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CHAPTER I

Introduction

Quantum mechanics and general relativity are two pillars of modern physics. On

one hand, quantum mechanics governs the law of physics at a short distance scale.

The characteristic property of quantum mechanics is the wave-particle duality: all

the matters in nature are particles whose probabilities to take some particular states

are determined by their wave functions. Quantum theory is known to consistently

describe three of the four known types of interactions—electromagnetic interactions,

weak interactions and strong interactions—and they constitute the standard model

of particle physics. On the other hand, general relativity is a classical theory of the

remaining interactions—gravitational interactions. In general relativity, as opposed

to physics until the nineteenth century, the spacetime is no longer a fixed object, but a

dynamically changing object, and its dynamics is governed by the Einstein equation.

The gravitational force is weak at currently accessible short distance scales, but gets

stronger than other interactions at large distances1. Hence general relativity plays a

key role in discussing large scale dynamics of the spacetime such as the evolution of

the universe and the formation of stars.

Given these two great achievements in the twentieth century’s physics, one natural

1Generally, the gravitational force is weaker at large distance. As opposed to other interactions, however, it
cannot be shielded by anything, such as confinement in strong interactions, heavy force carriers in weak interactions
or cancellation of the charges in electromagnetic interactions, so it gets the strongest at large distance.

1
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question arises: can one combine quantum theory and general relativity to construct

a quantum theory of gravity? Not only is the quantum gravity of theoretical inter-

est, but it has several applications to the real world. One application is to discuss

rigorously the beginning of the universe. It is now widely accepted that the universe

started from the Big Bang, a very large density state and its subsequent explosion.

In fact, one can mathematically show in the classical framework that the universe

starts from a singularity at which the energy density is infinitely large [71]. However,

the problem of this analysis is that one, in principle, cannot use classical theory at

the initial singularity: there, everything is confined in an infinitely small volume, so

the physics involved should be quantum theory. Thus, one needs a quantum theory

of gravity to analyze the very beginning of the universe. Another, somewhat related

application is to understand (small) black hole physics. Classically, a black hole is

an object from which nothing can escape. However, one can show semi-classically

that a black hole thermally emits particles and reduces its size. Again, the problem

is the final stage of the reduction. If the size of the black hole gets very small, one

needs to use quantum theory to describe its dynamics.

Unfortunately, naive attempts for unifying quantum theory and general relativity

fail. The problem stems from the fact that quantum theory generally has a process

where a particle emits a virtual particle which is re-absorbed in a short period of

time by the original particle, and that process yields a divergent contribution to the

probability2. If the virtual particles are the ones involved in electromagnetic, weak or

strong interactions, we know how to regularize the divergences and how to introduce

counterterms in the theory to cancel the divergences via renormalization techniques.

But if the divergences are associated with graviton emission and re-absorption, one

2Recently, the possibility that the gravitational theory with the maximal number of supersymmetries does not
have the short distance divergences has been investigated. See [48] and references therein for details.
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generally needs an infinite number of counterterms, which destroys the predictability

of the theory. The divergence occurs in a very short time scale, which can be trans-

lated into a short distance by Lorentz transformations, so a predictable quantum

theory of gravity should require some special ingredients at short distance.

One reasonable, and the only currently known-to-work modification at short dis-

tance is to replace particles in the theory by small strings. The resulting theory is

called “string theory” and has the following properties/advantages:

1. String theory includes two types of strings, open strings and closed strings, and

different particles are described by different types of oscillations of the strings.

Consistent string theories are known to always have a graviton in the closed

string spectrum [119, 105], so a consistent string theory is naturally a quantum

theory of gravity.

2. String theory, in addition to strings, has extended objects called “D-branes” in

its spectrum [102]. In a weakly interacting theory, a D-brane is a static object

on which open strings end. On the other hand, the mass of a D-brane gets small

compared to strings in a strongly coupled theory, so it behaves as a dynamical

object in the strong coupling regime.

3. All the known string theories consisting only of bosonic degrees of freedom have

tachyons in their spectra, implying that the theories are expanded around unsta-

ble vacua. One can of course try to find the stable vacua for the bosonic string

theories, but an easier way to eliminate tachyons is to introduce fermionic de-

grees of freedom. All the perturbatively consistent theories of that type have ten

spacetime dimensions and supersymmetry, a symmetry exchanging bosons and

fermions, and called type IIA, type IIB, type I, heterotic SO(32) and heterotic
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E8×E8, respectively. All the theories are further unified into eleven-dimensional

M-theory, and all the string theories can be obtained as particular loci of M-

theory [74, 117].

4. String theory is defined in ten dimensions, so one somehow needs to reduce

it to four dimensions for real world applications. One can do that either by

considering that six of the dimensions are very small [26] or that our universe is

realized on four-dimensional D-branes [102]. A large set of theories of this type

have a large gauge group, and may include standard model interactions (and

many more). Hence one would expect that string theory is not just the quantum

theory of gravity, but a promising candidate for the “theory of everything”.

Semi-realistic models have been constructed using small six extra dimensions,

D-branes, seven-branes in F-theory and M-theory.

In summary, string theory is a quantum theory of gravity, and furthermore can

possibly describe all the interactions in nature.

In this thesis, we focus on the large distance description of string theory, called “su-

pergravity” [53, 47]. Supergravity is a supersymmetric field theory which describes

gravitational interactions or, in other words, a supersymmetric version of Einstein

gravity. The reduction from string theory to supergravity can be understood as fol-

lows. The typical length of strings in string theory is much smaller than the scale one

can reach by any currently established experiment. Therefore, string theory should

be effectively described as particles interacting with each other, because the string

length is negligibly small. The interactions of particles are then described by using

quantum field theory. One can determine the form of the theory by the invariance

under general coordinate transformations and supersymmetry, and the gravitational

part of the theory is uniquely determined to be that of supergravity.
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In particular, we consider a special kind of corrections to supergravity from string

theory, namely the higher derivative (or higher curvature, in gravitational perspec-

tive) corrections. Typically, higher derivative corrections are understood as correc-

tions to supergravity from short distance physics. If we restrict our attention to

the gravitational sector, the action should be written purely in terms of quantities

associated with the spacetime which are covariant under general coordinate transfor-

mations, namely the curvature of the spacetime R. Then, a general higher derivative

action is written as

(1.1) S =
1

16πGd

∫
ddx
√
g(R + α′R2 + α′2R3 + · · · ) ,

where Gd is the d-dimensional Newton’s constant and α′ is proportional to the square

of the string length. α′ is an extremely small quantity, so the terms depending on

the positive powers of α′ do not affect physical processes unless the matters are

confined in a very small region, typically at string length scale, and the extremely

large density of matters curves the spacetime so that the curvature is of order 1/α′.

If the curvature is not of order 1/α′, the higher derivative corrections are small, and

one can treat the corrections perturbatively. In this thesis, we are considering the

leading order corrections, namely four derivative or curvature squared corrections to

supergravity and their supersymmetrization.

We are focusing on five-dimensional gauged supergravity in this thesis. Techni-

cally, gauged supergravity is defined as a supergravity theory in which the gravitino,

the superpartner of the graviton, is charged under some internal gauge group. How-

ever, what is really important is that gauged supergravity, unlike the ungauged case,

has a negative cosmological constant, so it is defined on an Anti-de Sitter (AdS) space.

The gravitational theory on AdS space is believed to have a dual, non-gravitational
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conformal field theory3 description living on the boundary of AdS space via the

AdS/CFT correspondence [92]. Five-dimensional supergravity is of particular in-

terest because the dual field theory is four-dimensional and realistic, and also the

AdS/CFT correspondence in this case is “derivable” from string theory, as will be

explained more in detail later.

As an application of five-dimensional gauged supergravity with higher derivatives,

we discuss the hydrodynamic properties of gauge theory plasma, observed in heavy

ion collisions, via the AdS/CFT correspondence (See [27] for a comprehensive review

for this subject.). The hydrodynamics of gauge theory plasma has been studied

extensively using perturbative quantum field theory, using lattice gauge theory and

using the AdS/CFT correspondence. One interesting hydrodynamic quantity which

characterizes the properties of gauge theory plasma is the shear viscosity to entropy

density ratio. It is pretty difficult to compute this for SU(N) gauge theory with

N = 3, which describes the real quark-gluon plasma found in experiments, but it

can be computed in the large N limit using the AdS/CFT duality [103, 83]. The

result is

(1.2)
η

s
=

1

4π
,

where η is the shear viscosity of a plasma and s is the entropy density. The shear

viscosity to entropy density ratio was initially done in the context of the supergravity

dual to N = 4 SU(N) super Yang-Mills theory, but later extended to various other

theories. For example, the ratio can be calculated for

• N = 1 SCFTs [83]

• non-conformal theories [18]

3Conformal field theory is a particular kind of quantum field theory which, roughly spaeking, is invariant under
the change of the length scale.
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• theories with fundamental matters [94]

• finite chemical potential [93, 108, 91]

• time dependent background [77]

and all of the theories yield the same result as (1.2). In this sense, the result is

universal at large N . Further, based on this extremely small viscosity, it has been

proposed that this ratio is the lower bound (KSS bound) of the shear viscosity to

entropy density ratio.

The result (1.2) is quite interesting because it matches with the experimental

measurement of the quark-gluon plasma (See, for example, [109].)

(1.3)
η

s
≤ 0.2 .

In this sense, one can argue that this is the first non-trivial “experimental verifica-

tion” of string theory, provided that the large N limit is a good approximation of

the N = 3 gauge theory.

However, if one considers finite N corrections, the shear viscosity to entropy den-

sity ratio deviates from the KSS value 1/(4π). As is explained later, the finite N

corrections in the CFT side correspond to higher derivative corrections in the grav-

ity side. Inclusion of the leading order finite N corrections yields a deviation of the

ratio from 1/(4π). Furthermore, one can show that the KSS bound is violated in

the presence of finite N corrections [81, 17]. We discuss the effects of such finite N

corrections and also the effects of introducing finite chemical potential in this thesis.

In the real-world experiments, N is three and there is a finite chemical potential for

the U(1) baryonic charge, so our discussion is an attempt to fill the gap between the

analysis in [103, 83] and the real-world experiments.
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The rest of the thesis is organized as follows. In Chapter 2, we review the off-shell

formulation of five-dimensional supergravity with curvature squared corrections. We

first discuss the building blocks of the theory and see how one can construct the higher

derivative terms in a systematic way. In Chapter 3, we gauge the supergravity theory

obtained in Chapter 2 and gain a supergravity theory with a negative cosmological

constant. We also discuss how to obtain the vacuum AdS5 solution in this chapter. In

Chapter 4, we apply the gauged supergravity theory to discuss the thermodynamic

behavior of gauge theory plasma. The primary tool to relate the supergravity to

gauge theory is the AdS/CFT correspondence, which is reviewed in this chapter.

The dictionary translating the physical quantities in the AdS side into those in the

CFT side and vice versa is also discussed. Finally, in Chapter 5, we compute the

shear viscosity to entropy density ratio in the presence of higher derivative corrections

and chemical potential and see how the KSS result is altered.

This thesis is based on the works [34, 35] in collaborations with Sera Cremonini,

James T. Liu and Phillip Szepietowski. More specifically, the discussions in Chapter 3

and 4 are based on [34], and those in Chapter 5 are based on [35]. Five-dimensional

gauged supergravity with higher derivatives is one of the various topics on which

the author has been working during the graduate study. The other topics he has

been working on are supersymmetric classical solutions of multiple M2-brane theories

[67], phenomenology of gauge mediated supersymmetry breaking [69, 66] and three-

dimensional supergravity with higher spin fields and its holographic dual [70].
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Off-Shell Supergravity with Higher Derivatives

In this section, we review the off-shell formulation of supergravity with eight

supercharges in five dimensions [121, 120, 87, 54, 12, 11]1. The five-dimensional

supergravity with eight supercharges is first formulated in an on-shell method, in

which the closure of the supersymmetry algebra requires the equations of motion [63].

A shortcoming of the on-shell formulation is that one needs to consider the closure of

the algebra and the invariance of the action simultaneously. The equations of motion

are affected by the form of the action, so while trying to preserve the supersymmetries

of the action by adding terms, one also needs to take care of the algebraic structure of

the supersymmetry. On the other hand, the off-shell formulation does not require the

equations of motion for the closure of the algebra. Therefore, when one adds terms

to the action to preserve supersymmetry, one need not worry about the modification

of the algebra. This is the reason why we employ the off-shell formulation in this

thesis.

We start with the observation that general coordinate transformations and local

Lorentz transformations, under which any extension of general relativity2 is invariant,

act on spacetime coordinates in the same way as local Poincaré transformations.
1The off-shell formulation of supergravity was first developed for theories with four supercharges in four dimensions

[110, 51, 106] and extended to eight supercharges in four dimensions [16, 44, 52] and six dimensions [10] as well as
five dimensions. An interested reader can refer to excellent reviews [96, 115] and references therein.

2We simply call this class of theory “gravitational theories” in the rest of the thesis.

9
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This observation opens up a possibility that a gravitational theory can be regarded

as a “gauge theory” of the Poincaré symmetries. In the gauge theory language,

the gauge field associated with the local translations could be regarded as vielbein,

and that associated with the local Lorentz transformations as spin connection in

gravitational theories. Unfortunately, the situation is not so simple for the following

reason: the local translations do not act on the fields in the same way as general

coordinate transformations. In other words, local translational invariance in gauge

theory formulation is just an internal symmetry of the theory, so one needs to realize

it as a spacetime symmetry to obtain a gravitational theory. This problem is solved

by imposing appropriate constraints.

In this thesis, we utilizes conformal tensor calculus [50, 80, 79], in which we impose

the superconformal invariance, not just super-Poincaré invariance, on the theory. The

reason why we impose this larger symmetry is quite simple: generically, the larger

symmetries a theory has, the simpler it gets. By introducing this larger symmetry

group, we facilitate the construction of the action. Then, we introduce expectation

values for auxiliary fields to break the conformal symmetry and obtain Poincaré

supergravity. At this point, the theory is off-shell, meaning that the closure of the

super-Poincaré algebra requires the equations of motion. One obtains the on-shell

Poincaré supergravity by eliminating the auxiliary fields by equations of motion.

So, our approach is summarized as follows:

1. Construct a gauge theory of superconformal invariance.

2. Impose constraints to obtain spacetime superconformal symmetries.

3. Introduce expectation values on the fields to break the conformal symmetries.

4. Eliminate the auxiliary fields using equations of motion.
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This approach is illustrated in Section 2.1 using an example of Einstein gravity. In

the context of supergravity, the first two steps are discussed in Section 2.2 and the

last two are discussed in Chapter 4.

The rest of this chapter is organized as follows. For an illustration of the idea to

construct the supergravity action in the superconformal setup, we start with con-

structing Einstein gravity in the conformal setup in Section 2.1. In Section 2.2, we go

over how to construct a gauge theory of superconformal symmetries, the constraints

to obtain the spacetime superconformal symmetries and the off-shell supergravity

multiplet, called the Weyl multiplet. In Section 2.3, we discuss the supermultiplets

needed to construct an supergravity action coupled to gauge fields. In Section 2.4, we

discuss how to construct a two derivative conformal supergravity action. In Section

2.5, we discuss the construction of supersymmetric higher derivative terms, or more

precisely, the supersymmetric completion of curvature squared terms. Finally, in

Section 2.6, we discuss the application of the supersymmetric four derivative terms

in string theory.

2.1 Einstein Gravity as a Gauge Theory

In this section, we construct Einstein gravity using the conformal gauge theory

techniques discussed above. Einstein gravity is a theory which describes the dy-

namics of the spacetime. In other words, if the spacetime is described by a pseudo-

Riemannian manifold M endowed with a metric gµν , where the distance on the man-

ifold is defined as ds2 = gµνdx
µdxν for a spacetime coordinate xµ, Einstein gravity is

a theory which determines how gµν changes with time. A fundamental requirement

on the theory is that the physical equations must be independent of the choice of

coordinates, or equivalently, invariant under the general coordinate transformations
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(sometimes called diffeomorphism):

(2.1) x→ f(x) ,

where f(x) is an arbitrary function of xµ. The infinitesimal version for this transfor-

mation is

(2.2) x→ x+ ε(x) ,

where ε(x) is an arbitrary infinitesimal function of xµ. Hence, the action of the theory

must be written in terms of quantities consisting of the spacetime metric gµν and

must be invariant under the general coordinate transformations (2.2). One can build

such a quantity using the Riemann curvature tensor Rµνρσ. One advantage of using

the Riemann curvature is that a quantity consisting of the Riemann curvatures with

all the indices contracted with the inverse metric gµν is invariant under the general

coordinate transformations. Thus, the simplest possible form of the action consists

of the Ricci scalar R = Rµνρσg
µρgνσ and the invariant volume form d5x

√
det g. It is

given by

(2.3) S =
1

16πG5

∫
d5x
√

det gR ,

where the five-dimensional Newton’s constant G5 is introduced to make the action S

dimensionless. The goal of this section is to reproduce this action in the conformal

gauge theory formalism.

For this purpose, one introduces a vielbein eaµ(x) by

(2.4) ds2 = gµνdx
µdxν = ηab(e

a
µdx

µ)(ebνdx
ν) ,

where ηab is the metric of flat Minkowski space. In other words, the vielbein is used

to define a orthonormal basis ea = eaµdx
µ for the cotangent bundle of the spacetime
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M . One can also introduce the spin connections ωab(x) := ωµ
a
bdx

µ as a change of

the orthonormal basis for two infinitesimally close points:

(2.5) dea = ωab ∧ eb .

Then, one can write the Riemann curvature as

(2.6) Rab := Rµν
abdxµdxν = dωab + ωac ∧ ωcb ,

where the spacetime indices µ, ν and the indices for the orthonormal basis a, b can be

interchanged by multiplying with the vielbeins. Since we introduced the orthonormal

basis, the theory has additional local symmetries which rotate the orthonormal basis.

These symmetries are called local Lorentz symmetries and, combined with the general

coordinate transformations, constitute the local Poincaré invariance of the theory.

One can construct Einstein gravity as a gauge theory with the local Poincaré

invariance. Here, however, we introduce a larger symmetry group, namely the con-

formal group, of which the Poincaré group is a subgroup. It consists of dilatations

D and special conformal transformations Ka as well as translations Pa and Lorentz

transformations Mab in the Poincaré group. As has been discussed at the begin-

ning of this chapter, one first constructs a gravitational theory with local conformal

symmetries, and then reduce the symmetries to the Poincaré group by giving an

expectation value to fields transforming under D and Ka transformations.

Now that we know the symmetry group of the theory, let us construct the action.

We are considering a gauge theory of the conformal group, so the first step is to

introduce the gauge fields, covariant derivatives and field strengths. For Pa, Mab, D

and Ka, we introduce the gauge fields eaµ, ωµ
ab, bµ and faµ , respectively. The covariant

derivative is defined as Dµ = ∂µ−
∑
hAµXA, where the sum is taken for all the genera-

tors XA. The field strength corresponding to a generator XA is denoted by Rµν(X
A).
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Then, one can construct an action invariant under the local transformations, which

yields a gauge theory with the local conformal symmetries being realized as internal

symmetries. This completes the step one of the construction.

Once we obtain a conformal gauge theory, the next step is to identify the conformal

symmetry, realized as an internal symmetry in the gauge theory, as the real spacetime

symmetry. We have seen that Einstein gravity has local Poincaré symmetries, in

which Pa generates the general coordinate transformations and Mab generates the

local Lorentz transformations. Therefore, we need to identify the local translation

in our gauge theory with diffeomorphisms and Lorentz transformations in Einstein

gravity. In order to illustrate this point, let us consider the local translation of the

gauge field eµ
a:

(2.7) δP (ξa)eµ
a = δdiff (ξ

λ)eµ
a − δAξλhAλ − R̂µν

a(P )ξν .

The first two terms are essentially the covariantized diffeomorphism, and the local

translation differs from the covariantized diffeomorphism by the last term. In order

to identify these two symmetries, one can impose

(2.8) Rµν
a(P ) = 0 .

Here, Rµν
a is, roughly speaking, in the form of 2∂[µeν]

a−2ω[µ
abeν]b plus covariantiza-

tion terms, so the constraint can be interpreted as the torsionless condition in general

relativity. Similarly, the identification of the symmetries requires

(2.9) Rµν
ab(M)eνb = 0 .

This constraint allows faµ to be expressed in terms of the Ricci tensor as

(2.10) fµ
a =

1

6
(Rµν −

1

8
gµνR)eνa .
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In this way, we identified the symmetries of our gauge theory as those in Einstein

gravity. We have completed the step two of the construction. Another point which

is worth mentioning is that this constraint makes the covariant curvature Rab
µν(M)

traceless. Thus, for a background in which the nontrivial independent field is only

the vielbein, Rab
µν(M) is the Weyl tensor of the metric, i.e.

(2.11) Rµν
ab(M) = Rµν

ab +
4

3
R

[a
[µe

b]
ν] −

1

6
e

[a
[µe

b]
ν]R ,

where Rabcd is the ordinary curvature tensor constructed from the metric.

So far, we have not specified the form of the action. In order to obtain the

Einstein-Hilbert action, we take our action to be

(2.12) S =

∫
d5xeφDµDµφ ,

where e is an abbreviation of det eaµ and may be written as
√

det gµν in terms of the

metric, and φ is a scalar field with conformal weight 3/2. If one writes the covariant

derivatives explicitly, one obtains

(2.13) S =

∫
d5xeφeµa [(∂µ − 3bµ)Daφ− ωµabDbφ+ fµ

aφ] ,

where Dµφ = ∂µφ − 3
2
bµφ. To obtain Einstein gravity, one first must reduce the

conformal symmetries to Poincaré symmetries by giving expectation values to the

fields. To break the special conformal symmetry, we note that bµ is not invariant for

any value of bµ. Therefore, we take bµ = 0 to break the special conformal symmetry.

The dilatation can be fixed by taking φ = M , whereM is some dimensionful constant.

Then, all the terms but the last term vanishes in (2.13), so we obtain

(2.14) S =
M3

16

∫
d5x
√
gR .

By setting M3 = (πG5)−1, one obtains Einstein gravity. This procedure completes
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step three of the construction. Since there is no auxiliary field to be eliminated in

this theory, we have completed step four as well.

2.2 Conformal Supergravity as a Gauge Theory

As in the bosonic example, the first step to construct a supergravity action is to

define a gauge theory of the superconformal group3. The superconformal algebra con-

sists of translation Pa, Lorentz transformation Mab, dilatation D, special conformal

transformation Ka, SU(2)R transformation Uij, supercharge Qi and superconformal

charge Si, where i, j, · · · are indices for SU(2)R symmetry. In gauge theory, one

defines the gauge fields corresponding to these generators, which are denoted as

(2.15) eµ
a, ωµ

ab, bµ, fµ
a, V ij

µ , ψiµ, φiµ .

We use two types of covariant derivatives in this thesis, and they are defined as

Dµ = ∂µ −
∑

XA=Mab,D,Uij

hAµXA,(2.16)

D̂µ = Dµ −
∑

XA=Qi,Si,Ka

hAµXA,

where XA denote the generators and hAµ the corresponding gauge fields. As is obvious,

Dµ is covariantized with respect to Mab, D and Uij, and D̂µ is fully covariantized un-

der the superconformal symmetry. The fully covariantized field strengths are defined

as

(2.17) [D̂µ, D̂ν ] = −
∑

XA=Qi,Mab,D,Uij ,Si,Ka

R̂A
µνXA .

The explicit form of the field strengths and the covariant derivatives acting on the

transformation parameters are given in Appendix B.

3The detailed algebraic structure is not important in this thesis. An interested reader can refer to Section 2.5 of
[115].
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The superconformal symmetries of this gauge theory can be identified, as in the

bosonic case, as the spacetime superconformal symmetries by the following con-

straints:

(2.18) R̂µν
a(P ) = 0, γµR̂i

µν(Q) = 0, R̂ab
µν(M)eνb = 0 .

These are called “conventional constraints”, and we use this set of constraints through-

out this thesis.

The conventional constraints are not invariant under the original supersymmetry

transformations. One way to see that is to notice the fact that the conventional

constraints, as can be seen from (B.6), let us solve the gauge fields ωµ
ab, φiµ and fµ

a

in terms of other gauge fields4. This reduces the number of degrees of freedom and

yields a mismatch between the bosonic and fermionic degrees of freedom. Hence,

one needs to introduce auxiliary fields to match the number of bosonic and fermionic

degrees of freedom, and also modify the supersymmetry transformations so that the

constraints are invariant. We do not know of any systematic way to carry out this

procedure, but the resulting multiplet is known as the Weyl multiplet[87, 12], which

consists of the independent gauge fields and auxiliary fields

(2.19) vab, ξi, D,

where vab is an antisymmetric tensor, ξi is an SU(2)R-Majorana spinor and D is a

scalar field. The commutation relation between two Qs and that for S and Q are

4The explicit expressions for dependent fields in terms of independent fields are given in (B.1)



18

given by

[δQ(ε1), δQ(ε2)] = δP (2iε̄1γaε2) + δM(2iε̄1γ
abcdε2vab) + δU(−4iε̄i1γ · vε

j
2)(2.20)

+δS (· · · ) + δK (· · · ) ,

[δS(η), δQ(ε)] = δD(−2iε̄η) + δM(2iε̄γabη) + δU(−6iε̄(iηj))(2.21)

+δK (· · · ) .

For other commutators, it would be more useful to write them in terms of the gauge

transformations, rather than commutation relations. The transformation properties

under Qi, Si and Ka are given in the form of δ = ε̄iQi + η̄iSi + ξaKKa by

(2.22)

δeµ
a = −2iε̄γaψµ,

δψiµ = Dµεi +
1

2
vabγµabε

i − γµηi,

δbµ = −2iε̄φµ − 2iη̄ψµ − 2ξKµ,

δV ij
µ = −6iε̄(iφj)µ + 4iε̄(iγ · vψj)µ −

i

4
ε̄(iγµχ

j) + 6iη̄(iψj)µ ,

δvab = − i
8
ε̄γabχ−

32

i
ε̄R̂ab(Q),

δχi = Dεi − 2γcγabεiD̂avbc + γ · R̂(U)ijε
j − 2γaεiεabcdev

bcvde + 4γ · vηi,

δD = −iε̄ /̂Dχ− 8iε̄R̂ab(Q)vab + iη̄χ.

This Weyl multiplet includes a graviton eµ
a and gravitinos ψi, and constitute a part

of the on-shell supergravity multiplet. Note that R̂(M) should satisfy a similar

relation as (2.11):

(2.23) Rµν
ab(M) = Rµν

ab +
4

3
R

[a
[µe

b]
ν] −

1

6
e

[a
[µe

b]
ν]R .
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2.3 Supermultiplets

In this section, we introduce three particular types of supermultiplets, namely,

vector multiplets, hypermultiplets and linear multiplets. Vector and hypermultiplets

are not optional, but are required to construct an off-shell Poincaré supergravity

multiplet5, as is discussed later on. The linear multiplet is used to construct an

invariant action.

2.3.1 Vector Multiplet

A vector multiplet is a multiplet which has gauge fields W I
µ , SU(2)-Majorana

gauginos ΩI
i , scalar fields M I and auxiliary fields Y I

ij , whose i and j indices are

symmetric, as its components. I is the index for a gauge group G and the fields are

conveniently denoted as, for instance, Wµ = W I
µT

I in terms of the generators of the

gauge group T I . The Q- and S-transformations of the components are given by

(2.24)

δWµ = −2iε̄γµΩ + 2iε̄ψµM,

δM = 2iε̄Ω,

δΩi = −1

4
γ · F̂ (W )εi − 1

2
/̂DMεi + Y i

jε
j −Mηi,

δY ij = 2iε̄(i /̂DΩj) − iε̄(iγ · vΩj) − i

4
ε̄(iχj)M − 2igε̄(i[M,Ωj)]− 2iη̄(iΩj).

The transformation laws above shows that the supersymmetry transformations are

not separable from the gauge transformations under the gauge group G. It is thus

required to modify the supersymmetry transformations as

(2.25) [δQ(ε1), δQ(ε2)] = (R.H.S. of (2.20)) + δG(−2iε̄1ε2M).

5One can use, instead of a hypermultiplet, another multiplet to form an on-shell supergravity multiplet, but we
use a hypermultiplet in this thesis.
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Therefore, the supercovariant curvature is given by

(2.26) F̂µν(W ) = 2∂[µWν] − g[Wµ,Wν ] + 4iψ̄[µγν]Ω− 2iψ̄µψνM.

Not only does one need the vector multiplets to couple supergravity to gauge

fields, but also it is required as a part of the on-shell gravity multiplet. The on-

shell supergravity multiplet should contain a vector field, graviphoton, as well as a

graviton and gravitinos[63]. Since there is no vector field in the Weyl multiplet, one

needs to combine the Weyl multiplet with a supermultiplet including a vector field to

construct a supergravity multiplet. One can also see that the gauge transformations

showing up in the right hand side of the supersymmetry algebra (2.25) is, from the

definition, the gauge transformation associated with the graviphoton on-shell.

2.3.2 Hypermultiplet

A hypermultiplet consists of scalars Aiα, spinors ζα and auxiliary fields F iα. They

carry the index α (= 1, 2, . . . , 2r) of USp(2r). The scalars satisfy the reality con-

dition Aiα = −(Aαi )∗, and ζα are USp(2r)-Majorana spinors. A subgroup G′ of the

gauge group G can act on the index α as a subgroup of USp(2r). The Q and S

transformations of Aiα and ζα are given by

δAiα = 2iε̄iζα,(2.27)

δζα = /̂DAαj εj − γ · vεjAαj − gM∗Aαj εj + 3Aαj ηj,

where /̂D and M∗ include the ‘central charge’ gauge transformation Z. The quantity

g is the coupling constant, and the notation X∗Y represents the action of generators

of the gauge transformation,

(2.28) (X∗Y )α = XItI
α
βY

β +X0ZY α,
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where X takes values in a Lie algebra, Y takes values in its representation, and tI
α
β

is the representation matrix. The closure of the algebra thus determines the ‘central

charge’ gauge transformation of Aiα via F iα, though we set Z = 0, (F iα = 0) in this

thesis6.

2.3.3 Linear Multiplet

A linear multiplet consists of a real scalar Lij, whose i and j indices are sym-

metric, a SU(2)-Majorana spinor ϕi, a vector Ea, and a scalar N . The Q and S

transformations on the components yield

δLij = 2iε̄(iϕj),(2.29)

δϕi = − /̂DLijεj +
1

2
γaεiEa +

1

2
εiN

+2γ · vεjLij + gM∗L
ijεj − 6Lijηj,

δEa = 2iε̄γabD̂bϕ− 2iε̄γabcϕvbc + 6iε̄γbϕv
ab

+2igε̄γaM∗ϕ− 4igε̄iγaΩj
∗Lij − 8iη̄γaϕ,

δN = −2iε̄ /̂Dϕ− 3iε̄γ · vϕ+
1

2
iε̄iχjLij + 4igε̄(iΩj)

∗ Lij − 6iη̄ϕ.

The algebra closes if Ea satisfies the following Q- and S-invariant constraint:

(2.30) D̂aEa + gM∗N + 4igΩ̄∗ϕ+ 2gY ij
∗ Lij = 0.

One important property concerning the linear multiplet is that any symmetric,

real composite bosonic field Lij, which is invariant under S transformations, au-

tomatically leads to the above transformation law with suitable choices of ϕi, Ea

and N . Thus, the construction of a linear multiplet can be carried out by repeated

supersymmetric transformations starting from the lowest component, Lij.

6Interested readers can refer to [87] and [54] for details.
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2.4 Invariant Action at Two Derivatives

In this section, we construct the invariant action for supergravity coupled to nV +1

U(1) vector multiplets. The starting point of the construction of an invariant action

is to realize that the following Lagrangian is invariant under the superconformal

transformations:

e−1L(V · L) ≡ Y ij · Lij + 2iΩ̄ · ϕ+ 2iψ̄ai γaΩj · Lij(2.31)

−1

2
Wa ·

(
Ea − 2iψ̄bγ

baϕ+ 2iψ̄
(i
b γ

abcψj)c Lij

)
+

1

2
M ·

(
N − 2iψ̄bγ

bϕ− 2iψ̄(i
a γ

abψ
j)
b Lij

)
.

Here, we restrict our consideration to neutral Lij for simplicity. Then, one can

embed two sets of vector multiplets, V I and V J , into the linear multiplet to obtain

the action quadratic in the gauge field strengths. More concretely, we identify the

lowest component of the linear multiplet Lij as

(2.32) Lij(V ·V) = Y I
ijfI − iΩ̄I

iΩ
J
j fIJ ,

where fIJ = ∂2f(M)/∂M I∂MJ and f(M) is an arbitrary quadratic homogeneous

function of M I . Then, one can obtain the higher components by carrying out the
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supersymmetry transformations and comparing both sides. The result is

ϕi(V ·V) = −1

4
χif(2.33)

+

(
/̂DΩI

i −
1

2
γ · vΩI

i − g[M,Ω]I
)
fI

+

(
−1

4
γ · F̂ I(W )ΩJ +

1

2
/̂DM IΩJ − Y IΩJ

)
fIJ ,

Ea(V ·V) = D̂b
(

4vabf + F̂ I
ab(W )fI + iΩ̄IγabΩ

JfIJ

)
+
(
−2ig[Ω̄, γaΩ]I + g[M, D̂aM ]I

)
fI

+

(
−2igΩ̄Iγa[M,Ω]J +

1

8
εabcdeF̂

bcI(W )F̂ deJ(W )

)
fIJ ,

N(V ·V) = −D̂aD̂af +

(
−1

2
D − 3v2

)
f

+
(
−2F̂ab(W )vab + iχ̄ΩI + 2ig[Ω̄,Ω]I

)
fI

+

 −1
4
F̂ I
ab(W )F̂ abJ(W ) + 1

2
D̂aM ID̂aMJ

+2iΩ̄I /̂DΩJ − iΩ̄Iγ · vΩJ + Y I
ijY

Jij

 fIJ .

By plugging this into (2.31), one can obtain the invariant two derivative action. The

resulting action is completely symmetric in I, J and K, so we obtain an invariant

action LV given a gauge-invariant cubic polynomial N = cIJKM
IMJMK . The

fermionic part does not matter in this thesis, so we just present the bosonic part of

the action:

(2.34)

e−1LV
∣∣
bosonic

= N
(
−1

2
D +

1

4
R(M)− 3v2

)
+NI

(
−2vabF I

ab(W )
)

+NIJ
(
−1

4
F I
ab(W )F abJ(W ) +

1

2
DaM IDaMJ + Y I

ijY
Jij

)
− e−1 1

24
ελµνρσNIJKW I

λF
J
µν(W )FK

ρσ(W ).

Note that there is a Chern-Simons interaction, W ∧ F ∧ F , which stems from the

Wa ·Ea term in the invariant action formula (2.31). The strength of the interaction

is N , implying that it governs the entire vector multiplet Lagrangian.
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One thing which we need to mention for the vector multiplet Lagrangian (2.34) is

that the equation of motion of the auxiliary field D imposes N = 0. This is obviously

problematic, because it forces the coefficient of the Einstein-Hilbert term to vanish.

A way out is to introduce a compensator hypermultiplet and add the compensator

action to the vector multiplet action. The compensator action is obtained by embed-

ding the square of hypermultiplets into the linear multiplet and using the invariant

action (2.31) as

e−1LH
∣∣
bosonic

= DaAᾱi DaAiα +Aᾱi (gM)2Aiα(2.35)

+A2

(
1

8
D +

3

16
R(M)− 1

4
v2

)
+ 2gY ij

αβA
ᾱ
i A

β
j ,

where A2 ≡ Aᾱi Aiα = Aβi dβαAiα with the metric dα
β arranged to be δβ

α for a compen-

sator. Here, we have already eliminated the auxiliary fields Fiα using their equations

of motion. Let us now consider a system coupled to nV + 1 conformal vector mul-

tiplets, I = 0, . . . , nV , and one conformal hypermultiplet, Aiα (i, α = 1, 2), as a

compensator. We let its action be L0 = LH − 1
2
LV . The equation of motion for D

gives A2 + 2N = 0, while the scalar curvature appears in the Lagrangian in the form

(2.36) (
3

16
A2 − 1

8
N )R(M).

Thus, we can make the Einstein-Hilbert term canonical by fixing the dilatational

gauge transformation D via the conditionA2 = −2. It also fixesN = cIJKM
IMJMK =

1 via the equation of motion for D. The target space of the scalar fields with this

constraint is called a very special manifold and has been studied in the literature

[46].
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2.5 Supersymmetric Completion of R2 Terms

2.5.1 Strategy

Before moving on, we need to make a few comments on the physical interpretation

of the higher derivative terms, in particular in the off-shell formalism. Firstly, if we

naively apply the variational method to obtain the equation of motion from a higher

derivative theory, it results in a differential equation which is higher than second

order. This means that giving the value and the first derivative of a field does not

suffice as initial values. In other words, there are ‘extra modes’ in addition to the

modes of the two-derivative Lagrangian. This is inevitable if we take the Lagrangian

as giving an ultra-violet definition.

However, we regard our Lagrangian as the effective low-energy description in a

derivative expansion with a small expansion parameter α′. Thus, the solution to the

equation of motion should take the form of a perturbative expansion in α′, and, in

particular, its α′ → 0 limit should exist. Such solutions are known to be determined

by the value and the first derivative of a field at t = 0, just as in the case with the

two-derivative Lagrangian, making the ‘extra modes’ mentioned above unphysical7.

Secondly, it is readily checked that the auxiliary fields would appear with physical

kinetic terms and begin to propagate when one constructs higher derivative terms

in the off-shell formalism. It is known, however, that the auxiliary fields can be

eliminated perturbatively in α′ (see e.g. the introduction of Ref.[4]) to produce

many higher derivative terms in the physical fields. The resulting Lagrangian is to be

understood as explained in the previous paragraph. Thus, the would-be propagating

auxiliary fields are just the ‘extra modes’ associated with the higher derivative terms,

and they are not to be regarded as physical fields.

7The details can be found, for example, in [49] and [32].
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The third comment is of a slightly different nature. In the higher derivative theory

of gravity, one can redefine the metric as

(2.37) gµν → gµν + aRgµν + bRµν + · · · .

with a and b small parameters. This leaves the leading-order Einstein-Hilbert term

intact, while changing the form of the higher-order derivative terms. For example,

it can be used to arbitrarily shift the coefficients of RµνRµν and R2, while that of

RµνρσRµνρσ cannot be shifted. It should also change the supersymmetry transfor-

mation law. The physics described by the Lagrangian, of course, remains the same

under the redefinition. We need to use a redefinition to compare our results to those

in the literature.

Below, we construct a very specific higher derivative term, whose form is not pre-

served by (2.37). This is because we use a very specific form of the supersymmetry

transformation dictated by the superconformal formalism. Change in the conven-

tional constraints (2.18) also induces a field redefinition among the fields in the Weyl

multiplets without altering the physical contents of the theory. Our choice of the

constraint R̂a
µ = 0 is a convenient one because it greatly reduces the number of higher

derivative terms to consider by forbidding the appearance of terms like R̂abR̂
ab or

R̂2.

With these preliminary remarks, we set out to construct a supersymmetric curvature-

squared term in 5d N = 2 supergravity [68]. More precisely, we obtain the super-

symmetric completion of the mixed gauge-gravitational Chern-Simons term,

(2.38) εabcdeW I
aRbcfgRde

fg.

We recall that the gauge Chern-Simons term in (2.34) arises from the Wa · Ea term

in the V ·L invariant action formula. Judging from the similarity of the roles played
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by the gauge curvature F I
ab and the metric curvature Rab

cd, a natural guess would

be to first embed the Weyl multiplet into a vector multiplet V cd[W] with extra

antisymmetric Lorentz indices c and d, and then to construct a linear multiplet from

the L(V I , V J) embedding formula. However, we have found that this method is not

significantly better than the direct construction of the linear multiplet. Therefore,

our strategy is as follows:

1. Embed the Weyl multiplet to the linear multiplet.

2. Use the L(V · L) invariant action formula.

3. Gauge-fix down to the Poincaré supergravity.

The strong restriction in five dimensions, of course, already appears in the two-

derivative Lagrangian. Indeed, the structure of the four-dimensional N = 2 vector

multiplet is determined by a holomorphic function F (XI), but in five dimensions, the

corresponding object N must be a purely cubic function. This restriction comes from

the gauge invariance of the gauge Chern-Simons terms, just as in the case considered

above.

2.5.2 Embedding and an Invariant Action

The linear multiplet should have Ea 3 εabcdeR
bc
fg(M)Rdefg(M) to be used in

the invariant action formula in order to obtain the gravitational Chern-Simons term

(2.38). The supertransformation law (B.9) for R̂(Q) reveals that we need the follow-

ing structure:

Ea 3 R(M)2 ← ϕ 3 R(M)R(Q) ← Lij 3 R(Q)2.(2.39)
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Thus, Lij is of Weyl-weight 3 and an SU(2)R triplet, constructed solely from the

Weyl multiplet. Hence Lij should be given by

Lij[W2] = i
¯̂
Rab

(i(Q)R̂abj)(Q) + A1iχ̄
(iχj) + A2v

abR̂ab
ij(U)(2.40)

for suitable coefficients A1,2. This quantity must be invariant under S transforma-

tions to be the lowest component of a linear multiplet. The transformation

δS(η)Lij[W2] = 8iη̄(iR̂
j)
ab(Q)vab − 8iη̄(iγabv

abχj)A1(2.41)

+

(
6iη̄(iR̂

j)
ab(Q)vab − i

2
η̄(iγabχ

j)

)
A2

fixes A2 = −4/3 and A1 = 1/12. Then, the embedding formula is determined by a

straightforward but tedious and lengthy repeated application of the supersymmetry

transformation:

(2.42)

Lij[W2] = i
¯̂
Rab

(i(Q)R̂abj)(Q) +
1

12
iχ̄(iχj) − 4

3
vabR̂ab

ij(U),

ϕi[W2] =
1

12
χiD +

1

4
γabR̂cd

i(Q)R̂abcd(M)− R̂abi
j(U)

(
R̂j
ab(Q) +

1

12
γabχ

j

)
+ 8γ[cD̂cR̂a]b

i(Q)vab − 2γcR̂ab
i(Q)D̂avbc

− 1

3
γ[aD̂b]χivab +

1

6
γabγcχiD̂avbc −

2

3
γabR̂cd

i(Q)vacvbd,

Ea[W
2] = −1

8
εabcdeR̂

bcfg(M)R̂de
fg(M) +

1

6
εabcdeR̂

bcij(U)R̂de
ij(U)

+ D̂b
(
−2

3
vabD + 2R̂abcd(M)vcd − 8

3
εabcdev

cfD̂fvde

− 4εabcdev
c
fD̂dvef +

16

3
vacv

cdvdb +
4

3
vabv

2

)
,

N [W2] =
1

6
D2 +

1

4
R̂abcd(M)R̂abcd(M)− 2

3
R̂abij(U)R̂abij(U)

− 2

3
R̂abcd(M)vabvcd +

16

3
vabD̂bD̂cvac +

8

3
D̂avbcD̂avbc +

8

3
D̂avbcD̂bvca

− 4

3
εabcdev

abvcdD̂fvef + 8vabv
bcvcdv

da − 2(vabv
ab)2.
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Here, we have omitted the terms trilinear in fermions in the expression of ϕi and the

terms including fermions in the expressions of Ea and N . The first non-trivial check

comes from the constraint (2.30), indicating that the divergence of Ea vanishes. This

holds because the divergence of the first line in Ea vanishes, by the Bianchi identity,

while the second and third lines vanish if we use the identity D̂aD̂bAab = 0 for a

K-invariant, SU(2)-singlet, antisymmetric tensor Aab. Another non-trivial check is

the K-invariance of Ea and N , and we can see that Ea and N are invariant under K

transformations.

We form an invariant action for off-shell conformal supergravity from the linear

multiplet constructed above, using the V · L formula. The bosonic term is

(2.43)

L(V · L[W2])
∣∣
bosonic

= cIY
I
ijL

ij[W2]− 1

2
cIW

I
aE

a[W2] +
1

2
cIM

IN [W2]

= −4

3
cIY

I
ijv

abR̂ij
ab(U)

+
1

16
εabcdecIW

aIR̂bcfg(M)R̂de
fg(M)

− 1

12
εabcdecIW

aIR̂bc
jk(U)R̂dejk(U)

+
1

8
cIM

IR̂abcd(M)R̂abcd(M)− 1

3
cIM

IR̂abjk(U)R̂abjk(U)

+
1

12
cIM

ID2 +
1

6
cIF̂

IabvabD −
1

3
cIM

IR̂abcd(M)vabvcd

−1

2
cIF̂

IabR̂abcd(M)vcd +
8

3
cIM

IvabD̂bD̂cvac

+
4

3
cIM

ID̂avbcD̂avbc +
4

3
cIM

ID̂avbcD̂bvca

−2

3
cIM

Iεabcdev
abvcdD̂fvef +

2

3
cIF̂

Iabεabcdev
cfD̂fvde

+cIF̂
Iabεabcdev

c
fD̂dvef −

4

3
cIF̂

Iabvacv
cdvdb

−1

3
cIF̂

Iabvabvcdv
cd + 4cIM

Ivabv
bcvcdv

da − cIM I(vabv
ab)2

for constants cI [68]. Note that the term containing the second-order supercovariant
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derivative of v depends on the Ricci tensor through the K-gauge field given in (B.1),

because D̂avbc includes the terms ∼ bavbc and ∼ ωa[b
dvc]d, and the supercovariant

derivative of ba and ωa
bc yields fab [ see (B.2), (B.4) and (B.6)]. The result is

vabD̂bD̂cvac = vabDbDcvac −
2

3
vacvcbRa

b − 1

12
vabv

abR(2.44)

modulo terms including fermions.

To conclude this section, we should mention that another set of supersymmetric

curvature squared terms has recently been constructed [13]. The newly constructed

terms are apparently different from (2.43) and it would be interesting to see if these

terms play a physically important role when embedded in string/M-theory as (2.43).

2.6 Applications to String Theory

We summarize the applications of the higher derivative action (2.43) to string

theory in this section. Although the primary goal of this thesis is to discuss the

gauged supergravity with higher derivative terms and its applications, we believe

this subject is of interest for most of the readers of this thesis.

But before discussing the applications, we relate the five-dimensional supergrav-

ity with (more than) eight supercharges and a vanishing cosmological constant to

string/M-theory. This type of supergravity theories can be obtained as a low-energy

effective theory of type II or heterotic string theory compactified on K3× S1 or T 5,

or that of M-theory compactified on a Calabi-Yau three-fold. It can be understood

by simply counting the number of supersymmetries: type IIB string and M-theory

have 32 supercharges, and T 5, K3×S1 and a Calabi-Yau three-fold preserve all, half

and one-quarter of the supersymmetries of the theory, respectively. As was discussed

in the Introduction, the low-energy effective theory of string/M-theory is supergrav-

ity, so one, after the compactifications, ends up with having five-dimensional super-
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gravity with at least eight supercharges. This relation is why the five-dimensional

supergravity has numerous applications to string/M-theory.

One direction of applications is to use the higher derivative action to understand

black hole physics. A supersymmetric black hole, or BPS black hole in a more

common terminology, in string/M-theory can be realized by wrapping D-branes on

cycles on the internal compact manifold. Since the D-branes have masses, one can

increase the Schwarzschild radius of the D-branes by increasing the number of D-

branes wrapping the internal manifold. Then, a black hole is formed when the

Schwarzschild radius surpass the compton wave length. This type of black hole has

been extensively studied for over 15 years, and several properties of black holes in

Einstein gravity are now understood microscopically, including the thermodynamic

entropy [111] and Hawking radiation [25, 41].

Most of the analyses explained in the previous paragraph, however, have been

validated using the two-derivative approximation of the supergravity action. The

two-derivative action is applicable for any infinitely large black holes, but one needs

to consider the higher derivative corrections to compute the finite size effects on

the physical quantities. The higher derivative action (2.43) opens up a possibility

to discuss the finite size effects to the five-dimensional black holes, and they have

actually been investigated by several authors [28, 24, 29, 3, 30, 38, 45, 88, 7]. It

has also been argued that the thermodynamic entropy computed using the higher

derivative terms (2.43) is exact at the classical level, and cannot be modified by

higher order corrections [84, 85, 42].

Another direction, closely related to the previous example, is to figure out the

worldsheet theory of multiple heterotic strings [40, 78, 89, 86]. The worldsheet theory

of N coincident fundamental strings has not yet been known except that the theory
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should be described by 2d CFT with central charges (cL, cR) = (24N, 12N). One

may try to understand it from the gravity dual description, but the gravitational

solution of N coincident strings is known to be singular [39], and so unreliable at

this level. Here is where the higher derivative terms play a role. The higher derivative

corrections in (2.43) resolve this singularity [28], and the analyses of the gravity dual

suggests that the multiple heterotic strings should be described by nonlinear N = 8

superconformal field theory in two dimensions.



CHAPTER III

Gauged Supergravity with Higher Derivatives

This chapter in devoted to obtaining the gauged supergravity action with higher

derivatives. Gauged supergravity is a particular kind of supergravity theory in which

the gravitino is charged under the internal gauge group G. It was proposed as an

attempt to construct a maximally supersymmetric N = 8 supergravity in four di-

mensions [43], and extended to five dimensional supergravity soon later [65, 64, 62].

A qualitative difference from the ungauged supergravity is that gauged supergravity

has a negative cosmological constant and the vacuum solution is a maximally super-

symmetric AdS space. Later in this thesis, gauged supergravity is used to analyze

the AdS/CFT correspondence.

We start this chapter with explaining how one obtains gauged supergravity from

ungauged supergravity in Section 3.1. Then, we proceed to constructing mini-

mal gauged supergravity action at two-derivative order in Section 3.2 and at four-

derivative order in Section 3.4. For the construction of minimal gauged supergravity

with higher derivatives, one needs to know the maximally supersymmetric vacuum

solution of the theory. Hence the solution is discussed in Section 3.3. The discussions

on this chapter are based on the paper [34].

33
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3.1 Gauged Supergravity

In this section, we briefly summarize how to obtain the gauged supergravity ac-

tion. The detailed calculation is given in the next section. As has been mentioned

earlier, gauged supergravity is defined as a supergravity theory in which the grav-

itino is charged under the gauge group G. Here in this thesis, we only consider

G = U(1)nV +1. Since supergravity is a gauge theory of super-Poincaré symmetries

and in particular the gravitino is the gauge field associated with the supercharge,

one can express the condition that the gravitino is charged under G in terms of the

commutation relation:

(3.1) [GI ,Qα] = PIQα,

where GI is the generator of G and PI is the charge vector of the gravitino under G.

To obtain the commutation relation (3.1), we utilize the fact that the gravitino

in ungauged supergravity is an SU(2)R doublet. Then, if one gives an expectation

value to a field which is charged under both SU(2)R and G, the symmetry group is

broken as

(3.2) SU(2)R ×G → Gdiag.,

and the gravitino acquires charges under the Gdiag. symmetry. More concretely, we

introduce the charged compensators, whose transformation properties are defined by

(3.3) GIAαi = PI(iσ
3)αβAβi .

Then, only the following linear combination of U and G remains to be the symmetry

of the theory:

(3.4) δ′G(ΛI) = δG(ΛI) + δU(ΛIPIiσ
3).
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The equation of motion for V ij
µ requires

(3.5) V ij
µ = PI(iσ

3)ijW I
µ .

In this way, all the SU(2)R non-singlet fields, including the gravitino, are now coupled

to the gauge group G′ with charge vector given by PI .

3.2 Two-Derivative Lagrangian

We construct the on-shell two-derivative Lagrangian in this section. We start with

the off-shell Lagrangian LH−LV /2, where LV and LH are given in (2.34) and (2.35),

respectively, break the superconformal symmetries to super-Poincaré symmetries,

and eliminate the auxiliary fields.

In addition to the gauge symmetries of Poincaré supergravity, we have SU(2)R

symmetries U , dilatational invariance D, special conformal transformations K and

S-invariance. We focus on the bosonic part of the action in this thesis, and break

the bosonic symmetries by giving appropriate expectation values to the fields. As

has been discussed in the previous section, we break D and SU(2)R symmetries by

(3.6) Aαi = δαi .

This expectation value mixes the U(1)R ∈ SU(2)R and U(1) internal gauge symme-

tries and consequently assigns U(1) charges to the gravitino as discussed previously.

To break the K-invariance, note that the dilatational gauge field bµ is not invariant

under K-transformations for any value of bµ. Thus, one can set

(3.7) bµ = 0.

which is basically irrelevant to the form of the action. These two conditions are what

we impose to obtain the (bosonic part of) off-shell Poincaré supergravity action. The
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explicit form of the action is given by

(3.8)

e−1L0 = 1
2
D(N − 1)−R

(
3
4

+ 1
4
N
)

+ v2(3N + 1) + 1
24
cIJKε

µνρλσAIµF
J
νρF

K
λσ

+2NIvµνF I
µν +NIJ(1

4
F I
µνF

J µν − 1
2
DµM IDµMJ)−NIJY I

ijY
J ij

+2
[
|(V ij

µ − gW I
µPI(iσ

3)ij|2 + 4g2(PIM
I)2 + 2gY IijPI(iσ

3)ij
]
,

where we used DµAαi = (−gW I
µPI(iσ

3)αβ + Vµβ)δβi .

Integrating Out the Auxiliary Fields

We can move onto integrating out the auxiliary fields. In the action (3.8), V ij
µ

shows up in the second term in the third line in the form of a magnitude square, so

one can readily integrate it out and obtain

(3.9) V ij
µ = gPI(iσ

3)ijW I
µ .

As discussed in the previous section, the SU(2)R gauge field is identified as a linear

combination of U(1) gauge fields, and now all the SU(2)R non-singlet fields, including

the gravitino, are coupled to G.

We then integrate out Y I
ij . The equation of motion is given by

(3.10) −2NIJY J
ij + 4gPJ(iσ3)ij = 0.

Assuming that NIJ can be inverted, one obtains

(3.11) Y I
ij = 2(N−1)IJPJ(iσ3)ij.

Before we move on, let us discuss the form of the potential at this point. After

eliminating Y I
ij , one obtains the scalar potential of the form

(3.12) V = −4g2[2(N−1)IJPIPJ + (PIM
I)2],



37

where we used the fact that the Abelian gauge group G acts trivially on the vector

multiplet scalars M I and so DµM I = ∂µM
I . Note that NIJ turns out to be the

coefficient of the gauge kinetic term, so the first term must be negative definite. The

second term is the negative of the real value squared, so it also must be negative. This

implies that the theory must have negative cosmological constant at the vacuum.

The auxiliary fields vµν can be eliminated using the equation of motion for vµν .

To make the form of the solution simpler, we first solve the equation of motion for

D:

(3.13) 1
2
(N − 1) = 0.

The equation of motion for D imposes the constraint N = 1 on the scalar manifold.

This constrained scalar manifold is called “very special geometry” and is extensively

studied in the literature. The equations of motion for vµν yields

(3.14) 2(3N + 1)vµν + 2NIF I
µν = 0,

which, in turn, implies

(3.15) vµν = −1

4
NIF I

µν .

Note that this vµν is originally from the Weyl multiplet and related to the graviton

and gravitino by supersymmetry. Therefore, by definition, this particular linear

combination of the gauge fields should be identified as the graviphoton in the on-

shell gravity multiplet.

Finally, we solve for D. It can be primarily done by using the equation of motion

for M I :

1
2
NI(D − 1

2
R + 6vµνv

µν) + 2NIJF J
µνv

µν + 1
4
cIJK F

J
µνF

K µν +NIJ�MJ(3.16)

+1
2
cIJK ∂µM

J∂µMK − g2 δV

δM I
= 0.
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Multiplying M I to the equation of motion for M I yields

(3.17)

D − 1
2
R + 6vµνv

µν = −8
3
NIF I

µνv
µν − 1

6
NIJF I

µνF
J µν − 1

3
NIJ∂µM I∂µMJ

−4
3
NI�M I + 2

3
M I δV

δM I
.

One can readily solve for D using this equation. However, the result includes R,

which changes the correctly normalized coefficient of the Einstein-Hilbert term. To

avoid this problem we add the trace of the Einstein equation

(3.18)

Rµν − 1
2
gµνR = −1

2
NIJ(∂µM

I∂νM
J − 1

2
gµν∂λM

I∂λMJ)

−1
2
(NINJ −NIJ)(F I

µλF
J
ν
λ − 1

4
gµνF

I
λσF

J λσ) + 1
2
gµνV .

One can eliminate the explicit R dependence using the trace of this equation. Plug-

ging in the on-shell value of vµν and the trace of the Einstein equation, one obtains

the on-shell form of D

(3.19)

D = − 7
12
NIJ∂µM I∂µMJ − 4

3
NI�M I + 1

4
(NINJ − 1

2
NIJ)F I

µνF
J µν

−5
6
V + 2

3
M I δV

δM I

= − 7
12
NIJ∂µM I∂µMJ − 4

3
NI�M I + 1

4
(NINJ − 1

2
NIJ)F I

µνF
J µν

+2g2[6PIPJ(N−1)IJ − PIPJM IMJ ] .

Now that we have solved for all the auxiliary fields, the on-shell action can be

obtained by plugging the solutions of the auxiliary fields into the off-shell action

(3.8). It yields

e−1L = −R− 1
2
NIJ∂µM I∂µMJ − 1

4
(NINJ −NIJ)F I

µνF
J µν(3.20)

+ 1
24
cIJK ε

µνρλσAIµF
J
νρF

K
λσ + 4g2[2(N−1)IJPIPJ + (PIM

I)2] ,
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where now the M I are a set of constrained scalars satisfying the very special geom-

etry condition N = 1. The Lagrangian perfectly matches the bosonic sector of the

standard two-derivative N = 2 supergravity action coupled to nV vector multiplets.

3.3 Supersymmetric AdS5 Vacuum Solution

In this section, we consider the maximally supersymmetric vacuum solution of

our supergravity theory and see how Q and S transformations in the conformal

supergravity reduces to the physical supersymmetry Q′ in Poincaré supergravity.

We will be finding the vacuum solution using the BPS equations, which does not

depend on the action in the off-shell formulation, so most of the analysis in this

section is applicable even in the presence of higher derivative corrections.

We make an ansatz for the AdS space as

(3.21) L2

(
u2ηαβdx

αdxβ − du2

u2

)
,

where α, β = 0, 1, 2, 3, η = diag(+,−,−,−), u = x4 and L is the curvature radius.

We further suppose that any field with non-zero spin is zero. We start with the fact

that in such a background, the equation

(3.22) Dµε−
i

2L
γµε = 0

has eight linearly-independent solutions, corresponding to the physical supersymme-

tries of the theory. Here, Dµ denotes the derivative covariant with respect to local

Lorentz transformations, and ε is a spinor without the SU(2)-Majorana condition.

If the i = 1 component of an SU(2)-Majorana spinor εi satisfies (3.22), then the

i = 2 component instead satisfies

(3.23) Dµε
i=2 +

i

2L
γµε

i=2 = 0.
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Thus, to express it covariantly under SU(2)R, one needs to introduce a unit three-

vector ~q so that

(3.24) Dµε
i − 1

2L
γµi(~q · ~σ)ijε

j = 0.

The supersymmetry transformation of the gravitino (2.22) can then be made zero by

choosing

(3.25) ηi =
1

2L
(i~q · ~σ)ijε

j.

The supersymmetric transformation which remains after the gauge fixing is

(3.26) δ′Q(ε) = δQ(ε) + δS

(
1

2L
(i~q · ~σ)ε

)
.

The vanishing of δQχ
i implies that D = 0.

Next, the vanishing of the gaugino transformation (2.24) requires

(3.27) Y I i
jε
j − 1

2L
M I(i~q · ~σ)ijε

j = 0

for all I. This relation is satisfied for the maximal number of εi if and only if

(3.28) Y I
ij =

1

2L
(i~q · ~σ)ijM

I .

We can set i~q ·~σ = iσ3 without loss of generality. The vanishing of the transformation

of the hyperino δζα = 0 under the gauge fixing Aαi ∝ δαi determines the curvature

radius as

L =
3

2
(PIM

I)−1.(3.29)

Another interesting condition comes from the [δ′Q, δ
′
Q] commutator. From (2.20),

(2.22) and (2.25), it is

[δ′Q(ε), δ′Q(ε′)] = δU

(
− 6

L
ε̄(i(iσ3)j)kε

′k
)

+ δG(−2iM I ε̄ε′)(3.30)

= δU
(
2PIM

I(iσ3)ij ε̄ε′
)

+ δG(−2iM I ε̄ε′)

= δ′G(−2iM I ε̄ε′),
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where δ′G is the surviving gauge transformation under the condition Aαi ∝ δαi defined

in (3.4). This implies that δ′G(M I) should leave the scalar VEVs invariant if we

consider additional charged matter fields.

The reader can check that the analysis up to this point does not use any specific

property of the action. Thus it is applicable to any d = 5 N = 2 supergravity

Lagrangian with arbitrarily complicated higher derivative terms. Now, let us write

down the condition (3.28) for our Lagrangian. Since our higher derivative Lagrangian

is independent of Y I
ij , the solution of Y I

ij does not change in the presence of four

derivative terms and is

(3.31) Y I
ij = 2(N−1)IJPJ(iσ3)ij.

Substituting this into (3.28), we obtain

(3.32) PI =
1

4
NIJMJ/L =

3

2
cIJKM

JMK/L.

This is the attractor equation in 5d gauged supergravity first found in [33]. By

multiplying this equation by M I we find the condition N = cIJKM
IMJMK = 1

again. One can check that it solves the modified equations of motion which follows

from L0 + L1. The correction to the potential (N − 1)2 does not shift the VEVs of

the scalars, since the solution before considering higher derivative corrections satisfies

N = 1, minimizing the added potential. Note that higher terms with respect to the

hatted curvature R̂abcd(M) do not change the AdS solution, since the AdS background

gives R̂abcd(M) = 0.

In this thesis, we are mainly interested in the R-charged black branes, so let us

truncate the two-derivative supergravity action coupled to vector multiplets into the

minimal supergravity. Note that the linear combination of U(1) charges in the right

hand side of (3.30) should be identified as the U(1)R charge in the superalgebra by
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definition. The truncation, therefore, can be done by taking 1

(3.33) M I = M̄ I , W I
µ = M̄ IWµ.

As we have seen, M̄ I is fixed in gauged supergravity by the attractor equation (3.32),

which yields

(3.34) PIM̄
I =

3

2
, (N̄−1)IJPIPJ =

3

8
,

in which case the potential becomes V̄ = −12g2. The resulting Lagrangian for the

bosonic fields of the supergravity multiplet (gµν ,Wµ) then reads

(3.35) e−1L = −R− 3
4
F 2
µν + 1

4
εµνρλσWµFνρFλσ + 12g2 ,

which reproduces the conventional on-shell supergravity Lagrangian [65] once the

graviphoton is rescaled according to Wµ → Wµ/
√

3.

While this completes the analysis relevant to the leading, two-derivative action,

we note that the expression for D simplifies further in the case of constant scalars.

Substituting (3.33) and (3.34) into the expression (3.19) for D yields the simple result

(3.36) D = 1
4
(N̄IN̄J − 1

2
N̄IJ)F I

µνF
J µν = 3

2
F 2
µν .

By takingN = 1, we see that this explicit form ofD does not play a role in the leading

expression for the two-derivative Lagrangian. However, it will become relevant in the

discussion of higher derivative corrections, which we turn to next.

3.4 Higher Derivative Lagrangian

Generally, obtaining the on-shell supergravity action with higher derivative terms

is a difficult task. To obtain the on-shell action from the off-shell action, as we saw

1Note that our definition differs by a factor of 1/3 from the conventional one where Wµ = W I
µNI .
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in the previous section, one needs to integrate out the auxiliary fields. This is easy

at two-derivative order because the equations of motion do not have any derivatives

for the auxiliary fields and hence are algebraically solved. If one includes the higher

derivative terms, however, the terms including the derivatives shows up in the action

and the equations of motion can no longer be solved algebraically.

Nevertheless, one can still obtain the leading order higher derivative corrections

to the two-derivative action [4]. To see that, let us expand the off-shell action and

the solutions of the auxiliary fields in terms of the number of derivatives as

(3.37) Soff−shell = S(2) + S(4) + · · · , φsol = φ(2) + φ(4) + · · · ,

where the numbers in the superscripts in the expansion of the action represent the

number of derivatives and those in the expansion of the solution indicate that φ(n)

is the terms in the solution which show up when one solves the equation of motion

up to n derivatives. The difficulty we described in the previous paragraph was that

it is hard to obtain φ(4), which apparently matters when one tries to derive the four-

derivative on-shell action. However, plugging the solution of the auxiliary fields into

the off-shell action yields

Son−shell = S(2)(φ(2)) + S(4)(φ(2)) + φ(4) δS
(2)

δφ
(φ(2)) + · · · ,(3.38)

= S(2)(φ(2)) + S(4)(φ(2)) + · · · ,

where from the first line to the second line, we used the two-derivative equation of

motion. Therefore, one does not really need to find φ(4) and one can plug the solution

of the two-derivative equations of motion for auxiliary fields into the four-derivative

off-shell action to obtain the four-derivative on-shell action. This is the strategy

taken in this section.
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We now turn to the four-derivative corrections to the action, which we parame-

terize by L1. For convenience, we separate the contributions to L1 present in the un-

gauged theory from those coming strictly from the gauging, L1 = Lungauged
1 +Lgauged

1 .

The two are given by:

(3.39)

e−1Lungauged
1 = 1

24
c2I

[
1
16
εµνρλσA

I µRνραβRλσ
αβ + 1

8
M ICµνρσC

µνρσ + 1
12
M ID2

+1
6
F I
µνv

µν − 1
3
M ICµνρσv

µνvρσ − 1
2
F I µνCµνρσv

ρσ

+8
3
M Ivµν∇ν∇ρv

µρ − 16
9
M IvµρvρνR

ν
µ − 2

9
M Iv2R

+4
3
M I∇µvνρ∇µvνρ + 4

3
M I∇µvνρ∇νvρµ

−2
3
M Iεµνρλσv

µνvρλ∇δv
σδ + 2

3
F I µνεµνρλσv

ρδ∇δv
λσ

+F I µνεµνρλσv
ρ
δ∇λvσδ − 4

3
F I µνvµρv

ρλvλν

−1
3
F I µνvµνv

2 + 4M Ivµνv
νρvρλv

λµ −M I(v2)2
]
,

(3.40)

e−1Lgauged
1 = 1

24
c2I

[
− 1

12
εµνρλσ A

I µRνρ ij(U)Rλσ
ij (U)

−1
3
M IRµν ij(U)Rµν ij(U)− 4

3
Y I
ijvµνR

µν ij(U)
]
,

where

(3.41) R ij
µν (U) = ∂µV

ij
ν − V i

µkV
kj
ν − (µ↔ ν) .

As we can see, the constants c2I parameterize the magnitude of these contributions.

Notice that the scalar D no longer acts as a Lagrange multiplier, since it now appears

quadratically in L1. In fact, by varying the full action L = L0 + L1 with respect to

D, we obtain the modified very special geometry constraint

(3.42) N = 1− c2I

72
(DM I + F I µνvµν) ,
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which encodes information about how the scalarsM I are affected by higher-derivative

corrections.

Integrating out the auxiliary fields

As in the two-derivative case, in order to obtain a Lagrangian written solely in

terms of the physical fields of the theory we need to eliminate the auxiliary fields

D, vµν , V
i
µν and Y I

ij from L = L0 + L1. In Section 3.2, we solved for the auxiliary

fields by neglecting higher order corrections, and then integrated them out of the

two-derivative action. It turns out that the lowest order expressions for the auxiliary

fields are sufficient when working to linear order in the c2I [4]. This allows us to

reuse the results of the previous section for the auxiliary fields, which we summarize

here:

V ij
µ = gPI(iσ

3)ijAIµ ,(3.43)

Y I
ij = 2(N−1)IJPJ(iσ3)ij ,(3.44)

vµν = −1
4
NIF I

µν ,(3.45)

D = 1
4
(NINJ − 1

2
NIJ)F I

µνF
J µν .(3.46)

While it is valid to use these lowest order expressions, it is important to realize that

the scalar fields are modified because of (3.42). This modification leads to additional

contributions to the two-derivative on-shell action (3.21), which combines with L1

to yield the complete action at linear order in c2I .

In principle, we may work with the full system of supergravity coupled to nV

vector multiplets. However, here we focus on the truncation to pure supergravity,

where the scalars M I are taken to be non-dynamical. Even so, they are not entirely

trivial. While at the two-derivative level, we may simply set them to constants
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according to (3.33), here we must allow for the modification (3.42) by defining

(3.47) M I = M̄ I + c2M̂
I , AIµ = M̄ IAµ, c2 ≡ c2IM̄

I ,

where M̂ I are possible scalar fluctuations that enter at O(c2). Substituting this into

the expressions (3.45) and (3.46) for the auxiliary fields then yields

(3.48) vµν = −3
4
Fµν +O(c2), D = 3

2
F 2 +O(c2) ,

which match the lowest order expressions for constant scalars. The modified very

special geometry constraint (3.42) can now be simplified further, and becomes

(3.49) N = 1− c2

96
F 2 +O(c2

2).

In general, a solution to the fluctuating scalars M̂ I ought to come from the equations

of motion. However, as a shortcut, we make the ansatz that M̂ I is proportional to

M̄ I . The modified constraint (3.49) is then enough to fix the correction to the scalars

to be

M I = M̄ I
[
1− c2

288
F 2 +O(c2

2)
]
.(3.50)

Consistency with the equations of motion will presumably demand an appropriate

relation between the various c2I coefficients. However, since the vectors will be

truncated out, we only care about the combination c2 given in (3.47), and will not

work out this relation explicitly.

We are now ready to integrate out both the scalars M I and the auxiliary fields

from the two-derivative action L0. By making use of the corrections2 to the leading

order scalar expressions (3.34)

(3.51) PIM
I =

3

2

[
1− c2

288
F 2
]
, (N−1)IJPIPJ =

3

8

[
1 +

c2

288
F 2
]
,

2These can be easily verified using PI = 1
4
N̄IJM̄J .
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we find that the contribution coming from L0 yields the following terms:

(3.52)

e−1L0 = −R− 3

4
F 2 +

1

4
εµνρλσAµFνρFλσ + 12g2 +

c2

24

[
1

16
RF 2 +

1

64
(F 2)2 − 5

4
g2F 2

]
.

Turning next to the four-derivative contributions, we note that, since such terms

are already linear in c2, we may simply use the leading order solution for the scalars.

The gauging contribution (3.40) is then particularly simple

(3.53) e−1Lgauged
1 = − c2

64
g2 εµνρλσA

µF νρF λσ .

On the other hand, the contribution to Lungauged
1 is given by:

(3.54)

e−1Lungauged
1 =

c2

24

[ 1

16
εµνρλσA

µRνρδγRλσ
δγ +

1

8
C2
µνρσ

+
3

16
CµνρλF

µνF ρλ − F µρFρνR
ν
µ −

1

8
RF 2

+
3

2
Fµν∇ν∇ρF

µρ +
3

4
∇µF νρ∇µFνρ +

3

4
∇µF νρ∇νFρµ

+
1

8
εµνρλσF

µν(3F ρλ∇δF
σδ + 4F ρδ∇δF

λσ + 6F ρ
δ∇

λF σδ)

+
45

64
FµνF

νρFρλF
λµ − 45

256
(F 2)2

]
.

The full on-shell Lagrangian is thus given by

(3.55)

e−1L = −R− 3

4
F 2
(

1 +
5

72
c2g

2
)

+
1

4

(
1− 1

16
c2g

2
)
εµνρλσAµFνρFλσ + 12g2

+
c2

24

[ 1

16
RF 2 +

1

64
(F 2)2

]
+ Lungauged

1 .

Finally, we may redefine Aµ to write the kinetic term in canonical form:

(3.56) Afinal
µ =

√
3
(

1 +
5

144
c2g

2
)
Aold
µ .
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The Lagrangian then becomes:

L = −R− 1

4
F 2 +

1

12
√

3

(
1− 1

6
c2g

2
)
εµνρλσAµFνρFλσ + 12g2(3.57)

+
c2

24

[ 1

48
RF 2 +

1

576
(F 2)2

]
+ Lungauged

1 ,

with

(3.58)

e−1Lungauged
1 =

c2

24

[ 1

16
√

3
εµνρλσA

µRνρδγRλσ
δγ +

1

8
C2
µνρσ

+
1

16
CµνρλF

µνF ρλ − 1

3
F µρFρνR

ν
µ −

1

24
RF 2

+
1

2
Fµν∇ν∇ρF

µρ +
1

4
∇µF νρ∇µFνρ +

1

4
∇µF νρ∇νFρµ

+
1

32
√

3
εµνρλσF

µν(3F ρλ∇δF
σδ + 4F ρδ∇δF

λσ + 6F ρ
δ∇λF σδ)

+
5

64
FµνF

νρFρλF
λµ − 5

256
(F 2)2

]
.

This completes the construction of the curvature squared action in five-dimensional

gauged supergravity.



CHAPTER IV

AdS/CFT Correspondence and Holographic
Thermodynamics

In this chapter, we discuss the AdS/CFT correspondence and holographic ther-

modynamics as its application. The AdS/CFT correspondence1 [92] is a strong-weak

type duality between (D + 1)-dimensional gravitational theory in AdSD+1 and con-

formal field theory in D dimensions. The gravitational theory at strong coupling

corresponds to CFT at weak coupling and vice versa, so it has been used to find the

strong coupling dynamics on the various CFTs. This chapter is devoted to introduc-

ing the AdS/CFT correspondence with particular emphasis on the subjects which

are used in the thesis and figuring out some thermodynamic properties of CFTs using

the duality with higher derivative terms.

The rest of this chapter is organized as follows. In Section 4.1, we briefly go over

the AdS/CFT correspondence, with a particular emphasis on the subjects which we

need to use in this thesis. In Section 4.3, we discuss the thermodynamic properties of

black branes, which corresponds to introducing finite temperature in the CFT side.

The discussions on this chapter are based on our work on [34].

1For a comprehensive review of AdS/CFT correspondence, see [1]. AdS/CFT correspondence is a concrete
realization of the holographic principle [113, 112]. For a review of holographic principle, see [15].

49
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4.1 AdS/CFT Correspondence

4.1.1 AdS/CFT Correspondence with Eight Supercharges

The AdS/CFT correspondence [92] was first proposed as an equivalence between

type IIB supergravity on AdS5×S5 and N = 4 superconformal field theory. This ini-

tial proposal, however, is not useful when we discuss the application to “real world”

physics, since the theory has too many supersymmetries. We therefore consider a

more realistic extension of the AdS/CFT correspondence, namely the correspondence

between theories with eight supercharges2. In order to see how we obtain the cor-

respondence. We briefly review the original “derivation” of the correspondence [92]

with 32 supercharges.

Initially, the AdS/CFT correspondence has been derived as two equivalent de-

scriptions of theories near D3-branes. D3-branes, (3 + 1)-dimensional supersymmet-

ric massive extended objects in string theory, have two types of descriptions. If the

coupling constant is small, one can describe a D-brane as an object on which open

strings can end [102]. Also in this coupling regime, the interactions between the

closed sting degrees of freedom in the bulk and open string degrees of freedom are

negligibly small compared to the interactions of the open strings. Hence the D-branes

can be described purely by open strings, and the resulting theory at low-energy is

N = 4 SU(N) super-Yang-Mills theory in four dimensions.

On the other hand, D-branes can also be seen as the source of gravitational forces

due to their masses. Therefore, if the coupling constant is large, the interactions

between D-branes and gravitons get large and they form a black hole at some point.

In this description, the open string degrees of freedom are hidden behind the black

hole horizon, and the D-branes can be regarded just as a background geometry. More

2The number of fermionic charges is doubled in superconformal field theories. This theory has four supercharges
and thus possesses N = 1 supersymmetry.



51

concretely, the geometry is given [73] by

(4.1) ds2 =

(
1 +

L4

r4

)−1/2

ds2
M4
−
(

1 +
L4

r4

)1/2

dsR6 ,

where r parametrizes the distance from the branes, L is a parameter with dimension

of length, M4 spans in the directions parallel to the branes and R6 is the space

transverse to the branes. Note that the degrees of freedom near the horizon are

redshifted, and so have smaller energy compared to the degrees of freedom in the

bulk. We therefore expect that only the near-horizon degrees of freedom survive at

low-energy. This proposal can be made more concrete by taking the near-horizon

limit of the geometry r → 0. Then the constant term in the warp factor can be

neglected and the resulting geometry is

ds2 ∼ r2

L2
ds2

M4
− L2

r2
(dr2 + r2dΩ2

5)(4.2)

= L2

(
ds2

M4
− dz2

z2

)
− L2dΩ2

5 .

The metric in the parentheses in the second line is that of AdS5, and dΩ5 defines the

line element on S5. Therefore, this is AdS5×S5 geometry and the theory reduces to

type IIB supergravity on AdS5 × S5. In this way, we have obtained the equivalence

between N = 4 super-YM theory in four dimensions and type IIB supergravity on

AdS5 × S5.

The number of supercharges in both sides of the theory can be seen as follows.

Initially, type IIB string theory 32 supercharges. We defined the type IIB theory on

flat spacetime, so the background does not break any supersymmetries. Then, the

N parallel D-branes are known to break half of the supersymmetries, so we have 16

supercharges at this point. Finally, the number of supersymmetries is enhanced to

twice near the horizon, so we end up with having 32 supercharges.
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In order to just keep eight supercharges, we have to break three quarters of su-

persymmetries in such a way that the near-horizon geometry of the D-branes still

have AdS5. To keep the AdS5 factor, note from the derivation of AdS5 × S5 as a

near-horizon geometry in (4.2) that the radial direction r is combined with the di-

rections parallel to the D-branes to form the AdS5 factor. Therefore, the transverse

directions to the D-branes should have a cone-type geometry

(4.3) ds2 = dr2 + r2ds2
X5

and the D-branes should be placed at the tip of the cone. One also needs to break

three quarters of supersymmetries, which requires that the cone geometry should be

a six-dimensional Calabi-Yau manifold. The cone is Calabi-Yau if and only if the

five-dimensional base space X5 is a Sasaki-Einstein manifold [82, 61]. In conclusion,

the AdS/CFT correspondence with eight supercharges can be obtained by placing N

parallel D-branes on the tip of a Calabi-Yau cone and the resulting theory is type IIB

supergravity on AdS5×X5, where X5 is a five-dimensional Sasaki-Einstein manifold,

on the gravity side and N = 1 SCFT in the CFT side. Then, one can reduce the

supergravity on X5, and one obtains five-dimensional gauged supergravity with eight

supercharges.

4.1.2 GKP-Witten Relation and Two-Point Functions

Now that we know how to obtain theories on both sides of correspondence and

compared the symmetries, we would like to know the concrete correspondence be-

tween the physical quantities. One can derive them using the defining equation of

the AdS/CFT correspondence, called the GKP-Witten relation [60, 118]:

(4.4) e−Isugra[φ(x,y)|∂AdS5=φ0(x)] = 〈exp(−
∫
d4φ0(x)O(x))〉,
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where y is the radial coordinate of the AdS space, φ denotes a field in general, and

O is an operator corresponding to φ. Intuitively, this relation suggests that the

partition function of supergravity with a fixed boundary condition is equal to the

partition function of CFT with an operator sourced by the boundary value of the

field. This relation is used several times in the following discussion.

For an application of this GKP-Witten relation, let us consider how to compute

the two-point function in CFT from the corresponding gravitational description.

What the GKP-Witten relation implies is that the generating function of the N -point

correlators in CFT can be derived using the corresponding gravitational description.

Especially, the Green’s function can be computed by taking the second order deriva-

tive of φ0 for the gravitational partition function. In this subsection, we focus on the

scalar fields living on the AdS space and compute the Euclidean Green’s function

for the corresponding operator. This result can be applied to computing the shear

viscosity of gauge theory plasma in the next chapter.

We consider the following coordinates of an Euclidean AdS5 in five dimensions:

(4.5) ds2 =
(πTL)2

u
(f(u)dt2 + ds2

R3) +
L2

4u2f(u)
du2,

where T is the Hawking temperature of the black brane and f(u) = 1 − u2. The

horizon is located at u = 1 and the boundary of the AdS5 at u = 0. Since we are

interested in Green’s function, only the quadratic terms matter. A general invariant

action at two-derivative order is given by

(4.6) S =

∫
d5x
√
g

1

2
(∂µφ(x)∂µφ(x)−m2φ(x)2).

On (4.5), the action can be rewritten as

(4.7) S = L3

∫
dzdxz−3

[
(∂zφ)2 + (∂iφ)2 +

m2L2

z2
φ2

]
.
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One can Fourier transform φ as

(4.8) φ(z, x) =

∫
d4k

(2π)4
eik·xfk(z)φ0(k).

Then, the action is expressed as

(4.9)

S = L3

∫ ∞
ε

dz

∫
d4kd4k′

(2π)4

δ(k + k′)

z3

[
∂zfk∂zfk′ −

(
kk′ − m2L2

z2

)
fkfk′

]
φ0(k)φ0(k′).

At quadratic order, one can always rewrite the action as a sum of boundary term

and terms proportional to the equation of motion. The equation of motion for fk′ is

(4.10) f ′′k −
3

z
f ′k −

(
k2 +

m2L2

z2

)
fk = 0.

Using this, one obtains the on-shell boundary action

(4.11) S = L3

∫
d4kd4k′

(2π)8
δ4(k + k′)φ0(k)φ0(k′)

fk′(z)∂zfk(z)

z3
.

Then, the two-point function is expressed as

(4.12) 〈O(k)O(k′)〉 = −2L3(2π)4δ(k + k′)
fk′(z)∂zfk(z)

z3
.

To obtain the explicit form of the two-point function, one needs to solve the equation

of motion to find fk(z). A regular solution is given by

(4.13) fk(z) =
z2Kν(kz)

ε2Kν(kε)
.

Plugging this into (4.12) yields the two-point function in the gravity perspective.

4.1.3 Relation Between the Parameters

To compute physical quantities in the CFT using the gravity description, one

first needs to express the parameters in supergravity using those defined in the cor-

responding CFT. Especially, in our supergravity with four derivative terms, there

are two parameters

(4.14) κ2 and cIM
I .
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On the other hand, the CFT has two central charges

(4.15) a and c.

To see the relation between these parameter, one can utilize the correspondence in

symmetries [2]. Let us carry out U(1) transformations on both side of (4.4). In the

AdS side, the action transforms as

(4.16) Ibulk = · · ·+
∫ [

tr(GIGJGK)

24π2
AI ∧ F J ∧ FK +

trGI

192π2
AI ∧Rab ∧Rab

]
.

Therefore, we have non-invariance at the boundary of AdS space. This corresponds

to the anomalies on the CFT side. The U(1) transformations in the CFT side yields

(4.17) δI(Λ)ZCFT =

∫
ΛI

[
tr(GIGJGK)

24π2
F J ∧ FK +

trGI

192π2
Rab ∧Rab

]
,

where GI is a global U(1)I generator, and the trace is taken to be a sum over all the

fermion loops. By comparison, we obtain the relation

(4.18) trGI = −πc2I

8G5

.

To relate c2 ≡ c2IM̄
I to the central charges, we can use the relation

(4.19) a =
3

32
(3trR3 − trR), c =

1

32
(9trR3 − 5trR) ,

provided we can relate GI appropriately to the U(1) charges R. A few comments

are needed to explain how to identify the R-charge correctly. First of all, the R-

charge is a particular linear combination of the GI , proportional to M̄ IGI . Also, the

supercharge Qα should have R-charge one. The U(1) charges of Qα can be read off

from the coupling between the gauge fields and the graviphoton in the gravity side,

and the algebra is given by [GI , Qα] = PIQα. This uniquely determines the R-charge

as

(4.20) R =
M̄ IGIL

PIM̄ I
→ trR = − 1

PIM̄ I

πc2L

8G5

.
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Recall that the combination PIM̄
I = 3/2 can be determined from the vacuum solu-

tion, (3.34). By plugging this equation into (4.19), we obtain

(4.21)
c2

24
=

8G5

πL
(c− a) .

In addition, the gravitational constant also can be determined from the U(1)

anomaly. Eq. (4.16) implies

(4.22) tr(GIGJGK) =
π

8G5

(
12cIJK −

g2

3
c(IPJPK)

)
.

By multiplying M̄ IM̄JM̄K on both sides, we obtain

(4.23)
27

8L3
trR3 =

π

8G5

(
12− 3c2

4L2

)
.

The formula for the central charges (4.19) and (4.21) then gives

(4.24)
1

16πG5

=
a

2π2L3
.

Using this relation, (4.21) can be rewritten as

(4.25)
c2

24L2
=
c− a
a

.

These relations can be computed using the holographic Weyl anomaly [72, 14, 100, 55]

and the results agree with each other.

4.2 R-Charged Black Branes

The embedding of the leading order five-dimensional N = 2 gauged U(1)3 super-

gravity into IIB supergravity was done in [36]. If the three U(1) charges are taken to

be equal, we end up with the minimal supergravity system that we have considered

above. The static stationary non-extremal solutions are well known, and were found

in [9]. For the truncation to minimal supergravity, they take the form

ds2 = H−2fdt2 −H
(
f−1dr2 + r2dΩ2

3,k

)
,(4.26)

A =

√
3(kQ+ µ)

Q

(
1− 1

H

)
dt,
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where the metric functions H and f are:

H(r) = 1 +
Q

r2
,(4.27)

f(r) = k − µ

r2
+ g2r2H3 .

Here µ is a non-extremality parameter and dΩ2
3,k for k = 1, 0, or −1 corresponds to

the unit metric of a spherical, flat, or hyperbolic 3-dimensional geometry, respectively.

4.2.1 Higher order corrected R-charged Solutions

We find corrections to the R-charged solutions (4.26) given the higher derivative

Lagrangian (3.57). The discussions on this section is primarily based on [34]. To this

end, as in [90] we treat c2 as a small parameter and expand the metric and gauge

field as follows:

H(r) = 1 +
Q

r2
+ c2h1(r) ,(4.28)

f(r) = k − µ

r2
+ g2r2H3 + c2f1(r) ,

A =

√
3(kQ+ µ)

Q

(
1− 1 + c2a1(r)

H

)
dt ,

where h1, f1, and a1 parameterize the corrections to the background geometry. Solv-

ing the equations of motion for the theory, we arrive at:

h1 = −Q(kQ+ µ)

72r6H2
0

,(4.29)

f1 =
−5g2Q(kQ+ µ)

72r4
+

µ2

96r6H0

,

a1 =
Q

144r6H3
0

[
4(kQ+ µ)− 3µ− 3Qµ

r2

]
.
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The new corrected geometry is therefore given by

H(r) = H0(r) +
c2

24

[
−Q(kQ+ µ)

3r6H2
0

]
,(4.30)

f(r) = f0(r) +
c2

24

[
− 8g2Q(kQ+ µ)

3r4
+

µ2

4r6H0

]
,

At(r) = At 0(r)− c2

24

√
3Q(kQ+ µ)

2r8H4
0

[
2(kQ+ µ)r2 − µr2H0

]
,

where H0, f0, and A0 refer to the background solutions (4.26) and (4.27). Finally,

we should note that in the literature Q and µ are sometimes written in terms of a

parameter β, defined by sinh2 β = kQ/µ2.

We will state the k = 0 and k = 1 solutions explicitly, since they have several

interesting applications: the former to studies of the hydrodynamic regime of the

theory, and the latter to the issue of horizon formation for small black holes. For

k = 0, the solution is given by

H(r) = H0(r) +
c2

24

[
−Qµ

3 r6H2
0

]
,(4.31)

f(r) = f0(r) +
c2

24

[
− 8g2µQ

3r4
+

µ2

4 r6H0

]
,

At(r) = At 0(r)− c2

24

[√
3Qµ

2r8H4
0

(µr2 −Qµ)

]
.

while for k = 1 it is given by

H(r) = H0(r)− c2

24

[
Q(Q+ µ)

3r2(r2 +Q)2

]
,(4.32)

f(r) = f0(r) +
c2

24

[
− 8g2Q(Q+ µ)

3r4
+

µ2

4r6H0

]
,

At(r) = At 0(r)− c2

24

[√
3Q(Q+ µ)

2r8H4
0

(
(2Q+ µ)r2 −Qµ

)]
.

4.2.2 Conditions for Horizon Formation

We would like to conclude this section with some comments on the structure of

the horizon for the solutions that we have found. In particular, we are interested
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in whether higher derivative corrections will facilitate or hinder the formation of a

horizon. In the standard two-derivative theory, the BPS-saturated limit (µ = 0)

of the k = 1 solution (4.26)-(4.27) describes a geometry with a naked singularity,

the so-called superstar [99]. Furthermore, even if the non-extremality parameter is

turned on, one finds that a horizon develops only given a certain critical amount,

µ ≥ µc [9]. It is therefore natural to ask what happens to such geometries once

we start incorporating curvature corrections. For the superstar, we would like to

see hints of horizon formation. In the non-extremal case, on the other hand, it

would be nice to determine whether the inclusion of higher-derivative corrections

leads to a smaller (larger) critical value µc, increasing (decreasing) the parameter

space for the appearance of a horizon. However, one should keep in mind that our

arguments are only suggestive, since our analysis is perturbative, while the formation

of a horizon is a non-perturbative process. Moreover, given that even in the non-

extremal case turning on µ does not guarantee the presence of a horizon, it is not

clear at all whether higher derivative corrections can be enough to push the superstar

to develop a horizon. A more proper analysis would involve looking directly at the

SUSY conditions, and asking whether they are compatible with having a superstar

solution with a finite horizon. In fact, there are already studies which seem to indicate

[97] that this may not be possible.

The spherically symmetric solutions presented in (4.32) are of the form:

(4.33) ds2 = F1(r) dt2 − F2(r) dr2 − F3(r) dΩ2
3 .

Horizons appear at zeroes of the function F1(r). One can make arguments about

their existence without having to solve explicitly for their exact location. Notice

that F1(r) is a positive function for large r. Thus, a sufficient condition for having



60

at least one horizon is

(4.34) F1(rmin) ≤ 0 ,

where rmin is a (positive) minimum of F1(r). This was the reasoning used in [9] to

study the properties of the horizon of the non-extremal solution.

For the corrected superstar solution we have, expanding in c2:

(4.35) F1 ≡
f

H2
=
f0 + c2(f1 − 2f0h1H

−1
0 )

H2
0

+O(c2
2) .

It is easy to see that, to leading order, the numerator does not vanish. With the

inclusion of higher-derivative terms, however, it picks up a negative contribution,

hinting at the possibility of a horizon. Furthermore, the minimum of the function

F ≡ f0 + c2(f1 − 2f0h1H
−1
0 ) will shift. Let’s see precisely how that happens. To

lowest order, its minimum is given by x
(0)
min = 2Q, which in turn gives us F (x

(0)
min) =

1 + 27g2Q/4. Including higher order corrections, we find

(4.36) xmin = x
(0)
min + c2x

(1)
min = 2Q− c2

81g2Q− 4

4374Qg2
.

Now we have

(4.37) F (xmin) = 1 + 27g2Q/4 + c2(
1

972Q
− g2

48
),

which tells us that the minimum of the function will be slightly closer to zero as long

as g2Q > 4/81.

The analysis of the conditions for the existence of a horizon in the non-extremal

case (µ 6= 0) is significantly more involved. The expression for the corrected horizon

radius in terms of the original, two-derivative horizon radius r0 is:

(4.38)

rH = r0

(
1 +

c2

24

{g4H4
0 (3Q2 − 26Qr2

0 + 3r4
0)− 2g2H2

0 (13Q− 3r2
0) + 3

24H0r0[g2H2
0 (Q− 2r2

0)− 1]

})
.



61

Notice that we traded µ in favor or r0 in the expression above by making use of

f0(r0) = 0, i.e. the relation µ/r2
0 = 1 + g2r2

0H
3
0 . As we mentioned above, in the

two-derivative case one finds a critical value µcrit above which a horizon will form.

It would certainly be interesting to explore for which parameter values rH decreases

or increases, and more importantly, how the (corrected) critical value of µ is affected

by the curvature corrections. We leave this to future studies.

4.3 Holographic Thermodynamics with Higher Derivatives

We may now study some of the basic thermodynamic properties of the non-

extremal solutions constructed above. With an eye towards AdS/CFT in the Poincaré

patch, we will focus on the k = 0 solution (4.31), although the analysis may easily

be carried out for the other cases as well. We begin with the entropy, which for

Einstein gravity is characterized by the area of the event horizon. In the presence

of higher derivative terms, however, this relation is modified, and the entropy is no

longer given by the area law. Instead, we may turn to the Noether charge method

developed in [116] (see also [76, 75]).

The original Noether charge method is only applicable to a theory with general

covariance, but has been extended to a theory with gravitational Chern-Simons terms

in [114]. Our action includes a mixed Chern-Simons term of the form A ∧ R ∧ R.

But as long as we keep this term as it is, with a bare gauge potential, the general

covariance is unbroken and we can still use the original formulation. In the absence

of covariant derivatives of the Riemann tensor, the entropy formula is given by [116]

(4.39) S = −2π

∫
Σ

dD−2x
√
−h δL

δRµνρσ

εµνερσ ,

where Σ denotes the horizon cross section, h is the induced metric on the it and εµν

is the binormal to the horizon cross section.
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For the metric ansatz (4.26) the only non-vanishing component of the binormal

εµν is

(4.40) εtr = −εrt = H−1/2 .

Applying the prescription (4.39) to the action (3.57), we obtain, to linear order in

c2,

(4.41)

S =
A

8G5

[
−gµρgνσ

+
c2

24

(
−1

4
Cµνρσ − 1

32
gµρgνσF 2 + 5

12
gνσF µλF ρ

λ − 1
16
F µνF ρσ

)]
εµνερσ

∣∣∣∣
r=r+

=
A

4G5

[
1 + c2

µ(Q+ 3r2
0)

48(r2
0 +Q)3

]
,

where A =
∫ √
−h dΩ3,0 is the area of the horizon for the solution to the higher

derivative theory. Also, r+ denotes the radius of the event horizon for the corrected

black brane solution, while r0 is the horizon location for the original, two-derivative

solution (4.27). The former can be found by requiring that the gtt = f(r)/H(r)2

component of the corrected metric vanishes3. Similarly, r0 satisfies f0(r0) = 0. Notice

that the non-extremality parameter µ can be expressed entirely in terms of r0 and

Q:

(4.42) f0(r0) = 0 ⇒ µ =
g2(r2

0 +Q)3

r2
0

.

We can therefore eliminate µ from (4.41), and write the entropy in the following

form:

(4.43) S =
A

4G5

[
1 + c2g

2Q+ 3r2
0

48 r2
0

]
.

3To linear order in the expansion parameter c2, this coincides with demanding that f(r) vanishes.
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The first term above is simply the contribution coming from the area, while the

remaining O(c2) term is the expected deviation from the area law.

In order to arrive at the entropy density, we need one more ingredient, which is

the relation between the corrected and uncorrected horizon radii r+ and r0:

(4.44) r+ = r0

(
1 +

c2

24

g2(r2
0 +Q)(3Q2 − 26Qr2

0 + 3r4
0)

24r4
0(Q− 2r2

0)

)
.

This is because the area A appearing in (4.43) is computed using r+. This expression

allows us to write the entropy per unit three-brane spatial volume entirely in terms

of r0 as well as the physical parameters of the theory

s =
(r2

0 +Q)3/2

4G5L3

(
1 +

c2

24

g2(3Q2 − 14Qr2
0 − 21r4

0)

8r2
0(Q− 2r2

0)

)
(4.45)

=
2(r2

0 +Q)3/2

πL6

(
a+ (c− a)

3Q2 − 14Qr2
0 − 21r4

0

8r2
0(Q− 2r2

0)

)
.

In the second line we have used the relations (4.24) and (4.25) to replace the gravita-

tional quantities G5 and c2 by the central charges of the dual CFT. Notice that the

lowest order term above matches the two-derivative entropy computation of [108].

While r0 is the coordinate location of the horizon in the lowest order computation,

it is not in itself a physically relevant parameter. Instead, it may be viewed as a proxy

for the Hawking temperature associated with the non-extremal solution. A simple

way of computing this temperature is to identify it with the inverse of the periodicity

of Euclidean time τ . The relevant components of the metric are given by

(4.46) ds2 = H−2fdτ 2 +Hf−1dr2 + · · · ,

and the horizon is located at f(r+) = 0. Expanding near the horizon and identifying

the proper period of τ to remove the conical singularity yields the temperature

(4.47) TH =
(r2

0 +Q)1/2

2πL2

[(2r2
0 −Q)

r2
0

+
c2

24L2

(3Q3 + 4Q2r2
0 + 59Qr4

0 − 10r6
0)

8r4
0(2r2

0 −Q)

]
.
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In principle, we may invert this expression to obtain r0 as a function of temperature

TH and charge Q. This then allows us to rewrite the entropy density as a function

of charge and temperature, s = s(TH , Q). In practice, however, non-trivial R-charge

introduces a new scale, so that the entropy density/temperature relation no longer

takes the simple form s ∼ T 3 resulting from simple dimensional analysis.



CHAPTER V

Holographic Hydrodynamics

In this chapter, we apply the AdS/CFT correspondence to analyzing the hydro-

dynamic properties of gauge theory plasma1. The primary goal of this chapter is to

compute the shear viscosity, denoted by η in this thesis, over the entropy density

ratio of gauge theory plasma observed in heavy ion collisions. Experimentally, this

ratio is given, for example in [109], by

(5.1)
η

s
≤ 0.2,

Theoretically, however, it is pretty hard to compute this quantity reliably. The main

problem is that at the energy scale at which gauge theory plasma is formed, the

theory is somewhat strongly coupled. Hence, the standard perturbative calculations

are unreliable. Actually, perturbative calculations [5] yield

(5.2)
η

s
∼ 1

α2
s

lnα−1
s ∼ 1,

at the relevant temperatures, which is quite off from the experimental value. Another

problem is that the shear viscosity is a real-time quantity, meaning that the viscosity

is associated with the time evolution of the fluid. So, the Euclidean computations

such as lattice gauge theory calculations also do not work very well2.
1For a comprehensive review of this chapter, see [27] and references therein.
2Nevertheless, there are attempts to obtain the η/s from lattice computations. See [95] for details.
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The AdS/CFT correspondence overcomes these two difficulties. First of all, the

strong coupling in the CFT side corresponds to a gravitational theory at weak cou-

pling, so one can reliably compute the strong coupling quantities in the CFT using

the gravitational description. Also, Lorentzian AdS/CFT techniques have been ex-

tensively studied, so one can compute real-time quantities in contrast to the lattice

gauge theory. The shear viscosity computation was first done by Policastro, Son and

Starinets in [103], and the result is

(5.3) η =
π

8
N2T 3.

When combined with the entropy density computed also in using AdS/CFT, one

obtains the shear viscosity over entropy ratio [83]

(5.4)
η

s
=

1

4π
.

This result is universal for any large N gauge theory and within the interval allowed

by experiments [18, 94, 93, 108, 91, 77].

Based on this extremely small ratio, Kovtun, Son and Starinets conjectured the

following KSS bound:

(5.5)
η

s
≤ 1

4π

In this chapter, however, we show that this bound is violated by finite N corrections

or, in gravity language, in the presence of higher derivative corrections. We introduce

the finite chemical potential for R-charge, but it worsens the violation of the bound

[35, 98].

Before our work [35] has been published, there have been numerous works pub-

lished on the computations of the shear viscosity over entropy density ratio with

higher derivative terms. The first example is the inclusion of finite ’t Hooft coupling
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corrections, which corresponds to higher derivative terms in ten-dimensional super-

gravity [20]. Then, the four derivative terms in five-dimensional Einstein gravity,

which, as discussed in Section 4.1.3, correspond to finite N corrections, have been

taken into account [81, 17]. It yields a lower ratio than the KSS result for theories

with c − a > 0, showing that the KSS bound can be violated in the presence of

finite N corrections. Later, it has also been shown that the CFTs with gravity duals

generally satisfy c−a > 0 [21], although there are some counter-examples in theories

with no Lagrangian descriptions [56, 57]. The inclusions of both finite N corrections

and chemical potential have also been considered in [58, 23], but the include only a

particular subset of four-derivative terms. Our work is the first result which considers

all the four derivative corrections in a way consistent with supersymmetry.

The rest of this chapter is organized as follows. In Section 5.1, we briefly review

how to compute shear viscosity using Lorentzian AdS/CFT correspondence and re-

produce the KSS result for η/s. In Section 5.2, we extend the analysis of Section

5.1 with higher derivative corrections in the gravity side, and see the KSS bound

is violated. As discussed in the previous chapter, these higher derivative effects are

interpreted as finite N corrections in the CFT side.

5.1 Holographic Shear Viscosity at Two-Derivatives

In this section, we compute the shear viscosity over entropy density ratio using

Lorentzian AdS/CFT techniques. First of all, shear viscosity is formally defined as

a parameter in the stress energy tensor of a fluid:

(5.6) Tij = δijρ− η
(
∂iuj + ∂jui −

2

3
δij∂kuk

)
− ζδij∂kuk,

where η is shear viscosity and ζ is bulk viscosity. In order to clarify the meaning of

the shear viscosity, let us decompose a fluid into layers. Then, the shear viscosity
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is the coefficient of the terms which represent the change in fluid velocity in two

adjacent layers. As the shear viscosity increases, the amount of energy associated

with the change in fluid velocities in adjacent layers increases. Therefore, the shear

viscosity can be thought of as the coefficient of “friction” between two layers, or

equivalently, as the resistance of a fluid under shear stress.

Shear viscosity of a fluid can be generally computed using the Kubo formula:

(5.7) η = lim
ω→0

1

ω
Im

(
−i
∫
dtd~xeiωtθ(t)〈[Txy(t, ~x), Txy(0, 0)]〉

)
,

where the quantity in the parentheses is the retarded Green’s function for the shear

modes of stress tensors. The goal of this section is to evaluate this formula using

AdS/CFT techniques. As has been discussed in Section 4.1.2, the Euclidean two

point function is calculated as the coefficient of the terms quadratic in the boundary

fields φ0. We extend this technique to the Lorentzian case.

The detailed procedure to obtain the retarded Green’s function has been discussed

in [107, 104]. At quadratic order, the Lorentzian on-shell action, as in the Euclidean

case, can be written as

(5.8) S =

∫
d4k

(2π)4
φ0(−k)F(k, z)φ0(k),

where a field φ is expanded as

(5.9) φ(x, z) =

∫
d4k

(2π)4
fk(z)φ0(k).

There are two differences from the Euclidean case. In the Euclidean case, the classi-

cal action for φ is uniquely determined by its value at the boundary φ0 and imposing

regularity at the horizon. However, regularity at the horizon is not sufficient to

determine the solution in the Lorentzian case, so one needs more refined bound-

ary condition at the horizon [6]. The authors of [107, 104] imposed the incoming
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wave boundary condition, in which nothing can escape from the black hole horizon.

Another difference is that if one naively applies the GKP-Witten procedure, one

obtains

(5.10) G(k) = −F(k, z)|zHzB −F(−k, z)|zHzB ,

which is a real quantity, and cannot be a candidate for the retarded Green’s function.

A way out given in [107, 104] is to take the retarded Green’s function as

(5.11) GR(k) = −2F(k, z)|zB .

Although there is no rigorous justification of this procedure from first principles, it

passes several consistency checks. So, we apply this procedure to compute the shear

viscosity of gauge theory plasma in this section.

So, let us compute the shear viscosity at two-derivative order without any non-

trivial gauge field. Since we are interested in the retarded Green’s function for Txy,

we consider the metric perturbation

(5.12) gxy = gb.g.xy + hxy ,

where b.g. in the superscript implies the background geometry, which is given by

ds2 =
g2r2

0

u

[
f(u)

H(u)
dt2 −H(u)ds2

R3

]
− H(u)

4g2u2f(u)
du2 ,(5.13)

where f(u) = 1− u2 and H(u) = 1. We introduce H(u) although it is trivial in this

case for later use. Since we are just interested in the gravitational part of the action,

one can safely set the gauge field to vanish. Then, the action is just the Einstein

action

(5.14) S = − 1

16πG5

[∫
du

∫
dx
√
g
(
R− 12g2

)
+ 2

∫
d4x
√
−hK

]
,
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where K is the extrinsic curvature of the boundary and the last term is the Gibbons-

Hawking term, which is added to cancel the boundary terms in the variation of the

action. One also needs to add counterterms to keep the action finite, but we omitted

them because it does not matter in the following computation. If one considers the

metric perturbation (5.12) and defines φ = hxy, then the equation of motion is given

by

(5.15) φ′′k −
1 + u2

uf
φ′k +

ω2 − q2f

uf 2
φk = 0.

The solution representing the incoming wave boundary condition at the horizon is

(5.16) φk(u) = (1− u)−iω/2Fk(u),

where F (u) is regular at u = 1. One can express Fk(u) as

(5.17) Fk(u) = 1− iω

2
ln

1 + u

2
+ · · · ,

where the terms with higher order in ω do not contribute to the calculation of the

shear viscosity and thus are omitted. Then, F(k, z) is given by

(5.18) F(k, z) =
N2T 2

32
(2πiTω + k2) + · · · ,

Plugging this into the Kubo formula (5.7) yields the shear viscosity [103]

(5.19) η =
π

8
N2T 3.

On the other hand, the entropy density of the black brane is given by s = π2N2T 3/2.

Hence the shear viscosity over entropy ratio is given by

(5.20)
η

s
=

1

4π
.

This is how KSS derived the formula [83].
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5.2 Holographic Shear Viscosity with Higher Derivatives

We turn to the calculation of shear viscosity with four derivative terms in this

section. One difficulty in the calculation with higher derivative terms is that the

equation of motion includes higher order in derivatives. If one expand the Lagrangian

to second order in the perturbation φ = hxy, one finds

(5.21)

S =
1

16πG5

∫
d4k

(2π)4

∫ 1

0

du
[
Aφ′′kφ−k +Bφ′kφ

′
−k + Cφ′kφ−k +Dφkφ−k

+Eφ′′kφ
′′
−k + Fφ′′kφ

′
−k

]
.

This action involves fourth order derivatives of φ; thus the equation of motion also

includes terms proportional to φ′′′′. To solve the equation, one needs to impose four

independent boundary conditions, but we do not know what those conditions should

be.

However, if one assumes that c2, the coefficient of the four derivative terms, is a

small parameter, which is the case for sufficiently large N , one can reduce the order

of derivatives using the leading order equation of motion [20]. The tree level equation

of motion is given by

φ′′ +

(
f ′0
f0

− 1

u

)
φ′ +

ω̄2H3
0

uf 2
0

φ = 0 ,(5.22)

where we have defined the dimensionless frequency

(5.23) ω̄2 =
ω2

4g4r2
0

.

The lowest order metric functions are

(5.24) f0 = (1 + qu)3 − (1 + q)3u2, H0 = 1 + qu.
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Taking additional derivatives of (5.22) allows us to eliminate φ′′′ and φ′′′′ terms in

the full equation of motion. The result is rather simple:

(5.25) φ′′ +

(
f ′

f
− 1

u
− c2

(1 + q)3u

(1 + qu)3

)
φ′ +

ω̄2H3

uf 2
φ = 0.

Notice that the form of this equation is almost identical to that of (5.22), the lowest

order equation of motion, modified only by the presence of the corrected metric

functions f and H as well as one new term, which is explicitly O(c2).

Since the function f(u) vanishes linearly at the horizon u+, the point u = u+ is a

regular singular point of the equation of motion (5.25). This suggests that we write

(5.26) φ(u) = f(u)νF (u),

where F (u) is assumed to be regular at the horizon. The exponent ν is then obtained

by solving the indicial equation. In the hydrodynamic limit, the lowest order solution

is known [93, 108] and is given by:

(5.27)

φ0 = f0(u)ν0

{
1−ν0

2

[
∆ ln

(Ξ− α1 − 1 + 2α3u)(Ξ + α1 + 1)

(Ξ + α1 + 1− 2α3u)(Ξ− α1 − 1)
+3 ln

(
1+(α1+1)u−α3u

2
)]}

,

where

(5.28)

α1 ≡ 3q, α2 ≡ 3q2, α3 ≡ q3, Ξ ≡ (1 + q)(1 + 4q)1/2, ∆ ≡ −3
q + 1

Ξ
.

The exponent ν0 is given by

(5.29) ν0 = − iω̄

(2− q)(1 + q)1/2
,

and may be re-expressed as ν0 = −iω/4πT0, where T0 is the lowest order temperature.

Note that we have chosen incoming wave boundary conditions at the horizon as

appropriate to the shear viscosity calculation.
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Adding higher derivative terms will have two effects on this solution, one being

a correction to the function F (u) and the other a modification of the exponent ν

defined above. For the exponent, solving the indicial equation gives

(5.30) ν = − iω̄

(2− q)(1 + q)1/2

(
1 +

c2

8

10− 59q − 4q2 − 3q3

(q − 2)2

)
= − iω

4πT
,

where the relation to the temperature is valid to linear order in c2. We may now

substitute φ(u) = f(u)νF (u) into the equation of motion (5.25) and linearize in c2

to obtain an equation for F (u). While this is difficult to solve exactly, since we only

need a solution in the hydrodynamic regime, it is sufficient to work to first order in

ω (or equivalently ν). The solution for F (u) is quite complicated and can be found

in Appendix C.

Given this solution, it remains to evaluate the on-shell value of the action. As

explained in [20], the bulk action (5.21) must be paired with an appropriate gen-

eralization of the Gibbons-Hawking term. In general, the fourth order equation of

motion yields a boundary value problem for the two-point function where additional

data must be specified (e.g. fields and their first derivatives at the endpoints). How-

ever, when working perturbatively in c̄2, the equation of motion reduces to a second

order one, given by (5.25). This allows us to use a generalized Gibbons-Hawking

term of the form

(5.31) K = −Aφkφ′−k −
F

2
φ′kφ

′
−k + E(p1φ

′
k + 2p0φk)φ

′
−k,

where

(5.32) p1 =
f ′0
f0

− 1

u
, p2 =

ω̄2H3
0

uf 2
0

are the coefficients in the lowest order equation of motion (5.22).
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Evaluating the on-shell action then amounts to evaluating a boundary term

(5.33) S =

∫
d4k

(2π)4
Fk
∣∣∣1
0
,

where

Fk =
1

16πG5

[(
B − A− F ′

2

)
φ′kφ−k +

1

2
(C − A′)φkφ−k − E ′φ′′kφ−k

+Eφ′′kφ
′
−k − Eφ′′′k φ−k − E

(f ′0
f0

− 1

u

)
φ′kφ

′
−k + 2E

ω̄2H3
0

uf 2
0

φ′kφ−k

]
.(5.34)

In order to compute the shear viscosity we need only the limit of the above action

as u approaches the AdS boundary (i.e. u → 0). It turns out that only the first

and third terms contribute. This yields a value for the shear viscosity via the Kubo

relation

(5.35) η = lim
ω→0

1

ω
lim
u→0

(2 ImFk) =
(gr0)3

16πG5

(q + 1)3/2
(

1 +
c2

8

5 + 6q + 5q2

2− q

)
.

Finally, dividing this by the entropy density (4.45) gives a value for the shear viscosity

to entropy density ratio of

(5.36)
η

s
=

1

4π

[
1− c2(1 + q)

]
=

1

4π

[
1− c− a

a
(1 + q)

]
,

where we have rewritten c2 in terms of the anomaly coefficients c and a using (4.25).

The shear viscosity over entropy density ratio (5.36) can be expressed purely in

terms of the CFT quantities. To do that, one uses the fact that the boundary value

(the difference from the value at the horizon, more precisely) of the time-component

of a gauge field should be identified as the chemical potential for the charge associated

to the gauge field [31, 37]. More concretely, the R-charge in the bulk q is, at the

leading order, related to the R-charge chemical potential Φ in the CFT as

(5.37) Φ = gr0

√
3q(1 + q)
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This relation, together with the temperature at the leading order T0 = g2r0
2π

(2−q)(1+

q)1/2, yields

(5.38) q =
3

2Φ̄

(
1 +

4

3
Φ̄2 −

√
1 +

8

3
Φ̄2

)
,

where Φ̄ = gΦ/2πT is the dimensionless chemical potential. Note that q is an

increasing function with respect to Φ̄, which ranges from 0 to 2. Substituting this

into (5.38) into (5.36) yields

(5.39)
η

s
=

1

4π

[
1− c− a

c

(
1 +

3

2Φ̄2

(
1 +

4

3
Φ̄2 −

√
1 +

8

3
Φ̄2

))]

As is obvious from the expression for η/s in (5.36) and the fact that q is defined

to be positive, the introduction to the chemical potential worsens the violation of

the KSS bound, provided c − a > 0. Taking the range 0 ≤ q ≤ 2 into account, one

sees that the ratio takes the following range:

(5.40)
1

4π

(
1− 3

c− a
a

)
≤ η

s
≤ 1

4π

(
1− c− a

a

)
for c− a > 0.

After the work [35], there have been numerous works computing the shear viscosity

to entropy density ratio in various types of theories. A partial list includes a dilaton

gravity with four derivative terms [22], Einstein gravity with four and six derivative

terms [8], that with up to ten derivatives [101], Lovelock gravity [59], and Gauss-

Bonnet gravity with dimensions greater than five [19].
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APPENDIX A

Notations

A.1 Notations

We summarize our notational conventions in this appendix. Firstly, the com-

ponents of various multiplets and their basic properties are summarized in Ta-

ble. The gamma matrices γa satisfy {γa, γb} = 2ηab and (γa)† = ηabγ
b, where

ηab = diag(+,−,−,−,−). γa...b represents an antisymmetrized product of gamma

matrices:

(A.1) γa...b = γ[a . . . γb],

where the square brackets denote complete antisymmetrization with weight 1. Sim-

ilarly (. . .) denote complete symmetrization with weight 1. We choose the Dirac

matrices to satisfy

(A.2) γa1...a5 = εa1...a5 ,

where εa1...a5 is a totally antisymmetric tensor with ε01234 = 1.

The SU(2) index i (i=1,2) is raised and lowered with εij, where ε12 = ε12 = 1, in

the northwest-southeast (NW-SE) convention:

(A.3) Ai = εijAj, Ai = Ajεji.
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The charge conjugation matrix C in 5D has the properties

(A.4) CT = −C, C†C = 1, CγaC
−1 = γTa .

Our five-dimensional spinors satisfy the SU(2)-Majorana condition

(A.5) ψ̄i ≡ ψ†iγ
0 = ψiTC,

where the spinor indices are omitted. When the SU(2) indices are suppressed in the

bilinear terms of spinors, the NW-SE contraction is understood, e.g. ψ̄γa1...anλ =

ψ̄iγa1...anλi. Changing the order of the spinors in a bilinear leads to the following

signs:

(A.6) ψ̄γa1...anλ = (−1)(n+1)(n+2)/2λ̄γa1...anψ.

If the SU(2) indices are not contracted, the sign switches. We often use the Fierz

identity, which in 5D reads

(A.7) ψiλ̄j = −1

4
(λ̄jψi)− 1

4
(λ̄jγaψi)γa +

1

8
(λ̄jγabψi)γab.
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Table A.1: Multiplets in 5D superconformal gravity.

field type remarks SU(2) Weyl-weight

eµ
a boson fünfbein 1 −1

ψiµ fermion SU(2)-Majorana 2 − 1
2

bµ boson real 1 0

V ijµ boson V ijµ = V jiµ = (Vµij)
∗ 3 0

vab boson real, antisymmetric 1 1
χi fermion SU(2)-Majorana 2 3

2
D boson real 1 2

dependent gauge fields
ωµ

ab boson spin connection 1 0
φiµ fermion SU(2)-Majorana 2 1

2

fµ
a boson real 1 1

Vector multiplet
Wµ boson real gauge field 1 0
M boson real 1 1
Ωi fermion SU(2)-Majorana 2 3

2
Yij boson Y ij = Y ji = (Yij)

∗ 3 2
Hypermultiplet

Aαi boson Aiα = εijAβj ρβα = −(Aαi )∗ 2 3
2

ζα fermion ζ̄α ≡ (ζα)†γ0 = ζαTC 1 2
Fαi boson F iα = −(Fαi )∗ 2 5

2

Linear multiplet

Lij boson Lij = Lji = (Lij)
∗ 3 3

ϕi fermion SU(2)-Majorana 2 7
2

Ea boson real, constrained by (2.30) 1 4
N boson real 1 4
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APPENDIX B

Definitions and Useful Formulae for the Weyl Multiplet

In this appendix, we summarize useful formulae for the Weyl multiplet. Firstly, the

solution to the constraints (2.18) is given by the following:

ωµ
ab = ω0

µ
ab + i(2ψ̄µγ

[aψb] + ψ̄aγµψ
b)− 2eµ

[abb],(B.1)

with ω0
µ
ab ≡ −2eν[a∂[µeν]

b] + eρ[aeb]σeµ
c∂ρeσc,

φiµ =

(
−1

3
eaµγ

b +
1

24
γµγ

ab

)
R̂′ iab(Q),

fµ
a =

(
1

6
δνµδ

a
b −

1

48
eaµe

ν
b

)
R̂′ν

b(M).

Here, R̂µ
a(M) ≡ R̂µν

ba(M)eνb , and the primes on the curvatures indicate that R̂′ iab(Q) =

R̂i
ab(Q)|φµ=0 and R̂′µ

a(M) = R̂µ
a(M)|fνb=0. The transformation laws of their depen-

dent gauge fields can be obtained by using those of the independent fields of the

Weyl multiplet, in principle. The explicit K-transformation laws of the gauge field

ωµ
ab,

δK(ξaK)ωµ
ab = −4ξ

[a
Keµ

b](B.2)

are needed to check the K-invariance of the embedding formulae in (2.42).

We used two types of covariant derivatives in the main text. The first one is the

‘unhatted’ derivative Dµ, which is covariant only with respect to the homogeneous

transformations Mab,D and Uij and the G transformation for non-singlet fields
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under the Yang-Mills group G. The other is the ‘hatted’ derivative D̂µ, which denotes

the fully superconformal covariant derivative. With hAµ denoting the gauge fields of

the transformation XA, they are defined as

(B.3) Dµ ≡ ∂µ −
∑

XA=Mab,D,Uij(,G)

hAµXA, D̂µ = Dµ −
∑

XA=Qi,Si,Ka

hAµXA.

Below we give the explicit forms of the covariant derivatives appearing in Eq.(2.22)

for convenience:

Dµεi =

(
∂µ −

1

4
ωµ

abγab + 1
2
bµ

)
εi − V i

µ jε
j,(B.4)

Dµηi =

(
∂µ −

1

4
ωµ

abγab −
1

2
bµ

)
ηi − V i

µ jη
j,

DµξaK = (∂µ − bµ) ξaK − ωµabξKb,

D̂µvab = ∂µvab + 2ωµ[a
cvb]c − bµvab +

i

8
ψ̄µγabχ+

3

2
iψ̄µR̂ab(Q),

D̂µχi = Dµχi −Dψiµ + 2γcγabψiµD̂avbc − γ · R̂(U)ijψ
j
µ

+2γaψiµεabcdev
bcvde − 4γ · vφiµ,

Dµχi =

(
∂µ −

1

4
ωµ

abγab −
3

2
bµ

)
χi − V i

µ jχ
j .

The superconformally covariant curvatures R̂µν
A are defined as the commutator

of the covariant derivatives:

[D̂a, D̂b] = −
∑

A=Qi,Mab,D,Uij ,Si,Ka

R̂ab
AXA .(B.5)
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They are given explicitly by the following expressions:

(B.6)

R̂µν
a(P ) = 2∂[µeν]

a − 2ω[µ
abeν]b + 2b[µeν]

a + 2iψ̄µγ
aψν ,

R̂µν
i(Q) = 2∂[µψ

i
ν] −

1

2
ω[µ

abγabψ
i
ν] + b[µψ

i
ν] − 2V i

[µjψ
j
ν] + γab[µψν]v

ab − 2γ[µφ
i
ν],

R̂µν
ab(M) = 2∂[µων] − 2ω[µ

a
cων]

cb − 4iψ̄[µγ
abφν] + 2iψ̄[µγ

abcdψν]vcd

+4iψ̄[µγ
[aR̂ν]

b](Q) + 2iψ̄[µγν]R̂
ab(Q) + 8f[µ

[aeν]
b],

R̂µν(D) = 2∂[µbν] + 4iψ̄[µφν] + 4f[µν],

R̂µν
ij(U) = 2∂[µV

ij
ν] − 2V i

[µkV
kj
ν] + 12iψ̄

(i
[µφ

j)
ν] − 4iψ̄i[µγ · vψ

j
ν] +

i

2
ψ̄

(i
[µγν]χ

j)
,

R̂µν
i(S) = 2∂[µφ

i
ν] −

1

2
ω[µ

abγabφ
i
ν] − b[µφ

i
ν] − 2V i

[µjφ
j
ν] + 2f a

[µ γaψ
i
ν] + · · · ,

R̂µν
a(K) = 2∂[µfν]

a − 2ω[µ
abfν]b − 2b[µfν]

a + 2iφ̄µγ
aφν + · · · ,

where the dots in the Si and Ka curvature expressions denote terms containing other

curvatures.

To compute the Q-variation of the covariant derivatives of some fields, the follow-

ing formula is useful:

(B.7) [δQ, D̂a] = −δQ([δQψ
i
a]cov))− δS([δQφ

i
a]cov)) + · · · .

Here, the fermionic terms are omitted and [· · · ]cov denotes the covariant part of the

variations, namely,

[δQψ
i
a]cov =

1

2
γabcv

bcεi,

[δQφ
i
a]cov =

1

3

(
R̂ab

i
j(U)γb − 1

8
γaγ · R̂i

j(U)
)
εj

− 1

12

(
3D̂µγ · vεi + γabcdD̂bvcdεi + γabD̂cvcbεi − 2γbcεiD̂bvca − 3εiD̂bvba

− γabcdeεivbcvde + 4vabvcdγ
bcdεi + 16vabv

bcγcε
i + 5vbcv

bcγaε
i
)
.(B.8)

Using this, we can verify that the variations of the supercovariant curvatures not

contain any term non-covariant with respect to the superconformal transformations.
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Finally, we present the explicit forms of the variations of the supercovariant cur-

vatures R̂i(Q) and R̂ij(U):

(B.9)

δR̂i
ab(Q) = −1

4
R̂ab

cd(M)γcdε
i − 1

3
R̂ab

i
j(U)εj +

1

12
γ · R̂i

j(U)γabε
j

+
1

6
γabcdeD̂cvdeεi +

1

3
D̂[av

cdγb]cdε
i +

1

6
γabcD̂dvdcεi

− 2

3
D̂[avb]cγ

cεi +
1

3
D̂cvc[aγb]εi +

1

3
/̂Dvabεi

− 2

3
vabγ · vεi −

2

3
γcdv[a

cvb]
dεi +

4

3
γ[a

cvb]
dvcdε

i − 1

6
γabv

2εi + · · ·

− 1

3
γabcdv

cdηi +
4

3
γ[a

cvb]cη
i + 2vabη

i,

(B.10)

δR̂ab
ij(U) = −6iε̄(iR̂ab

j)(S) + 4iε̄(iγ · vR̂ab
j)(Q) +

i

2
ε̄(iγ[aD̂b]χj),

− i

4
ε̄(iγabcdχ

j)vcd − i

2
ε̄(iγc[aχ

j)vb]
c

+ 6iη̄(iR̂
j)
ab(Q)− i

2
η̄(iγabχ

j).

The ellipsis in (B.9) represents terms trilinear in fermions in δQR̂(Q). No term of

δSR̂(Q) is omitted.
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APPENDIX C

Some Detailed Computations Related to η/s

The quadratic action for the scalar channel perturbation φ is given in (5.21) in terms
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of six coefficients A, . . . , F . Here we present their explicit forms:

(C.1)

A(u) =
4

u
f0

+c2

[
2uf0(1 + q)3(5qu− 1)

H3
0

− 32g2qu2(1 + q)3

3
+
g2u3(1 + q)6

H0

− ω2

g2

H2
0

3

]
,

B(u) =
3f0

u

+c2

[
− ω2

g2
H2

0 +
g2(4qu+ 1)2H3

0

3u
− g2u(1 + q)3(56q2u2 + 7qu+ 11)

6

+
g2u3(1 + q)6(26q2u2 − 17qu+ 17)

6H3
0

− 8g2(1 + q)3qu2 +
3g2u3(1 + q)6

4H0

]
,

C(u) =
2g2(4qu− 3)H2

0

u2
− 2g2(1 + q)3(2qu+ 1)

H0

+c2

[
− ω2

6uf0

(
(4qu+ 1)H4

0 − (1 + q)3(−11qu3 + 13u2)H0

)
−g

2(1 + q)3(4q2u2 + 45qu+ 3)

3H0

+
g2u2(1 + q)6(4q3u3 − 7q2u2 − 32qu+ 15)

2H4
0

]
,

D(u) =
2g2H3

0 − g2qu3(1 + q)3

u3H2
0

+ ω2 H3
0

4u2f0

+ c2

[
ω4

g2

H5
0

12uf 2
0

+
ω2g2(1 + q)3

48f 2
0

(
2(31qu− 9)H3

0 − 3u2(1 + q)3(5q2u2 − 4qu+ 11)
)

−19g2q(1 + q)3

3H2
0

− 3g2u(1 + q)6(6q2u2 − 17qu+ 1)

2H5
0

]
,

E(u) = c2
4uf 2

0

3g2H0

,

F (u) = c2 f0
2(2(4qu+ 1)H3

0 − u2(1 + q)3(7qu+ 4))

3H2
0

.

Here we also present the O(c2) solution for φ. Writing φ(u) = f(u)νF (u), we may

expand F (u) to first order in both c2 and ω

(C.2) F (u) = F0(u, ω) + c2(F10(u) + ωF11(u)).

Since F (u) satisfies a second order equation (after linearizing in c2 and using the

lowest order equation of motion), it is consistent to choose the boundary conditions
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such that F (u) is normalized at the boundary (F (0) = 1) and is regular at the

horizon.

The function F0(u, ω) is given by the expression in the curly brackets in (5.27),

while the remaining functions are

(C.3)

F10(u) = 0,

F11(u) =
(1 + q)3/2(11q5 + 4q4 + 179q3 − 10q2 − 8q − 16)

32q2(1 + q)2(q − 2)3

×
[
i ln(q3u2 − 3qu− u− 1) + π

]
+
i(q + 1)3/2(60q6 + 99q5 + 648q4 − 69q3 − 154q2 − 104q − 16)

16(4q + 1)3/2(q + 1)2(q − 2)3

×
[
tanh−1 −(1 + 3q)

(4q + 1)1/2(q + 1)
− tanh−1 2q3u− (1 + 3q)

(4q + 1)1/2(q + 1)

]
−i ln(1 + qu)(1 + q)3/2

8q2

−i(q + 1)3/2(−4q5 + 21q4 + 143q3 − 21q2 − 39q − 6)

8q4(4q + 1)(q − 2)2

−i(q + 1)3/2(4q7 − 27q6 + 64q5 + 511q4 + 137q3 − 128q2 − 57q − 6)qu2

8(1 + qu)q4(q3u2 − 3qu− u− 1)(4q + 1)(q − 2)2

+
i(−12q6 + 102q5 + 605q4 + 63q3 − 177q2 − 63q − 6)u

8(1 + qu)q4(q3u2 − 3qu− u− 1)(4q + 1)(q − 2)2

− i(4q5 + 21q4 + 143q3 − 21q2 − 39q − 6)

8(1 + qu)q4(q3u2 − 3qu− u− 1)(4q + 1)(q − 2)2
.
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