w32 + 3w2

32

(w13 + w23)(w21 + w23) ≥ (w12 + w32)(w31 + w32)

w13 + w23

w31 + w32

≥ w12 + w32

w21 + w23

.

A similar calculation gives the remaining case.

Fig. 4.11 shows examples of various concavity. In the leftmost example, w31 =

w32, w12 = w13 and w21 = w23, and one sees that in fact all fifteen arcs are straight.

In the other examples, we make the external arcs convex and concave, respectively,

by perturbing w31, w32, w12 and w13. Fig. 4.12 shows examples of the intermediate

arc passing through the other arcs to become part of the boundary.
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(a) w12, w13 = 6 and w31, w32 = 1.
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(b) w12 = 6, w13 = 8, w31 = 3, w32 = 1.
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(c) w12 = 8, w13 = 6, w31 = 1, w32 = 3.

Figure 4.11: Examples of different concavity. For all figures, w21 = w23 = 4.

We conclude this section with an example of a feature that escapes our analysis.

We have focused on the arcs between sextants separated by a reflection, which ac-

counts for only nine of the fifteen. These arcs necessarily dominate the remaining

six at the interior axes, and therefore tend to dominate the shape of AE3 . However,

the arcs connecting rotationally separated arcs may peek past the other nine, and

one example where they are particularly prominent is seen in fig. 4.13. Since we are

describing systems involving six coefficients using five parameters, it is natural that

our analysis would be somehow incomplete. Unfortunately, we have not been able

to fit this feature into our description.

4.4 Global controllability of non-degenerate systems

We begin this section by noting that the set of ~x∞,j’s can be connected using

trajectories of the vector fields. That is, for any i 6= j, there is a solution to ~̇x =

Vj(~x) with ~x∞,i as the initial condition. Call these curves ~xBij(t), where t ∈ [0,∞],

~xBij(0) = ~x∞,i and ~xBij(∞) = ~x∞,j. There are thirty such curves, although if pairs of

~x∞,j’s coincide, some curves will be trivial. Also, in some cases, the loci of two curves

may be the same. In all cases, however, these thirty curves may be concatenated to
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(a) w12 = 6, w21 = 3, w13 = 6, w31, w23 = 0 and w32 = 4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) w12 = 6, w21 = 4, w13 = 0.1, w31 = 1, w23 = 8 and
w32 = 1.

Figure 4.12: Examples of the intermediate arc peeking past the other arcs.

form a closed, non-simple curve that divides TE3 into two regions, in the same way

that AE3 is formed. Call the interior region B0
3.

First, consider the case where AE3 ⊆ B0
3. In this instance, it is often true that B0

3

and BE3 are identical. Define functions on these curves gij,k(t) = Vk(~x
B
ij(t))

TJVj(~x
B
ij(t)),

k 6= j, which specify the cross product of the tangent vector fields with remaining vec-

tor fields. The following proposition uses these functions to determine when B0
3 = BE3

are identical.

Proposition IV.7. For any point on the boundary of B0
3, belonging to the curve

~xBij(t), one can specify the point as clockwise or counter-clockwise, depending on

whether B0
3 lies to the right or left of ~̇xBij(t). B0

3 = BE3 if and only if gij,k(t) ≤ 0,

∀k 6= j, when ~xBij(t) is clockwise, and gij,k(t) ≥ 0, ∀k 6= j, when ~xBij(t) is counter-

clockwise.

Proof. The conditions merely demand that the vector fields that are not tangent

point inward. If any vector field were to point outward, one could escape B0
3, and
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Figure 4.13: An example of the arcs connecting rotationally separated sextants peeking above the
reflectionally separated sextants. w12 = 4, w21 = 0.6, w13 = 4, w31 = 1, w23 = 25 and w32 = 1.

therefore one could reach points lying outside from any point within.

It should also be mentioned that if one can reach all points on the boundary, one

can reach all points in the interior. Because the vector fields specify non-degenerate

affine differential equations, and the relevant eigenvalues have negative real parts,

one can evolve any interior point backward in time, with any of the six vector fields,

to some point on the boundary.

Figure 4.14 shows an example of such a system. We see that AE3 , the blue region,

lies within B0
3, the green region. To show that B0

3 = BE3 , we can look at figures

4.15 and 4.16, which zoom in on the top and bottom of B0
3 (the remaining parts are

covered by symmetry). The top is shown in fig. 4.15, the part between ~x∞,1 and

~x∞,2. There is a counter-clockwise piece and a clockwise piece, as we can see in 4.15a.

Figure 4.15b shows the g21,k(t)’s, which belong to the counter-clockwise piece, but

only the part that is on the boundary. The values are all negative, which means the
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vector fields point inward. Figure 4.15c is a magnification of g21,1(t). Similarly, fig.

4.16 shows the bottom part, between ~x∞,6 and ~x∞,3. There are likewise a counter-

clockwise and a clockwise piece. We can see from 4.16b, which shows the g63,k(t)’s

on the boundary portion, that the vector fields point inward.
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(a) AE3
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(b) AE3 with ~xBij(t) in green
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(c) AE3 in blue, B0
3 in green

Figure 4.14: An example of a system where B03 = BE3 . w12 = 1.2, w21 = 1, w13 = 0.1, w31 = 0.1,
w23 = 2 and w32 = 0.2.
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(a) The top edge of AE3 with ~xB12(t) and
~xB21(t).
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(b) Values of g21,k
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(c) Magnification of g21,1

Figure 4.15: The top part of AE
3 and B03 for the system in 4.14, showing that BE3 and B03 coincide

there.

In some cases, there is no need to distinguish between STLC and global control-

lability:

Corollary IV.8. BE3 = AE3 if and only if Vi and Vj are tangent to ~xij(s) when ~xij(s)
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(a) The bottom edge of AE3 with nearby
~xBij(t)’s.
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(b) Values of g63,k’s.

Figure 4.16: The bottom part of AE
3 and B03 for the system in 4.14, showing that BE3 and B03 coincide

there.

is on the boundary of AE3 .

Proof. If the condition of the corollary is met, ~xBij(t), ~x
B
ji(t) and ~xij(s) all have the

same loci of points (at least when they form the boundary). Since they form the

boundary of AE3 , the other vector fields must all point inward, and therefore the

preceding proposition is satisfied.

Conversely, for BE3 = AE3 , Vi and Vj must be tangent to the boundary of AE3 , since

we know they are anti-parallel, and therefore one will point outward if they are not

tangent.

Figure 4.17 shows a system (the same as 4.11a) to which this corollary applies.

The ~xij(s)’s (blue) and ~xBij(t)’s (green) are both shown, but the former can’t be seen

as loci of the former are identical to the latter.

The preceding has assumed that AE3 ⊆ BE3 , but this is not always true. In this

case, we look for points on the boundary of AE3 where the corresponding vector

fields are tangent to the boundary. The reason for this is that if the vector fields

in question are not tangent, the corresponding trajectories cannot be part of the

boundary of BE3 , since there are trajectories on either side. If the vector fields are
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Figure 4.17: An example of when AE
3 = BE3 . ~xij(s) are in blue, but they can’t be seen as they

coincide with ~xBij(t), which are shown in green. w12 = 6, w21 = 4, w13 = 6, w31 = 1, w23 = 4 and
w32 = 1.

tangent, however, one of the trajectories may form a part of the boundary, as there

are nearby trajectories only on one side. See fig. 4.18 for a depiction.

Figure 4.18: Vector fields that are non-tangent (left) and tangent (right) to their corresponding
~xij(s).

For any arc ~xij(s), there is a point ~xMij (possibly not unique) such that its trajec-

tories (there are two) are maximal, in the sense that any other trajectory starting on

the arc is contained within. Let these two trajectories be named ~xMij (t) and ~xMji (t).

If the point ~xMij is not unique, we still have only two trajectories, since they must

share trajectories. We now have thirty trajectories ~xMij (t), which we can concatenate

to form a closed curve, whose interior we call B1
3. If AE3 ⊆ B0

3, then B0
3 and B1

3 are

identical. But in general, B0
3 ⊆ B1

3.
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Proposition IV.9. Classify points on the boundary of B1
3 as clockwise or counter-

clockwise as before, and let gMij,k be defined as gij,k(t), except using ~xMij (t) instead of

~xBij(t). The result of the preceding proposition holds for B1
3.

Proof. This proposition is true for the same reasons as the preceding proposition.

It is difficult to find examples of systems where the difference betweem B0
3 and

B1
3 is visually significant. Figure 4.19 shows an example of a system, where we have

shown B1
3, with ~xij(s) overlaid in blue. If we zoom in on the top piece, which is shown

in 4.20, we can see what is happening. The trajectories that are seeded at ~x∞,1 and

~x∞,2 initially are inside AE3 , and emerge only on the other side. ~xM12 , which lies at

the halfway point of ~x12(s), seeds two trajectories that form part of the boundary of

B1
3, as trajectories that are seeded at other points must fall within. We’ve shown a

close-up only of the top piece, as the other pieces are qualitatively the same. Figure

4.20b shows gM21,k − since they are all negative, the vector fields point inward, and

thus B1
3 = BE3 .
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(b) BE3 in green with ~xij(s) in blue

Figure 4.19: An example of a system where B13 = BE3 . w12 = 6, w21 = 4, w13 = 8, w31 = 3, w23 = 4
and w32 = 1.

There are systems to which the two preceding propositions do not apply − that is,

systems where gij or gMij change sign. In this case, we can use the points where this
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(a) The top edge ofAE3 (blue) with ~xB12(t)
(green), ~xB21(t) (green), ~xM12(t) (red) and
~xM21(t) (red) .
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(b) Values of gM21,k

Figure 4.20: The top part of AE
3 and B03 for the system in 4.19, showing that BE3 and B13 coincide

there.

sign change occurs to seed new trajectories. We will not write down a proposition

in this case, but instead show an example, shown in figure 4.21. B0
3 takes up most

of BE3 , but there are pieces, shown in red, of BE3 that peek out. As we see in figure

4.22, which show the arcs at the bottom, there are two points at which vector fields

V6 and V4 take over from V1 and V2, respectively. This point can be seen in figure

4.22b − the earliest point at which a g41,k changes sign. In this case, we must take

care that there isn’t another changeover − the vector fields have been confirmed to

point inward on the red trajectories (not shown).
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(a) ~xij(s) and ~xBij(t)
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(b) AE3 (blue), B0
3 (green) andBE3 (red).

Figure 4.21: An example of a system where B13 6= BE3 . w12 = 100, w21 = 90, w13 = 5, w31 = 0,
w23 = 10 and w32 = 0.

−0.1 −0.05 0 0.05 0.1 0.15

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

(a) ~x36(s) (blue), selected ~xBij(t) (green)
and two trajectories that are seeded at
points where g26 and g14 change sign.
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Figure 4.22: An example of a system where B13 6= BE3 . w12 = 100, w21 = 90, w13 = 5, w31 = 0,
w23 = 10 and w32 = 0.



CHAPTER V

n-Dimensional Systems

We would like to know how our results from chapters three and four generalize

to higher dimensions. A good portion of them do, and we will present them here.

There are three exceptions that have yet to be worked out: results for systems where

A(~w) has an eigenvalue with zero real part, a generalization of (4.2), and global

controllability results. However, the STLC results for positive stable systems (i.e.

those having only eigenvalues with positive real part) do carry over.

5.1 Projection of the Lindblad equation

We want to project the Lindblad equation for an n-dimensional Hilbert space onto

its space of unitary orbits. The set of orbits is one-to-one with the set of spectra

{λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}. Since
∑

j λj = 1, we want to write them in terms of

(n−1) variables. The mapping we’ve chosen generalizes the mapping in 3 dimensions.

Tn(ρ) = ~x is defined to be

xj =

√
2

j(j + 1)

(
j∑
i=1

λi − jλj+1

)
.

88
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The pre-image of a particular ~x is the orbit of density matrices with the spectrum

given by the recursive equations

λn =
1

n
−
√
n− 1

2n
xn−1

λj = λj+1 +

√
j + 1

2j
xj −

√
j − 1

2j
xj−1

which yield

λn =
1

n
−
√
n− 1

2n
xn−1

λj =
1

n
+

n−1∑
i=j

√
1

2i(i+ 1)
xi −

j − 1

2j
xj−1, j = 2...n− 1

λ1 =
1

n
+

n−1∑
i=1

√
1

2i(i+ 1)
xi.

Let Tn ∈ Rn−1 be the image of Tn. It is bounded by hyperplanes whose equations

can be constructed from the n equations λj = λj+1 (which imposes the ordering of

eigenvalues) and λn = 0 (which imposes non-negative eigenvalues). These equations

are

x1 = 0

xj =

√
j − 1

j + 1
xj−1 j = 2...n− 1

xn =

√
2

n(n− 1)
.

Alternatively, we can consider TEn , the image of the mapping when we do not impose

eigenvalue ordering. In this case, the region is bounded by setting the expressions

above for λj to zero. Both Tn and TEn are regions in Rn−1 bounded by n hyperplanes,

all mutually oblique. It follows that both regions are n-simplices. Furthermore, TEn

is highly symmetric, as we shall now prove.
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Proposition V.1. The boundary of TEn is a regular polytope. Each pair of its vertices

is separated by a distance of 2. There exists a representation of the symmetric group

Sn in Rn that permutes the vertices of the polytope.

Proof. The vertices are determined by setting a particular λk = 1, and the rest to

zero. The coordinates are then xj = 0 for j < k − 1, xk−1 = −
√

2(k−1)
k

(for k ≥ 2

only) and xj =
√

2
j(j+1)

for j > k − 1. If follows that for the k1th and k2th vertices,

with k1 < k2, the jth component of the vector between the vertices is 0 for j < k1−1

and j > k2 − 1,
√

2(k1−1)√
k1(k1−1)

for j = k1 − 1, −
√

2
j(j−1)

for k1 − 1 < j < k2 − 1 and

k2

√
2

k2(k2−1)
for j = k2 − 1. If we square these and sum, we get

2(k1 − 1)

k1

+

k2−1∑
k=k1+1

2

k(k − 1)
+

2k2

k2 − 1
=

2(k1 − 1)

k1

+ 2
k2 − 2

k2 − 1
− 2

k1 − 1

k1

+
2k2

k2 − 1
= 4

where the sum has been evaluated using the method of telescoping sums. After

taking the root, we have a distance of 2.

As for the representation, the symmetric group and its representations can be

generated by exchanges of consecutive indices, which here are represented by reflec-

tions. For any pair of vertices, there is a (n− 1)-dimensional hyperplane that passes

through the other (n−2) vertices, the origin, and the midpoint of the two vertices. If

the pair are vertices 1 and 2, the hyperplane is is just x1 = 0. This hyperplane passes

through the origin, as well as vertices 3 through n, as their x1 coordinate is zero.

The x1 coordinates of vertices 1 and 2 are 1 and −1, and their other coordinates are

identical, so their midpoint also lies on the hyperplane x1 = 0.

If the indices are j and j + 1, the hyperplane is xj =
√

j−2
j
xj−1. This passes

through the origin. It passes through vertices j + 1 through n, as their xj and xj−1

coordinates are zero. It passes through vertices 1 through j− 2, as their coordinates

are xj = 1√
2j(j−1)

and xj−1 = 1√
2(j−1)(j−2)

. The midpoint of vertices j and j + 1
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has xj = 1
2

(
1√

2j(j−1)
− j−1√

2j(j−1)

)
= 2−j

2
√

2j(j−1)
and xj−1 = 1

2

(
0− j−2√

2(j−1)(j−2)

)
=

2−j
2
√

2(j−1)(j−2)
, which obeys the equation of the hyperplane.

Since there exists such a hyperplane, there is a reflection matrix that exchanges

the pair and fixes the other n− 2 vertices. Since the symmetric group can be gener-

ated by these pairwise exchanges, the rest of the representation can be generated by

composition of the reflection matrices. We will denote the elements of the represen-

tation as Rσ, where σ ∈ Sn.

Next we want to write down differential equations for the dynamics on Tn and

TEn . The calculation in (2.12) says that λ̇j = 〈ψj|LD(ρ)|ψj〉, which means we can

write

ẋj =

√
2

j(j + 1)

(
j∑

k=1

〈ψk|LD(ρ)|ψk〉 − j〈ψj+1|LD(ρ)|ψj+1〉
)
.

The density matrix can be written

ρ =
n∑
j=1

λj|ψj〉〈ψj|

=
1

n
I +

n−1∑
j=1

xj√
2j(j + 1)

(
j∑

k=1

|ψj〉〈ψj| − j|ψj+1〉〈ψj+1|
)
.

We can substitute that into LD(ρ), and write wjk = |〈ψj|LD(ρ)|ψk〉|2 as before. We

will omit the details of the calculation, but the result is that, as in three dimensions,

we have an affine differential equation ~̇x = F(~x, ~w) = ~b(~w) − A(~w)~x, where ~w is

the vector of wjk’s with j 6= k (the ones with identical indices do not survive the

calculation). The elements of ~b are

bj =
1

n

√
2

j(j + 1)

(
(j + 1)

j∑
k=1

(wk,j+1 − wj+1,k) + j

n∑
k=j+2

(wk,j+1 − wj+1,k)

+

j∑
k=1

n∑
l=j+2

(wkl − wlk)
)
.
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The diagonal elements of A are

Ajj =
1

j(j + 1)

(
(j2 + j)

j∑
k=1

wk,j+1 + (j + 1)

j∑
k=1

wj+1,k + j2

n∑
k=j+2

wk,j+1

+
n∑

k=j+2

j∑
l=1

wkl

)
.

The subdiagonal elements of A are

Ajk =
1√

jk(j + 1)(k + 1)

(
(j + 1)

k∑
m=1

wj+1,m +
n∑

l=j+2

k∑
m=1

wlm

−(j + 1)kwj+1,k+1 − k
n∑

l=j+2

wl,k+1

)
.

The superdiagonal elements of A are

Ajk =
1√

jk(j + 1)(k + 1)

(
(j + 1)

(
j∑

m=1

wj+1,m −
j∑
l=1

wl,j+1

)
+

n∑
l=j+2

j∑
m=1

wlm

−
j∑
l=1

k∑
m=j+2

wlm + j

(
k∑

m=j+2

wj+1,m −
n∑

l=j+2

wl,j+1

)
+ k

j∑
l=1

wl,k+1 − jkwj+1,k+1

)
.

Now let us clarify the control aspect. Let Vn be the set of complete flags on Cn.

Any complete flag is specified by a choice of |ψ1〉 through |ψn〉. Then we define the

map Wn from Vn into Rn2−n given by wjk = |〈ψj|LD(ρ)|ψk〉|2, which means we can

view ~̇x = ~b(~w) − A(~w)~x as a control equation with ~w as the control, but only if

we are free to choose a complete flag. This is only true when the eigenvalues are

distinct, but not when there is multiplicity. As we did in three dimensions, we will

proceed as in three dimensions: we will look for controllability on sets in TEn , with

the implicit assumption that we can only infer controllability on the intersection of

those sets with T on , the interior of Tn. Theorems III.1 and III.2 have straightforward

extensions:

Theorem V.2. Let U be a maximally globally controllable open subset of TEn , where

the control functions are piecewise-differentiable function taking values in Vn. Let ~x1
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and ~x2 be in U ∩ T on . The trajectory between them may exit (and re-enter) T on . Then

any density matrix ρ1 ∈ T −1
n (~x1) may be steered arbitrarily close to ρ2 ∈ T −1

n (~x2).

Theorem V.3. If one has STLC at a point ~x0 ∈ T on , then one has STLC at any

density matrix ρ0 ∈ T −1
n (~x0).

Proof. The proofs proceed just as in the three-dimensional case.

5.2 Small-time local controllability of the VRn problem

Instead of considering the control problem using Vn as the control set, we can

instead consider the reduced problem using VRn , which we will define here. At ~x = ~0,

the dissipation superoperator reduces to LD( 1
n
I) = 1

n

∑
j[Lj, L

†
j].

Proposition V.4. Let {|Λj〉, j = 1...n} be an eigenbasis of the Hermitian operator

LD( 1
n
I), with eigenvalues λLCj . Then F(~0,Wn) is bounded by a polytope with at most

n! vertices F
(
~0,Wn

(
flg({|Λσ(j)〉})

))
, where σ(j) denotes an element of Sn. The

exact number of distinct vertices depends on the quotient of Sn with the equivalence

relation induced by the eigenvalue multiplicity.

Proof. This is essentially the Schur-Horn theorem [46, 21], which says that the set of

all Hermitian matrices sharing a common spectrum is the convex hull of a polytope

determined by that spectrum. Precisely, if one maps an n by n Hermitian matrix

to Rn by mapping its jth diagonal element to the jth coordinate, then the image is

the convex hull of the image of the diagonal matrices in the set (whose coordinates

are permutations of the eigenvalues). In our case, the vector in Rn with elements

LD( 1
n
I)jj is inside the convex hull of the n! vectors with elements λLCj , in some order.

We have to map this into the tangent space of ~x = ~0, which is (n− 1) dimensional,

and we do that in the usual way, by using Tn. Since Tn is a linear map from Rn to

Rn−1, it preserves the convex hull.
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If LD( 1
n
I) has non-distinct eigenvalues, the choice of eigenbasis is not unique.

We won’t worry about which basis is optimal − henceforth we assume an arbitrary

eigenbasis, and define the VRn problem as follows:

Definition V.5. Choose an eigenbasis {|Λj〉} of LD( 1
n
I) such that the eigenvalues

λLCj are in decreasing order. Let ~wI = Wn(flg({|Λj〉})), and let ~bI = ~b(~wI), AI =

A(~wI) and VI(~x) = ~bI−AI~x. For any element σ of Sn, let ~bσ = Rσ
~bI , Aσ = RσAIR

−1
σ

and Vσ(~x) = ~bσ − Aσ~x. Then the VRn problem is the switching problem where the

control is a piecewise constant function σ(t) on Sn, and ~̇x = Vσ(t)(~x).

We now want to determine the regions of STLC for this problem. This has only

been worked out for the case when AI is positive stable. While one can show that

AI must have non-negative real part, there are cases where the real part is zero.

Nevertheless, we can state the generalization of theorem IV.3 under this assumption.

Theorem V.6. Let AEn be the set of all points in TEn where one has STLC. For

every subset S̄ ⊂ Sn with (n − 1) elements, construct the hypersurface SS̄ given

by ~x(sσ1 , ..., sσn−1) = (
∑

σ∈S̄ sσAσ)−1(
∑

σ∈S̄ sσ
~bσ), where the parametrization is con-

strained by sσ ≥ 0,
∑

σ∈S̄ sσ = 1. Let S be the union of all such hypersurfaces, which

is a closed hypersurface. Then AEn is an open set whose closure is equal to the closure

of the interior of S.

Proof. First, we should prove that these surfaces are well-defined, as one must be

able to perform the inverse operation. AI is positive stable, and any of its images

under Sn must be positive stable as well (since they are separated by orthogonal

transformations, an eigenvector ~v of AI becomes an eigenvector Rσ~v of Aσ, and

they share eigenvalues). Furthermore, sσAσ is positive stable if sσ > 0. Now a

sum of two such sσAσ cannot have a zero eigenvalue: if (sσ1Aσ1 + sσ2Aσ2)~v = 0,
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then sσ1A
−1
σ2
Aσ1~v = −sσ2~v, but since these are positive stable matrices, this is a

contradiction. This extends by induction to the sum of (n − 1) such terms, which

shows that
∑

σ∈S̄ sσAσ cannot have a zero eigenvalue and is therefore invertible.

Secondly, we should note that a system is STLC at a point ~x0 if and only if the

convex cone generated by the vector fields {Vj(~x0)} is Rn−1. This statement is true

for the same reason that proposition IV.1 is true.

Next, we shall prove the following lemma:

Lemma V.7. AEn consists of points of the form ~x0 = (
∑

σ∈Sn sσAσ)−1(
∑

σ∈Sn sσ
~bσ)

for some choice of {sσ > 0 : σ ∈ Sn,
∑

σ∈Sn sσ = 1}.

Proof. Note that these sums are over all elements of Sn not just subsets of (n − 1)

elements. Moreover, the inverse operation can be performed for the same reason that

the inverse operation in the theorem can be performed.

To prove the lemma, first we show that a set of vectors {~vj} generates a (closed)

convex cone that is identical to its span if and only if there is a linear combination∑
cj~vj of those vectors with cj > 0 that is equal to the zero vector. For the first

leg: given any vector in its span
∑
c′j~vj with c′min = inf{c′j} ≤ 0, one can find a

linear combination with positive coefficients by adding
|c′min|+1

cmin

∑
cj~vj, where cmin =

inf{cj} > 0. To prove the second leg, note that to generate the entire span with non-

negative coefficients, −∑j ~vj must be generated with some coefficients c̄j ≥ 0. Then

it follows that
∑

(1 + c̄j)~vj is the zero vector, and it has strictly positive coefficients.

For STLC, we need the cone generated by the vector fields to be Rn−1, which

means there has to be a strictly positive linear combination that is zero:

∑
cσ(~bσ − Aσ~x0) = 0∑

cσAσ~x0 =
∑

cσ~bσ
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~x0 = (
∑

cσAσ)−1(
∑

cσ~bσ)

~x0 = (
∑

sσAσ)−1(
∑

sσ~bσ)

where sσ = cσ∑
cσ

. This proves the lemma.

Next, we show that AEn must be open. If one has STLC at ~x0, and if one perturbs

by δ~x, then given an arbitrary vector ~v =
∑
cσ(~bσ −Aσ~x0), cσ > 0 1, we can write it

as:

~v =
∑

cσ(~bσ − Aσ(~x0 + δ~x)) +
∑

cσAσδ~x

=
∑

cσ(~bσ − Aσ(~x0 + δ~x)) +
∑

c̄σ(~bσ − Aσ(~x0 + δ~x))

=
∑

(cσ + c̄σ)(~bσ − Aσ(~x0 + δ~x)).

where in the second line, we can assume that we can re-write in terms of the perturbed

vector fields because the set of full-rank matrices is open, so a span of vector fields

at a point is preserved in a neighborhood of that point. Now the new coefficients can

be negative, so (cσ + c̄σ) may be negative. But one can see that the c̄σ’s are of order

δ~x, while the cσ’s are fixed and positive, so δ~x can be made small enough to ensure

cσ + c̄σ is positive for all σ. Since ~v is arbitrary, and δ~x has arbitrary direction, we

can write all vectors as positive linear combinations in a neighborhood of ~x0. So AEn
is open, and furthermore is connected, since continous maps preserve connectedness

(but not necessarily simple connectedness).

The only thing left to show is that its boundary is made of points on the hyper-

surfaces described in the theorem. We will use the closed map lemma [34], which

says that any continuous map from a compact space to a Hausdorff space is closed

(closed sets map to closed sets) and proper (preimages of compact sets are com-

1We can always re-write a non-negative linear combination as a positive combination if the convex cone is the
entire vector space, because as noted above, we can write the zero vector as a strictly positive linear combination.
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pact). As in the theorem, let sσ ≥ 0 and
∑
sσ = 1, although this time let σ range

over the entire Sn, not a subset. Note that this is a compact set. Now the map

{sσ} → (
∑
sσ∈SnAσ)−1(

∑
sσ∈Sn~bσ) is continuous on its domain as it is a rational

polynomial (the inverse operation can’t be perform when all sσ = 0, but that is not

in the domain). And since it maps into Rn−1, which is Hausdorff, the mapping must

be closed.

We already know that the image of the open set {sσ > 0 : σ ∈ Sn,
∑
sσ = 1} is

open. It follows that any point on the boundary of AEn must have at least one sσ = 0.

The hypersurfaces, however, require that at most (n−1) sσ’s be nonzero, and we can

use Carathéodory’s theorem [12] to show that. Carathéodory’s theorem says that

any point in the convex hull of a set of a points in Rd is in the convex hull of a subset

of d+1 points. Take an arbitrary subset with n elements S ′ ⊂ Sn. Let AS′ be the set

of points (
∑

σ∈S′ sσAσ)−1(
∑

σ∈S′ sσ
~bσ), where all sσ represented are strictly positive

and sum to one. Carthéodory’s theorem implies that AEn is the union of all such

sets. Furthermore, the closure of AEn must be the union of the closures of the AS′ ’s,

and therefore its boundary consists of points on the boundaries of the AS′ ’s. But

these boundaries are the hypersurfaces described in the theorem: AS′ is open, so its

boundary must consist of points on the boundary of {sσ : σ ∈ SS′ , sσ > 0,
∑
sσ = 1}.

This boundary consists of one or more sσ becoming zero, which means we are now

on one of the hypersurfaces SS′ , and so we are done.

5.3 Characterizing AEn

Now we would like to generalize the combinatorial formulas for points in the

closure of AEn . Let ~x∞,σ = A−1
σ
~bσ. As in the three-dimensional case, we will use
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different coordinates:

zj = λj − λj+1 =

 xj j = 1√
j+1
2j
xj −

√
j−1
2j
xj−1 j = 2...n− 1.

As before, let ΓSj be the set of rooted trees on the set S with its root at vertex

j ∈ S, and let E(t̄) be the set of edges of a rooted tree t̄ (an edge being represented

by an ordered pair of elements in S). Then define:

Jj :=
∑
t̄∈ΓZn

j

∏
e∈E(t̄)

we.

We can now state the following theorem:

Theorem V.8. The coordinates of A−1
I
~bI in the z-coordinate system are:

z∞,j =
Jj − Jj+1

detAI

detAI =
n∑
k=1

Jj.

Proof. Because A−1
I
~bI is unique up to permutations of the vertices, it suffices to

show that the density matrix corresponding to ~z∞ is both an admissible density

matrix and stationary under LD(·). Of course, the eigenvectors of this density matrix

must be |Λj〉, and because zj = λj − λj+1, the formula implies that the eigenvalues

of the density matrix are
Jj∑n
j=1 Jj

, and therefore the stationary density matrix we

want is ρs =
Jj∑n
j=1 Jj

|Λj〉〈Λj|. Note that the eigenvalues are non-negative and sum

to one, so this density matrix is admissible. To show that this density matrix is

stationary, we must show that for some appropriate collection of Lindblad operators,

LD(
∑n

j=1 Jj|Λj〉〈Λj|) = 0.

We will use the operators Lj1j2 = cj1j2|Λj1〉〈Λj2|, since this satisfies the fact that

|Λj〉 is an eigenvector of
∑

[Lj1j2 , L
†
j3j4

]. The cj1j2 ’s are real and otherwise arbitrary.
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Note that under these Lindblad operators wj1j2 = c2
j1j2

. Also note that

Lj1j2 |Λj3〉〈Λj3 |L†j1j2 −
1

2
{L†j1j2Lj1j2 , |Λj3〉〈Λj3|} = c2

j1j3
(|Λj1〉〈Λj1| − |Λj3〉〈Λj3 |) .

So we have

LD(ρs) = LD
(

n∑
j=1

Jj|Λj〉〈Λj|
)

=
n∑
j=1

JjLD (|Λj〉〈Λj|)

=
n∑
j=1

n∑
j1=1

Jjwj1j (|Λj1〉〈Λj1 | − |Λj〉〈Λj|)

=
n∑
j=1

n∑
j1=1

∑
t̄∈ΓZn

j

∏
e∈t̄

wewj1j (|Λj1〉〈Λj1| − |Λj〉〈Λj|) .

Our coefficients are (
∏

e∈t̄we)wj1j. They are products corresponding to graphs of n

edges on n vertices. These graphs are obtained by taking a rooted tree and adding one

edge pointing outward from the root vertex, so that every single vertex has precisely

one outgoing edge. The new graphs have precisely one cycle, and those cycles are

unidirectional. We can describe such a graph as the union of a unidirectional cycle

on a subset S ⊂ Z3, with n′ ≤ n elements, and n′ rooted trees, so that each vertex

in the cycle is a root, and all vertices in Zn lie in one tree. Let ΓZn
c̄ represent all such

graphs where the cycle is c̄, and let C̄Zn represent all unidirectional cycles on subsets

of Zn. Note that if one removes any edge from the cycle, one obtains a rooted tree (if

one removes edge jk, then vertex j is now the root vertex). Since we are summing

over all rooted trees and all vertices j1, every one of these graphs is represented in

the expression above. So we can re-write:

LD(ρs) =
∑
c̄∈C̄Zn

∑
ḡ∈ΓZn

c̄

∏
e∈ḡ

we

(∑
j1∈c̄

|Λj1〉〈Λj1| −
∑
j∈c̄

|Λj〉〈Λj|
)

= 0.
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which concludes the proof.

Work on formulas for the intercepts is ongoing, and as mentioned in the previous

chapter, it is believed that there is a generalization in terms of rooted trees inducing

graphs with fewer than (n − 1) edges. A precise formulation remains elusive, so we

will not provide a conjecture.

We will however provide a sufficient condition for a purifiable system assuming

AI is positive stable.

Proposition V.9. A Lindblad system on a Hilbert space with positive stable AI is

purifiable using VRn if there exists a k such that wjk = 0 for all j.

Proof. Since we have positive stability, we have enough Lindblad operators to gen-

erate at least one rooted tree, as detAI must be positive. The condition wjk = 0

essentially says that there can be no outgoing edges from vertex k, meaning Jj = 0

for all j 6= k. In this case, z∞,k = 1, and if k > 1, z∞,k−1 = −1. This implies that

λk = 1, and all other λj’s are zero.

We will conclude by showing some examples for n = 4. The first two examples

are governed by the previous proposition: wj1 = 0 for all j. The first has all other

wjk’s being nonzero, and the shape is such that it hugs the z2 = z3 axis. Meaning

that while the system can be purified, and it can be well-mixed in all four directions,

one cannot choose two or three directions to mix. The faces of the tetrahedron

correspond to one of the eigenvalues being zero, and AE4 only approaches these faces

at the pure orbit.

The second example, on the other hand, fills TEn . We can purify, but we can also

attain all orbits where only one eigenvalue is zero (the faces), or two eigenvalues are

zero (the outer edges).
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The third example take the second example and impose w21 = 3. This breaks the

condition of the proposition, so we can’t purify. Interestingly, there is still a set of

orbits where we can eliminate one or two of the eigenvalues: part of the boundary

of AE4 intersects the faces and the edges. This is where it would be nice to have a

well-fleshed out theory for the intercepts, so work in this direction will likely continue.

Figure 5.1: AE
4 for w12 = 5, w21 = 0, w13 = 3, w31 = 0, w23 = 5, w32 = 6, w14 = 1, w41 = 0,

w24 = 4, w42 = 5, w34 = 7, w43 = 5
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Figure 5.2: AE
4 for w12 = 5, w21 = 0, w13 = 0, w31 = 0, w23 = 4, w32 = 0, w14 = 0, w41 = 0,

w24 = 0, w42 = 0, w34 = 3, w43 = 0
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Figure 5.3: AE
4 for w12 = 5, w21 = 3, w13 = 0, w31 = 0, w23 = 4, w32 = 0, w14 = 0, w41 = 0,

w24 = 0, w42 = 0, w34 = 3, w43 = 0



CHAPTER VI

Conclusions

The primary insight of this thesis is the notion that we can project the Lindblad

equation onto a dynamical equation over its set of unitary orbits. Under uncontrolled

evolution, different initial points on an orbit will evolve differently through the space

of orbits. If we have sufficient Hamiltonian control, however, we can consider each

orbit as a point in a dynamical space, and watch how orbits evolve depending on

where the original system is on the orbit at a given time. This projection is a deli-

cate process, however. The orbits corresponding to density matrices with eigenvalue

multiplicity are lower dimensional, which means that our differential equations are

not valid there.

We have provided a thorough analysis of what happens for the two-dimensional

case. After the projection, our new control variable is a point ~n on the Bloch sphere,

and our dynamical variable r takes values in [0, 1]. On the subinterval (0, 1), r is

governed by the affine differential equation:

(6.1)
dr

dt
=

3∑
j=1

bjnj − r
3∑
j=1

aj(1− n2
j)

where bj’s and aj’s are determined by the dissipation superoperator. At the orbit

r = 0, the two eigenvalues cross, and so trajectories that pass through this point

must be treated with care.

104
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We have performed a controllability analysis on an arbitrary two-dimensional sys-

tem. Using the method of Lagrange multipliers, we can select controls that maximize

and minimize ṙ at each r. In general, there is a trap radius rT inside of which one

has small-time local controllability. However, one cannot achieve orbits outside the

trap radius when starting inside. We also detailed a theorem classifying purifiable

systems, and provided an intuitive physical framework for understanding such sys-

tems.

Three-dimensional systems are more challenging. We are able to specifiy the

projection procedure and to write down a control system on T3, the space of orbits.

The differential equations however are only valid on the interior, T o3 . We have given

a theorem that says that if we have controllability (global or STLC) on a set in

TE3 , which is the set of ordered eigenvalue triples, then we can infer controllability

on the intersection of this set with T o3 . To analyze controllability, we note that

considering all possible controls in the projected problem is not very tractable, so

we consider a reduced problem with a discrete control set of six controls VR3 . At the

completely mixed state, these controls correspond to tangent vectors whose convex

hull comprises all possible tangent vectors at that state, so we consider this reduced

problem to be a good first-order approximation of what can be accomplished.

After making the connection between STLC and convex cones generated by our

controls, we describe the controllability sets (global and STLC) for degenerate three-

dimensional systems. We then proceed to describe the STLC sets for non-degenerate

systems, which are obtained by concatenating fifteen arcs in TE3 , and taking the inte-

rior of the resulting closed curve. These sets can form interesting shapes, so we then

attempt to capture these shapes with certain parameters. Two parameters describe

the asymptotic states of the VR3 controls, and it turns out there is a combinatorial
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formula for these pararmeters in terms of rooted trees. There are also three sec-

ondary parameters that describe how “fat” or “skinny” the STLC sets are, and we

can also describe these parameters in terms of ordered trees (that are of lower order).

We conclude our analysis of the VR3 problem by analyzing global controllability.

We are able to generalize some of our results to arbitrary dimensions. We are

able to describe the set of orbits and write down differential equations. We proved a

theorem that assures our controllability results on TEn , the set of spectra that does

not enforce ordering, can be safely applied to T on , the interior of the set of orbits.

We’ve detailed the reduced problem, using VRn as the control set. We’ve also provided

a construction theorem for AEn , the region of STLC, in the case of positive stable

systems. This theorem prescribes hypersurfaces that, when concatenated, bound

AEn . Finally, we have conjectured that our combinatorial formula for the asymptotic

states of VRn holds for arbitrary dimension.
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