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Abstract

This dissertation develops algorithms and frameworks to obtain the optimal design and
control solutions for a non-linear dynamic system in a computationally efficient manner.
These methods and their advantages are demonstrated by applying them to a Plug-in Hybrid
Electric Vehicle (PHEV) powertrain’s optimal design and supervisory control. Since a
PHEV draws energy from the electric grid it is important to consider these interactions
in optimal design and control decisions of the PHEV. At the same time the battery size
significantly affects the amount of grid energy transferred to propulsion and consequently the
on-road power management decisions. Thus, we develop and apply algorithms capable of
highlighting the optimal PHEV battery size and control decisions that result in a synergistic
interaction with the electric grid.

First, we develop a Dynamic Programming (DP) based optimal control algorithm capa-
ble of evaluating optimal on-road power management for a series PHEV. This algorithm
was based on a backward looking implementation of the PHEV powertrain’s dynamic
model. Such an implementation of the DP algorithm avoided the need to interpolate the
value function or enforce constraints through penalty functions, thereby alleviating crucial
computational concerns. The performance of two supervisory control strategies for series
PHEVs was compared using this algorithm. For a series PHEV, the results show that a
charge deplete and sustain approach is comparable in performance (in $ costs) to the optimal
strategy in most cases (esp. when gasoline is more expensive per mile than electricity).

Then, we extend this algorithm to consider optimal charging on the electric grid. This
extension was made possible by understanding and utilizing the conditions at the boundaries
of the optimal charging and driving problems, and the computational attractiveness offered
by the above DP algorithm. The results showed the tradeoffs between optimal charging
and power management decisions depending on grid mix and driving conditions, thereby
highlighting the need for such an approach. This algorithm was further applied to understand
the possible optimal CO2 reduction benefit translated to propulsion depending on increased
wind power on the grid.

Since PHEVs are expected to be instrumental in reducing emissions while offering

xiii



operational cost benefits to the owner, and are expected to participate in grid services such
as storage and regulation, we develop a multi-objective dynamic programming (MODP)
algorithm. This algorithm utilizes the idea of crowding distance from Non-Dominated
Sort Genetic Algorithms (NSGA) literature to represent the Pareto front with fewer points
thereby easing the computational time and memory requirements for such problems. For the
grid mix and driving behavior assumed, tradeoffs in achieving minimum CO2 vs. minimum
operational costs are discussed.

Finally, we extend and utilize the theory on the combined optimization of a dynamic sys-
tem’s design and control to size the PHEV battery by taking its optimal charging and power
management decisions into account. This approach is computationally efficient through the
use of a coupling term that captures the dependence between the design and the optimal
control. The salient features of the algorithm such as the calculation and use of the coupling
term and the accompanied reduction of computational effort is first demonstrated by solving
a beam mass reduction and vibration attenuation problem. Then, this algorithm is applied
for optimal battery sizing of a PHEV while considering the dependence of the optimal
supervisory control solution on the battery size. The coupling term provided insights into
this dependence and helped obtain the optimal battery sizes while considering the optimal
control with low computational effort.

xiv



Chapter 1

Introduction

This dissertation develops algorithms and frameworks to obtain the optimal design and
control solutions for nonlinear dynamic systems in a computationally efficient manner.
These methods and their advantages are demonstrated by applying them to a Plug-in Hybrid
Electric Vehicle (PHEV) powertrain’s optimal design and supervisory control. Currently,
PHEVs are touted as the next step in vehicle powertrain technology due to their ability to
draw power from the electric grid, store it in batteries, and use it for transportation [1] as
well as electric grid related services [2, 3]. A PHEV’s battery size significantly affects its
charging and on-road power management decisions [4, 5, 6]. Hence, this work is motivated
by the problem of optimizing the design (e.g., component sizing) and supervisory control
(e.g., power management and charging) of PHEVs.

There are two major technical challenges that are resolved in this dissertation. The first
challenge is related to the optimization of supervisory control of a PHEV. PHEVs, unlike
HEVs or conventional vehicles interact with the electric grid. Therefore, we have to consider
the optimal charging control and the optimal on-road control problems and their dependence
on each other. At the same time, this optimization algorithm has to be flexible to address
the multiple objectives and services that a PHEV is targeted to be used for. Developing
an integrated framework capable of including multiple objectives for a nonlinear dynamic
system such as a PHEV powertrain is conceptually challenging and necessitates computa-
tional efficiency. The second major challenge is to obtain the optimal PHEV battery sizes
accounting for its usage (the supervisory control actions). For this purpose, the dependence
between the static nature of the optimal design problem and dynamic nature of the optimal
control problem has to be rigorously characterized and assimilated in the optimization, while
retaining computational feasibility.

These challenges were resolved through innovative approaches in optimization methods
and by understanding the PHEV’s system dynamics. The two optimal control problems
for a PHEV (charging and on-road power management) were integrated by exploiting the
constraints at the boundaries of these two problems. The results showed that considering the
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dependence between the charging decisions and on-road power management is essential.
For example, it is shown that it is not always optimal to fully charge the battery before each
driving trip, as it is assumed in most of the literature [7, 8, 9]. To solve the combined design
and control optimization problem, our approach was to define and calculate the sensitivity
of the optimal control solutions to the size of the battery. By capturing this sensitivity in a
computationally efficient manner, the coupling term was demonstrated to reduce the function
evaluations necessary to attain the combined optimum. Through the insight provided by this
sensitivity (or coupling term), we inferred the combined optimal battery sizes that result in
minimum CO2 emissions throughout the PHEV’s manufacturing and usage. Under our grid
mix and driving behavior assumptions, the results showed that a larger battery size does not
necessarily result in lower lifecycle CO2 emissions. Ultimately, these methods integrating
the two control optimization problems as well as the design optimization problem can also
be applied more generally to other dynamic systems.

The remainder of the introduction section is organized as follows. First, the big picture
motivation for this research is presented. Next, the related literature is reviewed and the
research gaps that this dissertation addresses are identified. Finally, we summarize the
unique contributions of this dissertation and outline their development in the remaining
chapters.

1.1 Motivation

Plug-in hybrid electric vehicles (PHEVs) are hybrid vehicles that can draw energy from the
electric grid and supply propulsive energy for transportation. This functional change allows
a plug-in hybrid to displace petroleum energy with multi-source electrical energy. The
interconnection between the transportation and the electric grid infrastructures through the
PHEV presents opportunities to reduce emissions in transportation including green house
gas emissions, lower costs to the consumer and use battery energy storage for grid services
[2, 3].

There are many challenges in achieving these multitude of objectives. There are chal-
lenges at the subsystem or component levels (e.g. battery technology, smart metering),
at the system level (e.g. PHEV design, integrating intermittent renewable power) and at
the interconnections of these systems (e.g. fleet charging, demand side control). Battery
technology is essential for efficient energy storage and transportation. In this aspect, there
are challenges related to battery charge and health estimation [10], improving energy density
through chemistry [11], and costs reduction through sizing and other avenues [12]. Smart
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grid technology faces challenges related to communication networks [13], security and
privacy issues [14] and reliability [15]. Successful integration of renewable power sources
requires increased storage [10], and regulation capability on the electric grid [16]. It is also
vital that all the pieces of the puzzle fit together in a symbiotic fashion [17, 18]. Furthermore,
at each of these subsystem and system levels, many interesting questions remain unanswered.
Thus, it is imperative to clearly define the areas of focus of this dissertation.

Grid 
- CO2 

- costs 

- reserves and regulation 

- load shaping 

- charging co-ordination 

- integration of renewables  

- … 

Transportation 
- CO2 

- costs 

- alternative fuels 

- urban planning 

- … 

PHEV Design 
- CO2 

- cost 

- performance 

- AER 

- … 

PHEV Control 
- CO2 

- cost 

- battery health 

- … 

Optimal Charging 

Optimal Power Management 

Optimal Design and Control 

PHEV 

Figure 1.1 Interconnections between different systems, the optimization problems, and the goals
(underlined) considered

The research in this dissertation specifically focuses on the PHEV system, optimizing its
battery size and control strategies to maximize its synergistic interaction with the electric
grid (Fig. 1.1). It is understood that the loading of the PHEV on the electric grid can result in
excessive stress or instability of the infrastructures [17, 18]. Studies that looked at different
PHEV charging scenarios show that charging based on intuitive rules might exacerbate
grid load, increase emissions and in extreme cases may also result in catastrophic events
such as blackouts [19, 20]. In addition, the costs of vehicle electrification, along with the
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uncertainties related to new technologies might significantly affect consumer adoption [22].
Thus, our objective in this dissertation is to develop optimization methods that highlight
opportunities from an individual PHEV’s perspective for a series PHEV powertrain’s design
and control while including information about its interactions with the electric grid.

These goals will be accomplished through the development of computationally efficient
optimization methods. In Fig. 1.1, the connections between different systems, the goals
of each subsystem, and the boundaries of different optimization problems are shown. The
solid boundaries indicate the systems and problems considered in this dissertation. The
dashed boundaries indicate the systems that are affected by the PHEV and whose operational
constraints will be instrumental in the design and control of a PHEV. It is clear that the PHEV
can be designed and optimized for endless objectives and scenarios. In this dissertation, we
restrict ourselves to meaningfully tackle the goals that are underlined in Fig. 1.1.

Figure 1.2 Flowchart for GHG Emissions in the US (1990-2003) [21]

Of the goals mentioned in Fig. 1.1, particular importance is given to minimizing CO2

emissions and the dollar costs incurred by a PHEV owner. This is because the electric
grid and the transportation sector result in more than 60% of US greenhouse gas emissions
(GHG), of which a significant portion is due to CO2 emissions, as shown in Fig. 1.2. At the
same time, the dollar costs incurred by a customer are a major influence on a consumer’s
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decisions to buy and to charge/fuel a PHEV [22, 23]. Thus, minimizing CO2 emissions
and dollar costs are the objectives considered in our optimization studies. The coupling of
the electric grid with the PHEV not only provides cleaner fuels for transportation through
renewable sources like wind and solar but also provides opportunities for using PHEV for
electric grid services such as storage and regulation. These services are termed ’Vehicle-to-
Grid’ or V2G services [2, 3]. The idea is to use the energy stored in the PHEV battery for
grid services because the PHEV is stationary for a majority of the time. Major V2G services
currently discussed are spinning reserves, frequency and voltage regulation, valley filling
and peak shaving [3, 16, 23]. Thus it is necessary to optimize PHEV activity on the grid,
along with its activity on the road in order to maximize the benefits of PHEV introduction.
Optimizing the charging and on-road power management in a single framework also helps
understand the impacts of V2G services on the PHEVs on-road usage.

At the same time it is necessary to size the PHEV components appropriately to facilitate
its usage for the above services and objectives. The batteries used in PHEVs are electro-
chemical storage devices. The battery in a PHEV is substantially larger than in an HEV,
in order to draw and store electric energy from the grid rather than act as a buffer only
[3, 23]. Several advantages of using a battery are outlined in the previous paragraphs. Some
weaknesses of electrochemical energy storage relative to conventional petroleum-based
fuels include low specific energy, low energy density, low refuelling/recharging rate and
high initial costs [25]. Thus, for widespread introduction and usage of PHEVs for multiple
goals, battery sizing is an important task. In addition, optimal battery sizing requires the
consideration of how the battery will be used or controlled. For example, using a large
battery can ensure all-electric driving for a certain driving distance during the day (say
40 miles), or a smaller battery with multiple charging events can also ensure all-electric
driving for the same distance. Such tradeoffs motivate us to consider the problem of optimal
battery usage together with optimal battery sizing in order to not sacrifice total system level
optimality.

1.2 Literature

This section highlights the research gaps that will be addressed in this dissertation by briefly
discussing the relevant literature. A more detailed discussion of literature on each topic will
be presented in the respective chapters. Previous work on the development and application
of optimal control algorithms, and combined design and control optimization as applied to
vehicle powertrains is briefly discussed. In addition, some of the literature related to V2G
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services and multi-objective optimization is also presented to motivate the research in this
dissertation.

1.2.1 Optimal Control Objectives and Methods

There are two optimal control problems for PHEVs considered in the literature. First, is
on-road power management, which refers to the best combination of engine and battery
usage to achieve a chosen objective [26, 27]. Some of the objectives considered for on-road
HEV and PHEV power management are MPG [26, 27, 28, 29] , emissions [30, 31, 32],
drivability [33], battery health [34] and combined fuel and electricity consumption [35, 36].
Previous research has mostly addressed power management for parallel and power split
configuration hybrids [26, 27, 28, 29, 30, 31, 32, 35]. In order to obtain minimum fuel and
electricity consumption, it is shown that smartly battery power with the aid of IC engine
power (blending) produces optimal results [36]. For a series PHEV, the configuration lends
itself to a control strategy where battery charge is depleted first and then the engine is
used to sustain battery charge around a threshold and power the vehicle [37]. Though this
control strategy is easier to implement and it exploits some obvious design features of the
series configuration, the optimality of such a control strategy has not been discussed in the
literature. Thus, one of the goals of this dissertation is to calculate and analyze optimal
power management solutions for a series PHEV.

The second optimal control problem for PHEVs considered in the literature is charging.
Optimal charging refers to the amount of charge and the charging times to minimize some
environmental or economic objective for a given PHEV over the span of a day. The goals
addressed in the literature are minimization of dollar costs of electricity consumed by the
PHEV [7, 8], minimize emissions [9], maximize battery health [38] and/or provide V2G
services to the grid [39, 40]. Researchers have also developed optimal control solutions to
charge fleets of PHEVs while maintaining suitable grid operation [9, 40, 41, 42]. Existing
studies on optimal charging assume the need for a full charged PHEV battery and optimize
the charging to satisfy these driving needs [8, 9, 40, 41, 42, 43]. PHEV charging activities,
especially when used for V2G services, strongly influence the initial conditions for on-road
power management [41, 44]. Studying the optimal charging and driving problems separately
restricts the exploration of the total optimality of PHEV usage [38, 45]. In this disserta-
tion, we study the two optimization problems together for an individual PHEV, thereby
considering the dependence between its charging and on-road power management.

Several optimal control methods have been applied to PHEV charging and power man-
agement problems. A list of these methods includes dynamic programming (DP) [27, 30, 31],
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predictive control [40, 46, 47], Equivalent Consumption Minimization Strategy (ECMS)
[28, 32, 35], Evolutionary Algorithms (EA) [9, 38, 48], game theory [39], and intelligent
rule based optimization methods [29, 49]. ECMS is based on Pontryagin Minimum Principle
(PMP) and provides optimal solutions for power management under certain assumptions
[28]. EA and rule based control methods represent the dynamic controller through static
variables and optimize for the values of these static variables. ECMS, EA and rule based
methods provide controllers that are easy to implement. The dynamic programming ap-
proach explicitly uses Bellmans principle for optimal control, and thus guarantees global
optimality. Stochastic DP is used to obtain optimal solutions over all realizations of stochas-
tic variables such as driving power and/or grid mix [30, 31, 36]. In our studies we use
deterministic DP because we wish to analyze and understand the nature of the optimal
control for different scenarios on the grid and driving. The output of this process is a su-
pervisory control trajectory that can be used to gain important physical insights and extract
implementable rules for subsequent online power management [50, 51].

1.2.2 Vehicle to Grid (V2G) Applications

The idea of using PHEVs for V2G services was introduced and studied in detail by Kempton
et al. [2, 3]. As the electric grid includes more renewable power sources through economic
and policy requirements [16, 52, 53], there is an increased need for storage and regulation
(frequency and voltage) [1, 2, 16]. The use of PHEV batteries for storage and spinning
reserves has been investigated in [3, 24]. Though these are services that the PHEV can
be used for, it is understood that frequency regulation and demand-side control are more
attractive services for the following reasons. First, several analyses show that allowing a
PHEV to be used for regulation can provide a PHEV owner with higher revenue than most
other V2G services [24, 54]. Second, discharging and charging PHEV batteries at a low
rate resulting in small amounts of total energy flow is less harmful to battery health than its
use for storage [55, 56]. In this dissertation, we will demonstrate the use of our integrated
optimal charging and power management framework (Chapter 3) to study impacts of using
PHEVs for services with low power demands and high financial potential.

1.2.3 Multi-Objective Control Optimization

PHEVs create significant opportunities for emissions reduction, reduction of operational
costs to utilities and consumers and will be required to provide several V2G services [1, 2].
To best utilize a PHEV for these multiple purposes, it is necessary to obtain optimal control
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solutions considering multiple objectives. Previous research in optimal PHEV supervisory
control has mostly considered single objective optimization [27] - [30] and [32] - [9].

To consider multiple objectives in control optimization of vehicle powertrains, two
approaches have been adopted previously. One is using Multi Objective Evolutionary Al-
gorithms (MOEA) [57, 58]. Since EAs work with populations of points in each iteration,
a number of Pareto-optimal solutions may be captured in an efficient manner using non-
domination operators [59, 60]. However, the controller has to be parametrized in order to
use such algorithms due to their static nature. The second approach is to combine multiple
objectives into a single objective through a weighting scheme, and use the optimal control
methods mentioned in section 1.2.1. This method requires multiple optimizations to obtain
the Pareto front [34] and is not conducive to reveal the non-convex regions of the front [61].
Thus there is a need to develop an optimal control method capable of addressing multiple
objectives efficiently (like MOEA) while retaining the dynamic nature of rigorous optimal
control methods.

1.2.4 Combined Design and Control Optimization

In PHEVs, the dependence between design and control is more pronounced than other
powertrains due to the sensitivity of the supervisory control to the battery size. For example,
in [6], authors show that smarter power management algorithms can reduce vehicle energy
consumption and hence reduce battery energy capacity requirements. At the same time, a
larger battery capacity means more flexibility with charging times [38, 45]. In addition to
the above considerations, batteries are expensive and their sizing is an important concern
for consumer acceptance of PHEVs [25, 62]. Thus there is a need for the combined battery
sizing and supervisory control optimization of a PHEV powertrain.

At the same time, solving the plant design and control optimization problems through a
simultaneous or a combined approach 1) guarantees complete dynamic system optimality
[63, 64, 65, 66] and 2) considers the dependence of the controller design problem on the
plant design [63, 67, 68, 69, 70]. The computational cost of simultaneous plant/control opti-
mization can be quite prohibitive [71, 72, 73]. In addition, the PHEV powertrain model does
not lend itself to optimization with fast gradient based algorithms. This is because the model
is non-linear (due to component efficiency maps) and discontinuous (due to different modes
of operation). Hence, there is need for an efficient yet rigorous computational plant/control
optimization framework.

Several methods address both design and control issues and some of them have been ap-
plied for a vehicle powertrain’s design. The major challenge these methods seek to address is
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to reconcile the dynamic nature of the controller optimization problem with the static nature
of the design optimization problem in a computationally attractive manner [74]. Parametric
studies (varying battery size) are helpful in understanding the impacts of varying the design
on the available control solutions [6, 75], but they do not provide the optimal solutions.
The most common combined optimization approach is to develop a surrogate controller
model, which represents a rule based control [29, 57, 58], or simplifications of optimal
control solutions [66]. This surrogate model is then included in the design optimization
process to obtain a combined optimum. These methods ensure computational feasibility but
sacrifice optimality due to the simplifications involved in obtaining the surrogate control
model. Finally, a nested optimization method with or without a sensitivity term (quantifying
the dependence of the optimal control solution on the design) obtains the combined optimal
solution [70, 76] in a rigorous manner with fewer assumptions on the controller structure.
Such methods are computationally demanding [71, 72]. This is due to the need to optimize
the controller several times for each design optimization iteration. Hence, such methods
have been applied to hybrid powertrain design and control sparingly [77], due to the non-
linear and discontinuous nature of the models involved. Thus our research will develop a
computationally efficient yet rigorous combined optimization procedure and demonstrate its
application to optimal PHEV battery sizing and control.

1.3 Research Challenges

In summary, the unanswered research questions from above sections 1.2.1- 1.2.4 that will
be addressed in this dissertation are:

• To develop optimal power management algorithms for series PHEVs over a range of

driving distances and study the nature of the optimal control solution. Though there

are intuitive power management solutions for series PHEVs, a rigorous comparison of

these solutions through optimal control of series PHEV has not been performed.

• To develop an integrated optimal charging and optimal power management algorithm.

Previous studies consider these problems separately and assume initial/final conditions

associated with both these problems. These assumptions result in loss of optimality

and flexibility to expose tradeoffs. Furthermore, such a framework can be utilized to

understand the on-road power management implications of using PHEVs for V2G

services.

• To develop an optimal control method capable of addressing multiple objectives effi-
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ciently (like MOEA) while retaining the dynamic nature of rigorous optimal control

methods. PHEVs can create multiple economic and environmental opportunities for

consumers and utilities, necessitating the development of such an algorithm.

• To develop a computationally efficient yet rigorous combined design and control

optimization procedure and apply it to PHEV battery sizing and supervisory control.

In PHEVs, the dependence between design and control is more pronounced than other

powertrains due to the sensitivity of the charging and driving control to the battery

size. Addressing such dependencies in an optimal way is computationally burdensome

due to both, the nature of the PHEV powertrain model and the existing nested/iterative

combined design and control optimization algorithms.

1.4 Unique Contributions

The overarching goal of this dissertation is to develop optimization algorithms for the design
and control of a PHEV for multiple objectives and V2G services. These unique contributions
follow directly from the research gaps addressed.

1. Optimal Power Management for a Series PHEV

• A computationally efficient dynamic programming (DP) algorithm capable of

handling a finely meshed state space is developed. Computational intractability

issues were resolved using a backward looking model implementation. (see

Section 2.3.1)

• A fair comparison of two supervisory control strategies for series PHEVs, namely

Blending and EV/CS (Electric Vehicle/ Charge Sustenance) was performed using

this algorithm. Results showed that irrespective of trip distances, when gasoline

is more expensive than electricity per mile, there is no significant difference in

the performance of the two popular control strategies for a series PHEV. (see

Section 2.5)

2. Integrated Optimization of Charging and Power Management for a Single
PHEV

• An optimization algorithm which exploits the boundary conditions between the
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two optimal control problems is developed. Results show that such an approach

is necessary because the battery is not always fully charged at the start of a

driving trip, as assumed in the literature. (see Sections 3.3, 3.4)

• This algorithm was applied to investigate the CO2 reduction impact and power

management implications of charging a PHEV from a grid mix with a significant

amount of wind power. (see Section 3.5)

3. Computationally Efficient Multi-Objective Dynamic Programming (MODP) to
Minimize Costs and CO2 Emissions of a Single PHEV

• A computationally efficient MODP algorithm is developed by integrating the

concept of crowding distance from the MOEA literature. The computational

time and memory requirements were drastically reduced while obtaining a Pareto

front with no a priori weighting of objectives. (see Section 4.3.1)

• This algorithm is applied to obtain the optimal supervisory control for a PHEV

to minimize two objectives - CO2 emissions and operational dollar costs to an

individual PHEV owner. (see Section 4.4)

4. Combined Design and Control Optimization of a PHEV

• The coupling between the plant design and controller optimization problems is

captured by considering the dependence of the control optimization problem

on the design variables. The use of this coupling term is also demonstrated to

improve computational performance of the optimization. (see Chapter 5)

• Application of the above theoretical method for the design and control of a

complex nonlinear system such as a PHEV is demonstrated. Results elucidate

the insights offered by the coupling term. These observations are then used to

decide on the combined optimal battery sizes under different assumptions. (see

Chapter 6)
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1.5 Dissertation Outline

This dissertation is organized as follows. Chapter 2 explains the development of an optimal
power management algorithm and its application to a series PHEV powertrain. The results
present a comparison of two optimal strategies for a series PHEVs power management. The
results study the impact of different driving distances and electricity to gasoline price ratios.

Chapter 3 develops an integrated optimal charging and power management algorithm
and its application to a PHEV powertrain for various grid mix scenarios is explained. The
integrated framework is further applied to understand the optimal CO2 emissions reduction
benefit that can transferred to propulsion due to increased wind penetration on the grid.
Chapter 4 develops a multi-objective dynamic programming algorithm and obtains the
Pareto set illustrating the tradeoffs between dollar costs and CO2 emissions for a PHEV
owner.

Chapter 5 develops a novel combined design and control optimization framework and
its application is demonstrated for a beam mass reduction and vibration attenuation problem.
Chapter 6 demonstrates the application of the framework developed in Chapter 5 for PHEV
battery sizing and optimal control.
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Chapter 2

Optimal Power Management of a PHEV

This chapter develops a unique dynamic programming algorithm that is employed to obtain
optimal on-road power management solutions for a series PHEV powertrain. First, the
literature is discussed in detail. Then the dynamic system model used to represent the PHEV
powertrain is presented. This model will also be used in future chapters. Next, the dynamic
programming algorithm is presented. Finally, the results highlight the nature of the optimal
control solutions for varying ratios of gasoline and electricity prices and driving distances.

2.1 Literature and Motivation

This chapter examines the problem of optimizing the cost of the fuel and electricity con-
sumed by a plug-in hybrid electric vehicle. The work is motivated by the fact that PHEVs
make it possible for two major infrastructures, the transportation infrastructure and the
power grid, to exchange significant amounts of energy. In doing so, PHEVs make it possible
to replace some of the petroleum currently being used for propulsion with other sources of
energy [1]. To maximize this synergy, our overarching goal is to optimize the cost of fuel
and electricity consumption for a PHEV.

In pursuit of the above goal, we compare the optimal fuel and electricity consumption
costs associated with two supervisory control strategies for PHEVs. The first strategy,
Blending, uses fuel and electricity together for propulsion throughout a given drive cycle
[27, 35, 78]. The second strategy is dubbed EV/CS because it operates in “Electric Vehicle”
mode first, then switches to “Charge Sustenance” at a predefined SOC threshold [37, 78].
We compare these strategies using Deterministic Dynamic Programming (DDP) to ensure
fairness, and implement the DDP algorithm in a novel manner using a backward-looking
powertrain model instead of forward-looking models used in previous research [27, 35, 36].

Previous research has shown that blending optimizes combined fuel and electricity
costs for parallel and power split HEVs and PHEVs [27, 35, 36, 79]. Blending attains
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this optimality by employing the engine to slow down battery charge depletion, thereby
minimizing the amount of time spent in charge sustenance. This is important because in the
charge sustenance mode, the engine must (i) meet driver power demand, (ii) regulate battery
SOC, while (iii) being mechanically coupled to the final drive. This combination of three
requirements and constraints can tax engine efficiency significantly, making charge suste-
nance undesirable [36, 80]. In a series powertrain, the engine is mechanically decoupled
from the final drive. In this chapter, we show that the difference in fuel and electricity cost
between the blending and EV/CS strategies is not as pronounced for a series vehicle.

Research on optimal supervisory control strategies for hybrid vehicle powertrains has
focused on optimization methods [27, 35, 36, 37, 47, 49, 78, 79], the impact of different
powertrain architectures [75, 81], and driving scenarios [36, 75]. Optimal control methods
applied for HEV and PHEV control are reviewed in section 1.2.1. A recent article by
Pisu and Rizzoni compares some of these methods and the subsequent results obtained by
using them to control a parallel hybrid powertrain [79]. Regardless of the optimization
method used, the goal in hybrid power management is to minimize vehicle-level objective(s),
such as fuel consumption, by optimally allocating driver power demand among different
propulsion devices. The dynamic programming approach explicitly uses Bellmans principle
for optimal control, and thus guarantees global optimality. The output of this process is
a supervisory control trajectory that can be used to gain important physical insights and
extract implementable rules for subsequent online power management [50, 51]. In [35, 78],
authors compare the EV/CS and Blended control strategies for series, parallel and power-
split architectures. They obtain implementable control rules and discuss the pros and cons
of each architecture based on simulation results. They also assert the need for using globally
optimal methods for a fair comparison. This motivates us to apply optimal control by using
DDP for the series architecture.

Applications of dynamic programming in optimal powertrain control have followed the
numerical methods outlined in [82]. These methods use a forward looking model of the
system under consideration and interpolates to obtain the cost-to-go function. As exhaustive
as this method is, depending on the system under consideration, computational challenges
arise. We did not experience the more popular problem of the curse of dimensionality [83],
as our system was modeled with two states and two inputs. However, due to the large size
of the battery in a series PHEV, its state-of-charge (SOC) dynamics are very slow in terms
percentage change in SOC, requiring a very fine state space gridding. This resulted in a
higher number of interpolations to obtain value function estimates and an exaggerated effect
of the propagation of penalties used to handle constraints. These two effects required a
higher amount of computational time and memory, rendering the problem computationally
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challenging.
There have been several attempts to overcome these particular computational challenges.

In [84], authors present a novel procedure to consider constraints that bound the states of a
system with only one state and one input. Several authors [34, 85], evaluate feasible sets
of controls offline, before performing the optimization. The approach in [85] is geared
towards reducing computational time only. The issue of propagation of large penalty values
associated with constraints is not considered. Further, the approaches outlined in [34, 85]
are well suited for stochastic DP. To implement the ideas from [34, 85] at every time step of
deterministic DP would require significant offline calculations and storage.

Our approach of using a backward looking powertrain model to implement DDP helps
evaluate the constraints at every time step on the go in a computationally efficient manner
with no requirement for storage. In [86], a preliminary version of this approach is presented.
This chapter explains the advantages of our approach in more detail and the approach is
applied to a wider range of cases that allow us to examine the impact of driving distance
on the optimal EV/CS and optimal blending strategies. In the next section, the PHEV
powertrain model is described in detail. We also show that the powertrain model under
consideration is invertible, thereby allowing us to use a backward looking model.

2.2 PHEV Powertrain Model

2.2.1 Model Overview

The series electric powertrain model considered for this study is schematically shown in
Fig. 2.1 and the component specifications are listed in Table 2.1. The arrows indicate the

Power  

Electronics 

Engine  

(57 kW) 

Generator 

(58 kW) 

Motor 

(120 kW) 
Wheels 

Battery 

(13.3 kWh) 

Figure 2.1 Series Hybrid Powertrain Model
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Table 2.1 Component Specifications for the Powertrain

Component Specification
Engine MY04 Prius 1.497 L gasoline, 57 kW, 110 Nm max

torque at 4000 RPM.
Generator Permanent magnet. 400 Nm max torque, 58kW

peak power.
Battery Li-ion Chemistry. 7.035Ah, 75 cell SAFT model

scaled by current capacity to 13.3 kWh total energy.
Motor Permanent magnet. 715 Nm max torque, 130 kW

peak power.
Final Drive Ratio = 3.07
Resistance
Coefficients f0 = 88.6 N, f1 = 0.14 N-s/m, f2 = 0.36 N-s2/m2

possible directions of power flow. The power electronics are a parallel bus which split the
electric current between the generator, battery and the motor. Thus the engine power is
converted to electrical power in the generator and is split between the driving motor and the
battery in the power electronics depending on the wheel power demand.

The Engine, Generator and the Motor are static map based models. The maps are
obtained from Powertrain System Analysis Toolkit (PSAT) [87] through testing at Argonne
National Laboratory (ANL) and they provide the operating efficiencies of the components.
The battery is an equivalent circuit model where its open circuit voltage and internal resis-
tance are functions of the battery state of charge (SOC). The maps for voltage and internal
resistance are based on Li-ion battery chemistry and are also obtained from PSAT.

2.2.2 Model Equations

Equations governing the powertrain model dynamics are represented as nonlinear ODEs.
This powertrain model has 3 state variables: vehicle velocity (v), engine speed (ωe) and
battery state-of-charge (SOC). The three inputs used to control the model are the power
demand by the driver at the wheels (Pwh,dmd), fuel flow rate to the engine (ṁ f ) and the torque
demand from the generator (τg).

We use a dynamic programming approach in which the driving cycle for which the
operation costs have to be minimized is chosen a priori. Such an approach is called ”Deter-
ministic” Dynamic Programming (DDP) in the literature [27, 79]. For a chosen drive cycle
(i.e. reference velocity trajectory), the vehicle velocity (v) and the wheel power demand
(Pwh,dmd) can be calculated before the optimization using Eqs. 2.1 and 2.2. Thus, these
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variables (vact ,Pwh,dmd) are not considered as variables in the optimization.

∆v = vre f − vact (2.1a)

Fwh,dmd = Kp∆v+Ki

∫ t

0
∆vdt + f0 + f1vre f + f2v2

re f (2.1b)

Pwh,dmd = Fwh,dmdvre f (2.1c)

The vehicle velocity at a given time step is vact and the deviation from the reference
velocity, vre f , is used to calculate the force (Fwh,dmd) and power demand (Pwh,dmd) at the
wheels. The resistance coefficients f0, f1, f2 represent the rolling resistance and aerodynamic
drag and their values are given in Table 2.1. The differential equation describing the rate of
change of vehicle speed is given as

dvact

dt
=

rwh

Jwh
(τwh− τloss) (2.2a)

τwh = τmη f d (2.2b)

τloss = rwh
(

f0 + f1vact + f2v2
act
)

(2.2c)

where rwh is the wheel radius, Jwh is the vehicle moment of inertia as seen at the wheels
and τloss represents the torque lost due to rolling resistance and aerodynamic drag losses.
The torque produced by the powertrain and supplied to the wheels by the motor is τwh .
In the remainder of this section, we present the equations governing the other two state
variables (SOC and ωe) and the two inputs (ṁ f and τg), which will be optimized.

The motor power demand at the wheels (Pm,mech) can be calculated by Eq. 2.3. The final
drive is assumed to have a constant efficiency (η f d) of 97%.

Pm,mech =
Pwh,dmd

η f d
(2.3)

The motor torque demand (τm) is in turn related to the mechanical power demand through
the motor speed (ωm)

τm =
Pm,mech

ωm
(2.4)
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ηm = fm(τm,ωm) (2.5a)

Pm,elec =


Pm,mech

ηm
if Pm,elec ≥ 0

Pm,mechηm else
(2.5b)

This torque is used to calculate the motor operating efficiency (ηm) and the electrical
power that has to be supplied to the motor (Pm,elec). In Eq. 2.5, fm is the motor efficiency
map, shown in Fig. 2.2.

The electrical power supplied to the motor by the power electronics comes from the
battery and the generator. Power electronics acts as a parallel bus connecting the battery,
motor and the generator and it is assumed that there are no losses in its operation. Thus we
get Eq 2.6 relating the electrical power in the two machines (Pm,elec and Pg) and the battery
(Pb).

Pb = Pm,elec +Pg (2.6)
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As the battery is an equivalent circuit model, the equations describing its current flow
(Ib) and rate of change of SOC are given as

Ib =
Voc−

√
V 2

oc−4RiPb

2Ri
(2.7a)

dSOC
dt

=− Ib

Qmax
(2.7b)

where Voc and Ri are the open-circuit voltage and internal resistance of the battery, which
are functions of SOC (Fig. 2.3). Qmax is the maximum current capacity of the battery.

The equations describing the generator are similar to that of the motor with only one-way
(mechanical to electrical) power conversion.

ηg = fg(τg,ωg) (2.8a)

Pg = ηgτgωg (2.8b)

where τg and ωg are the generator torque and speed respectively. The generator torque
is an input to the model while its rotational speed is proportional to the engine speed. In
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Eq. 2.8, fg is the generator efficiency map, shown in Fig. 2.4.
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The engine speed dynamics are governed by its flywheel, which is affected by both the
engine and generator torque. The equations describing engine operation are

τe = fe(ṁ f ,ωe) (2.9a)
dωe

dt
=

τe− τg

J f lwhl
(2.9b)

where the engine fueling rate (ṁ f ) is an input to the model, ωe is the engine speed,
which is a state variable, τe is the engine torque and J f lwhl is the inertia of the flywheel.
The torque output for a given fueling rate is obtained through the fueling rate map fe. The
fueling rate map is obtained from the BSFC map, shown in Fig. 2.5. Equations 2.3 - 2.9
along with the constraints described in the next section represent the vehicle model.

2.2.3 Model Constraints

There are physical constraints on the states and inputs described in Eqs. 2.10 and 2.11. Sets
Z and U represent the feasible values of the states and inputs respectively.

ωe,min ≤ ωe ≤ ωe,max (2.10a)

SOCmin ≤ SOC ≤ SOCmax (2.10b)

0≤ ṁ f ≤ ṁ f ,max(ωe) (2.11a)

0≤ τg ≤ τg,max(ωg) (2.11b)

The chosen engine model has a maximum speed rating of 4500 RPM. The SOC is
restricted to be within 0.9 and 0.3 at all times. The engine fueling rate (ṁ f ) has a maximum
value which varies with engine speed and the maximum generator torque output is also a
function of its speed. In addition, The powertrain model has constraints related to the ratings
of the components and to the power flow between the components (Eq. 2.12). For example,
the battery has limits on its charging and discharging power available, depending on its SOC
and its capacity (Eq. 2.12a).
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Pc,max(SOC)≤ Pb ≤ Pd,max(SOC) (2.12a)

0≤ τe ≤ τe,max(ωe) (2.12b)

− ω̇e,min ≤ ω̇e ≤ ω̇e,max (2.12c)

ωg,min ≤ ωg ≤ ωg,max (2.12d)

2.2.4 Backward Looking (Inverted) Powertrain Model

The system model represented by Eqs. 2.3 - 2.9 is discretized for simulation using an Euler
discretization. The model is then simulated as a backward looking model, i.e. the model is
of the form

u(k) = g(x(k),x(k+1)) (2.13)

where, given the current and future states of the model (i.e. x(k) and x(k+1) respec-
tively) the inputs required for that transition can be calculated. This is in contrast with the
more popular approach of using a forward looking model which calculates the future states
given the current states and inputs (Eq. 2.14).

x(k+1) = f (x(k),u(k)) (2.14)

A backward looking model can be used because the powertrain components are appro-
priately sized (Table 2.1) ensuring that the vehicle model satisfies all the power demands
at the wheels for the chosen drive cycles. Furthermore, we show that the forward looking
model is invertible, or equivalently that the set of inputs maps to the set of future states with
a one-to-one correspondence (i.e. one-to-one and onto). This one-to-one correspondence
of the model and a discussion on its invertibility is presented in Appendix A. Such a
one-to-one correspondence might not extend to other PHEV configurations such as parallel
and power-split. This might result in different numerical challenges in implementing the DP
algorithm through our approach. However, the invertibility of a series PHEV configuration
is shown in Appendix A, allowing us to use the novel DP implementation presented in
2.3.1.

In Eq. 2.13, for given current states (x(k)), the input is the future states x(k+1), and the
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equation outputs u(k), or equivalently the input required to transition from x(k) to x(k+1).
This model is essential to implement our novel DP algorithm presented in the next section
( 2.3.1).

2.3 Optimal Control Problem

The optimal control problem is formulated as follows:

min
z(t),u(t)

J =
T

∑
k=0

(
cGṁ f + cEPb

)
(2.15a)

subject to u(k) = g(x(k),x(k+1)) (2.15b)

x ∈ Z and u ∈U (2.15c)

where J represents the cost function to be minimized. It is given by the total dollar
costs of the gasoline and electric power used during a chosen trip. The cost of gasoline
is $cG/gallon and the cost of electricity is $cE/kWh. The engine fuel usage rate is given
by (ṁ f ) and the battery power is given by Pb. The total time for the driving trip under
consideration is T . The states and inputs of the system are x and u respectively. The system
equations are implemented in a backward looking fashion (Eq. 2.13), rather than the more
common forward looking model (Eq. 2.14). The admissible ranges of x and u are Z and
U , which are governed by state and input constraints discussed in section 2.2.3. In the
remainder of this section, our dynamic programming implementation and its advantages are
presented.

2.3.1 Dynamic Programming Implementation

The theory behind dynamic programming as a tool for calculating the optimal control is
well understood. However, numerical problems arise when implementing the algorithm.
Equation 2.16 shows the discretized form of the Hamilton-Bellman-Jacobi (HBJ) equation.

V (k,xi(k)) = min
U

[
c(xi(k),u j(k))+V (k+1,xi j(k+1))

]
(2.16)

Previously, this equation has been used to solve optimal powertrain control problems
[27, 36, 79] and is introduced in more detail in [82]. Here, we briefly explain how Eq. 2.16

23



has been used by researchers in order to justify the need for our novel DP implementation.
The ith point on the state grid is represented by xi. Given a current state xi(k), applying

an input u j(k), results in a future state xi j(k+ 1) and one-step cost c(xi(k),u j(k)). The
optimal cost-to-go (or value function) from state xi(k), at time step k, is given by V (k,xi(k)).
It should be noted that to obtain V (k+1,xi j(k+1)), an interpolation is required as xi j(k+1)
may not lie on the state grid. Another important computational aspect that is not represented
in Eq. 2.16 is that the constraints are usually implemented through penalty functions. With
this understanding of the previous DP implementations, we now discuss the numerical issues
arising from the use of Eq. 2.16.

These numerical problems are specific to the system under consideration. For the series
PHEV powertrain model, the following are the two major issues that arise during the imple-
mentation of the DP algorithm given by Eq. 2.16. First, due to the large size of the battery
in a series PHEV, its SOC dynamics are very slow in terms of percentage change in SOC.
For example, drawing 32.2 kW of power (which is higher than the average power demand
at the wheels) from the battery causes its SOC to drop by only 0.13% over two seconds.
To accurately capture the system dynamics the SOC grid has to be ”fine” (4500 grid points
in our case). This large number of grid points exacerbates the computational processor
requirements due to the interpolations to calculate the value function. Furthermore, the large
number of grid points also result in prohibitive computer memory requirements.

The second numerical issue arises due to the implementation of constraints that bound
the state variables (i.e. the constraints given by Eq. 2.10. Penalty functions are used in
previous approaches to characterize constraint violations [27, 36, 50, 85]. Due to the inter-
polations of the value function, there is a leaking effect, or propagation of the large penalties
imposed. Due to the long time horizon (on the order of thousands of times steps), and a finer
state grid for our control optimization, the leaking effect of the penalties is more pronounced.
This results in a sub-optimal solution. Thus, even though imposing penalty functions does
not increase computational time or memory requirements, it produces solutions that are not
optimal.

To overcome these two major challenges we use the backward looking powertrain model
and implement the DP algorithm as presented in Eq. 2.17.

V (k,xi(k)) = min
X(k+1,xi(k))

[
c(xi(k),x j(k+1))+V (k+1,x j(k+1))

]
(2.17)

In Eq. 2.17, c(xi(k),x j(k+1)) is the cost of transitioning from state xi at time k to x j at
time k+1 and V (k,xi(k)) is the optimal cost to go from state xi at time k to the final time. To
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obtain the cost of transitioning from state xi at time k to x j at time k+1, we have to simulate
the backward looking model, given by Eq. 2.13. The set X(k+1,xi(k)) defines the set of
all feasible reachable points in the discretized state space at time k+1, given the current
state xi. It is a subset of the set Z (section 2.2.3). The major difference in our approach
is the minimization of the costs over this set X(k+1,xi(k)) and not the set U(k) as is the
case in Eq. 2.16, i.e. we consider the minimization of costs over all possible transitions to
future states rather than the minimization of costs over all possible inputs. Since Eq. 2.17
is an interpretation of the HBJ equation, this formulation still results in optimal solutions.
However, in this approach the optimality of the solution is dependent on the discretization
X(k+1), rather than on U(k), which affects the optimality of previous approaches.

There are three major advantages of this approach which overcome the numerical issues
outlined above in this section. First, we can evaluate all the constraints a priori without any
model simulation, knowing only the current and future states (xi(k) and x j(k+1) respec-
tively). After evaluating the constraints, we obtain the set of future states that are feasible,
X(k+1,xi(k)). This set is a very small subset of the discretized state space. This results
in a lower number of model simulations at every time step as compared to the previous
approaches and hence a computational advantage. Second, since only transitions to states in
X(k+1,xi(k)) are evaluated, we do not require interpolations to obtain the optimal value
function at k + 1. This results in further reduction in computational time and memory.
Finally, as the constraints are evaluated a priori, penalty functions are not necessary to
describe constraint violations, thereby eliminating the propagation of penalties.

2.4 Optimization Conditions

Two PHEV power management strategies are optimized and compared: Blending and
EV/CS. Note that the definition of blending in this study differs from its previous usage for
parallel and power-split PHEVs. In our study the optimal blending solution simply refers to
a solution that allows the optimal usage of engine and battery irrespective of the battery SOC.
On the other hand the EV/CS solution restricts the first engine usage event to occur only
after an SOC of 0.4 is reached. This restriction thus results in no opportunity for blended
usage of engine and battery power till an SOC of 0.4 is achieved. Note that when the optimal
blending determines that it is not favorable to utilize engine power (when gasoline is more
expensive than electricity), the optimal blended solution might be similar to EV/CS. This
difference in the definition of blending in our discussion is due to the arrangement of power
sources in a series PHEV. In summary, blending in this dissertation refers to the freedom
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Figure 2.6 Drive Cycles used for Optimization graphed as Function of Distance

to blend the usage of the two power sources, and does not necessitate the blending of the
power sources.

To ensure fairness in the comparison of blending and EV/CS, we optimize both strate-
gies for: (i) identical drive cycles, (ii) the same optimization constraints, and (iii) the same
optimization objective (namely, the total cost of fuel and electricity). The only difference
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between the two strategies is the fact that we allow (though not necessitate) the blending
strategy to tap into combustion engine power any time, while barring EV/CS from using the
engine until battery SOC reaches a threshold of 0.4.

One important goal of this research is to quantify the impact of the relative cost of
fuel and electricity on the optimality of Blending vs. EV/CS. To do this, we repeat the
optimization-based comparison of blending and EV/CS for fuel costs ranging from $1/gallon
to $4/gallon, keeping the price of electricity constant at $0.1/kWh. A second important goal
of this research is to quantify the impact of driving distance on the relative optimality of
Blending vs. EV/CS. Previous research shows that longer driving distances are statistically
correlated with higher average vehicle speeds and propulsion energy needs per mile [75, 88].
We perform our optimization study using naturalistic driving cycles that capture this impor-
tant correlation. These drive cycles are obtained from Field Operation Tests at the University
of Michigan Transportation Research Institute [89]. Fig. 2.6 plots five naturalistic driving
cycles used in this study, showing both their speed profiles and the total distances travelled.

2.5 Optimization Results

Examining the results presented in Appendix B and the associated optimal trajectories leads
to the following six major observations:

Observation #1: For long driving cycles, in a scenario where gasoline is more expen-

sive per mile than electricity, the blending and EV/CS strategies have almost identical

total optimal energy costs. Figure 2.7 illustrates this result for Cycle #5 and a fuel cost of
$2.5/gallon. The blending strategy consumes fuel and electricity at a relatively uniform
rate over the course of the entire cycle. EV/CS, in comparison, is unable to tap into engine
power till the SOC reaches the threshold of 0.4, but compensates for that by using the engine
more aggressively afterwards. The ultimate effect over the entire cycle is that both strategies
consume the same amounts of fuel and electricity. This result stands in sharp contrast to
similar studies for power split vehicles, where blending outperforms EV/CS [36, 79].

Observation #2: Observation #1 can be explained by the fact that the series powertrain

mechanically decouples the internal combustion engine from the PHEV wheels, thereby

allowing both blending and EV/CS to operate the PHEVs combustion engine at minimum

BSFC. Figure 2.8 illustrates this by showing the fuel consumption for both strategies super-
imposed on the engine BSFC map. Both strategies are clearly burn the most amount of fuel
in the desirable low BSFC range.
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Figure 2.7 Comparison of Optimal Solutions for Minimizing Total Dollar Costs (Highway Cycle,
cG = 2.5 $/gallon, cE = 10c/kWh)

Observation #3: The ability of EV/CS to match blending in terms of total fuel and elec-

tricity cost over long trips is maintained even when gasoline is relatively cheap. Figure 2.9
illustrates this for Cycle #5 for an unrealistically cheap gasoline price of $1/gallon. In this
case, the relative cost of fuel vs. electricity favors charge sustenance. The blending strategy
operates in a charge sustenance mode. The EV/CS strategy is unable to do so initially
because of its inability to tap into combustion power. Once the EV/CS strategy is, however,
able to tap into combustion power, it recharges the battery and attains an overall fuel and
electricity consumption cost almost identical to blending.

Observation #4: The ability of optimal EV/CS performance to match optimal blending

in terms of total fuel and electricity cost is insensitive to total driving distance, as long as

gasoline is more expensive per mile than electricity. The definition of blending is discussed
in the previous section 2.4. Optimal blending has the option to utilize engine power at any
SOC, though it is not a necessity to blend the usage of the power sources. Figure 2.10 illus-
trates this by repeating the optimization study from Fig. 2.7 for drive Cycles 1-5. Please note
that for the shorter drive cycles, blending and EV/CS trajectories (for expensive gasoline) are
identical and neither invoke combustion power, and therefore the cost of fuel consumption
for both strategies is zero.
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cE = 10c/kWh (Blending above, EV/CS below)

Observation #5: The blending strategy is superior to the EV/CS strategy in terms of

overall fuel and electricity cost when gasoline is cheaper than electricity per mile and the

total driving distance is short to medium. A “short” cycle, in this context, is one in which
battery SOC does not reach 0.4 for EV/CS. This corresponds roughly to 25-30 miles (max)
in trip length (refer to cycles #1 and #2 Fig. 2.6). A “medium” cycle is one which has a
small portion (5-10 mi) of the trip after reaching an SOC of 0.4 for EV/CS (refer to cycles
#3 and #4 Fig. 2.6). For the short cycles, EV/CS is unable to tap into combustion power, and
propels the vehicle using electricity alone. Blending, on the other hand, is able to tap into
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combustion power, thereby achieving lower overall trip energy costs. For medium-length
trips, the EV/CS strategy is indeed able to tap into combustion power, but for a time duration
that is insufficient for recharging the PHEV battery. Under such a scenario, the EV/CS
strategy continues to consume more electricity than blending, thereby costing more overall.
This is illustrated in Figs. 2.11 and 2.12. This is the only scenario in this optimization
study where there is a significant difference in overall trip energy cost between blending and
EV/CS.

Observation #6: The blending strategy performs comparably to the EV/CS strategy

in terms of overall fuel and electricity cost when gasoline is cheaper than electricity per

mile for the chosen long trip. Figure 2.9 illustrates this by showing that the total fuel and
electricity costs for blending and EV/CS. These costs converge only for Cycle #5 (Fig. 2.12),
whose length exceeds 60 miles, when gasoline is cheaper than electricity per mile. This
result extends to all long trips irrespective of their driving nature (highway, urban etc.)
based on the finding in [86]. In [86], we show that for a repeated urban drive cycle of
approximately the same length as the long trip (6̃2 miles), the optimal EV/CS strategy
performs the same as optimal blending due to the flexibility in engine operation in a series
PHEV.

2.6 Summary

A fair comparison of two supervisory control strategies for PHEVs, namely Blending and
EV/CS was performed using a deterministic dynamic programming (DDP) framework. The
unique contributions of this work are twofold - 1) Resolving the challenges in the imple-
mentation of DDP for a series PHEV powertrain model and 2) The results, showing that
there is no significant difference in the performance of the two popular control strategies for
a series PHEV with minor exceptions (listed below). In addition, relevance of the findings is
enhanced through the use of naturalistic drive cycles as inputs instead of commonly used
federal test cycles.

For a series PHEV powertrain, due to the large size of their batteries capturing the
battery’s SOC dynamics through previously used DP implementations was computation-
ally prohibitive. The factors for the computational intractability were the interpolations
required to obtain the value function and the characterization of constraints through penalty
functions. These issues were resolved through a DP implementation using a backward
looking powertrain model and a finer state space gridding. The use of a backward looking
powertrain model avoids the need for interpolations. The ability to evaluate constraints
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before simulating the powertrain model avoid the need for penalty functions as only feasible
state transitions are considered. The new DP implementation does not lose any optimality
compared to previous formulations.

The following results were obtained from the DDP studies for a series PHEV: The
performance of the optimal EV/CS control strategy in terms of combined fuel and electricity
dollar costs is comparable to that of the optimal Blending control strategy except for cases
when gasoline prices are low (< $1/gallon) and the trip lengths are short. Thus, under the
assumption that gasoline is more expensive per mile than electricity, the EV/CS solution
performs comparably to the blended solution for all driving distances. This result is in
contrast with previous comparisons in the literature for a power-split PHEV, where results
indicate that the EV/CS strategy performs worse than the Blended strategy. Differences in
the results for the series PHEV were shown to be mainly due to the mechanical decoupling
of the engine from the wheels allowing for flexible engine operation.
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Chapter 3

Integrated Optimal Charging and Power
Management of a PHEV

This chapter develops a dynamic programming based algorithm for the integrated optimiza-
tion of charging and power management for a series PHEV powertrain. In chapter 2, the
power management problem was solved. The DP implementation from chapter 2 will be
extended to include optimal charging in this chapter by exploiting the boundary conditions
between the charging and driving problems.

First, the literature and motivation for the development of this algorithm are discussed.
The dynamic system model used to represent the PHEV powertrain during driving is briefly
mentioned as it has been presented in detail in section 2.2. The modeling related to electric
grid operation was developed by Kelly et al. in [90]. Hence, we will only discuss the
relevant aspects of that model. Next, the DP based integrated optimization algorithm is
presented. Then, the results showing the need for such an integrated framework and the
tradeoffs between charging and fuel usage are presented. Finally, in section 3.5 we apply
this algorithm to understand the CO2 emissions impact of using PHEVs with a cleaner grid.

3.1 Literature and Motivation

This chapter examines the problems of optimizing the charging trajectory of a PHEV and
optimally managing PHEV power when driving. We solve these two optimal control prob-
lems together, thereby accounting for their interdependence. Such combined optimization is
essential because a PHEV, unlike a more traditional HEV, is expected to exchange significant
amounts of energy with the electric grid. In doing so, PHEVs make it possible to replace
some of the petroleum currently being used for propulsion with other sources of energy
[1, 2]. To maximize this synergy, our overarching goal is to simultaneously optimize PHEV
activity on the electric grid (i.e., charging) and on the road (i.e., power management).
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The literature motivates this work by highlighting several non-trivial tradeoffs between
PHEV design/control on the one hand and power system optimization on the other. These
tradeoffs often necessitate an integrated approach to optimal design and control in PHEVs
and the power grid. For example, research by Bashash and Fathy reveals a tradeoff between
one PHEV battery degradation mechanism (namely, anode-side resistive film formation)
and total PHEV energy cost [38], based on the degradation map assumed by these authors.
Mitigating this tradeoff involves charging the PHEV battery just enough to complete a given
driving trip, immediately before the trip. Furthermore, Traut et al. show that a larger PHEV
battery size does not necessarily imply lower lifecycle greenhouse gas (GHG) emissions [45].
Finally, the literature also explores the use of PHEVs for vehicle-to-grid (V2G) services
such as provision of spinning reserves and regulation. These services can reduce GHG
emissions [91], enable integration of intermittent renewable power sources, and provide
cheaper reserves [3, 24]. Depending on the objectives and services that a PHEV provides to
the grid, it may not be possible to charge the PHEVs battery optimally or fully [41, 44]. This
affects on-road PHEV power management, thereby motivating the combined optimization
of PHEV charging and power management.

The literature already presents significant research on optimal PHEV charging and power
management, but the problems are considered separately. Optimal charging refers to the
problem of finding a State-of-Charge (SOC) trajectory that minimizes some environmental
or economic objective for a given PHEV over the span of a day [7, 9, 41]. The goal is
typically to minimize the total dollar cost of electricity consumed by the PHEV, electric
grid GHG emissions due to PHEV charging, or provide V2G services to the grid. Optimal
power management refers to the problem of delivering power to a PHEVs wheels in the most
effective manner. The most common minimization objectives in power management studies
are gasoline consumption and dollar costs associated with a given trip [36, 86, 98]. Existing
studies on optimal charging and optimal power management typically either assume or
require the PHEV battery to be full at the onset of any given driving trip. Our work relaxes
this assumption to enable a full exploration of tradeoffs and synergies between these two
problems, for the first time.

Several optimal control methods have been applied to PHEV charging problems and
power management problems. A review of these methods is presented in section 1.2.1.
Assuming that grid operation, driving times and driving profiles are known for the day
under consideration, we use a Deterministic Dynamic Programming (DDP) approach. This
approach explicitly uses Bellmans principle for optimal control, and thus guarantees global
optimality. The output of this process is a supervisory control trajectory that can be used to
gain insights and extract rules for subsequent implementation [50, 51].
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The main contributions of this paper are to develop a DDP-based framework for the
above combined optimal control problem, and to analyze the dependencies between the
optimal charging and power management of a PHEV through the resulting complete optimal
solutions. The major challenges in this work are the integration of two problems with
different dynamics and time scales together in a single optimal control framework, and the
computational time required to obtain solutions. It is also necessary that this framework be
capable of handling different constraints/scenarios (such as inclusion of renewable power
sources on the grid and V2G services). One such scenario which examines the impact of
CO2 reduction in propulsion due to large amounts of wind power on the grid is presented in
section 3.5.

3.2 Vehicle Powertrain and Grid Dispatch Models

The optimal control problem is solved to obtain optimal trajectories of the states and inputs
related to PHEV charging and on-road power management. In this section, we present the
system’s states and inputs, and the constraints related to them. First, the PHEV powertrain
model is briefly described. Then, the interaction between the electric grid and the PHEV
battery is described in detail. Finally, the drive cycles and CO2 traces over which the optimal
control solutions are calculated are presented.

3.2.1 Vehicle Powertrain Model

The system dynamics describing the vehicle powertrain operation during driving is pre-
sented in detail in section 2.2. There are two takeaways that we wish to emphasize again.
First, This powertrain model has 2 states: engine speed (ωe) and battery state-of-charge
(SOC), i.e. z = {ωe,SOC} is the state variable whose optimal trajectory will be obtained.
The two inputs used to control the model are the fuel flow rate to the engine (ṁ f ) and the
torque demand from the generator (τg) i.e. u = {ṁ f ,τg}. The constraints for this model are
described in section 2.2.3. It should be noted that the dynamics and constraints for charging
(presented in the next section 3.2.2) are different. Second, the model is implemented as a
backward looking model (section 2.2.4) with a simulation time step of 2 seconds. The time
step for the charging process is 60 seconds (1 minutes). These differences in the dynamics,
constraints and time-steps pose a challenge in integrating the optimization of charging and
power management of a PHEV.
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3.2.2 Battery Charging and Grid Disptach Model

This section develops a different model intended for optimizing the way a single PHEV
charges with grid electricity. The intent behind this model is twofold. First, the model
captures the dynamics of battery charging, namely, Eq. 3.1.

Ib =
Voc−

√
V 2

oc−4RiPb

2Ri
(3.1a)

dSOC
dt

=− Ib

Qmax
(3.1b)

This grid charging model has one state variable, z = {SOC} and one input, u = {Pb}
in comparison with the 2 states and 2 inputs for the complete powertrain presented in the
section above and 2.2. Second, the model allows us to quantify the grid CO2 emissions
associated with PHEV charging (i.e., the emissions associated with generating the electricity
supplied to the PHEV). To achieve this second goal, we employ an economic grid dispatch
model presented by Kelly et al. in [90]. This dispatch model contains a list of power plants
arranged in ascending order of generation costs ($/kWh). The model simulates grid dispatch
for a given total power demand profile (obtained from the EPA eGrid database), and outputs
the resulting dollar costs and CO2 emissions associated with grid power generation. These
CO2 emissions reflect the upstream impacts and CO2 produced at the power plant. The
model is also capable of accommodating PHEV power demand in this simulation process.

Figure 3.1 illustrates a baseline scenario we use when optimizing the power management
and charging of a given PHEV. The scenario focuses on the State of Michigan, and assumes
that the total number of PHEVs charging from the grid at any given time is 15% of the
total Michigan passenger vehicle fleet. This percentage translates to 1.25 million PHEVs
charging from the grid at the maximum possible rate at all times during the day, based on
the total number of passenger vehicles in Michigan in 2007 [92]. This very large number
of PHEVs plugged into the grid corresponds to a PHEV market penetration level in the
20%-25% range. Assuming the total number of PHEVs charging with grid electricity at
every instant in time to be constant provides a simple baseline scenario that can be easily
refined by accounting for household travel data. Our goal, here, is to obtain baseline profiles
of total grid power demand and grid CO2 production per unit energy. The CO2 rate is in
the 550-850 g/kWh range, irrespective of the inclusion of PHEVs. This is because the
underlying power plants are assumed to remain the same, hence resulting in the same range
of average CO2 . We use these profiles of CO2 production per unit energy (described in next
subsection) to optimize the charging and power management of a single PHEV for minimal
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Figure 3.1 Grid Power Demand and CO2 production for a Year under Different PHEV Penetration
Scenarios

CO2 emissions.
A different set of constraints affect the PHEV during grid charging than during on-road

operation. The charging outlet considered is rated at 110 V and 15 A. Thus the charging
power can be a maximum of 1.65 kW. Battery SOC is constrained to be between 0.3 and
0.9, as it was for PHEV on-road usage. The battery cannot discharge to the grid in the case
studies considered herein. The constraints are represented in Eq. 3.2 below.

SOCmin ≤ SOC ≤ SOCmax (3.2a)

0≤ Pb ≤ 1.65 kW (3.2b)

3.2.3 Drive Cycles and CO2 Trajectories for Optimization

The objective in our optimal control problem is to minimize total CO2 produced by a given
PHEVs use of fuel and electricity. Three 24-hour CO2 trajectories were chosen from the
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CO2 per unit energy data for an entire year (in Fig. 3.1). These three traces reflect days
of high, medium and low CO2 (Fig. 3.2) relative to the CO2 traces for the entire year (Fig.
3.1), covering the entire range of CO2 rate (550-850 g/kWh). We use these traces to account
for the CO2 corresponding to PHEV charging. Hourly grid demand data are used in the
dispatch model [90]. Hence we assume, that the CO2 production remains the same for each
hour.
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Figure 3.2 CO2 traces used for optimization

We optimize PHEV charging and power management for a day where the PHEV per-
forms two identical trips (23.9 miles long) in the morning and afternoon. Figure 3.3 shows
the vehicle velocity for each trip as a function of travel distance (obtained from a naturalistic
driving database collected at the University of Michigan Transportation Research Institute
[89]). Furthermore, Fig. 3.4 shows the timing of the trips during the day. Daily driving dis-
tance and traffic conditions affect PHEV energy usage: a fact that has motivated researchers
to optimize PHEV operation over large families of trips [36, 46]. This work, in comparison,
focuses on developing a framework to show the interplay between optimal charging and
power management. We illustrate this framework for the trip details in Figs. 3.3 - 3.4, but
the framework is broadly applicable to any trip profile. The total daily driving distance of
47.8 miles necessitates either gasoline usage or multiple battery charging events during the
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Figure 3.4 24 hour plot of Grid CO2 Rate and Driving Trips. (The 24 hour period begins at 1AM,
hence 8AM is the 7th hour in the graph above)

24 hour period. This helps demonstrate the use of our integrated optimization framework by
elucidating some interesting tradeoffs between battery charging and fuel consumption.
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3.3 Optimal Control Framework

The optimal control problem is formulated as follows:

min
(z(t),u(t))

J =
24

∑
0

(
CO2

gal
ṁ f ∆tdr +

CO2

kWh
Pb∆tch

)
(3.3a)

subject to ż = f (z(t),u(t), t) (3.3b)

z ∈ Zc and u ∈Uc (3.3c)

where the optimization objective, J, is the total amount of CO2 produced during a
24-hour period. This CO2 is produced by both driving fuel usage (the first term in the
expression for J) and grid charging (the second term). Gasoline consumption is (ṁ f ) gallons
per time step during driving (∆tdr = 2 sec). Battery charging power is given by Pb in kW and
the charging time step is ∆tch = 60. It is important to note that the dynamics and constraints
given in the above equations are different depending on whether the PHEV is driving or
charging. These differences in the dynamics and constraints are explained in the previous
section 3.2.2 in more detail. The states and inputs of the system are z and u respectively, and
they are governed by the system dynamics (sections 2.2.2 and 3.2.2). The admissible ranges
of z and u are Zc and Uc respectively. The constraints on the states (set Zc) and on the inputs
(set Uc) are described in sections 2.2.3 and 3.2.2. In the remainder of this section, the salient
features of the DP implementation (from section 2.3.1) are reviewed. Then, the integration
of the two problems into a single optimal control algorithm is presented.

3.3.1 Dynamic Programming Implementation

The Bellman equation is written as Eq. 3.4, which is the DP algorithm used for optimal
control in this work.

V (k,xi(k)) = min
X(k+1,xi(k))

[
c(xi(k),x j(k+1))+V (k+1,x j(k+1))

]
(3.4)

where c(xi(k),x j(k+1)) is the cost of transitioning from state xi at time k to x j at time
k+1 and V (k,xi(k)) is the optimal cost to go from state xi at time k to the final time. The
state space is divided into a finite number of states at every time step that belong to the set
X(k) = {x1(k),x2(k), . . . ,xi(k),x j(k), . . .xN(k)}. Equation 3.4 can be read as the optimal
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cost to go from state xi at time k is equal to the cost of transitioning from state xi at time
k to state x j at time k + 1 plus the optimal cost to go from x j at time k + 1 to the final
time Tf , minimized over all possible transitions to feasible reachable states in X(k+ 1)
(i.e. X(k+1,xi(k))). This equation is evaluated starting from final time Tf , where the cost
to go function at the final time V(Tf ,X(Tf )) is initialized for all states. Using Eq. 3.4,
for every state at time step Tf -1, we obtain the optimal cost to go for every state at Tf -1
as V(Tf −1,X(Tf −1)). This process is repeated till the initial time where V(1,X(1)) is
obtained. V(1,X(1)) gives the optimal cost to go from every state at initial time and is used
to find the optimal initial states and the consequent optimal trajectories depending on the
choice of the initial states.

Use of the backward looking model with the DP algorithm shown in Eq. 3.4 has the
following advantages compared to previous approaches in the literature [36, 79, 84]. First,
the algorithm setup does not need interpolations as only transitions to states in X(k+ 1)
are considered. Second, when considering the set X(k+1) of all possible future states, the
battery charge/discharge power limits and other such constraints on the states are used to
limit the set of allowable future states (to the set X(k+1,xi(k))). This drastically reduces the
number of powertrain simulations. It also overcomes accuracy issues (discussed in [84, 34])
regarding implementing the constraints using penalty methods. These two key advantages
make the DP problem computationally feasible in our case. A more detailed discussion
of this algorithm and its advantages in presented in section 2.3.1. Next, we discuss the
integrated framework necessary to address charging and power management in a single
framework.

3.3.2 Integrated Optimization Framework

The two optimal control problems - of charging and power management, have the same
objective (i.e. to reduce CO2 emissions), but the system dynamics, constraints and the time
steps involved are different. During on-road operation of the PHEV, the system has two
states z = {ωe,SOC} and two inputs u = {ṁ f ,τg}, that have to be optimally determined.
During charging, the system has one state z = {SOC} and one input, u = {Pb}, that have to
be optimally determined. Fig. 3.5 illustrates the charging and driving events throughout the
day. It is obvious from Fig. 3.5 that the trajectory/actions taken during one event affects the
optimal actions to be undertaken during the other events.

To tackle these differences, but still use the Bellman equation 3.4 effectively, ensuring
optimality, a complete optimal framework is used. This framework proceeds backwards
in time, starting at the end of the 24 hour period under consideration (see Fig 3.5 ). The
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Figure 3.5 24 hour plot of Grid CO2 Rate and Driving Trips

following steps (and Fig. 3.6 ) explain the method used:

• Step 1- Optimal charging is the problem under consideration at the final time step, so

the value function is initialized for every discretized value of SOC only.

• Step 2- Equation 3.4 is then applied at every time step proceeding backwards in time

until the end of the second driving trip. Here the dynamics and constraints related to

charging are applied.

• Step 3- At this time step the value function is modified from a 1D array (V1) with

entries for each discretization of SOC only to a 2D array (V2) with entries for each

discretization of SOC and ωe. This is done by concatenating or repeating the same

value function for every discretization of ωe. Essentially, it means that the optimal

cost-to-go is immaterial of the engine speed at the final driving time step.

• Step 4- Equation 3.4 is then applied at every time step proceeding backwards in time

until the beginning of the second driving trip with (V =V2). Here the dynamics and

constraints related to driving are applied.
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Figure 3.6 Framework for the Integrated Optimization for Charging and Driving

• Step 5- At this time step the value function is modified back from a 2D array (V2)

to a 1D array (V1) by using the value function entries associated with only the zero

engine speed state as that is the only allowable engine speed at the start of a driving

trip. Essentially, this means that only a zero engine speed state is allowed at the first

driving time step.

• Step 6- Follow steps 2 through 5 until the beginning of the first driving trip.

• Step 7- Follow step 2 until the initial time step to get the value function (optimal

cost-to-go) for all SOC discretizations.

Essentially the loop in Fig. 3.6 is followed twice starting with the initialization block. In
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steps 3 and 5 where the Value function is converted from a 1D array to a 2D array and back
respectively, we are utilizing the constraints on the states (ωe and SOC) at the boundaries of
the charging and driving problems to continue using the Bellman equation throughout.

In this framework, SOC is a state variable that is common to both the system’s dynamics
and this approach ensures its continuity. Since battery usage should not be unduly rewarded,
we impose an additional constraint that the initial and final SOC has to be same. During step
2, the system dynamics have one state and input with constraints related to grid charging,
while during step 4 the system dynamics and constraints are those related to PHEV on-road
usage. This framework is computationally feasible due to the use of a backward looking
model and the interpretation of the Bellman equation as presented in Eq. 3.4 and section
2.3.1. This framework can also be used for solving a generic double optimal control problem,
which are linked through a state variable (which is SOC in our problem). Furthermore, it
can be extended to linked multiple optimal control problems with well defined transition of
states from one problem to the other.

3.4 Results

The framework presented in the previous section is used to obtain optimal state and control
input trajectories for a 24 hour period. The 24 hour period begins at 1 AM. Hence, zero on
the time scale in all the graphs indicate 1 AM. The two driving trips being at 8 AM and 5
PM. These are the 7th and 16th hour of the 24 hour period respectively. Since the initial
and final SOC have to be the same to ensure no undue advantage of using electricity, for
each optimization case, the optimal trajectories are obtained for initial and final SOC of
0.3 through 0.9 in increments of 0.1 (seven runs). Three optimization cases are examined,
for the three CO2 cases of high, medium and low (Fig. 3.2). It is important to note, while
analyzing the results, that these CO2 trajectories are obtained on different days from the
Michigan grid mix, which is coal intensive. The CO2 impact of gasoline combustion is
8.78 kg/gal [93]. This value does not include the upstream impacts of manufacturing the
gasoline.

3.4.1 Tradeoffs between Charging and Fuel Consumption

Optimal trajectories of SOC, grid charging rate and cumulative fuel consumption for the
three cases of high, low and medium CO2 rates are graphed in Figs. 3.7, 3.8 and 3.9 respec-
tively. The initial and final SOC for the 24 hour period is chosen as 0.7 in these graphs. For
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the day with high grid CO2 rate, we see that it is optimal to extensively use engine fuel
while driving and even charge up the battery while driving. There is almost no charging
from the grid. Figure 3.8 shows a case of the day where the grid mix results in low CO2.
The optimal solution, in this case, is to charge as much as possible before a driving trip and
use all the electricity while driving. Battery usage while driving is observed by the rapid
drops in SOC beginning from the 7th and the 16th hour when the driving trips occur. While
these two solutions might seem trivial, it is necessary to remember that using a dynamic
model of the PHEV, the engine efficiency is not constant over the trip. Thus, these two
seemingly trivial solutions are not easy to surmise a priori. In this case of a medium CO2

day, the optimal control solution does not charge the battery before the first driving trip as
the CO2 production rate from the grid before the first trip is higher than the rest of the day.
This results in a small amount of engine fuel usage during the first driving trip. Due to the
low CO2 in the middle of the day, we see that the battery is completely charged up before
the second driving trip, resulting in all electric driving and no engine usage. This solution
is not as simple as the high and low CO2 cases and shows the advantage of considering a
complete optimal approach to PHEV charging and power management.
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Figure 3.7 Optimal trajectories for a day with high CO2 from the grid

Other than emphasizing the optimality of a combined charging and power management
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Figure 3.8 Optimal trajectories for a day with low CO2 from the grid
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Figure 3.9 Optimal trajectories for a day with medium CO2 from the grid
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approach, there are additional interesting features that these graphs reveal. First, since CO2

is the objective, the CO2 produced per unit energy by the two power sources (engine fuel and
electric grid) are the deciding factors in the tradeoffs involved. Second, these CO2 numbers
are a function of the grid mix, driving behavior (distance, velocities and trip times) and the
engine efficiency map, which are all chosen to be fixed values in these examples. Hence
it is necessary to optimize the control stochastically over all these variations or to obtain
control rules for different grid mixes, driving behaviors and engine operating efficiencies to
be implemented in a PHEV.

3.4.2 Constrained Charging
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Figure 3.10 Optimal trajectories with no-charging constraint at peak load (hours 12-18) for a day
with medium CO2 from the grid

Finally, due to the low CO2 per unit energy during the day time (hours 12 to 18), sig-
nificant amounts of PHEV charging takes place at these times (in Fig. 3.8 and 3.9). These
are peak hours for grid demand. It is not beneficial for grid stability, longevity and costs,
to charge the battery during peak load [1, 2, 3]. During the peak hours, due to a larger
fraction of the grid power being satisfied by natural gas, the CO2 per unit energy is lower.
Thus it would make an interesting problem to trade-off some indicator of grid load (such
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as electricity price) to avoid exacerbating the peak (this serves as motivation for the work
in Chapter 4). Imposing a constraint on not charging during these time periods would be
another strategy. Using the framework (Fig. 3.6), a constraint of no charging during peak
load (hours 12-18) is implemented for the medium CO2 day.

Figure 3.10 shows the results and two important observations are noted. First, the
no charging constraint results in lower amount of battery charging before the second trip,
resulting in a small amount of extra fuel usage during this trip. Thus the charging constraint
affects the power management strategy. Second, battery charging occurs at an earlier time
when the grid produces higher CO2 per unit energy. The resulting CO2 for the 24 hour
period with this no-charging constraint is 7.72 kg, as compared to 7.64 kg without the
constraint. The constrained solution avoids peak-charging with only a 1% increase in daily
CO2. Even though this tradeoff is highly dependent on the assumptions (about driving and
the electric grid), the framework is powerful enough to expose the need for a combined
approach to charging and power management.

3.4.3 Impacts of Initial SOC

Another interesting aspect of this optimization framework comes from the constraint that the
initial and final SOC in the 24 hour period considered must be the same. Figure 3.11 shows
three optimal SOC and cumulative CO2 trajectories for different initial SOC at 1 AM (initial
time step) for the medium CO2 grid mix. The total CO2 produced in the case for 0.3,0.7
and 0.9 initial SOC are 8.02 kg, 7.64 kg and 7.61 kg respectively. The optimal trajectory
with 0.3 as initial SOC does not fully charge the battery before the first driving trip because
of high grid CO2 during that time. This results in some fuel usage during the first trip and
consequently in CO2 production during that trip. While the 0.7 and 0.9 cases have sufficient
battery energy due to previous evening’s charging and hence produce little or no CO2 during
the driving trip. In all the cases, substantial charging occurs before the second trip resulting
in CO2 production on the grid. These trajectories show that it is not always the best solution
to charge the battery fully before a driving trip. For the initial SOC = 0.3 case, if we imagine
that due to some unforeseen reason the consumer could not charge the battery in the evening
(hours 18-22), then it is not optimal from a CO2 perspective to charge the PHEV overnight
completely. Rather, it is optimal to drive the first trip on gas and charge the battery thereafter.
This non-intuitive solution is possible to obtain only due to the consideration of both the
charging and power management solution together.
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Figure 3.11 Optimal trajectories for a day with medium CO2 from the grid for different initial SOC

3.5 Impacts of Wind Penetration

This section investigates the reduction in total CO2 emissions resulting from PHEV charging
on the grid with significant wind penetration. We use a rigorous optimal control framework
to quantify this CO2 reduction from transportation. Recent forecasts suggest that the electric
grid will include a significant amount of renewable power sources [2, 52]. A PHEV is con-
sidered a key enabler in clean transportation through charging from a cleaner grid. Studies
suggest significant reduction of CO2 emissions resulting from a grid with higher penetration
of renewable resources [3, 94]. In this paper we analyze in detail the CO2 emissions impact
of using PHEVs with a cleaner grid.

3.5.1 Motivation and Scope

There is an obvious CO2 emissions benefit of charging a PHEV from a grid with more
renewable sources and using this energy for transportation. However there are two major
challenges to be addressed. First, the intermittent renewable power sources will require more
storage and regulation on the grid. Using PHEV batteries for storage and regulation has
been previously studied [42, 43, 95, 96]. Secondly, achieving maximum synergy requires
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optimized charging and driving of a PHEV considering total emissions [43, 96]. In this
work we will address the second challenge by using a global optimal control approach for
fair comparison of cases rather than simplistic approaches in preliminary studies [96].

Previous studies regarding grid integration of PHEVs assume PHEV population numbers
and complete control over all PHEV batteries when not being used on the road [42, 95].
These studies are extremely relevant to understand the total load and controllability aspects
of the load. However, we wish to study the impacts of charging from a cleaner grid on
PHEV power-management, and quantify the CO2 benefits that a synergistic PHEV-grid
connection can produce at the consumer (individual PHEV) level. Thus, our studies focus
on a single PHEV’s 24 hour charging opportunities. In other words, this study focuses on
the optimal control strategies that should be implemented in a PHEV, or to be followed by a
consumer, for that individual PHEV owner to have the least CO2 impact.

We developed an Integrated Charging and Power Management Framework in section
3.3.2 of this chapter. This integrated optimal control algorithm considers the dependence be-
tween the charging and power management problem, thereby providing a complete optimal
solution. The algorithm also makes it possible to quantify the reduction in CO2 emissions
due to any changes in either the driving behavior or grid mixes. The remainder of this
section will discuss the wind power data used for our studies and the results quantifying the
CO2 reduction in PHEV operation due to significant penetration of wind power.

3.5.2 Wind Power Data

The wind power data used in our studies are obtained from the Eastern Wind Integration and
Transmission Study (EWITS) [97]. AWS-Truewind created this dataset with assistance from
NREL/DOE. This data consists of three years (2004-2006) of 10-minute time step wind
speeds. The study evaluated potential sites for wind power development and forecasted

wind power output at sites with high potential. In our work, projected wind power from
offshore wind in the state of Michigan is used. A total of 210 sites were chosen in this study.
Each site had a maximum rating of 2 MW, or a total of 4.2 GW installed wind capacity is
considered in this study.

Due to significant variability in wind speeds over time and space, it is not practical to
implement optimal charging and power management trajectories for one specific chosen
wind power trace. Figure 3.12 shows a graph of wind power output, which is summed up
over all offshore locations (210 sites), and averaged over all days of the year for the years
2004-2006. The datasets show that the wind output has significant temporal variability, but
averaging over all days of the year produces identical 24-hour wind traces for each of the 3
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years. We call these the Yearly Averaged Traces. In our study, we only use 2004 data, and
will focus on that particular yearly averaged trace.
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Figure 3.12 Wind Power trace summed over all sites and averaged over a Year (Yearly Averaged
Traces).

To assess the performance of an average optimal solution on different days, three days
with different levels of wind power are considered. A day with 85 percentile wind energy
content was selected as a ”high wind” day. The ”medium day” represents 50 percentile
wind energy content and the ”low day” is chosen as a day with 15 percentile wind energy
content as shown in 3.14. Figure 3.13 shows the wind traces corresponding to these days
along with the yearly averaged trace. The actual amount of power and energy supplied by
wind power to satisfy the grid demand is shown in Figure 3.15. It is observed that on the
high wind day, up to 18% of the grid energy is from wind, compared to only 4% on the
low wind day. Figure 3.15 also shows that even on the day with lowest wind, at some
point during the day, wind power supplied close to 15% of the demand. Hence all these
scenarios describe wind penetration levels that are currently not observed in the Michigan
grid. Finally, Figure 3.16 shows the CO2 traces resulting from the different amounts of wind
supplied during a particular day. These traces impact the optimization algorithm’s decision
to charge from the grid as it might be beneficial to charge from the grid at different times
depending on the grid mix. The process of including wind power data is depicted pictorially
in Fig. 3.17.
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Figure 3.13 Wind Power traces on different days compared to the Yearly Averaged Trace.

3.5.3 Optimization Conditions

The optimal control problem is the same as formulated by Eq. 3.3, with the objective being
minimization of total CO2 emissions. This optimization is performed for different CO2

conditions related to different grid mixes (Fig. 3.16), for initial SOC conditions ranging
from 0.3 to 0.9 in steps of 0.1. The driving pattern is the same as described previously in
section 3.2.3. A drive cycle of 23.9 miles is repeated at 8 AM and 5 PM.

The optimization algorithm as presented in section 3.3.2 above is used in all the cases.
This demonstration shows one possible use of the integrated optimization framework. Again
it is necessary to note that we wish to understand the optimal tradeoffs and obtain insight.
Thus we optimize several cases rather than obtaining an optimal stochastic solution. Thus
these results are specific to the assumptions on wind power, grid mix and driving behavior.
Hence we present a qualitative analysis of interesting trends rather than focusing on the
numbers.
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Figure 3.17 CO2 traces Produced by a Grid Mix with Different Amounts of Wind

3.5.4 Results

The results we present will be the optimal trajectories for an individual PHEV which inter-
acts with the grid and follows the driving patterns as described in section 3.2.3. The results
are highly sensitive to the driving requirements and the grid mix. However, our goal is
to analyze each optimal solution in detail and learn from these ’best case’ scenarios. The
following are the highlights of the results:

• Total CO2 emissions decrease due to inclusion of wind power (even in the case of
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lowest wind power).

• Due to our integrated charging and power management algorithm, we capture the

optimal benefits offered by wind power on the grid. It is shown that the optimal

trajectories vary significantly depending on the wind penetration.

• We quantify the loss of optimality resulting from wind variability in Fig. 3.20 by

providing a comparison of the ’yearly average’ optimal solution to the other solutions.
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Figure 3.18 Optimal Trajectories for Days with No and Low Wind

Next, we explain each of these results in more detail. It is obvious that adding large
quantities of wind will result in reduced CO2 per unit energy produced on the grid. It is
less straightforward to understand the impact of increased wind power on reduction in CO2

produced from transportation. Total CO2 emissions decrease due to inclusion of wind power
(even in the case of lowest wind power). First, we compare two cases, one without any
wind power on the grid and the other with a low amount of wind power on the grid (low
amount of wind power refers to the low day as described in section 3.5.2). Figure 3.18
presents the resulting CO2 produced over 24 hours due to the PHEV’s transportation needs
in the two cases. The observations from this figure are that there is a small reduction in CO2
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(2%) due to inclusion of wind power (in this case of lowest wind power) and the optimal
SOC trajectories in the two cases are different. The difference is observed in the first few
hours, when the CO2 output of the grid is lower due to wind. For the low day, there is an
insignificant amount of wind for the rest of the day. Thus even though a higher amount of
grid energy is used for driving in the case with low wind (and a higher amount of gasoline
used in the case with no wind), the amount of CO2 produced differs only by 2%.
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Figure 3.19 Optimal Trajectories for Days of High, Low and Medium Wind

A comparison of optimal trajectories for the three days with different levels of wind
penetration was performed. Fig. 3.19 shows the difference in optimal trajectories related to
the three days with different amounts of wind. The differences are due to - i) the tradeoffs
between the CO2 produced by gasoline fuel and electricity and ii) due to varying amounts of
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wind throughout the day, resulting in different CO2 from the grid at different times. Thanks
to a combined approach, we can capture these differences. For example, in the medium
wind case, we observe that higher grid CO2 (due to low wind) during hours 10-16 results in
the optimal solution using some gasoline for the second trip rather than charging before the
second trip. Such tradeoffs between gasoline usage and charging are seen in all the cases
depending on the CO2 produced by the chosen grid mix.
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Figure 3.20 Comparison of loss of optimality

As mentioned in section 3.5.2 on wind data, it is not practical to implement optimal
solutions for every single day due to wind variability. So we obtain an optimal solution for
the yearly average wind case (which is fairly consistent as shown in Fig. 3.12). Comparing
this average performance to the optimal solutions on the days with high, low and medium
wind, we quantify the loss of optimality resulting from wind variability in Fig. 3.20. In
particular, there is a maximum loss of 10% amongst the cases considered. Looking at
the variation in wind power in Fig. 3.13 and in the wind penetration in Fig. 3.15, it can
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be observed that despite such variations, the final CO2 loss (of optimality) as compared
to applying the average-best control solution is 10% in the worst case. This is due to the
narrower range of variations in the resulting CO2 produced by the grid in all the cases, as
seen in Fig. 3.16. Quantifying the penalty stemming from variability of wind energy is a
unique finding of this study. This showcases the opportunities to develop control rules for
different grid mixes and eventually obtain stochastic optimal results.

3.6 Summary

A complete optimal framework which considers the dependence between optimal charging
and power management is introduced. It is computationally feasible due to a DP implemen-
tation using backward looking system dynamics model. The steps of the framework are
explained and applied to 24 hour driving and grid mix scenarios. Three different cases with
days of high, low and medium CO2 are studied along with two naturalistic driving trips.

The results show that it is necessary to consider a combined approach to optimally
charge and drive a PHEV. Depending on the objective and constraints, it is shown that it
is not always optimal to fully charge the battery before every driving trip as assumed in
the literature. This framework is also capable of exploring tradeoffs that might result from
usage of a PHEV for grid related services or restricted charging.

This optimal control approach of considering combined charging and power manage-
ment of a PHEV with a DP algorithm was also used to study the synergistic interaction
of the PHEV with a cleaner grid (more wind). Three different cases of varying amounts
of wind power on the electric grid were considered. The results show that an integrated
approach is capable of extracting the optimal CO2 reduction benefit wind power depending
on the chosen wind power trace. Since it is not practical to implement optimal solutions for
every single day due to wind variability, a comparison of loss of optimality resulting from
applying average optimal solutions on the high and low wind days is also presented.
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Chapter 4

Multi-Objective Dynamic Programming
for Optimal Control of a PHEV

This chapter presents a computationally attractive Multi-Objective Dynamic Programming
(MODP) algorithm. The algorithm is applied to obtain the optimal supervisory control for
PHEVs to minimize two objectives - total CO2 emissions and operational dollar costs to an
individual PHEV owner. First, the literature and the motivation for this work is discussed in
detail. Then the optimization conditions chosen for this study are presented. The vehicle
powertrain and grid dispatch models used in this study have been presented in detail in
chapters 2 and 3. Next, the multi-objective dynamic programming algorithm is presented.
Finally, the results show the optimal Pareto front with a good spread ranging from one
extremal point to the other. The results also reveal interesting insights for the tradeoffs that
can be achieved in minimizing the CO2 emissions and cost objectives for the underlying
grid mix and driving conditions assumed.

4.1 Literature and Motivation

This chapter develops an optimal control algorithm to address multiple objectives and obtain
the Pareto set directly, without any prior weighting factors. The algorithm is applied to obtain
the optimal PHEV supervisory control considering two objectives; total CO2 emissions and
dollar costs to the consumer. A PHEV, unlike an HEV, is expected to exchange significant
amounts of energy with the electric grid. Through this interconnection, PHEVs can create
significant opportunities for CO2 emissions reduction, reduction of operational costs to
utilities and consumers and provide several vehicle to grid (V2G) services such as frequency
regulation [2, 3]. To best utilize a PHEV for these multiple purposes, it is necessary to
obtain optimal control solutions considering multiple objectives. Thus, our overarching goal
in this chapter is to develop a multi-objective control optimization framework and apply it
to obtain optimal PHEV supervisory control solutions.
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Previous research in optimal PHEV and HEV supervisory control have mostly con-
sidered a single objective. The objectives considered include fuel consumption [29, 98],
emissions [99, 100], dollar costs [36, 86] battery health [101] and drivability [33]. In
[33, 99], authors consider emissions or drivability as constraints while optimizing objectives
such as fuel economy. Though this approach allows for consideration of multiple objectives,
the solutions are optimal only with respect to one objective, while satisfying a constraint
on the other objective. The optimization methods used include Equivalent Consumption
Minimization Strategy (ECMS) [98], Intelligent rule based control [29], Dynamic Program-
ming (DP) [36, 86, 100], Evolutionary Algorithms (EA) [9, 38]. The dynamic programming
approach explicitly uses Bellmans principle for optimal control, and thus guarantees global
optimality. The output of this process is a supervisory control trajectory that can be used
to gain important physical insights and extract implementable rules for subsequent online
power management [50, 51]. This motivates us to apply optimal control using DP.

To consider multiple objectives in supervisory control optimization, two approaches have
been adopted previously. One is using Multi Objective Evolutionary Algorithms (MOEA)
[57, 58]. Since EAs work with populations of points in each iteration, a number of Pareto-
optimal solutions may be captured in an efficient manner using non-domination operators
[59, 60]. However, the supervisory control has to be parameterized in order to use such
algorithms due to their static nature. This parameterization results in a loss of optimality be-
cause the optimal control actions are dynamic in nature. The second approach is to combine
multiple objectives into a single objective through a weighting scheme, and use the optimal
control methods mentioned in section 1.2.1. Though this approach has produced results
showing the tradeoffs between the objectives successfully, it has the following drawbacks.
First, the choice of weights determines the outcomes and these weights are subjectively
chosen. Second, in order to obtain the complete Pareto front, the optimization has to be
repeated several times. Finally, this approach is not conducive to obtain the non-convex
regions of the Pareto front [61].

Multi-Objective Dynamic Programming (MODP) extends the Bellman’s equation to
consider multiple objectives through a non-domination operator [102]. MODP obtains
the optimal Pareto surface directly while retaining the dynamic nature of the optimality.
However, it is computationally expensive in terms of both time and memory requirements.
The major cause for these computational issues is that MODP requires the calculation of a
non-dominated surface at every time step for every state discretization. Algorithms have
been proposed to improve computational time [103, 104]. Such algorithms require convexity
assumptions to hold true and cannot be easily applied to a complex nonlinear system such
as a PHEV powertrain.
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There are two major contributions in this chapter. First, we integrate ideas from MOEA
with MODP to capture Pareto-optimal solutions with lower computational time and memory
requirements. Thus retaining the dynamic nature of optimality from MODP, while obtain-
ing a uniformly spread Pareto surface in a computationally feasible manner. Second, this
algorithm is applied to obtain the optimal charging and power management solutions for a
series PHEV powertrain to minimize the total CO2 emissions and dollar costs incurred by
a consumer. The results demonstrate the non trivial tradeoffs between the objectives and
provide insight in designing the optimal supervisory control. Furthermore, the algorithm
can be used for multi-objective optimal control of other systems.

4.2 Optimization Conditions

The objective in our optimal control problem is to minimize total CO2 produced and dollar
costs incurred by a given PHEVs use of fuel and electricity. The PHEV powertrain model
ODEs and its backward looking implementation are presented in section 2.2.4. The charging
of the PHEV battery from the grid and the grid dispatch model are discussed in section 3.2.2.

For this study, the PHEV performs two identical trips (23.9 miles long) in the morning
and afternoon. Fig. 4.1 shows the vehicle velocity for each trip as a function of travel
distance. The total daily driving distance of 47.8 miles necessitates either gasoline usage
or multiple battery charging events during the day, thereby elucidating some interesting
tradeoffs between battery charging and fuel consumption.

The CO2 shown in the first subplot of Fig. 4.2 is obtained by using the grid dispatch
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model. The cost trace in Fig. 4.2 is obtained through a different method.

• CO2 trace: This particular trace was chosen as it closely represent a medium level

of CO2 from the Michigan grid. The medium level of CO2 is in reference to the

year-long CO2 production on the Michigan grid (see [90] and section 3.2.2). Since

the grid dispatch changes hourly, these traces change hourly.

• Cost trace: The grid dispatch model cannot accurately predict the costs as the cost-

structure adopted by different utilities is proprietary, and changes drastically with the

inclusion of newer electricity sources [90]. Hence we use the Midwest ISO data on

the cost of buying electric power to the utilities [105]. These electricity costs are in

the range of 0.3-3 cents/kWh based on the grid power demands. The electricity prices

faced by consumers in the Midwest at different times of the day (again based on grid

demand) ranges from 5-25 cents/kWh [106]. Thus we multiply the electricity cost

trace as given by the Midwest ISO by 10. This increase in the cost as faced by the

consumer includes transmission and distribution costs, other operational costs and

profit margins of the utilities. The resulting cost trace is plotted along with the CO2

trace in Fig. 4.2.
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Daily driving distance and traffic conditions affect PHEV energy usage: a fact that has
motivated researchers to optimize PHEV operation over large families of trips [36, 88].
Similarly, the grid mix varies both temporally and spatially [3, 19, 90], resulting in different
amounts of CO2 and costs. This work, in comparison, focuses on developing of an optimiza-
tion framework capable of handling multiple objectives in an elegant manner. We illustrate
this framework for the trip and grid mix details in Fig. 4.3, but the framework is broadly
applicable to any trip profile, grid mix and set of objectives.
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Figure 4.3 Driving events, Grid CO2 and Costs over the 24 hour Optimization Horizon.

4.3 Multi-Objective Control Optimization

The optimization problem is formulated as follows
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min
(z(t),u(t))

J =


24
∑
0

(
CO2
gal ṁ f ∆tdr +

CO2
kWhPb∆tch

)
24
∑
0

(
$

gal ṁ f ∆tdr +
$

kWhPb∆tch

)
 (4.1a)

subject to ż = f (z(t),u(t), t) (4.1b)

z ∈ Zc and u ∈Uc (4.1c)

The optimization objective, J, is the total amount of CO2 produced and the total op-
erational dollar costs during a 24-hour period. Gasoline consumption is ṁ f gallons per
time step during driving (∆tdr = 2 sec). Battery charging power is given by Pb in kW and
the charging time step is ∆tch = 60 sec. The price of gasoline is chosen as $3/gallon and
the CO2 rate is 8.78 kg/gallon. The cost and emissions of electricity are described in the
previous subsection. The constraints on the states and inputs (i.e. the sets Zc and Uc) are
described in detail in the previous chapter (section 3.2.2).

Note that there are two components to each of the costs. One component is from fuel
usage while the other is from electricity usage. In order to obtain a total optimal solution,
we have to integrate the process of optimal charging and optimal power management into
a single framework. This is not a trivial problem as the system dynamics and constraints
differ significantly during the two processes. In [107] and chapter 3, we present a dynamic
programming based algorithm that integrates the two optimal control problems. This is
achieved by exploiting the constraints at the boundaries of the two problems and provides
a complete optimal control solution over the driving and charging events. The results
presented in [107] also show the need for the consideration of the two problems under a
single framework. Next, the MODP algorithm is presented.

4.3.1 Multi Objective Dynamic Programming Algorithm

To state the algorithm briefly, the Value function is initialized in step 1. All possible future
paths are calculated in step 2. Step 3 obtains the non-dominated paths. The set of possible
non-dominated paths is filtered down to a manageable size by using the concept of crowding
distance in step 4.

The following algorithm was implemented for MODP (framework presented in Fig. 4.4.
Note that upper case letters indicate sets and italicized letters indicate elements of a set.

• Step 1- Initialize an Optimal Cost-to-go (or Value function) V(Zd ,t f ,C) at the final
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time step t f , over all states defined by the discretization Zd = {z1,z2,. . . ,zi,z j,. . . ,zN},
where N is the number of state discretizations. The set of objectives is given by C (in

our case C = {CO2,$}). Thus V (zi,t f ,C) is a vector in R2 for each state point zi at time

step t f .

• Step 2- For each state zi in Zd , at time step k ∈ [1, t f −1], calculate the set of all value

function vectors (V ′) by evaluating Eq. 4.2 over all possible future state transitions

z j(k+1) given by the set Zc from Eq. 4.1c.

V ′(zi(k),k,z j(k+1),C) = c(zi(k),k,z j(k+1))+V ′(z j(k+1),k+1,C) (4.2)

In our problem we have two objectives, so V ′(zi(k),k,z j(k+1),C) is a vector in R2.

The costs of transitioning from zi at time step k to z j at time step k + 1 is given

by the vector c. Thus V’(zi(k),k,C) is the set given by V′(zi(k),k,C) = { y : y =

V ′(zi(k),k,z j(k+1),C), ∀z j ∈ Zc}

• Step 3- For each state zi in Zd , at every time step k, evaluate the set of non-dominated

value functions (VND) by checking the following conditions for all elements of V′.

For elements yr, ys ∈ V′, yr is said to dominate ys, iff yr(n)≤ yr(s) for all n objectives

and the inequality is strict for some n.

• Step 4- Sort the elements in VND according to any one objective. Evaluate the crowd-

ing distance for all elements in VND as defined and demonstrated in [60]. Select

a threshold number of points (which is 20 in our case) with the highest crowding

distances to effectively represent the Pareto surface given by V.

Repeat steps 2 to 4 from time step t f -1 to the initial time step = 1 using the set V from
step 4. At time step = 1, the set V represents the optimal Pareto front at all state points. A
flowchart for the algorithm is presented in Fig. 4.4.

All the above steps except step 4 are part of previous MODP formulations [102]. Without
step 4 the number of elements in the set VND and consequently in V increase exponentially
with every time step. A theoretical discussion on such phenomenon can be found in [103].
The use of a crowding distance metric keeps the number of elements in the set VND fixed
at every time step (to a chosen threshold). This results in feasible computational time and
memory requirements. For the conditions described in section 4.2, the algorithm solved for
the optimal Pareto front in three days while generating more than 10 GB of data.

Several distance metrics have been previously used to obtain representative Pareto
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Figure 4.4 Flowchart describing the MODP Algorithm.

surfaces with lower computational costs [59, 60]. Crowding distance as defined and demon-
strated in [60] has the following advantages. First, it preserves diversity or the Pareto surface
has a uniform spread. This can be observed in the Pareto surface presented in the results
section. Second, it can be calculated faster than sorting the non dominated elements (step 3
in the algorithm), thereby adding a negligible computational effort to the entire algorithm.
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4.4 Optimization Results

The above optimization algorithm (section 4.3.1) is applied to optimize the supervisory
control for PHEV charging and on-road power management under the conditions presented
in section 4.2. The initial and final SOC are restricted to be the same (= 0.6). The following
four observations are gathered from the results.

First, the Pareto front reflecting the tradeoffs between achieving minimum CO2 and
minimum operating costs for a single PHEV has a good spread (Fig. 4.5). Since the
crowding distance metric gives importance to retaining the extreme points of the Pareto
front, we can see that the extreme points are captured. This is of vital importance because
it signifies that filtering of the non-dominated surface retains optimality. The two extreme
points (represented by square markers) are obtained by single objective optimization.
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Figure 4.5 Optimal Pareto Front.

Second, for the chosen grid and driving conditions, we can infer at least two interesting
tradeoffs. 1) If a consumers goal is cost centric, by choosing point 4 instead of point 5 for
optimal PHEV operation, we will be increasing the operating costs by 11.4% while reducing
the CO2 by only 4%. 2) If our goal is CO2 centric, then the Pareto front shows that we
can obtain a 15.2% reduction in costs with only a 2.9% increase in CO2 by choosing point
2 instead of point 1. Again, these results are only of qualitative importance because they
are for the specific grid mix and driving behavior assumed. Depending on the underlying
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conditions the tradeoffs will change and our framework (section 4.3.1) can expose such
tradeoffs.

Third, in Fig. 4.5, the regions between points 1 and 2 and around point 3 show that the
algorithm captures the non-convex regions of the Pareto front. Multi objective optimization
problems considered as single objective optimization problems with linear weighting cannot
capture these points [61].
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Figure 4.6 Comparison of Optimal Trajectories (for points 1 and 5).

Finally, by studying the optimal trajectories corresponding to the extremal points in
Fig. 4.6, we observe that the optimal trajectories correspond to the best cost and CO2 cases.
This again verifies that the Pareto front has a good spread. Fig. 4.7 compares the optimal
trajectories corresponding to points 1 and 2 (from Fig. 4.5). Applying methods presented in
[100], or intuitively, we can obtain implementable rules for optimal control depending on the
acceptable tradeoffs. For example, by setting a threshold of 683 g/kWh and charging below
this threshold with no other restrictions approximately produces the results corresponding to
point 2. This results in significant cost reduction for a small increase in CO2 emissions.
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Figure 4.7 Comparison of Optimal Trajectories (for points 1 and 5).

4.5 Summary

The development of a computationally attractive MODP framework which utilizes the
concept of crowding distance from MOEA to efficiently characterize the Pareto front is ex-
plained. Crowding distance is used as a metric to retain fewer number of points to represent
the Pareto front at every state discretization and every time step. This results in only a linear
increase in memory and time requirements with the number of time steps as compared to
and exponential increase in previous approaches. Thus, the refinement of the Pareto front
significantly reduces the computational time and memory requirements making the problem
feasible. However, this refinement still obtains a uniformly spread Pareto front that spans
the entire range of the objective space thereby retaining sufficient optimal features of the
Pareto front.

This algorithm is applied to obtain the optimal supervisory control for a PHEV to mini-
mize two objectives - CO2 emissions and operational dollar costs to an individual PHEV
owner. The algorithm generates an optimal Pareto front with good spread ranging from one
extremal point to the other. For the grid mix and driving behavior assumed, we exposed
tradeoffs related to both the objectives. It is shown that the tradeoffs are almost linear for
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a cost centric goal, whereas the tradeoffs for a CO2 centric goal show that allowing for a
small increase in CO2 can result in a more amplified reduction in operational dollar costs.
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Chapter 5

Computationally Efficient Combined
Plant Design and Controller

Optimization

This chapter presents a novel approach to the optimization of a dynamic systems design and
control. Solving these two problems by considering their dependence on each other results
in a system level optimum. We propose a novel approach that uses a previously-derived
coupling measure to quantify the impact of plant design variables on optimal control cost.
This proposed approach has two key advantages. First, because the coupling term quantifies
the gradient of the control optimization objective with respect to plant design variables, the
approach ensures combined plant/control optimality. Second, because the coupling term
equals the integral of optimal control co-states multiplied by static gradient terms that can
be computed a priori, the proposed approach is computationally attractive.

The literature and motivation for this research is presented first. Then, the general
equations concerning the design and control optimization problems are introduced. The
optimality conditions are derived and discussed with particular attention to the meaning
and calculation of the coupling term. An example problem of integrated structure/control
optimization of a beam under vibrations is proposed and solved by using two methods,
one which uses the coupling measure and the other without using the coupling measure.
The results of the combined plant and controller optimization problem obtained by the two
methods are compared and the numerical relevance of the coupling measure is discussed.

5.1 Literature and Motivation

This chapter presents a novel approach for optimizing the design (i.e., plant) and control of
a dynamic system simultaneously. The approach rigorously guarantees combined optimality,
and is also more computationally efficient than traditional simultaneous optimization. Solv-
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ing the plant design and control optimization problems simultaneously or in a combined
fashion 1) guarantees complete dynamic system optimality [63, 64, 65, 66] and 2) considers
the dependence of the controller design problem on the plant design [63, 67, 68, 69, 70].
The computational cost of simultaneous plant/control optimization can be quite prohibitive
[71, 72, 73]. Hence, there is need for an efficient yet rigorous computational plant/control
optimization framework. In this paper, such a framework is developed. Its use is demon-
strated by applying it to a problem of beam mass reduction (plant design optimization) and
vibration attenuation (control optimization).

Solving the plant design and control optimization problems together guarantees complete
dynamic system optimality [63, 108] and helps attain synergistic results which cannot be
always achieved by solving them separately [64]. If the two optimization problems depend
on each other, then we call the system ”coupled”. In coupled systems the differences in
the system design and performance obtained from combined optimization vs. sequential
optimization is more pronounced [108, 109]. It is also shown that in some cases the plant
design and the control optimization problems may be conflicting [64]. This means that
an optimal plant design may be expensive (or hard) to control. Complete dynamic system
optimality is also essential to ensure a fair comparison of the performance of two or more
systems [110]. Finally, an understanding of the dependence of the controller design problem
on the plant design can help decide the need for a combined approach vs. a sequential
approach [111]. It is with the above considerations in mind that Soong and Cimellaro
emphasize integrated control/structural systems as an important research topic in their article
on future directions of research on structural control [65].

Several solution strategies have been outlined for effectively solving combined design
and control optimization problems [108, 112]. These strategies can be broadly divided into
Simultaneous and Nested strategies. In the simultaneous strategies the two optimization
problems are considered together hence guaranteeing system level optimality by intrinsically
considering the dependence between the two optimization problems . The main challenge in
implementing the simultaneous solution strategy is reconciling the dynamic nature of the
control optimization problem with static nature of the design optimization problem [66, 113].
This challenge is resolved by parameterizing the controller (or obtaining surrogate models
based on optimal control solutions) and considering these parametrized variables along with
the design variables in a single optimization [29, 66, 113]. Thus simultaneous strategies are
computationally attractive [66, 108] but lose some optimality due to the paramterization of
some dynamic characteristics. Nested optimization strategies consider the two optimization
problems separately in an iterative fashion incorporating the result of design optimization
problem on the control optimization problem and vice versa in the next iteration [112, 114].
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Nested solution strategies have been used due to the freedom it provides with regard to
choosing the structure of the controller [112], but this generally adds to the computational
cost in comparison with simultaneous methods described above.

Concurrently sensitivities, jacobians, or gradients that capture the dependence of the
optimal controller on the plant design have been used in solution strategies to further support
and strengthen these methods [63, 70]. These measures have the following attractions -
1) They give a perspective on the coupling between the plant design and optimal control
problems to choose the starting design for the problem, 2) can be used to tune optimization
parameters such as weighting of the design and control optimization objectives and 3) to
choose an appropriate optimization algorithm that can be executed effectively [63, 70]. Pe-
ters et al. discuss the definitions and applicability of different measures of coupling in [70].
The two coupling measures discussed in [70] are bi-directional coupling and unidirectional
coupling. Bi-directional coupling considers the dependence of the design problem and
the control problem on each other [115], whereas unidirectional coupling only considers
the dependence of the optimal control problem on plant design [76].This is a reasonable
assumption for system optimization problems that can be partitioned such that the coupling
is unilateral. We use the unidirectional coupling term derived in [76] in setting up our
computationally efficient combined optimization framework.

Computational costs related to combined optimization methods are generally higher
than those for sequential optimization methods. This is due to the need for a higher number
of optimal control evaluations and larger design space for the combined optimization. The
cost of computing sensitivities or Jacobians capturing the impact of plant design on control
performance can also be a computational challenge as mentioned in [71, 73]. In [72], authors
use evolutionary algorithms for simultaneous plant design-controller optimization of a two
link planar manipulator and explain that gradient based (local) optimization techniques
cannot be used for this complex non-linear optimization problem. Systems exhibiting non-
smooth behavior need to be solved using algorithms that find the global optimal [71, 73].
These global optimization methods such as evolutionary algorithms are computationally
intensive mainly due to an increased number of function evaluations. Due to these reasons,
the computational cost of combined plant and control optimization can be quite prohibitive.

In summary, combined optimization methods can yield systems that achieve synergistic
plants and controllers, and satisfy combined plant/control optimality but computational costs
might not favor the use of such methods. Motivated by this problem, we use a previously de-
rived coupling term [76] in the following ways. First, because this coupling term quantifies
the sensitivity of the optimal control objective with respect to plant design variables, it can
be used as a Jacobian within the plant design problem in a way that guarantees combined
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optimality. Second, because the coupling term is given by the integral of optimal control
co-states multiplied by a static gradient function that can be computed a priori, such use
of the coupling term as a sensitivity function for plant optimization is computationally
attractive. Specifically, these insights provide a framework that makes it possible to optimize
a system’s plant for ease of control, thereby guaranteeing combined plant/control optimality
within a tractable computational setting. The unique contribution of this chapter to the
literature is the development of this framework, and its demonstration within the context of
an optimal beam design and vibration attenuation problem. Preliminary work and results
regarding the development of this framework is presented in [74].

5.2 Problem Definition

There are two optimization problems to be solved: a plant design optimization problem and
a controller optimization problem. First, we define the plant and controller optimization
problems separately. Then, the combined plant and controller optimization problem is de-
fined. The plant design optimization problem is typically expressed as a static optimization
problem as in Eq. 5.1.

min
xp

Fp subject to hp(xp) = 0 and gp(xp)≤ 0 (5.1)

The goal of the plant optimization problem is to minimize a plant objective (Fp) by
varying a design vector (xp) subject to equality and inequality constraints hp and gp respec-
tively. The control optimization problem is commonly formulated as a dynamic optimization
problem given in Eq. 5.2

min
z(t),u(t),T

(
Φ(z(T ),T )+

∫ T

0
(L(z(t),u(t), t)dt

)
subject to

ż = f (z(t),u(t), t),η(u(t), t)≤ 0,Ψ(z(T ),T ) = 0,z(t0) = z0

(5.2)

This formulation of the continuous-time optimal control problem neglects disturbances
and sensor noise and assumes all states to be measured directly for simplicity. Extensions
of the above formulation to combined plant/observer/controller optimization problems are
presented in [76]. In Eq. 5.2, the objective is to minimize a weighted sum of a final state
objective function (Φ) and the time integral of a functional (L). This weighted sum reflects
two common goals in controller design, namely, minimal steady state error and acceptable
transient behavior. Optimization variables include the control input trajectory, u(t), the state
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trajectory, z(t), and the terminal time, T . Optimization constraints are the plant’s open-loop
state equations ( f ), limitations on control actuation (η), possible constraints on the final
state or final time (Ψ), and initial conditions (z0).

The two problems presented above are combined by a linear weighting of their objectives.
The constraints and optimization variables of the combined problem are the union of the
constraints and optimization variables of the two problems respectively. In [61], several
multi-objective optimization weighting methods are described. From these, we adopt linear
weighting for simplicity. This paper accounts for the influence of plant design on controller
objective and constraints, but neglects the influence of controller design on plant constraints
for simplicity. This is accounted for in Eq. 5.3 by the presence of the design vector (xp) in
the system dynamics and control actuation constraints. While this formulation limits the
generality of our analysis somewhat, we are still able to address a large number of practical
combined plant and controller optimization problems where controller design does not affect
the set of feasible plants. Based on these assumptions, the following combined plant and
controller optimization problem is considered:

min
xp,z,u,T

{
wpFp +wc

(
Φ(z(T ),T )+

∫ T

0
(L(z(t),u(t), t)dt

)}
subject to hp(xp) = 0,gp(xp)≤ 0, ż = f (z(t),u(t), t,xp),

η(u(t), t,xp)≤ 0,Ψ(z(T ),T ) = 0,z(t0) = z0

(5.3)

5.3 Optimality Conditions

Suppose that the objective function and constraints in Eq. 5.3 are all continuous and differ-
entiable with respect to the combined optimization variables (xp,z(t),u(t),T ). First order
necessary combined optimality conditions, or “system” optimality conditions are derived in
[76] using calculus of variations for the problem in Eq. 5.3. We also present a derivation of
the optimality conditions in Appendix C. The resulting optimality conditions are as follows

hp(x∗p) = 0,gp(x∗p)≤ 0, ż∗ = f (z∗(t),u∗(t), t,x∗p),

η(u∗(t), t,x∗p)≤ 0,Ψ(z∗(T ∗),T ∗) = 0,z∗(t0) = z0
(5.4)
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α
∗ 6= 0,β ∗ ≥ 0,β ∗T gp(x∗p) = 0,λ ∗(t) 6= 0

µ
∗(t)≥ 0,µ∗(t)η(u∗(t), t,x∗p) = 0,ν∗ = 0

(5.5)

[
dFp

dxp
+

dhT
p

dxp
α +

dgT
p

dxp
β +

wc

wp

∫ T

0

(
∂ f T

∂xp
λ +

∂ηT

∂xp
µ

)
dt

]∗
= 0 (5.6)

H = L+ f T
λ ,

[
∂H
∂ z

+ λ̇

]∗
= 0,

[
∂H
∂u

+
∂ηT

∂u
µ

]∗
= 0 (5.7)

[
∂Φ

∂ z
+

∂Ψ

∂ z
ν−λ

]∗
t=T

= 0 (5.8)

We name these conditions the Leitmann conditions in acknowledgement of the fact
that an early version of these conditions appears in the pioneering text on the calculus of
variations by George Leitmann. In these conditions, the * superscript denotes optimality.
Equations 5.4 represent constraint satisfaction at the optimum, which is an obvious neces-
sity for the desired optimum. Equations 5.5 are transversality conditions associated with
penalizing constraint violations. Equations (5.6-5.8) are the stationarity conditions that
the objective and the constraints have to satisfy at the optimum. The left hand sides of
Eqs. 5.6-5.8 are the variations of the augmented combined design and control objective
with respect to the optimization variables (xp,z(t),u(t),T ), where the augmented objective
considers the constraints through Lagrange multipliers (α,β ,λ (t),µ(t),ν). Equations (5.7)
represent a general control optimization problem, which is solved with the final condition
given by Eq. 5.8.

In [76], it is observed that Eq. (5.6) is very similar to the KKT stationarity conditions.
This is because Eq. (5.6) represents the variation of the augmented Lagrangian with respect
to the design vector (xp ). The difference between KKT conditions and Eq. (5.6) is the last
term in the equation. This term is a result of the dependence of the controller optimization
problem on the design vector (xp). Hence this term is denoted by Fathy in [76] and [63] as
the coupling term (Γ):

Γ =
wc

wp

∫ T

0

(
∂ f T

∂xp
λ
∗+

∂ηT

∂xp
µ
∗
)

dt (5.9)

It should be observed that the control objective is dependent on the design vector (xp)
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through the constraints ( f ) and (η). Hence it is suggested in [76] that the coupling term
can also be mathematically represented as Eq. (5.10) below. We prove this equality of the
coupling term defined by Eqs. 5.9,5.10 in Appendix D.

Γ =
wc

wp

dF∗c
dxp

, where

F∗c = Φ(z∗(T ),T )+
∫ T

0
(L(z∗(t),u∗(t), t)dt

(5.10)

It should be noted in Eq. 5.10 that the coupling term is related to the gradient of the
optimal control objective (F∗c ) and not Fc. In the results section we will show that the two
expressions for the coupling term, given by Eq. 5.9 and Eq. 5.10 are also numerically equal.
Thus the coupling term quantifies the coupling between the plant and controller optimization
problems by considering the influence of plant design on the optimal attainable control
objective.

5.4 Optimization Framework

Figure 5.1 is a flowchart explaining how Eqs. 5.4-5.9 are used in a combined system opti-
mization framework. Numerically, to obtain the combined optimal solution, Eqs. 5.7,5.8
are solved to obtain an optimal controller for a given design, and then the resulting co-state
trajectories are substituted in Eq. 5.6 to obtain the gradient of the combined objective, which
is then used to obtain the next design based on the optimization algorithm being used. The
above method is repeated for the next design till the gradient given by the LHS of Eq. 5.6
is close enough to zero, or the change in design variables is within an allowed tolerance.
This is very similar to previous nested optimization algorithms employed in [108, 111].
The difference between our nested optimization and the previous formulations is that in the
design chosen for the next iteration, in [111], authors consider the sensitivity of the closed
loop eigenvalues to the structural design, and in [108], authors do not use any sensitivity
information while our proposed framework considers the sensitivity of the optimal attainable
control objective to the design. This sensitivity is encapsulated in the above formulation
through the coupling term, Eqs. 5.9,5.10.

Another difference compared to previously used computational methods is explained
here. Previous nested or simultaneous combined design and control optimization approaches

used the gradient calculated in Eq. 5.6 of the form
(

dFp
dxp

+
dhT

p
dxp

α +
dgT

p
dxp

β + wc
wp

dF∗c
dxp

)
. In the
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calculation of this gradient, the calculation of wc
wp

dF∗c
dxp

requires the solution of the optimal

controller problem. It should be noted that to calculate wc
wp

dF∗c
dxp

the number of times the
optimal control problem has to be solved is dependent on the dimension of the design vector
(xp), i.e. the number of design variables. If n is the dimension of the design vector (xp),
the optimal control problem has to be solved at least n+1 times to obtain the derivative
wc
wp

dF∗c
dxp

. This can be computationally very expensive depending on the time taken to solve the
optimal control problem. In the optimality conditions given by Eq. 5.6, we use the coupling
term defined in Eq. 5.9, which is equal to wc

wp

dF∗c
dxp

. In Eq. 5.9, the coupling term is calculated
as an integral and needs the solution of the optimal control problem for only one design.
In the results section, we show that this computational advantage of solving the optimal
control problem only once instead of n+1 times does indeed translate to a reduced number
of function calls required to obtain the gradient at each design. This results in a reduced
number of total function calls in the combined optimization and reduced computational
time.

5.5 Beam Design and Control Problem

The coupling between the plant and controller optimization problems is particularly manifest
in vibration control applications as shown in [64, 65, 113]. In [64], Smith et al. show that an
optimal combination of passive (design) and active (control) vibration attenuation obtained
by combined design and control optimization performs better than the optimal combination
of passive and active vibration attenuation obtained by a sequential design optimization and
then control optimization. For this reason we choose the problem of structural design of a
cantilever beam and its controller. The plant optimization problem aims to obtain a structure
with the minimum total mass of the beam. The controller optimization problem is posed
as an LQR problem. The beam is modeled as a finite collection of N nodes. The Euler-
Bernoulli beam vibration equations are obtained for each node and they are represented in
state space form. The states (z(t)) of the structure are the displacement and velocity of each
node. The width of each node is a design variable, keeping the thickness (th) and length
(dx) of all the nodes the same. Thus the design vector (xp) is the vector of widths of each
node (w). The control input (u(t)) is a moment applied at the fixed end of the cantilever.
The beam is viewed as a linkage which is desired to be rotated by a certain angle. Once this
desired angular position is reached the beam has a certain velocity at this final position. The
control problem is to bring the beam to rest given this initial angular velocity. Figure 5.2
shows the cantilever beam, the moment input applied to it at the fixed end, a diagram of a
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Figure 5.2 Diagram of the beam, an example node, the initial conditions and boundary conditions.

node and the boundary conditions used in this problem.
With these definitions of the variables we write the design optimization problem as:

min
w

N

∑
i=1

mi subject to wmin ≤ wi ≤ wmax ∀i (5.11)

where mi = ρ(th)(dx)(wi) is the mass of node i. wmin and wmax are the minimum and
maximum allowable width respectively of a node. ρ is the density of the material. The
control optimization problem for the beam is formulated as follows:

min
(z(t),u(t))

∫ T

0

(
zT Qz+uT Ru

)
dt subject to

ż = f (z,u) = Az+Bu,z(0) = z0

(5.12)

The initial conditions for this problem are z0. The cantilever beam has an initial angular
velocity as explained previously. This angular velocity is equivalent to each node having a
linear velocity whose value depends on the distance of the node from the fixed point. The
vector (z0) assigns this initial linear velocity to each node. Using the above definitions of
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the design and controller optimization problems, the combined optimization problem is:

min
(xp,z(t),u(t))

{
N

∑
i=1

mi +Wc

(∫ T

0

(
zT Qz+uT Ru

)
dt
)}

subject to wmin ≤ wi ≤ wmax ∀i, and

ż = f (z,u,w) = A(w)z+B(w)u,z(0) = z0

(5.13)

For the problem in Eq. 5.13, the optimality conditions for the cantilever beam design
and control problem can be obtained similar to those given in Eqs. 5.4-5.8. The terms in
Eq. 5.9 for the coupling measure Γ are obtained using the following expressions Eq. 5.14, in
which the matrix differentials are analytically derived

∂ f T

∂xp
=

[
∂A
∂w

z(t)+
∂B
∂w

u(t)
]T

,
∂ηT

∂xp
= 0 (5.14)

Equations 5.7,5.8 are the differential equations for the optimal state (z∗(t)) and optimal
co-state (λ ∗(t)) trajectories, depending on the values of the Q and R matrices. The differen-
tial equations are solved with the boundary condition λ ∗(T ) = 0. These calculations were
performed in MATLAB using the lqr command. The solutions for the optimal state, co-state
and control trajectories from lqr are substituted in the expressions calculated in Eq. 5.14,
which are in turn used to calculate the coupling term (Γ). The combined gradient, which is
the LHS in Eq. 5.6 is then calculated as it is easy to analytically obtain the derivative of the
plant objective and plant constraints with respect to the design vector (xp) in this problem.

5.6 Results and Discussion

5.6.1 Equality of Coupling Term and Control Gradient

The coupling terms given by Eqs. 5.9,5.10 are shown to be equal in Appendix D. Before
performing combined design and control optimization we numerically verify this equality
of the coupling term and the gradient of the optimal attainable control. Figure 5.3 shows a
plot of the coupling terms calculated by Eq. 5.9 and by Eq. 5.10 and it is observed that the
coupling term is indeed numerically equal to the gradient of the optimal attainable control
as a function of the design variables (which are the widths of the nodes). The maximum
difference between the two calculations of the coupling term is less than 1.2%. These
differences occur due to the numerical procedures used to calculate the coupling term and
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Figure 5.3 Coupling Term as calculated by Eq. 5.9 and Eq. 5.10

the gradient. The coupling term is calculated by substituting the values of the terms in
Eq. 5.14, the terms themselves being analytically derived. On the other hand, the gradient is
calculated using a fixed-step backward Euler finite difference scheme. The two expressions
(from Eq. 5.9 and Eq. 5.10) are thus considered equal and the coupling term will be used to
provide gradient information in the optimization framework as explained in section 5.4.

The combined design and control optimization problem in Eq. 5.13 is solved using
fmincon in MATLAB for two cases. In the first case, the coupling term is not calculated,
and hence the optimization algorithm numerically calculates gradient from the expression(

dFp
dxp

+
dhT

p
dxp

α +
dgT

p
dxp

β + wc
wp

dF∗c
dxp

)
. This is accomplished by evaluating the objective and con-

straints at different designs close to the design where the gradient is required and applying
the Euler forward difference scheme. In the second case, the gradient is calculated as men-
tioned in the previous section using the coupling term Γ (from Eq. 5.9, and then supplied to
the optimization routine as shown in the optimization framework (Figure 5.1). Since we
use a gradient-based optimization algorithm in this study, the choice of the initial design
influences the number of function evaluations required to reach the optimum. In both the
cases of our problem, the initial designs are chosen to be the same. The initial design is
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chosen to be the design which results in the lowest beam mass (or the optimal plant design
because minimizing mass is the objective of plant design). The two cases were solved for
different numbers of nodes representing the beam, which correspond to different numbers
of design variables. The number of nodes or design variables chosen and the number of
function calls required to obtain an optimal solution in all the cases is shown in Table 5.1.

5.6.2 Computational Efficiency Improvement

Table 5.1 Number of Function Evaluations in the Optimization

Number
of Nodes
(N)

with
gradient
information

without
gradient
information

5 19 60
7 19 72
10 21 132
12 23 169
15 25 210

From Table 5.1 we notice that when the gradient information is provided by calculating
the coupling term the number of function calls required to obtain an optimal solution is
less than in the cases where the gradient is calculated by a finite difference scheme. This is
due to the extra function evaluations needed by the finite difference scheme to calculate the
gradient compared to the cases when the gradient is supplied by calculating the coupling
term. We observe in Table 5.1 that the difference in the number of function calls increases
as the number of nodes increase. The number of nodes (N) is equal to the dimension of
the design vector, which is the vector of the widths of each node. The difference in the
number of function evaluations is smaller when the dimensions of the design vector are
lower because of 1) The number of function evaluations required to obtain the gradient at
the beginning of each iteration is lower, 2) The number of function calls needed to obtain
the step size at each iteration does not depend on the dimension of the design vector as it is a
scalar problem, thus masking the smaller gain in reduced number of function calls for lower
dimensions. Figure 5.4 shows how the optimization improves the normalized objective
function with the number of function calls for the case N = 7 nodes. It can be seen that the
objective is minimized to the same value with less than a third of the function calls when the
coupling term is used to provide gradient information in the optimization.
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Figure 5.4 Comparison of Drop in Objective with Function Calls

5.6.3 Combined Optimal Solutions

To analyze the results of the combined design and control optimization we look at solu-
tion for the case when N = 10 nodes were used to model the beam. This means that the
optimization has 10 design variables which are the widths of each of the nodes. Figure
5.5 shows the optimal configuration of the beam obtained by combined design and control
optimization. We observe that the width of the beam is not uniform meaning the optimal
value of the design variables which represent the width of the beam are unequal. These
results are similar to the uneven optimal beam width and uneven optimal plate thickness
results obtained by Pil et al. in [71] and by Zhu et al. in [112] respectively. This uneven
lumping of mass along the length of the beam represents a compromise between the passive
and active vibration control policies. Figure 5.6 shows the width of the beam for the case of
a sequential optimization solution.

In the sequential optimization the plant design optimization problem is solved to obtain
the plant with the lowest design objective and then the control optimization problem min-
imizes the LQR objective for this optimal plant design. Since the plant design objective
is to reduce the total mass of the structure, if we were to solve the design optimization
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Figure 5.5 Optimal Beam: Width Variation with Beam Length
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Figure 5.6 Lightest Beam: Width Variation with Beam Length

problem separately, then the solution is trivial. The solution would be to have the minimum
possible width in all the nodes (wi = wmin). In our case the value of wmin is 10 units and
wmax is 20 units. So the solution of the design problem would mean that the beam has a
uniform width of 10 units as shown in Figure 5.6. From Fig. 5.5, we observe that this is
not the case at the combined design and control optimum, where the optimal beam width
is a maximum of 20 units and a minimum of 10 units. An improvement in the combined
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objective function for the combined optimization case over the sequential optimization case
is observed. The normalized combined design and control objective given by Eq. 5.13 for
the sequential optimization case is 11 and that for the combined optimization case is 9.96
indicating a 9.45% improvement. The differences in the plant designs shown in Figs. 5.5
and 5.6 and the resulting improvement in the objective function shows the need for and the
impact of combined design and control optimization.

The need for combined design and control optimization can also be inferred by the value
of the coupling term at the sequentially optimal plant design. If the norm of the coupling
term evaluated at the sequentially optimal plant design is non-zero, then the controller
design problem is dependent on the plant design variables at the sequential design optimum.
For example, in this problem where ||Γ||2 = 0.144 (this is the value of the L2-norm of the
coupling term which is normalized with respect to the value of the objective function at the
optimal plant design solution). Thus the coupling term which measures the dependence
of the controller design problem on the plant design variables or gives an ease of control
measure that can be used to judge the need for a combined design and control optimiza-
tion framework. Theoretically, if the coupling term has all its components as zero at the
sequential design optimum solution, or equivalently has the smallest possible value for the
norm, i.e ||Γ||2 = 0, then the design and control optimization problems are decoupled and
can be sequentially solved to satisfy system level optimality. Numerically, we might see
that the value of the components of the coupling term might be small (close to zero), but
its closeness to zero must be judged depending on the problem and the accuracies desired
in the problem. Fathy discusses other cases of decoupling in [63] but the above discussion
shows that we can use the coupling measure Γ to judge the need for solving the combined
design and control optimization problem vs. sequentially solving the two problems.

5.7 Summary

We introduced a notion of coupling between the plant design and controller optimization
problems by considering the dependence of the control optimization problem on the design
variables. A computationally efficient framework for combined design and control optimiza-
tion using this coupling term was proposed and demonstrated. Using this framework we
performed combined optimization of beam mass reduction and vibration attenuation. These
results were compared to the results of the sequential optimization strategy to show the need
for a combined optimization framework and the corresponding improvement in the objective
while reducing the computational time.
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We showed, both analytically (in Appendix D) and numerically (in Fig. 5.3) that the
coupling term derived in [76] represents the gradient of the optimal attainable control. The
coupling term was then used to obtain the gradient information for the optimization problem
and in the process offered the following advantages: 1) The coupling term captured the
dependence of the controller performance on the design variables providing a simple way to
introduce the dependence of the controller on the design variables during the design opti-
mization iterations, 2) The calculation of the coupling term eliminates the need to calculate
the gradient of the optimal control objective as the two are numerically equal, thus resulting
in a reduced number of function calls and hence reduced computational time. The results
for the optimization showed a significant reduction in the number of function calls. This
improvement in the reduction of the number of function calls increases with the increase in
the number of design variables.

Checking the value of the coupling measure at different points in the design space we
have demonstrated an understanding of the interdependence between the design and control
problems. This was shown by the non-zero value of the coupling term at the optimal plant
design. This understanding can be used to choose the initial design for the problem, to
tune the optimization parameters such as weighting of the design and control optimization
problems, and most importantly to decide on the need for sequential vs. combined design
and control optimization approach.

It should be noted that in the above analysis we made sure that the necessary derivatives
exist by ensuring the continuity and the differentiability of the system model. The equations
shown above and the procedure for optimization are valid for non linear systems as well.
Using an LQR controller we could easily solve Eq. 5.7 and Eq. 5.8, but for non linear
systems the optimal control problem might have to be solved using other optimal control
approaches (e.g., Dynamic Programming). These approaches are in general computationally
expensive. Hence, our demonstration of using the coupling term to reduce the number of
times the optimal control problem is solved is extremely useful. For the example optimiza-
tion problem chosen in this paper, a gradient based optimization algorithm (SQP) was used.
Thus the gradient could be directly used for optimization. Gradient information can also be
useful for non-gradient based optimization methods such as Genetic Algorithms to improve
their efficiency as demonstrated by Lee et al. in [73] . Since a combined design and control
optimization framework has to solve the control optimization problem for every design
iteration irrespective of the algorithm used, the gradient information can be obtained as the
coupling term with little or no extra computation after the control optimization problem
is solved for that iteration as demonstrated in this paper. Thus without incurring large
computational costs one can obtain gradient information which can be used to improve the
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efficiency of non-gradient based algorithms as well, emphasizing the reach and contribution
of this work.
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Chapter 6

Combined Design and Control
Optimization of a PHEV

This chapter presents the application of the computationally efficient combined design and
control optimization algorithm developed in chapter 5 for the optimal design and control of a
PHEV powertrain. The major challenges resolved in this chapter are to calculate the coupling
term considering the nonlinear dynamics and costs related to the PHEV powertrain. The
calculation of the coupling term requires analyzing the dependence of the system dynamics
and control constraints on the battery size and the calculation of the optimal co-states. We
present the insights that the coupling term offers, and then use these observations to obtain
the combined optimal battery size. Finally, The optimal battery size and its dependence on
different assumptions are discussed.

The remainder of this chapter is structured as follows. First, we discuss the relevant
literature and motivate the work in this chapter. Next, the design impacts of battery sizing
are presented. Then the combined optimization problem for the PHEV powertrain is formu-
lated. To solve this problem, the framework developed in the previous chapter is utilized.
The calculation of the coupling term, which is an essential ingredient in this framework
is elucidated as that an important contribution of this work. Finally, the results report the
insights obtained from the calculation of the coupling term and the combined optimal battery
sizes.

6.1 Literature and Motivation

This chapter presents the application of a combined design and control optimization method
for PHEV component sizing and optimal supervisory control. Optimal battery size and the
optimal supervisory control actions are the results obtained. Due to their ability to charge
from the grid and store significant amounts of electrical energy in their batteries, PHEV
battery sizing significantly affects their charging and on-road power management decisions
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[2, 4, 5, 6]. At the same time, to obtain the optimal battery size it is necessary to understand
how this battery would be used/controlled [116, 118]. For example, a 16kWh battery is
capable of providing sufficient energy for two 20 mile trips in all-electric mode. This
all-electric performance can also be achieved by a smaller battery with multiple charging
events throughout the day. In addition to these considerations, batteries are expensive and
their sizing is an important concern for consumer acceptance of PHEVs [25, 62]. Thus, to
obtain a system level optimal design while considering optimal controller performance, we
employ a combined optimization approach in this chapter.

Previous optimization research for hybrid powertrains has mostly addressed optimal
control and optimal design separately. Optimal supervisory control of PHEVs relates to their
optimal charging on the grid [9, 38, 39], or on-road power management [27, 36, 79]. Optimal
design studies have investigated different PHEV configurations [117], battery sizing [6, 118],
engine and motor sizing [5, 120, 118]. In [5, 6, 81], authors expose some dependencies
between the design and control problems through battery sizing studies. In [6], authors
show that smarter power management algorithms can reduce vehicle energy consumption
and hence reduce battery energy capacity requirements. In [118], authors demonstrate that
a battery size capable of 25-50 miles all-electric driving has a lower life-cycle emissions
impact than a larger battery. A similar finding is also reported by Kelly et al. in [119].
Furthermore, the need for a combined battery sizing and control optimization approach is
strongly suggested in [5, 6, 116, 118].

Several combined design and control optimization methods have been previously de-
veloped. Many of these methods are demonstrated with applications in structural design
and vibration control [67, 68, 69, 70, 71, 72, 112]. There are basically two optimization
approaches, which can be further classified. The first is a simultaneous approach where the
controller is parameterized and optimized along with the design [66, 108, 113]. This param-
eterization results in a loss of optimality but renders the problem computationally attractive.
The parameters describing the controller can be obtained in several ways, by defining rules
[108, 113] or by optimizing the control at different designs and generating a surrogate
design dependent control function [66]. The second combined optimization approach is
called a nested approach where the plant design and control optimization problems are
solved separately. In this approach the dependence between the two problems is assessed by
iteratively solving for the design and the control [71, 72], or by calculating a sensitivity term
that quantifies this dependence [70, 76]. The nested approach is computationally intensive
due to the need for multiple control optimization evaluations at points in the design space
[71, 72], but it is rigorous as there are no restricting assumptions on the controller structure.

Combined design and control optimization methods have been previously applied to
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powertrain design and control in [45, 66, 77, 110, 118]. Most studies apply the simulta-
neous approach. In [29, 118], authors include threshold parameters that represent control
rules along with the design variables in the optimization. In [66], authors obtain stochastic
optimal power management solutions for a several fuel-cell hybrid designs. They develop a
surrogate model representing the optimal controller as a function of the design and optimize
the plant design. It should be noted that system level optimal designs are necessary for
a fair comparison of different system’s performances. Baumann et al. use a combined
approach to compare the performance of Fuel Cell Battery, Fuel Cell Ultracapacitor, and
Fuel Cell Battery Ultracapacitor powertrains. Finally, in [77], authors apply an iterative
procedure where the design and control problems are solved alternatively. The results
show improvement in the powertrain design even though this procedure is repeated only for
two iterations. It is observed that a full-scale nested procedure, even though it guarantees
combined optimality has not been applied to powertrain design. The main reasons being the
computational complexity of the powertrain models and the time and memory requirements
for a nested optimization approach.

Summarizing the above discussion on previous work to define the research challenges
for this chapter: First, due to the significant dependence of the control actions on the battery
size in a PHEV we need to adopt a combined design and control approach. Second, this
optimization approach has to be computationally efficient. The need for computational
efficiency arises from the complexity of both the optimization algorithm and the powertrain
model itself. The PHEV powertrain model has been simplified in [121] (to a convex model)
in order to apply tools from convex optimization which are computationally efficient. In
this chapter we wish to focus on improving the optimization algorithm and demonstrate its
application to the complex powertrain model.

Such an efficient algorithm was developed in [74, 63] and explained in detail in chapter 5.
The associated framework and the computational benefits are demonstrated for a beam mass
reduction and vibration attenuation problem. In this beam design problem, the system dy-
namics are linear with quadratic control costs. Though this algorithm is faster than previous
combined optimization methods, it requires the calculation of co-states. These co-states are
used to quantify the sensitivity of the optimal control problem to a given design. The unique
contributions in this chapter of the dissertation are: 1) the calculation of the sensitivity of
the optimal control problem to a given design for the complex PHEV powertrain model and
2) optimal battery designs obtained by incorporating this sensitivity of the optimal control
to the battery size.
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6.2 Models and Design Impacts

In this section we briefly mention the models that describe PHEV on-road operation and
charging from the grid. The design impacts of battery sizing for a PHEV are discussed. These
design impacts will be included in the optimization approach as explained in section 6.4.

6.2.1 Models

The models describing PHEV component operation and their interconnections are described
as ODEs of the form.

ż = f (z,u) (6.1)

These ODEs and the details of the maps describing component efficiencies are presented
in section 2.2.2 of chapter 2. This model is discretized and implemented in the backward
looking form (as presented in appendix A). The states of this system are z = {ωe,SOC} and
the inputs are u = {ṁ f ,τg}. It should be noted that the efficiency maps are highly non-linear
(Figs. 2.2, 2.3, 2.4, 2.5) and the dynamics of the engine speed state are discontinuous. This
is because the engine speed has a zero state when the engine is off and an idle speed to
maximum speed range when the engine is on. Since the engine dynamics are not affected
by battery sizing, the discontinuity of the engine speed state does not pose any numerical
problems.

The charging model describing PHEV activity on the grid has one state z = {SOC} and
one input u = {Pb}. The CO2 emissions and cost per unit energy of the electric energy is
directly proportional to the charging power input (Pb). A detailed description of the grid
dispatch model used and the associated charging model is presented in section 3.2.2 of
chapter 3.

6.2.2 Design Impacts of Battery Sizing

Since our design variable is the battery size, it is necessary to quantify the costs associated
with the battery size. These impacts of battery sizing will be included in the optimization as
explained in section 6.4 below.

Due to the rising popularity of Li-ion batteries for both vehicle and non-vehicle appli-
cations, there has been a considerable amount of research to make these batteries cheaper
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and lighter. Several cost targets and estimates are presented in [122, 123, 124]. The cost
estimates range from $200/kWh to $1000/kWh depending on the time scale and assumptions
made. In addition, there are significant uncertainties related to gasoline prices as well as
electricity prices in the future. Thus we do not consider any battery sizing studies for opti-
mal cost, instead we evaluate optimal battery sizes for minimum life-cycle CO2 emissions.
However, the approach presented in section 6.4 can be applied to optimal cost studies in the
future.

The CO2 impacts associated with a certain battery’s life are categorized into CO2 from
materials and manufacturing, use and recycling phases. Note that we are only concerned
with CO2 emissions and not other greenhouse gases. The use phase CO2 emissions are
evaluated using our optimal control algorithm as demonstrated in chapter 3. In [122, 123],
authors talk about materials, manufacturing and recycling phase CO2 emissions. The amount
of CO2 resulting from the manufacturing phase ranges from 90-120 kg/kWh, as reported in
[122, 123] depending on the materials used and the manufacturing processes. Accounting
for recycling of the battery materials can bring this CO2 impact down to 75-90 kg/kWh
[122]. In [45, 118, 125], authors use a value of 120 kg of CO2/kWh for the impact of battery
design. Another important consideration to assess the design impacts is the total miles or the
number of days that this battery will be used for. We will look at two cases of a battery that
will be used for 100000 and 200000 miles. The design impact is quantified by Eq. 6.2 below

dFp

dxp
= 90 kg/kWh (6.2)

The constraints on the design stem from its need to satisfy on-road power demand and
achieve a certain performance. In order to satisfy a variety of power demands associated
with different driving behaviors, we simulate the powertrain model (section 2.2.2) for cycles
in the naturalistic drive cycle database [89]. To satisfy these road power demands at zero
grade and in all electric operation at an SOC of 0.4, we need a minimum battery size of 11.29
kWh. This battery size also satisfies the following performance requirements (discussed in
[126]): 1) all electric 0-60 mph in 12 seconds or less and 2) 6.5 % grade at 55 mph for 1200
seconds. A maximum battery size of 17.29 kWh is subjectively chosen and can be changed
if this constraint is active. The battery size is normalized by 13.29 kWh. Hence, the design
variable value xp = 1 is equivalent to a battery size of 13.29 kWh. The design constraints
described above restrict the normalized battery size to xp ∈ [0.85,1.35].
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6.3 Optimization Problem

Our goal in this section is to describe the optimization problem and the procedure used to
solve it. We make the assumption that the same driving pattern is repeated through the life
of the battery. Hence we minimize the CO2 impacts of PHEV operation (i.e. charging and
driving) over a 24 hour period with 47.8 miles of driving and scale this impact to reflect
100000 or 200000 miles of driving. The total CO2 impact is assessed by adding the PHEV
design impacts (i.e. CO2 associated with manufacturing a certain battery size).

6.3.1 Problem Formulation

The optimization problem is defined as follows

min
z(t),u(t),xp

J =

{
CO2(xp)+

TEOL

∑
0

(
CO2

gal
ṁ f ∆tdr +

CO2

kWh
Pb∆tch

)}
(6.3a)

design constraints: xp ∈ [0.85,1.35] or [11.29 kWh,17.29 kWh]
(6.3b)

control constraints: fωe : ω̇e = fωe

(
ωe, ṁ f ,τg

)
(6.3c)

fSOC : ˙SOC = fSOC (SOC,τg) (6.3d)

η1 : SOCmin ≤ SOC ≤ SOCmax (6.3e)

η2 : SOC(0) = SOC(24) = 0.7 (6.3f)

η3 : Pc,max(SOC)≤ Pb ≤ Pd,max(SOC)

(6.3g)

η4 : ωe,min ≤ ωe ≤ ωe,max (6.3h)

η5 :−ω̇e,min ≤ ω̇e ≤ ω̇e,max (6.3i)

η6 : 0≤ ṁ f ≤ ˙m f ,max(ωe) (6.3j)

η7 : 0≤ τe ≤ τe,max(ωe) (6.3k)

η8 : 0≤ τg ≤ τg,max(ωg) (6.3l)

In the objective function there are three terms. The first term signifies the CO2 impact of
the battery design per day. This CO2 impact is discussed in the previous section 6.2.2. The
second and third terms of the objective are the CO2 produced from gasoline usage and grid
charging respectively. This is the CO2 produced till the End Of Life (EOL) of the PHEV
battery (till TEOL). The design constraints are discussed in the previous section 6.2.2. The
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control constraints are the system dynamics, and the constraints described in sections 2.2.3
and 3.2.2. It should be noted that other than the SOC dynamics (Eq. 6.3d) the only control
constraints that are affected by battery sizing are the battery charge and discharge constraints
given by Eq. 6.3g.

6.4 Optimization Algorithm

The optimization algorithm has been presented in section 5.4 of the previous chapter and
this framework is shown in again in Fig. 6.1. This algorithm has two main features: 1)
computational efficiency due to the use of the coupling term as explained in section 5.4 and
2) it guarantees combined optimality by considering the dependence between the optimal
control and plant design problems through the coupling term. Appendix C derives the opti-
mality conditions and Appendix D shows that the coupling term defined in Eq. 6.4 below is
equal to the gradient of the optimal attainable control objective. Thus, the calculation of the
coupling term is central to the evaluation of the combined optimal solution as highlighted
by red box #1 in Fig. 6.1. Another important aspect of the optimization algorithm (as
highlighted by the other red box #2 in Fig. 6.1 is the utilization of this coupling term to
obtain the optimal solution. Next, we elaborate on these two essential steps in the algorithm.

6.4.1 Calculation of the Coupling Term

The coupling term is defined as follows (previously defined in Eq. 5.9):

Γ =
∫ TEOL

0

(
∂ f T

∂xp
λ
∗+

∂ηT

∂xp
µ
∗
)

dt (6.4)

In Eq. 6.4, ∂ f T

∂xp
is the gradient or the sensitivity of the system dynamics with respect to

the battery size (xp). The gradient or the sensitivity of the control constraints (i.e. η1−η8 in
Eq. 6.3) to the battery size is given by ∂ηT

∂xp
. It should be observed that the control objective

(given in Eq. 6.5a below) is implicitly dependent on the design vector (xp) through the con-
straints ( f ) and (η). In Eq. 6.4, ∗ denotes the optimal control trajectories or solutions. The
co-states associated with the system dynamics constraints are λ , and the co-states associated
with the control constraints are µ . The optimal co-states reflect the price of the constraints
(or their restrictiveness) as explained in [127, 128]. Thus the coupling term reflects some
dependence of the optimal control solution on the design variable. In Appendix D, we
prove that the coupling term is indeed equal to the gradient of the optimal attainable control
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objective (Eq. 6.5b). Note that this equality is true at the optimal control solution and not
everywhere in the control space. Thus there is a need to solve the optimal control problem
as defined by the objective in Eq. 6.5a below and the constraints in Eq. 6.3c - 6.3l above.

F∗c =
TEOL

∑
0

(
CO2

gal
ṁ f
∗
∆tdr +

CO2

kWh
Pb
∗
∆tch

)
(6.5a)

Γ =
dF∗c
dxp

(6.5b)

In section 3.3 of chapter 3, we present an optimal control algorithm that obtains the
optimal state and input trajectories for charging and power management of a PHEV, for
given driving behavior and grid mix conditions. The resulting optimal trajectories are shown
in section 3.4 of chapter 3. Thus, we have to obtain the co-states and the gradients for a
given optimal control solution in order to calculate the coupling term.

Calculation of Gradients

The gradient associated with the dynamics ∂ f T

∂xp
is a two dimensional vector (in R2) with

each entry representing the gradient of the dynamics of each of the states with respect to the
battery size. The engine dynamics (Eq. 2.9 of chapter 2) are not dependent on the battery
size. Thus we have

∂ fωe

∂xp
= 0 (6.6)

The SOC dynamics (Eq. 6.7 below) are dependent on the battery size through 1) the
obvious dependence of battery energy capacity on the battery size (Eq. 6.8a), 2) dependence
of the internal resistance on the battery size (Eq. 6.8b) and 3) the dependence of wheel
power demands on the battery size through its mass (Eq. 6.8c). In Eqs. 6.7 and 6.8, xp is the
normalized battery size. The bar on the variables denotes the values of the variables at xp

= 1. In Eq. 6.8c, mb and mv are the mass of the battery and the vehicle respectively at the
normalized battery size xp = 1 (which is 13.29 kWh).

Ib =
Voc−

√
V 2

oc−4Ri(xp)Pb(xp)

2Ri(xp)
(6.7a)

fSOC :
dSOC

dt
=− Ib

Qmax(xp)
(6.7b)
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Qmax(xp) = xpQ̄max (6.8a)

Ri(xp) =
R̄i

xp
(6.8b)

∂Pb

∂xp
=

∂Pm

∂xp
=

mb

mv
P̄m (6.8c)

Differentiating the dynamics in Eq. 6.7 with respect to the normalized battery size and
considering the dependencies above, we obtain,

∂ fSOC

∂xp
=− ∂ I

∂xp

1
Q̄max

+
I

Q2
max

∂Qmax

∂xp

=− ∂ I
∂xp

1
Q̄max

+
I

Q2
max

Q̄max (6.9a)

∂ I
∂xp

= ν̄−
2xpν̄2− Pb

R̄i
− ∂Pb

∂xp

2
√

x2
pν̄2− xpPb

R̄i

(6.9b)

where ν̄ =
Voc

2R̄i
and

∂Pb

∂xp
=

mb

mv
P̄m

To obtain the gradient of the control constraints, we observe that the constraints on the
engine and the generator variables are not dependent on the battery size. The SOC is a
normalized variable that quantifies the amount of charge in a battery. It is a state variable
which is not dependent on the battery size, even though its dynamics are dependent on
the battery size. Thus the only constraint that is affected by the change in battery size is
the battery discharge/charge power limit constraint (η3 in Eq. 6.3). Thus, the following
equations represent the gradient of the constraints

∂ηi

∂xp
= 0 for i = 1,2, . . . ,8 & i 6= 3 (6.10a)

∂η3c

∂xp
= P̄c,max(SOC)− ∂Pb

∂xp
and

∂η3d

∂xp
=

∂Pb

∂xp
− P̄d,max(SOC) (6.10b)

where ∂Pb
∂xp

is calculated as shown in Eq. 6.8c.
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Calculation of Co-states

The co-state associated with the system dynamics is λ and the co-states associated with
the control constraints are denoted µ . We observe that only the co-states associated with
non-zero gradients of the dynamics and control constraints need to be calculated in order
to obtain the coupling term. For example, since ∂ fωe

∂xp
= 0 =⇒ ∂ fωe

∂xp
λ ∗ωe

= 0. Thus we need
to calculate only three co-states: λSOC, µ3c, µ3d associated with the SOC dynamics and the
charge and discharge constraints respectively. λSOC is calculated using Eq. 6.11, where V is
the value function as used in a Dynamic Programming (DP) formulation. This equation is
from the optimal control literature and is used to relate the Pontryagin Minimum Principle
(PMP) approach to the DP approach. The mesh for the SOC state is uniform and is denoted
as ∆SOC.

λ
∗(t) =

∂V ∗

∂ z∗

=
V ∗ (SOC∗(t)+∆SOC)−V ∗(SOC∗(t))

∆SOC
(6.11a)

The co-states associated with the control constraints have the following analytical ex-
pression associated with them (Eq. 6.12). This expression is a result of the interpretation of
the co-states (or Lagrange multipliers) as a shadow price of satisfying a certain constraint.

µ
∗
i (t) =

∂F∗c
∂ηi(t)

(6.12)

Since µ3c and µ3d are associated with an inequality constraint, they are equal to zero
when the constraints are inactive. When the constraints are active, we simulate the optimal
solution with a small modification of a constraint (∂ηi(t)) at that time step to simulate the
change in the optimal objective (∂F∗c). The ratio of these changes is used in Eq. 6.12. In this
manner all the necessary co-states required to calculate the coupling term are obtained. This
is feasible because the charge/discharge constraints are active only during a few time steps
(10 time steps at the most from a total of 4200 steps). The coupling term is thus calculated
as

Γ =
TEOL

∑
k=0

(
∂ fSOC

∂xp
λ
∗(k)+

∂η3c

∂xp
µ
∗
3c(k)+

∂η3d

∂xp
µ
∗
3d(k)

)
(6.13)
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Utilizing the Coupling Term

Once the coupling term is obtained as demonstrated in the previous section, we can obtain
the total gradient of the combined design and control problem which is defined in Eq. 6.14
below. To obtain the system level optimal solution we use this gradient.

Total Gradient =

(
dFp

dxp
+

dhT
p

dxp
α +

dgT
p

dxp
β +Γ

)
(6.14)

This gradient can be used in many ways to either directly obtain the optimum or guide
an optimization solver. The most obvious method is to use the gradient in a gradient-based
solver to obtain the optimal design and control. This approach was used in chapter 5 to
obtain the combined optimal beam design. The gradient was calculated and used with
fmincon in MATLAB. The resulting solution was a system level optimal solution (Fig. 5.5)
and this solution was obtained through fewer iterations (Fig. 5.4) than previous methods.
The reduced computational effort was due to the ease of calculating the coupling term which
represented the gradient of the control objective with respect to the design. To optimize the
PHEV powertrain, we do not use this approach as gradient based methods do not guarantee
system level optimality. Furthermore, we have only one design variable (the battery size xp),
so we explore simpler methods.

Another method of using the gradient is to guide non-gradient based optimization meth-
ods such as Genetic Algorithms (GA) and Simulated Annealing (SA) as demonstrated in
[73]. The gradient can also be used in a hybrid optimization algorithm as demonstrated in
[129].

Since we have only one design variable, we will calculate the optimal control solution
for a range of designs in the design space and try to obtain the designs which have a zeros
total gradient. Equivalently, we will calculate the coupling term by optimizing the control
for a range of designs and verify where the condition in Eq. 6.15 is satisfied.

Γ =−

(
dFp

dxp
+

dhT
p

dxp
α +

dgT
p

dxp
β

)
(6.15)

6.5 Optimization Conditions

The objective in our optimization problem is to minimize total CO2 emissions produced dur-
ing the battery design process and during its use in a PHEV. We assume a driving behavior
with two identical 23.9 mile trips (Fig. 6.2), one at 8 AM and the other at 5 PM, everyday
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through the EOL of the battery. We wish to demonstrate our method under these driving
assumptions, but the method can be utilized for any number and nature of the trips.
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Figure 6.2 Drive Cycle Velocity graphed as a Function of Distance.

We consider grid mix conditions from a day in the NYISO region. These conditions
result in the CO2 emissions rate as shown in the first sub-plot of Fig. 6.3. These conditions
are chosen for the following two reasons. First, the CO2 rate in NYISO region is in the
range 300-500 g/kWh compared to a 550-800 g/kWh range in Michigan (Fig. 3.1) and
650-800 g/kWh range from gasoline consumption. This is mainly due to the large fraction
of hydro, nuclear and natural gas power plants in the NYISO region. The CO2 production
from gasoline during driving ranges from 650-800 g/kWh depending on the engine type and
driving conditions. Thus the optimal solution in the case of NYISO grid conditions in order
to minimize CO2 emissions is to charge as much as possible and use as much electricity for
propulsion. Second, the high CO2 rate during the initial part of the day implies that it is not
optimal to charge at those times during the day. These preliminary insights make it easier to
analyze and understand the optimal solution as demonstrated in the results section. Again,
our optimization method is applicable to any chosen grid mix conditions. To demonstrate
this we also obtain a set of optimal results for grid conditions that we have used in chapters
3 and 4 to reflect the CO2 emissions from the Michigan grid (Fig. 6.4).

The end of life of a PHEV battery is the time when the battery capacity drops down to
80% depth of discharge as compared to a new battery [130, 131]. Studies have shown that
depending on the Lithium chemistry used, this could mean anywhere between 3000-5000
discharge cycles [130, 131]. Furthermore, depending on the supervisory control strategy,
the utility factor of the battery, defined as the ratio of battery usage to engine fuel usage, will
vary. It is expected that the battery life has to be at least 100000 miles in order for consumer
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Figure 6.3 24 hour plot of Grid CO2 Rate and Driving Trips used in the Optimization. (The 24
hour period begins at 1AM, hence 8AM is the 7th hour in the graph above)

0 4 8 12 16 20 24
200

400

600

800

E
le

ct
ri
c 

G
ri
d

C
O

2
 R

a
te

 [
g
/k

W
h
]

Grid and Driving Conditions for Optimization

 

 

0 4 8 12 16 20 24
0

50

100

Time [hr]

V
e
lo

ci
ty

 [
m

p
h
]

NY
MI

Figure 6.4 24 hour plot of Grid CO2 Rate (for chosen days on NYISO region and Michigan) and
Driving Trips.

103



acceptance of PHEV technology. Since the focus of this study is the optimization method
and not the underlying assumptions, we demonstrate how to use the optimization method
under two cases, one where the PHEV battery reaches its EOL at 100000 miles and another
at 200000 miles.

6.6 Results

The optimization results were obtained by solving the problem in Eq. 6.3 with the conditions
described in Fig. 6.3. In this section, we discuss three aspects of the results.

• The values of the coupling term and its significance in capturing the dependence of

the optimal control solution on the battery size.

• Optimal battery sizes under different design assumptions (EOL at 100000 mi. and

200000 mi.).

• Comparison of optimal battery sizing results under the NYISO grid assumptions

(Fig. 6.3) vs. the Michigan grid mix assumptions (Fig. 6.4).

Table 6.1 shows the values of the coupling term at different battery sizes. The coupling
term is equal to the gradient of the optimal attainable control objective, as explained in sec-
tions 5.3 and 6.4.1 and analytically proven in Appendix D. A negative value of the coupling
term means that increasing the battery size would result in lower CO2 emissions through
optimal charging and power management of the PHEV and vice versa. Thus the negative
values of coupling term for smaller battery sizes in Table 6.1 indicate some restrictions on
the optimal control trajectories that would be alleviated by increasing the battery size.

Table 6.1 Coupling Term Values at Different Battery Sizes (EOL at 100000 mi.)

Total Battery
Size [kWh]

Coupling
Term
[kg/kWh]

11.29 -107.1
11.56 -98.14
13.29 -52.81
16.61 7.441
17.94 24.34
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In Fig. 6.5, the optimal SOC trajectories for the smaller batteries indicate grid charging
before the first trip as there is insufficient battery energy for the first trip (which occurs at
hour 7). This first section of the day is the least favorable time to charge due to the high
CO2 rate on the grid. However, the large battery (17.9 kWh) does not need to charge during
this period. This indicates that the smaller battery sizes restrict the range of possible optimal
control actions (under our driving and grid mix assumptions). Thus, for smaller batteries
the coupling term suggests that there are possible improvements, or increased flexibility
of the control actions with increasing battery size. It should also be noted that even the
smallest battery is not charged to the fullest extent or utilized at the highest SOCs. This is
because the on-road power demand constraint results in the need for a 11.29 kWh battery,
thus resulting in an over-sized battery in terms of transferring electric energy from the grid
to transportation.

The coupling term is positive for larger battery sizes in table 6.1, which means that
increasing the battery size results in an increased value of the optimal control objective or
increased emissions from the use phase of the PHEV. This indicates that a 17.9 kWh does
not provide any additional flexibility for carrying cleaner electrical energy, while increasing
the mass and consequently the on-road power requirements. Indeed, Fig. 6.5 shows that for
the larger battery there is no battery charging at times of high CO2 production rate on the
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grid. These inferences are true only for the particular grid mix and driving patterns assumed
here but demonstrate the power of evaluating the coupling term.

Before, obtaining the combined optimal battery size utilizing the coupling term, we
provide some insight into the use of the modified KKT condition (Eq. 5.6) or the total
gradient in Eq. 6.14. From a high-level perspective, the problem of optimizing battery size
for CO2 emissions in a PHEV involves mitigating the tradeoffs between at least three main
competing phenomena. First, larger batteries require more CO2 for production. Second, a
larger battery also means a heavier vehicle, with more overall energy needs and therefore
potentially more trip CO2 emissions. Finally, a larger battery gives a PHEV more electric
energy storage capacity, and more freedom in choosing when to charge with grid electricity.
This means that the PHEV is potentially able to reduce its CO2 emissions by charging with
grid electricity, and timing that charging process to coincide with periods when grid CO2

levels are low. The second and third effects are captured by the coupling term. Ultimately,
the process of optimizing PHEV battery size for CO2 emissions involves finding that par-
ticular size at which the drawbacks and benefits of a larger battery are balanced. This is
precisely the condition represented by the total gradient in Eq. 5.6.
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Figure 6.6 Coupling Term Values for different EOL assumptions and Optimal Battery sizes

The coupling term was evaluated for different battery sizes, by solving the optimal
control problem at these battery sizes and graphed in Fig. 6.6. Utilizing Eq. 6.15, we obtain
the battery sizes at which the coupling term negates the design impacts as the combined
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Table 6.2 Coupling Term Values at Different Battery Sizes under Michigan grid assumptions

Total Battery
Size [kWh]

Coupling
Term
[kg/kWh]

11.29 189.9
17.94 232.8

optimal battery size. Depending on the CO2 emissions assumptions during the design phase,
(in Fig. 6.6 we assume 90 kg of CO2/kWh), we obtain battery sizes #1 (11.96 kWh) and #2
(13.62 kWh) respectively as the combined optimum for EOL at 100000 mi. and 200000
mi. Previous combined optimization efforts [66, 71, 77] cite computational effort as a major
hindrance with optimization runs lasting several days on multiple cores. Each point in Fig.
6.6 is obtained through control optimization which is solved in less than 2 hours, producing
the combined optimal solution in less than a day of computation on a single quad core
machine. Through the insight provided by the coupling term, we obtain the optimal values
in a computationally efficient manner.

Finally, we obtain the coupling term values for the Michigan grid mix assumptions,
which is coal intensive and hence has high CO2 production rates. The optimal control
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solution and the associated coupling term is calculated at the lowest and the highest battery
sizes. These numbers are reported in Table 6.2 and the trajectories are graphed in Fig. 6.7.
As discussed above, positive coupling term values indicate that increasing the battery size
results in higher CO2 from control actions. The coupling term is positive at both the highest
and the lowest possible battery sizes. At the lowest battery size, we observe in Fig. 6.7 that
there is a small amount of charging before the first trip. Since the CO2 production from
gasoline usage is in the 650-800 g/kWh range additional battery capacity is not as beneficial
and it results in increased vehicle mass. Another observation is that significant amounts
of charging occurs before the second trip. Since the CO2 levels are the lowest and almost
constant over a sufficiently long period of time before the second trip there are no restrictions
on charging before the second trip. Thus additional battery capacity has no benefits. At the
largest battery size, the same considerations as for the NYISO case explained above are
effective. Thus, under a CO2 intensive grid the coupling term indicates that the smallest
possible battery size is the optimal.

6.7 Summary

In this chapter, the computationally efficient combined design and control optimization
method developed in chapter 5 is applied for the optimization of a PHEV powertrain. The
major contributions of this work are the methods to calculate and obtain the coupling term,
and its subsequent utilization to obtain the combined optimal battery sizes with low com-
putational effort. Since the co-states are not instrumental to obtain the optimal control
solution, the literature has not elaborated on their calculation. In this paper we demonstrate
their calculation. The procedure for calculating the coupling term once these co-states are
obtained is also explained in detail.

The results report the combined optimal battery sizes under different assumptions. It is
shown that the coupling term captures the dependence of the optimal control solution on the
battery size (the design variable) in an elegant way. The insights provided by the coupling
term are emphasized. For example, a positive coupling term value for a particular battery
size implies that increasing the battery size produces no improvement in the optimal control
solution. We utilized the coupling term to obtain the battery sizes for which the combined
design and control gradient is zero, by including the design impacts of manufacturing a
battery. It is shown that a larger battery size with increased energy capacity is not the
combined optimal solution.
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Chapter 7

Conclusion

7.1 Summary

The development of algorithms to obtain the optimal design and control solutions for nonlin-
ear dynamic systems in a computationally efficient manner is presented in this dissertation.
These optimization methods highlight possible synergistic interactions between the PHEV,
the electric grid and transportation from an individual PHEV’s perspective. The methods
have been shown to be flexible to accommodate different grid mix scenarios and driving
behaviors and expose the relevant tradeoffs between battery sizing, charging and power
management depending on the objectives and conditions.

In chapter 2, challenges in the implementation of DDP for a series PHEV powertrain
model are resolved through a backward looking model implementation. The performance of
two supervisory control strategies for PHEVs, namely Blending and EV/CS was compared
using this algorithm. The results showed that there is no significant difference in the perfor-
mance (in $ costs) of these two control strategies in most cases (esp. when gasoline is more
expensive per mile than electricity).

Chapter 3 develops optimal control algorithms capable of addressing both; optimal
charging and optimal power management in a single framework. The results show that it is
necessary to consider such an approach to optimally charge and drive a PHEV. Depending
on the objective and constraints, it is shown that it is not always optimal to fully charge the
battery before every driving trip as assumed in the literature. This framework is also capable
of exploring tradeoffs that might result from usage of a PHEV for grid related services
through a restricted charging study.

Chapter 4 extends this integrated algorithm to consider multiple objectives - CO2 emis-
sions and $ costs. The concept of crowding distance from the EA literature is used to retain
fewer number of points to represent the Pareto front at every state discretization and every
time step. This refinement of the Pareto front significantly reduces the computational time
and memory requirements making the problem feasible while retaining optimality. The
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algorithm generates an optimal Pareto front with good spread ranging from one extremal
point to the other. For the grid mix and driving behavior assumed, we exposed tradeoffs
related to both the objectives.

Chapter 5 presents a novel approach to the optimization of a dynamic systems design
and control. This approach is computationally efficient through the use of a coupling term
which also captured the dependence between the optimal design and optimal control. The
algorithm was demonstrated by solving a beam mass reduction and vibration attenuation
problem. Chapter 6 applied this algorithm for optimal battery sizing and supervisory control
of a PHEV. The challenges related to the calculation of the coupling term considering the
nonlinear constraints and dynamics of the PHEV powertrain were resolved. The results
report the combined optimal battery sizes under different assumptions. It is shown that the
coupling term captures the dependence of the optimal control solution on the battery size
(the design variable) in an elegant way. The results also indicate that a larger battery size
with increased energy capacity is not always the optimal solution.

In summary, this dissertation contributes to the literature on optimization methods and
provides solutions for optimal PHEV design and control. These methods are effective be-
cause they enable resolving combined objectives, and practical owing to their computational
efficiency. Innovative strategies outlining their application by exploiting knowledge of the
PHEV’s dynamics and usage are presented. Several unanswered questions related to the use
and design of PHEVs have been answered using these methods. Our approaches considered
interactions between different systems in obtaining the optimal solutions, thereby pushing
the envelope in both the optimization literature and the PHEV literature.

7.2 Perspectives on Future Research

Several research challenges related to optimal control and design of PHEVs were addressed
in this dissertation. Nonetheless, numerous research challenges and topics exist.

Considering the Future Grid: Though we undertook certain steps to incorporate the
impacts of PHEV usage on the electric grid and optimized the PHEV design and control,
we assumed the grid in its current state. It is understood that with increased amount of
renewable power sources and the inclusion of electric propulsion vehicles, the state of the
grid will change. These changes might again influence the design and control decision for
future auto-mobiles. Thus it is essential to develop and apply an optimization method that
is capable of considering the PHEV impacts on the grid and vice versa in order to achieve
maximum synergy on any objective.
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Stochastic Optimal Solutions: Our research aimed at developing optimal control methods
that could provide insights into the nature of the control actions and educate us. Chap-
ters 2, 3, 4 develop deterministic algorithms that provided us with unprecedented insight
regarding the necessary optimal actions and the possible tradeoffs for a given scenario.
In order to utilize these insights and solutions, there is a need to extract rules from these
solutions. Another way to obtain implementable solutions is to consider a wide array of
grid mix and driving conditions through well understood distributions and obtain stochastic
optimal solutions.

Battery Characterization: Battery technology will be instrumental in making PHEVs
a reality. In this dissertation, we used a simple equivalent circuit model to represent the
battery dynamics. We assumed that the SOC is always accurately known and that there are
no degradation costs. In reality, it will be essential for power management and charging
control algorithms to accurately know the charge and health variables in order to perform
optimally. Accurate models to estimate the amount of battery charge and state of health
have to be developed and these models need to be simplified or reduced in order to be usable
for controls and optimization.

Battery Sizing and Control for Demand side Services: Several assumptions were made
in the dissertation regarding the battery dynamics and its usage. It is necessary to use the
algorithms developed in this dissertation with more accurate models of a battery’s dynamics
and its usage. For example, utilizing accurate battery dynamics models will impose more
constraints on battery usage and hence influence its sizing. Battery energy usage for demand
side services such as regulation and spinning reserves would also dictate different tradeoffs
for battery sizing.

Consumer Expectations vs. Utility Expectations: PHEVs are expected to charge from
a cleaner grid and bring cleaner (and maybe cheaper) energy for transportation. This is
under the assumption that the PHEV owners charge at certain times of the day when the
grid is cleaner and/or least stressed. These are some expectations from the utilities. PHEV
consumers meanwhile might have different needs such as using PHEVs not just for trips
to work, charging at fast rates before their trips and minimizing their operating costs. The
alignment of these objectives and the objectives of several other stakeholders is not obvi-
ous. Thus it is necessary to manage and refine the objectives and constraints used in the
optimization based on consumer surveys and the expectations of the utilities.

Multi-Objective Optimization for Combined Design and Control: Chapter 4 extends the
control optimization algorithm developed in chapter 3 to consider multiple objectives in a
computationally efficient manner. It is obvious that these multiple objectives also arise at a
system level resulting in the need for a combined battery size and control optimum. Most
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physical systems are also required to satisfy multiple objectives. Thus it is necessary to
obtain combined optimization algorithms capable of elegantly handling multiple objectives.
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Appendix A

Backward Looking Powertrain Model

In order for a function to be invertible we have to show that the function representing the
forward looking powertrain model ( f in Eq. 2.14) satisfies the following two conditions.
First, f must be one-to-one (i.e. given a current state we have to show that each input
u(k) ∈U , results in a unique future state x(k+1) ∈ Z, where U and Z are defined in Eqs.
2.11 and 2.12). Secondly, we have to show that f is onto (i.e. that the inputs in U span
the set Z). The second condition (the onto relation) can be guaranteed by redefining the set
Z to be only the reachable set from the set of inputs U . This means that only transitions
to feasible future states will be considered in the optimization. To show the one-to-one
mapping, the equations representing the function f are explained in detail below.

Figure A.1 is a diagram describing the relationship between the powertrain components.
This is a forward looking representation that we will use to show the one-to-one dependence
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Figure A.1 Representation of Forward Looking Powertrain Model and the Interaction between
Components
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between the set of inputs {ṁ f (k), τg(k)}, and the set of outputs {ωe(k+1), SOC(k+1)}.
The motor electrical power demand is an external input that the supervisory controller

has to satisfy. This electrical power demand is calculated using Eqs. 2.3 - 2.5. Assuming
that the losses in the power electronics are negligible, the battery power demand (Pb) is
related to motor electric power demand (Pm,elec,dmd) and the generator power output (Pg) by
Eq. A.1

Pb(k) = Pm,elec(k)+Pg(k) (A.1)

At every time step k, for a given Pm,elec,dmd , Pb is dependent only on Pg. The generator
power is in turn dependent on generator torque (τg), which is an input and the generator
speed (ωg), which is proportional to the engine speed (ωe), which is a state. For a given,
ωe(k) and τg(k), we have a unique value of Pg(k) from Eq. A.2 below. A unique value of
Pg(k) for every τg(k) is guaranteed because of the monotonic relationship between these
variables due to the nature of the generator efficiency map. This monotonic relationship
between Pg(k) and τg(k) is graphically verified and shown in Fig. A.2.

ηg(k) = fg(τg(k),ωg(k)) (A.2a)

Pg(k) = ηg(k)τg(k)ωg(k) (A.2b)

Since Pg is uniquely determined by τg(k) and Pb is uniquely determined by Pg, every
input τg(k) results in a unique value of Pb(k).

The equations describing battery dynamics are given in Eq. A.3.

Ib(k) =
Voc(k)−

√
V 2

oc(k)−4Ri(k)Pb(k)
2Ri(k)

(A.3a)

SOC(k+1) = SOC(k)− Ib(k)∆t
Qmax

(A.3b)

There is a monotonic relationship between Pb and Ib, as well as between Ib and
SOC(k + 1). Thus every battery power input Pb, results in a unique SOC(k + 1), for a
given SOC(k). From the above arguments, we conclude that every generator torque input
τg(k) results in a unique future state of charge SOC(k+1) for a given pair of current states
{ωe(k+1), SOC(k+1)}.

To model the engine and flywheel dynamics and to show that each pair of inputs {ṁ f (k),
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Figure A.2 Monotonic relationship between Generator Torque and Generator Power output

τg(k)} results in a unique value of future engine speed state ωe(k + 1), given a current
engine speed ωe(k), we use Eq. A.4.

τe(k) = fe(ṁ f (k),ωe(k)) (A.4a)

ωe(k+1) = ωe(k)+
τe(k)− τg(k)

J f lwhl
(A.4b)

Again the map ( fe) is graphically verified to be one-to-one in Fig. A.3 and hence results
in a unique engine torque τe(k) for every fuel flow rate input(ṁ f (k)), given ωe(k).

From our above discussion we have shown that every generator torque input τg(k) results
in a unique future state of charge SOC(k + 1) for a given pair of current states {ωe(k),
SOC(k)}. For this τg(k) and pair of current states {ωe(k), SOC(k)}, every fuel flow rate
input(ṁ f (k)) results in a unique torque produced by the engine and hence a unique ωe(k+1).
In other words it is possible to obtain the same ωe(k+1) for two different sets of inputs, but
the SOC(k+1) is uniquely decided by each τg(k). This means that the pair of future states
{ωe(k+1), SOC(k+1)} is uniquely determined by each input pair {ṁ f (k), τg(k)}.

This ensures that when the forward looking powertrain model is inverted, for every future
state considered in the backward looking model we can obtain the set of inputs required
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Figure A.3 Monotonic relationship between Engine Fueling Rate and Engine Torque output

to transition to that future state, and the set of inputs will be uniquely determined. Thus
ensuring the existence of the function g, representing the backward looking model in Eq.
2.13.
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Appendix B

Optimal Power Management Results

Tables B.1 - B.3 (below) present the results of the optimal Power Management studies
from Chapter 2 in full detail.

Table B.1 Consumption Results for Highway Cycle

Optimal Blending Optimal EV/CS
Gas and
Electricity
Prices

Gas
[kg]

Electric
[kWh]

Total
($)

Gas
[kg]

Electric
[kWh]

Total
($)

1$/gal, 10
c/kWh

4.44 0 1.55 4.57 0 1.59

1.2$/gal,
10 c/kWh

3.89 2.23 1.85 3.34 4.66 1.86

1.5$/gal,
10 c/kWh

2.54 7.95 2.12 2.57 7.95 2.14

2.5$/gal,
10 c/kWh

2.54 7.95 2.99 2.57 7.95 3.02

4$/gal, 10
c/kWh

2.54 7.95 4.31 2.57 7.95 4.35

Table B.2 Consumption and Cost Results for Optimal Solutions cG = 1$/gal, cE = 10 c/kWh

Cycle Distance Optimal Blending Optimal EV/CS
Miles Gas

[kg]
Electric
[kWh]

Total
($)

Gas
[kg]

Electric
[kWh]

Total
($)

short 1 7.3 0.37 0 0.13 0 1.52 0.15
short 2 24.03 1.43 0 0.50 0 5.69 0.57
medium 1 34.43 2.41 0 0.84 1.45 4.15 0.92
medium 2 44.2 2.86 0 0.99 2 3.61 1.05
long 62.49 4.44 0 1.55 4.57 0 1.59
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Table B.3 Consumption and Cost Results for Optimal Solutions cG = 2.5$/gal, cE = 10 c/kWh

Cycle Distance Optimal Blending Optimal EV/CS
Miles Gas

[kg]
Electric
[kWh]

Total
($)

Gas
[kg]

Electric
[kWh]

Total
($)

short 1 7.3 0 1.52 0.15 0 1.52 0.15
short 2 24.03 0 5.69 0.57 0 5.69 0.57
medium 1 34.43 0.52 7.73 1.22 0.54 7.72 1.24
medium 2 44.2 0.93 7.73 1.58 0.96 7.7 1.6
long 62.49 2.54 7.95 2.99 2.56 7.95 3.02
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Appendix C

Derivation of Combined Design and
Control Optimality Conditions

Consider the combined plant/controller optimization problem in Eq. (5.3). Assuming
there exists an optimal solution to this problem, the solution must , by definition satisfy all
feasibility constraints, i.e.

hp(x∗p) = 0,gp(x∗p)≤ 0, ż∗ = f (z∗(t),u∗(t), t,x∗p),

η(u∗(t), t,x∗p)≤ 0,Ψ(z∗(T ∗),T ∗) = 0,z∗(t0) = z0
(C.1)

Furthermore, assuming the optimization objective and constraints to be continuous
and differentiable, and assuming the optimum to be a regular point, we define Lagrange
multipliers (α,β ,λ (t),µ(t),ν), such that the following complementary slackness conditions
are met at the optimum:

α
∗ 6= 0,β ∗ ≥ 0,β ∗T gp(x∗p) = 0,λ ∗(t) 6= 0

µ
∗(t)≥ 0,µ∗(t)η(u∗(t), t,x∗p) = 0,ν∗ = 0

(C.2)

The Lagrange multipliers can be used to define an augmented (Lagrangian) cost function
Jaug that will be stationary with respect to the plant deign variables, controller state and
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input variables, and the Lagrange multipliers at the optimum, i.e.

Jaug =wp
(
Fp +α

T hp(xp)+β
T gp(xp)

)
+wc

[
Φ(z(T ),T )+ν

T
Ψ(z(T ),T )

+
∫ T

0

(
L(z(t),u(t), t)+µ

T (t)η(u(t), t,xp)

+λ
T (t)

(
f (z(t),u(t), t,xp)− ż(t)

))
dt

]
(C.3)

Now, define the following Hamiltonian cost functional:

H(z(t),u(t), t,xp,λ (t)) = L(z(t),u(t), t)+λ
T f (z(t),u(t), t,xp) (C.4)

Rewriting the augmented cost function in terms of this Hamiltonian gives:

Jaug =wp
(
Fp +α

T hp(xp)+β
T gp(xp)

)
+wc

[
Φ(z(T ),T )+ν

T
Ψ(z(T ),T )

+
∫ T

0

(
H(z(t),u(t), t,xp,λ (t))+µ

T (t)η(u(t), t,xp)

−λ
T (t)ż(t)

)
dt

]
(C.5)

Using Leibniz’s integral rule to derive an expression for the variation in Jaug in terms of
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variations in the plant and controller design variables around their optimal values gives

dJaug =

[
wp

(
dFp

dxp
+

dhT
p

dxp
α +

dgT
p

dxp

)

+wc

∫ T

0

(
∂H
∂xp

+
∂ηT

∂xp
µ

)]T

dxp

+wc

[
∂Φ

∂ z
+

∂ΨT

∂ z
ν

]T

t=T
dz(T )

+wc

[
∂Φ

∂T
+

∂ΨT

∂T
+H−λ

T ż+µ
T

η

]
t=T

dT

+wc

∫ T

0

[
∂HT

∂ z
δ z(t)+

(
∂H
∂u

+
∂ηT

∂u
µ

)T

δu(t)

+

(
∂H
∂λ
− ż
)T

δλ −λ
T

δ ż

]
dt

(C.6)

Integrating the last term on the RHS in Eq. (C.6) by parts, to eliminate the variations in
ż, the above equation reduces to

dJaug =

[
wp

(
dFp

dxp
+

dhT
p

dxp
α +

dgT
p

dxp

)

+wc

∫ T

0

(
∂H
∂xp

+
∂ηT

∂xp
µ

)]T

dxp

+wc

[
∂Φ

∂ z
+

∂ΨT

∂ z
ν−λ

]T

t=T
dz(T )

+wc

[
∂Φ

∂T
+

∂ΨT

∂T
+H−λ

T ż+µ
T

η

]
t=T

dT

+wc

∫ T

0

[(
∂HT

∂ z
+ λ̇

)
δ z(t)

+

(
∂H
∂u

+
∂ηT

∂u
µ

)T

δu(t)+
(

∂H
∂λ
− ż
)T

δλ

]
dt

(C.7)

Setting the variations in the augmented cost function to zero for all variations in the
optimization variables and assuming a fixed (finite or infinite) time horizon for the optimal
control subproblem, produces the following stationarity conditions at the combined opti-
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mum. It should be noted that the control objective functional L(z(t),u(t), t) has no explicit
dependence on the design variable xp.[

dFp

dxp
+

dhT
p

dxp
α +

dgT
p

dxp
β +

wc

wp

∫ T

0

(
∂ f T

∂xp
λ +

∂ηT

∂xp
µ

)
dt

]∗
= 0 (C.8)

[
∂Φ

∂ z
+

∂Ψ

∂ z
ν−λ

]∗
t=T

= 0 (C.9)

[
∂H
∂ z

+ λ̇

]∗
= 0 (C.10)

[
∂H
∂u

+
∂ηT

∂u
µ

]∗
= 0 (C.11)

The stationarity conditions Eqs. (C.8-C.11), along with the feasibility conditions Eq. (C.1)
and the complementary slackness conditions Eq. (C.2) gives the complete set of first-order
necessary conditions for combined plant and controller optimality as presented in Section
5.3.
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Appendix D

Coupling Term and the Gradient of the
Optimal Control Objective

We define the control objective in Eq. (D.1)

Fc(z(t),u(t),xp) = Φ(z(T ),T )+
∫ T

0
(L(z(t),u(t), t)dt (D.1)

Notice that the control objective is dependent on the control variables (z(t),u(t)), and the
plant design (xp). Consider the augmented control objective, defined using the appropriate
Lagrange multipliers

Fc,aug(z(t),u(t),xp) =Φ(z(T ),T )+ν
T

Ψ(z(T ),T )

+
∫ T

0
{L(z(t),u(t), t)

+λ
T (t) f (z(t),u(t), t,xp)

+µ
T (t)η(u(t), t,xp)

}
dt

(D.2)

For any chosen plant design (xp), at the optimal control solution, we have (the superscript
# signifies optimal control solution only and not combined optimal)

Fc(z#(t),u#(t),xp) = Fc,aug(z#(t),u#(t),xp) (D.3)

Since Eq. (D.3) holds ∀xp

∂Fc(z#(t),u#(t),xp)

∂xp
=

∂Fc,aug(z#(t),u#(t),xp)

∂xp

or simply
∂F#

c
∂xp

=
∂F#

c,aug

∂xp

(D.4)
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Now, consider the total differential of F#
c ,

dF#
c

dxp
=

∂F#
c

∂xp
+

∂F#
c

∂ z#
∂ z#

∂xp
+

∂F#
c

∂u#
∂u#

∂xp
(D.5)

For the optimal control solution, we have variations of the optimal control objective with
respect to the variations in the state and input trajectories equals zero, i.e.

∂F#
c

∂ z# = 0,
∂F#

c
∂u# = 0

⇒ dF#
c

dxp
=

∂F#
c

∂xp

(D.6)

From Eqs. (D.4) and (D.6), we have

dF#
c

dxp
=

∂F#
c,aug

∂xp
(D.7)

Taking the partial differential of Eq. (D.3) with respect to xp, we get

∂F#
c,aug

∂xp
=
∫ T

0

(
∂ f T

∂xp
λ

# +
∂ηT

∂xp
µ

#
)

dt (D.8)

From Eq. (D.7) and (D.8), we have,

dF#
c

dxp
=
∫ T

0

(
∂ f T

∂xp
λ

# +
∂ηT

∂xp
µ

#
)

dt (D.9)

Hence we have shown the equality of the coupling terms described in Eqs. (5.9) and (5.10),
i.e., the gradient of the optimal attainable control objective with respect to the plant design
is equal to the coupling term.
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