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CHAPTER I

Introduction

Firms need to be able to respond to changes in consumer demand. Adjusting

output by changing the number of workers in the firm is one response. Hiring and

firing workers does not happen instantly and without cost. There are substantial

hiring and training costs for new workers, as well as severance and layoff costs for

firing workers. Regulatory constraints may create delays ranging from a few days to

almost a year if the firm decides to fire workers (see Figure 1.1). This paper models

the firm’s optimal workforce decisions in response to changing consumer demand for

the firm’s product when there are costs and delays in changing its workforce.

I use stochastic control to model the firm’s decisions. The objective is to maximize

the firm’s present value of its expected cash flows. By changing its workforce, the

firm directly influences expected cash flows. The firm takes the process of consumer

demand as given when calculating cash flows and follows only one variable, which is

the fraction of labor to demand. In my model workers are viewed as inventory with

holding costs. Costs are modelled based on the size of the firm, the number of workers

changed, and the delay in firing workers. The optimal policy is to control the ratio

of labor to demand, inside a pair of control barriers. Value function parts are solved

analytically, while parameters and the barriers are solved numerically by using policy

improvement of dynamic programming. Additionally, I show that the optimal policy

1



exists and is unique. Comparative statics results are then added.

To manage the risk of lost demand, the firm may keep more workers to hedge

against upturns in future demand. The firm may alternately hold fewer workers to

hedge against downturns in demand, especially when laying off workers is costly and

time consuming.Using inventory control methods, I find the optimal strategy is a

two-sided (s, S) stochastic control policy.

I first derive analytical solutions for the value of the company as a function of the

fraction of labor to demand and then solve numerically for the parameters of the value

functions. I also analyze how labor market frictions can impact a firm’s employment

decisions, profit and labor levels. The firing delay encourages firms to fire earlier.

The firing delay also causes fewer workers to be fired. Raising the proportional costs

of changing workers, lowers the chance that workers will be hired or fired, and also

reduces the labor and profit levels. I introduce “firm-sized” hiring and firing costs

that are proportional to the number of employees. This cost is different because of

regulations that apply only to large companies. Firm-sized firing cost postpones a

firm’s firing, but raises the firing quantity. Similarly, increasing the firm-sized hiring

cost reduces the chance of hiring, but raises the amount hired. The volatility of

demand for the firm’s good has mixed effects on the firm’s labor market decisions. For

low volatility, its increase reduces the chance of firing. But for large volatility values,

the chance of firing increases. Over all levels of volatility, increasing it decreases the

chance of hiring.

My model examines Ford Motor Company’s hiring and firing policies and estimates

Ford’s market value. Ford has substantial firing costs and delays because of union

contracts. I show the impact of these delays on Ford’s market value and employment

polices by comparing equal percentage changes in model parameters. My model

accurately predicts the fall in Ford’s employment level from 2006 to 2009. My model

also accurately estimates Ford’s gross value. Productivity and wages have the largest
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impact on Ford’s equity value, followed by the interest rate, and then the consumer

demand parameters. Changing firing frictions has a negligible impact on equity value.

I also give some advice about what Ford should do in union negotiations to increase

its equity value.

1.1 Labor Market Discussion

Labor turnover occurs to a large segment of the U.S. economy. Davis et al. (2006)

find that the job creation and destruction rates for the private sector average about

8 percent per quarter. Their analysis suggests the lumpy nature of the labor adjust-

ments with about two-thirds of job creation and destruction occurring at places where

labor changes by more than 10 percent per quarter. The lumpy nature of workforce

changes is explained by additional monetary costs, above the cost proportional to the

labor change. A regulatory delay involved in firing can also explain lumpy firings.

The relationship between labor policy and employment is difficult to determine.

Many studies use multivariate regressions of policy parameters on employment levels

over various countries (e.g., Nickell 1997). Some papers have modelled firm or industry

level responses to policies and they extend those results to the macro-level economy.

This method is only a partial equilibrium approach, while the data used to calibrate

the models are often more applicable to general equilibrium models. Even though

these papers generate interesting theoretical predictions, those predictions are difficult

to validate across countries and over different time periods. Kramarz and Michaud

(2010) look at French employment data and find that the firing and hiring costs

each have a fixed and proportional component. The firing costs are much higher

than the hiring costs. They also show that the costs depend on the size of the

firm (50+ versus 49- employees). Bentolila and Saint-Paul (1994) present this type

of partial equilibrium model with proportional hiring and firing costs and demand

shocks. They show that the costs have a positive and negative effect on average
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steady-state employment level depending on the magnitude of the costs. Bertola

(1992) models a firm in a deterministic continuous time framework and shows that

the effect of hiring and firing costs on employment level will depend on the size of

the costs, and the interest rate and attrition rates. Shepp and Shiryaev (1996) study

the employment level of a research firm given the size of the workforce and the firm

capital. Bentolila and Bertola (1990) model the firm in a continuous time stochastic

demand framework. Their model uses proportional hiring and firing costs. A similar

model is Chen et al. (2003) which incorporates macroeconomic shocks in addition to

random demand for the firm.

My work adds to the modelling of firm behavior by incorporating firing delays and

firm-sized costs. Firm-sized costs extend the usual stochastic control applications that

assume costs that are proportional, to the change of the state variable and/or that

the costs are fixed. The firm-sized costs are proportional to the level of the state

variable before it is changed (in my paper the labor quantity). Examples of these

costs include: labor market regulations based on the number of employees (as in my

paper), searching for a specific item in a large inventory, performing inventory counts,

capital levies and wealth taxes. Firing delays are motivated and necessitated by

union contracts (e.g. Ford Motor Company) and government regulation. In certain

European countries, the firing delay may be almost a year (see e.g. OECD 2004).

Length of the delay depends upon the country, time employed in the position, a

firing categorization of individual or collective, and if the employee is classified as

permanent or temporary. Figure 1.1 shows the by law minimum regulatory delay

length for various OECD countries. Since this delay is substantial in some countries,

it is important to analyze its effects on both the firm’s hiring and firing actions and on

the firm’s value. Delays have been modelled in similarly in other contexts such as bank

recapitalization (e.g. Peura and Keppo 2006), power generation (e.g. Blankenship

and Menaldi 1984), real options (e.g. Alvarez and Keppo 2002), and in a theoretical
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Figure 1.1: Regulatory delay length for three types of dismissals in various
OECD countries (OECD 2004).

stochastic control framework (e.g. Robin 1977).

The rest of the paper is organized as follows. In Chapter II the firm’s problem

is reduced to one control variable – the ratio of labor to demand – by using the

homogeneity of the value function and the change of probability measure which is

a common tool in the pricing of financial derivative instruments. Properties of the

optimal policy are characterized in Chapter 2.1, and then I solve the functional form of

the value function by smooth pasting and value matching in the spirit of Dixit (1991)

in Chapter III. Chapter IV shows that the solution to the model exists and is unique.

I also show that the numerical algorithm converges to the solution. The impacts of

firm-sized costs and delay on the labor market decisions through comparative statics

is explored in Chapter 5.1. My model is calibrated to Ford Motor Company in

Chapter 6.1 and shows the effects of reducing the labor market frictions. Chapter

VII concludes. In the Appendix I verify my main result and prove various statements

made in the text.
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CHAPTER II

Model

I consider a firm that faces a random demand for its product, as in Bentolila

and Bertola (1990). It can only control its labor level and has a linear production

technology that uses homogeneous labor as a factor of production. The firm faces a

constant-elasticity demand function which is given by

Qt = ZtP
1

λ−1

t (2.1)

where Pt and Qt are the price and quantity sold by the firm at time t.

Its output is limited by the productivity of its workforce, A, and the number of

workers, Lt, at a given time t: Qt ≤ ALt. It has market power in the price it can

charge for its product, and this market power is measured by λ which is the inverse

of the markup factor. Zt is the position on the direct demand curve, and it follows

dZt = µZtdt+ σZtdWt (2.2)

where the parameters µ and σ are positive, and {Wt : t ≥ 0} is a standard Wiener

process 1 . Demand follows a geometric Brownian motion process and therefore Zt =

1This Wiener process is on a probability space (Ω, F, P ) along with the standard filtration
{Ft : t ≥ 0}. Here Ω is a set, F is a σ-algebra, P is a probability measure on F , and (Ft)0≤t

is an increasing family of σ-algebras.
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Z0e
(µ− 1

2
σ2)t+σWt . Because the marginal revenue from a constant elasticity demand

function is always positive, equation (2.1) implies that the revenues are given by

QtPt = Z1−λ
t (ALt)

λ at time t. Any future cash flows are continuously discounted at

rate r.

The firm pays a wage, ω, to its workers. Workers leave the company with a

constant proportional rate δ. In this case the company does not have to pay for them

to leave and they leave instantly.

When the company hires new employees it pays a firm-size cost, KH , that is

proportional to the current labor size and a proportional cost cH that is proportional

to the number of employees hired. Similarly, in the case of firing it faces costs KF

and cF . Union contracts and government regulation cause a firing delay ∆, i.e., the

firm has to wait before the firing happens and would pay firm-size cost KF at the end

of the firing delay. This company controls the number of employees through hiring

and firing. The costs and the firing delay are labelled as frictions. I assume that

KH + KF ≥ 0 and cH + cF ≥ 0. Even though some of the costs could be negative,

perhaps due to the government subsidies, there is no possibility for immediate positive

cash flows by hiring and firing at the same time. The KH and KF costs depend

on the firm size in my model. This is a linear approximation of firm size costs of

hiring and/or firing workers. Many labor regulations depend on firm size (e.g. Table

2.A.9 in OECD, 1999). An example would be the definition of collective dismissal

which triggers various regulations. The collective dismissal designation depends on

the size of the firm and the number fired in several OECD countries.2 Costs depending

on firm size has also been brought up in the labor-economics literature. Lloyd (1999)

cites French firing regulations that depend on the number of employees in the firm.

When comparing U.S. and Portuguese labor market flows, Blanchard and Portugal

(2001) make firm-size adjusted comparisons. This is justified since more volatile

2 These countries are Austria, Belgium, Denmark, Finland, Germany, Greece, Korea, Poland,
Portugal, Spain, and Switzerland.
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employment occurs in small firms, of which the Portuguese economy has a larger

share than other OECD countries

A hiring and firing control policy π̂ is a collection
{
tπ̂i , s

π̂
i , X

π̂
i

}
where tπ̂i is an

increasing sequence of hiring and firing times, sπ̂i is a sequence of the binary variable

that expresses whether the decision is to hire (sπ̂i = H) or to fire (sπ̂i = F ), X π̂
i is the

amount of workers hired or fired at i’th hiring/firing time. This set up of the control

policy follows Peura and Keppo (2006). I allow for the firm to hire at the end of the

firing delay, and do not count it as an additional hiring time. I assume that each tπ̂i

is a stopping time of the filtration Ft. The binary variable sπ̂i is Ftπ̂i − −measurable.

Further, if at time tπ̂i the company decides to hire then X π̂
i is also measurable with

respect to Ftπ̂i − − measurable, and if it decides to fire then X π̂
i is measurable with

respect to F(tπ̂i +∆)−. The firm is restricted to remaining in business; it cannot reduce

its workforce to zero. It may fire an amount Xi < Ltπ̂i +∆−. Xi is unbounded below,

since negative X represents hiring at the end of the firing delay, where the firm incurs

both the firm-size costs of firing and hiring and the proportional hiring cost. For

hiring process alone Xi ≥ 0. Admissible controls must satisfy

tπ̂i+1 − tπ̂i > ∆ if sπ̂i = F for all i ≥ 1. (2.3)

As mentioned earlier, the positive parameter ∆ is the delay associated with the firing.

When a firing process is started at time tπ̂i , the new workers leave at time tπ̂i +∆. This

delay corresponds to the laws and work agreements in the region where the company

operates. The measurability of Xi with respect to Ftπ̂i +∆− means that the company

may decide on the actual amount of people to be fired at time tπ̂i +∆ based on all then

available information, i.e., they do not need to precommit to any amount of people

at time ti when they start the firing process. The firm can signal that a large number

of workers will be laid off when announcing the firing process, but then change its
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decision to any smaller level of layoffs at the end of the firing process. Condition (2.3)

states that a new hiring or firing process may not be started while a previous one is

still waiting to be completed. These conditions have important technical merit and

practical justification;ruling out hiring while a firing process is under way is likely

to make the ongoing process successful. Thus, the constraint is defined as (2.3) a

restriction set by the regulations, work agreements, and job markets. The class of

admissible policies satisfying the restrictions in (2.3) along with conditions on X

stated above, si ∈ {H,F}, and t1 ≥ 0 is denoted by Π̂. The initial decision is defined

as t0 = 0, s0 = H, X0 = 0 for mathematical convenience later, but with no hiring

costs. Figure 2.1 illustrates a path of (labor, demand). The firm decides to have a

labor policy which tries to keep the ratio of labor to demand inside a certain range.

This policy generates the two solid rays coming out of the origin where the firm hires

or starts to fire. The firm’s fire-down-to and hire-up-to policies have similar goals;

each tries to correct a large deviation of the ratio of labor to demand by adjusting

the ratio to an improved level. Large deviations occur when the labor demand hits

one of the solid rays out of the origin, and the firm’s labor policy corrects these by

having the labor level move to a point on the dashed rays. The firm controls only

labor so the path can jump vertically only in response to the firm. Hiring moves the

path up vertically and firing causes the path to jump down at the end of the delay

period. As indicated in Chapter III, the optimal policy is one where the firm tries

to keep its labor between the two solid rays and adjusts to the dashed rays.

Given the current labor L and the current demand Z, the value of the company
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Figure 2.1: The evolution of L,Z. Point A is the initial point L0, Z0. As labor decays
and demand trends downwards, the path hits the firing trigger ray at point B and the first process
is started at this time, t1. The firm does not select the number of workers to be fired until the end
of the firing process at point C at time (t1 + ∆)−. The firm then fires enough workers to have
Lt1+∆ hit the firing target ray at point D. The path continues to evolve this time with an
increasing demand trend, which leads the firm to hire when the path hits the hiring trigger ray at
point E. Hiring is instantaneous and the labor process increases to point F . At F the L,Z process
continues to evolve.

under policy π̂ is the expected net present value

Vπ̂ (Z,L) = E

[∞∫
0

e−rt
[(
Z1−λ
t (ALt)

λ − ωLt
)
dt
]

−
∑
i

e−rt
π̂
i I{sπ̂i =H}

(
X π̂
i I{Xπ̂

i ≥0}cH +KHLtπ̂i

)
−
∑
i

e−r(t
π̂
i +∆)I{sπ̂i =F}(

[X π̂
i ]+cF − [X π̂

i ]−cH + Ltπ̂i +∆

(
KF + I{Xπ̂

i <0}KH

))]
(2.4)

where I{·} is the indicator function of the event in the braces, x+ = max(0, x),

x− = min(0, x),

dLt = −δLtdt, Ltπ̂i +∆i
= L(tπ̂i +∆i)−+X π̂

i

(
I{sπ̂i =H} − I{sπ̂i =F}

)
,∆i =

 0, if sπ̂i = H

∆, if sπ̂i = F

Equation (2.4) implies that the value of the firm is equal to the expected discounted

revenues minus the expected discounted labor, hiring, and firing costs. The value
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depends on both the current demand and labor. The expectation can be viewed as

the risk-neutral expectation (e.g. Björk 2004) and r as the risk-free rate. In this case

(2.4) is the risk-neutral pricing equation for the firm’s cash flows and Wt in (2.2) is a

standard Wiener process under the risk-neutral probability, i.e., P is the risk-neutral

probability measure.

The objective is to find an admissible strategy that maximizes the net present

value. That is,

V (Z,L) = sup
π̂∈Π̂

Vπ̂(Z,L) (2.5)

The function V (Z,L) is called the value function. A sufficient condition for V (Z,L) <

∞ is that r > µ. An upper bound of this is the value of the firm with no frictions:

Lemma II.1. (Expected firm value with no frictions) Given initial demand

level Z0 and assuming µ < r, the expected firm value with no labor market frictions

is

VNF (Z0) =

(
Aλη∗λ − ωη∗

)
Z0

r − µ
(2.6)

where η∗ = (Aλλ/ω)1/(1−λ).

Value VNF is independent of the initial labor level because the labor can be ad-

justed without frictions. Equation (2.6) is obtained by maximizing the flow profit that

equals Z1−λ
t (ALt)

λ − ωLt at time t. First order condition gives the optimal labor:

L∗t = (Aλλ/ω)1/(1−λ)Zt, which is equivalent to setting the firm’s marginal revenue

product of labor
(
MRPL = λAλ(Z

L
)1−λ) equal to the wage. Constant η∗ in (2.6) is

the optimal ratio of labor to demand, L∗/Z, and the same ratio is used in the general

case with frictions. Clearly, VNF (Z0) is an upper bound for the value of the firm in

the case with labor market frictions.

I use the homogeneity of value function V and a change of probability measure

to reduce the dimensionality of V . An equivalent probability measure PZ as follows

dPZ

dP
= Mt on Ft, where the Radon-Nikodym derivative Mt = e−

1
2
σ2t+σWt . This gives
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Zt = Z0e
µtMt, i.e., the uncertainty in the demand Zt is from Mt and therefore I call

Mt as the demand’s risk factor. Note that for an Ft-measurable random variable Yt

I have EPZ
[
Yt
Mt

]
= E

[
Mt

Yt
Mt

]
= E [Yt], where t > 0. If the dynamics of Y under P

follows dYt = µY Ytdt+σY YtdWt then the process under PZ is dYt = (µY + σσY )Ytdt+

σY YtdW̄t where W̄ is a Wiener process under PZ .3 Equation (2.4) gives:

Vπ̂ (Z,L) = E

[∞∫
0

e−rtZt

(
(ALt

Zt
)λ − ωLt

Zt

)
dt

−
∑
i

e−rt
π̂
i Ztπ̂i I{sπ̂i =H}

(
Xπ̂
i I{Xπ̂i ≥0}
Z
tπ̂
i

cH +
L
tπ̂
i

Z
tπ̂
i

KH

)
−
∑
i

e−r(t
π̂
i +∆)Ztπ̂i +∆I{sπ̂i =F}

(
[Xπ̂
i ]+cF−[Xπ̂

i ]−cH
Z
tπ̂
i

+∆

+
L
tπ̂
i

+∆

Z
tπ̂
i

+∆

(
KF + I{Xπ̂

i <0}KH

))]
(2.7)

where labor Lt and change in labor Xt are divided by the demand Zt. Define ratios

η = L/Z and m = X/Z. Let π be a hiring and firing policy in η-space and

π = {tπi , sπi ,mπ
i }
∞
i=1 is defined similarly as a policy π̂ in (L,Z) space, except for

mπ
i = X π̂

i /Ztπ̂i +∆i
. I denote the set of admissible policies in the η-space by Π and it

is the same as Π̂ but with mπ
i for π̂ ∈ Π̂. The firm-sized costs become linear in η and

this allows us to reduce the dimensionality.

Proposition 1. (Normalized labor problem) The value function can be written as

V (Z,L) = ZJ(η), (2.8)

where J(η) = supπ∈Π Jπ(η),

Jπ(η) = EPZ
[∞∫

0

u(ηt, t)dt−
∑
i

e−ρt
π
i I{sπi =H}

(
mπ
i I{mπi ≥0}cH +KHηtπi

)
−
∑
i

e−ρ(t
π
i +∆)I{sπi =F}

(
[mπ

i ]+cF − [mπ
i ]−cH + ηtπi +∆

(
KF + I{mπi <0}KH

))]
(2.9)

3See e.g. Björk (2004) for more details of this technique. The use of change of measure in a labor
context is rare, but Prat (2006) also uses this method in a labor search-matching model.
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u(η, t) = e−ρtu(η), u(η) = (Aη)λ − ωη, ρ = r − µ, and the PZ-dynamics

dηt = − (δ + µ) ηtdt−σηtdW̄t, ηtπi +∆i
= η(tπi +∆i)−+(I{sπi =H}−I{sπi =F})m

π
i . (2.10)

Note that MRPL = λAλ 1
η1−λ , i.e., MRPL is a decreasing function of η. When η

is high then labor L is high or demand Z is low. Thus, when η is high (MRPL is

low) the company fires and when η is low (MRPL is high) it hires. Because Z > 0

and it is independent of π, the optimization of Jπ(η) is the same as the optimization

of Vπ̂(Z,L).

My objective is to identify J(·) and create a policy which achieves this value. The

model has eleven parameters in total: µ and σ characterize the demand process; the

market is given by the discount rate r and the inverse of the markup factor λ; current

labor is characterized by the wage ω, the labor productivity A, and the resigning rate

δ; cH and KH determine the frictions in the hiring process; ∆, cF , and KF give the

firing imperfections.

2.1 Characterization of optimum

In this section I give the necessary conditions of the problem in Proposition 1. J

is time-homogenous outside the firing periods, in which case the current normalized

labor ηt is sufficient as a state variable for J . J is a Markovian function of η outside

of firing periods. Within firing periods the value of the firm is Markovian given L,

Z, and the time left to the end of the firing process. Note that J is not the value of

the firm (V is) but it is the normalized value of the firm. I first make a guess for J

and denote this by f . In the next section I prove J = f . In order to determine f , I

define the following auxiliary operators.

Let D be the set of real-valued functions on R+. I define the operators MH :→ D
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and MF : D→ D for all η ≥ 0 and f ∈ D as follows

MHf(η) = sup
m≥0

[f(η +m)− cHm−KHη] (2.11a)

MFf(η) = EPZ

η

[
∆∫
0

u(ηt, t)dt + e−ρ∆ sup
η∆≥m≥0

[f(η∆ −m)− cFm]

+ e−ρ∆ sup
mH≥0

[f(η∆ +mH)− cHmH −KHη∆] I{mH>0} − e−ρ∆KFη∆

]
(2.11b)

where η∆ is the value at time ∆ of η defined by (2.10) and the expectation is con-

ditioned on η0 = η. MFf(η) and MHf(η) are the expected discounted firing value

and the instantaneous hiring value when the normalized labor is η, given that the

“continuing value” of the problem is f . At the end of the firing delay, the firm can

fire, hire, or choose to do nothing. I have included the option to hire at the end of

the delay into my firing operator, MF .

Given a guess for the value function, f , and a policy π ∈ Π, the optimal number

of normalized workers to hire at time ti is given by

m̌f,H
i = arg sup

m≥0
{f(ηti +m)− cHm} (2.12)

Correspondingly, the optimal change at the end of the firing delay is

m̌f,F
i = arg supm<ηti+∆i

{
f(ηti+∆i

−m)− cFm+ + cHm
− −KHηI{m<0}

}
(2.13)

Note that m̌f,si
i depends on the conjecture for the normalized value of the firm, f ,

and m̌f,F
i depends also on the number of normalized workers at the end of the firing

delay, ηti+∆i
.

By (2.10), I define the infinitesimal generator A for all η > 0 and sufficiently
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regular f as follows

Af(η) =
1

2
σ2η2f ′′(η)− (δ + µ) ηf ′(η)− ρf(η) (2.14)

The following result gives the necessary conditions for optimum by using standard

arguments (see e.g. Højgaard and Taksar, 1999 or Fleming and Soner, 1993).

Proposition 2. (Optimality) Assume that the normalized-value function J satisfies

Ito’s formula. Then it satisfies the following set of inequalities outside of the firing

process:

(i) Hiring is an option: J(η) ≥MHJ(η)

(ii) Firing is an option: J(η) ≥MFJ(η)

(iii) The value is expected to fall at least by the flow profit: AJ(η) + u(η) ≤ 0

where one of the inequalities is tight for all η > 0.

Proposition 2 is a system of quasi-variational inequalities, which are the first order

conditions to my problem. Inequalities (i) and (ii) hold for all η because the J-value

function majorizes the value of the hiring and the firing decisions. In the same way

(iii) must hold since waiting is always an admissible policy. Taking no action or taking

one of the admissible actions must always represent the optimal policy.

Lemma II.2. (Uncontrolled firm value) The firm’s uncontrolled firm value is

VUNCON(Z,L) = Z(p1(L/Z)λ + p2(L/Z)) (2.15)

where p1 = Aλ/c1, c1 = ρ+ λ(δ + µ+ 1
2
σ2(1− λ)), and p2 = −ω/(δ + r).

Proof. The value of the uncontrolled firm is

V (Z,L) = ZEPZ

 ∞∫
0

e−ρt((Aληt)
λ − ωηt


15



By interchanging the integration sign and the expectation the integral of the expec-

tation gives 2.15.

16



CHAPTER III

Value function and optimal policy

There are “optimality regions” for each of the policies. My assumption on the

form of the solution outside the firing process is the following: (i) for η ∈ (0, bH ], it

is optimal to start a hiring process; (ii) for η ∈ (bH , bF ), it is optimal neither to hire

new workers nor to fire workers; and (iii) for η ∈ [bF ,∞) it is optimal to fire workers.

I expect to have bH < bF in cases where both bH and bF are positive and finite. Both

barriers may fail to exist when the frictions are prohibitively high. These are defined

impulse control barriers as

bH = sup {η ≥ 0 : f(η) = MHf(η)}

bF = inf {η ≥ 0 : f(η) = MFf(η)}

so that f solves (i) in Proposition 2 with equality for η ≤ bH , f solves (ii) in

Proposition 2 with equality for η ≥ bF , and that f solves (iii) in Proposition 2 for

η ∈ [bH , bF ]. The coefficients in the general solution to Proposition 2 as well as the

optimal barriers bH and bF are found from the value matching and smooth pasting

conditions that must hold at the barriers. Based on standard results (e.g. Dumas 1991

and Dixit 1991) I expect f to be continuously differentiable at the control barriers,
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bH and bF . I define target barriers as

uH = sup {η ≥ 0 : f ′(η) = cH}

uF = inf {η ≥ 0 : f ′(η) = −cF}

The target barriers are the optimal η levels to which hire up or fire down. Further-

more, I expect to have 0 < bH < uH < uF < bF <∞.

With the four arbitrary barriers satisfying the sequence of inequalities above, I

generate a policy π that follows this barrier structure. First define t0 = 0, s0 = H,

m0 = 0 without out any cost at t0 for ease of notation. Then ti+1 = inf{t : η /∈

(bH , bF ), t > ti+∆i
}, si+1 = H if ηti+1 = bH , si+1 = F if ηti = bF , mi+1 = uH − bH

if si+1 = H, and mi+1 = (ηti+1+∆ − uF )I{ηti+1+∆>uF } + (uH − ηti+1+∆)I{ηti+1+∆≤bH} if

si+1 = F .

For the J-value function is

f(η) =


MFf(η), bF ≤ η

fw(η), bH < η < bF

MHf(η), 0 ≤ η ≤ bH

(3.1)

where fw is the value of waiting. The evolution of a path of η is represented in Figure

3.1 given target barriers and impulse control barriers.

I derive the J-value function in each of these three regions. Equation (3.1) gener-

ates two value matching conditions:

fw (bH) = fw (uH)− cH (uH − bH)−KHbH (3.2a)

MFf(bF ) = fw(bF ) (3.2b)
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Figure 3.1: Evolution of η.

(3.2a) gives me a pair of smooth pasting conditions:

f ′w(bH) = cH −KH (3.3a)

f ′w(uH) = cH (3.3b)

The other value matching condition, (3.2b), gives another smooth pasting condition:

MFf
′(η)|η=bF = f ′w(bF ) (3.4)

This gives three smooth pasting conditions. Using the assumption that the second-

order condition holds when the firm fires at the end of the delay, i.e. it is optimal

to fire at the end of the firing period, the first-order condition in MFf gives the

remaining barrier condition of

f ′w(uF ) = −cF (3.5)

Now I have six equations and four unknown barriers. There are two unknown coef-
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Figure 3.2: Graphical Representation of Traditional Proportional and Fixed
Costs.

ficients on the terms of fw, which I show below. I then solve the unknown barriers

and coefficients.

I compare my model of firm-sized and proportional costs to the more well known

model of fixed and proportional costs (Dixit 1991). In Dixit’s model, the state variable

X follows a two-sided (s, S) inventory policy. Stating if the state variable X falls

below the lower barrier s then the policy raises the state variable to a refill level

S > s, and if X ≥ r then the policy decreases the state variable to a drawdown level

R ∈ (S, r). By using the value-matching condition ((26) in Dixit 1991) for increasing

X I get F (S) − F (s) = as + bs(S − s), where by Dixit’s notation F (X) is the value

function, the fixed cost of increasing is as and marginal cost is bs. This is written as∫ S
s

(F ′(x) − bs)dx = as, which means that the area between F ′(x) and bs from s to

S equals as. By taking the derivatives with respect to S and s gives F ′(S) = bs and

F ′(s) = bs. Similarly the value-matching condition ((28) in Dixit 1991) for decreasing

X is F (R)−F (r) = ar+br(r−R), where the fixed cost of decreasing is ar and marginal

cost is −br. This gives
∫ r
R

(−br − F ′(x))dx = ar. Thus, the area between −br and

F ′(x) from R to r is ar. Taking the derivatives of R and r gives F ′(R) = −br and

F ′(r) = −br. Figure 3.2 shows this graphically. The upper shaded area equals the

fixed cost of increasing, as, and the lower shaded area is the fixed cost of decreasing,

ar. The smooth-pasting conditions of F ′(S) = F ′(s) = bs and F ′(R) = F ′(r) = −br
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Figure 3.3: Graphical Representation of Proportional and Firm-Sized
Costs. Parameters: µ=5%, σ =25%, δ = 5%, r=10%, λ=0.7, cH=0.10518, KH =0.1, cF =0.08049,
KF =0.1, A=1, and ω =1. Barriers: bH=0.14128, uH=0.30366, uF =0.38545, and bF =0.78686. Co-
efficients: h1 = 0.445146 and h2 = 0.662328.

are obvious.

Figure 3.3 shows the effects of proportional and firm-sized costs in my model. The

value-matching equation for hiring (3.2a) gives f(bH) = f(uH)−cH(uH−bH)−KHbH

which can be written as

KHbH =

uH∫
bH

(f ′(η)− cH)dη (3.6)

The firm-sized cost, KHbH , then equals the area between f ′(η) and cH . The left-hand

side of equation (3.6) is the rectangle from 0 to bH and from cH to cH −KH .

By the first-order conditions at bH and uH I get f ′(bH) = cH−KH and f ′(uH) = cH

shown in Figure 3.3. The first one implies f ′(bH)− cH < 0. Therefore, the integral in

(3.6) starts negative at bH . Each ∆ value that results in a negative contribution to

(3.6) is represented by the dark sliver from bH to the point where f ′(η) intersects cH .

When η > ũH = inf{η : f ′(η) = cH} the difference of f ′(η) and cH is positive, and

the integral becomes positive as η increases. This is the upper medium gray area.

By the definition of MHf(η) in (2.11a), there may be η values that give f ′(η) = cH

(i.e. satisfies the first order condition), but does not maximize MHf(η). ũH minimizes

21



MHf(η), since if I integrate (2.11a) only up to ũH then the integral is negative. Since

ũH is the first η where the first order condition holds, I have defined uH to be the

supremum. This is shown in Figure 3.3 where f ′(η) is downward sloping, which

gives the concavity of f(η). The rectangle from 0 to bH and from cH to cH − KH

is the graphical representation of the firm-sized cost, KHbH . These observations are

shown in Figure 3.3. The negative area is shown as the sliver of black, while the

upper medium gray area is the positive area.

For simplicity the graphical representation of firing in Figure 3.3 is with zero

delay. The value-matching equation for firing (3.2b with zero delay) givesf(bF ) =

f(uF )− cF (bF − uF )−KF bF , which can be written as KF bF =
∫ bF
uF

(−cF − f ′(η))dη.

The left-hand side of this equation can be shown graphically by the rectangle from 0 to

bF and between the −cF and −cF −KF lines. The right-hand side is the area between

−cF and f ′(η) from uF to bF . This is the light gray shaded area on the bottom right

of Figure 3.3. By first-order conditions at bF and uF I get f ′(bF ) = −cF − KF

and f ′(uF ) = −cF . The first order conditions imply that −cF > f ′(η) over this

range, so the integral is positive. There are two values of η where f ′(η) = −cF −KF ,

b̃F = inf{η : f ′(η) = −cF −KF} and bF . Verification of the optimal policy requires

that f is convex at bF , so I choose the second η. This is where f ′(η) is upward sloping

insuring convexity.

Given the η process and the barriers,the lemma below gives the probability that

the firm’s first action is firing. Define the hitting time of an interval Ta,b = inf{t ≥

0|η(t) = a or η(t) = b}. Now Karlin and Taylor (1975, see Theorem 5.2) give

Proposition 3. (Probability of firing before hiring) The probability that the firm’s

first action is firing is given by

Pr{η(TbH ,bF ) = bF |η(0) = η0} =
exp(2(δ + µ) log(η0/σ

2)− exp(2(δ + µ) log(bH/σ
2)

exp(2(δ + µ) log(bF/σ2)− exp(2(δ + µ) log(bH/σ2)
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3.0.1 Value function parts

The value of waiting is the solution of the PDE (iii) in Proposition 2: for η ∈

(bH , bF ) the flow profit is equal to the change in the value function. Thus, fw satisfies

1

2
σ2η2f ′′w(η)− (δ + µ) ηf ′w(η)− ρfw(η) + v(η) = 0 (3.7)

Note the following: v(η) = p1 ηλ + p2 η, d± = 1
2

+ ( δ + µ ) / σ 2 ±√(
( δ + µ ) / σ2 + 1

2

)2
+ 2ρ / σ 2 . The following lemma, which is proven

in Subsection III.1, gives the value of waiting and hiring.

Lemma III.1. (Value of waiting and hiring) For a policy characterized by

barriers 0 < bH < uH < uF < bF the following holds

(i) Value of waiting: fw(η) = h1η
d+ + h2η

d− + v(η)

(ii) Value of hiring: MH(η) = (fw(uH)− cH(uH − η)) I{η<uH}+fw(η)I{η≥uH}−KHη

Condition (ii) of Lemma III.1 gives the value of hiring. Once the firm pays the

firm-size hiring cost, it is optimal for them to hire a positive amount of workers that

would change η to uH . However, if η > uH the firm should not hire any workers,

because it is already overstaffed.

I use notation MFf(η) = MFf(η;uF , uH , bH) since the value of firing depends on

the current level of η, hiring trigger bH and the target levels uH and uF . From (2.11b)

and my conjecture of the optimality regions gets

MFf(η;uF , uH , bH) = EPZ

η

[
∆∫
0

u(ηt, t)dt + e−ρ∆
[
−KFη∆ + f(η∆)I{bH≤η∆<uF }

+ ((f(uF ) + cFuF )− cFη∆) I{η∆≥uF } + ((f(uH)− cHuH) + (cH −KH)η∆) I{η∆<bH}
]]

(3.8)

Finding the analytic form of MF requires computing the above expectation. As an
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intermediate step I write

MFf(η;uF , uH , bH) = EPZ

η

[
∆∫
0

u(ηt, t))dt

+e−ρ∆
[
h1u

d+

H + h2u
d−
H + p1u

λ
H + p2uH − cH(uH − η∆)−KHη∆

]
I{η∆≤bH}

+e−ρ∆
[
h1u

d+

F + h2u
d−
F + p1u

λ
F + p2uF − cF (η∆ − uF )

]
I{η∆≥uF }

+ e−ρ∆
[
h1η

d+

∆ + h2η
d−
∆ + p1η

λ
∆ + p2η∆

]
I{bH<η∆<uF } − e−ρ∆KFη∆

]
,

(3.9)

which uses the function fw(η). Section A.3 shows that

Lemma III.2. (Value of firing) The value of the firing is given by

MFf(η) = p1η
λ
(
1− e−c1∆

)
+ p2η

(
1− e−(δ+r)∆

)
− cFηe−(δ+r)∆Φ

(
−zF + σ

√
∆
)

+e−ρ∆
[(
h1u

d+

H + h2u
d−
H + p1u

λ
H + uH(p2 − cH)

)
Φ (zH)

+(cH −KH)ηe−(δ+r)∆Φ(−zH + σ
√

∆)

+
(
h1u

d+

F + h2u
d−
F + p1u

λ
F + uF (p2 + cF )

)
Φ (−zF )

]
+g (η;h1 (uH) , d+) + g (η;h2 (uH) , d−) + g (η; p1, λ) + g (η; p2, 1)

−KFηe
−(δ+r)∆

where z(u) =
log(u/η)+

(
δ+µ+

1
2
σ2
)

∆

σ
√

∆
, zF = z(uF ), zH = z(bH),

g(η; k, n) = kηne
−
(
ρ+
(
δ+µ+

1
2
σ2(1−n)

)
n
)

∆
[
Φ
(
zF − σn

√
∆
)
− Φ

(
zH − σn

√
∆
)]

, and

Φ(z) = 1√
2π

z∫
−∞

e−
1
2
y2

dy is the cumulative normal distribution.

The main result of the paper is proved in Appendix B.

Theorem III.3. (Optimal policy) Assume that cH , KH , cF , KF ,∆ > 0, and that

there exists barriers 0 < bH < uH < uF < bF < ∞ and coefficients h1, h2 which give

fw and policy π. Let Jπ be a solution to (3.1), such that (3.2) - (3.5) hold. Let

lim
η+→bH

∂2Jπ(η)

∂η2
> 0, lim

η−→bF

∂2Jπ(η)

∂η2
|∆=0 > 0. (3.10)

and

J ′π(η) > cH −KH for η ∈ (bH , uH). (3.11)
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Then Jπ is a solution to Proposition 2 and the optimal hiring and firing policy is to

hire m̌i
πZtπi when ηtπi = bH , start firing at tπi when ηtπi = bF , and fire m̌i

πZtπi +∆ at

tπi + ∆. Moreover, the value function outside firing times is V (Z,L) = ZJπ(η).

Theorem III.3 says that if for a given set of frictions I find barriers that give a fw

that satisfies (3.1) and (3.2) - (3.5), then those barriers satisfy first-order conditions

that give an optimal hiring and firing policy. However, I need to check if the first-

order conditions maximize the firm value. Conditions (3.10) - (3.11) ensure that this

is true. I then verify if the converse is also true: if I have an optimal policy in the

form of four barriers, then the the conditions mentioned in Theorem III.3 for the J

function is true.

In Subsection B.2 I prove the following proposition.

Proposition 4. (Hiring and firing barriers) The hiring and firing trigger levels

satisfy bH < η∗ and bF |∆=0 > η∗, where η∗ =
(
λAλ

ω

) 1
1−λ

, which is the optimal

η-level in the no-frictions case of Lemma II.1.

This proposition gives bounds on the target barriers, which are then used in the

numerical algorithm for solving this problem.
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CHAPTER IV

Existence and numerical algorithm

This chapter shows my model’s solution exists and is unique. The continuous time

model is written as a discrete time dynamic program. In discrete time the Bellman

equation is shown to be a contraction and thus has a unique solution. The solution to

the discrete time dynamic program converges to the solution to the continuous time

problem. I then explain the numerical algorithm used to find the solution.

4.1 Dynamic Programming

The discretization is done as follows. τ is the time interval. Let π(η) = ((Aη)λ −

ωη)τ is the flow profits over this interval, τ . The discount factor over the time interval

is defined as β = e−ρτ < 1. For a given η, the uncontrolled normalized labor process

evolves according to Cox et al. (1979), u = eσ
√
τ , d = e−σ

√
τ , p = 1

2
− δ+µ

2σ

√
τ . The

state variable η can go to ηu with probability p and ηd with probability q = 1− p.

This describes how the normalized labor process evolves over time τ .

4.1.1 Operators for the firm’s labor adjustments

The state space for the firm’s problem is the initial normalized labor, η. In the

continuous time set up in Section II, hiring was handled by the MH operator, which

is defined for discrete time. First, I set up the convention that the decision to hire,
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fire or do nothing is done at the beginning of the epoch. The cash flows are incurred

at the beginning of the epoch. The discrete time hiring operator is defined as

MD
H f(η) = −KHη + max

mHd ∈Z+
{−cHη(um

H
d − 1) + β(pf(ηum

H
d u) + qf(ηum

H
d d))} (4.1)

A of version of the continuous time firing operator (2.11b) is used to create the

discrete time one. Using Lemma III.2, I solve for the integral and the firm sized firing

cost. They are p1η
λ
(
1− e−c1∆

)
+p2η

(
1− e−(δ+r)∆

)
and −KFηe

−(δ+r)∆. The discrete

time firing operator at η is

MD
F f(η) = p1η

λ
(
1− e−c1∆

)
+ p2η

(
1− e−(δ+r)∆

)
+e−ρ∆EPZ

η

[
max
md∈Z+

f(η∆d
md)− cFη∆(1− dmd)

]
+e−ρ∆EPZ

ηi

[(
max
mdH∈Z+

f(η∆u
mdH )− cHη(um

d
H − 1)

−KHη∆

)
I{md

H > 0}

]
−KFηe

−(δ+r)∆

(4.2)

In subsection 4.1.3 these operators converge to their continuous time counterparts.

I use the operators to show that the dynamic program is a contraction mapping.

4.1.2 Contraction Mapping

In this subsection the dynamic program is a contraction mapping, and thus has

a unique solution. To show this, the operator needs to be operating on bounded

functions. The optimal function is bounded above by the value of the firm without

any frictions (see Lemma II.1) and below by the uncontrolled value of the firm (see

Lemma II.2). Let B(X) be the space of functions bounded above by (2.6) and below

by (2.15), where X = R++.
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I define the operator T : B(X)→ B(X) as

(Tf)(η) = π(η) + max{β(pf(ηu) + qf(ηd)),MD
H f(η),MD

F f(η)} (4.3)

Over the time interval the firm gets π(η) regardless of its actions. It will maximize

over the choices of doing nothing, hiring, or firing. This operator gives the Bellman

equation.

Blackwell’s sufficient conditions for a contraction (see e.g. Stokey et al. (1989, The-

orem 3.3)), states that if an operator satisfies both the monotonicity and discounting

conditions, then it is a contraction.

The monotonicity condition for T is defined as for any f, g ∈ B(X) and f(x) ≤

g(x), for all x ∈ X implies that (Tf)(x) ≤ (Tg)(x), for all x ∈ X. The discounting

condition means that there exists some α ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf)(x) + αa, all f ∈ B(X), a ≥ 0, x ∈ X

where (f + a)(x) is defined by (f + a)(x) = f(x) + a.

Lemma IV.1. (Monotonicity and discounting) The operator T satisfies the mono-

tonicity and discounting conditions.

Proof. Consider equation (4.3). For a given η, one of the three actions maximizes the

right-hand side. Each of these cases is considered below and show that monotonicity

holds for each of them.

Suppose f, g ∈ B(X) and f(η) ≤ g(η), for all η ∈ X. Suppose that for a specific

η ∈ X, (Tf)(η) is maximized by β(pf(ηu) + qf(ηd)). Then

(Tf)(η) = π(η) + β(pf(ηu) + qf(ηd))

≤ π(η) + β(pg(ηu) + qg(ηd))

≤ (Tg)(η)

(4.4)
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Suppose that for a specific η ∈ X, (Tf)(η) is maximized by MD
H f(η), and that m∗

maximizes m in MD
H f(η). Then

(Tf)(η) = π(η)−KHη − cHη(um
∗ − 1) + β(pf(ηum

∗
u) + qf(ηum

∗
d))

≤ π(η)−KHη − cHη(um
∗ − 1) + β(pg(ηum

∗
u) + qg(ηum

∗
d))

≤ π(η) +MD
H g(η)

≤ (Tg)(η)

(4.5)

The second to last inequality holds since for firing given g its best action leads to

results weakly better than using m∗. The last inequality is since firing might not be

the best action at η. Suppose that for a specific η ∈ X, (Tf)(η) is maximized by

MD
F f(η) with m(η(∆)) being the optimal choice at η(∆). By using the definition of

MD
F , that f ≤ g, and that m(η(∆)) is not necessarily the best choice for MD

F g(η), I

get:

(Tf)(η) = π(η) +MD
F f(η)

= π(η) + p1η
λ
(
1− e−c1∆

)
+ p2η

(
1− e−(δ+r)∆

)
+e−ρ∆EPZ

η

[
f(η∆d

m(η(∆)))− cFη∆(1− dm(η(∆)))
]

+e−ρ∆EPZ
ηi

[
(f(η∆u

m(η(∆)))− cHη(um(η(∆)) − 1)

−KHη∆)I{m(η(∆)) > 0}]−KFηe
−(δ+r)∆

≤ π(η) + p1η
λ
(
1− e−c1∆

)
+ p2η

(
1− e−(δ+r)∆

)
+e−ρ∆EPZ

η

[
g(η∆d

m(η(∆)))− cFη∆(1− dm(η(∆)))
]

+e−ρ∆EPZ
ηi

[
(g(η∆u

m(η(∆)))− cHη(um(η(∆)) − 1)

−KHη∆)I{m(η(∆)) > 0}]−KFηe
−(δ+r)∆

≤ π(η) +MD
F g(η)

≤ (Tg)(η)

(4.6)

Thus, T satisfies monotonicity. By (4.3), and (f + a)(x) = f(x) + a, the operator T

29



also satisfies discounting:

(T (f + a))(η) = π(η) + max{β(p(f(ηu) + a) + q(f(ηd) + a)), (MD
H (f + a))(η),

(MD
F (f + a))(η)}

= π(η) + max{β(pf(ηu) + qf(ηd)) + βa,MD
H f(η) + βa,

MD
F f(η) + e−ρ∆a}

≤ (Tf)(x) + max(β, e−ρ∆)a

(4.7)

where a ≥ 0, max(β, e−ρ∆) ∈ (0, 1).

Define the metric E : X ×X → R+, E(g, h) = | ||g|| − ||h|| |, where g, h ∈ B(X),

where || · || is the sup norm, ||h|| = supx∈X |h(X)|.

Lemma IV.2. (Complete metric space) The metric space (X,E) is a complete metric

space.

Proof. The following fact is stated on page 47 of Stokey et al. (1989), “The set of real

numbers R with the metric ρ(x, y) = |x − y| is a complete metric space.” Then by

using the above fact, (X,E) is a complete metric space.

Theorem IV.3. (Existence and uniqueness) The firm’s problem has a solution and

it is unique.

Proof. Stokey et al. (1989, Theorem 3.2) shows that if an operator on a complete

metric space is a contraction mapping then it has exactly one fixed point. The space

B(X) is a closed bounded space and is a complete metric space under the sup norm.

Since T is a contraction and B(X) is a complete metric space, T has a unique fixed

point.
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4.1.3 Optimal dynamic programming policy and continuous time optimal

policy

The optimal policy for the dynamic program is the same policy as the continuous

time problem in Chapter III. This approach is based on Dixit (1991). He starts out

with arithmetic Brownian motion, which he approximates as a random walk. He gets

a differential equation, with some change to his notation, by doing the following.

His state variable is X, and moves up or down an amount ε with probabilities p

and q. Using the known mean (µ) and variance (σ2) of Brownian motion, he selects

the time step and then the probabilities to match the mean and variance. The mean of

X over τ is µτ = pε+q(−ε) and its variance over τ is σ2τ = p(ε−µτ)2+q(ε+µτ)2. By

using p+ q = 1 and keeping only those terms that are not o(τ) he gets a relationship

between the time step, state-space step and variance, σ2τ = ε2.

The random walk has the same mean and variance of the continuous time Brow-

nian motion. He then considers an arbitrary four-barrier control policy, s < S <

R < r and finds the points in discrete state space that corresponds to those barriers,

Xs, XS, XR, and Xr. Here each of the two outer barriers, (s and r) take the state

variable to one of the two inner barriers, (S and R) at a known cost. Given this

control, he modifies the random walk one step away from each of the two outer bar-

riers. Instead of continuing to move in the direction of the outer barrier, the state

variable would jump to the inner barrier with the given probability. For example, at

Xr−1 the state will jump to XR with probability p and to Xr−2 with probability q. I

call this an “edge case” state, as opposed to an inner state. For an inner state, Xi,

where i ∈ {s + 2, · · · , r − 2}, Xi moves to Xi+1 with probability p and to Xi−1 with

probability q. With this change Dixit knows how each state transitions and their

probabilities. He then incorporates these transition probabilities into a transition

matrix α.

Next he solves for the value function for a given control. This can be written in
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vector notation, F , where the vector value of states today is the infinite sum of the

discounted expected profits over the time intervals, or F =
∑∞

k=0 e
−kρταkf , where k

is the kth time step, and ρ is the discount rate over τ . Here the vector f is the flow

profit over time step τ . Letting B = e−ρτα the Bellman equation is F = f + BF .

In the Bellman equation form, the value of the firm, F is the profit over the time

step, f , plus the discounted expected continuation values at the new states, BF . At

a given state, the firm would get the flow profit times the time step as the profit now.

Also at that given state, the state variable would evolve to two possible states. The

discounted expected future values for an inner state is the sum of the two discounted

continuation values of those two possible states weighted by the probabilities. If the

state is an edge case, one movement will hit an outer barrier and cause the state to

move to an inner barrier. For an edge case the discounted expected future values

have two terms. The first is the discounted continuation value of staying in an inner

state weighted by its probability. There is a probability that the state will evolve

to the outer barrier triggering the control. Then the discounted continuation value

weighted by its probability of moving to an inner barrier minus the cost of moving is

the second term. For given continuation values, the Bellman equation is known for

all states within the outer barriers.

For a given inner state Xi, its Bellman equation, F (Xi) = f(Xi)τ+e−ρτqF (Xi−1)+

e−ρτqF (Xi+1) can be transformed into a differential equation. Dixit first multiplies

by eρτ and rearranges by adding the terms −F (Xi) + qF (Xi) + pF (Xi) (these terms

are zero since p+ q = 1) to get

[eρτ − 1]F (Xi)− q[F (Xi−1)− F (Xi)]− p[F (Xi+1)− F (Xi)] = eρτf(Xi)τ

By doing a Taylor expansion, the right-hand side is just τf(Xi)+o(τ). By plugging

in the values of the probabilities and the relationship between the time step and the
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state step, Dixit gets the following for the left-hand side

ρτF (Xi)− µτF ′(Xi)−
1

2
σ2τF ′′(Xi) + o(τ)

The expansion gives first and second derivatives of the continuation value and terms

that go to zero faster than the time step, o(τ). By dividing by the time step, and

taking the limit as the time step goes to zero, Dixit gets a differential equation, for

any X ∈ [s, r]:

1

2
σ2F ′′(X) + µF ′(X)− ρF (X) + f(X) = 0

The solution to this differential equation is the general solution to the homoge-

neous equation and the particular solution depending on the flow profit function. The

general solution is C1e
α1X + C2e

α2X with unknown coefficients Ci and constants, αi.

The unknown coefficients are similar to my h1 and h2. The constants are the roots

of the characteristic equation, similar to my model’s d+ and d−.

By setting x = ln(η) the solution is transformed from two exponentials to two

power functions with the powers being the solution to the characteristic equation.

By choosing the drift of the arithmetic Brownian motion correctly and the other

parameters, the constants become d+ and d− of my model. The particular solution

of the differential equation depends on the flow profit. By choosing the flow profit

function correctly, I get the last two terms of the solution to my differential equation

(see Lemma III.1).

I now show that as τ gets small the discrete time hiring and firing operators

converge to the continuous time ones. For a hiring decision md, the proportional

hiring cost is cHη(umd − 1). Setting umd = mH/η + 1, the proportional hiring cost
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becomes cHmH . The hiring operator is written as

MD
H f(η) = −KHη + maxmd∈Z+{−cHη(umd − 1) + β(pf(ηumdu) + qf(ηumdd))

= −KHη + maxmH∈R+{−cHmH + β(pf((η +mH)u) + qf((η +mH)d))}
(4.8)

As τ goes to zero, p → q → 0.5, u → d → 1 and β → 1. As u gets arbitrarily close

to 1, for any choice of mH the value of md that gives mH can be found. When τ is

zero, the sum of the continuation values collapse to f(η+mH), and MD
H f(η) becomes

MHf(η).

The firing operator similarly converges to the continuous time one. Only the two

expectation terms need to be shown to be the same as the continuous time operator’s

terms. Using the argument above for MD
H the first expecting term is the same as the

continuous time operator’s term, where η is now η∆. For the expectation with the

firing at the end of the delay, let dmd = 1 −m/η∆, but confine dmd ∈ [0, η∆). Thus,

the term in the expectation becomes supm∈[0,η∆) f(η∆ −m)− cFm. And the discrete

time operator converges to the continuous time one.

4.1.4 Numerical Approach

For each implementation of a policy, the value of that policy is updated with the

value of the previous policy. When the improvement in the policies is small enough,

the implementation stops. I denote the hiring and firing operators used for coding

with the “C” superscript.

In order to keep the state space bounded and computable, η, is divided into 2M

values, with η∗ = ηM and ηi = η∗u(i−M)+
d(M−i)+

. At η2M the state variable stays at

η2M with probability p, and goes to η2M−1 with probability q. Similarly, at η1 the

state variable stays at η1 with probability q, and goes to η2 with probability p.

In discrete time there isn’t a value function, f , but a vector of points that corre-

spond to a value function, fi, for i = 1, · · · , 2M . For the do-noting option, if i = 1
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the down node’s continuation value with probability q is f1. If i = 2M the up node’s

continuation value with probability p is f2M .

The discrete time hiring operator for coding at ηi is

MC
Hfi = −KHηi + max

mH∈{1,··· ,2M−i}
{−cHηi(umH − 1) + β(pfi+mH+1 + qfi+mH−1)} (4.9)

At the end of the delay the following happens: Given that firing started at ηi,

the state variable at the end of the delay, ηi(∆), is a random variable that can take

on any value on R+. In discrete time, when firing is started at ηi the ηj that the

η process gets closest to at the end of the delay is a random variable, ηi,j. It has

the following probabilities: P (i, j) = Pr(ηi(∆) ∈ ((ηj + ηj−1)/2, (ηj + ηj+1)/2)) =

Φ(z((ηj + ηj+1)/2))− Φ(z((ηj + ηj−1)/2))), for j ∈ [2, 2M − 1], P (i, 1) = Pr(ηi(∆) <

(η1 + η2)/2) = Φ(z((η1 + η2)/2)), and P (i, 2M) = Pr(ηi(∆) > (η2M−1 + η2M)/2) =

1− Φ(z((η2M−1 + η2M)/2)), where z is defined in Lemma III.2.

The discrete time firing operator for coding at ηi with continuation value vector

f is

MC
F fi = p1η

λ
(
1− e−c1∆

)
+ p2η

(
1− e−(δ+r)∆

)
−e−ρ∆EPZ

ηi

[
max

mj∈{0,··· ,(j−1)}
fj−mj − cFη∗uj−m

j
(um

j − 1)

]
−e−ρ∆EPZ

ηi

[(
max

mjH∈{0,··· ,(2M−j)}
fj+mjH

− cHη∗dM−j−m
j
H (1− dm

j
H )

−KHηj)I{mj
H > 0}

]
−KFηe

−(δ+r)∆

(4.10)

If the firm fires and changes η from ηj to ηj−m and gets continuation value fi−mj , it

pays cF (ηj−ηj−mj) = cF (η∗uj−M −η∗uj−mj−M) = cFη
∗uj−m

j−M(um
j −1). This is the

second term in the first expectation. Similarly, hiring from ηj to ηj+mjH
means the

firm pays cHη
∗dM−j−m

j
H (1 − dm

j
H ) for the proportional cost. Since an expectation is
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the summed possible outcomes weighted by their probabilities I get:

MC
F fi = p1η

λ
(
1− e−c1∆

)
+ p2η

(
1− e−(δ+r)∆

)
−e−ρ∆

2M∑
j=M

[
max

mj∈{0,··· ,(j−1)}
fj−mj − cFη∗uj−m

j
(um

j − 1)

]
P (i, j)

−e−ρ∆
M−1∑
j=1

[(
max

mjH∈{0,··· ,(2M−j)}
fj+mjH

− cHη∗dM−j−m
j
H (1− dm

j
H )

−KHηj)I{mj
H > 0}

]
P (i, j)−KFηe

−(δ+r)∆

(4.11)

Thus, for a given f vector, MC
F fi can be found for all i ∈ {1, · · · , 2M}.

4.1.4.1 No Delay

I briefly consider the no delay case (denoted with the subscript 0). For no delay,

the new operator for policy implementation is

(T0f)(ηi) = π(ηi) + max{β(pf(ηiu) + qf(ηid)),MD
H f(ηi),M

D
F,0f(ηi)}} (4.12)

where, the no firing delay firing operator is

MC
F,0fi = KFηi + maxm∈{0,··· ,i−2}{−cFηi(1− dm)

+β(pfmin(2M,i+1−m) + qfmin(2M,i−1−m))
(4.13)

The operator T0 is also related to the optimization at the end of the delay without

the firm-sized firing cost term.

4.1.4.2 Coding Description

Ideally, the code would return for each ηi, the best decision: hire, do nothing, start

firing, and the best state to move to, if any. From this I get the optimal barriers.

Given these best decisions, the largest ηi whose best decision is to hire is bH . The

smallest ηi whose best decision is to start firing is bF . The best state to goto at bH
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would then be defined as uH . The η that is the best state to goto when firing at the

end of the delay is defined as uF . My program updates the value function and solves

for these barriers.

I initialize variables, including the starting value function vector, v, the starting

metric, iteration number, the metric tolerance that will stop the implementation, and

P (i, j). The metric measures the differences in the value functions between this policy

and the previous policy. Then I start the while loop that continues as long as the

metric is above its tolerance, and the max iterations have not been met.

In the while loop, I initialize the temporary value function vector, tv, based on the

action of doing nothing. For the middle nodes, 1 < i < 2M , tv(i) = π(ηi)+β(p ·v(i+

1) + q · v(i− 1)). The edge nodes, i = 1, i = 2M , the equation is adjusted so that v’s

vector indices are 1, 2 or 2M − 1, 2M . For each i, I have a “best state” variable that

tells the index of best state to go to at ηi. The best state for ηi is set at i, meaning

doing nothing is best. I also have a “best decision” variable that states what the best

decision is for all states i. It is initialized in the while loop as “do nothing”.

Then I consider the value of hiring. For each ηi I consider hiring to any level

between ηi+1 and ηM−1 to find the best amount to hire at ηi. If the value of hiring,

MC
Hv(i) is more than the tv(i) then I update tv(i) = π(ηi) + MC

Hv(i), the best state

as the index of the state best to hire to, and the best decision as “hiring” at i.

Next I consider the optimization at the end of the delay. At the end of the delay,

there is a positive probability that η takes on any i value. The optimal decision and

action for values of i were considered in the value of hiring. For each i, I solve MC
F,0v(i),

as well as the best state. I also store the “best value” of v(i−m∗)−cFη∗ui−m
∗
(um

∗−1),

where m∗ solves the maximization in the first expectation in (4.11). I solve MC
F,0v(i)

to help compute MC
F .

With the best states and values solved for at the end of the delay, I now solve

for MC
F v(i). Only two terms have yet to be computed for MC

F : the two sums. These
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two sums considers each possible j ∈ {1, · · · , 2M} that η can be near at the end of

the delay. I assume that doing “nothing” is optimal at j = M . For the first sum,

where firing at the end of the delay is considered, the optimal firing amount and

the best value has already been calculated. By summing these best values by their

probabilities, P (i, j), plus v(M) · P (i,M), the first sum is found. Each term in the

second sum related to where hiring has been calculated by comparing v(j) to MC
Hv(j)

and getting tv(j), as described above. This sum term is just summed tv(j) weighted

by P (i, j). Therefore, for each i > M , MC
F v(i) has been found. Now by comparing

MC
F v(i) versus the value of doing nothing, tv(i), I update the best decision as “firing,”

if MC
F v(i) > tv(i).

Now at the end of the loop, I update the metric as the maximum absolute difference

between v and tv at any point, set v = tv, and increment the iteration count.

When the while loop exits due to the metric being below the tolerance, or max

iterations reached, the barriers are returned.

The results the numerical algorithm are shown in Chapter 5.1.

4.2 Convergence of Value Function and Optimal Policy

Here I show that the discrete time dynamic program converges to the continuous-

time solution to the firm’s problem. First I show results of the value-matching and

smooth-pasting conditions as the time step, τ , gets smaller. Then based on Kushner

(1977) I show that for this problem, that both the discrete time value function and

optimal policy converge to the continuous time value function and optimal policy.

Figure 4.1 shows the value function, barriers and value-matching and smooth-

pasting conditions as a function of τ . The value function converges as the time step

gets smaller. The barriers do not change substantially. From the construction of bF

in the algorithm, the value-matching and smooth-pasting equations hold at bF . For

the other three barriers (bH , uH , uF ) the differences between the left and right-hand
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sides of the equations are presented in the bottom four panels. The metrics used

to evaluate how close the barriers are to optimal are the difference between left and

right-hand sides of equations (3.2a), (3.3a), (3.3b), and (3.5). The graphs show that

the metrics gets closer to zero as τ falls.

(Kushner 1977, Theorems 8.5.2 and 8.5.3) shows that for an impulse control prob-

lem with one under Lipschitz continuous condition for the drift and volatility coeffi-

cient, the discrete time value function and optimal policy converge to the continuous

time value function and optimal policy. (Kushner 1990, Assumption (A2.2)) also

suggests that the cost functions needs to be continuous and bounded for convergence.

Theorem IV.4. (Convergence of the value function and optimal policy) The discrete

time value function and optimal policy converge to the continuous time value function

and optimal policy.

Proof. For x, y > 0, |− (δ+µ)x− (−(δ+µ)y)| ≤ Kd|x− y|, where Kd = |(δ+µ)|+ 1,

and | − σx − (−σy)| ≤ Kv|x − y|, where Kv = σ + 1. Thus, the drift and the

volatility coefficients on the diffusion are Lipschitz continuous, then the theorems

(Kushner 1977, Theorems 8.5.2 and 8.5.3) hold. The cost functions including MFf(η)

are continuous and bounded. MFf(η) is bounded because it is a weighted sum of f

functions, which are bounded by Theorem IV.3. Thus, the discrete time value function

and optimal policy converge to the continuous time value function and optimal policy.
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Figure 4.1: Effect from time step, τ . Parameters: σ = 0.8, cF = 1/12, KF = 0.01,
cH = 1/12, KH = 0.05, µ = 0%, δ = 10%, r = 10%, λ = 0.7, A = 1, and ω = 1. Units are years
and annual wage. The metrics used to evaluate how close the barriers are to optimal are the
difference between left and right-hand sides of equations (3.2a), (3.3a), (3.3b), and (3.5). From the
construction of bF in the algorithm, the value-matching and smooth-pasting equations hold at bF ,
and their metrics are identical to zero, and thus are not included in this figure.
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CHAPTER V

Comparative statics

5.1 Comparative statics

This chapter analyzes the impact from the firing delay, the firing and hiring costs,

and the demand volatility on the optimal barrier policies and simulated profits and

labor level. I find the optimal barriers by the algorithm in Chapter IV. Parameters

used in this chapter were inspired by OECD (2004) for market frictions, by Bentolila

and Bertola (1990) for productivity, wage, and market power, and by market data for

r and demand parameters. Kramarz and Michaud (2010) find that proportional firing

costs can be up to ten months of wages. They also state that proportional hiring cost

can be as much as 2.84 annual wages. Robertson (1979) examines Ontario industries

and finds that all Ontario industries have a turnover rate of 15.1%, and can be as

high as 39% for mining. Since “firm-sized” costs in this paper is new, I know of no

estimations of these parameters.

Given the firm’s optimal policy, I use Monte Carlo simulation to calculate the

firm’s expected profit and labor levels and their standard deviations. For each Monte

Carlo path the firm starts at the labor level of η∗, with initial demand of Z0 = 1 and

zero profits. I then simulate monthly demand, η, as a discretized geometric Brownian

motion for twenty years, and allow for the firm to follow its optimal labor policy.

Each month the previous month’s accumulated profits, plus interest, are added to
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the current month’s profit. At the end of the twenty years the simulation reports the

labor level and accumulated profit with interest. Simulating over a large number of

paths generates the expected and standard deviation of the profit and labor levels.

For each set of model parameters, I double the simulations using antithetic variates

(see e.g. Brandimarte, 2006). This reduces the standard deviations of the estimates. I

present figures showing how the estimated labor, profit and their standard deviations

change as the parameters and optimal barriers change. In the simulation for each

change in parameters and barriers, I use the same random draws.

The impact of the parameter changes on profit and labor also depends on the sign

of the drift of η. Recall from (2.10) that the drift of η is −(δ + µ). If −(δ + µ) > 0,

the firm expects to fire more often than hire, and vice-versa if the drift is negative. I

have chosen different values of δ and µ to show how the different drifts of η impact

the results.

5.1.1 Firing delay

Figure 5.1 shows the effect of increasing the firing delay on the barriers and the

firm’s profit and labor. Here, the drift of η is −0.1. Therefore, the firm will be

expecting to hire often. Since the delay restricts the firm’s actions, requiring it to

wait longer, the firm chooses to get the firing process started early and the firing

trigger barrier, bF , falls. Lowering the trigger level, while the other barriers remain

roughly flat, lowers the average labor. Firing more often, before η can get too large,

means that there is less variation in laborand profit. Since the delay does not explicitly

increase the cost, it does not directly impact the profit level. However, firing more

frequently, and incurring the firing cost means that average profit decreases, especially

as the delay gets substantially larger, while smaller delay levels have a small effect on

profits. The slight change in the hiring barrier for small delay may explain why the

standard deviations fall dramatically over the first few values of delay. Additionally,
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the changes in the standard deviations amount to only one-percent changes.
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Figure 5.1: Effect from delay ∆. Parameters: σ = 0.3, cF = 1/12, KF = 0.01, cH = 1/12,
KH = 0.01, µ = 0%, δ = 10%, r = 10%, λ = 0.7, A = 1, and ω = 1. Units are years and annual
wage. The panels were generated by Monte Carlo simulation with 100,000 runs.

5.1.2 Proportional firing cost

The effects from proportional firing cost cF are illustrated in Figure 5.2. The firm

avoids the firing costs by raising the firing barriers. By raising bF , there is a smaller

probability of firing being started. Since each additional worker fired becomes more
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expensive, the firm is less willing to fire more workers, so uF also shifts up. Firing cost

raises the cost of firing new workers, therefore the value of hiring falls and decreases

the hiring barriers. Since −(δ + µ) = −10%, the drift of η is negative. This draft

means that hiring is more likely, and more time is spent between the hiring barriers,

uH and bH . Since hiring is likely, the increase in hiring cost lowers profit. More time

is spent in a lower profit area away from the optimal level without frictions (η∗ ∼ 0.3,

see Lemma II.1), which also lowers profit. The shrinking of the difference between the

hiring barriers, uH and bH , means that more time is spent in a narrower η interval,

which lowers the standard deviation of labor. Since η is expected to spend more time

in a smaller interval, the profit the firm gets from being in this interval is less varied.

5.1.3 Proportional hiring cost

The impact of increasing the proportional hiring cost on the barriers, profit and

labor are shown in Figure 5.3. All four barriers widen when the cost rises. Hiring is

more costly, so the firm waits until it has fewer workers to trigger hiring. When it

does hire, it hires fewer workers to lower the hiring cost. The increasing cost of hiring

an additional worker means that the cost of replacing a fired worker increases. To

avoid this cost, the firm increases the firing barriers.

For the impact of the increasing cost on the labor and profit statistics, notice that

δ+µ > 0, which means that the drift of η is negative. The same reason that explains

the lowering of the labor and profit levels and their standard deviations in Subsection

5.1.2 holds here.

5.1.4 Firm-sized firing cost

The effects of increasing the firm-sized firing cost, KF , are illustrated in Figure

5.4. To avoid paying this increasing cost, the firm raises the firing trigger barrier bF .
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Figure 5.2: Effect from proportional firing costs cF . Parameters: σ = 0.5,
KF = 0.01, cH = 1/12, KH = 0.01, µ = 0, δ = 10%, r = 10%, λ = 0.7, ∆ = 0.5, A = 1, and ω =
1. Units are years and annual wage. The panels were generated by Monte Carlo simulation with
100,000 runs.
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Figure 5.3: Effect from proportional hiring costs cH. Parameters: σ = 0.5,
cF = 1/12, KF = 0.01, KH = 0.01, µ = 5%, δ = 10%, r = 10%, λ = 0.7, ∆ = 0.25, A = 1, and ω
= 1. Units are years and annual wage. The panels were generated by Monte Carlo simulation with
100,000 runs.
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This lowers the chance of bF being hit. Since KF is a sunk cost once a firing process

has started, it does not have an impact on uF . Thus, the uF barrier is flat. Increasing

the firing cost lowers the value of hiring, and lowers its barriers. These lower barriers

with the negative drift of η lead to the lowering of the labor as well as profit levels

and their standard deviations, similar to Subsection 5.1.2.
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Figure 5.4: Effect from firm-sized firing costs KF . Parameters: σ = 0.80,
cF = 1/12, cH = 1/12, KH = 0.01, µ = 7%, δ = 5%, r = 10%, λ = 0.7, ∆ = 0.25, A = 1, and ω =
1. Units are years and annual wage. The panels were generated by Monte Carlo simulation with
100,000 runs.
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5.1.5 Firm-sized hiring cost

Figure 5.5 shows the effects from increasing the firm-sized hiring costs, KH . In-

creasing the hiring cost lowers the net value of starting to hire, thus the hiring trigger

barrier bH falls. This way, the firm reduces the probability of hiring. Since the firm-

sized hiring cost is linear in bH , this lowers the cost paid. The firm-sized hiring cost

is a sunk cost as soon as hiring is started. Therefore, the firm should not reduce

the amount of workers it hires. In fact, to avoid incurring this increasing cost in the

future, the firm hires more workers. Thus, the amount hired, uH − bH , increases.

Increasing the cost of hiring lowers the value of firing workers, since replacing the

fired worker is more expensive. Therefore, the firing barriers increase, since firing a

worker is less valuable to the firm.

Since the drift of η is negative, the firm is expecting to hire. This means more

hiring cost is incurred and this cost lowers the mean profit. This lowers the average

profit. Profit stays closer to the average profit as the cost increases. This is because

the mean profit is decreasing, the labor level is farther from optimal before triggering

hiring, and the proportional hiring is more expensive causing the standard deviation

of profit to fall.

5.1.6 Demand volatility

The effects of demand volatility is shown in Figure 6.2. As the volatility increases,

the chance of hitting the trigger barriers bH and bF and incurring those hiring and

firing costs increase. To reduce this increased expected cost, the firm expands its

trigger barriers. This is why bH falls and bF rises in the volatility. As the volatility

increases, the expected firm-sized cost of firing increases, since this cost term is linear

in bF . To avoid this cost of firing, the firm curves back the firing barrier. This

means the firm fires more often, but with a smaller firm-sized firing cost. These two

competing effects, reducing the probability of firing and reducing the cost of firing,
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Figure 5.5: Effect from firm-sized hiring costs KH. Parameters: σ = 0.3,
cF = 1/12, KF = 0.01, cH = 1/12, µ = -5%, δ = 10%, r = 10%, λ = 0.7, ∆ = 0.5, A = 1, and ω =
1. Units are years and annual wage. The panels were generated by Monte Carlo simulation with
100,000 runs.
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act in opposite ways. For smaller volatility reducing the probability of firing by rising

bF dominates. For larger volatilities, there is a greater chance of hitting bF . When

the firm reduces the expected firing cost by lowering bF , which dominates increasing

bF for decreasing the probability that firing is triggered.

As the volatility increases, each additional worker is less valuable, since it is more

likely that the worker may have to be fired. This lowers the hiring trigger barrier bH

and the refill level uH .

Average labor increases, decreases, and then increases again as the volatility in-

creases. As the barriers widen, especially as the firing barrier increases, the labor

increases. As the firing barrier levels off, the decrease in the hiring barrier starts to

dominate the average labor causing it to fall. As the firing barrier starts to fall again

and the decrease of bH slows down, the average labor turns up.

The average profit falls as volatility increases. The normalized labor level spends

less time near its optimal level due to the volatility. Standard deviations of both

labor and profit increase as the volatility of demand increases. This occurs because

the η variable is more volatile and drives both labor and profits.
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Figure 5.6: Effect from demand volatility σ. Parameters: cF = 1/12, KF = 0.01,
∆ = 0.25, cH = 1/12, KH = 0.01, µ = -5%, δ = 10%, r = 10%, λ = 0.7, A = 1, and ω = 1. Units
are years and annual wage. The panels were generated by Monte Carlo simulation with 100,000
runs.
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CHAPTER VI

Ford Motor Company

6.1 Ford Motors Discussion

I apply the model to Ford Motor Company. In this chapter I explain parameter

estimation for Ford and give comparative statics. Then I discuss my model’s results

for Ford, including predicting the change in its workforce and the value of Ford.

The model is highly stylized. It does not directly model Ford’s less successful

management decisions over multiple decades (relative to e.g. Toyota). Ford has the

characteristics of my model: random demand, market power, wage costs, and most

importantly costly and delayed firings. Model parameters for Ford can be estimated

from publicly available data. I use two sets of parameters: A “stable” regime from

2003-2005 and a “recession” regime from 2008 to the end of 2010. I chose these

regimes, because they represent a clear change in Ford’s business strategy, including a

draw down of $10.1 billion from its credit lines starting in January 2009, but obviously

considered in 2008 (Reed 2009). The demand parameters changed by a significant

amount across the regimes. This change allows me to test predictions of my model.

To calibrate my model for Ford, some adjustments must be made. Ford has

significant non-labor costs. The total liabilities, including pensions and health care

costs, for Ford in September 2008 amounts to $244 billion (Google 2009). Since this

was 86.9% of the total assets in 2008, I have to consider this. At the time Ford
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had a significant bankruptcy risk. This results in yields for its bonds as high as

45% (InvestingInBonds 2009), and I use this as the recession regime’s interest rate.

During the stable 2003-2005 time period I use 11% as the discount rate (Pittman

2006). The corporate bond yield is a lower bound for the weighted average cost of

capital (WACC), since the return on equity is even higher. However, Ford’s debt to

equity is 6.63 (Forbes.com 2012) and, therefore, one could expect that the WACC is

not much higher.

In the recession, Ford was offered government stimulus money. The expected

value of this money, or the government taking over Ford’s pension and health care

obligations might have increased Ford’s market value, but I do not model this effect.

During the stable 2003-2005 time period I use $282 billion as Ford’s total liabilities

(Ford 2005). There are other non-labor cash flows, such as Ford Credit income, capi-

tal leases, and construction costs. The discount rates discussed above give the present

value of the non-labor cash flows of -$10 and -$2 billion in the stable and recession

regimes, respectively. Assuming that Ford’s current labor decisions do not have a

large influence on the liabilities, I write Ford’s market capitalization as the sum of

the model value minus total liabilities: V (L,Z; r = bond yield)− total liabilities +

present value of non-labor cash flows. I also call V (L,Z) Ford’s “gross value”. As

mentioned before, the expected impact of government policy is much harder to quan-

tify, the potential bailout of Ford during the recession that started in December 2007

is not addressed.

I focus on finding model estimates of the equity value and Ford’s employment

changes. Then I compare the estimates to the actual values, and I also compare

the two regimes. Finally I analyze the sensitivity of the gross value with respect

to the model parameters. To estimate Ford’s gross market value I use Monte Carlo

simulation as in Chapter 5.1. 1

1 In the Monte Carlo simulations 100,000 independent paths with antithetic variates giving a
total of 200,000 paths were used. The time step was one month, and the time length of each path
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6.2 Ford Parameter Estimation

This section discusses in detail how I estimate Ford’s parameters. Table 6.1 gives

the exact estimates.

I estimated the annual drift and volatility of the demand process, assuming it

follows a geometric Brownian motion process. Monthly sales data between 2003 and

2005 was obtained from WardsAuto (2009) and personal communication with Ford.

Sales data from 2007 to 2010 was gathered from Ford press releases (Ford Media

2008, 2009, 2010). I estimate stable regime demand parameters using monthly data

from January 2003 to December 2005 and recession parameters from January 2008

to December 2010. 2

Since Ford has been offering early retirement packages and buy out offers to work-

ers, I assume that workers would rather take these than quit. Therefore, I set the

quit rate, δ, to zero.

Ford maintained “job banks” where retired or laid-off workers are paid to do

nothing, while they can get rehired instantly (see e.g. McCracken, 2006). I set the

costs of hiring, cH and KH , at zero, since there are no search or training costs.

For the market power, λ, I use 0.88. This estimate is from the flexible nested logit

specification of demand elasticity for automobiles (Brenkers and Verboven 2006).

More specifically, Brenkers and Verboven (2006) has an estimate of 7.734 for the logit

specification and, by the relationship of λ to elasticity, ε of λ = ε
1+ε

we got 0.88 from

the logit estimate.

For the delay in firing I use the maximum length of time a plant would be open

after it was scheduled to close under the “Way Forward” plan announced by Ford in

January 2006 (Ford, 2006). This gives a delay, ∆, of 18 months.

was 20 years.
2 The hypothesis that the µ estimates are the same fails to be rejected at the 10% level. The

t-statistic for 54 degrees of freedom is t10%/2,54 = 1.6736, while the test statistic value is 1.398. The
hypothesis that the σ estimates are the same is rejected the 1% level. The F-statistic for 34 and 34
degrees of freedom is F1%,34,34 = 2.2583, while the test statistic value is 3.0272.
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I estimate the two firing cost parameters (cF and KF ) from (2.4). I assume that

these costs are constant over time and across divisions time and divisions in Ford.

The annual reports give the expected costs of restructuring the Premier Automotive

Group (England) in 2004 and 2005 to be $175 million laying off 1,500 workers (Ford,

2005). The costs of implementing the Ford Europe Improvement Plan in 2003 and

2004 was $605 million resulting in 7,000 workers laid off (Ford, 2005). Using these two

data points I found that the proportional cost of firing each worker is nine months of

the the worker’s wage, and the firing firm-size cost is 1.3% of the total annual wage.

This proportional cost is in line with the amount Ford is offering to employees to

leave the company (Reuters 2012).

From Ford’s annual reports (2005 and 2006) and a DaimlerChrysler (2007) docu-

ment, I obtained estimates on wages and productivity. Using the number of vehicles

produced in North America and Ford’s number of hourly North American employ-

ees, I estimated the annual productivity of 32 vehicles per worker. I do not consider

managers or other employees in this calculation, since they do not physically produce

cars. A document from the 2007 Daimler Chysler - UAW labor talks states that

the hourly rate of a Ford assembler is $26.10 (DaimlerChrysler 2007). Assuming an

assembler gets paid for forty-hour weeks, 52 weeks a year, and after adjusting for the

increases due to the UAW Ford negotiations UAW (2007), I get an annual wage of

around $60,000.

To estimate Ford’s value with my model, I also need the initial point on the

demand curve, Z0, since V (L,Z0) = Z0J(L/Z0). To estimate Z0, I assume that Toyota

is the ideal automobile company, and operates without any labor market frictions. For

instance, National Labor Committee (2008) reports that one-third of its assembly line

workers are temporary and subcontract workers with contracts as short as under half

a year. This makes it easy to layoff workers at little firing cost or delay. Since Toyota

and Ford are both global automobile companies, I assume that their products are
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interchangeable. They face the same demand level, Z0, for their products. I estimate

Toyota’s V (L,Z0) from Toyota’s gross value (Google 2009). I then estimate the no-

friction value of Toyota given the parameters for Ford, JNF,Toyota. Thus, the initial

point on the demand curve can be found by Z0 = Toyota’s gross value/JNF,Toyota. I

do this for both the stable and the recession regimes. 3

6.3 Ford Comparative Statics

Ford’s parameters are different than the values used in Chapter 5.1. Therefore,

I run comparative statics also for Ford with respect to parameters µ and σ. These

parameters are analyzed here because they changed due to the recession. For the

comparative statics, I run the algorithm for a range of values for µ and σ. The range

for µ was selected since it covered the µ values in the two regimes. The range for σ

was determined since it was the σ value ±25%. The estimates of µ and σ for each

regime fall in the range of the comparative statics.

Figure 6.2 shows the effect of µ on the barriers, equity, profits, and labor. As the

demand drift parameter increases, the hiring barriers increase. Increasing demand

means that a worker is more valuable, since there is a higher demand for the cars he

produces. The higher demand also explains the increasing average labor and average

profit. Looking at the effect of changing µ on equity, a -20% drift would lead to

-$96.5 billion equity value, and a drift of -1% would lead to an equity value of $105.2

billion. Ford’s estimated equity becomes zero near a drift of -7.5%. A negative equity

value would mean that Ford would be bankrupt. This suggests that Ford should

do everything it can to make sure that the demand drift does not fall below -7.5%.

However, the model does not take into account the possibility of bankruptcy.

The effects of demand volatility can be seen in Figure 6.2. Increasing the demand

volatility lowers the value of an additional worker, since the value of his output is

3 Z0,stable = 4.88× 1033 and Z0,recession = 2.7× 1034.
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more uncertain. This lowers the hiring barriers, and thus the average labor. Since

the η process spends more time away from the optimal level (η∗), the average profit

goes down. The equity value ranges from $50.7 billion to $42.0 billion. Hence, in this

sense, the equity value is impacted more by µ than by σ. This will also be seen in

the following section. The increasing volatility also increases the standard deviations

of profit and labor.

Figures 6.1 and 6.2 suggest that changing µ and σ affects the profit, labor and

hiring barriers. However, the firing barriers bF and uF are less sensitive against the

changes in the parameters.

6.4 Ford Results

In this section, I explain the changes in Ford’s workforce during the recession,

market value under the two regimes, as well how changes in the parameters effect

Ford’s value by using the model.

Ford was under a stable business regime during the mid-2000’s. During the reces-

sion starting in December 2007 through June 2009 (National Bureau of Economic Re-

search 2010) Ford’s business changed drastically. Ford may have continued its employ-

ment policies for the stable regime, but had to adapt and reevaluate its employment

levels during the recession. From the end of the stable regime, the end of 2006, to the

end of the recession, the end of 2009, Ford reduced its workforce in North America

from 128,000 to 74,000, or by 42.2% (Ford 2008, 2010).

Here is my stylized story explaining Ford’s actions. When Ford saw a decline

in vehicle demand in 2007, it triggered its stable regime firing process, bF (stable).

As the process started Ford realized that the decline in demand was throughout

the economy, and adapted to the new recession regime. It thus updated its beliefs

on the parameter values, and found new optimal barriers, including uF (recession).

At the end of the firing process that started in the stable regime, it fired down
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to the uF barrier under the recession regime. The estimated percentage change is

bF (stable)−uF (recession)
bF (stable)

= 38.5%4. My model predicts quite well Ford’s employment

policy from 2006 to 2009 of a 42.2% employment reduction.

I now explain how each parameter effects Ford’s gross and net values. Table 6.1

shows my results comparing the two regimes and how a small change in a parameter

effects the net value. The actual net value is Ford’s market capitalization. The actual

gross value is Ford’s market capitalization plus Ford’s debt and other obligations. The

estimated gross value is my model’s V (L,Z0) = Z0J(η∗), while the estimated equity

value is V (L,Z0) minus the debt and other obligations.

To measure the impact of the various parameters on the model’s net value, I

use elasticity. Elasticity is frequently used in economics to compare the impacts of

changing parameters. Elasticity explains how a one percent change in a parameter

causes a resulting percent change in the net value. Since the parameters have many

different units, it is hard to make direct comparisons. However, I use elasticity,

because the units do not affect the elasticity. I use the net value in the elasticity, since

this is an estimate of the firm’s market capitalization, which is what the shareholders

care about the most.

In the stable regime Ford’s estimated gross value is $282 billion, which is close to

its actual gross value of $257.7 billion.5 Its estimated equity value is $47.5 billion,

which is roughly double the 2006 market capitalization of $22.7 billion. Looking at the

recession regime the estimated gross value is $263 billion, compared to the actual firm

value of $250.5 billion. The net value of Ford in the recession regime is $17.4 billion,

4 The four barriers in the stable regime are bH = 8.7571 × 10−028, uH = 8.9632 × 10−028, uF =
1.1576 × 10−027, bF = 1.1849 × 10−027, and the barriers in the recession regime are bH = 5.3885 ×
10−028, uH = 5.5153 × 10−028, uF = 7.2909 × 10−028, bF = 7.4625 × 10−028. Note that this is in η
space, which due to the parameters are of this magnitude.

5 The hypothesis that the estimated gross value and the actual gross value are the same fails
to be rejected at the 1% confidence level. The Jestimated = 5.7834 × 10−23, and its standard
deviation is 3.0434 × 10−23. This is from the Monte Carlo simulation. For the values, I took the
simulated Jestimated and its standard deviation, and compared it to the actual Jactual, where actual
Jactual = Vactual/Z0, since V = Z0 × J . Here Jactual = 5.2747× 10−23.
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Table 6.1: Ford Results. Value in billions of USD. Elasticities are in absolute value and are
calculated relative to the net value, i.e. net of debt and other obligations. For instance, the
elasticity of 40.96 for A in the stable regime means that a one-percent change in productivity
results in a 40% change in the net value of the firm. Parameter values shown are the estimated
values. Parameter value were estimated from the many sources (WardsAuto 2009, Ford Media
2008, 2009, 2010, InvestingInBonds 2009, Forbes.com 2012, Brenkers and Verboven 2006,
McCracken 2006, Ford 2005, 2007).

Stable Regime, 2006, Firm Value 257.7, Equity Value is 22.7
None µ σ r cF ∆ A ω

parameter value - -0.040 0.27 0.11 0.75 1.5 32 56500
gross value 282 282 282 281 282 282 302 264
net value 47.5 46.8 47.4 45.7 47.5 47.5 66.9 29.3
elasticity - 1.38 0.27 3.72 0.00 0.00 40.96 38.32

Recession Regime, 2009, Firm Value 250.5, Equity Value is 4.5
parameter value - -0.17 0.46 0.45 0.75 1.5 32 60000

gross value 263 263 263 261 263 263 282 246
net value 17.4 16.7 17.2 15.3 17.4 17.4 35.5 0.4
elasticity - 4.05 0.90 12.18 0.00 0.00 104.41 97.68

while Ford’s January 2009 market capitalization is $4.5 billion.6 This difference in the

recession’s net value can be explained by the market incorporating the probability of

Ford’s bankruptcy. One can see this in Ford’s corporate bond yields of 45%. Stock

investors may have discounted Ford’s cash flows by an even larger discount rate due

to the bankruptcy risk and, thus, driving the equity value below the model’s net

value. Hence, in the model I use the bond yields as the estimate for the WACC and

this is just a lower bound for the discount rate. Since most likely the actual WACC

is higher, the model overstates Ford’s value, especially the net value. This is because

equity should discounted with the highest rate. Ford’s bond yields give a lower bound

on its weighted average cost of capital (WACC).

Next I compare the effects of changing the parameters across the two regimes.

Productivity, A, and wages, ω, have the biggest impact. A one-percent change in one

of these parameters would increase the net value by 38% and 100%, respectively. This

6 The hypothesis that the estimated gross value and the actual gross value are the same fails to be
rejected at the 1% confidence level. The hypothesis that the estimated gross value is zero, is rejected
at the 1% level. The Jestimated = 9.7683×10−24, and its standard deviation is 2.9083×10−24. Here
Jactual = 9.2778× 10−24.
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is because, since most of the Ford’s value is from the flow profits, where productivity

and wages are the main drivers. The interest rate plays the next biggest role, it is used

to discount all the cash flows. The Table 6.1 shows that a one-percent reduction in

the interest rate during the recession regime would increase Ford’s net value by 12%.

When the interest rate quadrupled from stable regime to recession regime, it also

increased the value of the demand parameters. The demand parameters play a minor

role, since their impact on demand occurs slowly over time compared to changes in

productivity or wages, which effect cash flows instantly. The firing frictions have a

negligible impact, since firing costs happen infrequently and in the future.

Improving Ford’s market value and financial viability would be good for its em-

ployees, Ford shareholders and bondholders, and Ford automobile owners. As we

have seen, a one percent increase in the productivity or decrease in wage costs would

have the biggest impact for Ford. In union negotiations this could be emphasized.

Table 6.2 shows the results for simulating Ford’s optimal employment policies for

changes in the firing frictions, wages, and productivity. I choose these parameters,

because Ford has the ability to change these parameters when negotiating with the

union. Small reductions in the delay in shutting down factories or reducing firing

costs would not have much of an impact, so Ford could offer raising the delay and

severance packages to the union in negotiations, in exchange for wage reductions or

productivity increases. These productivity increases could be from increasing capital

or changing management and union policies. Table 6.2 shows that increasing sever-

ance pay from 0.75 years to 2.25 years would not have an impact on Ford’s equity

value. However, increasing firing delay to 3 or 4.5 years would harm Ford’s equity

substantially. Being able to reduce wages by one-percent would double Ford’s equity,

and even larger wage reductions would have extremely large impacts, assuming the

same productivity. Increasing productivity by one-percent would also double Ford’s

equity, and even larger changes would have substantial effects. These results are con-
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sistent with Table 6.1 for the firing frictions, and one-percent changes in wages and

productivity. Ford has been following the strategy discussed above by having offered

individual workers early retirement packages that are equivalent to up to twice the

annual wage in severance packages for firing, without any delay (Reuters 2012).

Table 6.2: Ford Negotiation Options. Value in billions of USD.

parameter base ∆ ∆ cF cF ω ω ω A A A
change (%) - 100 200 100 200 -1 -5 -10 1 5 10

Equity value 17.4 7.2 -1.4 17.4 17.4 35.7 125.2 287.1 35.5 119.1 252.4
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Figure 6.1: Effect from demand drift µ on Ford. Parameters are the same as in the
stable regime (Table 6.1). The panels were generated by Monte Carlo simulation with 100,000
runs.
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Figure 6.2: Effect from demand volatility σ on Ford. Parameters are the same as
in the stable regime (Table 6.1). The panels were generated by Monte Carlo simulation with
100,000 runs.
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CHAPTER VII

Conclusion

In this thesis I model a firm’s optimal employment policy under demand uncer-

tainty and labor market frictions. I model the cost of hiring and firing workers when

there is a delay in firing. The optimal conditions are found for the firm’s employment

policy and I show through contraction mapping, that an optimal policy exists and is

unique. Using dynamic programming, I created an algorithm that solves the optimal

employment policy. With the optimal labor policies and common parameter values,

I simulated the company’s profits and labor characteristics. I then perform compar-

ative statics showing the impact of various parameters on the optimal policies, profit

and labor levels. Finally, I apply my model to Ford Motors.

I model the firm’s cash flows from its production as well as the costly labor ad-

justments. Additionally, I solve for the value of firing when there is a delay between

when the firing is started, and when it is completed. I also introduce the concept of

“firm-sized” costs when workers are hired or fired. The other adjustment cost is a

proportional cost based on the number of workers changed. I find the necessary condi-

tions on the labor policy from the smooth pasting and value matching conditions that

give the optimal policy. I also compare these optimal conditions with “firm-sized”

costs with what is used in the literature of proportional and fixed costs. I also verify

that the necessary conditions for optimality are sufficient conditions.
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Using the model set up I prove that the optimal labor policy exists and is unique.

I use contraction mapping of a discrete time model to show existence and uniqueness.

I also show that the discrete time model converges to the continuous time model that

I derive. Finally, I use the discrete time model to derive an algorithm that uses policy

iteration to solve for the optimal policy.

I use comparative statics to examine the impacts of the parameters on the optimal

policy. The firing delay encourages firms to fire earlier. It also causes fewer workers

to be fired. Raising the proportional costs of changing workers, lowers the chance

that workers will be hired or fired, and also reduces the labor and profit levels. The

demand volatility has a non-monotonic impact on the firing decisions.

The parameter estimates for Ford Motor Company with my model explains changes

in Ford’s actual employment level and equity price. I find that the firing costs and

firing delay have a negligible impact on Ford’s value. Ford’s value is dominated by

labor’s productivity and wages. These insights can help Ford when negotiating with

its unions.
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APPENDIX A

Omitted Proofs

A.1 Proof of Proposition 1

Proof. Proof of Proposition 1. The dynamics of η under P is given by

dηt = −
(
δ + µ− σ2

)
ηtdt− σηtdWt, ηtπi +∆i

= η(tπi +∆i)− + (I{sπi =H} − I{sπi =F})m
π
i

which with the change of measure in Section II gives (2.10). I transform the policy

π̂ corresponding to V (Z,L) to a policy, π, in η-space: tπi = tπi , sπi = sπi and the

normalized amount hired or fired, mπ
i = X π̂

i /Ztπ̂i +∆i
. This gives a policy π ∈ Π for

the control of the J-function, where π = {tπi , sπi ,mπ
i }. By the change of probability

measure, V (Z,L) = ZJ(η) where J(η) = supπ∈Π Jπ(η).

A.2 Proof of Lemma III.1

Proof. Proof of Lemma III.1. The solution of the homogenous part of (3.7) is the

power function

fh(η) = h1η
d+ + h2η

d− (A.1)
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where d± = 1
2

+ (δ + µ)/σ2 ±
√(

(δ + µ)/σ2 + 1
2

)2
+ 2ρ/σ2. I add any particular

solution of (3.7) and I select

fp(η) = p1η
λ + p2η (A.2)

where p1 = Aλ/c1, p2 = −ω/(δ + r), and c1 = ρ+ (δ + µ+ 1
2
σ2(1− λ))λ. Let c1 6= 0,

δ 6= −r, and µ 6= r.

A.3 Proof of Lemma III.2

Proof. Proof of Lemma III.2. In equation (3.9) the integral term inside the expec-

tation is a follows

EPZ

η

[
∆∫
0

u(ηt, t)dt

]
= p1η

λ
(
1− e−c1∆

)
+ p2η

(
1− e−(δ+r)∆

)
(A.3)

By (2.10), the second term in (3.9) can be written as

EPZ

η

[
e−ρ∆

[
(cH −KH) η∆ + h1u

d+

H + h2u
d−
H + p1u

λ
H + p2uH − cHuH

]
I{η∆≤bH}

]
= (cH −KH) ηe

(
−δ−µ−1

2
σ2−ρ

)
∆

zH∫
−∞

eσ
√

∆zϕ(z)dz

+
(
h1u

d+

H + h2u
d−
H + p1u

λ
H + p2uH − cHuH

)
e−ρ∆

zH∫
−∞

ϕ(z)dz,

(A.4)

where ϕ(z) = 1√
2π
e−

1
2
z2

is the density of a standard normal distribution,

bH = ηe

(
−δ−µ−1

2
σ2
)

∆+σ
√

∆zH , and this gives zH =
log

(
bH
η

)
+
(
δ+µ+

1
2
σ2
)

∆

σ
√

∆
. The first term
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on the right-hand-side of (A.4) equals

(cH −KH) ηe

(
−δ−µ−1

2
σ2−ρ

)
∆ 1√

2π

zH∫
−∞

eσ
√

∆z−1
2
z2

dz

= (cH −KH) ηe

(
−δ−µ−1

2
σ2−ρ

)
∆ 1√

2π

zH∫
−∞

e−
1
2(z−σ

√
∆)

2
+

1
2
σ2∆dz

= (cH −KH) ηe(−δ−µ−ρ)∆ 1√
2π

zH∫
−∞

e−
1
2(z−σ

√
∆)

2

dz = (cH −KH) ηe(−δ−µ−ρ)∆

·Φ
(
zH − σ

√
∆
)
,

(A.5)

where Φ(z) = 1√
2π

z∫
−∞

e−
1
2
y2

dy is the cumulative normal distribution and in the last

equality I used 1√
2π

zH∫
−∞

e−
1
2

(z−σ)2

dz = 1√
2π

zH−σ∫
−∞

e−
1
2
z2

dz. From (A.4) and (A.5) I get

EPZ

η

[
e−ρ∆

[
(cH −KH) η∆ + h1u

d+

H + h2u
d−
H + p1u

λ
H + p2uH − cHuH

]
I{η∆≤bH}

]
=

(cH −KH) ηe(−δ−µ−ρ)∆Φ
(
zH − σ

√
∆
)

+
(
h1u

d+

H + h2u
d−
H + p1u

λ
H + p2uH − cHuH

)
·e−ρ∆Φ(zH).

(A.6)

Similarly, the third term in (3.9) equals

EPZ

η

[
e−ρ∆

[
−cFη∆ + h1u

d+

F + h2u
d−
F + cFuF

]
I{η∆≥uF }

]
=

−cFηe(−δ−µ−ρ)∆Φ
(
−zF + σ

√
∆
)

+
(
h1u

d+

F + h2u
d−
F + p1u

λ
F + p2uF + cFuF

)
·e−ρ∆Φ(−zF ),

(A.7)
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where zF =
log(uFη )+(δ+µ+ 1

2
σ2)∆

σ
√

∆
. The fourth term in (3.9):

EPZ

η

[
e−ρ∆

(
h1η

d+

∆ + h2η
d−
∆ + p1η

λ
∆ + p2η∆

)
I{bH<η∆<uF }

]
=

h1η
d+e(−δ−µ−

1
2
σ2)d+∆−ρ∆ 1√

2π

zF∫
zH

eσd+

√
∆z− 1

2
z2
dz

+h2η
d−e(−δ−µ−

1
2
σ2)d−∆−ρ∆ 1√

2π

zF∫
zH

eσd−
√

∆z− 1
2
z2
dz

+p1η
λe(−δ−µ−

1
2
σ2)λ∆−ρ∆ 1√

2π

zF∫
zH

eσλ
√

∆z− 1
2
z2
dz

+p2ηe
(−δ−µ− 1

2
σ2−ρ)∆ 1√

2π

zF∫
zH

eσ
√

∆z− 1
2
z2
dz

= h1η
d+e(−δ−µ−

1
2
σ2)d+∆+( 1

2
σ2d2

+−ρ)∆
[
Φ
(
zF − σd+

√
∆
)
− Φ

(
zH − σd+

√
∆
)]

+h2η
d−e(−δ−µ−

1
2
σ2)d−∆+( 1

2
σ2d2

−−ρ)∆
[
Φ
(
zF − σd−

√
∆
)
− Φ

(
zH − σd−

√
∆
)]

+p1η
λe(−δ−µ−

1
2
σ2)λ∆+( 1

2
σ2λ2−ρ)∆

[
Φ
(
zF − σλ

√
∆
)
− Φ

(
zH − σλ

√
∆
)]

+p2ηe
−(δ+r)∆

[
Φ
(
zF − σ

√
∆
)
− Φ

(
zH − σλ

√
∆
)]
.

(A.8)

The last term in (3.9) can be written as

EPZ

η

[
e−ρ∆KFη∆

]
= KFηe

−(δ+r)∆. (A.9)

Collecting (A.3), (A.6), (A.7), (A.8), and (A.9) I get Lemma III.2.
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APPENDIX B

Verification Theorem

In this chapter I prove Theorem III.3.

B.1 Preparatory Material

Definition B.1. A hiring or firing policy π = {(τi, si,mi)}∞i=0 ∈ Π is a sequence of

hiring/firing times, τi, decisions, si, to either hire (H) or fire (F), and amounts, mi,

such that for all j ∈ N,

1. 0 ≤ τi + ∆i < τi+1 a.s.

2. τi is a stopping time, si is Fτi measurable, and mi is Fτi+∆i− measurable,

where N denotes the set of natural numbers.

Definition B.2. A hiring or firing policy is called admissible if τi+1 > τi + ∆i,

si ∈ {F,H}, if si = F then mi < η(τi+∆)− , and if si = H, then mi ≥ 0. The set of all

admissible policies is denoted by Π. Note that mi can be negative for firing, i.e. the

firm hires at the end of the firing delay and does not count as an additional decision.

The verification of my optimal strategy is based on Liu (2004). The steps of the

proof are as follows:
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Step 1: Lemma B.3(a) shows that if there exists a function J that follows Proposition

2 with some technical conditions then it is superior value function of any admissible

policy.

Step 2: In Lemma B.3(b) I show that my policy is optimal.

Step 3: I show in Lemma B.3(a) that my policy satisfies technical conditions 4-6.

Step 4: Finally I show in Lemma B.4 that this policy is admissible.

Augment the value function from taking only one variable η to also include time

t, i.e., J(η) = J(η, t). Define

ΓJ,π(ηti−, ti−, si, W̄ ) =

 J(ηti +mπ
i , ti)− J(ηti−, ti−), if si = H

e−ρ∆J(ηti+∆ +mπ
i , ti + ∆)− J(ηti−, ti−), if si = F

which is the realized change in the value function under policy π from the ith hiring

or firing decision. Since m for hiring does not depend on the path of η I rewrite

ΓJ,π(ηti−, ti−, H, W̄ ) as ΓJ,π(ηti−, ti−, H). For firing the decision is made ∆ time units

later. This value needs the path of W̄ during the firing process to find the realized

flow profit, since η is not sufficient within the delay. I also need this because arbitrary

policies for m may depend on the path of η during the firing delay.

Let T̃ ∈ [0,∞) be fixed. Since I do not know if T̃ is in a firing delay, I define

T (T̃ ) =

 T̃ , if ti + ∆i ≤ T̃ < ti+1

ti−, if ti ≤ T̃ < ti + ∆i

(B.1)

which is obviously outside of the firing delay.

Lemma B.3. (Necessary and sufficient conditions)

(a) Suppose there exists a C1 function J : R+ → R which is C2 except over a Lebesgue

measure zero subset of R+ such that

1. AJ(η) + u(η) ≤ 0
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2. J(η) ≥MHJ(η)

3. J(η) ≥MFJ(η)

4. EPZ
[∑∞

i=0

∫ ti+1−∧T
ti+∆i

| − e−ρsση ∂J
∂η
|2ds

]
<∞, ∀ T ∈ [0,∞)

5. limT̃→∞E
PZ [e−ρT (T̃ )J(ηT (T̃ ))] = 0 for any ηT (T̃ ) following an admissible policy

6. {e−ρTJ(ηT )} is uniformly integrable

where one of the conditions 1, 2, or 3 must hold with equality for any η outside firing

processes. T is defined in (B.1) as outside the firing process for conditions 4-6. Then

J(ηt) ≥ Jπ(ηt), ∀ π ∈ Π, ηt > 0, t is outside firing delays (B.2)

where Jπ is the value function from following policy π.

(b) Define the no-action set as

NA = {ηt : J(ηt) > MFJ(ηt) or J(ηt) > MHJ(ηt); t is outside firing delays}

If J(ηt) = MFJ(ηt) then št = F , and if J(ηt) = MHJ(ηt) then št = H. Also define

bH = sup {η ≥ 0 : J(η) = MHJ(η)} and bF = inf {η ≥ 0 : J(η) = MFJ(η)}.

Define J as in (3.1) with the analytical function replacing my guess f :

J(η) =


MFJ(η), bF ≤ η

Jw(η), bH < η < bF

MHJ(η), 0 ≤ η ≤ bH

(B.3)

Define the hiring and firing policy

π̌ ≡ (τ̌1, τ̌2, . . . ; š1, š2, . . . ; m̌1, m̌2, . . . )
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inductively as follows: τ̌0 = 0, s0 = H,m0 = 0 and for all k ∈ {0, 1, 2, . . . } I have

τ̌k+1 = inf{t > τ̌k + ∆k : η
(k)
t /∈ NA}, m̌k = m̌J,šk

where η
(k)
t results from policy π̌k ≡ (τ̌1, τ̌2, . . . , τ̌k; š1, š2, . . . , šk; m̌1, m̌2, . . . , m̌k) and

m̌k is defined above for J . If π̌ is admissible, then J(η) = Jπ̌(η)and the hiring and

firing policy π̌ is optimal, where Jπ̌(η) is the value function defined in (2.9).

Proof. (a) Assuming that J satisfies the conditions in part (a), I let π ∈ Π be any ad-

missible Markovian hiring and firing policy, where π ≡ (τ1, τ2, . . . ; s1, s2, . . . ;m1,m2, . . . ).

By Øksendal (1998, Theorem 11.2.3) Markov policies can maximize firm value, and

thus I only consider them in this paper. For all k ≥ 0, define θk = (τk + ∆k)∧T with

τ0 = 0, s0 = H, and m0 = 0 with zero hiring cost. For notational convenience let

ηt = ηπt , τi = τπi , and si = sπi . Then I can write for every n ∈ N:

e−ρθnJ(ηθn)− J(η) =∑n
i=1

[
e−ρ(T∧τi−)J(ηT∧τi−)− e−ρθi−1J(ηθi−1

)
]

+
∑n

i=1 I{τi−<T}e
−ρτi−ΓJ,π(ητi− , τi− , si, W̄ )

(B.4)

I know that ηt is continuous semi-martingale in the stochastic interval [θk, τk+1) and

J is C2 except over Lebesgue measure zero subset of R+. Thus, Lemma (45.9) of

Rogers and Williams (2000) holds, and for all i ∈ N I have

e−ρ(T∧τi−)J(ηT∧τi−)− e−ρθi−1J(ηθi−1
) =

τi−∧T∫
θi−1

e−ρsAJ(ηs)ds−
τi−∧T∫
θi−1

e−ρsση
∂J

∂η
dW̄s.

(B.5)

By condition 1 of the Lemma B.3 (a), I have

e−ρ(T∧τi−)J(ηT∧τi−)− e−ρθi−1J(ηθi−1
) ≤ −

τi−∧T∫
θi−1

u(ηs, s)ds−
τi−∧T∫
θi−1

e−ρsση
∂J

∂η
dW̄s.

(B.6)
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Combining (B.4) - (B.6) and taking expectations, I have

J(η) ≥ EPZ
[
e−ρθnJ(ηθn) +

∑n
i=1

(∫ τi−∧T
θi−1

u(ηs, s)ds+
∫ τi−∧T
θi−1

e−ρsση ∂J
∂η
dW̄s

−I{τj−<T}e
−ρτi−ΓJ,π(ητi− , τi− , si, W̄ )

)]
(B.7)

By condition 4 of Lemma B.3 (a), I get EPZ
[∑n

i=1

∫ τi−∧T
θi−1

ση ∂J
∂η
dW̄s

]
= 0 for any

fixed n. From condition 6 in Lemma B.3 (a), I get

lim
n→∞

EPZ [e−ρθnJ(ηθn)] = EPZ [e−ρTJ(ηT )].

By limit n→∞ in (B.7) and the monotone convergence theorem, I have

J(η) ≥ EPZ

e−ρTJ(ηT ) +
∞∑
i=1

 τi−∧T∫
θi−1

u(ηs, s)ds− I{τj−<T}e
−ρτi−ΓJ,π(ητi− , τi− , si, W̄ )




Taking limit T → ∞ and using condition 5 in Lemma B.3 and the monotone con-

vergence theorem, I obtain

J(η) ≥ EPZ

 ∞∑
i=1

 τi−∫
θi−1

u(ηs, s)ds− e−ρτi−ΓJ,π(ητi− , τi− , si, W̄ )


 (B.8)

If policy π has a finite number of decisions, k, then let τk+i = ∞, i > 0. Consider

the second sum in (B.4). Condition 2 and the definition of MH give

J(η, τi−) ≥MHJ(η, τi−) ≥ J(η +mi, τi)−micH −KHη

where the second inequality is from the of the supremum in the definition MH . I can

rewrite this as follows

micH +KHη ≥ J(η +mi, τi)− J(η, τi−) = ΓJ,π(ητi− , τi− , H) (B.9)
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Similarly with condition 3 and by taking conditional expectation over the path of

W̄ (t) during the delay I get EPZ
[
J(η, τi−)|W̄ (t)

]
≥ EPZ

[
MFJ(η, τi−)|W̄ (t)

]
, where

the right hand side is greater than EPZ
[∫ τi+∆

τi
u(ηs, s)ds+ e−ρ∆{J(ητi+∆− −mi)

−(KF +KHI{mi<0})ητi+∆− − [mi]
+cF + [mi]

−cH}|W̄ (t)
]
. Rearranging I get

EPZ

[
−
∫ τi+∆

τi
u(ηs, s)ds+ e−ρ∆{(KF +KHI{mi<0})ητi+∆− + [mi]

+cF − [mi]
−cH}

]
≥ EPZ

[
e−ρ∆J(ητi+∆ +mi, τi + ∆)− J(η, τi−)

]
= EPZ

[
ΓJ,π(ητi− , τi− , F, W̄ )

]
(B.10)

Using (B.8)-(B.10) I get

J(η) ≥ EPZ
[∫∞

0
u(ηs, s)ds−

∑∞
i=1 e

−ρτi−I{si=H} ([mi]
+cH +KHηti)

−
∑∞

i=1 e
−ρ(τi+∆−)I{si=F}

{
[mi]

+cF − [mi]
−cH + (KF +KHI{mi<0})ητi+∆−

}]
(B.11)

Thus, J(η) ≥ Jπ(η) since the right-hand-side of (B.11) equals (2.9). In other words

the value function J as defined in part (a) majorizes any hiring/firing policy outside

the firing process, and m is optimally selected by the realized η at the end of the

delay.

(b) By the definition of NA, (B.6) must hold with equality. By (2.12) and (2.13) and

the definitions of MH and MF , (B.9) and (B.10) hold with equality.

Combining with (B.2), I get

J(η) ≥ sup
π∈Π

Jπ(η) ≥ Jπ̌(η) = J(η).

Hence, J(η) = Jπ̌(η) and π̌ is optimal. It remains to be shown for this lemma that

the policy constructed in (b) satisfies the conditions in (a).

Conditions 1-3 of Lemma B.3: Define Jw ≡ Jπ̌(η) for η ∈ [bH , bF ]. By

construction of J , condition 1 holds with equality for η ∈ [bH , bF ], condition 2 holds

with equality for η ∈ (0, bH), and condition 3 holds with equality for η ≥ bF . I now
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need to show that conditions 2 and 3 hold with inequality in this no-action region.

Consider the hiring function. For η ≥ uH it is clearly not optimal to hire, since the firm

would not hire anyone, and still pay the firm-size cost KHη. Thus, MHJ(η) < Jw(η)

for η ≥ uH . For η ∈ [bH , uH ] I get MHJ(η)|η<uH = J(uH) − cHuH + (cH −KH)η <

J(uH). This is a linear function of η. By (3.2a) and (3.3a), MHJ passes through Jw

at bH with the same slope. Given (3.10), Jw is convex at bH . Thus, its tangent line,

MHJ , starts below Jw at bH and remains below by concavity of Jw up to uH and from

MHJ(η) < J(uH). Therefore, J > MHJ for η ∈ NA.

I show that MFJ(η) < J(η) holds for η ∈ NA by contradiction. Assume MFJ(η) >

J(η)⇔ H(η) = Jw(η)−MFJ(η) > 0, for some η ∈ NA. H ∈ C1 since Jw,MFJ ∈ C1.

The assumption can hold for either all η ∈ NA or some η ∈ NA. If the assumption

holds for only some η ∈ NA by continuity there exists η ∈ NA such that H(η) = 0.

But by the definition of bF being the infimum where this happens, I have a new

bF , which is a contradiction. It is also possible that the assumption holds for all

η ∈ NA, or H(η) < 0 over [bH , bF ). Consider the endpoint bH . If H(bH) < 0,

then since both MFJ and MHJ are continuous, H(bH) = Jw(bH) − MFJ(bH) =

MHJ(bH) −MFJ(bH) < 0 ⇒ MFJ(bH) > MHJ(bH). This means that in the hiring

region, it is optimal to fire which is a contradiction of the definition of the hiring

region. Otherwise, H(bH) = 0 and then bF = bH , which is another contradiction.

Thus, MFJ < J for η ∈ (bH , bF ).

Condition 4 of Lemma B.3: I wish to show that the expected discounted sum

of η ∂J
∂η

squared is finite. J is defined outside of firing processes and thus bH ≤ η ≤

bF <∞. Now I show that ∂J
∂η

is finite. The partial derivative of this is bounded since

Jw is the sum of constants times η raised to non-zero powers (see Lemma III.1).

Conditions 5 and 6 of Lemma B.3: By the definition of T , optimal policy

ηT ∈ [bH , bF ] and J is equal to the value of waiting. This is the sum of constants

times η raised to non-zero powers (see Lemma III.1). Thus, its maximum value is
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bounded. Discounting this finite value as T̃ goes to infinity means that the value goes

to zero and condition 5 holds.

For uniform integrability it is sufficient to show that there exists p > 1 and

constant B such that E[|e−ρTJπ̌(ηT )|p] ≤ B (see e.g. Steele 2001, p. 49). Let B =

maxη∈[bH ,bF ] Jw(η)p which is bounded by the argument above. Thus, E[|e−ρTJπ̌(ηT )|p] ≤

B. Thus, condition 6 of Lemma B.3 holds.

Lemma B.4. (Admissibility) Let π̌ be the hiring and firing policy of Theorem

III.3. Then π̌ is an admissible hiring and firing policy.

Proof. Proof of Lemma B.4. Let {τj} be the times the firm hires or fires according

to policy π̌. These times are when η exits NA outside the firing process. {τj} are

clearly stopping times with 0 ≤ τj + ∆j < τj+1, a.s., ∀j ∈ N. Futher, ši ∈ Fτi and

m̌i
J,si ∈ F(τi+∆i)−. Thus π̌ is admissible.

B.2 Proof of Proposition 4

Proof. Proof of Proposition 4. Consider bH first. I know that J ′(bH) = cH−KH and

J ′(uH) = cH , and that J is convex to the right of bH by (3.10). Since uH maximizes the

value of hiring, the hiring decision’s second order condition means that J is concave

at uH . This implies that there exists η̂ ∈ (bH , uH) such that J ′′(η̂) = 0 and J ′′′(η̂) < 0.

Note that J ′′′(η̂) > 0 would contradict (3.11). Taking the derivative of PDE (3.7)

with J = fw I get

1

2
σ2η2J ′′′(η) +

(
σ2−δ − µ

)
ηJ ′′(η)− (δ + r)J ′(η) + v′(η) = 0

At η̂ I get −(δ+r)J ′(η̂)+v′(η̂) > 0 or v′(η̂) > (δ+r)J ′(η̂) > 0. Since v′(η̂) > 0, η̂ < η∗,

since v() is concave and finds its maximum at η∗. Therefore bH < η∗. Similarly for

bF with no delay.
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