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PREFACE 

 This written dissertation encapsulates the majority of labor and thought invested 

in my graduate studies, which surround the topic of siderophore biosynthesis and how 

this relates to Bacillus iron acquisition and microbial life cycles.   This body of work is 

divided into four chapters.  Chapter 1 introduces iron in biology and aspects of microbial 

iron acquisition.  An emphasis is placed on current research surrounding biological iron-

scavenging molecules called siderophores. 

Chapter 2 describes work my colleagues and I performed on the unique 3-

dehydroshikimate dehydratase enzyme AsbF and its contribution to formation of the 

siderophore petrobactin.  This research has been published as an article in the 

Proceedings of the National Academy of Sciences (Pfleger, B. F., Y. Kim, T. D. Nusca, 

N. Maltseva, J. Y. Lee, C. M. Rath, J. B. Scaglione, B. K. Janes, E. C. Anderson, N. H. 

Bergman, P. C. Hanna, A. Joachimiak, and D. H. Sherman. 2008. “Structural and 

functional analysis of AsbF: Origin of the stealth 3,4-dihydroxybenzoic acid subunit for 

petrobactin biosynthesis.” Proceedings of the National Academy of Sciences 105:17133-

17138.). 

Remaining questions surrounding petrobactin biosynthesis are addressed by work 

put forth in Chapter 3, in which I attempted reconstitution of petrobactin biosynthesis in 

vitro using purified proteins and substrates.  These findings are coordinated with further 

characterization of petrobactin siderophore synthetases guided by the crystal structure of 
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the AsbB enzyme.  The research put forth in Chapter 3 has been published in the Journal 

of Biological Chemistry (Nusca, T. D., Y. Kim, N. Maltseva, J. Y. Lee, W. H. 

Eschenfeldt, L. Stols, M. M. Schofield, J. B. Scaglione, S. D. Dixon, D. Oves-Costales, 

G. L. Challis, P. C. Hanna, B. F. Pfleger, A. Joachimiak, and D. H. Sherman. 2012. 

“Functional and structural analysis of the siderophore synthetase AsbB through 

reconstitution of the petrobactin biosynthetic pathway from Bacillus anthracis”. J Biol 

Chem. Pub. Online.) 

As a closing section, Chapter 4 aims to summarize the research presented in 

Chapters 2 and 3 as well as its possible implications in the fields of microbiology and 

biochemistry.  Connections are made between results discussed within this work and 

previously published aspects of cellular metabolism, macromolecular protein assembly, 

and small molecule synthesis.  Generally, Chapter 4 encompasses hypothetical and future 

avenues of experimentation that were made more apparent by the body of this 

dissertation; however, in some instances, preliminary data is presented. 
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ABSTRACT 

Iron is an essential cofactor in biology, yet most organisms’ acquisition of iron is 

hampered by inaccessibility of this metal in ferric complexes.  Thus, life on Earth has 

developed diverse strategies to obtain necessary levels of free iron, one of the most 

prominent among microbes being the biosynthesis of specific, high-affinity chelators 

called siderophores.  Bacillus anthracis, the causative agent of anthrax, requires the 

siderophore petrobactin for full virulence.  Prior studies have demonstrated the 

asbABCDEF operon encodes biosynthetic machinery for this secondary metabolite: The 

virulence-associated “NRPS-independent siderophore (NIS) synthetase” protein family 

includes the enzymes AsbA and AsbB, which condense the common metabolites citrate 

and spermidine; meanwhile, the AsbCDE complex promiscuously transfers 3,4-

dihydroxybenzoic acid (3,4-DHBA) to primary amines.  3,4-DHBA moieties on 

petrobactin allow the siderophore to evade neutralization by innate immune mechanisms, 

yet the origin of 3,4-DHBA as well as the function of the protein encoded by the final 

gene in the asb operon, asbF, has remained unclear.  The data presented herein reveals 

that the primary metabolite 3-dehydroshikimate is converted to 3,4-DHBA via AsbF 

catalysis.  Subsequent mass spectrometric studies demonstrate that five gene products 

encoded by the asb operon are necessary and sufficient for conversion of endogenous 

metabolic precursors to petrobactin using an in vitro system.  In this pathway, the 

siderophore synthetase AsbB catalyzes formation of amide bonds crucial for petrobactin 
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assembly through use of biosynthetic intermediates, as opposed to primary metabolites, 

as carboxylate donors.  Structural characteristics of AsbB were applied to provide new 

insight into how this enzyme, and its partner synthetase AsbA, can bind and adenylate 

multiple citrate-containing substrates, followed by incorporation of both natural and 

unnatural polyamine nucleophiles.  Subsequent enzymatic assays with the nonribosomal 

peptide synthetase-like AsbC, AsbD, and AsbE polypeptides indicate two products of 

AsbB are further converted to petrobactin, verifying previously proposed convergent 

routes to formation of this siderophore. Combined, these studies establish new avenues 

for the chemoenzymatic synthesis of novel compounds and investigate key biosynthetic 

enzymes of petrobactin assembly with the purpose of promoting better understanding of 

bacterial host iron acquisition and identifying new antimicrobial strategies to protect 

against B. anthracis and other pathogenic bacteria. 
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Chapter 1 

Introduction 

1.1 Overview 

Nearly all organisms on Earth have evolved to use iron as a cofactor in a variety 

of essential metabolic processes (1).  Despite the ubiquity of this metal in biology, the 

acquisition of free iron from the environment and within the host is hampered by its 

inaccessibility in ferric complexes.  Thus, to obtain necessary levels of free iron, cells 

have developed diverse strategies, one of the most prominent among microbes being the 

biosynthesis of iron-specific, high-affinity chelators called siderophores (2) (Fig. 1-2). 

In Bacillus anthracis, the causative agent of anthrax, two siderophores, 

petrobactin and bacillibactin (Fig. 1-2), play a significant role during iron acquisition (3-

5), but only petrobactin is absolutely essential for full virulence within a mammalian host 

(6).  This mixed catechol-carboxylate siderophore was first isolated from the Gram-

negative marine microbe Marinobacter hydrocarbonoclasticus (7), but recent genetic and 

chemical analysis suggests that petrobactin biosynthesis may also be a prerequisite for 

virulence in numerous Bacillus species (8).  These studies highlight the importance of 

elucidating the mechanisms of siderophore production in pathogenic microbes as a target 

for halting infection by organisms like B. anthracis, a rapidly virulent organism and 

potential bioterrorism agent.  Based on these factors, my colleagues and I have conducted 

studies designed to investigate key biosynthetic enzymes for petrobactin assembly with 
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the purpose of further understanding bacterial host iron acquisition and establishing new 

anti-microbial strategies to protect against anthrax.   

 

1.2 Iron in Nature and Organisms 

 After the first billion years of the Earth’s formation, soluble iron was abundant in 

the shallow, turbulent oceans of Earth.  Ancestral organisms readily took advantage of 

this ion’s electrochemical properties in the evolution of their enzymology.  The multiple 

charge states of iron allowed for catalysis of biological redox reactions including nitrogen 

fixation (9), metabolite degradation (10, 11), and molecular hydrogenation during 

fermentation (12).  By the Cambrian explosion 500 million years ago, flourishing 

photosynthetic microbes had created one of the grandest geological changes in our 

planet’s history: Earth’s atmosphere was at the height of becoming poisoned with oxygen 

(13, 14).  This had a drastic effect on many aspects of the earth’s surface including 

oxidation of available ferrous iron and its resultant unavailability in largely insoluble 

ferric complexes (2, 14).  Billions of years of evolution incorporating the utility of iron 

could not suddenly be changed, thus organisms began to evolve methods for obtaining 

and retaining the now scarce element. 

Microorganisms have developed multiple ways to obtain iron from the 

extracellular environment (Fig. 1-1).  Transporters designed for the recognition of free 

metal are ubiquitous, but methods for solubilizing large amounts of iron often are not 

very efficient except at extreme conditions (15, 16).   Cohabitation with other organisms 

has also allowed for expansive uptake of metal bound to heme (17).    Indeed  many 
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Figure 1-1.  An overview of iron in the environment, host, and bacterium.  Free iron 
is not readily available in the oxidative environment; meanwhile, it is tightly sequestered 
by host molecules during an infection.  Bacteria have evolved multiple methods to 
overcome this including heme scavenging and secretion and reuptake of siderophores. 
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pathogens maintain heme recognition and uptake systems as virulence factors, and this 

system has been extensively studied in Staphylococcus aureus (18) and Escherichia coli 

(19).  Bacillus anthracis also expresses a heme uptake system that may contribute to 

virulence (20-22); however, not to the same extent that siderophore production does (21, 

23, 24).  Indeed siderophores are one of the more widely distributed iron acquisition 

methods utilized by both prokaryotes and fungi in growth conditions ranging from marine 

to terrestrial habitats to infections of both animal and plant hosts.  A more detailed 

description of siderophores appears in a following section. 

Iron obtained by higher eukaryotes through diet, or in the instance of plants, 

through alteration of local soil pH and siderophore-like chelators (16, 25), is kept 

sequestered in specialized biological molecules (Fig. 1-1).  This extends to the human 

host which contains approximately 4 to 5 grams of iron when well-nourished, yet nearly 

all of this metal is bound by a myriad of proteins (26-28).  Aforementioned enzymes 

utilize iron as a cofactor and the oxygen storage molecules hemoglobin and myoglobin 

(28, 29).  Additionally, intracellular ferritin is the predominant intracellular reserve for 

iron (28, 30).  A homolog of this, bacterioferritin, is found in prokaryotes and serves a 

similar function but differs slightly from eukaryotic ferritin by multiple copies of a single 

polypeptide sequence as opposed to a heavy and light chain in the formation of a large 

multimer (2).  Meanwhile, the iron-scavenging protein transferrin is freely diffuse in the 

plasma (31, 32) and conveys ferrous iron atoms throughout the body (Fig. 1-1).  Studies 

indicate transferrin is a main source of iron for many pathogens during infection.  Indeed, 

the formation constants of molecules (Kf=
[complex]/([molecule][ligand])) like transferrin and 

ferritin for their ferric iron complexes are around 1023/M, many orders of magnitude 



5 
 

lower than the formation constant of most siderophores which can range between 1029-

1052/M (2).  

Multicellular organisms tightly regulate the amount of stored and free iron in the 

cell.  In vertebrates, ferritin and transferrin levels as well as copy number of iron cation 

transporters exposed on the cell membrane are controlled by the liver-derived hormone 

hepcidin (27, 33). The purpose of tight iron regulation in multicellular organisms is two-

pronged.  Primarily, free iron is highly toxic, catalyzing the formation of free radicals 

from reactive oxygen species (ROS) in respiring cells (27, 34).  Ironically, this same 

property of iron is capitalized on by heme-containing catalase and superoxide dismutase 

to harmlessly convert ROSs to water (34). The stringent limitation of available iron has a 

secondary benefit as well more pertinent to this work, and that is restricting development 

of any invading pathogen.  Even in instances where microbes have evolved mechanisms 

to scavenge iron in the host, optimal intracellular levels of iron found in culture are rarely 

reached (2, 15, 28).  Furthermore, siderophore biosynthesis, production of heme-

scavenging protein complexes, or degradation of ferric host protein has a high metabolic 

price.  Hence, low iron retards pathogen cellular replication, giving a host an “edge” 

required to combat infection. 

 

1.3 Molecular Biology of Iron Starvation during Inhalational Anthrax  

 In the inhalational route of infection, the spore is the infectious form of Bacillus 

anthracis(35).  Once latent spores make their way to the lung epithelium, host antigen-

presenting cells—primarily macrophages—internalize the infectious particle and shuttle 

it to other parts of the lymphatic system.  It is at this later stage of host entry where the 
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spore finally germinates into vegetative cells in a position to rapidly replicate to 

extremely high titers in the blood and, through the effects of secreted toxins, cause severe 

edema that directly contributes to lethality (21, 36).  Iron facilitates activities including 

DNA replication, amino acid synthesis, and lipid conversion that can be associated with 

the rampant cell division observed by B. anthracis in the blood. During early stages of 

infection, iron is also necessary for mounting bacterial countermeasures against host 

immune defenses.  The release of reactive oxygen species by neutrophils and other 

immune cells has a strong antibacterial effect, and infection by B. anthracis is highly 

reliant on proteins requiring iron as a cofactor, including cystathionine β-synthase, 

responsible for accumulation of reductive H2S (37), and a suite of redundant superoxide 

dismutases (SODs) to mitigate oxidative stress (38, 39).  Interestingly, copies of SOD 

constitute one of the three main iron reservoirs in B. anthracis along with the 

bacterioferritin Dps2 and ferredoxin (40) (Fig 1-1).  

 The bacterial response to iron starvation is largely mediated by the ferric uptake 

response (Fur) regulator (2, 21, 41).  The actual Fur protein is a dimeric AraC-like 

repressor that undergoes a conformational change in the absence of iron, resulting in 

release of bound DNA.  A canonical AT-rich DNA sequence constituting the “Fur box” 

precedes many iron acquisition genes in Bacillus spp., including dhb, responsible for 

bacillibactin biosynthesis, the elemental iron importer Ywb, and multiple ABC 

transporters responsible for siderophore and heme uptake (21, 42).  In E. coli, an 

additional Fur-regulated gene constitutes a second level in low-iron response through 

expression of the siRNA RyhB, and the product FsrA appears to serve the analogous role 

in Bacillus species (43, 44).  These polynucleotides post-transcriptionally affect multiple 
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mRNAs with the end result of increasing precursor pools for siderophore biosynthesis, 

repressing translation of iron-dependent proteins, and repression of further expression of 

fur (43-45).  Global expression studies of Bacillus species demonstrate an overlap in 

expression profiles between response to oxidative stress and iron starvation (46-48).  In 

addition to the aforementioned requirement for iron-containing enzymes to prevent redox 

damage, an oxidative environment directly contributes to a loss of cytoplasmic and 

protein-bound ferrous (Fe2+) iron (49). 

 Genetic and chemical analysis of B. anthracis revealed the asb biosynthetic 

operon, responsible for petrobactin biosynthesis, to be critical for infection of 

macrophages and in a mouse model (3, 23, 48).  Interestingly, while petrobactin 

production is induced in iron-deficient conditions, there is no canonical Fur-box 

preceding any asb genes.  While there is some upstream sequence that may confer Fur-

like regulator binding, the fact that petrobactin production is also affected by paraquat-

induced oxidative stress, variation in temperature, and oxygen availability suggests 

additional levels of control in asb expression exists (46, 48, 50). 

 

1.4 Siderophore Biosynthesis and Classification 

Generally, the biosynthetic origin of siderophores can be divided into two classes: 

non-ribosomal peptide sythetases (NRPS) and the relatively newly characterized class of 

NRPS-independent siderophore (NIS) synthetases (51-54) (Fig. 1-2).  B. anthracis has 

one of each of these systems.  Bacillibactin is synthesized via an NRPS pathway that  



8 
 

 

Figure 1-2. Sample structures of siderophores derived from non-ribosomal peptide 
synthetase (NRPS) and NRPS-independent siderophore (NIS) synthetase pathways. 
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is not required for virulence in mice but may still play anotherrole.  Petrobactin, however, 

is required for virulence of all Bacillus species and derived from NIS mechanisms (55). 

 

NRPS-derived Natural Products 

In addition to siderophores, many other bacterial and fungal natural products are 

derived from NRPS pathways.  These include compounds with such useful applications 

as antibiotics, like erythromycin (56), and cryptophycin anticancer agents (57, 58).  

Metabolites derived from this process are either linear or cyclic, appearing as chains 

consisting of multiple subunits united by a series peptide bonds.  The incorporation of 

each  NRP subunit is facilitated by a single module that is comprised of three essential 

catalytic domains: a carrier domain that is modified with a phosphopantethine arm that 

forms thioester bonds with NRP subunits; an adenylation domain that recruits substrates 

and loads the subunit to the carrier domain; and a condensation domain that catalyzes the 

condensation of a nucleophilic portion of the loaded subunit with the thioester of the 

preceding module’s carrier domain and subunit.  In most instances, multiple NRPS 

modules are encoded by a single ORF (56, 57).  The resultant individual polypeptides in 

turn form tight, noncovalent interactions via docking domains with additional NRPS 

modules encoded by separate genes within the same biosynthetic cluster.  The end result 

is a heteromer that acts as a molecular “assembly line”, recruiting substrates that are 

adenylated and condensed to one another through repeating peptide bonds in a specific 

order (56, 57).  Many NRPS biosynthetic pathways will contain domains in addition to 

the adenylation, condensation, and carrier described above, including tailoring enzymes 

like reductases, halogenases, epimerases, and methyltransferases.  A final thioesterase 
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domain releases the generated NRP and in some cases also cyclizes the completed 

molecule (56, 57).  While a single NRPS system represents a protein macromolecule 

several hundred kilodaltons in size, electron micrography of Bacillus subtilis, a close 

relative to Bacillus anthracis, discovered multiple copies of the bacillaene hybrid NRPS-

polyketide synthase (PKS) system organized into an organelle-like megastructure (59).  

Such a finding suggests other natural product biosynthetic machinery, including that of 

siderophores, may be organized in a similar fashion. 

Many NRPS-derived siderophores are implicated in bacterial virulence (2, 51, 

53).  Yersinia pestis research regularly uses a strain attenuated for yersiniabactin 

production (60) while Mycobacterium species synthesize an array of mycobactins to 

shuttle iron from the environment, past the cell wall, and into the bacterial cytoplasm (61) 

(Fig. 1-2).  Pseudomonas aeruginosa produces two NRPS-derived siderophores, 

pyochelin and pyoverdin, that are also implicated in quorum sensing (62).  Despite all 

these examples, perhaps the most researched NRPS-derived siderophore is enterobactin 

(Fig. 1-2).  Originally characterized in E. coli, it has been attributed to the iron 

acquisition of multiple commensal and pathogenic Gram-negative species including 

Salmonella enterica serovar Typhi, and has the highest ferric iron affinity of any natural 

compound (2, 51, 52, 63).  This radially symmetrical molecule is comprised of three 

chelating 2,3-dihydroxybenzoic acids (2,3-DHBA) individually bound to serine.  These 

three serines are in turn incorporated into a central trilactone ring (51).  Interestingly, 

bacillibactin from B. anthracis shares many structural features with enterobactin, though 

methylserines comprise the trilactone ring which is linked to 2,3-DHBA through an 

additional glycine subunit (52, 55, 64).  Shared structural motifs are no coincidence: not 
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only did the biosynthetic pathways for all NRPS-derived siderophores likely arise from 

common precursors, but the similarity combined with slight (but apparent) deviation of 

bacillibactin from enterobactin’s structure allow for Bacillus species to recognize and use 

both highly effective siderophores, while Gram-negative enterobacteriaciae have 

generally only evolved to use enterobactin (64, 65). 

 

NRPS-independent Siderophore Synthetases 

A second method of siderophore biosynthesis utilizes a family of enzymes 

logically referred to as NRPS-independent siderophore (NIS) synthetases (51, 66) (Fig. 1-

2, 1-3).  Much like an NRPS module, NIS synthetases catalyze condensation reactions 

resulting in the formation of peptide, and occasionally ester, bonds; however, the 

mechanisms by which this occurs is somewhat different (Fig. 1-3 B).  While NRPS gene 

products typically contain multiple catalytic domains, an NIS synthetase polypeptide 

occupies a rough “cupped hand” structure that contains one active site that coordinates 

multiple substrates. As a first step of NIS synthetase reaction, ATP is recruited to a 

deeply-set binding pocket, followed by coordination of a carboxylate-containing 

substrate.  These two compounds are placed in a strained coordination that makes the 

adenylation of this carboxylic acid favorable (Fig. 1-3 C).  Once incorporated, the AMP 

is positioned as an ideal leaving group for SN2 attack by a final nucleophilic substrate.  

All final products of this reaction, including the newly formed siderophore intermediate, 

AMP, and pyrophosphate (PPi) are released following the condensation and have been 

used to track the progress of NIS synthetase reactions (51, 54, 66-68).  While the  
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Figure 1-3. An overview of NIS synthetases.  A. NIS synthetases are classified based 
on their preference of carboxylate-containing substrate.  B. The general activity of an NIS 
synthetase involve adenylation of a substrate’s terminal caboxylate, followed by attack 
and resultant condensation with a primary amine or an alcohol, forming an amide or ester 
bond, respectively.  C. The adenylated intermediate of a type A NIS synthetase like 
AsbA.  D. Clade separation comparing primary structure of related NIS synthetases.  
Enzymes group in accordance to substrate preference over native organisms’ phylogeny 
(analyzed in ClustalW). 
 



13 
 

implicit order of substrate binding is known (ATP, carboxylic acid, nucleophile), exact 

points at which carboxylate adenylation, nucleophile binding, and eventual condensation 

occurs is not (51, 54, 66-68). 

NIS synthetases are further defined by what type of carboxylate substrate they 

coordinate (Fig. 1-3 A):  Type A synthetases bind citric acid; type B originally denoted 

synthetases that utilize α–ketoglutaric acid, but more recently discovered enzymes falling 

in this family preferentially bind closely related primary metabolites like oxaloacetatic or 

glutaric acid instead.  Finally, Type C synthetases do not preferentially bind simple 

primary metabolites, but instead more complex intermediates in NIS biosynthesis (51, 

66).  Interestingly, sequence analysis of NIS synthetases is capable of revealing 

carboxylic substrate affinity; thus, if a handful of NIS genes are subjected to clade 

separation they will be segregated by type A, B, or C (Fig. 1-3 D).  Thus far, every NIS 

synthetase characterized to date contains a single catalytic domain, unlike the multi-

domained and often multimodular NRPS genes.  This said, there are examples of iterative 

NIS synthetases that first function as a type A or B enzyme, synthesizing their own 

substrate for subsequent type C synthetase activity (66, 69, 70).  Furthermore, cursory 

experiments suggest specific, noncovalent interactions between multiple NIS biosynthetic 

enzymes in the possible formation of a defined macromolecular machine similar to the 

“conveyor belt” scheme of NRPSs (described in Chapter 4). 

Typically, because NIS pathway substrates are polar metabolites, the products of 

these reactions are also highly polar (51, 66, 70).  While charged and polar functionalities 

are useful in chelating iron and increasing the solubility of siderophores in aqueous 

environments, this chemical characteristic also makes standard methods for secondary 
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metabolite isolation largely ineffective.  Thus organic extractions are often abandoned for 

use of more polar solvents, resins, and chromatography methods (71).  Petrobactin is 

unique in this instance as it is the only NIS-derived siderophore found thus far to have 

aromatic functionalities, increasing its hydrophobicity and UV absorbtivity for standard 

chromatographic methods, and making it an amenable model for investigating NIS 

biosynthetic pathways. 

 

1.5 Siderophore Recognition, Uptake, and Iron Release 

 Once complexed with extracellular iron, a ferri-siderophore complex must be 

recognized by a specific surface-associated receptor for bacterial uptake (2, 72-74).  This 

receptor in turn interacts with an ATPase-binding cassette (ABC) transporter system to 

facilitate siderophore-associated iron uptake through the plasma membrane into the 

cytoplasm (74, 75). In the instance of Gram- negative microbes, a TonB-associated outer 

membrane receptor is also required for import of ferri-siderophore into the periplasm (74, 

76).  The permease of an ABC transporter is comprised of either a single peptide with 

repeating domains or dimer of polypeptides that form a channel across the plasma 

membrane.  The extracellular portion of the permease interacts with specific ligand 

receptors while the cytoplasmic side binds soluble ATPases that function in a dimer to 

drive internalization of the ligand (75).  Recent research has shown that while multiple 

receptors of diverse species are capable of binding petrobactin, only one ABC-transport 

associated receptor gene, fpuA, facilitates petrobactin uptake in B. anthracis (24, 72, 73).  

FpuA, in turn interacts with two possible permease structures, each of which require their 

own ATPase set (Fig. 1-4).  This branching redundancy of  a single  receptor  to multiple 
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Figure 1-4.  Schematic of petrobactin-facilitated iron uptake.  The extracellular 
receptor FpuA recognizes petrobactin. Three possible ABC import complexes are 
comprised of ATPase and permease components that display some functional 
redundancy.  The method for iron release of presumably internalized petrobactin remains 
unknown, but may involve enzymatic siderophore degradation and iron reduction.  
Portions of this figure courtesy of Shandee D. Dixon of the Hanna group and adapted 
from reference 77. 
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ATPases is unique in ABC-transport mechanisms and highlights many new targets in 

inhibiting virulence-associated iron acquisition (77). 

 Prior to usage by the bacterial cell, iron must be released from the siderophore.  

The strategy employed for iron removal to occur largely depends on the affinity the 

chelator has for ferric iron (53).  Reduced ferrous iron is not bound strongly to 

siderophores, thus the overall reductive environment of the cytoplasm is sufficient for 

dissociation of iron from relatively weaker siderophores (Kf ~1020) (53, 78).  This 

mechanism has been speculated for desferrioxamine in which iron dissociation can be 

facilitated by general cellular reducing agents like FADH (78).  In some instances, 

specific ferri-siderophore reductase genes have been identified, including FhuF and 

YqjH, which interact with hydroxamates and catecholates respectively in E. coli (79, 80).  

A unique example of reductases is found in Mycobacterium species in which iron 

reduction occurs extracellularly, and only the dissociated ion, as opposed to the 

siderophore-iron complex, is internalized (81).  Tris-catecholate siderophores like 

bacillibactin and enterobactin (and its salmochelin derivatives), have the highest affinity 

for ferric iron of any known natural compounds, thus creating a redox potential 

unfavorable for conversion of bound iron to the ferrous ion, even enzyamtically.  In these 

instances, the siderophore must first be degraded by a specific hydrolase—FesA in E. coli 

and YuiI in Bacillus spp.—before iron liberation can occur (53).  Interestingly, specific 

siderophore degradation enzymes have also been observed in some cases that are not 

required for iron utilization, and thus seemingly serve another unknown metabolic 

function (82).  The structure of petrobactin includes both carboxylate and catechol 

chelation points which combine to confer a unique binding affinity for iron, thus the 
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methods employed by Bacillus spp. for petrobactin iron release remains enigmatic as 

does the fate of the siderophore after interaction with the ABC transporter (Fig. 1-4). 

 

1.6 Stealth Siderophores 

As an added level of complexity in competition for iron during an infection, the 

host innate immune protein siderocalin neutralizes many catechol-containing 

siderophores secreted by invading pathogens.  Siderocalin does not sequester petrobactin, 

however, and this “stealth siderophore” quality is significant when considering the 

dependence of B. anthracis on this compound during an anthrax infection.  Modeling and 

binding studies implicate steric hindrance created by the positioning of the hydroxyls on 

3,4-dihydroxybenzoic acid (3,4-DHBA) subunits of petrobactin in preventing its 

interaction with siderocalin (83). Alternatively, most other catecholate siderophores 

contain 2,3-dihydroxybenzoic subunits, including bacillibactin, and are effectively 

neutralized by this protein during the host response to infection (83-85). 

Further examples exist of stealth siderophores.  The tris-catecholate siderophore 

enterobactin possesses one of the highest formation coefficients for iron-complexation, 

yet presence of 2,3-DHBA moieties allows it to still be neutralized by siderocalin (85).  

Salmochelins are enterobactin molecules covalently modified by the glucosyltransferase 

IroB (63) (Fig. 1-2).  The presence of glucose on the catechol moieties creates a steric 

hindrance similarly to 3,4-DHBA, but through a different biosynthetic route (84).  

Another triscatecholate, vibriobactin from Vibrio cholerae, coordinates iron with only 

five of its six catechol oxygens in a unique 3-dimensional conformation that prevents 

binding to siderocalin (86).  A larger collection of siderophores simply avoid 
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sequestration by siderocalin through the absence of catechol groups in their structure, 

including the salicylate-containing yersiniabactin and mycobactin, which are only loosely 

bound by the immune protein, and hydroxamate or carboxylate siderophores like 

aerobactin and staphyloferrin B, that largely avoid siderocalin altogether (84) (Fig. 1-2). 

 

1.7 Petrobactin Biosynthesis: Recent Discoveries and Unanswered Questions 

Previous mutagenesis and biochemical studies have shown that products of the 

polycistronic operon consisting of the six genes asbABCDEF contribute to assembly of 

petrobactin in bacteria.  Furthermore, petrobactin arises from three simple metabolic 

precursors: the common primary metabolites citric acid and spermidine, and the unique 

subunit 3,4-DHBA (Fig. 1-5 A) (4, 55, 67, 87-90).  As described above, AsbA and AsbB 

are members of a growing family of gene products referred to as non-ribosomal peptide 

synthetase - independent siderophore (NIS) synthetases (87, 91, 92).  AsbA can be 

classified more specifically as a type A NIS synthetase due to its utilization of citrate as a 

substrate for adenylation. This is followed by condensation with spermidine leading to 

N8-citryl-spermidine (Fig. 1-5 B) as a first step in petrobactin biosynthesis (87).  AsbB is 

similar in activity to AsbA, but classified as a type C NIS synthetase due to its preference 

for advanced intermediates in siderophore biosynthesis as substrates including N8-citryl-

spermidine (4, 89).  Both AsbA and AsbB incorporate the asymmetric polyamine 

spermidine from only one (N8) of its two primary amine termini (Fig. 1-5 B) (87, 89, 91).  

Currently, the mechanism by which this regioselectivity is achieved is not well 

understood. 
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Figure 1-5.  Known components of the petrobactin biosynthetic pathway encoded by 
the asbABCDEF operon.  A. NRPS-like polypeptides AsbC,-D, and –E transfer 3,4-
DHBA to spermidine, but how this activity is integrated with native petrobactin 
biosynthesis is not fully understood.  B. The NIS synthetases AsbA and AsbB incorporate 
spermidine arms to a central citrate moiety.  3,4-DHBA must be incorporated at some 
point for formation of the complete siderophore. 
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In addition to citrate and spermidine, which are readily available primary 

metabolites in bacteria, petrobactin biosynthesis requires the unusual precursor 3,4-

DHBA.  It was hypothesized that the asb operon would likely code for synthesis of this  

crucial catecholate; indeed, it was indicated by earlier reports (93), precursor 

incorporation studies (94), and through previous analysis that supernatants of a B. 

anthracis Sterne culture contain 3,4-DHBA.  Specifically, the Sherman group 

demonstrated that supernatants of an asbABCDEF mutant fail to accumulate this key 

petrobactin subunit, indicating that one or more asb-encoded polypeptides are involved in 

its synthesis.  3,4-DHBA is critical for petrobactin to function as a virulence factor as it 

facilitates the siderophore’s stealth ability and forms four of the six chelating 

functionalities on the molecule.  Subsequent experimentation is required to explain the 

biochemical origin of this important molecule. 

Once available, linkage of the 3,4-DHBA moieties to spermidine is facilitated in 

vitro by interactions of three other asb products: AsbC catalyzes adenylation of 3,4-

DHBA followed by transfer via thioester bond formation to the phosphopantetheinylated 

aryl carrier protein AsbD (67).  Subsequently, AsbE functions to catalyze amide bond 

formation between 3,4-DHBA (“loaded” on AsbD) and a suite of linear molecules 

bearing a primary amine (67) (Fig. 1-5 A).  Products of this reaction cannot be efficiently 

incorporated enzymaticlly into a petrobactin molecule; however, there are several 

proposed petrobactin precursors that have an available amino group, thus a systematic 

investigation is required to establish which metabolic intermediates function as natural 

substrates for AsbE during petrobactin biosynthesis. 
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Siderophore production in pathogenic bacteria has gained considerable attention due 

to its crucial function in essential iron uptake by many microbes and the relevance of 

siderophore-associated proteins as molecular markers of various infectious agents (95).  

Eliminating petrobactin in pathogenic microbes is particularly important among 

catecholate siderophores, as it escapes sequestration by the mammalian immune protein 

siderocalin (83, 84) and is required for virulence. The genes responsible for mediating 

production of this metabolite have remained partially undefined as has the biochemical 

mechanism of its assembly.  Elucidation of these unknown aspects in petrobactin 

biosynthesis and describing how this may be applied toward the generation of novel 

compounds and design of new antibiotics are the motivating forces behind my thesis 

work. 
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Chapter 2 

Structural and Functional Analysis of AsbF:  Origin of the Stealth 3,4-

Dihydroxybenzoic Acid Subunit for Petrobactin Biosynthesis 

2.1 Introduction 

Siderophore production in pathogenic bacteria has gained considerable attention due 

to its crucial function in essential iron uptake by many microbes and the relevance of 

siderophore-associated proteins as molecular markers of various infectious agents (1).  

Recent genetic and chemical analysis suggests that biosynthesis of the siderophore 

petrobactin (Fig. 2-1 A) may also be a prerequisite for virulence in related Bacillus 

species (2).  These studies highlight the importance of elucidating the mechanisms of 

siderophore production in pathogenic microbes as a target for abrogating infection by 

organisms like B. anthracis, a rapidly virulent microbe with proven potential as a 

bioterrorism agent.  Based on these factors, we have initiated studies to investigate key 

biosynthetic enzymes for petrobactin assembly in efforts to establish new anti-microbial 

targets to protect against anthrax.  Eliminating petrobactin in pathogenic microbes is 

particularly important among catecholate siderophores, as the 3,4-DHBA moiety enables 

the molecule to escape sequestration by the mammalian immune protein siderocalin (3, 

4). However, the genes responsible for mediating production of this metabolic precursor 

have remained undefined as has the biochemical mechanism of its assembly. 
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Biosynthesis of petrobactin in B. anthracis requires citrate, spermidine and 3,4-

DHBA as biosynthetic units (5, 6).  While citrate and spermidine are readily available 

primary metabolites in bacteria, the presence of a 3,4-DHBA in the precursor pool is 

unusual.  Since 3,4-DHBA is critical for petrobactin to function as a virulence factor, we 

hypothesized that the asb operon would likely code for its synthesis.  Indeed, it was 

indicated by earlier reports (7), precursor incorporation studies (8) and through our own 

analysis that supernatants of a B. anthracis Sterne culture contain 3,4-DHBA.  

Specifically, we demonstrated that supernatants of an asbABCDEF mutant fail to 

accumulate this key petrobactin subunit, indicating that one or more asb-encoded 

polypeptides are involved in its synthesis.  Further examination of supernatants isolated 

from cultures of individual asb deletion mutants (5) revealed that each strain is capable of 

producing 3,4-DHBA except ΔasbF.  In order to substantiate its functional role, we 

sought to determine the biochemical function of recombinant AsbF exogenously 

expressed and purified from E. coli.  X-ray crystallographic analysis of AsbF provides 

structural details of this unique polypeptide and has enabled new insights into AsbF 

enzymatic activity and a proposed mechanism in formation of the 3,4-DHBA moiety 

essential to petrobactin biosynthesis.  Moreover, this study identifies AsbF as a potential 

new target in efforts to identify inhibitors for development of effective therapeutics 

against B. anthracis, and other pathogens where petrobactin operates as a stealth 

virulence factor. 
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Figure 2-1. AsbF catalyzes dehydration of 3-dehydroshikimate (3-DHS) to 3,4-
dihydroxybenzoic acid (3,4-DHBA) in B. anthracis.  (A) Structures of petrobactin and 
bacillibactin, two siderophores of Bacillus anthracis. (B) TLC analysis of culture 
supernatants from asb mutant strains stained with FeCl3. All strains generated a spot 
that co-migrated with an authentic 3,4-DHBA standard except ΔasbABCDEF and ΔasbF. 
(C) Chemical transformation showing the dehydration of 3-DHS, a common bacterial 
metabolite, to generate the unique siderophore precursor 3,4-DHBA.  (D) LC-MS traces 
of the AsbF reaction quenched at sequential time points to illustrate conversion of 3-DHS 
to 3,4-DHBA. No Enz: no enzyme control incubated for 20 hours. 
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2.2 Results and Discussion 

The requirement for AsbF is revealed through analysis of B. anthracis mutant strains. 

 The role of AsbF was initially assessed by determining the level of 3,4-DHBA 

production from various B. anthracis strains, including asbA, asbB, asbC, asbD, 

asbE, asbF, and asbABCDEF (5), as well as a wild type Sterne 34F2 that were 

grown in iron-depleted medium (IDM) (5).  The presence of 3,4-DHBA was assayed by 

cellulose plate TLC on organic solvent extracts obtained from filtrates of the IDM 

cultures of each strain. TLC analysis revealed a single spot corresponding to the iron-

chelating compound 3,4-DHBA evident in the extracts of B. anthracis Sterne 34F2 and 

the mutants asbA, asbB, asbC, asbD, and asbE at Rf 0.91-0.93 (Fig. 2-1 B).  In 

contrast, spots corresponding to the subunit were absent in the asbF and asbABCDEF 

strains.  The ferri-DHBA complex is a strong chromophore, forming blue-colored 

complexes when sprayed with 1% FeCl3 after TLC development.  Extract samples were 

further analyzed by HPLC using a C18 reverse phase semi-preparative column.  The 

retention time and UV spectrum of the corresponding 3,4-DHBA peaks in each sample 

were coincident with an authentic standard (data not shown).  Peak areas were 

determined, quantified and compared based on a standard curve constructed by injecting 

a series of six concentrations (ranging from 0 to 500 μg/ml) of authentic 3,4-DHBA 

(Supplemental Table 2-S1).  Analysis of these B. anthracis mutants provided compelling 

evidence for the function of the BA1986 gene product (AsbF) as the 3,4-DHBA synthase 

necessary for petrobactin production.  Moreover, in a mouse model of inhalation anthrax 

(9), the asbF mutant strain was found to be completely avirulent at day 10, whereas the 
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parental Sterne strain (34F2) resulted in 50% fatality over the same period (Supplemental 

Fig. 2-S1). 

Bioinformatic analysis revealed that the asb cluster is conserved in a variety of 

bacterial genomes, including both Gram-positive and Gram-negative organisms 

(Supplemental 2-S2 A).  Interestingly, these microbes do not share a common niche; they 

are found in diverse environments with marine species dominating.  The significance of 

this trend is unclear as it is difficult to assess how widespread petrobactin synthesis is 

within marine bacterial genomes.  However, the relative phylogenetic diversity of 

bacteria bearing an asb-type operon (Supplemental Fig. 2-S2 B) together with evidence 

that these gene clusters appear to have been acquired long ago (they have diverged 

considerably in sequence, and each has assumed the global sequence characteristics of its 

host genomes), suggests that petrobactin may confer a competitive advantage in iron 

acquisition within the ocean environment as well.  We expect that as the number of 

sequenced bacterial genomes increases, the evolutionary history of the asb cluster will 

become clearer, and clues to the significance of petrobactin in various habitats will 

emerge. 

AsbF is responsible for conversion of 3-dehydroshikimate to 3,4-DHBA.   

To guide our initial studies of AsbF catalytic activity, bioinformatic analyses were 

conducted to identify potential functional homologs and to suggest reaction substrates.  

However, these efforts revealed only sequence similarity to conserved proteins of 

unknown function or irrelevant catalytic properties (data not shown).  Alternatively, a 

search of the biochemical pathway databases revealed several anabolic processes leading 

to assembly of 3,4-DHBA, in addition to the many well studied catabolic pathways.  In 



31 
 

some bacteria (exemplified by Pseudomonas putida PobA), 3,4-DHBA is generated by 

hydroxylation of 4-hydroxybenzoic acid (4-HBA) in order to utilize the substrate as a 

carbon source (10).  However, reaction of purified AsbF with 4-HBA and NAD(P)H 

failed to yield 3,4-DHBA (data not shown).   

We considered an alternative metabolic process found in Neurospora crassa (qa-4), 

Aspergillus nidulans (qutC), and Klebsiella pneumoniae (aroZ) where 3,4-DHBA is 

generated by dehydration of 3-dehydroshikimate (3-DHS), a shikimate pathway 

intermediate, in order to utilize aromatic compounds as a carbon source (Fig. 2-1 C) (11-

13).  A reaction mixture including AsbF with 3-DHS (purified from cultures of 

recombinant E. coli (14)), resulted in a product bearing a new absorbance maximum at 

290 nm that corresponded to a DHBA chromophore (Supplemental Fig. 2-S3 A).  Upon 

analysis by LC-MS in negative SIM mode, the same reaction mixture resulted in 

disappearance of 3-DHS (m/z = 171), and generation of a product consistent with the 

structure of 3,4-DHBA (m/z = 153) (Fig. 2-1 D).  Both starting material and product 

eluted from a C18 reverse phase column with retention times identical to authentic 

standards (data not shown).  

Enzymatic Characterization.  

With a clear catalytic role for AsbF identified as a 3-dehydroshikimate dehydratase, 

we next sought to determine the efficiency of the AsbF-catalyzed 3-DHS dehydration 

(3,4-DHBA production) reaction.  The reaction rate at room temperature increased 

monotonically with increasing pH (from 6.0 to 9.2) with a plateau between 7.2 and 8.0 

(Supplemental Fig. 2-S3 B).  Earlier studies of a fungal 3-DHS dehydratase suggested a 

requirement for divalent cations (12, 13).  Significantly, the AsbF catalyzed dehydration 
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reaction was inhibited at EDTA concentrations above 0.1 mM.  Supplementation of this 

experimental reaction mixture with 5 mM MgCl2 restored activity.  Following this 

observation, a suite of metals was titrated into reactions containing AsbF inactivated by 

EDTA.  While a series of divalent cations including cobalt, calcium, and magnesium 

reactivated the enzyme, manganese was found to maximize catalytic efficiency while 

equal concentrations of zinc completely abrogated it.  In conjunction with these 

biochemical findings, a fluorescent scan of crystallized recombinant AsbF showed 

manganese to be the predominant enzyme-bound metal (data not shown, see below).  

Similar dependencies, in which manganese is the preferred metal and zinc is inhibitory, 

are found among a structural class of sugar isomerases (15).  

Kinetic parameters for AsbF at pH 7.5 were determined spectrophotometrically.  

Recorded initial velocities were fit to a Michaelis-Menten curve demonstrating the 

enzyme to have a Km ~ 290 µM and kcat ~80 min-1.  The Km value is on a similar order of 

magnitude to those reported by groups describing fungal dehydroshikimate dehydratases 

from N. crassa (590 µM) (12) and A. nidulans (530 µM) (13). 

Structural Characterization of AsbF Bound to its Product 3,4-DHBA.   

Due to the lack of sequence similarity to known 3-DHS dehydratases, we sought the 

crystal structure of AsbF and to explore a potential reaction mechanism based on these 

insights. The structure of AsbF adopts a (β/α)8-barrel (TIM barrel) configuration (Fig. 2-2 

A). As expected from a prior TEV protease cleavage experiment (Materials and 

Methods), the N-terminus of the structure is partially buried at the bottom part of the 

barrel while the C-terminus is completely exposed to the solvent channel. With the His6-

tag in place, the C-termini could be involved in lattice interactions with neighboring  
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Figure 2-2.  Structural analysis of AsbF.  (A) Crystal structure form of AsbF.  Overall 
view of the AsbF monomer is enlarged and rotated 90° relative to the dimeric structure 
below.  Monomer is depicted with a color ramp of blue to red (amino to carboxyl 
terminus). The manganese atom is shown as a purple sphere in the middle of the TIM 
barrel adjacent to the ligand molecule 3,4-DHBA (green). Numbering of main TIM barrel 
secondary structures is shown as α1-8 and β1-8.  (B) Active site of liganded AsbF 
showing 3,4-DHBA coordinated to manganese interacting with side chains. Manganese is 
coordinated with four carboxyl group oxygen atoms from two glutamate residues and an 
aspartate as well as an amine of His ranging in distance between 2.08 to 2.38 Å. All 
hydrogen bonds are indicated in dashed lines. 
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protein molecules, which might have led to twinning.   

AsbF belongs to AP endonuclease 2 TIM barrel proteins (16) with the closest 

homologues including xylose isomerase and the myo-inositol catabolism protein IolI 

(17). The internal section of AsbF is well packed by relatively large side chains with a 

narrow bottom part of the barrel relative to the top. The barrel opens up at the top to form 

a pocket with a number of hydrophilic residues including His, Glu, Thr, Lys, Tyr, and 

Gln to contain a specific ligand. Unexpectedly, the 3,4-DHBA reaction product was 

found in the active/binding site of AsbF, surrounded by several aromatic amino acid 

residues including F255, F211, F104, H144 and Y217. The 3,4-DHBA molecule makes 

direct contacts with hydroxyl groups of Y70 and Y217, a guanidinium of R102, an amine 

of K200, an imine of H175, a carboxyl of E253, and the main chain carbonyl of F211 

using mainly hydrogen bonding interactions.  Moreover, 3,4-DHBA is capped tightly 

under the helical loop (residues 206 – 224) located between the seventh β-strand (β7) and 

the seventh α-helix (α7), and is directly coordinated with a Mn2+ ion that is also found in 

the structure (Fig. 2-2 A). Both 3,4-DHBA and a metal ion were evident from the 

electron density map calculation using experimental phases with the weighted coefficient 

(Fw). Metal identity was determined from the specific emission peak during the 

fluorescence spectrum scan.  Inspection of the AsbF structure reveals that Mn2+ is 

coordinated with the carboxylic acid side chains of E142, D172, E253 (both oxygen 

atoms), the deprotonated imine of H198, and the 3-hydroxy group of 3,4-DHBA, with the 

distance range of 2.08 – 2.38 Å that is typical of Mn2+ ions (Fig. 2-2 B) (18). Although 

there is only one AsbF protein molecule in the asymmetric unit, they apparently form a 

dimer (Fig. 2-2 A) that excludes 2460 Å of surface area according to PISA (19).  
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Analysis by static light scattering and size exclusion chromatography also supports a 

dimeric state of the enzyme in solution (data not shown).  

Structural comparisons revealed that AsbF can be reasonably well superimposed with 

the 3-dehydroquinate dehydratase (DHQ) from Salmonella typhimurium (1qfe) 

(Supplemental Fig. 2-S4 A), an enzyme that functions as part of the shikimate pathway 

for biosynthesis of aromatic compounds (16). Indeed the AsbF structure is generally 

homologous to this type of dehydratase enzyme comprised of a TIM barrel fold with a 

few variations, including the lid loop located at the top of the pocket. For AsbF, this lid 

loop extends from residue 202 – 227 as the partly α-helical loop between strands β7 and 

α7.  In contrast, for the enzyme DHQ it comes from the loop between β3 and α3 spanning 

residues 82 - 93 covering approximately the opposite side of the pocket mouth. Another 

important difference in DHQ is an additional small β ribbon at the C-terminus that closes 

the bottom of the β-barrel. Each ligand in its corresponding binding pocket occupies a 

different location and orientation (Supplemental Fig. 2-S4 A). One of the key distinctions 

between TIM barrel enzymes is the location of metal binding sites and the type of metal 

involved. The AsbF manganese ion is bound to six atoms, including one from 3,4-DHBA 

and five amino acid residues that may also contribute to catalysis by stabilizing an 

intermediate ligand and/or a product ligand differing from other dehydratases, 

particularly DHQ (such as 1qfe) that does not contain a metal cofactor (16). 

Proposed Mechanism for AsbF Dehydratase. 

With the crystal structure as a guide, we employed site-directed mutagenesis to 

probe further the key amino acid residues involved in catalysis of AsbF.  This analysis  
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Mutant Km, μM kcat, min−1 % activity

WT 288.72 ± 38.93 79.84 ± 0.96 100 

K200E — — Inactive 

K200A — — Inactive 

K200R 30.25 ± 8.48 2.56 ± 0.05 3.2 

H144A — — Inactive 

H175A — <1 Trace 

R102A — — Inactive 

Y70A,Y217A ≈2,511 48.35 ± 3.82 60.6 
 
Table 2-1.  Kinetic parameters for AsbF mutants. Site directed mutagenesis was 
performed on BA 1986 (asbF) to probe for residues involved in catalysis. The Km of WT 
AsbF is comparable to two eukaryotic 3-DHS dehydratases. Inactive mutants are 
presumably disrupted in coordination of the metal or substrate. Replacement of Y70 and 
Y217 is likely to expose the active site to solvent and reduce substrate specificity while 
loss of the proposed catalytic H144 renders the enzyme inactive. 
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revealed that a K200R mutant form of the protein was partially active, confirming the 

lack of a covalent imine intermediate shown to occur in structurally similar DHQs (19).  

Characterization of additional AsbF site-directed mutants demonstrated (Table 1) that 

most inactive forms of the enzyme lacked residues believed to be crucial for metal or 

substrate coordination ascertained through inspection of the 3,4-DHBA orientation within 

the AsbF crystal structure (Fig. 2-2 B).   

Based on the crystal structure and mutant analysis, the surrounding amino acid 

residues comprising the putative AsbF active site suggest an E1CB (elimination 

unimolecular via conjugate base) mechanism that requires a base to abstract the axial 

proton from the adjacent aliphatic carbon atom (C4) of 3-DHS (Fig. 2-3).  In the AsbF 

structure, H144 is orthogonal to the catechol ring of the 3,4-DHBA product, an ideal 

position for removal the C4 axial proton (the hydroxyl is equatorial) of the substrate.  

H144 and E142 are both well conserved among members of the xylose isomerase family 

(Supplemental Fig. 2-S5).  The nearby E142 could elevate basicity of H144 by forming a 

hydrogen bond to NE2 of H144, improving its proton abstraction ability.  Histidine 

functions as a base for initial proton removal during many enzymatic reactions, including 

some type I 3-dehydroquinate dehydratases (20, 21).  Furthermore, while the activity of a 

H175A mutant is attenuated, the adjacent AsbF H144A mutant is completely inactive.  

Proton removal from the C4 position of 3-DHS leads to formation of a non-covalently 

bound enolate intermediate with the resulting negative charge stabilized by the divalent 

Mn2+ cation.   

To assess enolate formation as a first step in conversion of 3-DHS to 3,4-DHBA, we 

conducted a deuterium labeling experiment using the AsbF reaction in D2O buffer.  Rapid 
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Figure 2-3.  Proposed mechanism for AsbF-catalyzed conversion of 3-DHS to 3,4-
DHBA. Mn2+ stabilizes an enolate intermediate after proton removal at C4 by H144. This 
is followed by dehydration/aromatization of the molecule to generate the key petrobactin 
subunit 3,4-DHBA.  
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and reversible exchange of deuterium from the conversion of C3 keto to enol (Fig. 2-3) 

was expected to result in accumulation of the substrate bearing a one mass unit increase 

detectable by FT ICR MS.  This rapid exchange was readily detectable (Supplemental 

Fig. 2-S6) supporting the proposed mechanistic hypothesis regarding initial formation of 

the 3-DHS enolate upon substrate binding to AsbF. 

In a second, more rapid step of the reaction, dehydration presumably occurs through 

a general acid-catalyzed elimination of the C5 hydroxyl and product formation following 

aromatization (Fig. 2-3).  The most likely candidate for the acid-catalyzed removal of the 

C5 hydroxyl is the main chain carbonyl of Y211 located at the C-terminus of the short α-

helix as a part of the helical loop between β7 and α7 capping the binding pocket. A main 

chain carbonyl is generally not a good acid, but the main chain carbonyl of Y211 is the 

closest to C5 and its acidity is likely to be elevated by positioning at the C-terminus of 

the α-helix (with partial negative charge from the helix dipole) that includes conserved 

amino acid residues among the family (Fig. 2-2 B). 

To understand further the role of specific active site residues in catalysis, we 

modeled 3-DHS in place of the 3,4-DHBA in AsbF (Supplemental Fig. 2-S4 B). This 

motivated analysis of Y217 and Y70 that were initially believed to be necessary for 

excluding solvent from the active site.  Both were found to be inconsequential for normal 

enzymatic function when mutated individually, and only reduced activity by 40% when 

the corresponding double Tyr mutation was constructed (Table 1).  Unexpectedly, an 

R102A mutation completely inactivates AsbF indicating its role in maintaining a proper 

active site conformation, while substitution of K200 for arginine significantly reduces 

substrate binding and overall catalytic efficiency.   
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Elucidation of the AsbF Structure and Function is Important to Understanding 

Siderophore Biosynthesis of B. anthracis. 

Recently, other pathogenic Bacillus sp. were found to produce petrobactin (2), while 

the ability for uptake and utilization of exogenous petrobactin is even more widespread 

among prokaryotes (22).  Moreover, some evidence suggests that the siderophore or its 

analogs play additional biological roles beyond iron sequestration (23-25).  Though we 

have now characterized the enzymatic activity of AsbF as well as its role in iron 

acquisition, the complete nature of the enzyme within bacteria has yet to be fully 

understood.  Indeed research on other members of the asb gene cluster suggests a pool of 

3,4-DHBA, and thus functioning AsbF, is necessary for the initial steps of petrobactin 

biosynthesis (5, 6).   

The acquisition of the asb gene cluster by Bacillus exemplifies evolution of a 

pathogen to adapt to adverse conditions established by its host (in this case, iron 

availability).  AsbF itself, with its metal coordination structure reminiscent of other 

proteins, most likely evolved from enzymatic precursors with a purpose very different 

from siderophore biosynthesis.  The presence of the unusual 3,4 isomer of DHBA in 

petrobactin is vital to its ability to acquire iron for the bacterium while avoiding detection 

by innate host defenses.  Without petrobactin, B. anthracis would be limited to the ability 

of bacillibactin to compete for free iron, a process that is highly compromised due to 

siderocalin sequestration (3).  Since the generation of 3,4-DHBA is a key step for 

petrobactin biosynthesis (6), AsbF represents an attractive target for small molecule 

antibiotic therapy.  In addition to the prevention of petrobactin assembly, disrupting AsbF 

function would thwart uptake of any iron bound by 3,4-DHBA subunits that may be 
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exported out of the cell (6).  This approach is supported by the fact that B. anthracis cells 

carrying an asbF gene deletion grow significantly more poorly in iron depleted media (5) 

and display a highly attenuated lethality to mice (Supplemental Fig. 2-S1).  The search 

for AsbF inhibitors with possible therapeutic application is already underway.  Questions 

regarding how AsbF is regulated and the precise timing and order of 3,4-DHBA 

incorporation into petrobactin will be addressed in future studies.  This research will 

serve to further articulate how even insidious microbes are fundamentally reliant on 

finding a method to surpass innate immune defenses in the acquisition of nutrients, and 

likely uncover innovative strategies for combating life-threatening infections. 

 

2.3 Material and Methods 

Analysis of Sterne Strain Mutants.  B. anthracis asb mutant strains, asbA, asbB, 

asbC, asbD, asbE, asbF, and asbABCDEF (5) as well as a wild type Sterne 34F2 

were generated as described previously and grown in iron-depleted medium (IDM (5)). 

Filtrates (100 ml) of the growth medium were prepared as described previously (5). 

Sample preparation for TLC analysis and quantification of 3,4-DHBA was performed by 

extracting acidified (pH 2.0) IDM culture supernatants (10 ml) with an equal volume of 

ethyl acetate three times. The organic layers were pooled and the solvents were 

concentrated to dryness in vacuo. The dried pellets were dissolved in 50 μl of methanol 

and used for analysis. Thin-layer chromatography (TLC) was performed with the extracts 

on a cellulose plate (Merck). TLC plates were developed with a solvent system of 

butanol-acetic acid-water (12:3:5, v/v/v), and 3,4-DHBA was detected by spraying with 

1% (w/v) ferric chloride. 
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For quantification of 3,4-DHBA (Table 2-S1), samples were analyzed by HPLC. 

Analytical results and detailed methods are available following Table 2-S1 in section 2.4 

of this chapter.   

Intratracheal Inoculation of DBA/2 Mice.  Mouse infection was performed as described 

previously (9). All mouse experiments were performed using protocols approved by the 

University of Michigan Committee on the Use and Care of Animals. 

Cloning and DNA Manipulation.  The asbF gene of B. anthracis Sterne strain was cloned 

into the expression vector pMCSG7 (29) using ligation independent cloning (LIC) (26). 

Detailed cloning and mutagenesis methods are available as supplemental methods in 

section 2.4 of this chapter. 

Bioinformatic Analysis.  Bioinformatic analyses of the B. anthracis asb cluster and 

homologs were performed using tools implemented within the Integrated Microbial 

Genomes website (http://img.jgi.doe.gov), and the EMBL-EBI website 

(http://www.ebi.ac.uk/).   

Protein Purification for Enzymatic Analysis.  All pMCSG7-asbF constructs were 

subsequently used to transform BL21 expression cells (Novagen). The enzyme was 

purified using standard His-tag Ni-affinity chromatography. Detailed protein purification 

methods are available as supplemental methods in section 2.4 of this chapter. 

Enzymatic Assays.  Initial substrate determination assays were performed with 75 mM 

HEPES pH 7.5, 100 mM substrate (3-DHS), and 1 µM enzyme. 50 µl reactions were 

tracked spectrophotometrically by observing ΔA290 using a SpectraMax M5 plate reader 

(Molecular Devices). Standard serial dilutions of synthesized 3,4-DHBA (Fluka) in 

similar reaction conditions were used to quantify product yield. LC-MS analysis of 
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substrate to product conversion was performed by addition of nine reaction volumes of 

methanol followed by evaporation of the resulting supernatant and loading onto a 3.5 µm 

C18 reverse-phase column (Waters) in-line with a Shimadzu LCMS-2010A for detection. 

Elution was performed with a stepwise 5-70% gradient of MeCN in 20 mM aqueous 

NH4HCO3. Changes to reaction conditions were performed as noted in the text.  

Characterization of kinetic parameters was performed with 75 mM HEPES pH 7.5, 250 

nM enzyme, and varying concentrations (0 - 2 mM) 3-DHS in 80 µl reactions.  Both 

substrate and enzyme were equilibrated in reaction buffer at ambient temperature for 15 

minutes before the reaction was initiated by mixing. 3,4-DHBA production was tracked 

by observing ΔA290 using a Flexstation III plate reader (Molecular Devices). Reactions 

were run in quadruplicate and nonlinear regression using Kaleidagraph software 

(Synergy) was performed on a plot of V0 vs [3-DHS] for determination of Km and Vmax. 

Gene Cloning, Expression and Protein Purification for Structure Determination.  After 

failing to obtain diffraction quality crystals from the initial pMCSG7-asbF construct, 

asbF was cloned in pMCSG26 vectors with two variations, including an un-cleavable C-

terminal His6-tag and a C-terminal His6-tag with a TEV protease cleavage 

site.Recombinant E. coli cells for AsbF overexpression were grown using 

selenomethionine (Se-Met)-containing enriched M9 medium (pink medium) under 

conditions known to inhibit methionine biosynthesis (27, 28). Protein was purified by 

two-step Ni-affinity chromatography following the standard protocol described 

previously (29). Detailed cloning, overexpression, and purification methods are available 

as supplemental methods in section 2.4 of this chapter. 
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Protein Crystallization.  Crystallization screening was executed for all AsbF protein 

variants, including the one bearing an N-terminal His6-tag (expressed from pMCSG7) 

and the ones from pMCSG26 vectors with and without the C-terminal His6-tag cleavage. 

They were screened for crystallization conditions using a Mosquito robot (TTP Labtech) 

using sitting drops in 96-well plates (Greiner), with drops of 0.4 µl of protein at 60 mg/ml 

mixed with 0.4 µl of crystallization screen solutions and equilibrated over 135 µl of 

crystallization screen solutions in the well at 18oC. A number of commercially available 

screens including Index (Hampton Research) and ANL-1 and ANL-2 (Qiagen) were used 

for crystallization screening. AsbF with N-terminal His6-tag failed to yield a diffraction 

quality crystal. The best crystals of AsbF without the TEV cleavage site appeared after 1 

- 2 days from Index #25 containing 3.5M sodium formate pH 7.0. The same condition 

and a few others including ANL-2 #88 and #89 gave diffraction quality crystals for the 

AsbF without the C-terminal His6-tag. Prior to data collection crystals were flash-frozen 

in liquid nitrogen in the presence of a number of different cryo-protectants. The chunky 

plate-shape of a 0.15 mm side crystal of the AsbF with the C-terminal tag diffracted to 

2.0 Å. However, the data were twinned and the phasing stalled. One of the rod shape 

crystals of AsbF lacking a His6-tag from condition ANL-2 #89 (0.1M Tris pH 8.5; 3.2M 

sodium chloride) with the saturated sucrose cryo-protectant diffracted to 2.12 Å and was 

used for data collection. 

Data Collection, Structure Determination, Refinement and Deposition.  The single 

wavelength anomalous dispersion (SAD) data near the Se absorption edge (0.9793Å) up 

to 2.12 Å were collected from a single Se-Met labeled rod shape protein (30 * 30 * 300 

µm) crystal at 100º K at the 19ID beam line of the Structural Biology Center at the 



45 
 

Advanced Photon Source, Argonne National Laboratory. The crystal was exposed for 5 

sec. per 1.0o rotation of ω with the crystal to detector distance of 320 mm. The data were 

recorded on ADSC Q315 detector by the scanning of 200º. The space group was P6522 

with cell dimension of a = b = 134.48 Å c = 72.81 Å. All data were processed and scaled 

with HKL3000 (30) (Table 2). 

The structure was determined by SAD phasing utilizing the anomalous signal from 

Se atoms with HKL3000 (30), SHELX (31), SOLVE/RESOLVE (32), MLPHARE (33), 

DM (34), CCP4 (35) and arp/Warp (36) using the peak data to 2.12 Å. The model from 

HKL3000, after the high resolution model building routine by arp/Warp contained most 

of the residues with side chains except four N-terminal residues, seven C-terminal 

residues and all artificial residues from cloning. The extra electron density for the 3,4-

DHBA was evident from the electron density map calculated from the experimental 

phases. The subsequent refinement was performed iteratively by REFMAC 5.2 (37) in 

CCP4 and manual adjustment using Coot (38) until it converged to the R factor of 0.148, 

and the free R of 0.178 with the rms bond distances of 0.017 and the rms bond angles of 

1.47º. The final model included residues 1 - 274 of one chain of AsbF, one molecule of 

3,4-DHBA, a Mn ion, a disordered Tris, a glycerol molecule, and 320 ordered water 

molecules. The C-terminus residues including those introduced during cloning could not 

be resolved. The stereochemistry of the structure was checked with PROCHECK (39) 

and the Ramachandran plot. Atomic coordinates and experimental structure factors of 

AsbF have been deposited in PDB under the code 3DX5. 
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Data Collection (anomalous peak)

Wavelength, Å 0.9793

Resolution (last shell), Å 49.4 to 2.11 (2.19 to 2.11)

Reflections measured/unique 22,726/2,210

Multiplicity 13.9 (12.3)

Completeness (last shell), % 99.9 (99.4)

R sym (last shell), %* 14.4 (53.4)

I/σ (last shell) 9.1 (7.1)

Phasing 

Resolution, Å 49.4 to 2.12

Phasing power 1.06

Figure of merit 0.112

After density modification 0.801

Refinement 

Resolution, Å 49.4 to 2.12

R work/R free† 14.8/17.8

rms deviation bond lengths, Å 0.017

rms deviation bond angles, Å 1.47

PDB code 3DX5 

 

Table 2-2.  AsbF data collection, phasing and refinement.  * R sym = ΣΣj|Ij - <I>|/ΣIj, 
where Ij is the intensity measurement for reflection j, and <I> is the mean intensity for 
multiply recorded reflections.  † R work/R free = Σ||F obs| -|F calc||/F obs|, where the working 
and free R factors are calculated by using the working and free reflections sets. The free 
reflections (5% of the total) were held aside throughout refinement. 
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2.4 Supplemental 

Preparation of AsbF for Enzymatic Assays:  The asbF gene of B. anthracis Sterne strain 

was cloned into the expression vector pMCSG7 (Midwest Center for Structural 

Genomics) using ligation independent cloning (LIC) (26).  The pMCSG7 vector, bearing 

a TEV protease cleavage site, creates a construct with a cleavable His6-tag fused into the 

N-terminus of the target protein with three artificial residues (SerAsnAla). Site-directed 

mutagenesis was performed on this construct in modification of a StrataGene 

QuickChange protocol:  Primers containing the desired mutation were kept at a constant 

concentration while varying amounts of template DNA were titrated.  10 U Phusion DNA 

polymerase (Finnzymes) was used per 50 µl reaction.  Reactions shown by gel 

electrophoresis to contain amplified vector were incubated with 10 U DpnI (New 

England Biolabs) for 2 hours to remove template and used to transform chemically 

competent XL1-Blue cells for amplification.  All DNA manipulation was confirmed by 

DNA sequencing. 

All pMCSG7-asbF constructs were transformed into Z-competent (Zymo 

Research) BL21 expression cells (Novagen).  An overnight LB starter culture was used to 

inoculate 1 L (or in the case of point mutants, 250 ml) of Terrific Broth (TB) medium and 

shaken at 190 rpm at 37°C until an OD600 of ~1 was reached.  Cultures were cooled to 

18°C over the course of an hour and induced with 250 µm IPTG for incubation overnight.  

Resulting cell pellets were resuspended in 5 ml of lysis buffer (20 mM HEPES pH 8.0, 

300 mM NaCl, 20 mM imidazole, 1 mM DTT, 10% glycerol) per gram of pellet and 

lysed by sonication.  Soluble lysate was incubated with pre-equilibrated Ni-NTA resin 

(Qiagen) for 3 hours at 4°C, poured through a glass column, washed with 6x the lysate 

volume of lysis buffer, and eluted with an imidazole solution (20 mM HEPES pH 8.0, 
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300 mM NaCl, 300 mM imidazole, 1 mM DTT, 10% glycerol) into 1 ml fractions.  The 

expected mass of 35 kDa was observed for the isolated His-tagged fusion-protein 

(below).  Eluted fractions shown to contain enzyme and a minimal amount of 

contaminants were pooled, concentrated, and buffer exchanged in an Amicon Ultra 30 

kDa MW cutoff filter (Millipore) with 20 mM HEPES pH 8.0, 20 mM NaCl, 1 mM DTT, 

10% glycerol.  Protein concentration was determined using A280 and Bradford assay, then 

preparations were flash-frozen in liquid nitrogen and stored at -80°C. 

Preparation of AsbF for Crystallization:  After failing to obtain diffraction quality 

crystals with the initial pMCSG7-asbF construct, asbF was cloned in pMCSG26 vector 

with two variations, including an un-cleavable C-terminal His6-tag and a C-terminal His6-

tag with a TEV protease cleavage site.  The asbF gene was overexpressed in E. coli BL21 

(DE3) - Gold (Stratagene) harboring an extra plasmid encoding three rare tRNAs (AGG 

and AGA for Arg, ATA for Ile).  

Cell cultures were grown at 37C to an OD600 of ~0.95 then cooled down before 

adding Se-Met and 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) to induce, and 

maintained at 18C overnight. The harvested cells were lysed by sonication in the 

presence of 1 mg/ml of lysozyme and a protease inhibitor cocktail tablet (Complete, 

Roche) in 35 ml of lysis buffer containing 50 mM HEPES pH 8.0, 500 mM NaCl, 10 mM 

imidazole, 10 mM β-mercaptoethanol, and 5% v/v glycerol.  The lysate was clarified by 

centrifugation at 30,000 x g (RC5C-Plus centrifuge, Sorval) for 75 min, followed by 

filtration through a 0.45 µm filter (Gelman) before loading onto a 5 ml Ni-Histrap 

column (GE Healthcare) for purification. 
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Protein was purified by two-step Ni-affinity chromatography following the standard 

protocol described previously (29). Immobilized metal affinity chromatography (IMAC-

I) was conducted using a 5-ml HiTrap Chelating HP column charged with Ni2+ ions and 

buffer-exchange chromatography on a HiPrep 26/10 desalting column (GE Healthcare) 

on ÄKTAxpress™ (GE Healthcare). Both AsbF expressed from the pMCSG26 vector 

with a TEV cleavage site and the protein with an N-terminal His6-tag that could not be 

cleaved were dialyzed in crystallization buffer (20 mM HEPES pH 8.0, 250 mM NaCl, 

2mM DTT) and concentrated to 82 mg/ml using an Amicon Ultra centrifugal filter device 

(Millipore). For AsbF expressed from pMCSG26 vector with a TEV cleavage site, the 

His6-tag was removed using recombinant TEV protease (a gift from Dr. D. Waugh, NCI) 

in a 1:30 ratio by incubating at 4°C for 72 hours. The TEV protease cleavage left six 

artificial residues (ENLYFQ) remaining at the C-terminus. The AsbF protein was then 

further purified by a 5 ml manually packed Ni-superflow affinity column (GE 

Healthcare). The protein eluted as a flow-through from the column in lysis buffer with 

20mM imidazole, was dialyzed in crystallization buffer containing 20 mM HEPES pH 

8.0, 250 mM NaCl, 2mM DTT, and concentrated to 85 mg/ml using an Amicon Ultra 

centrifugal filter device (Millipore). 
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Figure 2-S1. Attenuation of virulence of the ∆asbF mutant of B. anthracis in mice. 
DBA/2 mice were inoculated with ~ 1 X 104 spores of either the parental (Sterne 34F2) 
or mutant (∆asbF) strain of B. anthracis via intratracheal injection.  The group sizes were 
19 mice (Sterne 34F2) and 20 mice (∆asbF) respectively. 
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Figure 2-S2. Conservation of AsbF among diverse prokaryotes. (A) Synteny between 
the B. anthracis asb cluster and homologous clusters from other species.  The translated 
B. anthracis asb locus (GBAA1981-6, corresponding to asbA-F) is shaded and shown at 
top, and the corresponding translated loci from each homologous cluster are shown 
beneath and shaded to reflect homology with AsbA-F.  There is no similarity between 
genes that are not shaded. (B) A cladogram showing the evolutionary relationship (most 
likely branching order) between AsbF and homologs found in other bacterial genomes. 
The tree shown was constructed using the ClustalW server at EBI. 
 
Further sequence comparison of putative asb gene products can be found in the Appendix 
of this dissertation. 
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Figure 2-S3. Detecting AsbF activity.  (A) Absorbance spectrum of (—) DHS, (—) 
DHBA, and (—) AsbF reaction. 3,4-DHBA is highly absorptive at 290 nm while in 
relation, the 3-DHS substrate and His6-AsbF enzyme is not.  AsbF reaction progression is 
observed by monitoring at this wavelength.  Conditions for the AsbF reaction follow 
those described in Materials and Methods; (B) Dependence of the dehydration reaction 
on pH at 100 mM 3-DHS, 75 mM HEPES, 5 mM MgCl2 and 250 μM AsbF. 
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Figure 2-S4.  Further modeling of AsbF.  (A) Superposition of the AsbF ribbon (pink) 
drawing with the DHQ (1qfe) structure (sky blue).  3,4-DHBA in pink stick and 3-DHS 
in blue are also presented. The lid loops are highlighted in red (for AsbF) and blue (for 
1qfe).  The 3,4-DHBA molecule in AsbF is located near the top of the pocket right under 
the lid loop with the aromatic ring facing the barrel wall while the dehydroshikimate 
molecule in DHQ is placed flat at the lower part of the pocket where the H198 side chain 
resides in the AsbF structure. The carboxylate of 3,4-DHBA is held by the R102 and two 
tyrosine residues Y217 and Y70, while R82 of DHQ occupies the analogous position of 
AsbF R102 interacting with C4 OH of DHS in the pocket. The carboxylate of DHS is 
also found to interact with R213 in DHQ.  (B) 3-DHS molecule is modeled (cyan) in the 
AsbF binding pocket in approximate place of 3,4-DHBA.  Green dashed arrows indicate 
potential catalytic activities and potential catalytic residues are shown in green.  
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Figure 2-S5.  AsbF with homologous proteins in sequence.  Conserved residues are 
indicated in red, red blocks indicating highest homology. Potential catalytic residues are 
indicated as asterisks at the top of the residues. Q4MI75_BACCE: Putative 
uncharacterized protein from B. cereus; Q3EP34_BACTI: Uncharacterized cytosolic 
protein from B. thuringiensis serovar israelensis ATCC 35646: A3IAG7_9BACI: 
Putative uncharacterized protein from Bacillus sp. B14905; A1RAX1_ARTAT: Putative 
AP endonuclease, family 2 protein Arthrobacter aurescens; A7CWH2_9BACT: Xylose 
isomerase domain protein TIM barrel, Opitutaceae bacterium TAV2. 
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Figure 2-S6. AsbF-catalyzed D2O exchange of 3-DHS. 

 100 µl deuterium exchange reactions were run with 10 mM HEPES, 1 mM 3-DHS 

(from a stock dissolved previously in D2O), and 1 µM AsbF (pre-soaked in D2O at 4° C 

for 15 min).  The reaction was started with the addition of enzyme and quenched at 

designated time points by acidification with 0.5 µl formic acid and immediate extraction 

with ethyl acetate.  Reactions were then dried under N2 and stored at -20° C.  

Immediately prior to Fourier Transform Ion Cyclotron Resonance Mass Spectrometric 

(FT-ICR MS) analysis, samples were resuspended in 50:50 / IPA:H2O.  The extracted 3-

DHS samples were analyzed by an FT-ICR MS (APEX-Q with Apollo II ion source and 

actively shielded 7T magnet, Bruker Daltonics, Billerica, MA).  Data was gathered from 

m/z 50-1,000 utilizing direct infusion electrospray ionization in negative ion mode.  

Electrospray was conducted at 2,000 volts with 16 scans per spectra utilizing 1s external 
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ion accumulation in the hexapole prior to analysis in the FT-ICR using a loop value of 3.  

Data analysis was performed in Data Analysis (Bruker Daltonics, Billerica, MA).   

 The monoisotopic peak for 3-DHS at 171.03 Da, corresponding to the hydroxyl-

deprotonated form in negative mode is readily observed.  Since all time points were 

normalized to the monoisotopic peak, an increase in intensity over time is observed at the 

+1 isotope peak, corresponding to increasing incorporation of a non-exchangeable 

deuterium.  This data is supported with the numerical values observed, and tight standard 

deviations with triplicate samples.  Since 3-DHS is irreversibly converted to 3,4-DHBA 

due to aromatization, the overall intensity of the 3-DHS peaks does decrease with time 

(data not shown), even as the monoisotopic and +1 peak ratios shift.  

 
 
 
Strains    3,4-DHBA (g/mL IDM supernatant) 
Sterne 34F2    152.25 ± 18.43 
ΔasbA     457.70 ± 38.61 
ΔasbB    359.22 ± 42.60 
ΔasbC     306.03 ± 28.18 
ΔasbD     239.64 ± 31.02 
ΔasbE     304.38 ± 29.79 
ΔasbF       0.09 ± 0.01 
ΔasbABCDEF      0.07 ± 0.02 

Table 2-S1.  Quantification of 3,4-dihydroxybenzoic acid (3,4-DHBA).  Samples from 
supernatants of Bacillus anthracis asb mutant cultures were analyzed by HPLC. 

 

Quantification of 3,4-DHBA.  HPLC using a C18 reverse phase semi-preparative column 

(SymmetryPrep C18, 7 μM, 7.8 X 300 mm, Waters).  HPLC was performed on a 

Beckman Coulter System with a diode-array detector using a linear stepwise gradient 

from 10% to 100% aqueous acetonitrile in 0.1% (v/v) trifluoroacetic acid (TFA) at a flow 
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rate of 1.5 ml/min over 40 minutes for 3,4-DHBA analysis. The retention time and UV 

spectrum of the corresponding 3,4-DHBA HPLC peaks in each sample were compared 

with an authentic 3,4-DHBA standard (Sigma).  Peak areas were determined and 

compared with a standard curve constructed by injecting a series of six concentrations 

(ranging from 0 to 500 μg/ml) of authentic 3,4-DHBA for quantification. 

 

2.5 Notes 

Portions of this chapter were originally published in the following: 

Pfleger, B. F.†, Y. Kim†, T. D. Nusca†, N. Maltseva, J. Y. Lee, C. M. Rath, J. B. 
Scaglione, B. K. Janes, E. C. Anderson, N. H. Bergman, P. C. Hanna, A. 
Joachimiak, and D. H. Sherman. 2008. “Structural and functional analysis of 
AsbF: Origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin 
biosynthesis.” Proceedings of the National Academy of Sciences 105:17133-
17138. 
 
†Equal contribution to the work. 

 

Prof. John Frost provided 3-DHS for assays; William Eschenfeldt and Lucy Stols created 

the vectors used in this project; AsbF structure was made possible by helpful members of 

the Structural Biology Center at Argonne National Laboratory at the 19ID beamline. This 

work was supported by a development grant from the Great Lakes Regional Center of 

Excellence for Bio-defense and Emerging Infectious Diseases (Grant U54AI57153), by 

the Hans W. Vahlteich Professorship (to Prof. David Sherman), and by National 

Institutes of Health Grant HHSN266200400059C/N01-AI-40059 (to Prof. Phil Hanna). 
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Chapter 3 

Functional and Structural Analysis of the Siderophore Synthetase AsbB through 

Reconstitution of the Petrobactin Biosynthetic Pathway from Bacillus anthracis 

3.1 Introduction 

During a microbial infection, iron is largely sequestered in complex with host 

proteins, keeping available pools of this biologically essential metal at levels prohibitive 

to replication of invading pathogens (1, 2).  To circumvent this, microbial cells have 

developed diverse strategies to obtain iron, one of the most prominent among bacteria 

being the biosynthesis of iron-specific, high-affinity chelators called siderophores (2).   

Bacillus anthracis, the causative agent of anthrax and a known bioterrorism agent, 

is capable of synthesizing two siderophores, bacillibactin and petrobactin (3, 4).  

Bacillibactin, a catechol-containing trilactone, is generated by a non-ribosomal peptide 

synthetase (NRPS) pathway encoded by the dhb operon (5); however, this metabolite is 

dispensable during pathogenesis and likely not secreted during an anthrax infection (6-9). 

Conversely, a second siderophore, petrobactin (Fig. 3-1 A) is essential for virulence 

within current infection models (6, 10), and has since become a focus of multiple  
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Figure 3-1. Structure and biosynthesis of petrobactin, the virulence-associated 
siderophore of Bacillus anthracis.  (A) Petrobactin is a symmetrical, mixed catechol-
hydroxy-carboxylate siderophore comprised of a central citric acid moiety, two 
spermidine arms, and two 3,4-dihydroxybenzoic acid (3,4-DHBA) moieties.  The unique 
3,4- position of the hydroxyl groups in the catechol confer the stealth characteristics of 
petrobactin during host infection.  (B) The asbABCDEF gene cluster, shown with B. 
anthracis str. Ames labels, encodes the enzymatic machinery required for biosynthesis of 
petrobactin.  Products include NIS synthetases (gray), an NRPS-like aryl transferase 
system (white), and a 3-dehydroshikimate (3-DHS) dehydratase/3,4-DHBA synthase 
(black).  (C) The proposed pathway for petrobactin biosynthesis.  Left panel: AsbF 
converts 3-DHS to 3,4-DHBA which is in turn adenylated by AsbC and loaded onto the 
phosphopantetheine thiol of the aryl-carrier protein AsbD.  In vitro, AsbE transfers the 
3,4-dihydroxybenzoyl group from AsbD to the primary amino groups of spermidine.  
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Right panel: Through regioselective condensation of spermidine with citric acid, AsbA 
and AsbB form intermediates that subsequently react with 3,4-dihydroxybenzoyl units.  
The flexibility of AsbB in vitro suggests multiple possible routes for the biosynthesis of 
petrobactin. 
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microbiological, genetic and biochemical studies (3, 7, 9-20).  This mixed catechol- 

carboxylate  siderophore  was  first  isolated  from  the  Gram-negative  marine  microbe 

Marinobacter hydrocarbonoclasticus (21).  Transcriptional analysis of B. anthracis 

mutants deficient for growth in iron-depleted conditions enabled identification of a 

pathway responsible for siderophore biosynthesis with enzymatic machinery encoded by 

the B. anthracis siderophore biosynthesis (asb) operon, and a metabolite identical to the 

marine-derived siderophore petrobactin (6, 7, 22). 

Previous mutagenesis and biochemical studies have shown that products of the 

polycistronic operon consisting of the six genes asbABCDEF (Fig. 3-1 B) contribute to 

assembly of petrobactin in bacteria.  Furthermore, petrobactin arises from three simple 

metabolic precursors: the common primary metabolites citric acid and spermidine, and 

the unique subunit 3,4-dihydroxybenzoic acid (3,4-DHBA) (Fig. 3-1 C) (4, 10-14, 17).  

AsbA is a member of a growing family of gene products referred to as non-ribosomal 

peptide synthetase - independent siderophore (NIS) synthetases (12, 18, 23).  Generally, 

in a multistep process, NIS synthetases function by binding and adenylating a substrate 

carboxylate group, thus activating it for condensation with a nucleophilic polyamine or 

amino alcohol resulting in formation of an amide or ester bond, respectively (24-26). 

AsbA can be classified more specifically as a type A NIS synthetase due to its 

utilization of citrate as a substrate for adenylation. This is followed by condensation with 

spermidine leading to N8-citryl-spermidine (compound 1, Fig. 3-1 C) as a first step in 

petrobactin biosynthesis (12).  AsbB is similar in activity to AsbA, but classified as a 

type C NIS synthetase due to its preference for advanced intermediates in siderophore 

biosynthesis as substrates including 1 (11, 17).  Both AsbA and AsbB incorporate the 
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asymmetric polyamine spermidine from only one (N8) of its two primary amino group 

termini (Fig. 3-1 C) (12, 17, 18).  Currently, the mechanism by which this regioselectivity 

is achieved is not well understood. 

It is significant to note that the dependence of anthrax on petrobactin during host 

infection results from the iron chelator’s ability to evade sequestration by the host innate 

immune protein siderocalin, which is largely capable of neutralizing most other catechol-

containing siderophores.  More specifically, petrobactin owes this “stealth siderophore” 

quality to steric hindrance created by its 3,4-DHBA subunit when interacting with 

siderocalin (27). Most other catecholate siderophores contain 2,3-dihydroxybenzoic 

subunits, which are effectively neutralized by this protein during the host response to 

infection (27-29).  Previous work has shown that asbF, the final gene of the petrobactin 

biosynthetic operon, encodes a dehydratase responsible for conversion of 3-

dehydroshikimate (3-DHS) to 3,4-DHBA (10, 14) (Fig. 3-1 C).  Once available, linkage 

of the 3,4-DHBA moieties to an exposed primary amine is facilitated by interactions of 

three other asb products: AsbC catalyzes adenylation of 3,4-DHBA followed by transfer 

to the phosphopantetheinylated aryl carrier protein AsbD.  Subsequently, AsbE functions 

to catalyze amide bond formation between 3,4-DHBA and molecules bearing a primary 

amine (13) (Fig. 3-1 C).  As there are several proposed petrobactin precursors that have 

an available amino group, we were motivated to ascertain which metabolic intermediates 

function as substrates for AsbE during petrobactin biosynthesis.  

Studies on aspects of petrobactin assembly (10-14, 17, 18, 23-25), ligand binding 

(22, 30), and identification of the endogenous cellular receptor (20, 31) have enhanced 

our understanding of iron acquisition by B. anthracis during pathogenesis.  The broad 
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eubacterial distribution of NIS systems (10, 23, 25) indicates that new information about 

petrobactin biosynthesis and transport will provide insights into these iron acquisition 

strategies.  In this work, we sought to resolve remaining questions about the petrobactin 

biosynthetic pathway.  Individual enzymatic activities were combined to reconstitute 

siderophore assembly in vitro, thus demonstrating formation of a functional Asb 

biosynthetic enzyme system.  Moreover, determining the crystal structure of AsbB 

provides the first complete enzymatic and structural characterization of a type C NIS 

synthetase, with mechanistic insights regarding substrate selection and catalytic activity.  

Furthermore, information derived from AsbB product formation supports a biosynthetic 

scheme in which multiple substrates of AsbB function as intermediates in the convergent 

biosynthesis of petrobactin.  This information defines new targets that may facilitate 

development of effective antibiotics, and expands our fundamental knowledge of NIS 

synthetases as widely distributed, multi-component biochemical machines for iron 

acquisition. 

 

3.2 Results 

In vitro reconstitution of petrobactin biosynthesis. 

 Previous studies on individual petrobactin biosynthetic enzymes have assigned a 

metabolic function to all products of the asb operon (Fig. 3-1 B) (10-14, 17, 18, 23-25); 

however, whether these proteins are sufficient for petrobactin production in vitro has not 

been determined.  asbA-asbE were individually amplified from B. anthracis Sterne strain 

34F2 genomic DNA by PCR and cloned into individual expression vectors.  All five 

genes were over-expressed and the resulting proteins were purified by metal-affinity 
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chromatography for use in enzymatic assays. Recombinant His6-tagged AsbA, AsbB, 

AsbC, AsbD, and AsbE were incubated with ATP, MgCl2, and the three metabolic 

precursors to petrobactin: spermidine, citric acid, and 3,4-DHBA.  This reaction was 

quenched at varying time points and subjected to LC-MS analysis, which revealed an 

accumulating product with m/z matching that expected for petrobactin (expected m/z for 

[M+2H]2+: 360.40; observed: 360.35) (Fig. 3-2 A).  This compound was not detected in 

reactions lacking ATP or all five recombinant proteins (Fig. 3-2 B). The enzymatically-

derived product was confirmed to be petrobactin through tandem mass spectrometry 

yielding a fragmentation pattern and spectra (Fig. 3-2 A) that is identical to that of a 

previously-characterized authentic standard (22). Thus, the asb gene products are 

sufficient for producing petrobactin from 3,4-DHBA, spermidine, and citrate and 

furthermore act in trans when individually purified to reconstitute siderophore 

biosynthesis in vitro. 

Isolation of pathway components in petrobactin biosynthesis. 

Additional pathway reconstitution experiments were motivated by previous 

characterization of B. anthracis mutant strains that demonstrated a detectable amount of 

petrobactin to be generated even in the absence of the asbA gene (11), the product of 

which has been shown to catalyze condensation of spermidine and citric acid (Fig. 3-1 C) 

(12).  In an effort to investigate this phenomenon in vitro, the biosynthetic reconstitution 

reaction was performed using AsbB, AsbC, AsbD and AsbE.  Following incubation with  
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Figure 3-2. In vitro reconstitution of petrobactin biosynthesis.  Heterologously 
expressed asb products were combined with metabolic precursors spermidine, citric acid, 
and 3,4-DHBA and the necessary substrate ATP and cofactor Mg2+.  (A) LC-MS data 
demonstrates accumulation of m/z=360.3 over time, corresponding to the [M+2H]2+ of 
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petrobactin.  The compound associated with this peak was analyzed by MS/MS and 
shown to have a fragmentation pattern identical to that of authentic petrobactin.  (B) 
Products from various combinations of asb enzymes were investigated by LC-MS.  In 
order to detect zwitterionic intermediates generated by the NIS synthetases AsbA and 
AsbB, reactions were acid quenched and products were derivatized with fluorescamine 
(top two traces).  Other organic products were extracted with methanol for analysis 
(lower traces).  Omission of AsbA still results in a modest accumulation of petrobactin, 
suggesting a compensatory role is filled by the type C NIS synthetase AsbB. Traces show 
relative intensity of selected m/z for each compound. 
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the required substrates (spermidine, citrate, and ATP) and co-factor (Mg2+), a readily 

detectable, albeit small, amount of petrobactin was observed by LC-MS (Fig. 3-2 B).  In 

this instance, the remaining NIS synthetase AsbB is able to generate N8-citryl-spermidine 

(1), thus functioning as a partial substitute for AsbA. 

Further analysis revealed that no other single-enzyme omissions yielded 

petrobactin.  Therefore, AsbA does not play a compensatory role for the missing 

enzymatic activity of other asb gene products.  Instead, removal of AsbB from the 

reaction conditions again resembles a phenotype of B. anthracis grown in IDM (Fig. 3-2 

B), where the ΔasbB mutant accumulates the proposed intermediate N1-(3,4-

dihydroxybenzoyl)-N8-citryl-spermidine (3) (11).  Indeed accumulation of 3 occurs due 

to its confirmed role as a substrate for AsbB in vitro(17). 

 N8-citryl-spermidine (1) and N8,N'8-citryl-bis(spermidine) (2) are products of 

AsbA and AsbB, respectively, and likely intermediates in petrobactin biosynthesis (4, 12, 

17).  Since they are zwitterionic molecules that are difficult to separate from other salts 

for analysis by mass spectrometry, a rapid derivatization method was developed to label 

the primary amines of 1 and 2 with fluorescamine.  With addition of this label to 

compound 2 or compound 1, m/z values corresponding to the fluorescaminylated 

derivatives were observed by LC-MS (di-fluorescaminylated 2: [M+2H]2+=502.55; 

fluorescaminylated 1: [M+H]+=598.6) (Supplemental Fig. 3-S1).  Similarly, direct 

addition of fluorescamine to the in vitro pathway reconstitution mixture (AsbA or AsbA 

and AsbB, with substrates and co-factors) enabled ready confirmation of the presence of 

the derivatized forms of enzymatically-produced 1 and 2 by LC-MS (Fig. 3-2 B, top two 

traces). 
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Figure 3-3. Structure of the type C NIS synthetase AsbB.  (A) Overall monomer 
structure of AsbB showing the numbering scheme. The N-terminal thumb domain 
(orange, 1 -136) is composed of four -helices (a small N-terminal helix followed by a 
three-helix bundle) and a four stranded anti-parallel -sheet. A long loop (red, 137-183) 
consisting of three small α–helices and two short α-helices with connecting turns is a part 
of the substrate-binding pocket and separates the thumb domain and the fingers domain.  
Sandwiched between these domains, the extended loop is stabilized by a number of 
hydrophilic and hydrophobic interactions involving several well-conserved residues 
(Supplemental Fig. 3-S2). The fingers domain (green 184-384) contains five α-helices 
and an 8-stranded antiparallel β-sheet, which twists to form part of the cup-shape 
binding/active site.  The C-terminal palm domain (blue, 380-601) of 10 α-helices and five 
β-strands (two β-sheets; three stranded antiparallel and a β-ribbon) connects the other two 
domains and forms a major part of the substrate-binding pocket.  (B) The dimeric form of 
AsbB as the asymmetric unit.  The top model shows the large substrate binding pocket; 
the bottom model is rotated around the x-axis by 90° relative to the top model and 
highlights the pocket formed by the two dimers. 
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Crystal structure of AsbB 

 To gain greater insight into the structural basis for petrobactin formation, the 

crystal structure of AsbB was solved at 2.40 Å resolution (Fig. 3-3 A). The monomer of 

the AsbB structure is similar to that of AlcC, alcaligin biosynthesis protein C (PDBIDs 

2X0O, 2X0P, 2X0Q), from Bordetella bronchiseptica (32, 33) and that of AcsD (2W02, 

2W03, 2W04) from Pectobacterium crysanthemi (34). AcsD was previously described as 

a type A NIS synthetase (33), which catalyzes one of the initial steps in the biosynthesis 

of achromobactin, a siderophore implicated in phytopathogenicity of P. chrysanthemi 

(35, 36). 

Two chains of the AsbB polypeptide occupy the asymmetric unit of the 

orthorhombic P212121 crystal as a dimer (Fig. 3-3 B). A monomer of the AsbB structure 

superposes with AcsD (2W02) (33) closely (rmsd 2.52Å, 448 α-carbon atoms over 597 

AsbB residues), although there is only a 20% sequence identity (Fig. 3-4 A and 

Supplemental Fig. 3-S2). Briefly, AsbB has three domains, the thumb domain, the palm 

domain, and the fingers domain (following the AcsD notation), arranged in a structure 

resembling a cupped hand. Although the overall fold is similar, as expected from the low 

sequence identity, the details of each domain are different from AcsD.  All three domains 

together make up a round-bottom, cup-shaped active site and are described in detail in 

Fig. 3-3A. Additionally, in the pocket, partial electron density corresponding to an ADP 

molecule (although not fully ordered) is found in chain B (Supplemental Fig. 3-S3) that is 

consistent in conformation with the ATP molecule of the AlcC structure (2X0Q) (34). 

The positioning of the homodimer interface between AsbB (or AlcC) and AcsD 

varies considerably (Fig. 3-4 A and 3-4B).  However, as in the case with AcsD, a dimeric  
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Figure 3-4. Comparison of AsbB to other NIS synthetases.  Calculations regarding 
structural similarity (SSM) were made using PDBeFold (37).  (A) Superposition of AsbB 
(green) and the type A NIS synthetase AcsD (orange) demonstrating similar monomeric 
structures with different dimers. Between the two proteins, the sequence identity is 20.5 
%, the RMSD on α-carbon atom positions is 2.52 Å with 448 amino acids compared.  (B) 
Superposition of AsbB (green) and the type C NIS synthetase AlcC (blue) indicating the 
same fold with similar dimers. For these two proteins, the sequence identity is 24.6 %, 
the RMSD on α-carbon atom positions is 1.79 Å with 516 amino acids compared.  C. 
Ligand binding pockets (red) of AsbB and AcsD. The cleft sizes of AsbB and AcsD are 
8614 and 3593 Å3, respectively, as calculated by Profunc (38, 39) and plotted by Jmol 
(40). 
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AsbB found in the crystal structure is corroborated by size-exclusion chromatography 

and computational analysis, suggesting that the dimeric form exists in vivo as well. In the 

AsbB structure, helices of Tα1, Tα2 and Tα4 in the thumb domain from one chain and a 

curved helix spanning Fα3 – Fα4 in the fingers domain from the other chain bundle up to 

form a symmetric half of the dimer interface with a number of hydrophobic or 

hydrophilic residues exchanging interactions. In the AlcC structure, all the same 

matching helices maintain interactions to form a similar dimer (Fig. 3-4 B). However, in 

the AcsD structure, one of the key helices (Tα1) is missing. Instead, a loop (42-61) 

containing a turn of α-helix from each chain is inserted between Tα1 and Tα2 and 

contributes to a major part of the interface to make up a dimer, which is quite different 

from that of the AsbB structure (Fig. 3-4 A). 

While AcsD is a type A NIS synthetase, and employs citric acid as the substrate 

for adenylation, AsbB (and AlcC) is a type C NIS synthetase.  The fact that AsbB must 

adenylate a substrate that is more complex than citrate is reflected in the structural 

differences between these two highly related proteins. AsbB has a significantly larger 

binding pocket with about 8500 Å3 encompassing 18.3 Å at its widest part, compared to 

AcsD that bears a 13.9 Å binding pocket measured between identical amino acid residues 

with the cleft volume of approximately 3500 Å3 (Fig. 3-4 C). Furthermore, a solvent 

exposed channel is visibly connecting the active site/binding pocket of one AsbB 

monomer to the corresponding pocket in the other monomer (Fig. 3-3 B). 

AsbB Substrate-Binding Site 

Our efforts to co-crystallize AsbB with citryl substrate, spermidine, ATP and/or 

ADP, were not successful.  However, it is reasonable to suggest that these ligands assume  
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Figure 3-5. Modeling the substrate binding pocket of AsbB.  (A) The binding pocket 
of the AsbB monomer shown in a charge potential surface drawing with ADP (green) as 
well as a manually modeled spermidine (yellow) and compound 3 (pink).  For the 
ligands, oxygen, nitrogen, and phosphorous atoms are indicated by red, blue, and orange 
respectively.   (B) Hypothetical interactions of AsbB with substrates in the active site.  
Compound 3 is positioned so that the carboxyl end of the citrate moiety is poised to 
attack the α-phosphate of ATP.  The N8 of spermidine is near the same phosphate, poised 
to attack the ester bond of adenylated 3 for formation of compound 5.  Subsequent 
molecular modeling allows the N1-(3,4-dihydroxybenzoyl)-spermidine “tail” of 3 and 
spermidine to stretch out within the pocket between the “finger” and “palm” domain in 
the approximate fashion pictured.  Potential protein-substrate interactions include the 
N1and N8 of spermidine with Y313 and E459, respectively, and N1 and N4within the 
spermidinyl moiety of 3 with E503 and E567, respectively.  Residues including H158, 
H161, R282, K308, and N439 are highly conserved among NIS synthetases 
(Supplemental Fig. 3-S2) and implicated in coordinating adenylation of the citryl moiety 
as the first step of catalysis. 
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positions in the binding pocket similar to that of AcsD or AlcC considering the presence 

of several highly conserved residues,including nearly all residues implicated in catalytic 

activity of NIS synthetases (48,49) (Supplemental Fig. 3-S2).   Like most other enzymes, 

the majority of the conserved residues within AsbB reside in the loops—in fact, the 

binding pocket is made of a number of loops likely arranged to provide flexibility as well 

as specificity in ligand binding.  In this scenario, the substrate conformation is somewhat 

different from that of AcsD.  The number of basic residues in AsbB (i.e. Arg308, Arg282, 

Lys296) clustered in the loops of residues 296-308 and 280-284, provide a stable binding 

site for ATP/ADP at the bottom of the pocket as in the cases for AcsD and AlcC (48,49) 

(Fig. 3-5 A and 3-5 B and Supplemental Fig. 3-S3). 

The preferred activity of AsbB, a type C NIS synthetase, requires binding of the 

relatively complex substrates compound 1 or its dihydroxybenzoylated counterpart 3.  

With the location of the triphosphate established, citrate or the citryl moiety of compound 

3 most likely positions near the top of the α-phosphate as shown in the co-complex 

structure of AcsD with ATP and N-citryl-ethylenediamine from P. chrysanthemi (2X3J) 

(41).  In this scenario, the substrate, which is much bulkier in the case of AsbB, requires a 

larger space for the spermidinyl (in the case of 1) and/or 3,4-DHB-spermidinyl (in the 

case of 3) moiety to be stretched out within the active/binding site. One possible model is 

depicted in Fig. 3-5 A and 3-5 B. ATP is positioned as suggested by partial electron 

density of ADP and comparison to the ATP-AlcC co-crystal structure.  By adopting 

orientation and approximate location of the citryl moiety of the AcsD product N-citryl-

ethylenediamine in the co-complex structure (2X3J) (34), the dihydroxybenzoyl-

spermidine “tail” of 3 can be stretched out to the direction of the AsbB palm domain, 
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following the groove formed between the beta loop of Pβ4, Pα8, and Pβ5, and the long 

alpha-helix Pα3. Along the way, a number of protein residues can interact with the 

substrate: for example, acidic residues Glu503 and Glu567 are close to N1and N4, 

respectively, of the spermidinyl portion of 3, while Arg497 is near the dihydroxybenzoyl 

moiety distal to the adenylation active site.   

The nucleophilic substrate spermidine is incorporated as a final step, approaching 

the other side of the citryl moiety of 1 or 3 (near the α-phosphate of ATP where 

adenylation is likely to occur), and may extend out in the space between the Fingers 

domain and Palm domain, contacting Tyr313 along the way. Acidic residues Glu459 

and/or Glu434 are in position to recruit and stabilize spermidine during the reaction (Fig. 

3-5 B).  Indeed, the structure reveals sufficient space to accommodate both substrates, a 

spermidine and an N8-citryl-spermidine (1) or N1-(3,4-DHB)-N8-citryl-spermidine (3), 

along with a co-substrate (ATP), without a major change in the main chain conformation 

of the binding pocket or the additional pocket formed between the two monomers in the 

AsbB dimer. 

Enzymatic characterization of the NIS synthetases AsbA and AsbB. 

 The crystal structure of AsbB prompted us to further explore aspects of its 

enzymatic activity and that of its partner NIS synthetase AsbA.  Previous work has 

shown these enzymes catalyze formation of the two amide bonds to the central citrate 

moiety of petrobactin (Fig. 3-1) (11, 12, 17).  AsbA regioselectively catalyzes amide 

bond formation between citric acid and spermidine (12, 18).  In the case of AsbB, a 

preference for 1 (the product of AsbA) and spermidine respectively fill this role (17).  

This was demonstrated previously by comparing relative reaction rates using different 
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substrate sets and also revealed that AsbB readily accepts the 3,4-dihydroxybenzoylated 

form of 1 (compound 3), which had been previously proposed as a substrate (Fig. 3-1 C) 

(11, 17). 

While relative rates of AsbA and AsbB have been demonstrated under different 

reaction conditions, kinetic parameters for these enzymes have not been determined.  To 

accomplish this, ATP turnover from synthetase activity was monitored using an enzyme-

coupled assay involving conversion of the reporter molecule MESG to its purine base 

(42, 43).  This assay was used to empirically establish saturating levels of spermidine, 

ATP, and Mg2+ for AsbA in order to determine reaction rates dependent exclusively on 

citric acid. 

Enzymatic parameters were approximated for AsbA by observing initial reaction 

rates under varying concentrations of citric acid.  Initial experiments suggested that high 

levels of the substrate inhibited AsbA.  Citric acid sequesters divalent cations (including 

Mg2+) at high concentrations, however, and titration of additional MgCl2 to 0.8 

stoichiometric equivalents of citrate restored AsbA activity. The resultant enzymatic 

activity curve (Supplemental Fig. 3-S4) was sufficient to extrapolate an apparent kcat of 

8.90 x 10-1± 0.074 sec-1, a Km of 5.65 x 10-3 ± 0.0016 M, and an apparent kcat/Km=1.58 x 

102 M-1s-1 for purified AsbA-His6. 

Because AsbA and AsbB exhibit such high sequence similarity, particularly 

between residues in the active sites (Supplemental Fig. 3-S2), and near-identical 

enzymatic activity (Fig. 3-1 C), optimal spermidine, ATP, and Mg2+ concentration was 

predicted to be similar between the two enzymes. However, substrate-dependent 

supplementation of additional Mg2+ was not required, suggesting the citryl moieties of 1 
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and 3 do not sequester divalent cations as effectively as citric acid alone.  We sought to 

determine kinetic parameters for AsbB dependent on the citryl substrate 3 (Supplemental 

Fig. 3-S4), but UV interference associated with this substrate prevented observation of 

the reaction at starting concentrations higher than 12 mM.  Thus, enzymatic parameters 

were extrapolated from initial rates occurring between 0-12 mM of 3, which suggested a 

Vmax/Km=2.40 x 102 M-1s-1. 

Probing acceptance of unnatural nucleophiles for condensation by AsbA and AsbB. 

Previous mass spectrometric studies have demonstrated the capacity of AsbA to 

incorporate a variety of polyamines analogous to spermidine (18).  Such innate substrate 

flexibility motivated us to investigate the ability of AsbB to incorporate unnatural ligands 

as well.  Using the MESG assay described above, both AsbA and AsbB enzymes were 

incubated individually with ATP, MgCl2, and citric acid or 3 (respectively) to compare 

activity with various nucleophiles related to the preferred substrate spermidine (Fig. 3-6 

A).  Generally, for both AsbA and AsbB, spermidine remained the preferred nucleophile 

out of the compounds tested.  The one apparent exception was the relatively high activity 

of AsbA with norspermidine, which has one less carbon atom, and thus bears 

symmetrical arms.  Reaction rate comparison revealed a generally higher promiscuity of 

AsbB with unnatural substrates.  Despite this, the general trend in substrate preference 

remained consistent between the two NIS synthetases. 

Structural basis for polyamine selectivity in AsbB. 

In addition to showing a similar profile for distinguishing polyamine nucleophiles 

as substrates, both AsbA and AsbB regioselectively incorporate spermidine at the N8 

terminus in the biosynthesis of a symmetrical petrobactin molecule (12, 17, 18).  To  
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Figure 3-6. AsbA and AsbB display varying selectivity for nucleophilic substrates.  
A MESG-coupled pyrophosphate detection assay compared relative rate of incorporation 
of linear nucleophiles by AsbA and AsbB.  Data is normalized to the preferred substrate 
spermidine.  (A) AsbB is more promiscuous by comparison; however, the general trend 
in substrate tolerance is conserved between the two NIS synthetases. (B) Residues in the 
AsbB substrate-binding cleft hypothesized to interact with spermidine, Lys311 and 
Glu459, were subjected to site directed mutagenesis.  AsbB mutants were compared for 
relative nucleophile acceptance. 
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elucidate the basis for this selectivity, a model of the AsbB-substrate complex (Fig. 3-5 

B) was used to guide site-directed mutagenesis of residues hypothesized to confer an 

orientation-specific spermidine binding pocket in both AsbA and AsbB.  Among these 

residues, Lys311 and Glu459 of AsbB align respectively with Lys315 and Gln468 of 

AsbA.  This predictive modeling of the monomeric AsbA polypeptide also suggests that 

the side chains of Lys315 and Gln468 are solvent exposed in the presumed substrate 

binding pocket (I-TASSER) (44, 45) (data not shown). 

An AsbB mutant with alanine substituted for Lys311 was expressed 

heterologously and purified for comparison of its nucleophile selectivity to that of wild 

type AsbB (Fig. 3-6 B).  While preference for spermidine was not wholly abrogated, 

activity was elevated in conditions where unnatural nucleophiles were presented.  In 

particular, polyamines of greater length (spermine), or lacking a secondary amine, (l,8-

diaminooctane and cadaverine), provided a slightly higher ATP turnover relative to 

spermidine with the AsbB Lys311Ala mutant than with wild type.  Substitution at this 

position with methionine retains some of the space occupied by the original Lys311, but 

presents a different charge to the proposed binding pocket.  A Lys311Met mutant 

displayed exclusion of the relatively large spermine molecule as observed with wild type 

AsbB, but increased acceptance of polyamines lacking a secondary amine still occurred. 

Indeed, in the model presented, it appears that the side-chain of Lys311 “pushes” 

down on spermidine, with multiple positive charges in this space forcing contact between 

the aliphatic portion of lysine and an alkyl arm of the polyamine. Meanwhile, this 

conformation facilitates electrostatic interaction between the secondary amine of the 

substrate and the backbone carbonyl of Glu459.  It is possible that partial loss of this 
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interaction would generate more favorable conditions for binding of substrates lacking a 

secondary amine. 

In addition to the backbone oxygen of Glu459, importance of this residue’s side 

chain in nucleophile selectivity was probed.  Substituting this position with alanine 

demonstrated increased relative acceptance of spermine, norspermidine, and 1-

aminoethyl-1,3-propanediamine.  Conversely, a less drastically altered Glu459Asp 

mutant displayed selectivity closer to that of wild type. Considering the substrate 

conformation model presented (Fig. 3-5 B), the side chain of Glu459 is roughly the same 

length of the 4-carbon terminus of spermidine and is poised to be positioned parallel to 

the substrate, extending the N8 primary amine to the active site for condensation with 

adenylated 1 or 3 (Fig. 3-5 B).  

Multiple petrobactin biosynthesis intermediates as substrates for AsbCDE. 

 Spermidine is a nucleophilic substrate of the AsbC-AsbD-AsbE aryl transferase 

machinery, forming the 3,4-dihydroxybenzoylated product N1-(3,4-dihydroxybenzoyl)-

spermidine (compound 4, Fig. 3-1 C) and its regioisomer N8-(3,4-dihydroxybenzoyl)-

spermidine (compound 4') (11, 13) (Fig. 3-7, bottom trace).  However, a moiety 

resembling 4' is not observed within the petrobactin structure (21, 22) and more recent 

relative rate studies demonstrate 4 serves as a relatively poor substrate for AsbA or AsbB 

(12, 17, 18).  Indeed, LC-MS analysis of petrobactin generated by in vitro pathway 

reconstitution supports this finding, revealing two peaks with m/z ([M+H]+=282.36) 

corresponding to accumulation of unincorporated 4 and 4'. Given an abundance of 3,4-

DHBA, this reaction will also yield a product with an m/z and a fragmentation pattern  
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Figure 3-7. 3,4-dihydroxybenzoylation by the aryl transferase components encoded 
by asbCDE.  Multiple proposed intermediates of petrobactin biosynthesis contain 
primary amines and serve as substrates for AsbE.  In vitro reactions of individually 
purified His6-AsbC, His6-AsbD, and His6-AsbE with ATP and 3,4-DHBA were extracted 
using methanol and analyzed by LC-MS. HPLC chromatograms show selected ion 
monitoring of predicted m/z of products. Dashed traces indicate no-enzyme controls. 
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corresponding to N1,N8-di-(3,4-dihydroxybenzoyl)-spermidine (compound 6, 

Supplemental Fig. 3-S5). 

Based on the finding that AsbA and AsbB are both capable of forming products 

with spermidine (12, 17, 18), we were motivated to investigate how these products could 

be utilized in subsequent biosynthetic steps.  Therefore, we considered a more recent 

hypothesis that, like spermidine, the spermidinylated intermediates 1 and 2 serve as 

substrates for AsbE in later stages of biosynthesis (24).  In both molecules, protection of 

the 4-carbon amino terminus of spermidine (N8) through amide bond formation with the 

central citric acid moiety assures that only the primary N1 amine is available for AsbE-

catalyzed condensation with 3,4-DHBA (Fig. 3-1 C).   

 To test this hypothesis directly, 1, 2 and 5 were incubated with 3,4-DHBA, ATP, 

MgCl2, and recombinant His6-AsbC, His6-AsbD, and His6-AsbE.  Products with m/z 

matching those predicted for 3,4-dihydroxybenzoylation of the substrates were observed 

by LC-MS (Fig. 3-7):  Compound 1, formed by AsbA, was converted to 3. As shown 

previously, 3 has been isolated from iron-depleted cultures of a B. anthracis ΔasbB 

mutant (11).  The products of AsbB, 2 and 5, functioned as substrates for AsbE as well, 

participating in amide bond formation with 3,4-DHBA to form petrobactin (Fig. 3-7).  In 

the case of 2, petrobactin formation likely occurs in two cycles; the first creating 5 which 

does not appear to accumulate, but instead may be rapidly converted by a second cycle to 

form petrobactin as the final product.  As expected, none of these compounds were 

observed when AsbC, AsbD, and AsbE were omitted from the reaction mixture. 
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3.3 Discussion 

 All products of the asb operon implicated in assembly of petrobactin from 

spermidine, citric acid, and 3,4-DHBA have been heterologously expressed, purified and 

reconstituted to generate a fully functional petrobactin biosynthetic pathway (Fig. 3-2 A).  

The absence of AsbA from this reaction resulted in low, but detectable levels of 

petrobactin formation, suggesting that the similar sequence and enzymatic activity of the 

partner NIS synthetase AsbB can rescue its function to a modest extent (Fig. 3-2 B). The 

enantioselective abilities of NIS synthetases have been highlighted previously (17, 18, 

33); however, AsbB may tolerate both configurations of the chiral citryl moiety of 1 

depending on whether this compound exists as a product of AsbA-like activity or as a 

substrate for condensation to a second spermidine.   

The enzymatic activity of AsbA and AsbB during petrobactin assembly was 

confirmed by LC-MS analysis facilitated by fluorescamine derivatization of siderophore 

zwitterionic intermediates. Indeed, intermediates of other NIS pathways, including those 

for rhizoferrin (46), staphyloferrin B (47), and achromobactin (23), have similar charge 

issues that could be resolved by an analogous derivatization protocol. 

By solving the crystal structure of AsbB, we disclose the second structural model 

of a type C NIS synthetase, and the first to be characterized through concurrent 

biochemical analysis.  Highlighted are residues conserved among other type C enzymes 

as well as the closely related AsbA.  These structural similarities solidify a proposed 

adenylation mechanism in which attack of the terminal carboxylate within the citryl 

moiety of one substrate by the α-phosphate of ATP is made energetically favorable by the 

basic conditions established by surrounding histidines and an arginine (33) (Fig. 3-5 A 
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and 3-5 B and Supplemental Fig. 3-S2).  The abundance of conserved polar and charged 

residues indicates that proper coordination of the substrates is crucial for this first step of 

the reaction. 

Comparison of AsbB to the structures of AlcC (a type C NIS synthetase) and 

AcsD (a type A NIS synthetase) (Fig. 3-4) highlights differences in substrate binding 

pocket size and exposure to solvent, which may determine interactions with relatively 

bulky pathway intermediates as opposed to primary metabolites.  In particular, this 

includes the predominantly acidic face that may tightly accommodate the spermidinyl 

moiety of 1 or 3 (Fig. 3-5 A and 3-5 B).  Considering the structural similarity of the two 

substrates of AsbB (1 or 3 and spermidine), it is also possible that they exchange 

locations and retain the capacity to form an amide bond.  This would require deviation 

from the citrate conformation of previous NIS synthetase-substrate co-crystal structures, 

but is conceivable considering charge distribution in the AsbB pocket is subtly distinct 

from that of AcsD, in particular, where a citrate molecule can bind. 

High nucleotide sequence identity between asbA and asbB (46.7%, compared to 

the 38.4%-41.0% observed between asbA and type A NIS synthetases of other species) 

(48) likely results from duplication of an asbA-like predecessor gene during evolution of 

the petrobactin biosynthetic pathway.  In support of this, relative catalytic activity values 

for AsbA and AsbB are now shown to be similar, lying within the same order of 

magnitude—an observation that is explained by the highly similar primary sequence, 

substrate structure, and functional activity shared by the two enzymes. 

Comparing the relative rates of polyamine incorporation by AsbA and AsbB 

displayed a similar substrate preference between the two enzymes.  Generally, the results 
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demonstrate that both chain length and general charge are influential factors in 

nucleophile recruitment to the active site (Fig. 3-6 A).  Comparative analysis of the 

crystal structures for AsbB, AcsD, and AlcC suggests the region likely interacting with 

nucleophilic substrates extends on the surface of the large solvent-exposed binding cleft 

from the adenylation active site “upward” towards the solvent, loosely parallel to how 1 

or 3 is thought to be binding (Fig. 3-5 A and 3-5 B).  Thus, the multiple charged residues 

along this surface can be envisioned to interact with the amines of spermidine and 

analogous linear compounds. 

Of the residues suggested in binding and selection of nucleophiles in AsbB, 

Glu434 and Glu459 align closely with Glu442 and Glu466 (respectively) of the type A 

NIS synthetase AcsD (Supplemental Fig. 3-S2).  Docking experiments in the AcsD active 

site implicate the utility of Glu442 in stabilizing the nucleophile L-serine while Glu466 

resides between the nucleophilic alcohol of this substrate and the β/γ-phosphate of ATP 

(33).  Indeed, conservation of charged residues at these positions is observed between 

AsbA, AsbB, AcsD and AlcC, suggesting their importance in coordination of a 

nucleophilic substrate.  Surface exposed AsbB residues Lys311 and Glu459 reside in this 

patch (Fig. 3-5 B) and also align with similar residues of AsbA (Supplemental Fig. 3-S2).  

Taking this into account, relative increase in substrate promiscuity with AsbBLys311 

Ala/Met and Glu459Ala mutants (Fig. 3-6 B) indicated that these residues, in 

coordination with Tyr313 interacting with the distal amine of spermidine, might generate 

a conformation conducive to spermidine recruitment (Fig. 3-5 B).   

Activity studies with single amino acid substitutions can partially explain the 

shared regioselective preference of AsbA and AsbB for spermidine as a nucleophile; 
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however, factors that cannot be extrapolated from primary sequence undoubtedly play a 

role, including conserved overall fold and charge distribution within the “fingers” 

domain. Direct confirmation of whether a loss of substrate specificity is coincident with a 

loss of regioselectivity will require further investigation, and remains an important factor 

in the pursuit of chemoenzymatic creation of novel compounds using reconstituted 

biosynthetic systems. 

Work highlighting the incorporation of spermidine by AsbA and AsbB has 

enabled development of a logical pathway proposal in which 3,4-DHBA is incorporated 

during late stages of petrobactin biosynthesis exclusively at the N1 terminus of 

spermidine moieties (Fig. 3-1 C) (4, 12, 17, 24).  In vitro results now support this 

pathway, demonstrating reactivity of AsbE with exposed amino groups of proposed 

intermediates (Fig. 3-7).  4 and 4', the previously described products of AsbE aryl 

transferase activity, and the newly observed but related 6, accumulate during in vitro 

reconstitution of petrobactin biosynthesis (Supplemental Fig. 3-S5), suggesting they are 

side-products that are not efficiently incorporated into the siderophore.  While 6 may be 

an artifact of the promiscuity AsbE displays in vitro, bis-(dihydroxybenzoyl)-spermidines 

have been isolated from natural sources including spider venom (49) and from bacterial 

cultures (50), and a synthetic compound matching the structure of 6 has shown potential 

as an antimalarial agent (51).  Indeed, applications have only been superficially explored 

for the specific activity combined with substrate flexibility of transferases such as AsbE 

and siderophore synthetases like AsbB; their potential for expanding chemical diversity is 

addressed further in Chapter 4 of this dissertation and warrants additional efforts. 
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The asb operon encodes six separate peptides, the products of which clearly can 

operate in trans to form petrobactin. However, interactions between different petrobactin 

biosynthesis proteins within the cell may specify an exact order of steps in a pathway that 

appears to include accumulation of unincorporated side-products (e.g. 4') and multiple 

convergent routes in vitro (Fig. 3-1 C) (4, 17, 25, 26). Indeed, recent pull-down 

experiments show specific interaction of the His6-labeled carrier protein AsbD with 

untagged AsbC and AsbE after co-expression of asbCDE in E. coli (unpublished data).  

Understanding how protein-protein interactions between products of asbABCDEF confer 

substrate specificity and reaction efficiency are key future objectives of our group. 

The severe virulence of B. anthracis combined with its ability to form spores 

highly resistant to environmental stresses has made it a persisting global health concern 

and viable security threat (52, 53).  Current methods for preventing or treating anthrax 

infection remain limited (54, 55).  Because abrogation of petrobactin production or 

uptake has been shown to severely attenuate B. anthracis virulence (6, 10, 15), enzymes 

in the biosynthetic pathway remain attractive targets for identification of new 

antimicrobials.  Gaining deeper insights into the details of NIS-associated enzyme 

function might provide access to mechanism-based inhibitors as have been demonstrated 

for NRPS-derived siderophore adenylation domains (13, 56, 57).  Moreover, 

development of the chemoenzymatic approach described in this work toward creating 

new siderophore analogs could be applied to generate a class of “Trojan horse” 

antibiotics, bearing improved target effects and IC50 values compared to conventional 

chemotherapeutics (58, 59).  These practical considerations further highlight the 
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importance of expanding our understanding of iron acquisition mechanisms employed by 

a vast array of pathogenic microbes. 

 

3.4 Experimental Procedures 

Chemical and Reagent Origin.  Unless otherwise noted, consumable materials were 

obtained from Sigma-Aldrich (St. Louis, MO) and were of >97% purity.  Hydrochloride 

salts of all polyamines used were either purchased or prepared by titration of stock 

solutions with HCl to neutral pH. 

B. anthracis Strains and Culture Conditions. Targeted mutants of B. anthracis Sterne 

34F2were prepared by the allelic exchange method described by Lee et al. in 2007 (11).  

∆asbB spores were germinated overnight in brain-heart infusion (BHI) broth at room 

temperature with shaking. After 16-18 hours, vegetative bacilli were diluted 1:100 in BHI 

broth and grown 1-2 hours to allow cells to enter log phase. Actively growing bacilli 

were pelleted by centrifugation at 1600 x g for 20 minutes at 25°C and then washed 5x 

with iron depleted medium (IDM) (6) to ensure removal of nutrients and potential iron 

sources carried over from BHI. Washed bacteria were then used to inoculate 0.5L 

cultures of IDM in 2L polyethylene flasks at an OD600=0.05.  These were grown 

overnight (16-18 hours) at 37°C with shaking. Vegetative bacilli were removed from the 

culture supernatant using a 0.22 µm vacuum filtration apparatus (Corning). Catechol 

presence in the medium was determined using the Arnow assay (60) prior to metabolite 

extraction.  

Gene Cloning, Expression and Protein Purification for Enzymology. Supplemental 

information for expression strain, plasmid, and cloning information is provided in 
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Supplemental Table 3-S1.  Constructs for the expression of AsbB residue-replacement 

mutant enzymes were produced using protocols provided with the QuikChange 

(Stratagene) site-directed mutagenesis kit. The addition of 2.5 μl DMSO to 50 μl PCR 

reactions was required in some instances.  Cloning and mutagenesis was confirmed by 

sequencing (UM DNA Sequencing Core). 

To isolate protein for enzymatic analysis, “Z-competent” (Zymo Labs) BLR 

(Novagen) E. coli(DE3) cells were transformed individually with respective asb gene-

containing plasmids.  5 ml overnight Luria-Bertoni (LB) broth cultures were used to 

inoculate 2 L baffled flasks containing 500 ml of terrific broth (TB) with 4% (v/v) 

glycerol and shaken at 37°C.  Upon reaching an OD600nm of ~0.8, expression cultures 

were acclimated to 18°C for 1.5 hours before induction with isopropyl β-D-1-

thiogalactopyranoside (IPTG) to a final concentration of 0.25 mM in the medium.  In the 

instance of asbA, TB cultures were also supplemented upon IPTG induction with citric 

acid and spermidine to a final concentration of 1 mM.  Over-expression was allowed to 

continue at 18°C for approximately 16 hours before cells were pelleted and stored at -

80°C prior to lysis. 

All five over-expressed proteins for enzymatic analysis were purified using 

standard His6 Ni2+-affinity chromatography, and are described in detail in Supplemental 

Methods. 

Gene Cloning, Expression and Protein Purification for Crystallization.  The asbB gene 

was cloned into the pMCSG7 vector with an N-terminal His6-tag (61) as well as the 

pMCSG28 vector with a C-terminal His6-tag (62) and over-expressed in E. coli BL21 

(DE3) - Gold (Stratagene) harboring an extra plasmid encoding three rare tRNAs (AGG 
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and AGA for Arg, ATA for Ile).  To obtain protein from both constructs, recombinant E. 

coli cells were grown using selenomethionine (SeMet)-containing enriched M9 medium 

(pink medium) under conditions known to inhibit methionine biosynthesis (63, 64). Cell 

cultures were grown at 37C to an OD600 of ~0.95 then cooled down to 18C before 

adding Se-Met and 0.5 mM IPTG to induce, and maintained at 18C overnight. Protein 

was purified by two-step Ni2+-affinity chromatography following the standard protocol 

described previously (65) and in Supplemental Methods. 

The His6-tag was removed using recombinant TEV protease in a 1:30 ratio by 

incubating at 4°C for 6 hours. The TEV protease cleavage left six artificial residues 

(ENLYFQ) at the C-terminus for the pMCSG28 construct protein; however the His6-tag 

failed to be cleaved from the N-terminus of the pMCSG7 construct protein. AsbB protein 

was then further purified by a 5 ml manually packed Ni-superflow affinity column (GE 

Healthcare). The protein eluted as a flow-through from the column in lysis buffer with 20 

mM imidazole. Samples were dialyzed in crystallization buffer containing 20 mM 

HEPES pH 8.0, 150 mM NaCl, 2 mM DTT and concentrated to 60 mg/ml using an 

Amicon Ultra centrifugal filter device (Millipore). The protein was then further purified 

by size exclusion chromatography using a superdex 200 16/60 HiLoad (GE Healthcare) 

column in the same crystallization buffer. 

Protein Crystallization. Crystallization was set up for all AsbB proteins. They were 

screened for crystallization conditions using a Mosquito robot (TTP Labtech) on sitting 

drops in 96-well plates (Greiner)at16°C.  Each 0.8 µl drop consisted of 0.4 µl of protein 

from the pMCSG7 or pMCSG28 vectors and 0.4 µl of each crystallization condition. A 

number of commercially available screens including Index (Hampton Research) and 
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ANL-1 and ANL-2 (Qiagen) were used for crystallization. AsbB with an N-terminal 

His6-tag failed to yield a diffraction quality crystal. The best crystals of AsbB from the C-

terminal construct appeared after three days from Index #61 containing 0.2 M L-proline, 

0.1 M HEPES pH 7.5, and 10% polyethylene glycol 3350. Prior to data collection, 

crystals were flash-frozen in liquid nitrogen in the presence of a number of different cryo-

protectants. Chunky jewel shape crystals displaying 0.25 x 0.15 x 0.1 mm sides with the 

ethylene glycol cryo-protectant diffracted to about 2.3 Å and were used for data 

collection.  

Data Collection, Structure Determination, Refinement and Deposition. The single 

wavelength anomalous dispersion (SAD) data near the Se absorption edge at the peak 

wavelength 0.9793 Å up to 2.4 Å were collected from a single Se-Met labeled protein 

crystal at 100° K at the 19ID beam line of the Structural Biology Center at the Advanced 

Photon Source, Argonne National Laboratory. The crystal was exposed for 5 sec. per 1.0o 

rotation of ω circle with the crystal to detector distance of 340 mm. The data were 

recorded on a CCD detector Q315r from ADSC scanning a full 220º on ω using the SBC-

Collect program for data collection and visualization of diffraction images. The space 

group was P212121 with cell dimension of a = 64.26 Å, b = 155.92 Å, c = 156.24 Å. All 

data were processed and scaled with HKL3000 (66) (Table 3-1). 

The structure was determined by SAD phasing utilizing the anomalous signal from 

Se atoms with AUTOSHARP (SHARP 2.2.0 and Sushi 3.4.0) (67) using the peak data to 

2.40 Å.ARP/wARP (68) was used to build an initial model that included 495 (out of total 

616 residues including the C-terminal artifact residues) and 470 residues for each of two 

protein chains.  Significant manual model building and the subsequent refinement was 
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Data collection 
Space group  P212121
Unit cell (Å)   a = 64.26

b = 155.92
c = 156.24

Wavelength(Å)   0.9793
Highest Resolution bin (Å)   2.44‐2.40
Number of observed reflections   62971(3081)
Rsym(%)

a  9.0(63.1)b

Completeness (%)   99.8(100)
I/sI  10.8(3.2)b

Phasing 
Method  SAD
Phasing resolution range (Å)  49.6‐2.40
Figure of merit/Phasing power  0.26/1.29
Number of SeMet  26

Refinement 
Resolution range (Å)   49.6 ‐2.40
Rcryst (%)   17.4

Rfree (%)   22.7

Number of protein residues  1232
Solvent  molecules  324
Bond lengths (Å)   0.012
Bond angles (deg)   1.49
Dihedral angles (deg)  17.2
B‐factors (Å2)  59.8 

        Protein main chain  55.5
        Protein side chain   62.2
        Others (Water, ADP, Ethylene glycol) 59.6
Wilson B‐factor (Å2)  50.9 

Ramachandran Plot (%)c   

        Preferred  96.4
        Generously allowed  3.1
        Disallowed  0.5

PDB ID  3TO3

 
Table 3-1. Summary of the AsbB crystallographic data. 
aRmerge =(ΣhklΣi│Ii-<I>│)/(ΣhklΣi │<I>│), where Ii is the intensity for the ith measurement of an 
equivalent reflection with indices h, k, and l.  bNumbers in parentheses are values for the highest-
resolution bin.  cDefined in Coot. 
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performed iteratively by phenix.refine (69) and manual adjustment using Coot (70) until 

it converged to the R factor of 0.174, and the free R of 0.227 with the rms bond distances 

of 0.012 Å and the rms bond angles of 1.49o. The final model included residues 1 - 600 of 

the chain A and 0 – 600 of the chain B of AsbB, one ADP, one Mg2+, two chloride ions, 3 

ethylene glycol molecules, and 324 ordered water molecules. Residues on the surface 

such as 138-143 of chain A and 139-144 of chain B are not ordered; neither are the C-

terminal residues, 601-610 for both chain A and chain B, including those residues 

introduced during cloning (62). The stereochemistry of the structure was checked with 

PROCHECK (71) and the Ramachandran plot. Atomic coordinates and experimental 

structure factors of AsbB have been deposited in PDB under the code 3TO3. 

Purification of N1-3,4-dihydroxybenzoyl-N8-citryl-spermidine (3).  All procedures were 

performed in plasticware thoroughly rinsed with double-deionized water (ddH2O) or 

glassware rinsed generously with 6 M HCl followed by ddH2O.  Supernatants from 

previously described B. anthracis Sterne 34F2 ΔasbB cultures were stirred overnight with 

37.5 g of Amberlite XAD-16 resin per liter of supernatant.  Prior to mixing with culture 

supernatants, the resin was equilibrated for an hour in ddH2O and filtered through a milk-

filter that had also been rinsed with ddH2O.  The batch-binding slurry was poured though 

a glass chromatography column.  Retained resin was washed with 1 L of ddH2O that was 

collected, followed by 500 ml of methanol (MeOH), which was also collected.   

Liquids were evaporated to dryness and re-dissolved in 4 ml of ddH2O prior to 

purification on a Beckman-Coulter System Gold HPLC which was conducted as follows: 

Solvents contained a 0.1% (v/v) mixture of formic acid brought to pH 4 by addition of 

triethylamine.  Separation was conducted on a Waters X-Bridge C18 (10x250 mm, 5µm) 
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column at a flow rate of 2.5 ml/min with an initial concentration of 5% MeOH in ddH2O 

for 15 minutes followed by a linear gradient increase to 50% MeOH over the course of 25 

min.  100% MeOH was applied for an additional 12 minutes as a cleaning step.  Peaks 

with UV absorption maxima matching that of 3,4-DHBAmoieties (259 nm and 290 nm) 

were collected and their identity was confirmed by mass spectrometry.  To achieve the 

high degree of purity required for kinetics analysis, collected 3 was evaporated and 

applied to a second round of HPLC using a Phenomenex Synergi Hydro-RP (10x250 

mm, 4 µm) semi-preparative column eluted with solvents containing 0.05% (v/v) formic 

acid at a flow rate of 2.5 ml/min. 100% ddH2O was applied for 15 minutes after which 

MeOH concentration was increased to 50% in a linear gradient over 30 minutes, followed 

by a 100% MeOH cleanup phase.  3 was collected, confirmed by mass spectrometry, and 

lyophilized.  Prior to use, metabolites were dissolved in ddH2O to create 100 mM stock 

solutions that were stored at -20° C. 

Synthesis of substrates.  5 and 1 were prepared as previously described (12, 17).  While 1 

was synthesized similarly to previously reported methods, purification of the final 

product was performed by HPLC on a Beckman-Coulter System Gold in line with a 

Phenomenex Synergi Hydro-RP (10x250 mm, 4 µm) semi-preparative column with a 

100% aqueous mobile phase containing 0.05% (v/v) formic acid at a flow rate of 2.5 

ml/min. 

In vitro reconstitution of metabolite biosynthesis. Small-scale reactions were conducted 

in 1.7 ml microcentrifuge tubes.  Reaction buffer contained 50 mM HEPES pH 8, 15 mM 

MgCl2, 0.5 mM Tris(2-carboxyethyl) phosphine (TCEP), 10 mM ATP, 2 mM 

carboxylate substrate (citric acid or 3), 4 mM nucleophilic substrate (spermidine or 
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analogs thereof), and 4 mM 3,4-DHBA where applicable. All enzymes were used at a 

concentration of 1 µM with the exception of AsbD, which was used at 5 µM.  All 

reactions were conducted at 37°C unless otherwise noted.  Reactions were quenched in 

two ways: 1) Adding 0.5 reaction volume of 5% (w/v) trichloroacetic acid (TCA) 

solution. Reactions were inverted to mix and centrifuged at 16,000 x g on a tabletop 

centrifuge for 20 minutes. Resultant supernatant was placed into a new tube containing an 

equal volume of 0.6 M Na-borate buffer pH 8.0.  2) Adding nine reaction volumes of 

HPLC-grade MeOH spiked with 25µM of N-(3-aminobenzoyl)-L-β-alanine as an internal 

standard. Reactions were inverted to mix and centrifuged at16,000 x g on a tabletop 

centrifuge for 20 minutes. The resultant supernatant was placed into a new tube and 

evaporated to dryness by vacuum centrifugation.  Samples were re-dissolved in ddH2O 

prior to analysis.  Enzymatically-derived petrobactin obtained using this method was 

purified by the same HPLC method applied to 3 (described in a previous section) and 

retained for further analysis. 

Fluorescamine derivatization of polar compounds.  10 µl of TCA-quenched sample was 

mixed with 10 µl of 200 mM fluorescamine in LC-MS grade acetonitrile (MeCN).  

Reactions were vortexed, briefly centrifuged, and placed in the dark for 2 hours.  

Following incubation, reactions were centrifuged in 0.65 ml microcentrifuge tubes at 

16,000 x g for 10 minutes.  15 µl of supernatant was then diluted 4-fold in 50:50 

MeCN:H2O for analysis by LC-MS. 

LC-MS analysis. 2 µl of MeOH-quenched in vitro reaction samples were injected onto a 

Shimadzu 2010EV HPLC in line with an electrospray quadrupole mass spectrometer 

running the following chromatographic method: All solvents were LC-MS grade and 
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contained 0.1% (v/v) formic acid.  Separation was conducted on a Phenomenex Luna C18 

(250x4.6 mm, 5 µm) column at a flow rate of 0.125 ml/min with an initial concentration 

of 5% MeCN in ddH2O for 8 minutes followed by a linear gradient of 5% to 95% MeCN 

over the course of 32 min.  95% MeCN was then applied for an additional 12 minutes.  

Spectra were scanned in both positive and negative mode over the range of 200 to 1000 

m/z.  Predetermined m/z values were also monitored in positive selective ion monitoring 

(SIM) mode.  Similar methods were used for TCA-quenched reactions and biological 

samples; however, 5 µl were injected and the first 10 minutes of the HPLC protocol was 

diverted to waste to avoid introduction of salt to the mass spectrometer. 

Metabolite analysis by Tandem Mass Spectrometry (MS/MS).  Enzymatically prepared 

products and culture-derived N1-(3,4-DHB)-N8-citryl-spermidine (3) were collected from 

HPLC purification and stored at -20° C prior to analysis. Using an Agilent Technologies 

6500 quadrupole time of flight (Q-TOF) mass spectrometer, 1-3 μl of sample was applied 

by direct infusion with a 10% MeCN, 0.1% (v/v) formic acid solvent mixture at a flow 

rate of 0.4 ml/min.  Electrospray ionization was used, scanning in positive mode between 

100 and 1000 m/z.  Target ions matching the predicted m/z values for analytes were 

fragmented by collision-induced dissociation at 20 V.  An alternative LC-MS/MS method 

is described in Supplemental Fig. 3-S5. 

MESG continuous pyrophosphate detection assay. Reactions were a modification of a 

previously described protocol (42, 72).  For kinetics reactions, standard conditions were 

50 mM Tris pH 8.0, 15 mM MgCl2, 0.5 mM TCEP, 6 mM ATP, 40 mM spermidine, 

0.001 U/μl purine nucleoside phosphorylase, 0.0004 U/μl inorganic pyrophosphatase, 0.4 

mM 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) (Berry & Assoc., 
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Dexter, MI), and 0.2 μM purified enzyme.  Varying concentrations of carboxylate-

containing substrate (citric acid or 3) were used to obtain enzymatic parameters. A 

standard curve was created under these reaction conditions, with the omission of enzyme 

and including varying concentrations of Na4P2O7. Change in A360nm in response to 

pyrophosphate (PPi) content remained linear up to 0.05 mM and this relation could be 

described by the equation 0.394xΔA360nm=mM PPi.  The relative polyamine acceptance 

assay utilized similar reaction conditions, however 20 mM of analogs of spermidine and 

3 mM carboxylate-containing substrate were used. 

Assays were conducted in 96-well or 384-well plate format prepared in 80 μl or 

40 μl volumes, respectively. A360nm readings were gathered every 15 seconds over the 

course of 10 minutes using a Molecular Devices SpectraMax M2e plate reader.  Kinetics 

reactions were conducted in triplicate.  The initial linear rate under each condition was 

calculated using the slope function in Microsoft Excel.  Subsequent analyses were 

performed by plotting initial rate versus substrate concentration in Kaleidagraph (Synergy 

Software) and using nonlinear regression to fit to the Michaelis-Menten equation.  

Experiments to determine substrate preference were conducted in duplicate; initial rates 

were zeroed to that of no-enzyme controls and normalized based on the assumption that 

spermidine acts as a nucleophile to confer 100% activity. 

 

3.5 Supplemental  

Protein Purification for Enzymology.  All steps were conducted at 4°C.  Briefly, 

harvested cell pellets were resuspended in 5 ml of lysis buffer (20 mM imidazole, 20 mM 

HEPES, 150 mM NaCl, 1 mM Tris(2-carboxyethyl) phosphine [TCEP], 10% v/v 
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glycerol, pH 8) per 100 ml of original over-expression culture and lysed by sonication.  

Insoluble material was removed by ultracentrifugation at 30000 x g for 45 min, and the 

supernatant was batch-bound for 2 hours to 1 ml of Ni2+-NTA slurry (Novagen) that was 

previously equilibrated in lysis buffer.  This batch-binding mixture was poured through a 

5 ml fritted glass column where the retained resin was washed with 1 column volume of 

lysis buffer, 2 column volumes of wash buffer (40 mM imidazole, 20 mM HEPES, 150 

mM NaCl, 1 mM TCEP, 10% glycerol, pH 8), and finally 3 ml of elution buffer (250 mM 

imidazole, 20 mM HEPES, 50 mM NaCl, 1 mM TCEP, 10% v/v glycerol, pH 8).  Protein 

in the eluate was both exchanged into storage buffer (20 mM HEPES, 5 mM NaCl, 1 mM 

TCEP, 20% v/v glycerol, pH 8) and concentrated using Amicon Ultra centrifugal 

molecular weight cutoff filters (Millipore).  Resulting samples were flash frozen with 

liquid N2 and stored at -80°C prior to analysis. 

Protein Purification for Crystallization.  Harvested overexpression cells were lysed by 

sonication in the presence of 1 mg/ml lysozyme and a protease inhibitor cocktail tablet 

(Complete, Roche) in 35 ml of lysis buffer containing 50 mM HEPES pH 8.0, 500 mM 

NaCl, 10 mM imidazole, 10 mM β-mercaptoethanol, and 5% v/v glycerol.  The lysate 

was clarified by centrifugation at 30000 x g for 75 min, followed by filtration through a 

0.45 µm filter.  Protein was purified by two-step Ni2+-affinity chromatography following 

the standard protocol described previously (65). Immobilized metal affinity 

chromatography (IMAC) was conducted using a 5ml HisTrap Chelating HP column 

charged with Ni2+ ions and buffer-exchange chromatography was performed on a HiPrep 

26/10 desalting column (GE Healthcare) on an ÄKTAxpress™ (GE Healthcare). 
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Gene Name  Number  Expression Vector(s)  Cloning Strategy  Source 

asbA  GBAA_1981  pMCSG26  LIC  this work 

asbB  GBAA_1982  pET28b/pMCSG28  NdeI‐XhoI/LIC  this work 

asbC  GBAA_1983  pET28b  NdeI‐XhoI  ref. 4 

asbD  GBAA_1984  pET28b  NdeI‐XhoI  ref. 4 

asbE  GBAA_1985  pET28b  NdeI‐XhoI  ref. 4 

 

Gene Name  Antibiotic  Expression Strain 

asbA  Amp, Spect, Tet  BLR (Invitrogen) cont. the pRARE plasmid (Novagen) 

asbB  Kan, Spect, Tet/Amp, Spect 
BLR (Invitrogen)/ BL21 (DE3)‐Gold (Invitrogen)
     cont. the pRARE plasmid (Novagen) 

asbC  Kan, Spect, Tet  BLR (Invitrogen)  

asbD  Kan, Tet/Kan  BLR (Invitrogen)/ BAP1 (Walsh Group, Harvard Univ) 

asbE  Kan, Tet  BLR (Invitrogen)  

 

Table 3-S1. Gene, vector, strain, and expression conditions.  LIC = Ligation independent 
cloning.  Primer sequences and PCR conditions required for amplification of fragments is 
available upon request. 
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Figure 3-S1.  Fluorescamine derivatization of prepared standards. Zwitterionic intermediates 
of petrobactin biosynthesis were derivatized with fluorescamine and analyzed by LC-MS using 
selected ion monitoring of predicted m/z of products. 
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Figure 3-S2.  Sequence comparison of AsbB, AlcC, AcsD and AsbA.  The secondary structure 
of AsbB is annotated at the top.  Highly conserved residues include H158, H161, R282, K308, 
E434, and N439 of AsbB.  Hypothesized structural interactions with substrates are depicted in 
Fig. 3-3 D. 
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Figure 3-S3.  Modeling of ADP binding in the AsbB active site.  ADP conformation is 
modeled and refined with partial occupancies based upon loose electron density data as 
demonstrated by the difference (Fo-Fc) electron density contoured at 3.0  (black mesh). 
Potential protein-substrate interactions are detailed in Figure 3D. 
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Figure 3-S4.  Activity plots for quantification of enzymatic efficiency.  His6-AsbA and 
His6-AsbB kinetic parameters were determined through plotting initial reaction rates over 
varying starting concentrations of adenylation substrate.  The additional substrates of 
ATP and spermidine are at near-saturating levels of 6 mM and 40 mM, respectively.  
Reaction progress was monitored by observing release of pyrophosphate (PPi) coupled to 
hydrolysis of the reporter molecule MESG to establish initial rates that were normalized 
to enzyme concentration. Only data-points not displaying substrate-associated 
background interference were used to extrapolate the curves.  Nonlinear regression of 
these data using the Michaelis-Menten equation enabled prediction of Vmax and Km for 
approximation of V/K. 
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Figure 3-S5.  Reaction of AsbE with spermidine and 3,4-DHBA.  Initial reactions 
were analyzed by LC-MS as described in the text.  Selective ion monitoring (SIM) was 
conducted in positive mode for predicted m/z of 4 and 4' ([M+H]+=282.2, solid traces).  
An extracted ion chromatogram (EIC) was rendered to detect compound 6 with a 
predicted m/z of [M+H]+=418.15 (dashed traces).  Corresponding peaks are observed in 
chromatograms of the petrobactin reconstitution enzymatic reaction and in instances 
where only the 3,4-DHBA - AMP ligase AsbC, the aryl-carrier protein AsbD, and the 
aryl transferase AsbE are the only proteins present.  These results and previous research 
(11, 13) suggest AsbC, AsbD, and AsbE are necessary and sufficient for formation of 4 
and 4' as well as 6.  The accumulation of these molecules during in vitro reconstitution of 
petrobactin biosynthesis (second trace) demonstrates a lack of incorporation into the final 
product petrobactin.  Unlabeled peaks are consistently observed during LC-MS analysis 
of all reactions, including the no-enzyme control, and represent artifacts from the 
reaction.  Predicted [M+H]+m/z of 4, 4', and 6 were used to target corresponding species 
for MS/MS analysis.  Fragmentation spectra confirm the 3,4-dihydroxybenzoylation 
pattern for all three compounds. 

 MS/MS settings are described in the main text.  Injected reaction samples were 

separated on a Phenomenex Synergi Hydro-RP (150x4.6 mm, 4 µm) column in-line with 

the instrument at a flow rate of 0.3 ml/min with mobile phase supplemented with 0.1% 

formic acid.  100% ddH2O was applied for 5 minutes followed by a linear gradient of 0% 

to 95% MeCN over the course of 20 minutes.  95% MeCN was then applied for an 

additional 10 minutes.   

 

3.6 Notes 

Portions of this chapter were originally published in the following: 

Nusca, T. D.†, Y. Kim†, N. Maltseva, J.Y. Lee, W. H. Eschenfeldt, L. Stols, M. 
M. Schofield, J. B. Scaglione, S. D. Dixon, D. Oves-Costales, G. L. Challis, P. C. 
Hanna, B. F. Pfleger, A. Joachimiak, and D. H. Sherman. 2012. “Functional and 
structural analysis of the siderophore synthetase AsbB through reconstitution of 
the petrobactin biosynthetic pathway from Bacillus anthracis”. J Biol Chem. (Pub. 
Online March 9th, 2012) 

†Equal contribution to the work. 
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Chapter 4 

Discussion of Research 

4.1 Summary 

 The efforts described in the previous chapters represent a large portion of what is 

currently understood regarding petrobactin biosynthesis. As highlighted in Chapter 1, the 

essentiality of this siderophore for mammalian infection by B. anthracis and related 

species has been demonstrated in the past as have certain preliminary aspects of its 

assembly.  However, the origin of 3,4-DHBA necessary for conferring the stealth 

capacity of petrobactin as well as the function of the protein encoded by the final gene in 

the biosynthetic asb operon, asbF, remained unclear.  3,4-DHBA production has now 

been demonstrated through conversion of the common bacterial metabolite 3-

dehydroshikimate (3-DHS) by AsbF – a 3-dehydroshikimate dehydratase.  Elucidation of 

the co-crystal structure of AsbF with 3,4-DHBA, in conjunction with a series of 

biochemical studies, supports a mechanism in which an enolate intermediate is formed 

through the action of this 3-DHS dehydratase metalloenzyme.  

Uncovering the exact order in which 3,4-DHBA and the other precursors of 

petrobactin, citrate and spermidine, are enzymatically incorporated into petrobactin not 

only holds biological relevance in understanding general secondary metabolic pathways, 

but will guide synthesis of highly specific compounds with the potential antimicrobial 

effect of inhibiting enzymes involved in petrobactin-dependent iron acquisition. 
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Experimentation involving Asb proteins in vitro now confirms asbABCDEF is sufficient 

for petrobactin biosynthesis, and assembly of petrobactin can only occur along certain 

pathways to mitigate byproduct accumulation.  These pathways are largely dictated by 

the substrate preference and catalytic activity imparted by the structures of the NIS 

synthetase AsbB and related AsbA.  The work described in the preceding chapters, in 

conjunction with that of my collaborators and other biologists in the natural product field, 

have expanded appreciation for how microbes synthesize NRPS-independent 

siderophores and implement them in essential iron acquisition during environmental 

colonization and host infection.  This chapter aims to discuss the implications and future 

directions of this research, including an increased understanding of microbial 

metabolism; the identification of potential therapeutic targets to halt deadly infections 

caused by B. anthracis and other pathogens; and new avenues for the chemoenzymatic 

synthesis of novel compounds and complexes. 

 

4.2 Microbial Primary Metabolism and the Secondary Metabolism of Siderophore 

Biosynthesis 

 The metabolic cost for the biosynthesis of siderophores is relatively high. 

Multiple stoichiometric equivalents of ATP, NAD(P)H, and other essential primary 

metabolites are consumed in the active production and secretion of siderophores into the 

extracellular milieu (with no guarantee of reacquisition) for the sole purpose of 

maintaining iron homeostasis (1-5).  This “at all cost” approach to siderophore utilization 

appears to highlight the essentiality of iron in biology.  In the instance of petrobactin, 

primary metabolite precursors include citric acid, 3-dehydroshikimate, and spermidine, 
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which must be maintained in precursor pools necessary to drive their enzymatic 

conversion to a secondary metabolite during host infection by B. anthracis.   

Bacillus subtilis aconitase, encoded by citB, serves a critical role maintaining 

cytoplasmic citric acid levels in iron-depleted conditions.  This dual-role protein contains 

a reactive Fe-S cluster that is sensitive to endogenous iron levels.  In its active form, it 

functions in the Krebs cycle to convert citrate to isocitrate for further oxidation; however, 

in iron depleted conditions, aconitase undergoes a conformational change that renders it 

capable of binding and stabilizing mRNAs containing an iron-regulatory element (IRE) 

recognition sequence (6-8).  The end result is not only increased translation of at least 28 

gene products, but an accumulation of citric acid that may maximize flux in the reaction 

catalyzed by AsbA as the first step of petrobactin biosynthesis.   

AsbF produces 3,4-DHBA via a dehydratase reaction involving 3-

dehydroshikimate.  As an intermediate in the production of indole, tyrosine, and 

phenylalanine, 3-DHS is ubiquitous in microbiology but at low abundance, perhaps even 

lower than its precursor, quinoic acid, and downstream product in primary metabolism, 

shikimic acid (9, 10).  Several bacterial strains have shown an increase in shikimic acid 

uptake due to stabilization of importer mRNA by the Fur-regulated RyhB gene product 

(11, 12).  It has been noted that isochorismic acid, a downstream product of shikimate, is 

converted to the 2,3-DHBA component utilized by many catecholate siderophores (2, 

11).  It is possible that in securing an exogenous source of shikimate for primary 

metabolism, B. anthracis may benefit as well by shunting more of the direct precursors 3-

dehydroshikimate to production of 3,4-DHBA and petrobactin instead. 
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In addition to comprising the polyamine “arms” of petrobactin, spermidine 

stabilizes polynucleotides during cell division and translation, functions as a signaling 

molecule, and mitigates oxidative damage (13, 14).  During macrophage infection by the 

B. anthracis endospore, a bacterial arginase out-competes host nitric oxide synthase for 

arginine.  This inhibits production of bactericidal NO, but it also increases levels of 

ornithine, a precursor to putrescine and spermidine biosynthesis (15, 16).  The effects of 

polyamines on both host and pathogen life cycles are pleiotropic and at times appear to 

be conflicting (17).  Some general infection models demonstrate spermidine and 

spermine have a suppressive effect on immune cell recruitment and activation (18, 19) 

while these same compounds stimulates immune cell proliferation (19, 20) and spermine 

in particular has a cytotoxic effect on Staphylococcus aureus and some other Gram 

positives during infection (21).  In Chapter 3, the promiscuity of AsbA and AsbB with 

polyamine nucleophiles suggests some of the requisite selectivity in incorporating 

spermidine originates from the fact that it is one of the few polyamines present in the 

bacterial cytoplasm.  Indeed, among other molecules that acted as efficient nucleophiles, 

spermine is largely a eukaryotic polyamine (17) and norspermidine and AEPDA are 

naturally occurring in only a handful of species (22).  It is obvious spermidine or its 

metabolic precursors are present during infection, and while the implications of this 

during B. anthracis infection are complex, the evolutionary steps taken to use this 

common polyamine in the biosynthesis of petrobactin can be rationalized. 

As the structures of additional siderophores are elucidated, it stands to reason that 

further knowledge of their biosynthetic pathways may harbor insight into global 

metabolic changes during disease.  Many siderophore pathways utilize citric acid, 
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including some containing type B NIS synthetases that use ketoglutaric or oxaloacetic 

acid as a substrate instead (23).  Iron-regulated primary metabolism also affects 

availability of aromatic chelating groups in siderophores and contributes to other 

signaling processes.  In addition to the Fur-regulated shikimate pathway already 

described (11, 12), this includes the requirement of salicylate in Mycobacterium species 

above incorporation into siderophores (24) and the usage of the metal-sensitive quorum 

sensing molecule PQS which also contributes secondarily to iron entrapment (25).   

Adverse conditions encountered by bacteria during infection are compounded 

through antibiotic treatment; recent studies, particularly in E. coli, show antibacterial 

compounds with diverse targets lead to cell death through common perturbation mediated 

by Fenton reactions of both intracellular redox conditions and iron homeostasis (26). Not 

only does this disrupt Kreb’s cycle components (including the aforementioned aconitase), 

but such global change in cytoplasmic chemistry affects metabolism tied to the shikimate 

pathway (via indole production) and signals for colony-wide conversion of aspartate to 

polyamines (27); meanwhile B. anthracis also draws from the arginine pool for NO 

synthesis (curbing spermidine production) to mitigate oxidative damage during similar 

antibiotic challenge (28). Just as the cascades resultant from exposure to antibiotics or a 

hostile host environment are complex, understanding how bacterial siderophore 

utilization fits to these perturbations is not completely understood.  Nevertheless, by 

looking at the chemical composition and regulation of natural products like siderophores, 

further connections may be made to seemingly disparate aspects of a microbe’s life cycle 

and metabolism, revealing new layers of control coinciding with unique environmental 

conditions. 
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4.3 Macromolecular Organization of the Petrobactin Biosynthetic Complex 

 My research has primarily revolved around the characterization of individually 

purified polypeptide products of the asb operon.  The unincorporated side-products 

observed and unnatural excesses of substrates applied during the “one-pot” reconstitution 

reactions described in Chapter 2 and 3 are not present in wild type Bacillus culture (29).  

Thus, while it is clear that the functions of AsbA-E in trans are sufficient to reconstitute 

petrobactin in vitro, multiple factors suggest that higher order organization of the Asb 

proteins is necessary for efficient petrobactin biosynthesis within B. anthracis. 

AsbC, -D, and –E comprise the NRPS-like components encoded by asbABCDEF 

and mediate the transfer of 3,4-DHBA to petrobactin precursors.  As described in Chapter 

3, the promiscuous aryl-transferase AsbE will condense 3,4-DHBA (that has been loaded 

onto AsbD) to spermidine in vitro (30). Products of this reaction are not incorporated into 

petrobactin efficiently; thus, their formation depletes pools of 3,4-DHBA, spermidine, 

and ATP that could be applied to further petrobactin biosynthesis (29, 31).  AsbC 

adenylates 3,4-DHBA prior to its loading onto AsbD; however, as a further testament to 

the inefficiency of incorporating the catecholate moiety to petrobactin in vitro, 

adenylation occurs regardless of AsbD being present (30).  To partially overcome this, 

AsbD is added at a stoichiometric excess to AsbC, ensuring that most adenylated 3,4-

DHBA is incorporated onto a carrier protein and not simply hydrolyzed (which 

unnecessarily depletes ATP).  Unlike many NRPS modules which are covalently bound 

in a single polypeptide, AsbC-E are translated as separate proteins (32).  This said, 

preliminary pulldown experiments suggest the gene products do undergo specific 
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interaction when co-expressed and observed in a more native state (Fig. 4-1) than the 

affinity-tagged, individually-purified proteins used in most of the studies I have 

described.  It is easy to envision that formation of an AsbCDE heterotrimer may reduce 

the promiscuous activity associated with 3,4-DHBA incorporation described above that 

would otherwise detract from efficient formation of petrobactin in vivo.  

What is known of the quaternary structure of NIS synthetases primarily stems 

from the three crystal structures that are now available: the type A AcsD from 

achromobactin biosynthesis (33), the type C AlcC, from alcaligin biosynthesis (34), and 

AsbB, discussed in this work.  In these instances, heterologously over-expressed proteins 

were purified as a homodimer; however, the apparent dimer interface differed between 

the Type A (AcsD) which positioned active sites of each monomer outward in opposing 

directions, and the two Type Cs’ (AsbB and AlcC) interface over a relatively larger 

surface area with the two substrate binding pockets forming a larger cleft along the 

dimer.  Though a sufficiently diffractive crystal of AsbA has proven quite difficult to 

obtain, both anecdotal and computational inferences can be made about its 3-dimensional 

structure because of its close similarity to AsbB.  Sequence conservation in AsbA of 

residues involved in the AsbB homodimer interface suggest that during native expression 

of the entire asb operon, an AsbAB heterodimer may form in a similar fashion (Fig. 4-2 

A and 4-2 B).  Conversely, as a type A synthetase, AsbA may utilize a dimer interface 

similar to AcsD for interaction with an AsbB homodimer in formation of an AsbAB 

tetramer (Fig. 4-2 C and 4-2 D). 

AsbA performs the first committed step in petrobactin biosynthesis, and the 

preferred substrates of AsbA are primary metabolites kept at a consistent molar order of  
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Figure 4-1. Preliminary data suggesting interaction of AsbC, AsbD, and AsbE.  His6-
tagged AsbD pulls down co-expressed AsbC or AsbD in E. coli using Ni2+-affinity 
chromatography.  The homodimeric cytoplasmic protein AsbF is used as a negative 
control and does not appear to undergo the same tight interaction when co-expressed with 
AsbD.  Courtesy of Youngchang Kim and Lucy Stols of the Joachimiak group at 
Argonne Natl. Laboratory, IL.  
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magnitude in the bacterial cytoplasm (3x100-2x101 mM) (17, 35) necessary for an 

efficient rate of N8-citryl-spermidine formation as suggested by kinetic analysis in 

chapter 3.  AsbB has kinetic parameters similar to AsbA but lacks the abundance of its 

preferred acidic substrates, N1-(3,4-dihydroxybenzoyl)-N8-citryl-spermidine or N8-

citryl-spermidine, that AsbA encounters with citrate.  To achieve a similar reaction rate 

as AsbA, the local concentration of native substrates for AsbB could be increased by a 

“handoff” from interacting biosynthetic enzymes, overcoming the lag observed in vitro as 

downstream enzymes wait for a diffuse precursor to accumulate to levels where 

enzymatic activity can occur.  Though not experimentally proven, additional association 

of AsbCDE with upstream siderophore synthetases AsbA and AsbB would ensure 

presentation of spermidinyl biosynthetic intermediates as preferred nucleophiles for 

condensation with 3,4-DHBA (Fig. 4-2); meanwhile, this would avoid potential 

incorporation of unwanted amine solutes like spermidine, putrescine, and lysine.  

Furthermore, it is likely biosynthetic intermediates would be prematurely secreted if 

allowed to diffuse through the cytoplasm prior to encountering a trans-acting enzyme; 

this has been suggested by single asb gene deletion mutants of B. anthracis, which still 

secrete petrobactin precursors and side-products to culture media (29). 

Indeed, a closely-associated “conveyor belt” strategy of natural product 

biosynthesis is observed in polyketide synthase and NRPS pathways in which multiple 

catalytic domains are encoded on single polypeptides, which confers reaction order and 

increases overall flux through the pathway (36, 37).  Assuming then that polypeptide 

components of the petrobactin pathway do assemble into a macromolecular biosynthetic 

complex, the logical organization of this can be explored when considering how petro- 
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Figure 4-2. Hypothetical quaternary structure of natively expressed asb gene 
products.  Stoichiometry of proteins encoded by the asb transcript is kept equal in these 
scenarios.  (A) Channeling of biosynthetic intermediates through a putative Asb 
biosynthetic complex first through an AsbAB heterodimer followed by two consecutive 
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rounds of an associated NRPS-like AsbCDE complex.  (B) An alternate route in which 
the product of each NIS synthetase is subsequently dihydroxybenzoylated by AsbCDE.  
(C) Possible pathway through a multimer capitalizing on demonstrated homodimeric 
interactions of AsbB as well as heterodimeric interactions with AsbA speculated on in 
this work.  Solid and dashed arrows represent two rounds of biosynthesis occurring in 
parallel through the complex.  (D) As a final possibility, homodimers of AsbA and AsbB 
interact in repeating units for formation of a larger megacomplex. 
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bactin is constructed.  While AsbA and AsbB perform single, early steps, the aryl-

transferase complex AsbCDE must perform two dihydroxybenxoylation condensation 

reactions either consecutively or after incorporation of one spermidine by AsbA and 

again after a second spermidine by AsbB.  How the growing petrobactin molecule is 

“ping-ponged” in three-dimensional space between siderophore synthetases to aryl-

transferase components of the pathway (Fig. 4-2) will likely only be elucidated through 

expression of the intact asb operon under more native conditions (lower copy number of 

protein, transcribed from a single mRNA, with fewer affinity tags) or by direct imaging 

of B. anthracis during iron-limited growth. 

 

4.4 Chemical and Therapeutic Application 

 Characterizing the biochemical components of petrobactin biosynthesis was a task 

that fully occupied the research described in this dissertation; however, it was performed 

with multiple practical goals in mind.  Among siderophores, petrobactin is of particular 

interest, as it is required for virulence of B. anthracis (32, 38), and depriving the 

pathogen of iron acquisition became a logical new target to combat pathogenesis.  Along 

the way, the possibility of petrobactin analogs as therapeutics became apparent, and 

applying wild type or engineered portions of asbABCDEF in a chemoenzymatic approach 

to create compounds structurally similar to the siderpohore is a logical next step.  Indeed, 

an expansion of chemical diversity, though perhaps without a direct application, has 

already been achieved in characterizing the promiscuity of condensation enzymes like 

AsbB and –E.  It is possible that upon improving efficient production of petrobactin and 

analogs thereof, further diverse applications for these compounds may be uncovered. 
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Siderophore-related antimicrobial strategies  

 To date, NIS biosynthetic pathways have been described in over 40 species of 

bacteria; many of these are pathogens.  The general activity of NRPS-independent 

siderophore synthetases is conserved while subtleties of the incorporated substrate vary 

considerably (2, 39, 40).  Isolation of an NIS synthetase inhibitor could be applied to a 

broad spectrum of strains reliant on siderophores, including B. anthracis, S. aureus, E. 

coli, and Burkholderia spp., or, upon discovery, tailored to further mimic a given 

pathway’s intermediate and minimize nonspecific inhibition of commensal strains.  

While targeted synthesis has produced inhibitors of the AsbC adenylation domain in 

vitro, this activity did not extend to live Bacillus (29).  A separate approach is now being 

taken where high-throughput adenylation assays involving purified AsbA and the related 

S. aureus synthetase SbnE are screened for inhibitors from natural product extracts at the 

University of Michigan Center for Chemical Genomics.  These experiments are now 

being conducted by other members of the Sherman group, yielding preliminary hits, some 

of which are active on multiple synthetases and show bioactivity in a secondary assay. 

An alternate route toward capitalizing on B. anthracis siderophore dependency 

during infection focuses on the structure of petrobactin (Fig. 4-3 A).  As mimics of the 

siderophore, petrobactin analogs may bind and block the highly specific components of 

the now-defined petrobactin ABC importer complexes or function as a molecular “Trojan 

horse” to deliver antimicrobial chemicals to the bacterial cytoplasm via the same uptake 

machinery (Fig. 4-3 B).  Biophysical characterization of the FpuA receptor, subsequently 

shown to be the only receptor required for petrobactin uptake in B. anthracis, suggest the 
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central citrate moiety to be crucial for recognition (41, 42).  For practical purposes, any 

appending of a petrobactin analog should then occur on portions of the catecholate 

moieties or polyamine arms.  The latter was demonstrated in a proof-of-concept 

molecular probe that successfully co-precipitated the petrobactin receptor of B. cereus 

(43).  Ligand-binding of FpuA also becomes more efficient upon complexation of 

petrobactin with iron (42), thus it seems logical that to have much microbiological 

significance, the chelating capacity—or at least the general 3-dimensional conformation 

occupied by the ferri-petrobactin complex—should be retained by compounds explored 

in the future. 

Section 4.2 of this chapter discussed the complex downstream effects iron is 

suggested to have on the eventual redox-associated cytotoxicity of many antibiotics; this 

highlights the role siderophore-mediated iron uptake might play in affecting potency of 

new chemotherapeutic methods.  Experimentation with siderophore-artemisinin 

conjugates in both a Plasmodium and Mycobacterium model demonstrated iron 

sequestration by test compounds was necessary for optimal bioactivity—presumably via 

Fenton chemistry with the peroxide moiety of the artimisinin warhead (44).  Meanwhile, 

iron is necessary for the full activity of some antibiotics, most notably streptonigrin (45), 

though how efficacy of this compound might be improved as a siderophore conjugate has 

not been explored.  More generally, recent analysis of uropathogenic Pseudomonas 

aeruginosa isolates also demonstrated increased tolerance of antibiotics with disparate 

cellular targets when strains were cultured in iron-depleted conditions (46, 47). It should 

be noted that despite these intriguing findings, in many cases, depletion of free iron 

remains an impediment to establishment of a bacterial infection, and preventing the 
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metal’s acquisition still holds promise as a chemotherapeutic method.  Whether iron 

“helps or hurts” appears largely dependent on the redox state a bacterial community 

resides in and suggests a more thorough comprehension of the multifaceted web of 

biochemical events mediated by iron is prudent when investigating new antimicrobial 

targets. 

 

De novo chemoenzymatic production of petrobactin analogs. 

Attempts at chemoenzymatically creating petrobactin analogs are still in their 

nascent phases (Fig. 4-3 C).  The tolerance of AsbA for unnatural nucleophiles was 

described previously (31) and expanded on, along with that for AsbB, in Chapter 3.  

However, in vitro enzymatic reconstitution by substituting spermidine with other 

nucleophiles to create petrobactin analogs that possess two unique polyamine arms has 

not proven successful.  This suggests that unnatural products of AsbA are not efficiently 

bound downstream at the AsbB active site in an analogous fashion as spermidinyl-citrate, 

which involves many specific electrostatic interactions (Chapter 3).  It has also been 

speculated that the regioselective capacity AsbA and AsbB have toward spermidine 

prevents rampant incorporation of multiple repeating polyamine and citryl subunits (31).  

In deviating from the preferred spermidine as the only nucleophile presented to AsbA and 

-B, perhaps such polymerization occurs—the products of which would not be easily 

isolated by mass spectrometry due to the multiple charges incorporated.  It is in fact the 

native regioselectivity AsbA and -B place on spermidine that makes it so interesting from 

a synthetic standpoint.  To contrast the singular activity of just AsbA, at least four steps 

(with  much  lower  yield)  are  required  to  produce  a  racemate  of  its  product  with  
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Figure 4-3. Repurposing petrobactin biosynthesis for creation of novel compounds.  
(A) The structure of petrobactin for reference.  (B) Two “Trojan horse” designs 
demonstrating a combinatorial approach to creating a siderophore analog scaffold and 
complexation with bactericidal Ga3+.  (C) Promiscuity of condensation enzymes 
including AsbB and AsbE will allow creation of siderophore analogs with variable 
polyamine arm or aromatic moieties incorporated, respectively. 
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spermidine in the proper orientation synthetically.  It is possible that engineering of AsbA 

and AsbB could focus this selectivity to other asymmetrical compounds or widen the 

nucleophile binding pocket to accept larger, branching substrates. 

Among NISs characterized, petrobactin is unique in the fact that it contains two 

aromatic chelating moieties.  This not only imbues the compound with a higher affinity 

for iron, but renders it and many of its precursors much more isolable and observable 

than similar NISs including the staphyloferrins, achromobactin, and aerobactin (40, 48).  

While AsbE is promiscuous in transfer of 3,4-DHBA from the aryl carrier protein AsbD 

to nucleophiles, initial activation of 3,4-DHBA by AsbC is much more selective and 

represents the largest hurdle in chemoenzymatic creation of petrobactin analogs with 

non-native terminal functionalities (Fig 4-3) (30).  To overcome this, a fellow graduate 

student in the Sherman group, Doug Hansen, and I attempted a previously explored 

methodology (49) to bypass AsbC altogether by chemically loading the 

phosphopantetheine arm of AsbD with thiophenol derivatives of organic acids analogous 

to 3,4-DHBA (Fig. 4-4 A).  In a pilot experiment, synthesized compounds thiophenylated 

3,4-DHBA (3,4-DHBA-SPh) and thiophenylated 4-chlorobenzoic acid (4-CBA-SPh) did 

form an amide bond with spermidine when incubated together; however, this appeared to 

be independent of the activity of AsbD or AsbE  in  all  but  one  instance:  di-4-

chlorobenzoylation  of  spermidine  could  not  be accomplished without AsbD and –E 

present (Fig. 4-4 B).  Whether or not these proteins will be required in reaction of 

thiophenylated derivatives with the petrobactin precursors now presumed to be native  
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Figure 4-4.  Incorporation of unnatural aromatic moieties utilizing thiophenol 
derivatives.  (A) The general reaction with the carrier protein AsbD and the aryl 
transferase AsbE.  (B) LC-MS traces of selected m/z depicting enzymatically-dependent 
formation of bis-(4-chlorobenzoyl)-spermidine and spontaneous mono-(4-
chlorobenzoyl)-spermidine products. 
  

 

 



129 
 

substrates of AsbE remains to be determined.  Creating petrobactin analogs with replaced 

aromatic moieties using this strategy requires that the AsbAB reaction be scaled up to 

obtain the polar bis-spermidinyl-citrate “core” of petrobactin.  Ideally, a suite of 

petrobactin analogs obtained from the methods described would then be probed for 

bioactivity either as a siderophore or in blocking native siderophore recognition. 

 

Applying isolated natural products. 

Purified petrobactin has been used in the characterization of siderophore uptake 

pathways of Bacillus (41, 50, 51), and also as an exogenous compound in 

“xenosiderophore” studies with other species (52).  Complexation of purified 

siderophores with metals other than iron has been explored, including in bioremediation 

of heavy metal contaminated ecosystems (53) and in delivery of cytotoxic metals to 

bacteria (54, 55). Falling in the latter group, Ga3+ has a similar valence and size as Fe3+, 

but cannot be biologically reduced.  Data from the Hanna lab demonstrates gallium exerts 

a petrobactin-mediated toxic effect on vegetative bacilli (41, 50).  Furthermore, free 

gallium salts have shown efficacy in certain bacterial infection models, albeit with 

expected side effects (56). Pre-complexation of petrobactin with gallic ions (Fig. 4-3 B) 

may target the toxic metal exclusively to cells utilizing the siderophore, perhaps making 

gallium a druggable option in future anthrax cases. 

The gallic-petrobactin complex represents a relatively simplistic approach to the 

“Trojan-horse” method of drug delivery, which has been applied to siderophore uptake 

pathways to some success in the past (44, 55, 57) and described earlier in this section.  In 

collaboration with Dr. Alex Hoffmaster at the CDC, another method is being explored by 
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the Sherman group that aims to target B. anthracis for destruction.  Purified natural 

product precursors from a ΔasbB biosynthetic mutant provide substrate for enzymatic 

conversion by AsbB to starting material for a final synthetic process that will incorporate 

a polymorpholino or antibiotic warhead to a petrobactin molecule.  The combinatorial 

approach being taken to produce these petrobactin analogs highlights the two main 

focuses of my dissertation effort: purification of siderophores or siderophore precursors 

and analyzing the activity of heterologously-expressed biosynthetic proteins. 

Through research that has occurred over the past decade, including the body of 

work presented in this dissertation, petrobactin has become one of the best characterized 

siderophores derived from an NRPS-independent pathway.  The distribution of the asb 

pathway described in Chapter 2 and the even more expansive utilization of exogenous 

petrobactin explored by other researchers suggest the implications of this molecule in 

both pathogenesis and ecology have not been fully uncovered.  Terrestrial microbes 

capable of utilizing but not synthesizing petrobactin extend beyond closely related 

Bacillus species (32) to pathogenic strains of S. aureus (52).  Considering the widespread 

conservation of ABC importer systems homologous to the fpu and fat genes encoded by 

B. anthracis, the potential for petrobactin recognition is probably more widespread (3).  

Analysis of conserved asb operons suggests petrobactin production can be divided into 

two taxanomic and ecological branches (Chapter 2).  Within the marine niche, 

petrobactin chelates iron for Marinobacter spp. among others (58).  In this non-infectious 

context, the utility of the stealth 3,4-DHBA moiety as well as the purpose of sulfonated 

petrobactin derivatives produced by certain strains is unknown, but separate cellular 

localization or novel signaling function of petrobactin derivatives and alternative chelate 
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complexes has been speculated on (59-61).  Furthermore, isolation from oil spills, 

including the Deepwater Horizon site, of petrobactin-like compounds suggests some 

importance in bioremediation that warrants further exploration (62, 63).  The broad 

impact of fully characterizing petrobactin biosynthesis and understanding the role of this 

natural product in both disease-associated and environmental iron acquisition has yet to 

be realized; the foundation established by this body of work and that of my colleagues 

now sets the stage for future purposeful application of siderophore synthetase pathways 

in both chemistry and biology.  
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Appendix 

Further Comparison of Putative asb Gene Clusters 

 

In conjunction with Fig. 2-S2 in Chapter 2, following is a description of further 

bioinformatic analyses of genes homologous to those encoded by the asbABCDEF in B. 

anthracis.  The BLAST tool on the National Center for Biotechnology Information 

(NCBI) website was used for initial queries.  Sequences of individual protein products of 

the asb operon were applied to homology searches.  Bacillus and closely related genera 

were excluded to survey a wider range of diverse organisms’ transcribed genomes.  Hits 

ranged between 42% and 75% in primary sequence similarity. 
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Figure A-1. Synteny in asb genes from select species.  Each arrow is indicative of a 
separate open reading frame.  The color theme of each asb product is kept consistent 
throughout to indicate homologues (multicolored arrows indicate a fusion). Dashed lines 
indicate separation of different cluster components onto different loci on the genome. 
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Figure A-2. Divergence of selected asb products.  Cladograms display the probable 
evolutionary relationship of AsbB and AsbF based upon primary sequence similarity.  
Though not identical, general clade separation is similar between AsbB and AsbF among 
their respective homologues.  Generated from alignments performed on ClustalW2 on the 
European Bioinformatics Institute (EMBL-EBI) website. 
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Figure A-3. Phylogeny of select species harboring an asb-like gene cluster.  Relative 
distance of some asb-containing genomes is shown.  Though incomplete, organisms in 
diverse ecological niches and disparate taxonomy that likely have the capacity to 
biosynthesize petrobactin are depicted.  Such distribution of the asb cluster probably 
results from one or more horizontal gene transfers.  Based on the cladograms of Fig. A-2, 
homologues of AsbB and AsbF with primary sequences most similar to those from B. 
anthracis appear to originate from the branch containing F. pelagi and A. 
manganoxydans.  Possibly, a shallow-water relative of these species is responsible for the 
gene transfer events that allowed terrestrial Bacillus spp. and deep water Marinobacter 
spp., among others, to produce petrobactin.  Generated using the distance function on the 
U.S. Department of Energy Integrated Microbial Genomes (IMG) website. 
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