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CHAPTER I

Introduction

The classical Hospital Admission Scheduling and Control (HASC) problem identi-

fied the late 1970s addresses one of the major systemic failures in hospital care deliv-

ery, census variability, through better management of inpatient admissions. Solution

methodologies to reduce this variability are now known as census smoothing. This

work solves the both the scheduling and the control portion of the HASC problem

to optimality. The patient flow modeling and optimization approaches are further

extended to fast-track priority patients through networks of specialist services. The

research is validated and the impact is demonstrated through collaborations with

multiple hospitals across three continents.

1.1 From Practice to Theory: A Scientific Approach to the Patient Flow
Optimization.

This work was developed over four years of collaborative research with hospi-

tals and healthcare providers around the world. We have worked with both large

and medium sized hospitals and teaching and non-teaching hospitals in 4 different

countries. The causes and consequences of census variability detailed below, along

with the classic workload patterns that lead to systemic hospital congestion were

observed in every case. From this research, we conclude that the problem we address
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is a global one which, despite the difference among hospitals and healthcare systems,

occurs with remarkable consistency. Our partner hospitals have agreed that the ap-

proaches developed herin merit development and implementation as a path toward

sustainable care delivery that has high quality, excellent access, and low cost.

1.2 Consequences of Census Variability.

Hospital census variability is problematic throughout the world and impacts cost,

access, quality and safety in healthcare delivery. Studies show that census variabil-

ity leads to Emergency Department (ED) overcrowding, radiology backlogs, nurse

burnout, and overcrowding in the Intensive Care Unit (ICU) and Post Acute Care

Unit (PACU). This results in compromised quality of care, emergency patient di-

versions, excessive inpatient Length of Stay (LOS), and significant excess cost (see

[54, 83, 14, 36, 69, 77, 79]). Figure 1.1(a) is a census time series from a partner

hospital that illustrates typical census variability. Furthermore, most hospitals also

exhibit a pattern of a mid-week census spike followed by a sharp drop in census (see

1.1(b)). This weekly census “hump” contributes to hospital overcrowding despite a

modest average census (the dotted line in Figure 1.1(b)).

150

170

190

210

230

250

3/22 4/5 4/19 5/3 5/17 5/31 6/14 6/28 7/12 7/26 8/9 8/23 9/6

C
e
n
su
s

Date

Hospital Census for 2008

100

150

200

250

2/3 2/5 2/7 2/9 2/112/132/152/172/192/212/232/252/272/29 3/2 3/4 3/6 3/8 3/10

C
e

n
su

s

Date

Hospital Census: Feb - March

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com   For evaluation only.
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Figure 1.1: Census variability in hospitals.

Census variability in combination with the mid-week hump contributes signifi-

cantly to one of the major systemic problems in hospitals: “bed block.” When bed
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block occurs, emergency patients are forced to remain in the emergency department

or in the hallway until a bed becomes available. This contributes to emergency

department overcrowding (see [18, 47, 20]). When emergency departments become

overcrowded, patient wait times increase dramatically along with the rate of acci-

dents and mortalities (see [83]). Based on data from a partner hospital, we found

that the cyclic census hump (see Figure 1.2(a)) contributes significantly to avoidable

mid-week patient blockages and cancelations (see Figure 1.2(b)). The dotted line in

these figures demonstrates the potential benefit of smoothing census across the week

based on a high fidelity simulation incorporating the mechanisms developed here.

The two census plots exhibit the same average daily census; however, the smoothed

census benefits from significantly reduced blockages.
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Figure 1.2: Controlling census variability in hospitals.

Quality of care also suffers from lack of census smoothing. Census variability

leads to highly variable workloads for the nursing staff, labs, radiology, pharmacy

and others. Overloaded nursing staff is linked to mortality, nurse burnout and job dis-

satisfaction (see [2]). While float nursing pools and other “chase” staffing strategies

can be used, quality of care suffers and staff dissatisfaction increases (see [8, 53]). Ad-

ditionally variable workloads create large backlogs in radiology and ancillary services

that delay diagnosis, treatment and patient discharge (see [72]). Census variability
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has also been linked directly to increased LOS, worsening patient disposition (see

[20]), and even increased mortality rate (see [83, 79]).

To cope with high levels of congestion and overcrowding, hospitals have devel-

oped complex routing policies to take advantage of the flexibility of most bed wards:

i.e., diverting overflow surgical patients into medicine ward beds. Patient safety,

however, is not well served by placing patients “off-unit” (see [3]). Another conse-

quence of off-unit placement is that elective surgical admissions can contribute to

ED overcrowding, as surgical patients often overflow into medicine wards, blocking

ED patients, whose primary destination is the medicine ward (see [45]).

1.3 Causes of Census Variability.

It is well known that both a weekly pattern in elective admissions (see Figure

1.3(a)) and the week-to-week variation in number of elective admissions on a given

day (see Figure 1.3(b)) significantly contribute to both the weekly census hump

and the week-to-week variation in census causing hospital congestion and patient

blockages (see [4]). While these figures represent one hospital, our work with hospitals

on three continents reveals the same pattern in every case and confirms what other

researchers have found (see [33, 36]). The weekly census “hump” is generated by a

weekly elective admission pattern that is heavily front-loaded and tapers off later in

the week (see Figure 1.3(a)). The variability around the daily mean census can be

attributed to the significant variation in the number of elective admissions scheduled

on a given day from week to week. Figure 1.3(b) illustrates that the number of

Monday elective admissions ranges widely from 8 to 170.

Table 1.1 demonstrates the magnitude of variability in the number of elective

admissions by day of week (DOW). It may be surprising to note that elective admis-
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Figure 1.3: Variability in elective admissions over the course of one year.

sions actually exhibit higher coefficient of variation (i.e. standard deviation divided

by mean) on many days than emergency admissions. Because elective admissions are

more variable than emergency arrivals, despite the fact that they are controllable,

we emphasize elective admission stabilization in our census smoothing approach.

Category DOW Std. Dev Mean CV
Emergency Elective Emergency Elective Emergency Elective

Hospital Sun 8.44 5.51 48.23 16.57 0.18 0.33
Hospital Mon 13.23 32.98 64.79 117.32 0.20 0.28
Hospital Tue 11.64 17.98 62.17 142.26 0.19 0.13
Hospital Wed 10.59 23.88 57.53 114.79 0.18 0.21
Hospital Thu 13.89 28.93 58.02 142.04 0.24 0.20
Hospital Fri 10.96 20.49 64.79 101.09 0.17 0.20
Hospital Sat 8.94 4.76 52.69 12.83 0.17 0.37

Table 1.1: Variation in numbers of total elective and emergency admissions by day of week (DOW).

The high level of workload variability, both seasonality and week to week variabil-

ity, demonstrated above for one partner hospital is rife throughout the healthcare

system, whether one considers hospitals or networks of outpatient specialist services.

Because much of the variability is caused by the healthcare providers themselves,

there is the possibility for significant, impactful change through improved patient

scheduling and control.
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1.4 A Path Forward: The Optimization of Patient Flow

This research seeks to stabilize workloads in healthcare networks by optimizing

patient admissions. The three chapters discuss different mechanisms for managing

admissions in different healthcare situations. Chapter II explores queueing network

optimization methods for designing workload stabilizing schedules for hospitals – the

scheduling portion of HASC. Chapter III addresses the control portion of the HASC

by proposing a heuristic policy based on insights from a Markov Decision Process

for dynamically managing admissions in hospitals. Chapter IV extends the queueing

network optimization approach from Chapter II to a network of outpatient specialist

services, developing a two stage optimization to address the needs of priority patients

in healthcare systems. Finally, Chapter V reviews the important contributions of the

work from both the theoretical and the application perspective.



CHAPTER II

Design and Optimization Methods for Elective Hospital
Admissions

This chapter focuses on the scheduling portion of the HASC problem. That is, the

approach seeks to optimize the scheduling of elective admission to smooth workloads

across the network of services delivered by a hospital. This chapter develops new

analytical models of controlled hospital census that can, for the first time, be incor-

porated into a Mixed Integer Programming model to optimally solve the scheduling

portion of the HASC. This new solution method stabilizes elective admissions and

coordinates admissions with other hospital subsystems to reduce system congestion.

We formulate a new Poisson-arrival-location model (PALM) based on an innovative

stochastic location process that we developed and call the Patient Temporal Re-

source Requirements (PATTERN) model. The PALM approach is then extended to

the class of deterministic controlled-arrival-location models (d-CALM). This work

provides the theoretical foundations for an efficient admissions management system

as well as a practical decision support methodology to stabilize hospital census.

2.1 Smoothing Hospital Census

Hospitals with high throughput (achieved through better resource usage) can

provide better access to their community at a lower cost. Thus the key to efficient

7
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hospital management is high throughput with limited blockages. To smooth the

hospital census the hospital must address both (1) the census mid-week “hump” and

(2) weekly variability in admissions. The key to smoothing the hospital census lies

in modeling the downstream time-phased patient resource requirements to inform

hospital admission and scheduling decisions. In particular it is important to consider

the ward/bed requirements for any mix of admitted patients over the course of their

hospital stay. This translates into developing a model-based forecast of ward census

levels over time for any particular mix and volume of patient admissions. We develop

a computationally tractable model by statistically characterizing patient pathways

through wards based on historical data.

The importance of census levels and census variability to admission decision mak-

ing has been studied in several contexts. Connors uses stochastic patient flow models

to link admissions decisions with hospital census [12]. Harrison uses simulation to

show that census variability in combination with high census levels increases the risk

of hospital overcrowding [36]. Jun argues that effective patient flow management can

benefit the hospital through high patient throughput, low patient wait times, short

LOS, and low clinic overtime [51] .

To effectively solve the Hospital Admission Scheduling and Control (HASC) Prob-

lem, models must incorporate control/scheduling decisions into census forecast mod-

els. Early work in this area began in the late 1970s with [32, 33, 26]. These early

approaches took a comprehensive simulation modeling approach to the entire patient

care pathways through the network of wards that comprise the hospital. Schedule

improvement relied on a simulation-based heuristic approach to modeling the impact

of admissions on census levels. Using simulation, the landmark work [33] designed

and implemented an inpatient admissions scheduling and control system to achieve
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high average census subject to constraints on the number of cancelations and emer-

gency patient blockages. [21, 22, 11, 1, 4] have all studied the impact of elective

admissions on census levels in various wards, optimizing schedules with Mixed Inte-

ger Programming (MIP) models. Recently, [35, 40] used simulation frameworks to

improve scheduling decisions for better hospital resource usage.

[41] presented a Markov Decision Process (MDP) approach that focuses on the

control side of the HASC problem to dynamically manage an inpatient call-in queue

and elective surgery cancelation. It also showed via simulation that it can be effective

to manage the scheduling side of the HASC problem. Given the high impact elective

scheduling has on system performance, this chapter makes a contribution by (1) de-

veloping analytical census modeling methods, rather than simulation-based methods

and (2) embedding them in a non-heuristic optimization to solve the scheduling side

of the HASC problem and to yield significant managerial insight.

Past work has either been simulation based, or has not considered the full HASC

system dynamics. For example, the MIP papers focus on a single ward or isolated

feedforward subset of hospital resources. The scope of our work includes modeling

the entire hospital, full patient care trajectories, and census levels by ward; moreover

it includes the far more realistic generalized network dynamics of the hospital wards

and the use of flexible wards to serve patients off-unit. In short, we are able to

solve the scheduling side of the complete HASC problem exactly using non-heuristic

optimization methods. To our knowledge, this has not been done before and thus

our work represents a significant advance in basic science and understanding of the

important HASC problem. To better capture the hospital dynamics, we model the

hospital as a general network of interacting wards/units, incorporating the two pri-

mary types of interaction between wards that were not previously considered: (1)
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transfers between different wards within the hospital as a result of a change in the

patient’s condition and (2) the use of off-unit capacity when a patient’s primary ward

is full. Consider a patient who arrives for surgery and is placed in an ICU bed for

recovery. When the patient’s condition improves, they transfer to a surgery bed for

the remainder of their stay. Alternately, consider a surgical patient who leaves the

operating room and must be placed “off-unit” (e.g. in a medicine ward), because all

surgical beds are occupied.

Ignoring the off-unit and inter-ward transfer mechanisms omits critical dynam-

ics of hospital system functioning. In one of our partner hospitals 56% of patients

transfer wards (after being admitted to an inpatient ward) at least once during their

hospital stay and among patients who transfer, the average is 1.6 transfers per visit.

Considering only the first ward, or a feed-forward subset of wards, ignores a signifi-

cant load that patients place on other hospital resources. Off-unit interactions must

be considered because, while placing patients off-unit is feasible, it is not desirable

for patients or hospitals. Nursing skills differ from ward to ward, so the mismatch

presented by off-unit patients detracts from quality of care (including safety) as well

as nurse satisfaction (see [8]). Research shows that patients placed off their preferred

ward experience more bottlenecks to discharge, increasing length of stay (see [3]).

Additionally, the percent of off-unit patients is often quite significant; even in one of

the better managed hospitals we worked with around 17% of patients were located

off-unit.

In all previous research on HASC, the models that have considered total system

flow lack a non-heuristic optimization component. On the other hand, the existing

optimization models fail to consider complete patient trajectories through a general

network of hospital wards as well as off-unit interactions. A primary contribution
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of this chapter is in linking models that optimize system-level objectives to stochas-

tic models of patient flow using complete patient trajectories through a network of

hospital wards and the modeling of ward interaction mechanisms.

2.2 Characterization of the Stochastic Census Process

Figure 2.1(a) illustrates our methodological approach. We model the hospital as

a network of interacting wards. The primary resource modeled is the hospital beds,

differentiated by ward. The model uses the detailed temporal resource requirements

via a data-driven network patient flow model to inform elective admission decisions

while accounting for the resource requirements of the emergency patients. By opti-

mizing elective admissions, accounting for the ED and ward beds, we show that it is

possible to determine the volume and mix of elective patients to generate a consis-

tent, stable workload and minimize blockages and cancelations while maintaining or

increasing patient throughput.
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Figure 2.1: Variability in elective admissions over the course of one year.

We begin by developing a stochastic model of patient flow through the network

of hospital wards. As a basic building block, we first characterize the patient care

pathway for each patient type. While the model is adaptable to many different
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definitions of patient type (e.g. diagnosis/Diagnosis Related Group, preferred ward

upon admission, etc.), we consider patient type to be the patient’s admitting service

(e.g. cardiac, gastrointestinal, neurology, etc.). We generate a probabilistic flow

model of the resources (beds) used by a patient of a given type over their entire stay

in the hospital. Figure 2.1(b) shows the expected load (which is also a probability) a

cardiology patient places on hospital wards over the course of their treatment, where

the y dimension indicates days after admission.

After we characterize the elective census level in each ward for a given elective

schedule using these care pathways, we combine the elective census process with the

emergency census process to characterize the total census levels in each ward for

a given elective admission schedule by day of week. Finally, this census process is

linked to elective admission decision variables in an optimization model to determine

the optimal mix and volume of patients over time subject to system performance

constraints. In our case study we consider constraints on bed block, for example.

2.2.1 System Design and Assumptions

We begin by clarifying the modeling assumptions and the perspective of our ap-

proach. In our admission plan design, we allow for a specific planning horizon (e.g.

a week) and, when the system goes beyond the planning horizon, the admission plan

is repeated exactly as before. This means that we are working with a cyclostationary

system in equilibrium. From a practical standpoint a weekly cycle is appealing to our

hospital partners. Since doctors usually have fixed clinic times, OR time, research

time, etc. each week, a repeating elective admission schedule fits well within the

practical constraints of the hospital environment.

Another design element of our system is that the number of elective patients

to be scheduled is deterministic. Elective admissions are usually scheduled with
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sufficient lead times that allow the control of the number of patients of a particular

type (e.g. knee replacement) to be performed on a specific day of the week. As

noted in Chapter I, a primary cause of census variability is the extreme variability

in the number of elective admissions from week to week. Figure 1.3 underscores the

extent to which elective admissions deviate from the mean volumes from one week to

the next. Overcoming schedule instability requires organizational change to enforce

operating discipline on the admissions decision makers. This requires leadership,

but the approach is welcomed once it is realized that the changes benefit patients,

physicians, nurses and administrators in important ways. This chapter focuses on a

centralized control approach, but other approaches could consider pricing schemes on

operating room time that vary by day of week. If such an approach were preferable

this chapter will still provide the goal that such an incentive scheme should drive

toward. While deterministic elective arrivals will only be approximated in practice,

the necessity of stabilizing the volume of elective admissions from week to week has

been highlighted in several papers in the literature (see [4, 32, 21]).

A further assumption is that the care path of each patient is independent of other

hospital inpatients. This is a mild assumption considering our approach to census

modeling. Specifically, we initially develop models of demand for hospital services

without regard for hospital capacity. In essence, we assume infinite capacity when

developing our census models and therefore one patient does not block or otherwise

alter the care path of another patient. Capacity requirements are then superimposed

on the raw demand model for calculating patient service metrics.

Finally, we anticipate our elective admissions system being used most often at a

daily granularity because this gives more flexibility and locates decision making power

with admission planners, increasing likelihood of acceptance of our management
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system. The examples that follow present the elective admission system in terms

of days, though the modeling approach is significantly more general.

2.2.2 Development of the PATTERN Stochastic Location Process Model

To understand the effects of scheduling decisions and emergency arrivals on census

levels across the network of hospital wards, consider as a building block the resource

(bed) requirements of a single patient over the course of their treatment, which we

call Patient Temporal Resource Requirements (PATTERN). To describe the flow of

patients through hospital wards, we develop a stochastic location process model in the

spirit of [65, 66]. Some applications and extensions of this approach include [59, 62].

Let the state space be S =
{

1, . . . ,M · n,∆∗,∆∗
}

, where state i indicates that the

patient is currently in ward i, state ∆∗ represents the state where the patient has left

the hospital (i.e. discharged) and ∆∗ represents the state where the patient has not

yet arrived at the hospital. Patients move through the state space according to the

S-valued stochastic location process
{
Ls(t) : s ∈ R

}
, where s is the arrival time and

t > s is the time of interest. For notational convenience we let S = S0∪{∆∗,∆∗}, so

that S0 represents the locations within the hospital. Thus Ls(t) denotes the location

of a patient at time t given that the patient was admitted at time s.

Remark II.1. The fact that Ls(t) can depend on s enables the modeling of a key

hospital feature that the length of stay and care path can depend on the time of

admission

As an example of the remark, discharge policies often differ on weekends. Also,

high mid-week congestion forces off-unit placement that can increase length of stay.

To characterize the stochastic location process, let Σs be the set of right-continuous

functions with left limits that first enter the hospital S0 at time s. Thus, Σs represents

the set of all possible sample paths of the stochastic location process Ls(t). An
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element σs ∈ Σs is a (deterministic) mapping σs : R→ S such that σs(t) represents

the location of the patient at time t. Implicitly, σs ∈ Σs has the property that

σs(s) ∈ S0 and σs(t) = ∆∗ for all t < s. Figure 2.2 represents three different sample

path functions. The solid line represents path σs1(t), a sample path of the process

Ls1(t), the dashed line represents the path σs2(t), a sample path of the process

Ls2(t), and the dotted line represents the path σs3(t), a sample path of the process

Ls3(t). Path σs2(t), for example, represents a patient who arrives at time s2 at ward

1, transfers to ward 2 for a brief stay, and then returns to ward 1 before being

discharged slightly before time t. Note that a location function σ ∈ Σs is a right-

continuous step function that takes values in S0 over a continuous interval [s, Ts) for

some finite Ts and that σ(t) = ∆∗ for t < s and σ(t) = ∆∗ for t ≥ Ts.
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Figure 2.2: Patient sample care paths.

We let the entire function space Σ be the collection of all Σs. For any subset Γ ⊆ Σ,

there is an associated probability measure, Ps(Γ), that represents the probability

associated with a set of location functions. The s subscript in the probability measure

denotes the time of the patient’s arrival so Ps(·) characterizes the dynamics of the

stochastic location process, Ls(t). Note that Ps(Σs) = 1 and Ps(Σt) = 0 for t 6= s.

We will demonstrate how this measure is used to find the probability that a

patient is in ward u at time t, given that they arrived at the hospital at time s. We

first define a set of location functions and then a measure on that set that will yield

the desired location probability. Consider the set of location functions that describe
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whether the patient is in ward u at some time t. The measure of this set is the

probability of being in ward u at time t. To this end, define the set of sample paths

in Σ,

Γt,u =
{
σs ∈ Σs : s < t and σs(t) = u

}
,(2.1)

to capture the set of all location functions that place a patient in ward u at time

t. Of course to be in the hospital at time t, the patient must have arrived before

time t, which is implied by the conditions on the elements of the set. Moreover, we

require that the patient not remain in the hospital forever (consistent with [65]). As

mentioned, the specific measure of this set is defined by the dynamics of the location

stochastic process Ls(t). One common location stochastic process in queueing is a

semi-Markov process. The solution to such processes for general distributions and

general transition functions, however, is often intractable, requiring approximations

for solutions. Rather than rely on further approximation methods, we use the ap-

proach detailed in [38]. Each patient type will have their own stochastic location

model (in our case study we consider 20 different patient types). Thus for patient

type k

Ps,k
(
Γt,u
)

= ps,k,u(t− s)(2.2)

Ps,k
(
Γt,∆∗

)
= ps,k,∆∗(t− s) = 1−

W∑
j=1

ps,k,j(t− s),(2.3)

where ps,k,u(t) is the probability that a patient of type k who arrives at time s is

in ward u, t time units after admission to the hospital. These probabilities can be

obtained from historical data (see [38]). An example of these probabilities for discrete

time points for cardiology patients is shown in Table 2.1. Entry (j, t) of the matrix

represents the probability that the patient will require a bed in ward j, t time periods

(e.g. days) after admission. In this table, ward A3 is a cardiology ward, CCU is the
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critical care unit, and ICU is the intensive care unit, and C20 is a ward for short

stay patients (usually less than 2 days). The discrete version of the probabilities can

be described by a PATTERN Matrix. Note that the probabilities need not sum to

1 because implicitly the remaining probability mass not assigned to a ward is the

probability of the patient not requiring a hospital ward bed at time t.

Time (Days)
Ward 1 2 3 4 5 · · ·
A3 45.92% 37.54% 21.22% 19.16% 17.03% · · ·
C20 6.17% 0.14% 0.00% 0.00% 0.00% · · ·
CCU 7.10% 3.48% 2.34 % 1.14% 0.92% · · ·
ICU 0.14% 0.14% 0.14% 0.07% 0.07% · · ·

Table 2.1: Patient Temporal Resource Requirements (PATTERN) matrix for a cardiology patient.

2.2.3 The Emergency Census Process

There are several ways to characterize the emergency census process. [21] char-

acterizes the process for a single ward in terms of means and variances. For our

purposes, we prefer a complete characterization of the emergency census process

over a network of wards. [48] developed an interpolation method based on histor-

ical flow data to characterize census quantiles, but this approach is incapable of

incorporating changes in the underlying dynamics of emergency patient flow. Fur-

ther, a complete approach characterizes a probability distribution on the number of

emergency patients by ward.

To approximate this probability distribution, we develop an approximation of

the emergency patient flow using the following scenario. For the time being, ignore

the elective patients and consider only the flow of emergency patients through an

otherwise empty hospital. Since we are first modeling just the demand for services,

we consider an open network of infinite server queues. Because of the infinite server

approach, we can model each ward as a cluster of infinite server queues with one

queue for each emergency patient type, each with its own non-homogeneous arrival
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rate, its own service distribution, and its own routing probabilities. In queueing, the

network for each patient type is denoted by [65] as
(
Mt/Gt/∞

)N
/Gt.

It has been shown that the non-stationary Poisson Process is a good model for

emergency patient arrivals (see [36]), and we allow for general, non-stationary ser-

vice time distributions as well as non-stationary routing probabilities that may also

depend on the length of stay in a given ward. The feature of interest in this model

is, of course, the number of patients demanding a bed in each ward as well as the

total number of patients demanding a bed in the hospital. This requires obtain-

ing distributions on subsets of the vector state space. If there are M wards and n

emergency patient types, then we are considering a network of M · n queues. Let

Wi(t) = Q1
i (t) + Q2

i (t) + · · · + Qn
i (t) represent the amount of emergency patient

demand for ward i at time t, where Qj
i (t) is the demand of type j patients for ward

i. Analogously, Q(t) =
∑M

i=1

∑n
j=1Q

j
i (t) represents the total emergency patient load

placed on the hospital at time t. These two quantities are sufficient for our later

analysis in which we overlay capacity constraints on the demand model to calculate

blockages and off-unit census.

2.2.4 PATTERN Poisson-arrival-location Model (PALM) of Emergency Census

To specify the PATTERN PALM model for the emergency census process we rely

on the Poisson random measure approach proposed by [65]. In this model patients

arrive according to a non-homogeneous Poisson process and then flow through the

hospital according to our PATTERN stochastic location process Ls(t) described in

Section 2.2.2. Details of the standard Poisson random measure and its extension to

a doubly stochastic Poisson process can be found in the Appendix 2.5. We define

our PATTERN PALM random measure in terms of the composition of the standard

Poisson random measure M, and the PATTERN intensity measure, µ. In this section
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we refer toM, the set of measures µ on R+, and N = {µ ∈M : µ(t) ∈ Z+}, the set

of measures µ ∈M that yield integer values. Additionally, B(·) represents the Borel

sigma algebra. Full definitions and descriptions of these concepts are detailed in the

Online Appendix.

Here we provide an alternative definition of the intensity of the Poisson random

measure for the PALM model to enable the extension of the arrival-location modeling

approach to deterministic controlled arrivals in Section 2.2.5. We begin by specifying

the location random measure in a similar manner to the definition of the standard

Poisson random measure. That is, we define a mapping from the probability space

(Σ,B,P) into the measure space (M,B(M)). Let the probability that a patient of

type k arriving at time s is in ward j at time t be defined as

Pk(σs ∈ Σs : σs(t) = j) ≡ Ps,k(σ ∈ Σ : σ(t) = j) =

 0 if t < s

ps,k,j(t− s) if t ≥ s.

(2.4)

The random location measure of the stochastic process, Ls(t), for the subset of wards

J ⊆ S is then specified by

Λk,s(t,J , σ) =

 1 if σ(t) ∈ J , σ ∈ Σs

0 otherwise.

(2.5)

Now we can specify the random intensity measure, Nk, for patients of type k

by combining the non-homogeneous Poisson arrival process having nonnegative de-

terministic integrable external-arrival-rate function αk(t) ∈ R+ with the location

random measure from Equations 2.4 and 2.5. The arrival rate function, αk(t), drives

the number of type k emergency patient arrivals. Once a patient has arrived at time

s, the patient then flows through the wards according to the PATTERN stochastic

location process, Ls,k(t) with dynamics driven by the probability measure Ps,k(·).
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The rate of flow into the group of wards J at time t of type k arrivals entering

the hospital at time s follows by multiplying the non-stationary arrival rate by the

stochastic location random measure: αk(s)Λk,s(t,J ). Random measure Nk gives the

random arrival-transition intensity to wards J at time t of type k arrivals entering

the hospital over the interval (a, b].

(2.6) Nk((a, b], t,J ) =

∫ b

a

αk(s)Λk,s(t,J )ds.

Intuitively, this can be related to Poisson splitting of a non-homogenous Poisson

process. The external arrival intensity drives the number of arrivals over a period of

time; however, each arrival will be in a particular location depending on the location

stochastic process Ls(t). Therefore the external arrival intensity is distributed across

the wards (or “departed”) over time. Because Nk is a random intensity, M ◦Nk is

a random measure that represents a doubly stochastic Poisson process. For our pur-

poses, the mean arrival-transition intensity in combination with the Poisson random

measure is sufficiently precise and computationally efficient. The mean (determinis-

tic) transition intensity measure, µk, and it’s properties are defined in the following

lemma (proved in the Online Appendix):

Lemma II.2. For the deterministic average arrival intensity measure, µk, the fol-

lowing hold

(i) µk((a, b], t,J ) ≡ E[Nk((a, b], t,J )] =
∫ b
a
αk(s)

∑
j∈J ps,k,j(t− s)ds,

(ii) µk is a measure on R×R× S.

We combine the mean arrival-transition intensity measure with the standard Pois-

son random measure to obtain the PATTERN Poisson random measure for type k

patients, Mk = M◦µk. Let the Bi = (ai, bi]×ti×Ji represent the event that patients
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arrive at the hospital on interval [ai, bi) and those patients are in the set of wards

Ji ⊆ S0 at some time in the future, ti. Then Mk can be shown to have a product

form Poisson distribution with rate γi:

(2.7) P
(
Mk(B1) = m1,Mk(B2) = m2), . . . ,Mk(Bn) = mn

)
=

n∏
i=1

e−γiγmii
mi!

(2.8) γi ≡ E[Mk(Bi)] = µk((ai, bi], ti,Ji) =

∫ bi

ai

αk(s)
∑
j∈Ji

ps,k,j(ti − s)ds.

Eq. 2.8 follows from Lemma II.2. We now quantify the distribution on the number

of emergency patients in the cyclostationary system (mentioned in Section 2.2.1) in

steady state, where the arrival pattern is repeated on a weekly basis. If we let τk

be the maximum length of stay for a patient of type k then we have the following

result, which is proved in the Appendix 2.5.

Theorem II.3. The number of emergency patients in each ward, denoted by Q1(t),

Q2(t), . . . , Qn(t), are independent Poisson random variables for each time t ∈ R+

with finite mean given by

(2.9) mj(t) =
n∑
k=1

∫ t

t−τk
αk(s)ps,k,j(t− s)ds.

2.2.5 PATTERN Deterministic controlled-arrival-location Model (d-CALM) of Elec-
tive Census

To build a model of the elective census over time we begin in Section 2.2.2 by

characterizing the care paths for each type of patient that is admitted to the hospital.

In Section 2.2.5 we use these care paths in combination with the elective admission

schedule to model the census process for a given admission plan. In Section 2.2.5

we calculate the first and second moments of the census process. The approach



22

for the elective census model represents an extension of the PALM methodology to

processes with deterministic arrivals, or what we call the deterministic controlled-

arrival-location model (d-CALM). In this approach, arrivals occur at specific times

(possibly in batches), rather than according to a Poisson distribution. Once a patient

of type k has arrived at time s, they flow through the hospital according to their

PATTERN stochastic location process Ls,k as in Section 2.2.2, with subscript k

denoting patient type k. This makes explicit our condition that each patient type

follows their own location process determined by the characteristics of their medical

condition.

Defining the Elective Census Stochastic Process.

Combining the PATTERN model for individual patients with the elective admis-

sion schedule, Θ, it is possible to model the total elective census in the hospital over

time. One approach is to formulate a point process as in Section 2.2.4. For patients of

type k, let
(
(tk,1,Θk,tk,1), (tk,2,Θk,tk,2), . . .

)
represent the sequence of deterministic ar-

rivals with tk,i being the time of arrival of the ith batch of patients of type k and Θk,tk,i

being the number of type k patients scheduled for time tk,i. Let Ω = Σ∞ so that ωk =

{σk,(tk,1),1, σk,(tk,1),2, . . . , σk,(tk,1),Θk,tk,1
, σk,(tk,2),1, σk,(tk,2),2, . . . , σk,(tk,2),Θk,tk,2

, . . .} ∈ Ω rep-

resents the set of location functions for the scheduled arrivals. We define the d-CALM

probability measure for patients of type k being in ward j as

Pk({ω ∈ Σ∞ : σk,(tk,n),n(t) = j}) =

 0 if t < tk,n

p(tk,n),k,j(t− tk,n) if t ≥ tk,n

,(2.10)

where p(tk,n),k,j(t − tk,n) is as before in Eq. 2.3. Then we can define the d-CALM

point process, for a realization vector ω as

Nk,j,Θ(t, ω) =


∑

s∈{tk,i:tk,i<t}
∑Θk,s

n=1 Λk,s(t, j, σk,s,n) if t1 < t

0 if t1 > t,

(2.11)



23

where Λk,s(·) is the patient type k random measure defined for the stochastic location

process in Eq. 2.4 and 2.5 of Section 2.2.4. It can be seen that this point process

can be written instead as the process

Nk,u,Θ(t) =
∑

s∈{tk,i:tk,i<t}

Θk,s∑
j=1

11{Ljs,k(t) = u},(2.12)

where Nk,u,Θ(t) is the number of elective patients of type k in ward u at time t under

schedule Θ. We will work with this more convenient form to analyze the d-CALM

process, which is equivalent to the point process defined by Eq. 2.10 and 2.11. The

ward level census can be calculated by summing over patient types and the hospital

census can be calculated by summing over all the wards. Now we also include the

system design assumption of a cyclically repeating elective admission schedule. We

present the case where the hospital is concerned with daily measures of admissions

and census as an example. We analyze this case (though the approach will work

more generally) as it is particularly useful for managerial insight and operational

planning.

Using Eq. 2.12 the census in ward u, Cu,d1 , can be calculated on a given day d1 of

the planning horizon. After presenting the computations, we present an illustrative

example. First define W as the set of hospital wards and D as the set of patient

types (e.g. diagnoses). If we take the planning horizon to be one week, N = 7 for

example, the total hospital census on a given day d1 can be calculated for a finite

horizon of length t weeks (Ct
u,d1

from Eq. 4.2) or an infinite horizon (C∞u,d1 from Eq.

4.3),

Ct
u,d1

=
7∑

d2=1

∑
k∈D

Θk,d2∑
j=0

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
(2.13)

C∞u,d1 = lim
t→∞

Ct
u,d1

,(2.14)
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where Lj,ns,k(·) represents the (j, n)th i.i.d instance of the location process Ls,k(·), one

process for each admitted patient, j, on a given week, n, and 11{·} is the indicator

function. In Eq. 4.2 and 4.3, the first sum refers to the day of the week that the

patient was admitted. The second sum refers to the diagnosis of the patient and

the third sum represents the number of patients of that diagnosis that are to be

scheduled on day d2 of the planning horizon. The final sum over n iterates through

weeks (or through cycles of the planning horizon). To obtain total hospital census it

is sufficient to sum Eq. 4.2 and 4.3 over the set of hospital wards.

These equations are best understood through a simple example. Consider a plan

that admits 2 cardiology patients (patient type = CAR) every Monday. What is

the load that this plan places on the cardiology ward, ward c, on Tuesdays? Let

11{Lj,ns,CAR(t) = c} represent whether the (j, n) indexed cardiology patient is in the

cardiology ward c on day t given they were admitted on day s. On the first Monday,

the system admits two cardiology patients (call them patient (1,0) and (2,0)). This

leads to a census for Tuesday of the first week (n = 0) of 11{L1,0
1,CAR(2) = c} +

11{L2,0
1,CAR(2) = c}. Note that 11{L1,0

1,CAR(2) = c} and 11{L2,0
1,CAR(2) = c} are i.i.d.

because they represent two different patients. In the second week we admit two

more cardiology patients (call them patient (1,1) and (2,1)). Since the first two

cardiology patients admitted previously may still be in the hospital (and thus on day

8 of their length of stay) the census for the Tuesday of the second week (n = 1) is

11{L1,0
1,CAR(9) = c} + 11{L2,0

1,CAR(9) = c} + 11{L1,1
8,CAR(9) = c} + 11{L2,1

8,CAR(9) = c}. If

we let the system run for t weeks, then the census on the Tuesday of week t is given

by
∑t

n=0 11{L1,n
7n+1,CAR(7t+ 2) = c}+ 11{L2,n

7n+1,CAR(7t+ 2) = c}.

This shows how we construct the census profile for Eq. 4.2 and 4.3. We are

primarily interested in the steady state behavior of the system, and thus rely mostly
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on the infinite horizon formulation of Eq. 4.3 in the analysis that follows.

To this end we define:

Definition II.4. X̂d(Θ) ≡ L∞d is the steady state elective census vector for all

hospital wards, for day d of the planning horizon under admission plan Θ.

Moments of the PATTERN d-CALM Elective Census Process.

The above formulation of the elective census process allows us to calculate the

first and second moments of the process analytically, which facilitates the use of the

census process in an optimization formulation. Take the planning horizon to be one

week, N = 7 for example, the mean of census for ward u of the hospital a given day

d1 can be calculated from Eq. 4.2 and 4.3 by the monotone convergence theorem as

µd1,u(Θ) = E
[ 7∑
d2=1

∑
i∈D

Θi,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,i(d1 + 7t)) = u

}]
=

7∑
d2=1

∑
i∈D

Θi,d2 ·
∞∑
n=0

pd2+7n,i,u(d1 − d2 + 7(t− n)).(2.15)

The equality follows from the fact that 11{X = xk} follows a Bernoulli distribution

and thus E
[
11{X = xk}

]
= pk. The mean census level in the hospital can be

calculated by summing Eq. 4.4 over the set of all wards, W, as
∑

u∈W µd1,u(Θ).

We compute the variance of the elective census process for two types of variance:

(1) the variance in ward census and (2) the variance in total hospital census. The

variance and covariance of (1) and (2) is given, with proof in the Appendix 2.5, by

Lemma II.5. The covariance of the cyclostationary ward and total census processes

is

(i) Cov
(
11{Lj1,n1

s1,k1
(t) = u1}, 11{Lj2,n2

s2,k2
(t) = u2}

)
= 0 for all

(j1, n1, k1, s1) 6= (j2, n2, k2, s2),
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(ii) Cov
(
11{Lj,ns,k(t) = u1}, 11{Lj,ns,k(t) = u2}

)
= −ps,k,u1(t−s)ps,k,u2(t−s) for u1 6= u2.

Theorem II.6. Letting d(n) = d1−d2 +7(t−n), the variance of the cyclostationary

ward and total census processes is

(i) σ2
d1,u

(Θ) =
∑7

d2=1

∑
k∈D Θk,d2

∑∞
n=0 pd2+7n,k,u(d(n))(1− pd2+7n,k,u(d(n))),

(ii) σ2
d1

(Θ) =
∑

u∈W σ2
d1,u

(Θ)

−
∑7

d2=1

∑
k∈D Θk,d2

∑∞
n=0

∑
u1 6=u2 pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n)).

We see that σ2
d1

(Θ) can be written as a linear function of the admission plan

(decision) Θ, and thus included in an integer programming framework for determining

optimal schedules. The variance and covariance terms can be calculated offline and

enter the optimization as data. Since, from Theorem II.6, the variance is still linear

in terms of our decision variables Θi,d, the model remains solvable by standard MIP

solution approaches.

2.2.6 Validating the Hospital Census Model

The total census process (for wards and for the hospital) is approximated by

the sum of the elective census process and the emergency census process (Sections

2.2.5 and 2.2.3). In this section we show that our approximation of the census

process closely matches the actual census process using a year of historical data from

a partner hospital. The partner hospital in this validation had 23 wards and 20

different patient types (one for each major admitting service). The arrival rates to

each ward are given in Appendix 2.5.3, Fig. 2.8.

Figure 2.3 and Table 2.2 show the mean census levels by day of week for the entire

hospital for both the approximation and for the historical census levels.

The deviations are seen to be relatively small and have little effect on accurately

approximating system metrics such as cancelations and blockages as shown in Section
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Figure 2.3: Comparison of the mean census approximation vs historical mean census

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Approximation 209 234 248 243 251 244 217

Actual 203 235 250 250 256 241 209
% Diff 2.8% -0.6% -1.0% -2.8% -1.8% 1.3% 3.7%

Table 2.2: Comparison of the mean census approximation vs. historical mean census

2.3.3. Having such an accurate analytical approximation is extremely important to

enable the optimization of the elective admission schedule. Prior efforts at solving

this problem for the entire hospital have relied on simulations to achieve accurate

census approximations, making optimization difficult (see [41, 32, 35]). The approx-

imation developed in this and previous sections can be easily incorporated into an

integer programming optimization model as demonstrated in Section 2.3.

2.3 Optimization of Elective Admissions Mix and Volume

In Section 2.2 we developed a modeling and analysis method for quantifying cen-

sus under a given admission plan. In this section we design an integer programming

model to determine the optimal schedule given a set of metrics. For our metrics, we

trade off two conflicting objectives in hospital management: (1) the desire to admit

as many elective patients as possible (alternatively to keep bed utilization high) and

(2) the desire to limit the number of blockages and off-unit census for both emergency

and elective patients. The stochastic process from Section 2.2 characterizes the raw

demand for beds, so to quantify the blockages we need to superimpose the hospi-

tal capacity on this model. Section 2.3.1 presents a method for calculating various
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blockage metrics in a manner that can be incorporated into an integer programming

formulation. Section 2.3.2 presents two different formulations for the elective admis-

sions mix and volume that could be useful to hospitals. Section 2.3.3 validates the

method by comparing the forecasted census from the optimization model with a high

fidelity simulation of hospital operations.

2.3.1 Computation of System Effectiveness Metrics

In hospitals, there are two significant types of bed block: (1) ward-level bed

block and (2) hospital-level bed block. Type (1) prevents a patient from entering

a particular ward, forcing the patient into an off-unit ward. Type (2) prevents any

access to the hospital (e.g. cancelation, diversion). Limiting both types of bed block

is critical to operating a high performing hospital as detailed in Chapter I and Section

2.1.

To calculate these metrics, one must consider the stochastic dynamics of hospital

and ward census. To this end, it is possible to obtain the distribution on the number

of elective patients in each ward, but not in the entire hospital, which is a feature

of controlled arrivals that makes d-CALM more complex than the PALM. The ward

u census on day d1, Ct
u,d1

, is a sum of independent Bernoulli random variables,

which is known to be Poisson-Binomial (see [10]). If Z1, . . . , ZN(Θ,t) represent the

different indicators in Eq. 4.2, each having probability of success pi, then Ct
u,d1

=

Z1 + · · ·+ ZN(Θ,t) is a Poisson-Binomial random variable with distribution:

P (Ct
u,d1

= n) =
{N(Θ,t)∏

i=1

(1− pi)
} ∑
i1<...<in

wi1 · · · win ,(2.16)

where wi = pi/(1 − pi) and the sum is over all non-double counting choices of n of

N(Θ, t) (see [10]).

Unfortunately, not only is this distribution difficult to compute, it also introduces
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significant non-linearities in the decision variables because N(Θ, t) depends on the

admission schedule Θ. This prohibits the use of MIP or other tractable optimiza-

tion methods. Additionally, the Poisson-Binomial only models sums of independent

indicators so, as will be seen, the total hospital census does not follow the Poisson-

Binomial distribution.

Several approximations we investigated also failed to provide solutions that could

be incorporated into our MIP. To begin, recall that the contribution of each patient

to ward (hospital) census is modeled using a PATTERN stochastic location process

combined with a deterministic arrival rate function. The census is then calculated by

summing indicators of the PATTERN process. In particular, the census on a given

day, d1, can be rewritten as:

(2.17) Ct
d1,u

=
7∑

d2=1

∑
k∈D

t∑
n=0

Θk,d2∑
j=0

11
{
Lj,nd2+7n,k(d1 + 7t)) = u

}
.

Consider that for fixed k, d2, u, and n,
∑Θk,d2

j=0 11
{
Lj,nd2+7n,k(d1 + 7t)) = u

}
is a sum of

Θk,d2 i.i.d. Bernoulli random variables, which is Binomial(Θk,d2 , pd2+7n,k,u(d1 − d2 +

7(t − n))). Worse still, if we want to consider the joint distribution of the different

wards of the hospital then the sum becomes the sum of i.i.d. categorical random

variables, which is distributed as Multinomial(Θk,d2 ,pd2+7n,k(d1 − d2 + 7(t − n)))

where pd2+7n,k(d1−d2 +7(t−n)) =
[
pd2+7n,k,1(d1−d2 +7(t−n)), . . . , pd2+7n,k,W (d1−

d2 + 7(t− n))
]

is the probability vector of the categorical random variables defining

whether or not the patient will reside in the various hospital wards at a given time

(see [50]). So the census random variable Ct
d1

, defined in Eq. 2.17 is the sum of

many different Binomial (or Multinomial if we consider the joint process) random

variables, which is not tractable. It is clear that, if we want to incorporate the p.m.f.

of the elective census in the same manner as the emergency census, this will lead to
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an intractable optimization model because the decision variable Θ involves factorials.

Another approach considers the fact that, under certain conditions, the sum of

independent Binomial random variables can be approximated by a Poisson or Normal

distribution among other methods. Unfortunately, the Normal probabilities and

quantiles are defined with respect to the standard deviation, which is non-linear in

our decision variables as shown in Section 2.2.5. The Poisson approach also suffers

from the fact that its probabilities are non-linear in Θ.

Due to the complications involved in working with distributions or variances of

the elective census in an optimization framework, we propose the following approxi-

mation to obtain estimates of the expected blockages and off-unit census illustrated

in Figure 2.4. The approach begins by calculating the mean elective census by day

of week, indicated by the solid bar in Figure 2.4 (which we justify below). The

number of beds remaining (i.e. capacity minus mean elective demand) is referred to

as the reserved capacity (for emergency patients). Starting with the mean census as

a baseline, we add the emergency patients, indicated by the individual bars on top

of the solid bar, and account for the probability of each level of emergency patients

using the PATTERN PALM model of Section 2.2.3. Blockages are tallied when the

number of emergency patients plus the mean number of elective patients exceeds the

hospital capacity, B =
∑

i∈WBi where Bi is the capacity of ward i. Thus the block-

ages are calculated with respect to the emergency patient distribution obtained from

the PATTERN PALM model, while accounting for the mean number of electives in

the hospital.

This approximation preserves the linearity required for efficient solutions to a

mixed integer program as will be shown in Section 2.3.2. Since the controlled cyclo-

stationary system will optimize a deterministic number of elective admissions by day
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Figure 2.4: Illustration of expected blockage constraint for the entire hospital.

of week, the majority of the census variability will now come from the emergency

patients, which we capture with the emergency census distribution. In Section 2.3.3,

we demonstrate the accuracy of this approximation on data from a partner hospital.

The high level of accuracy suggested by the testing described in Section 2.3.3 in-

dicates that more complicated approaches incorporating variance in elective census

may not be necessary in light of the need for tractability/solution speed.

The off-unit census levels can be calculated in a similar way to the total hospital

blockages by considering the census in each ward and comparing it to the ward

capacity. Any amount of demand by a patient in the hospital (i.e. one not blocked

from entering) in excess of the ward’s capacity must necessarily be considered off-

unit.

2.3.2 Mixed Integer Programming Formulation

We begin this section with notation and then proceed to a formulation of the

elective admission mix and volume optimization model. The planning horizon we

consider is days 1, . . . , 7 to correspond to a weekly schedule.

Sets

D set of all patient diagnosis types

W set of hospital wards

Parameters
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Bi ward i capacity in terms of beds

β limit on the average number of blockages per week

αu percent of total cancelations that are attributed to ward u

β̂u limit on the average number of off-unit patients allowed for ward u

pk,ud1 probability that an elective patient of type k is in ward u d1 days after

admission

p̂un,d probability there are n emergency patients in ward u on day d from

the PATTERN PALM model

p̃n,d probability there are n emergency patients in the hospital on day d

from the PATTERN PALM model

θk,d current elective admission volume of type k patients on day d.

θ̂k,d maximum number of elective admissions of type k allowed on day d.

R reward vector where Rk is the reward for admitting patient of type k

Decision Variables

Θk,d number of type k ∈ D patients scheduled on day d

δn,d number of blockages if there are n emergency patients in the hospital

on day d

δ̂un,d number of ward u off-unit patients on day d if there are n emergency

patients in ward u

It is important to note here that the probabilities pk,ud1 , p̂un,d, and p̃n,d are all calculated

offline per the analysis in Sections 2.2.3 and 2.2.5 and then become data inputs to

the two mixed integer programs that follow.
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Maximum Elective Admissions Formulation.

First we present a formulation that maximizes the number of elective admissions

subject to constraints on bed blockage. 11 denotes a column vector of all ones.

Merely for the sake of generality we include the “reward” row vector R providing

a relative value for a patient of type k served. In practice we let R be a row of all

1’s (every patient type has the same value) and then manipulate the constraints if

management’s goal is to increase the volume of one particular service.

max
Θ,δ,δ̂

R ·Θ · 11

(2.18)

s.t.

δj,d1 ≥ j −
∑
u∈W

(
Bu −

7∑
d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pk,u(7n+d1−d2)

)
d1 = 1, . . . , 7, j = 1, 2, . . .

(2.19)

7∑
d=0

∞∑
n=0

p̃n,dδn,d ≤ β

(2.20)

δn+1,d ≥ δn,d d = 1, . . . , 7, n = 1, 2, . . .

(2.21)

δ̂uj,d1 ≥ j +
7∑

d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pk,u(7n+d1−d2) −Bu − αu
7∑
d=0

∞∑
n=0

δn,d · p̃n,d

(2.22)

∀u ∈W, d1 = 1, . . . , 7, j = 1, 2, . . .
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∞∑
n=0

p̂un,dδ̂
u
n,d ≤ β̂u ∀u ∈W, d = 1, . . . , 7

(2.23)

δ̂un+1,d ≥ δ̂un,d d = 1, . . . , 7, n = 1, 2, . . .

(2.24)

7∑
d=1

Θk,d ≥
7∑
d=1

θk,d ∀k ∈ D

(2.25)

Θk,d ≤ θ̂k,d ∀k ∈ D, d = 1, . . . , 7

(2.26)

Θk,d, δk,d, δ̂
u
k,d ∈ Z+

(2.27)

The objective function, Eq. 2.18, maximizes the weighted throughput of elective

patients. Constraint 2.19 manages the integer helper decision variable δn,d that

enables the program to measure expected blockages. This constraint consists of

several terms that will be explained individually. On the right hand side of the

equation we have
∑

u∈WBu, representing the capacity of the hospital. Subtracted

from the total hospital capacity is the expected elective bedload on day d taken from

Eq. 4.4. Call the quantity resulting from the subtraction E[RC]. Thus the right

hand side of the equation, j−E[RC], represents the amount by which the number of

emergency patients in the hospital exceeds the expected empty beds remaining after

elective admissions are accounted for. If this quantity is non-negative, it represents

the number of blockages if j emergency patients are in the hospital. If the RHS

is positive, then δj,d1 is forced to be at least as great as the number of blockages
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that would occur in the scenario where there are j emergency patients and the mean

number of elective patients in the hospital. If the RHS is negative, then the model

will trigger no blockages and δj,d1 can be set to 0.

Constraint 2.20 is the constraint that approximates the expected number of weekly

blockages for a given schedule Θ and limits it to at most β. The method to obtain

this approximation is detailed in Section 2.3.1. Constraint 2.21 is a cut that was

added to the model to increase the speed of the CPLEX implementation of a branch

and bound algorithm. Because of the large number of δ decision variables, this

cut greatly reduces the number of combinations that must be considered by branch

and bound. Without this constraint, a model with three wards and three patient

types failed to solve in under 24 hours; while solving in under 30 seconds with the

constraint.

Constraints 2.22 - 2.24 serve the same function for measuring and limiting ex-

pected off-unit census as Constraints 2.19 - 2.21 do for expected blockages. The one

piece that is different is the subtraction of the term αu
∑7

d=0

∑∞
n=0 δn,d · ˜pn,d relative to

Eq. 2.19. This term accounts for the fact that, if patients are canceled or otherwise

not admitted to the hospital, they will not contribute to off-unit census in the wards

they would have been admitted to. The parameter αu refers to the historical trend

and/or hospital protocols for what types of patients get canceled when a cancelation

decision must be made.

The final two constraints, Equations 2.25 and 2.26, represent the reality that

the model should not change the elective admission schedule in ways incommen-

surate with historical hospital practice. Specifically Eq. 2.25 ensures that, under

the improved schedule, each service can at least maintain historical volumes. This

means that the model will not take away business from any specialty or practice.
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Eq. 2.26 ensures that the model respects capacity constraints beyond hospital beds.

These could be limits on the amount of Operating Room time, or the fact that

most hospitals choose to admit few or no elective patients on the weekends (e.g.

Θk,Sunday ≤ 0 ∀k)

Minimum Blockages Formulation.

Another useful formulation is to keep the weekly volume of elective admissions

fixed and attempt to minimize the number of blockages. This model reshuffles the

mix of elective admissions across the days of the week to eliminate unnecessary

blockages caused by an unstable, unbalanced schedule. The main difference in this

formulation is that the objective function becomes the expected number of blockages

(2.28) min
Θ,δ,δ̂

7∑
d=0

∞∑
n=0

p̃n,dδn,d,

and the weekly volume is strictly equal to the current weekly volume, i.e. Eq. 2.25

becomes

(2.29)
7∑
d=1

Θk,d =
7∑
d=1

θk,d ∀k ∈ D.

2.3.3 Validating the Hospital Census Optimization Model

As in Section 2.2.6, it is important to quantify the accuracy of the hospital census

and blockage approximations for the optimal elective schedule. Because there is

no historical record of hospital census and blockages for the optimal schedule, we

compare the census approximation with a high-fidelity simulation model that has

already been validated against historical hospital data (see [41, 42, 40]).

A year’s worth of historical hospital data was used to calibrate both the opti-

mization and simulation models for a core subset of nine hospital wards (out of 22

total), including medicine, surgical and ICU/CCU wards. This reduction limited the
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significant amount of data analysis and cleaning without degrading the value of the

study.
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Figure 2.5: Simulation output vs stochastic model output for characteristic hospital measures.

Sun Mon Tue Wed Thu Fri Sat Tot

Sim Census 71.0 85.8 85.8 85.7 85.0 88.9 74.9 N/A
Approx Census 73.2 87.1 85.5 86.1 85.3 88.4 75.5 N/A
% Diff Census 3.1% 1.6% -0.4% 0.4% 0.4% -0.6% 0.8% N/A

Sim Blockages 0.00 0.37 0.38 0.35 0.27 0.66 0.00 2.03
Approx Blockages 0.00 0.34 0.28 0.34 0.27 0.67 0.00 1.9

% Diff Blockages 0.0% -8.1% -26% -2.9% 0.0% -1.5% 0.0% 6.4%

Table 2.3: Simulation output vs stochastic model output for characteristic hospital measures

Figure 2.5 and Table 2.3 confirm that the stochastic census model is a good ap-

proximation of actual census levels and blockages. The small bias toward higher

census levels can be explained by the manner in which the simulation treats cancela-

tions and blockages. In the simulation, the demand from cancelations and blockages

is considered lost (an approximation of reality), whereas the census approximation

models the overall demand for beds without loss. Although blockages are calculated,

the blocked patients are not removed from the demand calculations which yields the

depression of census in the simulation versus the analytical model. The reality is

likely somewhere in between, as some demand is lost and some is rescheduled. Re-

gardless, the estimated values are very close; weekly blockages only differ by 6% in

absolute value and the census differs on average by only 1%.

Because the stochastic census model is an accurate approximation, the detailed
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(and therefore slow) simulation is no longer needed to express the tradeoffs between

census and blockages to design effective admission schedules.

2.3.4 Case Study, Proof of Concept, and Managerial Insights

To demonstrate the effectiveness and potential uses of our approach to elective

admissions scheduling, we validate our method using historical hospital data. The

hospital is a medium sized, non-teaching hospital, and as in Section 2.3.3, we model

the nine medicine, surgical, and ICU/CCU wards of the hospital and compare opti-

mized schedules with the current schedule.

A year’s worth of data is used to model daily census; therefore we consider only

patients that stayed in the hospital for at least one night. In 2008, 14,827 patients

stayed at least one night. Out of these overnight patients, 7,016 were emergency

patients while the remaining 7,811 were scheduled patients. Patients transferred

within the hospital 20,462 times, for an average of around 1.4 transfers per patient.

This transfer ratio serves to underscore the importance of modeling the ward network

effects in hospitals. The nine wards we model comprise about 60% of the total patient

volume with similar characteristics to the total patient population.

One of the primary goals of this modeling approach is to address patient blockage,

both elective cancelations and emergency patient bed block, without reducing the

number of patients served. The wards modeled admitted 90 elective inpatients per

week on average. The minimum blockage formulation was employed, constraining

the weekly elective volume to equal 90 and also constraining the volumes on each

admitting service to match the current level so that the mix remains constant. The

optimization generated an optimal schedule matching these criteria, which we then

simulated (for completeness) to compare with the current schedule. The result was

an average 32% reduction in cancelations per week as shown in “Minimum Blockages”
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of Table 2.6(a).

Schedule

Elective Adm 

per Wk

Blockages 

per Wk

Current 90 3.29

Min Blockage 90 2.34

Max Adm 96 3.27

2 5
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(a) Current vs optimized schedules (b) Pareto curve – throughput vs blockage

Figure 2.6: Controlling census variability in hospitals.

Another goal a hospital might have is to increase the volume of patients served

while maintaining the same level of service. This would lead to increased revenues

while still delivering the same or enhanced access. To achieve this goal, the maximum

admissions formulation is employed, constraining the blockages to be less than or

equal to the current (3.29 per week) and maximizing the number of admissions. This

included a constraint to ensure that each service is given at least as many elective

admissions as in the current schedule (i.e. Constraint 2.25). The result, “Maximum

Admissions” in Table 2.6(b), is an additional 310 elective admissions per year (6 per

week) with slightly better access (3.27 blockages per week).

These prescriptive models are useful in exploring the boundaries of hospital effi-

ciency, but hospitals may prefer a balance between volume and blockage. Our model

can provide information, guidelines and a method for achieving the preferred bal-

ance. The Pareto curve in Figure 2.6 presents the tradeoff between elective admission

volume and blockages. Notice that the current schedule is above the Pareto curve so

it can be improved by increasing admissions, decreasing blockages, or both.

To generate this curve, we use the extreme points as boundaries and employ the
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minimum blockage formulation by iterating the weekly number of elective admissions

between 90 and 96 and determining the schedule with the fewest blockages at each

admission level. This curve represents an important advance in decision support that

enables hospital administrators to understand the key tradeoffs involved in scheduling

their admissions and gives them the freedom to choose their desired operating point.

Hospital personnel are likely to prefer an approach that provides them information

and allows them to make strategic decisions rather than being prescribed a specific

solution.

This Pareto curve also represents an advance in the basic science of admission

scheduling. Past simulation-based approaches incorporating general network effects

would likely struggle to produce an operating curve; the only other known attempt

required 8 hours of computation per data point (see [42]). Our optimization models

were able to generate the operating curve automatically in a matter of minutes, with

each point taking about 30 seconds.

2.4 Conclusions and Future Work

We have developed new models for a longstanding unsolved problem in hospital

operations. This methodology can efficiently generate optimal schedules to meet

high-level hospital criteria while modeling the entire hospital as a coordinated system.

The results have significant potential to inform hospital decision makers as to how

to use admission scheduling as a tool to create a healthcare delivery system that is

lest costly while providing better access, quality and service to patients.

Rather than mandating specific implementations of elective procedure scheduling,

our approach provides decision support on case mix and volume by patient type by

day of week. Thus, we mitigate barriers to adoption. Additionally, the discipline and

predictability obtained by embracing this system of smoothed census will streamline
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hospital procedures, stabilize the operating environment for hospital personnel, more

efficiently utilize fixed hospital resources, and yield significant cost savings. For

example, census variability reduction enables, among other things, cost savings in

nurse staffing while better facilitating proper nurse to patient ratios.

The HASC problem has been approached in many ways; however, previous ap-

proaches have not been able to generate optimal schedules for the entire hospital, in-

cluding ward network effects. The simulation approaches capture the critical general

network effects, but they lack a clear schedule optimization method. The schedul-

ing optimization models, on the other hand, have not included the general network

effects, such as ward transfers and off-unit census, that are critical to accurately mod-

eling the true census load on hospital wards. Our modeling approach has bridged

this gap by accurately capturing the census and blockage dynamics analytically,

eliminating the need for simulation and enabling the use of MIP methods. To do

so we formulated a PATTERN PALM “arrival-location-model” to show that the

emergency demand for beds by ward can be characterized as independent Poisson

random variables. Secondly, we extended the PALM approach to a new deterministic

controlled-arrival-location model (d-CALM) for elective admissions and analyzed its

properties.

The proposed MIP models can identify schedules that reduce blockages and/or

increase elective volumes, but also enable us to generate a Pareto operating curve

that trades off blockages and admission volume. This curve represents an effective

decision making tool for hospital administrators, as it enables flexibility and choice

rather a prescribed fixed solution. This approach is likely to increase acceptance by

administrators, enabling them to make important decisions based on deeper man-

agerial insights.
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Future work might include linking the ward census models to an operating room

schedule and/or other critical hospital subsystems. Work that develops optimization

methodology for the control portion of the HASC model in combination with the

scheduling portion would solve the full HASC problem and likely add significant

value to the field. Finally, the generality of the approach opens the possibility of

application to the effective redesign of many other patient flow systems.

2.5 Appendix

2.5.1 Poisson Random Measure.

We begin this section with some general definitions for point processes that we

will use in the construction of our emergency census process. These definitions and

detailed analysis can be found in [24]. The Poisson random measure is defined by its

intensity measure, so we start by defining the space in which the intensity measure

lies as follows.

Definition II.7. Let M be the set of measures µ on R+ such that µ(0) = 0 and

µ(t) <∞ for all t ∈ R+.

It is important for the analysis that a metric can be defined in M that makes

M separable and complete (see [24]). Let B(M) be the Borel σ-algebra on M. To

describe point processes, it is necessary to also define the following space, N

Definition II.8. Let N = {µ ∈ M : µ(t) ∈ Z+ for all t ∈ [0,∞)} be the set of

measures µ ∈M that yield integer values.

The space N is important for the Poisson random measure we wish to define

because the Poisson distribution takes only integer values. Now we can define a

random measure as
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Definition II.9. A random measure is a measurable mapping from the probability

space (Ω,B,P) into the measure space (M,B(M)) or (N ,B(N )) as the situation

requires.

We characterize our PATTERN PALM Poisson random measure by extension of

the standard Poisson random measure, M, which we now define as in [24] for clarity.

Let Ω = R∞ and define an element ω ∈ Ω by the process’s i.i.d. interarrival times:

ω = (s0, s1, s2, . . .). Let B be the natural σ-algebra on R∞ and P be defined as

P({ω ∈ R∞ : sk ≤ x}) =

 0 if x < 0

1− e−x if x ≥ 0

.(2.30)

That is, P assigns exponential probabilities with rate λ = 1 to each interarrival time,

sk. Now the standard Poisson random measure can be defined as

M(t, ω) =

 k if
∑k−1

j=0 sj ≤ t,
∑k

j=0 sj > t and
∑∞

j=0 sj =∞

0 if s0 > t or if
∑∞

j=0 sj <∞
.(2.31)

Let the distribution of the standard Poisson random measure be Π̂, which is

a probability measure on (N ,B(N )) such that for any set A ∈ B(N ), Π̂{A} =

P{M ∈ A}. The standard Poisson random measure can be generalized by scaling

time according to a deterministic intensity measure, µ. By letting M ◦ µ = M(µ) :

N ×M→ N be a Poisson product measure with distribution denoted Πµ, we obtain

a random measure model for a Poisson process with intensity µ. A special case is

to let µ
(
(0, t]

)
= λt, in which case we get the traditional Poisson process with rate

λ. In our case, however, we are interested in allowing the intensity, which will be

denoted by Λ, to be a realization of a random measure as well. In particular, we

want the intensity to represent the non-stationary arrivals to the various wards of
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the hospital over time under a total arrival process that is non-homogeneous Poisson,

which yields a doubly stochastic Poisson process in the terminology of [24].

Let M̃ = M ◦ Λ be a Poisson random measure on a product space N × M,

where the intensity random measure Λ has distribution which is denoted by Π. The

standard Poisson random measure, M, has distribution Π̂, so the distribution of M̃

is then specified for any set B ∈ N by

PΠ̃(B) = Π̂× Π({(ν, µ) ∈ N ×M : ν ◦ µ ∈ B})

=

∫
M

Π̂({ν ∈ N : ν ◦ µ ∈ B})Π(dµ)

=

∫
M

Πµ(B)Π(dµ), B ∈ B(N ),(2.32)

where the first step follows from Fubini’s theorem (see [19]) and the definition of

M ◦ µ. It is important to note that Πµ(B) is a B(M)-measurable function in µ, so

the preceding integral is valid (see [24]).

2.5.2 Proofs

Lemma II.2

Proof. (i) First note that Γt,J =
⋃
j∈J Γt,j, where Γt,j is defined as in Eq. 2.1.

Therefore

Ps,k(Γt,J ) =
∑
j∈J

Ps,k(Γt,j)−
∑

Ps,k(
⋂

any two events)+

∑
Ps,k(

⋂
any three events) + . . .

+ (−1)|J |+1P (
⋂
j∈J

Γt,j) =
∑
j∈J

Ps,k(Γt,j) =
∑
j∈J

ps,k,j(t− s))(2.33)

The first equality follows from the fact that Ps,k is a probability measure. The

second equality follows from the reasonable assumption that a patient can only be

in one ward at a time, and therefore the intersection of any two sets necessarily has
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measure zero. Because αk(·) is assumed integrable and Λk,s(·, ·) ∈ [0, 1], then for any

b ∈ R+
⋃
{∞}:

µk((a, b], t,J ) ≡ E[Nk((a, b], t,J )] = E

[∫ b

a

αk(s)Λk,s(t,J )

]

=

∫ b

a

αk(s)E[Λk((s, t],J )]

=

∫ b

a

αk(s)Ps,k(Γt,J )

=

∫ b

a

αk(s)
∑
j∈J

ps,k,j(t− s)).

The first equality follows by applying the definition of Nk((a, b], t,J ). The second

inequality follows from the dominated convergence theorem. The third equality

follows by applying the definition of the random measure Λk from Eq. 2.4 and 2.5.

The final equality follows from Eq. 2.33.

(ii) The location functions are easily seen to be right continuous, with limits from

the left existing. If we endow the function space Σ with the Skorohod J1 topology

(as in [65]) then Σ can be shown to be Polish, thereby removing measure theoretic

complications. Because we are dealing with patients, our PATTERN process has

only finitely many jumps and the total length of stay is finite. Additionally, the

probability measure Ps,k is a measure on Σ and is a measurable function of s, so the

integral is valid.

Now we show that µk is a measure. First, it is clear that µk(∅) = 0 because

integrating over the null set returns zero. Secondly, integrals over disjoint sets are

countably additive resulting in the countable additivity of µk. That is, if we let

Ei = (ai, bi]× ti × Ji, then

µk( lim
n→∞

n⋃
i=1

Ei) =
∞∑
i=1

∫ bi

ai

αk(s)
∑
j∈Ji

ps,k,j(ti − s)ds =
∞∑
i=1

µk(Ei)(2.34)
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This directly results in countable additivity of the measure µk, therefore µk is a

measure.

Theorem II.3

Proof. From Appendix 2.5.1, we know that we can extend the standard Poisson

random measure with an intensity measure. From Lemma II.2, we know that the

deterministic intensity, µk, is in fact a measure. Therefore the product form result

for each patient type then follows directly from the properties of the Poisson random

measure and the fact that we are considering disjoint subsets of R×R×S (e.g. one

for each pair of ward and patient type).

Finally, the number of patients in a given ward is just the sum over all patient

types,

M1 + M2 + . . .+ Mn,(2.35)

which is Poisson with rate
∑n

k=1 γk =
∑n

k=1

∫ t
t−τk

αk(s)ps,k,j(t− s), because the sum

of independent Poisson random variables is Poisson with a rate that is the sum of

the individual rates.

Lemma II.5

Proof. (i) Each pair of indicators where (j1, n1, k1, s1) 6= (j2, n2, k2, s2) represents two

different patients. Therefore the two indicator random variables are independent,

which follows from our assumption that the care paths of two different patients are

independent. To see that each pairing does indeed represent two different patients,

note that each patient’s stochastic process is uniquely indexed by the patient type, k,

the week in which they are admitted, n, the day of the week they were admitted, s,
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and their admission number on the day they are admitted, j. Therefore the indicators

11{Lj1,n1

s1,k1
(t) = u1} and 11{Lj2,n2

s2,k2
(t) = u2} are independent and their covariance term

is necessarily zero.

(ii) In this case the two indicators represent the same patient at the same point

in time. In this case, the two indicator random variables are not independent, since

if a patient is in ward u1 at time t they are clearly not in ward u2 6= u1. For such

pairs the covariance becomes

Cov
(
11{Lj,ns,k(t) = u1}, 11{Lj,ns,k(t) = u2}

)
=

E
[
11{Lj,ns,k(t) = u1}, 11{Lj,ns,k(t) = u2}

]
− E

[
11{Lj,ns,k(t) = u1}

]
E
[
11{Lj,ns,k(t) = u2}

]
=

P (Lj,ns,k(t) = u1, L
j,n
s,k(t) = u2)− P (Lj,ns,k(t) = u1)P (Lj,ns,k(t) = u2) = −ps,k,u1(t)ps,k,u2(t).

(2.36)

The last equality follows because the probability that a patient is in ward u1 and

in ward u2 simultaneously is assumed to be zero.

Theorem II.6

Proof. (i) In calculating ward census (see Eq. 4.3) any two indicator variables in the

sum have the property that (j1, n1, k1, s1) 6= (j2, n2, k2, s2), because the sum in Eq.

4.3 contains each combination of (j, k, n, s) at most once. Therefore the covariance

is zero by Lemma II.5 (i). Thus the variance of the ward census can be calculated

by
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σ2
d1,u

(Θ) = Var
[ 7∑
d2=1

∑
k∈D

Θk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t)) = u

}]
=

7∑
d2=1

∑
k∈D

Θk,d2·(2.37)

lim
t→∞

t∑
n=0

pd2+7n,k,u(d1 − d2 + 7(t− n))(1− pd2+7n,k,u(d1 − d2 + 7(t− n))).(2.38)

The second equality follows by taking the variance inside the sum and from the fact

that 11{·} is a Bernoulli random variable with variance p(1− p).

(ii) Now consider the variance of the total hospital census. For all indicators where

(j1, n1, k1, s1) 6= (j2, n2, k2, s2), the covariance is zero by Lemma II.5 (i). However,

since we are now summing over all wards, there are pairs of indicators for which

this condition does not hold (i.e. we are considering whether a given patient is

contributing to ward u1 or to ward u2 on a given day).

σ2
d1

(Θ) =
2∑
i=1

7∑
ai=1

∑
ki∈D

Θki,ai∑
ji=1

lim
t→∞

t∑
ni=0

∑
ui∈W

Cov(11{Lj1,n1

a1+7n1,k1
(d1 + 7t)) = u1}, 11{Lj2,n2

a2+7n2,k2
(d1 + 7t)) = u2})

=
∑
u∈W

σ2
d1,u

(Θ)−
7∑

a=1

∑
k∈D

Θk,a

∞∑
n=0

∑
u1 6=u2

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n)).

The first equality follows from the definition of variance. The second equality follows

by applying Lemma II.5 (i) to all terms representing different patients and then ap-

plying Lemma II.5 (ii) to those terms representing the same patient visiting different

wards at the same time.
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2.5.3 Important Considerations for Practical Application of Admission Schedule Op-
timization

In this section of the appendix we discuss several important considerations that

must be taken into account when attempting to apply the theoretical methodology

developed in this chapter to a real-world hospital. This section begins with a dis-

cussion of the data needs for parameterizing the model. Next, we discuss how the

hospital would use the methodology on an on-going basis to ensure continued success

by dynamically monitoring outcomes and rerunning the model as necessary. Finally,

we talk about the optimal schedule that was generated during the case study and

the economic ramifications of implementing this schedule in the partner hospital.

Model Parameterization from Hospital Data

This section discuss the types of data needed to parameterize the hospital schedul-

ing optimization model. An example of the data required to calculate the patient

care pathways is given in Figure 2.7. The Patient ID and Admit No. column en-

ables the data mining algorithm to track individual patient pathways throughout

the patient’s hospital care segment. Patient ID is a unique identifier assigned to

each patient, whereas the Admit No. is the number assigned to a particular visit

for that patient. The algorithm can be run only using Admit No. and not Patient

ID if necessary since the goal is to capture the care path for a particular type of

admission. The ward column identifies which services the patient uses. Combining

the ward information with the ward start time and end time enables the algorithm

to calculate in what order the services are used, and for how long. Admitting service

is typically used to classify patients into buckets and is often used for the “patient

type” variable in the theoretical model. Other patient type classifiers can be used,

but care must be taken to ensure that the patient type is a classifier that is known
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when the patient is admitted (e.g. discharge diagnosis would not work as a patient

type) and should classify the patients into buckets that are not statistically “too

small.” Finally, the Admission Type column provides information about whether the

patient was an elective or emergency patient.

In all the hospitals that we have worked with, this data has been available through

each hospital’s IT systems. However, due to lack of standardization across IT sys-

tems, a significant amount of time and effort is often required to transform the data

from its raw form into the useable format shown in Fig. 2.7 (see for example [32]).

One complication that was encountered was a partner hospital that provided a pa-

tient’s admit time and discharge time, but the transfers between wards were kept in

a separate “transfer registry.” The transfer registry was an Excel document that had

one tab for each day of the time horizon that contained all the transfers that occurred

in that day. Significant data processing was required to combine the different data

streams to be able to track each patient’s entire care path.

Another important piece of data required is the calculation of arrival rates for

both emergency and scheduled patients. These can be calculated directly from the

data shown in Fig. 2.7. There are a number of data mining tools available to capture

this information. In the case study and other analyses, we relied primarily on the

open source tool Hillmaker (see [48]).

Finally, data about the hospital infrastructure and policies are needed. This

includes the size (in terms of beds) of each ward of the hospital and whether or not

certain beds have restrictions and/or special equipment associated with them. It is

also important to know the hospital’s transfer policies in the event that the patient’s

preferred ward is full. Another key piece of information needed for a successful

modeling venture is what restrictions there are on admissions. This may include what
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the current block schedule looks like and which surgeons are amenable to changing

their schedule and which are not, what are the upper limits for surgeries/admissions

for each type of patient, and if there are any other restrictions on the admission

process.

Data Characterization of Partner Hospital

The table in Fig. 2.8 shows the arrival rates (mean and standard deviation) for

the partner hospital that used to validate the census model in Sec. 2.2.6.

Maintenance of an Implemented Scheduling System

In this section, we discuss some of the issues regarding ongoing maintenance of

a scheduling system in a real-world hospital. The initial design of the scheduling

system is intended to model the system dynamics of the partner hospital at the

current time point. However, hospitals are dynamically changing entities so it is

reasonable to consider updating the schedule to adjust to changes in the underlying

system dynamics that may occur over time. Important changes to the system may

include a change in the emergency arrival rate, building new beds or new wings, hiring

new surgeons, adopting new processes for patient treatment that change length of

stay and resource usage.

One mechanism used in similar scheduling systems to monitor the system for

significant changes in underlying dynamics is to monitor key metrics using control

charts (see for example [32]). Metrics that are especially relevant are occupancy

levels, cancelation rates, and emergency department congestion among other things.

If these metrics begin to exceed control limits around what the model predicts it

indicates the possibility of a shift in the underlying dynamics.

In the event that the underlying system dynamic do change, the solution is to repa-
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Mean DOW Elec Mean Elec StdDev Emerg Mean Emerg Std Dev
A2 Sun 2.38 1.55 3.10 1.82
A2 Mon 4.87 2.49 4.54 2.88
A2 Tue 4.79 2.33 5.19 2.73
A2 Wed 3.79 1.84 5.25 2.95
A2 Thu 5.96 2.37 3.50 2.65
A2 Fri 5.17 2.27 5.15 2.48
A2 Sat 1.51 1.06 4.58 2.67
A3 Sun 2.11 1.27 4.02 2.82
A3 Mon 3.45 1.72 5.73 2.79
A3 Tue 4.66 1.94 5.79 2.44
A3 Wed 4.34 1.81 6.19 2.82
A3 Thu 4.89 2.71 6.40 3.21
A3 Fri 3.36 1.98 6.50 2.85
A3 Sat 0.98 1.17 4.44 1.99
A4 Sun 3.30 3.04 0.75 1.05
A4 Mon 5.15 2.66 1.15 1.45
A4 Tue 4.06 2.34 1.10 1.21
A4 Wed 3.91 1.87 0.89 1.25
A4 Thu 3.28 1.85 0.67 0.88
A4 Fri 4.30 2.11 0.96 1.10
A4 Sat 1.38 1.75 0.73 0.93
B1 Sun 0.00 0.00 0.00 0.00
B1 Mon 26.23 16.40 0.00 0.00
B1 Tue 22.68 12.03 0.00 0.00
B1 Wed 18.83 9.96 0.00 0.00
B1 Thu 28.17 14.63 0.00 0.00
B1 Fri 9.00 6.86 0.00 0.00
B1 Sat 0.00 0.00 0.00 0.00
B3 Sun 0.53 0.75 2.50 1.80
B3 Mon 3.19 1.81 3.37 2.03
B3 Tue 5.34 2.24 2.94 1.89
B3 Wed 3.53 1.67 2.42 1.74
B3 Thu 3.53 2.09 3.54 2.37
B3 Fri 1.49 1.32 4.08 3.28
B3 Sat 0.51 0.83 2.69 2.21
B4 Sun 5.85 3.80 6.50 3.77
B4 Mon 8.02 4.83 7.54 3.93
B4 Tue 10.43 5.21 7.17 3.97
B4 Wed 12.30 4.46 5.62 3.54
B4 Thu 10.21 4.38 6.04 4.09
B4 Fri 10.87 4.64 6.35 3.20
B4 Sat 6.09 2.98 6.31 3.49

C2E Sun 0.00 0.00 0.00 0.00
C2E Mon 27.53 7.89 0.02 0.14
C2E Tue 32.23 3.13 0.04 0.19
C2E Wed 30.96 5.75 0.21 0.45
C2E Thu 31.98 6.24 0.19 0.53
C2E Fri 26.83 5.04 0.12 0.32
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Mean DOW Elec Mean Elec StdDev Emerg Mean Emerg Std Dev
C2E Sat 0.00 0.00 0.00 0.00
C2O Sun 0.00 0.00 0.00 0.00
C2O Mon 16.68 6.56 1.37 1.34
C2O Tue 21.55 4.80 1.37 1.62
C2O Wed 22.53 6.15 0.49 0.78
C2O Thu 21.36 6.09 0.94 1.14
C2O Fri 20.02 7.62 0.88 1.44
C2O Sat 0.06 0.32 0.19 0.53
C4 Sun 0.30 0.59 3.81 2.18
C4 Mon 0.87 0.80 6.15 2.59
C4 Tue 1.19 0.90 5.48 2.25
C4 Wed 1.30 1.55 5.15 2.42
C4 Thu 1.49 1.27 5.40 2.81
C4 Fri 1.32 1.52 6.08 3.20
C4 Sat 0.30 0.62 3.73 2.35
C5 Sun 0.49 0.75 3.52 1.84
C5 Mon 4.15 2.43 3.73 2.26
C5 Tue 4.77 2.50 3.71 2.35
C5 Wed 4.11 2.35 3.53 2.66
C5 Thu 3.34 2.24 3.42 2.66
C5 Fri 3.53 1.95 4.38 2.70
C5 Sat 0.64 1.07 3.71 2.57

CCU Sun 0.38 0.61 3.04 1.58
CCU Mon 1.30 1.08 3.54 1.84
CCU Tue 1.30 1.12 3.60 1.86
CCU Wed 1.36 1.17 3.49 1.95
CCU Thu 1.23 1.22 3.35 2.08
CCU Fri 1.26 1.15 3.44 2.35
CCU Sat 0.36 0.64 3.12 1.63
EHH Sun 0.00 0.00 0.04 0.19
EHH Mon 1.06 1.24 4.21 2.47
EHH Tue 1.45 1.61 3.33 2.17
EHH Wed 1.13 1.50 3.64 2.28
EHH Thu 1.06 1.37 3.90 2.44
EHH Fri 1.30 1.84 3.90 2.42
EHH Sat 0.00 0.00 0.00 0.00
ICU Sun 0.15 0.47 0.87 0.79
ICU Mon 0.91 0.97 1.02 1.02
ICU Tue 0.57 0.80 1.04 0.99
ICU Wed 0.89 0.96 1.04 0.92
ICU Thu 0.53 0.78 0.90 1.00
ICU Fri 0.72 0.71 1.27 0.97
ICU Sat 0.21 0.41 0.60 0.77

OPFL1 Sun 0.72 1.23 3.77 3.90
OPFL1 Mon 2.45 3.36 4.50 4.47
OPFL1 Tue 3.60 3.63 4.35 3.90
OPFL1 Wed 3.06 4.05 3.53 3.58
OPFL1 Thu 4.09 4.32 3.12 4.18
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Mean DOW Elec Mean Elec StdDev Emerg Mean Emerg Std Dev
OPFL1 Fri 3.11 3.31 3.62 4.35
OPFL1 Sat 0.57 1.10 5.27 4.73
PCHI1 Sun 0.00 0.00 0.00 0.00
PCHI1 Mon 0.09 0.28 0.02 0.14
PCHI1 Tue 4.94 1.72 0.00 0.00
PCHI1 Wed 0.09 0.46 0.00 0.00
PCHI1 Thu 4.30 2.07 0.00 0.00
PCHI1 Fri 0.02 0.15 0.00 0.00
PCHI1 Sat 0.00 0.00 0.00 0.00
PCHI2 Sun 0.00 0.00 0.00 0.00
PCHI2 Mon 0.00 0.00 0.00 0.00
PCHI2 Tue 2.74 1.54 0.00 0.00
PCHI2 Wed 0.00 0.00 0.00 0.00
PCHI2 Thu 0.02 0.15 0.00 0.00
PCHI2 Fri 0.00 0.00 0.00 0.00
PCHI2 Sat 0.00 0.00 0.00 0.00
PKNO1 Sun 0.00 0.00 0.00 0.00
PKNO1 Mon 0.00 0.00 0.00 0.00
PKNO1 Tue 0.00 0.00 0.00 0.00
PKNO1 Wed 0.09 0.35 0.00 0.00
PKNO1 Thu 0.00 0.00 0.00 0.00
PKNO1 Fri 0.00 0.00 0.00 0.00
PKNO1 Sat 0.00 0.00 0.00 0.00
PKNO2 Sun 0.00 0.00 0.00 0.00
PKNO2 Mon 0.02 0.15 0.00 0.00
PKNO2 Tue 0.00 0.00 0.00 0.00
PKNO2 Wed 0.00 0.00 0.00 0.00
PKNO2 Thu 0.00 0.00 0.00 0.00
PKNO2 Fri 0.00 0.00 0.00 0.00
PKNO2 Sat 0.00 0.00 0.00 0.00
PMHK1 Sun 0.00 0.00 0.00 0.00
PMHK1 Mon 0.36 0.67 0.02 0.14
PMHK1 Tue 0.49 0.75 0.00 0.00
PMHK1 Wed 0.21 0.51 0.02 0.14
PMHK1 Thu 0.49 0.78 0.00 0.00
PMHK1 Fri 0.49 0.69 0.02 0.14
PMHK1 Sat 0.02 0.15 0.00 0.00
PNEU1 Sun 0.00 0.00 0.00 0.00
PNEU1 Mon 0.64 0.92 0.00 0.00
PNEU1 Tue 0.00 0.00 0.00 0.00
PNEU1 Wed 0.00 0.00 0.00 0.00
PNEU1 Thu 0.00 0.00 0.00 0.00
PNEU1 Fri 0.00 0.00 0.00 0.00
PNEU1 Sat 0.00 0.00 0.00 0.00
PNEU2 Sun 0.00 0.00 0.00 0.00
PNEU2 Mon 0.00 0.00 0.00 0.00
PNEU2 Tue 0.00 0.00 0.00 0.00
PNEU2 Wed 0.00 0.00 0.00 0.00
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Mean DOW Elec Mean Elec StdDev Emerg Mean Emerg Std Dev
PNEU2 Thu 1.45 0.90 0.00 0.00
PNEU2 Fri 0.00 0.00 0.00 0.00
PNEU2 Sat 0.00 0.00 0.00 0.00
REC2 Sun 0.00 0.00 0.00 0.00
REC2 Mon 10.11 6.00 0.00 0.00
REC2 Tue 15.34 5.19 0.00 0.00
REC2 Wed 2.17 3.61 0.00 0.00
REC2 Thu 14.51 5.51 0.00 0.00
REC2 Fri 8.17 4.19 0.02 0.14
REC2 Sat 0.00 0.00 0.00 0.00
SEH Sun 0.36 0.61 16.33 3.78
SEH Mon 0.23 0.48 17.88 4.18
SEH Tue 0.13 0.34 17.08 4.04
SEH Wed 0.19 0.50 16.08 3.75
SEH Thu 0.15 0.42 16.63 4.73
SEH Fri 0.13 0.40 18.02 4.24
SEH Sat 0.19 0.50 17.33 3.85
Total Sun 16.57 5.51 48.23 8.44
Total Mon 117.32 32.98 64.79 13.23
Total Tue 142.26 17.98 62.17 11.64
Total Wed 114.79 23.88 57.53 10.59
Total Thu 142.04 28.93 58.02 13.89
Total Fri 101.09 20.49 64.79 10.96
Total Sat 12.83 4.76 52.69 8.94

Figure 2.8: Arrival vectors for elective and emergency patients by ward for partner hospital.
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rameterize the model taking into account the new data that are reflecting the new

dynamics. This can be done selectively or can constitute a full reparameterization

depending on the extent of the changes in the underlying system. Once the system

has been recalibrated, the optimization can be rerun to generate an adapted optimal

schedule. One of the major benefits of having an analytical model, as opposed to

a simulation model, is that rerunning the optimization is nearly instantaneous and

doesn’t require significant manual effort. Recalibrating the system and generating

an improved schedule is much faster and requires less manual input with the ana-

lytical model. This also paves the way for a more automated, dynamically updating

scheduling system.

To model this hospital, a full year’s worth of data is used with identifying patient

information removed and replaced by admission numbers. Given that our system is

modeling a hospital based on its daily (midnight) census, we only consider patients

that stayed in the hospital for at least one night. In 2008, 14,827 patients stayed

at least one night. Out of these overnight patients, 7,016 were emergency patients

while the remaining 7,811 were scheduled patients.

The input data contained the 14,827 patients’ movements throughout the hospi-

tal. The patients transferred within the hospital 20,462 times, including the initial

‘transfer’ into the patient’s first ward. The transfers within the hospital had been

grouped into 23 ward codes by the partner hospital; to avoid unnecessary complexity

we aggregate similar wards, where three aggregate wards (which make up 8 of the

23 wards) constitute the majority of transfers (the remaining 15 wards were rarely

used by the patients). The first aggregate ward (“Ward A”) is a surgical ward. The

second aggregate ward (“Ward B”) is a medicinal ward. The third aggregate ward

(“Ward C”) consists of the critical care unit (CCU) and intensive care unit (ICU)



58

Table 2.4: Transition probabilities for non-emergency and emergency patients.
Non-Emergency Emergency

To: – A B C – A B C
From A 0.846 0.116 0.001 0.037 0.739 0.174 0.008 0.079
From B 0.847 0.004 0.147 0.002 0.699 0.026 0.271 0.004
From C 0.371 0.528 0.069 0.031 0.429 0.543 0.014 0.044

of the hospital. This aggregation works well because the statistical properties of pa-

tients at the sub-ward level do not differ significantly and the increased sample size

for each ward provides better statistical estimates. Since the purpose of our approach

is to evaluate system level properties, this loss of granularity has little effect on the

system level outcome as noted in [63].

Transition Probabilities

For both emergency and non-emergency patients at each aggregate ward, one-step

ward transition probabilities and length of stay parameters are presented. Table 2.4

gives the one-step transition probabilities for non-emergency and emergency patients.

Here, “–” implies a discharged patient. Transitions from a ward back to itself (e.g. a

transfer from Ward A to Ward A) may occur for multiple reasons. First, a patient’s

condition may change, which results in the patient’s information (and possibly lo-

cation within a given ward) being updated. Second, a patient may transfer from a

ward in Ward A to another ward which also happens to be in Ward A – thus, even

though the patient transfers from one ward to another, our method of aggregating

the wards views such movements as internal transfers.

The length of stay data at each aggregate ward is calculated for both types of

patients. The mean µ and standard deviation σ at individual wards are weighted ap-

propriately in order to find aggregate versions of these parameters for non-emergency

and emergency patients, which are listed in Table 2.5.

Arrival of Emergency Patients
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Table 2.5: Average and standard deviation of the length of stay (in hours) for non-emergency and
emergency patients.

Non-Emergency Emergency
Ward µ σ µ σ

A 27.13 12.87 118.36 131.12
B 23.47 9.68 56.31 65.82
C 21.99 8.20 49.66 123.28

To properly model arrivals, one must consider that emergency patients may (i)

arrive at Wards A, B, and C according to a distribution that differs from their

intra-hospital transfer rates, and (ii) do not arrive uniformly throughout the week.

Consequently, we compute these values as follows. First, we group emergency pa-

tients based on the first aggregate ward they visit (i.e. Ward A, B, or C). Many

patients arrive first to a central triage, and then transfer within the hospital to one

of the 23 wards. For each patient, we follow their transfers until they first enter

one of the wards aggregated into Ward A, B, or C. For each of the three wards, we

determine how many emergency patients are admitted between midnight and 2 p.m.

(which we refer to as “AM”) and 2 p.m and 11:59 p.m. (“PM”) on each day of the

year. Further, it is well-known that emergency patients do not arrive uniformly over

the course of the day, which leads to increased queueing. The emergency patients

in our study generally followed the daily arrival pattern found by previous studies –

refer to [16] and [81] for empirical distributions.

After determining how many emergency patients arrive at each ward in the AM

and PM time blocks for each day of the year, we find the mean and standard deviation

of patients arriving at each ward in the AM and PM blocks by day of week. These

values are summarized in Table 2.6. The arrival pattern of non-emergency patients

is also of interest in order to evaluate the current system. As one would generally

expect, emergency patients do not arrive uniformly over the course of the week, in
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Table 2.6: Average number of arrivals, separated by ward and time of day.
Non-Emergency Emergency

Ward: A B C A B C
AM PM AM PM AM PM AM PM AM PM AM PM

M 8.44 1.38 2.04 1.94 0.35 0.13 1.94 3.17 2.19 2.48 1.15 1.63
Tu 8.45 1.45 6.15 2.19 0.25 0.11 2.03 2.81 1.89 2.53 1.02 1.60
W 7.85 1.32 5.15 1.75 0.25 0.09 1.96 2.87 1.43 2.00 0.92 1.60
Th 9.42 1.18 4.04 1.62 0.17 0.06 1.98 2.50 1.67 2.77 1.23 1.27
F 7.12 0.73 3.19 2.02 0.25 0.08 1.94 3.48 1.67 2.63 1.00 1.44
Sa 0.17 0.12 1.00 0.94 0.02 0.10 1.81 3.48 1.67 2.63 1.00 1.44
Su 1.13 4.87 0.87 1.38 0.12 0.08 1.58 2.17 1.65 2.23 1.12 1.40

addition to the heterogeneity over the course of a day. Subsequently, we use the

mean number of arrivals (grouped by ward, day of week, and AM/PM) in order to

model emergency arrivals using a Poisson distribution.

These calculations – the one-step transition probabilities and length of stay for

both emergency and non-emergency patients at Wards A, B, and C, as well as the

patients’ arrival locations, grouped by day of week and time of day – all serve as

inputs.

The optimal schedules for the minimum blockages and the maximum electives

formulations contrasted with the original schedule from the case study presented in

Sec. 4.7 are given below. An important feature of this particular case study is the

fact that the partner hospital performed some admissions on the weekends. In the

optimization, we constrained the maximum number of weekend admissions by the

amount done historically in the original schedule. The limits were taken to be as

follows: (1) General Surg admissions are capped at 0 for Saturday and 6 for Sunday,

(2) Medicine admissions are capped at 2 for Saturday and 2 for Sunday.

Admitting Service Sun Mon Tue Wed Thu Fri Sat
General Surgery 6 11 10 9 11 8 0
Internal Medince 2 4 9 7 6 5 2

Total 8 15 19 16 17 13 2

Table 2.7: Original schedule
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Admitting Service Sun Mon Tue Wed Thu Fri Sat
General Surgery 6 13 5 14 2 15 0

Internal Medicine 2 6 8 2 11 4 2
Total 8 19 13 16 13 19 2

Table 2.8: Minimum blocking schedule (32% reduction)

Admitting Service Sun Mon Tue Wed Thu Fri Sat
General Surgery 6 13 6 12 5 13 0

Internal Medicine 2 8 8 6 9 6 2
Total 8 21 14 18 14 19 2

Table 2.9: Maximum elective admissions schedule (7% increase)

Economic Ramifications of Schedule Design

This section provides a high-level look at the economics of optimal schedule design.

The purpose is not to provide a complete financial analysis of the hospital care

delivery system, but rather to give a broad sense of the magnitude of impact of

scheduling on hospitals.

When a hospital increases the volume of elective procedures done, as is the case

in the maximum elective admissions optimization, the hospital benefits from both

the procedure itself as well as the subsequent inpatient stay. Because the choice

of which procedures to target for increased volume lies primarily in each individual

hospitals strategic mission, we do not attempt to analyze every possible scenario;

instead taking the average expected income generated across a number of common

specialties. Table 2.10 gives the average revenue generated and relative volumes of

procedures for 100 surgical centers (see [78]). From the table, the average revenue

per procedure across these 5 services is around $1,829.

General Surg OB/GYN Ortho Plastics Urology
Avg Revenue 1545 1757 2443 1415 1435

per Proc.
Pecent of Volume 0.17 0.06 0.36 0.11 0.31

Table 2.10: Mean income per procedure generated by specialty and relative volume of each specialty
across 100 surgical centers
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In addition to procedure revenue, there is also the revenue generated by an in-

patient stay. According to a survey of 114 hospital CFO’s (see [37]), the average

revenue generated by an inpatient stay is approximately $8,500.

In the maximum elective admissions optimal schedule in the hospital case study

presented in Sec. 4.7, the hospital was able to perform an additional 310 additional

elective procedures annual with the same level of access. The rough-cut financial

impact of this increased procedure volume for the hospital is 310 procedures/year ×

($1,829 per procedure + $8,500 per inpatient admission) = $3,201,990 in additional

revenue annually. In addition, the hospital from the case study was very well man-

aged already so the opportunities would likely be greater in a more typical hospital.



CHAPTER III

Design and Analysis of Hospital Admission Control for
Operational Effectiveness

This chapter complements Chapter II by providing a solution to the dynamic

control portion of the Hospital Admission Scheduling and Control (HASC) prob-

lem. In Chapter II, analytical methods were developed for the system-wide planning

of scheduled elective admissions to stabilize workloads in downstream hospital re-

sources. Even with an improved admission schedule, variability in length of stay

and emergency arrivals will still impact the hospital. This chapter looks at dynamic,

operational-level control of day-to-day hospital census as a complement to the plan-

ning and scheduling model presented in Chapter II.

Currently there are two major gateways for admission to a hospital: the ED and

scheduled elective admission. Unfortunately, in highly utilized hospitals, excessive

wait times make the scheduled gateway undesirable or infeasible for a subset of

patients and doctors. As a result, this group often uses the ED gateway as a means

to gain admission to the hospital. To better serve these patients and improve overall

hospital functioning, we propose creating a third gateway: an expedited patient care

queue. We first characterize an optimal admission threshold policy using controls

on the scheduled and expedited gateways for a new Markov Decision Process model.

We then present a practical policy based on insight from the analytical model that

63
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yields reduced emergency blockages, cancelations and off-unit census via simulation

based on historical hospital data.

3.1 Introduction

In the United States, health care lags significantly behind the manufacturing

sector in process improvement practice. One consequence of this is that hospital care

services are subject to significant, unnecessary and detrimental fluctuations in patient

census and associated workload. This variability in patient census has been linked

specifically to congestion and chaos in the Emergency Department (ED), excessive

radiology backlogs, strains on nurse and ancillary staff, and overcrowding in the Post

Acute Care Unit (PACU) to name a few. This system-wide congestion results in

compromised quality of care, emergency patient blockage for lack of beds, excessive

patient Length of Stay (LOS), and significant understaffing and overstaffing costs

(see [20], [34], [84], [31], [64] and [75]).

This chapter introduces and evaluates mechanisms for managing the variability in

hospital workload at a key source: inpatient admissions. Currently, most hospitals

use only one mechanism for daily admission control; that is, they reactively cancel

elective surgeries only when there are no more inpatient beds available. In such

systems, no control exists to increase the short-term utilization of hospital resources.

This occurs because hospitals often categorize admissions as either scheduled elective

or emergency patients, foregoing the potential to redesign the ED and admissions

to accommodate patients who need to be seen within a few days but are not true

emergency cases. As a result, hospitals have some control over the arrival rate of

scheduled patients, but very little control over the arrival rate of emergency patients.

It can be counterproductive to lump the entire range of unscheduled patient types

into one category: emergency. As has been noted, (see for example [70], [60] and [26])
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one can identify a third category of patient that we refer to here as expedited patients.

For patients in this category the acuity of their medical condition is less than most

ED patients who are admitted, and their admission to the hospital can be delayed

one to three days, for example, without compromising their treatment. Without an

efficient expedited admission process, these patients are often admitted through the

emergency department due to excessive waiting times if they seek admission as an

elective patient.

This chapter makes strides towards developing a dynamic control structure that

effectively employs a call-in mechanism for servicing this third class of patient and

a controlled cancelation mechanism of elective patients. By properly servicing ex-

pedited patients, the excess load they placed on the ED during periods of peak

congestion is reduced. This also reduces the arrival rate of uncontrollable random

admissions. Thus the expedited call-in queue can be used to smooth hospital occu-

pancy levels over time to increase utilization of a hospital’s expensive resources, such

as staff and beds. The effect of creating both a call-in and a proactive cancelation

mechanism is to squeeze the hospital occupancy variation (see Figure 3.1), while leav-

ing a sufficient capacity buffer to accommodate potential future emergency arrivals.

This, in turn, increases the quality of care, facilitates patients’ access to health care,

and decreases the overall hospital costs resulting from occupancy variability.

This chapter develops a stochastic model for dynamic inpatient admission control

that uses detailed information on the number of occupied beds by bed unit (ward)

to show that:

1. Using both model-based (1) proactive cancelation and (2) call-in control mech-

anisms has advantages to using only reactive cancelation, as is the prevailing

practice.
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Figure 3.1: Controlling census variability in hospitals.

2. An easily implementable multi-dimensional double threshold policy for con-

trolling both these mechanisms can effectively balance the opportunity cost of

unfilled beds against the potential for cancelation of electives and bed block for

emergency and elective patients.

It is important to make a distinction between our proposed dynamic control approach

versus scheduling or planning models. Admission scheduling models are typically

concerned with decisions to generate efficient schedules (see [5], [43], [68]) or capacity

plans (see [87]) for operating rooms, diagnostic labs (see [74]) or outpatient clinics

(see [28]). The schedules are created by assigning patients to time slots, sequencing

the operations or dynamically managing the capacity. In contrast, we propose a

closed-loop (i.e. feedback driven) control model linking system-wide behavior to

operational-level decisions to stabilize hospital occupancy. An optimized scheduling

system is not a substitute for our proposed control approach, but rather a preamble

for it. In practice, our control mechanism would take the schedule as an input and

provide a planned response to the realization of the schedule and exogenous random

events; we simulate such an approach in Section 3.4.

This chapter contributes to the literature a clearer understanding of the value

of feedback control for inpatient admissions. First, it develops a stylized model
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to generate insight into the structure of a typical admission system. Second, it

argues the optimality of a double threshold admission policy for this stylized model

and proves several properties for two new queueing operators. Third, the insight

from the analytical model is used to develop a practical hospital admission policy

with significant potential to improve health care delivery, which is demonstrated via

simulation on historical hospital data.

The structure of this chapter is as follows. In Section 3.2 we discuss the motiva-

tion and background of hospital admission control systems and review the related

literature. In Section 3.3 we develop and analyze two stochastic models for under-

standing the essential dynamics of hospital admission control systems. In Section 3.4

we propose a practical admission policy based on the insight from Section 3.3 and

use a simulation framework to demonstrate the benefits for real-world applications.

3.2 Models for Hospital Admission Control

Based on our discussions with several major hospitals in the state of Michigan,

40% to 60% of inpatients are admitted through the ED. The Emergency Medical

Treatment and Active Labor Act (EMTALA) requires U.S. hospitals, by law, to

medically stabilize emergency patients. Though ED services are significantly im-

pacted by inpatient admissions from other hospital services, hospitals often lack an

effective system for coordinating of hospital admissions, bed units and the ED. [71]

argue that a primary cause of ED overcrowding and ambulance diversion is a lack

of empty inpatient beds for emergency patients. ED overcrowding negatively im-

pacts the quality of patient care, leading to increased LOS and/or worsening patient

disposition (see [20]) and in extreme cases, increased mortality rate (see [84]).

In the U.S., ED overcrowding is also exacerbated because many non-emergency

patients use the ED as a convenient means to get admission into a highly utilized
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hospital. While it is not currently common practice, we seek to show that ED con-

gestion can be reduced by using a patient flow management system that effectively

employs an expedited call-in queue and uses the hospital census levels in admission

decisions. We review the literature on patient flow models that link census to ad-

mission decision making (Section 3.2.1) and the use of expedited call-in queues in

hospitals (Section 3.2.2).

3.2.1 Patient Flow Modeling and Linking Admission to Census

[17], [12],and [82] represent early efforts in the modeling of hospital occupancy and

admissions. [36] used a multistage stochastic approach to establish that variability

in daily hospital occupancy in combination with high occupancy levels can increase

the risk of hospital overflows.

Using simulation, [32] developed (1) an inpatient admission scheduling and control

system to achieve high average occupancy subject to constraints on the number of

cancelations and emergency diversions, and (2) prediction models for the maximum

average occupancy attainable using their control system. [52] and [49] employed

surveys to establish that an effective patient flow model can enable high patient

throughput, low patient wait times, short LOS, and low clinic overtime. [30] provided

a systematic approach to health care engineering based on four different levels of

granularity: macro, regional, center and department. Our model targets the “center”

(hospital level) and can be used at the departmental level. [76] used forecasting and

simulation to predict and manage inpatient flows into hospital beds. This chapter

builds upon the above work by using feedback driven control to optimize the use of

reactive admission mechanisms with respect to system-level metrics. Recent advances

in patient flow modeling can also be found in [7] and [85].
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3.2.2 An Expedited Call-in Queue for Quick Response

Long wait times for elective (scheduled) admission – not only for the hospital but

for primary care providers as well – can force patients to use the ED as an expedient

means for hospital admission. A lack of bed availability sometimes causes doctors to

work around the system by declaring an emergency – even if a true emergency does

not exist – to get their patients admitted more quickly. This “work-around” behavior

strains the ED and subverts proper admission control. Previous literature has estab-

lished a significant need for better management of patients with time-sensitive, but

not emergent needs (see for example [70, 33]). While there is opportunity through re-

search to establish the current level of emergency department misuse we have verified

through discussions with medical practitioners in several countries that the practice

of using the emergency department to gain admission to the hospital persists. The

exact magnitude of the problem is left to future research. Our goal is to extend

the concept of a call-in queue to meet the needs of patients requiring “expedited”

inpatient care and allow them to be seen within a few days (a faster turnaround than

for a typical elective admission). The literature below demonstrates the efficiency of

patient call-in queues in a variety of settings.

A call-in mechanism gives patients who need expedited care a new pathway into

the hospital and thus reduces the load on the ED. Because a majority of hospital

costs are fixed, an empty hospital bed carries a significant opportunity cost (see [64]

and [57]). The expedited call-in queue can be used to increase the hospital occupancy

during low occupancy periods to avoid this opportunity cost. Streamlined manage-

ment of an expedited call-in queue for inpatients has been partially implemented

before (see [70], [60] and [26]). Though call-in queues are not commonly used in the

US, this practice is more prevalent in Europe. [86] analyzes the practice of using
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inpatient call-in queues in the UK. [73] discuss how establishing a pool of on-call

outpatients can improve resource utilization in an under-capacitated diagnostic cen-

ter. On-call patient queues are also widely used for outpatient clinics (see [55]) and

elective surgeries (see [6]).

3.3 A Markov Decision Process Model for Hospital Admission Control

Our dynamic admission control approach employs two mechanisms – elective ad-

mission cancelation and the call-in of expedite patients from a waiting list – to strike

a balance between bed utilization and hospital congestion. The purpose of this sec-

tion is to develop intuition into the structure of an optimal admission policy that

is used to build the practical admission control mechanism presented in Section 3.4.

For the sake of intuition we present a stylized Markov Decision Process (MDP) model

that focuses only on key dynamics of an effective admission control system.

Of relevance to our methodology, [23] presented a dynamic programming model

to optimize elective surgery schedules considering uncertainty in operating room

capacity due to emergency arrivals. [25] used a dynamic programming approach to

control admission of inpatients, outpatients and emergency patients into a diagnostic

medical facility. [74] developed an approximate dynamic programming approach for

scheduling multi-priority patients to a public diagnostic facility. [15] analyzes the

effect of reserving slots for urgent patients in the context of primary health care

practice using Markov Decision Process models. See [27] and [28] for a detailed survey

on the use of Markov Decision models for appointment scheduling and controlling

admissions in a variety of health care delivery environments.

3.3.1 The Model

Our proposed MDP models seek to balance the opportunity cost of unutilized

resources with the penalties associated with heavy congestion in those resources.
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In particular we consider balancing the opportunity cost of unfilled hospital beds

with the penalties of (1) canceling elective admissions and (2) emergency arrivals

that are blocked from entering a hospital bed. By analyzing the structure of this

model, we determine the form of an optimal admission control policy to support the

development of specific, practical policies for application.

For the general model consider a queueing system with 2 queues – a call-in queue

and the hospital itself – as shown in figure 3.2. Scheduled patients and emergency

patients are assigned hospital beds according to a Poisson process with rate λ′s and

λ′e while the call-in patients are placed on the call-in queue according to a Poisson

process with rate λ′q and are then assigned a hospital bed (admitted) via the ad-

mission controller’s call-in action. The controller also has the option of canceling

an arriving scheduled patient. Patients receive service according to an exponential

distribution with rate µ′.

care

Emergent Patients

Scheduled Electives

Expedited Patients

e

Cancel

s

q

Call‐in

Discharge 

x
Beds

(Census = x)

Figure 3.2: Two-dimensional Admission control system.

Let Xπ(t) = (Xπ
1 (t), Xπ

2 (t)) denote the number of patients in the system at time

t under policy π, where Xπ
1 (t) ∈ Z+ is the number of patients in the hospital and

Xπ
2 (t) ∈ Z+ is the number of patients on the call-in queue. Let B be the number of

inpatient hospital beds. Let h′1 be the opportunity cost of an empty bed – quantified

as (B − Xπ
1 (t))+. In contrast, h′2 represents the per unit time (inventory) holding

cost associated with holding a patient in the call-in queue.
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Let τ ′ be the cost associated with having too many patients in the hospital –

quantified as (Xπ
1 (t) − B)+. When an emergency patient arrives at the door, it is

forbidden by law to turn them away even if the hospital is full. This means that

when a hospital reaches peak occupancy, emergency patients start to back up in

the Emergency Department and/or are placed in the halls until a bed opens up.

Similarly, scheduled surgeries remain in the Operating Room, occupying critical OR

resources if there is no bed available for them post operation. These are adverse

situations for the hospital and the patient and thus a penalty of τ is assessed for

each patient that is forced to wait in the OR, the ED, or in the hallway for a bed to

open up.

Finally, let c′ be the cost of canceling a scheduled patient. If we let Nπ(t) be the

counting process for the number of cancelations by time t under policy π, we can

formulate the average cost per unit time objective function for policy π as

(3.1)

Zπ = lim sup
T→∞

E
1

T

[ ∫ T

0

(
h′1(B−Xπ

1 (z))+ + τ ′(Xπ
1 (z)−B)+ +h′2X

π
2 (z)

)
dz+ c′Nπ(T )

]
A policy is then optimal if it achieves the optimal cost among all admissible policies

Π as follows:

(3.2) Z∗ = inf
π∈Π

Zπ.

Our goal is to use the structure of the optimal policy for this model to gain

insight into hospital management practice. The following theorem, proved in [44],

shows this goal can be achieved by analyzing the finite horizon discounted version of

the problem.

Theorem III.1. For the average cost optimality equation, if λ′e +λ′q < Bµ′ then the

following hold.
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(i) There exists an average-cost optimal stationary policy.

(ii) The optimal average cost can be computed by: Z∗ = infπ∈Π Z
π =

limβ→1− limn→∞(1 − β)Vn,β(x), where Vn,β(x) is the n stage discounted value

function

(iii) Let πn,β, denote an optimal policy for the n-period (discounted cost) problem.

Then any limit point πβ of the sequence {πβ,n}n≥1 as n → ∞ is optimal for

the infinite-horizon discounted cost. Moreover, any limit point of the sequence

{πβ}β∈(0,1) (as β → 1−) is average-cost optimal.

Theorem III.1 allows us to (1) guarantee the existence of an optimal stationary

policy and (2) establish that the finite horizon problem converges to the infinite

horizon average cost problem in both cost and policy. This means that the insights

from analyzing the finite horizon problem are conferred to the original infinite horizon

average cost optimal problem in Eq. (3.2). The condition λ′e + λ′q < Bµ′ is sufficient

to guarantee that the birth death model of the Markov Chain induced by the certain

policies is stable and thus the objective function cannot be infinite.

3.3.2 Markov Decision Process Formulation

The final step before beginning our analysis of the n-period discounted model

is to apply uniformization ([61]) to formulate the discrete time equivalent of the

discounted problem. To do so let the uniformization factor ψ = λ′e +λ′s +λ′q +B ·µ′.

Let λe = λ′e/ψ, λs = λ′s/ψ, λq = λ′q/ψ, µ = µ′/ψ denote the discrete time parameters

after uniformization corresponding to the transition probabilities in the embedded

discrete time Markov chain (DTMC). Let α be the continuous time discount factor

in the original problem and ξ be an exponential random variable with rate ψ (the

length of time for one transition in the discrete chain). The equivalent discrete time
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discount factor for the DTMC then becomes:

(3.3) β = E[e−αξ] =

∫ ∞
0

(e−αt)(ψe−ψt)dt =
ψ

ψ + α
.

This implies that the discrete time costs can be defined in terms of the continuous

time costs as h1 = h′1/(ψ + α),h2 = h′2/(ψ + α), and τ = τ ′/(ψ + α). Since c is

assessed per event and not assessed per unit time set c = c′. Thus the discrete time

instantaneous one stage cost can be written

C(X) = E

[ ∫ ξ

0

(
h′1(B −X1)+ + τ ′(X1 −B)+ + h′2X2

)
e−αtdt

]
=

1− β
α

(
h′1(B −X1)+ + τ ′(X1 −B)+ + h′2X2

)
=

h′1
ψ + α

(B −X1)+

+
τ ′

ψ + α
(X1 −B)+ +

h′2
ψ + α

X2 = h1(B −X1)+ + τ(X1 −B)+ + h2X2.(3.4)

Now we can formulate the finite-horizon optimal expected discounted cost recursive

optimality equation as:

Vn+1,β(x) = C(x) + β

{
λe · Vn,β(x + e1) + λq ·min

{
Vn,β(x + e1), Vn,β(x + e2))

}
+

(x ∧B)µ ·
[
11{

x2>0
}min

{
Vn,β(x− e1), Vn,β(x− e2)

}
+ 11{

x2=0
}Vn,β((x− e1)+

)]
+ λs min

{
Vn,β(x + e1), c/β + Vn,β(x)

}
+ (B − x1)+µ·

[
11{

x1=0,x2>0
}min

{
Vn,β(x), Vn,β(x + e1 − e2)

}
+
(
1− 11{

x1=0,x2>0
})Vn,β(x)

]}(3.5)

Where Vn,β(x) represents the optimal cost of the n-period β-discounted problem

starting in state x = (x1, x2). 11{·} is the indicator function, and ei represents the

ith unit vector. In other words, ei is the vector that contains all zeros except for a

1 in the ith position. The initial condition, V0,β ≡ 0 is assumed for mathematical

convenience and has no effect on the results for the infinite-horizon problem.

The first term of the value function is the one period instantaneous cost described

in Eq. (3.4). The second term represents an emergency arrival, which is always
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admitted. The third term represents the arrival of an expedited patient. When this

event occurs, the controller either calls them in to the hospital and assigns a bed

upon arrival (term 1 of the minimization) or places them on the call-in queue (term

2). The fourth term represents the discharge of a patient from the hospital. When

a patient is discharged, a bed is freed up, so at this point the hospital can decide to

admit an expedited patient and backfill the empty bed (term 2 of the minimization)

or to free the bed for scheduled/emergency patients that may arrive in future periods

(term 1). Note that, if there are no patients in the call-in queue, no call-in action

is available (the second indicator of the discharge term). The fifth term represents

a scheduled arrival and the decision to begin treatment and assign a bed to the

patient (term 1 of the minimization) or to cancel the patient (term 2). The final

term combines the uniformization term (at the end) with a call in decision when

x1 = 0, x2 > 0. That is, an empty system may call in patients at a rate of Bµ.

While this state has essentially zero probability for a realistic parametrization it is

important in the case of B = 1 (see Section 3.3.5).

For convenience of analysis, we reformulate this n-period problem using event-

based dynamic programming operators (see [56]). The cost, arrival, admission control

and routing operators are defined as Tcostf(x) = C(x)+f(x), TA(1)f(x) = f(x+e1),

TACf(x) = min
{
c+β ·f(x), β ·f(x+e1)

}
, and TR({1,2})f(x) = min

{
f(x+e1), f(x+

e2)
}

. Let Tunif [f1, f2, f3, f4](x) = λeβf1(x) + λqβf2(x) + µ · βf3(x) + λsf4(x) be the

uniformization operator. In addition we define a multi-server backfill operator that

encompasses the dynamics of multiple servers as well as the dynamics of backfilling
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a discharge with a patient from the call-in queue.

TMBf(x) =



(x1 ∧B) min
{
f(x− e1), f(x− e2)

}
+ (B − x1 ∧B)f(x)

if x1, x2 > 0

Bmin
{
f(x), f(x + e1 − e2)

}
if x1 = 0, x2 > 0

(x1 ∧B)f
(
(x− e1)+

)
+ (B − x1 ∧B)f(x)

if x2 = 0

(3.6)

Using these operators we can rewrite the value function of Eq. (3.5) as

(3.7) Vn+1,β(x) = Tcost · Tunif
[
TA(1)Vn,β, TR({1,2})Vn,β, TMBVn,β, TACVn,β

]
(x).

The following sections develop intuition into the structure of an optimal policy for

the above system using the n-period discounted model described in Eq. (3.5). Af-

ter discussing a few modeling assumptions, we begin our analysis with a simplified

case of the general model that disregards a detailed model of expedited call-in pa-

tients to isolate the effect of hospital occupancy alone on decision making. This

model provides a sense of “what’s best” for the hospital. Next we analyze the gen-

eral formulation to gain insight into a policy that balances the hospital’s needs for

operational efficiency with the needs of the patients on the call-in queue.

3.3.3 MDP Modeling Assumptions

To reflect practice, we focus on the equilibrium properties of the steady state

MDP model, rather than finite horizon effects. To model arrivals, we follow [36],

who showed that a Poisson process is a good model both for elective and emergency

arrivals to hospital beds. The Poisson assumption for call-in arrivals follows directly

from Bernoulli splitting of the Poisson process for emergencies. As in [36], we are

not addressing elective admission scheduling optimization and so we assume that the
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hospital has no control over the elective admission schedule. This is in part to isolate

the value of a call-in queue and in part because this is a reality in many hospitals

in the U.S. due to decentralized control that allows surgery services to schedule

independently of the rest of the hospital. The surgery schedule is constantly changing

even up until the last minute, random case times also lead to a nearly Poisson process

of elective patients (surgical and medical) requesting a bed. It is important that we

are modeling only the flow of elective patients into beds and do not explicitly model

the operating room or prior activities.

Generally the arrival rates vary in a non-stationary manner by time of day and day

of week. However, since the purpose of the model is to gain insight into the structure

of a policy that balances the tradeoffs between utilization and congestion and not

to solve the MDP for specific values, making the stationary Poisson assumption for

the aggregate flow of patients does not detract from our purpose. We allow for non-

stationary arrivals that match historical arrival patterns in a real hospital in Section

3.4, where we analyze a practical policy that harnesses the insight presented in this

section.

The length of stay in the hospital is assumed to be exponential for the pur-

poses of tractability. Note that the policies developed in Section 3.4 based on the

insight gained from this queueing model and using distributions fitted from histori-

cal hospital data still show significant benefits to the hospital despite the modeling

simplifications made for the MDP analysis.

3.3.4 Isolating Hospital System Efficiency with Occupancy Based Decision Making

To isolate the effects of occupancy on hospital decision making and analyze in

isolation the value of census-based cancelation and call-in admission control, we

simplify the modeling of call-in queue patients with the following model changes:



78

(1) there is always a patient for the hospital to call-in and (2) there is no waiting

penalty for call-in patients. While these assumptions lack the realism of a true

hospital, they enable us to analyze the hospital’s “best case” control options with a

simple, insightful model which is later shown to provide reliable insights for complex

models.

The value function in Eq. (3.8) represents the uniformized version of this parsi-

monious model. We proceed by analyzing the n-period discounted problem for this

special case of the general model of Section 3.3.1.

Vn+1,β(x) = C(x) + β
{
λeVn,β(x+ 1) + λs min

{
Vn,β(x+ 1), c/β + Vn,β(x)

}
+

(x ∧B) · µmin
{
Vn,β(x− 1), Vn,β(x)

}
+ (B − x)+µ · Vn,β(x)

}
.(3.8)

Note that the state x ∈ Z+ now represents only patients in the hospital, as we are not

modeling the length of the call-in queue. C(x) and the event operators are modified

accordingly. To simplify the analysis, we do not allow call-ins when the system is

empty. This is a good approximation because we are interested in large bed size B,

so this state has negligible probability of occurrence.

We show that the value function is convex by demonstrating the closure of the

event operators from Section 3.3.2 under convexity, since Vn,β = T1 · · · TkV0,β is just

a composition of a combination of the above operators with the initial convex value

function V0.

Theorem III.2. The value function as defined in Eq. (3.8) is convex.

Proof. V0,β ≡ 0 is trivially convex. The closure under convexity of the operators

Tcost, TA(1), TAC , TR({1,2}), and Tunif is shown in [56] under the operators of the same

name. All that remains is the multiple server backfill operator TMB. To show closure

of TMB under convexity we consider four combinations of minimizers a1 and a2 of
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the left hand side of

(x− 1) min
{
f(x− 2)︸ ︷︷ ︸

a1

, f(x− 1)︸ ︷︷ ︸
a2

}
+
(
B − (x− 1)

)
f(x− 1)+

(x+ 1) ·min
{
f(x)︸︷︷︸
a1

, f(x+ 1)︸ ︷︷ ︸
a2

}
+
(
B − (x+ 1)

)
f(x+ 1) ≥ 2x ·min

{
f(x− 1), f(x)

}
+ 2 ·

(
B − x

)
f(x)

where a1 represents the case where the discharge action minimizes the function and

a2 represents the case where the call-in action minimizes the function. We ignore the

discount factor, β, because it can be divided out on both sides. To show closure under

convexity, it suffices to show closure for every combination ai, aj on the left hand

side. Case a1, a1 reduces to the operator TMD shown to be closed under convexity

in [56]. Case a2, a2 follows directly from the convexity f and from the properties of

minimization. Case a1, a2 is easy, because for convex f , f(x−2) ≤ f(x−1)⇒ f(x) ≤

f(x+1), therefore min{f(x−2), f(x−1)} = f(x−2)⇒ min{f(x), f(x+1)} = f(x).

The final case, a2, a1, follows from

(x− 1)f(x− 1) +
(
B − (x− 1)

)
f(x− 1) + (x+ 1)f(x) +

(
B − (x+ 1)

)
f(x+ 1) ≥(

B − (x+ 1)
)
2f(x) + 2f(x) + 2f(x− 1) + (x− 1)

[
f(x− 1) + f(x)

]
=(

B − x
)
2f(x) + (x+ 1)f(x− 1) + (x− 1)f(x) ≥(

B − x
)
2f(x) + (x+ 1) min

{
f(x), f(x− 1)

}
+ (x− 1) min

{
f(x), f(x− 1)

}
=

2
(
B − x

)
f(x) + 2xmin

{
f(x), f(x− 1)

}
.

The first inequality follows by combining terms 2 and 4 and using convexity. Next, the

equality involves rearranging terms. The following inequality follows from properties

of minimization, and the final equality again involves rearranging terms and using

properties of minimization. If x > B then TMB reduces to Bmin{f(x − 1), f(x)}
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which preserves convexity because it is equivalent to TAC where c = 0. The case

x = B can be shown for cases a2, a1 and a2, a2 directly using the properties of

minimization and convexity. For the boundary, where x = 1 the result follows

directly from convexity for the only two cases on the LHS: a2, a1 and a2, a2. Since

V0 is convex and all the operators that make up the t-stage value function, T(.), are

closed under convexity, the value function itself is convex for all t.

Corollary III.3. The optimal policy for the value function as defined in Eq. (3.8)

is (i) of double threshold type for both the cancelation action as well as the call-in

action with a call-in threshold, θS, and a cancelation threshold, θC, and moreover

(ii) θS ≤ θC + 1.

Proof. (i) The threshold structure of the optimal policy for both actions follows

directly from convexity of the value function.

(ii) At θS the discharge action is cheaper, i.e., f(θS) − f(θS − 1) ≥ 0, and the

call-in action is cheaper at θS − 1, i.e., f(θS − 1) − f(θS − 2) ≤ 0. At θC , the

cancelation action is cheaper, i.e., f(θC + 1) − f(θC) ≥ c, and the admit action

is cheaper at θC − 1, i.e., f(θC) − f(θC − 1) ≤ c. From these equations, it is

clear that at θC + 1, the discharge action will dominate the call-in action since

f(θC + 1) − f(θC) ≥ c ≥ 0 ⇒ f(θC + 1) ≥ f(θC). Since θS is the smallest state at

which the discharge action will dominate the call-in action, clearly θS ≤ θC + 1.

From Corollary III.3-(i) one can use thresholds θS and θC to decompose the hos-

pital occupancy into zones based on the optimal admission control actions. Corol-

lary III.3-(ii) suggests that the call-in threshold generally lies below the cancelation

threshold (i.e. θS ≤ θC + 1). When θS < θC , the state space can be decomposed

specifically into three zones as shown in Figure 3.3: a call-in zone, a steady zone,

and a cancel zone. In the call-in zone, the controller admits expedited and scheduled
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patients. In the steady zone, the controller admits the scheduled patients but does

not call in expedited patients. In the cancel zone, the controller cancels the scheduled

patients and does not admit expedited patients. In practice, the solution is elegant

and the hospital need only determine what zone the census falls into and take action

accordingly.

Cancel 
Zone

Steady ZoneCall‐In Zone
Number of 

Occupied Beds

Call‐in 
Threshold

Cancel 
Threshold

Maximum 
Occupancy

0

Figure 3.3: Zones for Zone-Based Admission Control versus number of filled beds

3.3.5 Balancing Hospital Efficiency and Call-in Patient Service

In this section, we capture the additional effect of the length of the call-in queue

to penalize the waiting time of expedited patients as in the general model formulated

in Equation 3.5. Recall the state space is x = (x1, x2) ∈ Z+ × Z+, where x1 is the

number of patients in the hospital and x2 is the number of patients in the call-in

queue.

The key result is that we identify properties of the value function in general and

again find a double threshold policy to be optimal, except that in this model we have

a two-dimensional double threshold policy. This section proves the structure for a

special (but non-trivial) case of one bed, and the next section numerically extends

the insight for an arbitrary number of beds. That is, there is a call-in and cancelation

threshold in both number of occupied beds and in number of patients on the call-in

queue. To extend the insight about threshold policies from the previous parsimonious

model, the following properties are sufficient for a threshold policy in two dimensions

to be optimal with respect to the call-in and cancel actions: (1) supermodularity,

(2) superconvexity, and (3) convexity in x1 and x2. For notational convenience, we

denote the class of functions that has these properties as F.
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A supermodular function has the property f(x+e1)+f(x+e2) ≤ f(x)+f(x+e1+

e2). A superconvex function has two symmetric properties called (1) superconvexity

1 defined as f(x+e1)+f(x+e1 +e2) ≤ f(x+e2)+f(x+2e1) and (2) superconvexity

2 defined as f(x+ e2) + f(x+ e1 + e2) ≤ f(x+ e1) + f(x+ 2e2) (see [56]).

In general, the interaction between the call-in action dynamics and the multiple

server dynamics disrupts the propagation of the properties of F. In fact, Section 3.3.6

reveals counterexamples where the Vn,β 6∈ F even though the threshold structure is

still optimal; moreover, the two-dimensional threshold structure holds in all cases of

a large random test suite.

Following the form of analysis from Section 3.3.4 we first show that V0(·), C(·) ∈ F.

Then we show that if f ∈ F then Tif ∈ F for all operators. Note that combining su-

permodularity and superconvexity gives convexity in both components immediately,

so we omit the proof of convexity in x1 and x2.

Lemma III.4. V0,β, C(·) ∈ F

Proof. V0,β ≡ 0 is trivially supermodular and superconvex. The proof of these prop-

erties for C(·) is straightforward and can be easily checked by using the definition

of C(·) both above, below and at the boundary, B. Convexity in x1 and x2 follows

directly from supermodularity and superconvexity, thus V0, C(·) ∈ F.

Tcost, Tunif , TA(1), TR({1,2}), TAC are standard operators in [56], whose closure under

the properties of the functions in F was shown in that paper (as long as C ∈ F). It

remains to show that the backfill operator, TMB, is also closed under the properties

of F. This is a new queueing operator, though it shares similarities with [29], whose

closure under various properties has not yet been shown to the best of our knowledge.

The closure of the backfill operator, TMB, under supermodularity and superconvexity
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is shown first for x1 > 0, x2 > 0 and then for the boundary cases x1 > 0, x2 = 0,

x1 = 0, x2 > 0, and x1 = 0, x2 = 0.

Lemma III.5. TMB as defined in Eq. (3.6), is closed under supermodularity for

B = 1.

Proof. Suppose f ∈ F and let x1 > 0, x2 > 0. For supermodularity we need to show

the following:

(3.9) TMB ◦ f(x) + TMB ◦ f(x+ e1 + e2) ≥ TMB ◦ f(x+ e1) + TMB ◦ f(x+ e2) .

In order to prove Equation (3.9) we need to consider four different cases based on

the specific minimizing actions of the left hand side. We can re-write Equation (3.9)

as:

min
{
f(x− e1)︸ ︷︷ ︸

a1

, f(x− e2)︸ ︷︷ ︸
a2

}
+min

{
f(x+ e2)︸ ︷︷ ︸

a1

, f(x+ e1)︸ ︷︷ ︸
a2

}
≥ min

{
f(x), f(x+ e1 − e2)

}
+min

{
f(x− e1 + e2), f(x)

}
.(3.10)

Where a1 represents a discharge where the “no backfill” action minimizes the func-

tion. In a2 the “backfill” action minimizes the function. Cases a1, a1 and a2, a2

follow directly from the supermodularity of f ∈ F. Cases a1, a2 and a2, a1 follow

from convexity in x1 and x2 respectively.

Boundary Conditions x1 > 0, x2 = 0: Here we want to show:

f(x) + min
{
f(x− e1 + e2), f(x)

}
≤ f(x− e1) + min

{
f(x+ e2)︸ ︷︷ ︸

a1

, f(x+ e1)︸ ︷︷ ︸
a2

}
For case a1 the LHS ≤ f(x)+f(x−e1 +e2) ≤ f(x−e1)+f(x+e2) and using change

of variable y = x− e1 it is easily seen that this equation reduces to supermodularity

of f . For case a2 the LHS ≤ 2f(x) ≤ f(x− e1) + f(x+ e1) by convexity in x1.

Boundary Condition x1 = 0, x2 ≥ 0: The inequality holds by observing that at the

boundary TMBf(x) = TMBf(x+ e1) and TMBf(x+ e2) = TMBf(x+ e1 + e2).
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The following lemma establishes closure of TMB under superconvexity. This result

holds for some intuitive conditions on the costs as shown.

Lemma III.6. If h1 ≤ λeβτ and h2 ≥ 0 then TMB is closed under superconvexity

for B = 1

Proof. Suppose f is superconvex. First we need to show that the operator TMB

satisfies the first equation of superconvexity :

(3.11) TMB ◦f(x+ e2) +TMB ◦f(x+ 2e1) ≥ TMB ◦f(x+ e1) +TMB ◦f(x+ e1 + e2) .

We proceed as before, re-writing Equation (3.11) as:

min
{
f(x− e1 + e2)︸ ︷︷ ︸

a1

, f(x)︸︷︷︸
a2

}
+min

{
f(x+ e1)︸ ︷︷ ︸

a1

, f(x+ 2e1 − e2)︸ ︷︷ ︸
a2

}
≥ min

{
f(x), f(x+ e1 − e2)

}
+min

{
f(x+ e2), f(x+ e1)

}
.(3.12)

Similar to Theorem III.2, we can show that case a1, a2 need not be considered.

By the superconvexity of f we have f(x)− f(x− e1 + e2) ≤ f(x+ e1)− f(x+ e2) ≤

f(x+ 2e1)− f(x+ e1 + e2) ≤ f(x+ 2e1 − e2)− f(x+ e1). The first two inequalities

follow from superconvexity (1) and the second follows from superconvexity (2). Thus

if f(x−e1+e2) ≤ f(x), as is implied by a1, a2, then f(x+2e1−e2) ≥ f(x+e1) so a1, a2

can be eliminated. Cases a1, a1 and a2, a2 follow directly from the superconvexity of

f ∈ F. Case a2, a1 follows directly from the properties of minimization.

The arguments for the proof for superconvexity (2) are completely symmetric to

those used to prove superconvexity (1) so the proof is omitted.

Superconvexity (1)-Boundary Conditions : For the first equation of superconvexity,

boundary case x1 > 0, x2 = 0 reduces to

f(x) + min
{
f(x+ e2), f(x+ e1)

}
≤ min

{
f(x− e1 + e2)︸ ︷︷ ︸

a1

, f(x)︸︷︷︸
a2

}
+ f(x+ e1)
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For case a1 the LHS ≤ f(x) + f(x+ e2) ≤ f(x− e1 + e2) + f(x+ e1). Using change

of variable y = x− e1 this equation reduces to superconvexity of f . Case a2 follows

directly from the properties of minimization.

Since TMBf(x + e2) = TMBf(x + e1 + e2), the boundary case x1 = 0, x2 > 0

reduces to

min
{
f(x), f(x+ e1 − e2)

}
≤ min

{
f(x+ e1), f(x+ 2e1 − e2)

}
It can easily be shown that if h1 ≤ λeβτ and h2 ≥ 0, then f is increasing in x1 and

therefore we get that f(x + e1) ≥ f(x) ≥ min
{
f(x), f(x + e1 − e2)

}
and likewise

f(x+ 2e1 − e2) ≥ f(x+ e1 − e2) ≥ min
{
f(x), f(x+ e1 − e2)

}
Superconvexity (2)-Boundary Conditions : For the second equation of superconvexity,

the boundary case x1 > 0, x2 = 0 reduces to

min
{
f(x− e1 + e2), f(x)

}
+ min

{
f(x+ e2), f(x+ e1)

}
≤ f(x) + min

{
f(x− e1 + 2e2)︸ ︷︷ ︸

a1

, f(x+ e2)︸ ︷︷ ︸
a2

}
,

where in case a1 the LHS ≤ f(x − e1 + e2) + f(x + e2) ≤ f(x) + f(x − e1 + 2e2).

Using change of variable y = x − e1 this equation reduces to superconvexity of f .

Again case a2 follows directly from the properties of minimization. The boundary

case x1 = 0, x2 > 0 reduces to

2 min
{
f(x+ e2), f(x+ e1)

}
≤min

{
f(x)︸︷︷︸
a1

, f(x+ e1 − e2)︸ ︷︷ ︸
a2

}
+

min
{
f(x+ 2e2)︸ ︷︷ ︸

a1

, f(x+ e1 + e2)︸ ︷︷ ︸
a2

}
.

Case a1, a2 follows directly from supermodularity, cases a1, a1 and a2, a2 follow di-

rectly from convexity in x2. Case a2, a1 need not be considered because f(x)−f(x+

e1 − e2) ≤ f(x + 2e2) − f(x + e1 + e2) by using superconvexity (2) twice. Thus if
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f(x+ e1 − e2) ≤ f(x) then f(x+ e1 + e2) ≤ f(x+ 2e2), so a2, a1 can be eliminated.

The final boundary case, x1 = 0, x2 = 0 reduces to

2 min
{
f(x+ e1), f(x+ e2)

}
≤ f(x) + min

{
f(x+ 2e2)︸ ︷︷ ︸

a1

, f(x+ e1 + e2)︸ ︷︷ ︸
a2

}
.

Case a1 follows from supermodularity and case a2 follows from convexity in x2.

Our main result is rigorously proven for the case of only one bed, which is not

trivial because, all actions and states are possible and all costs play a role in the

optimal policy. The numerical testing in the next section suggests that this result is

general.

Theorem III.7. If h1 ≤ λeβτ and h2 ≥ 0, then for the special case of B = 1 server,

a threshold policy in x1 and x2 is optimal for the backfill action, the cancel action

and the call-in action.

3.3.6 Numerical Results

Since there are cases where Vt 6∈ F, we designed a test suite (shown in Table

3.1) composed of several representative cases (Case 1-3) and a randomized test suite

(Case 4) to investigate whether the threshold structure holds in a wide range of

environments. We check these cases via the numerical computation of the MDP

(value iteration) with a large finite state space. From Theorem III.1, we know that

the value iteration method will converge to the infinite-horizon optimal average cost

value and policy that we are interested in. Case 1 describes a typical community

hospital. Cases 2 and 3 consider extremely high and low values for the expedited

call-in queue holding cost (h2) respectively. To test the sensitivity of our model to the

arrival process, within each case, we consider subcases (denoted x-1 in the second line

of Table 3.1) where 60% of patient arrivals are emergencies and 40% are scheduled

and its reverse (subcases x-2) where 40% of arrivals are emergencies and 60% are
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scheduled. In the first randomized test suite (Case 4-1), scheduled and emergency

arrival rates are generated from a uniform distribution between 0 and 1, then the

call-in arrival rate is taken to be a random, U [0, 1], percentage of the smaller of the

two. This ensures that the call-in arrival rate is not higher than either of the two

primary inputs to the hospital. In the second test suite (Case 4-2), this assumption

is relaxed and the three rates are all generated from a U[0,1] distribution and then

normalized with respect to the random utilization. In Table 3.1, ρ represents the

hospital utilization determined by (λe + λs + λq)/(Bµ).

Parma Case 1 Case 2 Case 3 Case 4
1-1 1-2 2-1 2-2 3-1 3-2 4-1 4-2

λe 57% 38% 57% 38% 57% 38% U[0,1] U[0,1]
λs 38% 57% 38% 57% 38% 57% U[0,1] U[0,1]
λq 5% 5% 5% min(λs, λe)∗U[0,1] U[0,1]
ρ 82% 82% 82% U[0,1] U[0,1]
B 160 160 160 U[100,250] U[100,250]
h1 1 1 1 U[0,100] U[0,100]
h2 1.5 100 0 U[0,100] U[0,100]
c 34 34 34 U[0,100] U[0,100]
τ 40 40 40 U[0,100] U[0,100]

Table 3.1: Parameters used for the test suite.

For each data set given in Table 3.1, we recursively solve the average cost per unit

time MDP and record the optimal actions at each state. To illustrate the thresholds,

we plot the minimizing action versus number of occupied beds (x1, the horizontal

axis) and number in the call-in queue (x2, the vertical axis). Figure 3.4 exhibits

switching curves as a function of the state for Cases 1, 2 and 3, where Table 3.2

explains the definition of each action.

Action Arr. Call-in Scheduled Backfill Action Arr. Call-in Scheduled Backfill
Code Patient Patient Code Patient Patient

7 admit admit yes 3 queue admit yes
6 admit admit no 2 queue admit no
5 admit cancel yes 1 queue cancel yes
4 admit cancel no 0 queue cancel no

Table 3.2: Definition of control actions.
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Case 1‐1
0 1 2 3 4 5 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

0 6 2 2
1
2 3 2
3 7 0
4
5 3

Case 1‐2
0 1 2 3 4 5 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

0 6 2
1 2
2 3
3 7 0
4 3
5

Case 2‐1
0 1 2 3 4 5 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

0 6 4 0
1
2
3 7 5 1 0
4
5

Case 2‐2
0 1 2 3 4 5 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

0 6 4 0
1
2
3 7 5 1
4
5

Case 3‐1
0 1 2 3 4 5 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

0 6
1
2 2 0
3 7
4
5

Case 3‐2
0 1 2 3 4 5 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

0 6
1
2
3 7 2 0
4
5

Figure 3.4: Optimal actions. The vertical axis represents the number of patients on the call-in queue and
the horizontal axis represents the number of patients in the hospital

In Figure 3.4, when hospital occupancy is low, the optimal policy is to call-in

patients from the expedited queue in addition to admitting regular scheduled patients

(actions 6 and 7). At higher occupancies, the optimal policy is to admit the scheduled

patients but hold off the new call-in arrivals by placing them on the queue (actions

2 and 3). Finally at critically high occupancy levels, the optimal policy seeks to

avoid congestion by canceling scheduled patients and placing new call-in arrivals on

the queue (actions 0 and 1). Note that as the emergency arrival rate increases, the

control system starts canceling scheduled patients at lower occupancy levels (i.e. the

black area in Figure 3.4 expands to the left). Furthermore, when the holding cost

of a patient on the call-in queue increases, the system gives more attention to new

call-in arrivals, cancels scheduled patients and admits new call-in arrivals (actions

4 and 5) at medium-high occupancy levels. On the other hand, when the holding
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cost of patients on the call-in list is zero (Case 3), scheduled patients are given more

attention and action 2 becomes optimal at medium-high occupancy levels.

The action plots of the optimal policies in Figure 3.4 all clearly show that a

threshold policy is optimal in both x1 and x2 for both the cancelation and call-in

actions. Even though in some cases Vt 6∈ F, in all 2,000 random problem instances

(1,000 each from Cases 4-1 and 4-2), the threshold policy for both actions in both

dimensions is optimal. Thus, a threshold structure policy is at the very least optimal

for a broad class of parameters.

3.4 Simulation Study of a Partner Hospital

The MDP model discussed in the previous sections provides intuition into the

double threshold properties of a hospital admission control system. This section

develops a practical admission control mechanism based on the zone-based admission

control policy introduced in Section 3.3, but specifically modeling 3 bed units. We

demonstrate the benefits of such a policy with a custom-designed C++ simulation

study based on historical data from a partner hospital. We use the patient flow

simulation framework described in [39], so the features are explained at a high level

to outline our approach. Figure 3.5 presents an abstraction of the simulation patient

flow model. General Patient Flow System B/W Straight Line Transfers

Medicine
X Beds

Patient Type 1
Patient Type 2
Patient Type 3

λ1,1
λ2,1

Contro

X1 Beds

D/C    

λ3,1

ol 1

Surgery
X2 Beds

ICU
X3 Beds

λ1,2
λ2,2
λ

λ1,3

Control  2

Discharge (D/C)

λ3,2 2

Figure 3.5: Abstract Hospital Patient Flow Simulation Model.

The primary building block of our patient flow simulation model is the set of
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units, U , each having multiple beds. We allow for an arbitrary number of patient

types, n, with patients of type y ∈ {1, . . . , n} arriving exogenously to these units

according to a non-stationary Poisson Process with rate λy,d,t where d represents the

day of the week, t represents time of day, and y ∈ {1, . . . , n}. After completing their

initial segment of treatment, patients are transferred between units ui and uj with

probability pyui,uj or are discharged from the hospital with probability 1−
∑

k∈U p
y
ui,uk

.

The empirical length of stay distributions are based on patient type. If the unit to

which a patient seeks admission is full, the patient is placed on a non-preferred unit

that has the capability to care for the patient (e.g. a surgical patient placed on a

medicine unit), as is common practice in most hospitals.

The patient flow simulation framework allows for custom controls to be designed

and attached to framework elements. For our admission control study, we attach

the zone-based admission control module to the arrival streams as shown in Figure

3.5. Our model’s purpose allows us to exclude detailed modeling of the ED and OR,

allowing us to focus on the admission control and bed occupancy dynamics.

In order to verify and validate the accuracy of our simulation model, we use

strategies suggested by [80]. Verification proceeded via a series of white-box and

black-box testing schemes. First we verified the correct operation of each of the

components shown in Figure 3.5. Using detailed patient location/transition output

that we generated for each unit for every turn of the simulation clock, we are able to

verify that the correct number of patients are flowing through the system on a daily

basis.

We validate our model of the system by comparing it against actual “real-world”

hospital operations. That is, given a year’s worth of hospital admissions data, we

are able to extract the weekly scheduling pattern for elective medical and surgical
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patients and subsequently implement this policy in our model. Comparing the key

features of the system (average daily census by day of week, volume of emergency

and scheduled patients, and so forth) as in [63] we find that our simulation closely

matches the actual hospital operations.

Our simulated hospital is a medium sized non-teaching hospital with approxi-

mately 50% emergency and 50% elective volume. There are three primary interact-

ing units: surgery, medicine and ICU. The majority of the hospital’s patients can be

divided into four surgical types and three medical types. Arrival rates, length of stay

distributions and transfer probabilities are determined from one year of historical

data.

In early discussions, several systemic problems were identified in this hospital so

this study focuses primarily on mitigating these issues: (1) ED crowding, (2) excessive

surgical cancelations, (3) difficulty admitting medicine patients in the middle of the

week and (4) too many patients placed off the preferred unit for their condition (e.g.

a surgical patient on a medicine unit).

3.4.1 A Zone-Based Admission Control Mechanism and Call-in Queue Operation

Based on the analysis in Section 3.3, we propose a zone-based admission control

mechanism in which the hospital state is divided into three zones (cancel, steady and

call-in) as in Figure 3.3. However, the model of our partner hospital assigns each bed

unit its own zone and also allowed the zones to vary by day of week to add refinement.

The thresholds from the MDP model in Section 3.3.5 gave a rough estimate for initial

zone control values, which were refined using a heuristic simulation-based search. A

single run of the simulation for 100 weeks takes less than a minute on a regular

office PC. The simulation-based neighborhood search to find the admission zones

takes approximately a half an hour, depending on the quality of the initial policy
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generated by the MDP. While the MDP model is simplified, it is very useful for

approximating the more detailed control policy in the simulation.

An important practical feature of the call-in queue is that it should admit the

patients on the queue within an advertised amount of time, which we set to 3 days

in our simulation. In order to uphold this guarantee, we add a feature to the call-in

queue that monitors each patient’s length of time on the queue. When a patient

reaches their maximum length of stay on the queue, their priority is upgraded and

they are automatically admitted into the hospital; we call this a “force-in”. Because

this mechanism limits the maximum waiting time on the call-in queue, our zone-based

admission control can focus purely on the occupancy level. Of course a significant

number of call-in queue force-ins in practice signals that the system needs to be

revised.

For practicality of implementation, we activate the control once per day (11 AM

for example) to allow enough time to call in patients from the call-in queue or cancel

surgeries scheduled for later that day. This occupancy evaluation should include, if

possible, projected discharges, surgeries scheduled and in progress, emergency pa-

tients boarding in the ED and waiting for a bed and possibly other factors. At each

review point, the hospital evaluates the predicted occupancy and applies the control

policy; calling in patients up to the call-in threshold and canceling if census is above

the cancelation threshold.

The expedited patients we identified are currently part of our partner hospital’s

emergency patient stream. The arrivals to the emergency department are modeled as

a Poisson Process with rate λ, with a proportion, q, of those arrivals being expedited

patients. We can use Bernoulli splitting of the emergency Poisson Process to generate

two independent Poisson Processes with rate (1− q) ∗ λ for true emergency arrivals
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and q ∗ λ for call-in queue arrivals. This splitting models the reality that a certain

portion of ED arrivals occur because of the lack of an expedited mechanism for

hospital admission within a short time frame.

3.4.2 Simulation Study Analysis

Using the current admission policies, Figure 3.6 shows one simulation sample path

to visually demonstrate the effect of the expedited queue and zone-based admissions

compared the sample path of the current admissions system.

Preliminary Results for 1 Unit HospitalPreliminary Results for 1 Unit Hospital

Hospital Occupancy By DayHospital Occupancy By Day

Steady zone

Cancel zone

Current Admissions Policies Zone Based Admission Control

Call‐in zone

Mark Van Oyen and Jonathan Helm

Figure 3.6: Simulation results - comparing current system with zone-based admission control.

Next we quantify the benefits of zone-based admission control in terms of the fol-

lowing key metrics: cancelations, emergency blockages, and off-unit census. Figure

3.7-(a) compares one year of operation under the current admission policies (Cur-

rent State) with the same system using zone-based admission control (Admission

Controlled). It conservatively models (based on previous literature) only 5% of the

current emergency population as eligible for the expedited call-in queue.

Curr vs Admisison Control & Modified 
h d l d d lSchedule vs Mod + Adm Control
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Figure 3.7: Simulation results: comparing the key hospital metrics for (a) current system vs. zone-based
admission control and (b) a system with improved elective schedule with and without admission
control.
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Figure 3.7 clearly demonstrates that admission control can improve all three hos-

pital metrics simultaneously. The most significant decreases are seen in cancelations

and emergency blockages. The majority of cancelations and blockages occur in the

middle of the week when the hospital is already full from a surgery schedule that

emphasizes high volumes on Monday and Tuesday and few on Friday (which is a

common practice). By placing call-in eligible candidates on a call-in queue during

this occupancy spike we can avoid both emergency blockages and cancelations.

In general, an environment with a period of high volume scheduled electives fol-

lowed by a period of low volume scheduled electives allows the expedited queue to

improve the system in several ways. The expedited call-in queue delays a portion of

patients who would otherwise exacerbate the ED crowding. This reduces the volume

of non-electives and better accommodates the period of high elective volume, which

in turn reduces the chance of emergency diversion and elective cancelation. Then

as the occupancy starts to drop during the low volume period, expedited patients

can be called in to bolster and smooth the occupancy level; with a host of benefits

outlined in the introduction.

To further reduce the emergency blockages, the cancelation threshold can provide

a small buffer on days where emergency blockages are frequent. This type of cancela-

tion would probably be used sparingly (the cancelation zone is small) due to the lost

revenue and organizational pain associated with canceling elective admissions, but

even a small buffer properly placed provides significant relief for emergency blockages.

Furthermore, it is likely that many hospitals serve elective patients at the expense

of beds for emergency patients, given the prevalence of ambulance diversions [71], so

our approach helps to rationalize this system and protect emergency patients.

There are many possible zone schemes that provide different proportions in the
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tradeoff between the three metrics. We chose the current scheme to provide ben-

efit to all metrics and attempted to achieve fairly equal reductions in cancelations

and emergency blockages. By manipulating the zone scheme one can achieve other

reduction proportions in accordance with the desires of the partner hospital.

These results suggest that zone-based admission control can effectively improve

hospital system level metrics ; however, one must also consider the implications for

service to the expedited patients. Prior to introducing the call-in queue, expedited

patients using the emergency department as a work around to gain admission were

bed blocked at a rate of 11%. During blockage these patients experienced exces-

sive waiting in the ED, frequently being boarded in the hall, and the added stress

of spending long periods of time in an overcrowded emergency department. After

adding the call-in queue, the blockage rate for these patients dropped almost to zero.

From a qualitative perspective, call-in patients are able to wait in the comfort of

their own home, get some of the necessary tests before admission rather than in the

ED. This potentially decreases their length of stay, care costs, and they have a bed

ready for them when they arrived to the hospital. Hence the call-in queue not only

improves system performance, it also offers a valuable functionality to the expedited

patients.

3.4.3 Sensitivity Analysis

In the previous section we assumed that only 5% of emergency patients would be

eligible for the call-in queue and the patient mix was 50% emergency and 50% sched-

uled. Under the heading “Call-in Volume”, Table 3.3 compares the improvement

over the current system for the case where 5%, 10%, and 15% of the emergency pa-

tients are eligible for the expedited call-in queue. The 3 columns on the right labeled

“Emergency Volume” test the system by varying the mix between emergency and
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scheduled patients (while keeping the original 5% call-in fraction of the emergency

load fixed). The values are in terms of percent reduction versus the current system

in the three key hospital metrics we consider in this section. The system improves

in all metrics as the volume of call-ins increases and the hospital gains more control

over its random arrivals, but the system, as expected, exhibits decreasing marginal

returns as the percent of call-in eligible patients increases. As might be expected, in

the right three data columns of Table 3.3, when there is a higher volume of emer-

gency patients, the zone-based control mechanism provides greater relative benefits

than lower emergency volumes.

% Reduction Call-in Emergency Volume w/
vs Volume call-ins at 5% fraction

Current 5% 10% 15% 40% 50% 60%
Cancelation 22% 42% 55% 13% 22% 25%

Emergency Blockage 17% 28% 45% 13% 17% 25%
Off-Unit Census 6% 7% 8% 6% 6% 2%

Table 3.3: Sensitivity analysis of call-in queue and emergency volume.

In this chapter we have emphasized reactive admission control and not scheduling.

One may conjecture that reactive control would not be necessary if elective schedules

are properly managed. On the contrary, our analysis in Figure 3.7-(b) shows that

there are still significant benefits to using a zone-based admission control mechanism

even when the elective admission schedule is controlled to improve performance. The

improved elective admission schedule we consider still has no elective admissions on

the weekends but attempts to level the average daily census (or workload) across the

weekdays to accommodate the prevailing practice. Note that the dark gray in Figure

3.7-(b) represents the improved schedule without admission control, while the light

gray represents the same improved schedule but using zone-based admission control

as well.

Figure 3.7 demonstrates that zone-based admission control improves efficiency of
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health care delivery both in a hospital that does not control its own surgical schedule

and in a hospital that has worked to improve its scheduling to increase operational

efficiency. In fact, the sensitivity analysis of Table 3.3 shows that, though the de-

gree of efficacy varies, in all the cases considered zone-based admission significantly

benefits multiple aspects of hospital care delivery.

3.5 Conclusion and Future Research

By analyzing the structure of an admission control system, we have proven the

optimality of a two threshold policy in a stylized model based only on census, and a

special case of a more general model based on census and length of the call-in queue.

Though the MDP modeling in this chapter considers a hospital with only one type of

bed, the threshold concept can be extended to include multiple bed types as we have

done in the simulation study of Section 3.4 with very good results. Using simulation

based on historical hospital data, we showed that a practical zone-based admission

control policy can simultaneously reduce the number of emergency patients blocked,

the number of canceled elective patients and the amount of off-unit census. In all

of our test cases, a zone-based admission control policy significantly improved key

hospital performance metrics compared to current practice.

For future work, one may wish to consider if using more than three zones is

worth the additional complexity. For example, one can further differentiate expedited

patients into different queues based on severity of their condition. One can also

consider different cancelation levels for different classes of scheduled patients.

For a hospital systems solution to be implementable and sustainable, the overhead

and complexity should be minimized. The simple structure of a threshold/zone-based

system fits this paradigm nicely, because it is easily understood and implemented.

Analysis of historical hospital data and hospital dyanamics/protocols can determine



98

the threshold values, so the admissions department only needs to monitor the cen-

sus and take action. This requires a centralized admissions decision making body

and census information. If the underlying dynamics of the hospital system change

significantly, the zones will need to be adjusted; for example a change in patient

population, adding a new hospital wing, hiring a new surgeon or holiday patterns.



CHAPTER IV

Fast-tracking Priority Customers through Queueing
Networks with an Application to Destination Hospitals

The previous two chapters developed theoretical methodology and practical ap-

proaches for the planning and control of patient flow through networks of wards in

hospitals. This chapter extends this core patient flow theory to networks of specialist

services in a broader context. We motivate the work by the networks of specialist

outpatient services provided at a destination hospital, but the approach can be gen-

eralized to general networks of care services. One organizational structure that could

benefit beyond the destination setting is the increasingly popular model of account-

able care/bundled payments for treatment that are found in the new Accountable

Care Organization (ACO) construct.

This chapter focuses on prioritizing fast-track patients by assigning them priority

scheduling slots in a destination hospital with a large network of specialist services.

At a destination hospital, patients travel long distances to receive treatment. An

important service metric for these national and international patients is that they

complete their treatment segment before the weekend, when clinical service shut

down causing non-value added patient waiting. We call this is called itinerary com-

pletion. The itinerary completion concept motivates this research, which addresses

a larger class of problems in healthcare and other applications concerning the fast-

99
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track scheduling of priority customers receiving services within a queueing network

with hard deadlines for service completion.

The approach decomposes the problem into two consecutive stages: (1) workload

smoothing, and (2) itinerary completion. The first stage begins with a queueing net-

work blocking model that is built from a stochastic arrival-location model of demand

for services across the network of services. Blocking measures are linearized and the

analytical queueing network model is transformed into a deterministic linear pro-

gram. The result is a smoothed workload that reduces system-wide congestion that

can cause patient appointments to be delayed. The second stage develops a phase-

type model of itinerary completion that is parameterized by the blocking probabili-

ties computed in stage one and also transformed and solved via linear programming.

Our methodology for the two stage control of queueing networks was tested on a case

study for breast cancer patients, increasing itinerary completion from 74% to 88%.

4.1 Introduction

Effective and efficient delivery of healthcare is a major societal concern in the US

and throughout the world and the paradigm of coordinated care delivery has gained

increasing visibility in recent years. Because the entire healthcare system in the US

(and in other countries as well) is coming under increasing cost pressure to increase

efficiency, there is also a financial incentive to transition to larger more coordinated

network care models such as those found at the Mayo Clinic.

This chapter develops innovative stochastic modeling methods to forecast the

workload across the network of outpatient care resources for any given patient sched-

ule. This stochastic location model serves as the mechanism for linking admission de-

cisions to outpatient service workload. Combining the stochastic location model with
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a controlled arrival stream yields what we call a controlled-arrival-location model

(CALM). In this chapter, we develop the CALM model in such a way as to allow for

optimization methods that can determine improved patient schedules in a tractable

manner.

Though large providers enjoy many benefits, there are also great operational and

management challenges of coordinating the complex network of resources that com-

prise these healthcare organizations. A primary controllable driver of efficiency in

these complex systems is patient scheduling. The way in which patients are scheduled

has a major effect on the workload experienced in an organization’s various network

resources. As an example, consider the workload in the breast diagnostic clinic for

three different schedules that generate three different workload profiles. The output

based on historical data from the Mayo Clinic is shown in Figure 4.1.
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Figure 4.1: The effect of the patient schedule on the workload at the breast diagnostic clinic.

The schedule that generates an unbalanced workload profile (Fig 4.1 (a)) requires

over 33% more resources on average in the middle of the week than the schedule

that generates a balanced schedule. This causes the organization to adopt an un-

balanced staffing profile (which requires more resources in aggregate and staffing

inconvenience), or to accept access failures and treatment bottlenecks. The man-

agement challenge is in designing a schedule that can achieve a balanced workload

such as the one in Figure 4.1 (c). Because patient care pathways are complex and



102

dynamically changing with their disease condition and the amount of information

providers have about their disease it is often difficult to predict the effect scheduling

various patients. Another complicating factor is that patients follow a stochastic

path through a general network of care services. For example, breast cancer patients

at the Mayo Clinic as a population require care from over 77 different outpatient

services over the course of their treatment.

After developing the general analytical models for controlling patient schedules

and smoothing hospital workloads, we demonstrate how this approach can be ap-

plied to a critical problem in destination healthcare organizations in general and of

particular interest to our partner, the Mayo Clinic: Itinerary Completion. By defini-

tion, many patients of destination healthcare organizations come from geographically

distant locations. These patients are classified as national or international patients.

With these patient types an important access metric is that they complete their treat-

ment segment before the weekend. Since most clinical services are not available on

the weekend, failure to complete care within the work week forces the patients to pay

for hotels and stay over the weekend without any treatment progress, which is emo-

tionally challenging for patients and families at a very vulnerable time of their life.

Itinerary completion is an important part of patient satisfaction and poor healthcare

delivery performance; in fact, some patients decide to return home without complet-

ing treatment. The itinerary completion metric was developed to measure the ability

of the healthcare provider to complete treatment for national/international patients

treatment before the weekend begins.

The core model is divided into two stages as shown in Fig. 4.2. The goal of the

workload smoothing stage is to reduce blocking in all of the important services by

stabilizing the workload across the week. Because the clinics are staffed at a constant
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level over the days of the week, eliminating the workload spike should give patients

better access to care in the middle of the week, avoiding delays to getting an appoint-

ment and thereby flowing unhindered through their treatment path. The itinerary

completion stage establishes the virtual fast-track priority schedule to maximize the

probability that national/international patients will complete their treatment within

the work week. In Fig. 4.2, for example, the national patients have been mostly

moved to the beginning of the week.
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Figure 4.2: High level approach to a two stage fast-track model.

We demonstrate the applicability of our patient flow paradigm to the itinerary

completion problem by developing schedules that fast-track national/international

patients; however, the approach is generalizable to any healthcare organization in

which patients with different needs / priority levels arrive according to a controllable

patient schedule and flow through a network of care services. This applies not only to

destination healthcare organizations, but to all healthcare organizations that manage

multiple types of care services.

In Section 4.2, we provide some background on the different approaches to man-

aging scheduled arrivals to stabilize flow and workloads, primarily in healthcare sys-

tems. In Sec. 4.3 we developed the queueing network model of patient flow through

a network of services. Sec. 4.4 builds upon the stochastic models of Sec. 4.3 by de-

veloping queueing network blocking models and optimization methods for smoothing
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workloads across a network. Sec. 4.5 presents a phase-type modeling approach for

capturing itinerary completion of fast-track patients flowing through a congested

queueing network with blocking. Sec. 4.6 incorporates the flow models from Sec. 4.3

and 4.4, and the phase-type itinerary completion model from Sec. 4.5 into a second

schedule optimization model that fast-tracks priority patients. We demonstrate how

the two optimization models can be used to solve the Mayo Clinic itinerary comple-

tion problem with a detailed case study in Sec. 4.7. Finally, we draw conclusions

and discuss the contribution of this work in Sec. 4.8.

4.2 Patient Flow Management and Optimization in Highly Stochastic
Systems

While the goal of this work is to manage the flow of patients through outpatient

clinical services, our work differs significantly from the classical outpatient scheduling

literature in terms of scope (single clinic vs network) and timing (single day vs

multiple day planning horizon). Traditional outpatient scheduling literature typically

focuses on the scheduling of a single clinic, which is often modeled as some kind of

queueing system (see the survey paper [9]). Our problem focuses on a heterogeneous

network of specialist care services, which we model in the form of a general queueing

network. Traditional outpatient scheduling approaches focus on scheduling patients

to time slots within a day with respect to various individual characteristics (e.g. no-

shows, doctor availability etc.; see [9]). Our problem focuses on patients that have

multiple visits to different services across days and even weeks and our goal is to

smooth and stabilize that aggregate number of appointments at each service for each

day of the week. We believe this chapter presents a novel approach that expands

and deepens the outpatient scheduling literature by analyzing the burgeoning care

delivery paradigm of coordinated care in the context of a network of outpatient care
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services.

Perhaps surprisingly, the healthcare literature that has much more in common

with the outpatient service network problem is the hospital inpatient scheduling

literature. Much of the work in patient flow modeling and the control of patient

schedules at the aggregate level has been developed for hospitals, rather than outpa-

tient service networks. Early stochastic models of hospital census include simulation

[26, 33, 32, 60] and probabilistic approaches [12]. The early work relied on heuristic

schedule improvement, but were effective in characterizing the hospital census levels

for any given admission schedule. Due to the complexity of the general stochastic

network of resources required to serve hospital patients, simulation has continued to

be a preferred modeling approach for hospital occupancy (see for example [35, 40]).

One recent approach uses a genetic algorithm to identify improved schedules, but

the method was shown to be computationally burdensome even for a small hospital

(see [42]).

While simulation is highly effective in a descriptive context, tractable simulation-

based optimization for such a large scale problem appears out of reach. Our modeling

paradigm shares more commonality with the literature surrounding analytical models

of hospital census. A recent interest in elective patient admission schedule optimiza-

tion has led to a number of papers that attempt to linearize and solve the problem of

improving hospital census focused metrics by designing better admission schedules.

[21, 22] developed the early analytical models of hospital census for incorporation

into a mixed integer programming framework. Recently, others have expanded upon

this approach to solve problems for a variety of objectives (see [11, 1, 4]). These

models, however, focus on a single ward / resource or a feed-forward network and

lack the generality required to model the network of care services provided by a large
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coordinated care provider.

To model the outpatient service network, this work builds upon the literature on

stochastic arrival-location models developed for applications in the telecommunica-

tions industry (see [65, 66, 59]) and recently for hospital inpatient admission schedule

optimization (see [46]). We extend the analytical work done in this area in two im-

portant ways. First, the aforementioned models are designed for capturing aggregate

level offered load statistics. In our paradigm, both aggregate level metrics (e.g. pa-

tient access service level) and patient path specific metrics (e.g. itinerary completion)

are important. Thus in our approach we add a customer (patient) focused layer that

interacts with the aggregate level modeling output. This allows us to capture some-

thing that has not previously been captured in this context and yet is incredibly

important for service oriented healthcare organizations: the individual customer ex-

perience. Secondly, at the aggregate level we allow for “batch” appointments, where

a patient can visit more than one outpatient service in a given day, which leads to

new arrival-location models and novel analysis of stochastic arrival-location model

systems.

The modeling contributions of this work include (1) the development of new block-

ing models for the customer sojourn times in queueing networks for which service

time is not continuous, but is characterized by the number of shifts/days until service

can occur, (2) analytical models for congested queueing networks that are amenable

to schedule optimization at the aggregate level and the individual customer level,

(3) new linearizing approximations that capture blocking in queueing networks in a

manner that can be incorporated into a linear programming optimization framework.

In the next section, we develop and analyze our analytical framework for statis-

tically characterizing patient flow trajectories and using them to build a workload
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profile for the entire network of clinical services. We call this model in the naming

convention of [65] and [46], the outpatient controlled-arrival-location model (CALM).

The impact of this work in the area of effective and efficient healthcare delivery

extends beyond destination hospitals; though we use the case of a destination hospital

as part of the motivation and demonstration of the technique. In the context of the

current healthcare climate, where reimbursement is moving toward bundled payment

for treatment and the newly formed Accountable Care Organizations seek to provide

a network of outpatient and inpatient services to manage all aspects of patients’

treatment, this approach of capturing and planning for workloads across a disparate

network of services will have the opportunity for broader impact.

4.3 Outpatient Controlled-arrival-location Model (CALM)

We model the flow of patients through an outpatient service network using the

offered load approach. A simplified diagram of breast cancer patient flow for 5 key

breast cancer services (out of a total of 77 services that breast cancer patients may

potentially use) is given in Figure 4.3. New patients arrive to the healthcare provider

to begin a treatment segment according to an initial set of scheduled appointments.

A new patient is defined as either a patient that is new to the care provider or

an existing patient that is returning to the provider because of a new diagnosis.

A treatment segment is defined as a contiguous segment of care in which the last

appointment is separated from a subsequent appointment by at least one business

week.

After patients arrive for a new treatment segment, they flow through the network

of services being scheduled for appointments according to the dynamically evolving

information about their condition. As more tests come back and more specialists
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Figure 4.3: Simplified example of offered load flow model for breast cancer patients.

are consulted, new appointments are made to address the improved understanding

of the patient’s condition. At destination healthcare organizations, this path is not

often known in advance. For example, a new breast cancer patient will typically

arrive and receive an appointment at the breast diagnostic clinic. After the series

of examinations at the breast diagnostic clinic, further appointments at other spe-

cialist service are scheduled. Once the patient’s treatment segment is complete the

patient will return home, but will then have the possibility of revisiting the health-

care provider for follow-up treatment or new treatment. In modeling breast cancer

patients, for example, we consider care pathways of up to a year or longer. This is

important because admitting a new patient doesn’t just affect clinic load for their

first treatment segment, but for their entire treatment path.

In this section, we develop an offered load model of patient flow to capture these

system dynamics and statistically characterize the load on each of the clinical services

over time. We build the aggregate workload model by first building a model of

the care pathways for each type of patient. This model provides the probabilities

on whether or not a given service is required at a given time after their initial

appointment. Patient type can be general, but for our purposes we let patient type

be related to specific patient diagnoses. We combine the care pathways for each

patient type with the admission stream for that type to forecast the system’s steady

state offered load.
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4.3.1 System Design and Modeling Assumptions

The system presented here functions by allocating a certain number of appoint-

ment slots of each type to each service by day of week. As a modeling assumption we

assume these slots will always be filled, which creates a deterministic arrival stream.

This is a reasonable assumption for high demand healthcare organizations.

In terms of assigning slots, we also consider a repeating weekly schedule. This is

for the purposes of application rather than a modeling limitation. In most clinical

services, weekly repeating schedules are preferable so that other physician activities,

such as research, can be scheduled with regularity as well. This means that we are

modeling the workload by day of week as a cyclostationary system.

Another mild assumption we make is that patient care paths are independent of

one another. Clearly the condition and service requirements of one patient shouldn’t

affect the condition and requirements of another. Further, because we are using an

offered load model we have the infinite server assumption and so patients don’t block

one another or otherwise interact. To capture blocking effects we later superimpose

capacities on our offered load model – similar to the modified offered load approach

proposed by [67]. In this way we avoid the significant non-linearities associated with

blocking models while still capturing blocking system effects.

Finally, in applying service level constraints, we use a normal approximation on

the number of appointments requested on a given day so that we only need to cal-

culate the mean and variance analytically. This approximation can be justified by

the central limit theorem, but also also been validated in the literature for similar

healthcare applications (see [12, 48]).
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4.3.2 Developing the Out-PATTERN Stochastic Location Process

In this section we develop an analytical stochastic location process to model pa-

tient flow through the network of clinical services. The stochastic location process

forms the basis of the stochastic-arrival-location model of clinical service workload.

Since the location model refers to the clinical needs of a single patient over time, we

call the model the Outpatient Temporal Resource Requirements (Out-PATTERN)

stochastic location process, consistent with the naming convention of [46].

Assume there are M clinical services provided. At the Mayo Clinic M is quite

large, as breast cancer patients alone seek treatment over a range of 77 clinical

services. These services span a wide range of specialties and typically have dedicated

staff, given that most of the services provided are specialist services. Let the vector

state space for the Out-PATTERN stochastic location process for clinical services be

S0 = {[x1, x2, . . . , xM ] : xi ∈ Z+ ∀i}. This is a deviation from the stochastic location

models employed in the research mentioned previously, where the state space was

a scalar representing the location of the patient. We let the full state space be

S = S0
⋃
{∆}, where ∆ represents that the patient has no appointments (e.g. has

returned home or has not yet become a patient).

In the outpatient setting there are two major differences that require this novel

formulation. First, a patient can have more than one appointment at a given clinical

service in a day. Though we allow each xi to take values in Z+, typically the number

of appointments at a given service on a given day will be few and tightly bounded.

Second, the state is a vector rather than scalar because we allow for the fact that a

patient could have appointments at multiple clinical services on a single day.

The state space could, of course, be simplified to the same state space used in

previous literature by decreasing the discrete time step from a day to hours or min-
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utes. However, prescribing outpatient schedules to the hour or minute does not

leave enough flexibility for the organization, the physicians and other staff, or the

patient thereby creating barriers to implementation. We instead focus on providing

aggregate flow guidelines and targets that allow the organization and individuals

significant flexibility in meeting those guidelines.

After the arrival of a new patient, the Out-PATTERN stochastic location process

is an S-valued function, Ls,k(t), where s is the day that the patient started treatment

and k is the patient type. To define the stochastic process, Ls,k(t), we first define the

space of outcomes. Let Σs be the set of right-continuous functions with left limits

that map R to S such that σs ∈ Σs has the property that σs(t) = ∆ ∀t < s and

σs(s) ∈ S0. Thus, Σs contains the care paths of all patients who start new treatment

at the clinic at time s.

The function space Σ is the collection of all Σs. Now we need to define a

probability measure on Σ that is associated with the stochastic location process,

Ps : Σ → [0, 1], that assigns 0 probability to Σt for t 6= s and for Γ ⊆ Σs, it as-

signs the probability associated with the set of location functions Γ. As an example,

consider the set Γu,2t = {σ : σ ∈ Σs for s < t, eu · σ(t) = 2} where eu is the unit

vector with all 0’s and a 1 in the uth column. In words, Γu,2t is the set of all location

processes in which the patient requires two appointments in clinical service u at time

t. Therefore Ps(Γu,2t ) is the probability that a patient who initiates a new treatment

at time s requires two appointments in clinical service u at time t. For notational

convenience we let

(4.1) P(Ls,k(t) · eu = m) = ps,k,u(m, t− s),

where ps,k,u(·, ·) is calculated based on historical data in a method similar to [38].



112

Remark IV.1. There is an important technical detail regarding the calculation of

the stochastic location process probabilities from historical data. We propose to use

the stochastic location process in an offered load model with infinite capacity, yet

historical patient flow data are clearly capacitated. To eliminate this endogeneity,

we take advantage of the fact that demand for healthcare services typically follows

a seasonal pattern, which is confirmed by the data from the Mayo Clinic. Thus to

calculate the true stochastic location process probabilities, we can simply use data

from low utilization months during which time patients rarely have difficulty getting

an appointment – thereby approximating uncapacitated flow.

Remark IV.2. It should be noted that the more information a healthcare organization

has in advance of a patient arrival, the less uncertainty there is in regards to the

patients path. In the case of breast cancer, for example, knowing information about

the specifics of the patient’s disease upfront can help the clinic plan ahead for what

specialists need to be seen. While spending the effort to collect this information prior

to the patient’s arrival may have significant benefits in reducing workload variability

and improving system performance, this avenue is left to future research.

4.3.3 The Out-PATTERN d-CALM Clinical Service Workload Process

To characterize the workload in terms of number of appointments by day of

the planning horizon, we combine the Out-PATTERN stochastic location process

from Section 4.3.2 with a controlled deterministic arrival stream to develop the Out-

PATTERN deterministic controlled-arrival-location model (d-CALM).

Recall that Ls,k is the stochastic location process for a patient of type k who had

their initial treatment at time s, where k ∈ D, which is the set of all patient types.

For our application, we consider a repeating planning horizon of 5 days to match the

Mayo Clinic’s work week during which almost all of the outpatient activity occurs.



113

For any given appointment slot schedule, Θ, the Out-PATTERN d-CALM model

characterizes the demand for clinical service u on day d1 of week t, Dt
u,d1

. The d-

CALM model can be formulated as a point process as in [46], however we prefer an

equivalent approach by writing the demand for clinical services as a sum of indicators:

Dt
u,d1

(Θ) =
5∑

d2=1

∑
k∈D

Θk,d2∑
j=1

t∑
n=0

eu · Lj,nd2+5n,k(d1 + 5t)(4.2)

D∞u,d1 = lim
t→∞

Dt
u,d1

.(4.3)

Eq. 4.2 represents a t-week horizon and Eq. 4.3 represents an infinite horizon

cyclostationary steady state model. Lj,ns,k(·) is the (j, n)th i.i.d instance of the location

process Ls,k(·), representing a patient who was the jth patient of that type that was

admitted on week n. The first sum in Eq. 4.2 is over the days of the planning

horizon. The second sum is over all patient types. The third sum is over the number

of patients of type k that were admitted on day d2 of the planning horizon. The final

sum is over weeks from week 0 to week t.

This concludes the presentation of the fundamentals of the Out-PATTERN d-

CALM model. In the next section we analyze this model in an attempt to obtain

an offered load characterization that is linear in the decision variable Θ, as the goal

is to optimize the appointment slot allocation across the week to improve patient

flow. The approach we take is to calculate the moments of the Out-PATTERN d-

CALM process in Section 4.3.4 and use them in a normal approximation of demand

for clinical services that can be incorporated into an optimization model to minimize

appointment blocking in Section 4.5.
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4.3.4 Moments of the Outpatient d-CALM Process

The key to the d-CALM approach is that the moments of the process can be calcu-

lated analytically (and linearly), which elminates the need to simulate this complex

system. Let Mu be the maximum number of visits to resource u in a given day. Then

the mean workload in service u on day d1 follows from the monotone convergence

theorem:

µd1,r(Θ) = E
[ 5∑
d2=1

∑
k∈D

Θk,d2∑
j=1

lim
t→∞

t∑
n=0

er · Lj,nd2+5n,k(d1 + 5t)
]

=
5∑

d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

Mr∑
m=1

m · pd2+5n,k,r(m, d1 − d2 + 5(t− n)).(4.4)

Eq. 4.4 is linear in the decision variable Θ. The following theorem shows that

the variance is also linear in the decision variable. For notational convenience let

p̂n,k,m,td1,d2,u
= pd2+5n,k,u(m, d1 − d2 + 5(t− n)).

Theorem IV.3. The variance in number of appointments requested (offered load)

for resource u on day d1 is given by

σ2
d1,u

(Θ) =

(4.5)

5∑
d2=1

∑
k∈D

Θk,d2 lim
t→∞

t∑
n=0

Mu∑
m=1

[
m2 · p̂n,k,m,td1,d2,u

(
1− p̂n,k,m,td1,d2,u

)
−
∑
q>m

2m · q · p̂n,k,m,td1,d2,u
· p̂n,k,q,td1,d2,u

]

Proof. Each pair of location functions,
(
Lj1,n1

s1,k1
(t1), Lj2,n2

s2,k2
(t2)
)

where

(j1, n1, k1, s1) 6= (j2, n2, k2, s2) represents two different patients. Therefore the two

location processes are independent, which follows from our assumption that the care
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paths of two different patients are independent. To see that each pairing in Eq.

4.2 does indeed represent two different patients, note that each patient’s stochastic

process is uniquely indexed by the patient type, k, the week in which they are

admitted, n, the day of the week they were admitted, s, and their admission number

on the day they are admitted, j. Therefore the the processes Lj1,n1

s1,k1
(t1) and Lj2,n2

s2,k2
(t2)

are independent and their covariance term is necessarily zero. The variance of the

ward census can be calculated by

σ2
d1,u

(Θ) = Var

 5∑
d2=1

∑
k∈D

Θk,d2∑
j=1

lim
t→∞

t∑
n=0

er · Lj,nd2+5n,k(d1 + 5t)


=

5∑
d2=1

∑
k∈D

Θk,d2∑
j=1

lim
t→∞

t∑
n=0

Var
[
er · Lj,nd2+5n,k(d1 + 5t)

]
=

5∑
d2=1

∑
k∈D

Θk,d2 lim
t→∞

t∑
n=0

Mu∑
m=1

[
m2 · p̂n,k,m,td1,d2,u

(
1− p̂n,k,m,td1,d2,u

)
−(4.6)

∑
q>m

2m · q · p̂n,k,m,td1,d2,u
· p̂n,k,q,td1,d2,u

]
.(4.7)

The first equality follows from the monotone convergence theorem and from the

independence of the stochastic location processes within the sum, allowing us to

take the variance on the inside of the sum. The second equality follows from the

following variance calculation for the Out-PATTERN stochastic location process:
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Var [er · Ls,k(t)] = E
[
(er · Ls,k(t))2

]
− E [er · Ls,k,u(t)]2

=
Mu∑
m=0

m2ps,k,u(m, t− s)−

(
Mu∑
m=0

mps,k,u(m, t− s)

)2

=
Mu∑
m=0

m2ps,k,u(m, t− s)−
Mu∑
m=0

m2ps,k,u(m, t− s)2

−
Mu∑
m=0

∑
n>m

2mn · ps,k,u(m, t− s) · ps,k,u(n, t− s).

The final equality of the variance calculation follows by applying the multinomial

formula.

In Sec. 4.4 we develop the first stage optimization that smooths the workload

relative to capacity across the planning horizon incorporating the analytical flow

models from this section.

4.4 Workload Smoothing Optimization

In the first stage of the optimization we consider smoothing the number of ap-

pointments (workload) over all clinical services across the week. The objective is to

minimize the probability that a patient will not be able to get an appointment at

any given care service within the network. To accomplish this, we develop analyt-

ical methods for calculating the blocking probability at each service based on the

d-CALM offered load model from Section 4.3. The development and linearization of

the blocking calculation are presented in Section 4.4.1. In that section we present a

linear approximation of the square root function to calculate the standard deviation

from the linear variance calculation. An example incorporating the analytical models

and blocking metrics into a linear program to solve the workload smoothing problem
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is presented in Section 4.4.2.

4.4.1 Blocking Calculations for Optimization Models

The blocking probability is typically difficult to compute and non-linear in the

decision variable for d-CALM models. Thus such an approach is usually not suitable

for incorporation into tractable optimization methods. To overcome this, we ap-

proximate the workload in each clinical resource by a Normal random variable with

mean and variance parameters given by Eq’s 4.4 and 4.6. The Normal workload ap-

proximation has been used effectively in many healthcare settings (see for example

[48, 12]).

In service systems with Normally distributed workloads, service constraints can be

defined in terms of mean µ, standard deviation σ, and the standard normal service-

level factor n. Let nα be the multiplier that matches the desired service level α and C

be system capacity. Then the constraint µ+ nα · σ ≤ C ensures that the system will

encounter access block with probability no greater than 1−α. Since µ and σ are both

a function of the patient schedule decision variable, Θ, to minimize the probability

of an appointment delay one might consider maxΘ,nα {nα : µ(Θ) + nα · σ(Θ) = C};

however, this equation is not convex, which makes optimization difficult.

Instead, we propose the following approach to approximating the program just

described. To remove the non-convex multiplication of nα and σ(Θ), replace the

single constraint, µ(Θ) + nα · σ(Θ) = C, by a set of constraints that discretize

possible values of nα over a grid. Doing so we can either calculate the expected

overflow or the probability of overflow. We focus on the expected overflow and then

show how the same technique can be used to approximate the probability of overflow.

This approach eliminates nα as a decision variable.

To calculate the expected overflow, let M′ = {1, 2, . . . , N} be an index that
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creates a discrete grid with N sections. The grid need not (and in application is not

chosen to be) linear. Thus we have a one-to-one mapping function m(i) :M′ →M

that maps the integer values of M′ to the grid values M. An example of a grid

mapping for the grid M = {0, 0.1, 0.2, 0.4, 0.6, 0.9, 1.2, 1.5, 1.8, 2.2, 2.6, 3.1} is given

in Table 4.1 and the Fig. 4.4 graphically depicts the approach.

i ∈M′ 1 2 3 4 5 6 7 8 9 10 11 12
m(i) ∈M 0.0 0.1 0.2 0.4 0.6 0.9 1.2 1.5 1.8 2.2 2.6 3.1

Table 4.1: Sample grid mapping from the integers to the grid M = {0, 0.1, 0.2, 0.4, 0.6, 0.9, 1.2,
1.5, 1.8, 2.2, 2.6, 3.1} .
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Figure 4.4: Example of a discrete grid that approximates the Riemann integral for the expected
overflow. Solid bar = mean appointments, line = m(i) std. dev. above the mean

Fig. 4.4 (a) shows one type of grid over the standard normal, with m(i) represent-

ing the ith grid interval. In designing the grid, one approach that has nice intuition

and behaves well in practice is to make the grid such that each interval contains an

equal amount of probability density according to the standard normal. Fig. 4.4 (b)

shows how the grid is used to approximate expected overflow. On the m(i) inter-

val, the overflow is calculated at the upper value of the overflow over the interval,

µ(Θ) +m(i)σ(Θ). This overflow value is multiplied by the amount of density on the

interval, Φ(m(i))−Φ(m(i− 1)). In the limit this approximation will converge to the

exact overflow value.
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All that remains is to design a set of constraints in the linear program that will

set the decision variable, δu,d,i, to the proper amount of overflow. The following

constraint set, when combined with an objective function that minimizes expected

overflow will achieve this result.

µu,d(Θ) +m(i) · σu,d(Θ)− Cu,d ≤ δu,d,i for i ∈M′ = {1, 2, 3, . . . , N}.(4.8)

If the desired metric is to minimize the blocking probability, the same set of con-

straints may be used except that δu,d,i is required to be a binary decision variable and

is multiplied by a large constant value (e.g. Q) to ensure feasibility. Note that the

constant Q need not be too large, since the probability that the demand will exceed

a given level drops off quite sharply away from the mean. Thus very large values of

demand can be ignored and Q can be determined directly from the structure of the

grid.

Using the above approximation, we remove the first non-linearity of multiplying

two decision variables together; however, the problem remains that σ(Θ) is still non-

convex in the decision variable Θ. From the d-CALM model’s Eq. 4.6 the variance,

σ2(Θ), of the workload can be calculated as a linear function of the decision variable

Θ. To reconcile the issue of taking a square root of the variance with the tractability

of the optimization model, we propose to approximate the square root of σ2(Θ)

using Newton’s method. Letting σ̂(Θ) be an initial guess for the standard deviation,

Newton’s method gives the approximation

√
σ2(Θ) ≈ 1

2

(
σ2(Θ)

σ̂(Θ)
+ σ̂(Θ)

)
.(4.9)

Thus we can approximated the true workload standard deviation for any schedule

Θ. If σ̂ is chosen so that it is close to the actual standard deviation, then this
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approximation can be quite accurate. One appropriate σ̂ would be the standard

deviation of the historical workload of the current system. Table 4.2 demonstrates

the quality the approximation considering two different types of schedules: (1) Worst

Case: The entire patient load is scheduled on the first day of the week, (2) Likely

Case: The workload is divided evenly across all days the week and thus each day has

the same level of workload. The data presented in Table 4.2 represented the workload

from breast cancer patients for the top 4 clinical services that are used by breast

cancer patients. The arrival rate, stochastic location processes, and workload are

calculated based on historical data, creating a training set for model parametrization

and a test set for validation.

DOW Case Med. Oncology Diagnostic Clinic Radiation Oncol. Gen. Surg.
True Approx True Approx True Approx True Approx

All Likely 5.50 5.50 4.04 4.04 3.55 3.55 2.29 2.29
Mon Worst 5.59 5.59 5.95 6.47 3.50 3.50 2.30 2.30
Tue Worst 5.44 5.44 3.68 3.70 3.46 3.46 2.20 2.20
Wed Worst 5.37 5.38 3.44 3.50 3.57 3.57 2.36 2.36
Thu Worst 5.56 5.56 3.20 3.29 3.59 3.59 2.32 2.32
Fri Worst 5.51 5.51 3.25 3.31 3.61 3.61 2.30 2.30

Table 4.2: Comparison of True standard deviation with Newton’s method-based approximation for
a likely case and the worst case by day of week

Clearly case (1) will produce the largest deviations in variance from the current

system; the variance will be much higher than the current system on Monday and

the other days of the week will have much lower variances. This represents the case

in which the approximation should perform the worst, as the starting values will be

farthest away from the actual value. Even in this unrealistically bad scenario, the

worst error occurs in the diagnostic clinic and is an error of less than 9%. The next

largest error is less than 3%. Outside of the diagnostic clinic, there is essentially no

error to two decimal places of accuracy. For case (2) there is no error at all between

the approximation and the actual to two decimal places. For this application, our
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Newton’s method-based approximation is extremely accurate.

It is important to note that the extremely unbalanced scenarios such as the one

presented in case (1) will almost certainly not be optimal and so the error in the

approximation is less important in these cases where the error is larger. Case (2)

is a schedule that will produce good performance results and thus the fact that

the approximation errors are negligible for this type of schedule indicates that this

approximation is a good choice for linearizing the square root function.

4.4.2 Workload Smoothing Optimization Model

We begin this section with the notation required to develop the linear program.

We then present one particular formulation of the outpatient workload smoothing

optimization that stabilizes the workload (number of appointments at each clinical

service) to improve system level access for outpatients. In this formulation time is

discretized into days and we consider a planning horizon of 1, . . . , 5 to correspond

to a weekly (business week) schedule. This is one example of how the above mod-

eling can be applied to solve major patient flow problems, but certainly is not an

exhaustive exposition of the potential for incorporating d-CALM stochastic models

into optimization frameworks.

Sets

D set of all patient diagnosis types

U set of clinical services

M′ index for the grid for calculating service level

Parameters
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Cu,d service u capacity on day d

θk,d current admission volumes of type k on day d.

θ̂k,d maximum number of admissions of type k allowed on day d.

σ̂u,d(Θ) The standard deviation of workload under the current system.

wu,d the weight assigned to expected overflow in service u on day d

Decision Variables

Θk,d number of type k ∈ D patients scheduled on day d

δu,d,i amount of workload overflow in service u on day d at service-level

factor m(i)

Placeholder Variables for Exposition

µu,d(Θ) the mean number of resources of type u required on day d under

schedule Θ, given by Eq. 4.4

σ2
u,d(Θ) the variance of the number of resources of type u required on day d

under schedule Θ given by Eq. 4.6

For clarity, we substitute placeholder variables µu,d(Θ) and σ2
u,d(Θ) for the full

linear equation, but we have argued previously that the equations are linear in the

decision variable Θ. The probabilities associated with the Out-PATTERN stochastic

location processes in Eq.’s 4.4 and 4.6 are calculated off-line and entered into the

linear program as data.
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min
Θ,δj,k,`

∑
u∈U

5∑
d=1

wu,d
∑
i∈M′

[Φ(m(i+ 1))− Φ(m(i))]δu,d,i

(4.10)

s.t.

µu,d(Θ) +m(i) · 1

2

(
σ2
u,d(Θ)

σ̂u,d(Θ)
+ σ̂u,d(Θ)

)
− Cu,d ≤ δu,d,i ∀u ∈ U , i ∈M′, d = 1, . . . , 5

(4.11)

5∑
d=1

Θk,d =
5∑
d=1

θk,d ∀k ∈ D

(4.12)

Θk,d ≤ θ̂k,d ∀k ∈ D, d = 1, . . . , 5

(4.13)

Θk,d ∈ Z+, δj,k,` ≥ 0 ∀j, k, `

The objective function, Eq. 4.10, will drive the system to minimize the weighted

approximation of the expected overflows across the week over all the clinical services.

In fact,
∑

i∈M′ [Φ(m(i+ 1))−Φ(m(i))]δu,d,i is a simple Riemann integral approxima-

tion, which we know converges to the true expected value as the intervals go to zero.

Weights, wu,d, are included for several reasons, the most obvious being that a block-

age in one service may be more critical than a blockage in another; however, they

are all equal to one in the case study we present later.

From constraint Eq. 4.11 it is clear that the smaller the δu,d,m variables are, the

higher the probability that there will be enough capacity to serve an arriving patient.

Thus minimizing the sum of the δu,d,m’s achieves the goal of reducing appointment

block. The details behind this discretization of the service-level factor by m :M′ →

M were provided in Sec. 4.4.1.
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Eq. 4.11 is the constraint that calculates the service-level factor, for any given

schedule Θ. If the workload level associated with m(i) is below capacity, the variable

δu,d,m can be set to 0. Using the standard normal lookup table it is possible to

translate m(i) directly into a blocking probability. Here we approximate the standard

deviation with the highly accurate Newton’s method-based approach detailed in

Section 4.4.1. Eq. 4.12 constrains the optimal weekly volume to be equal to the

current weekly volume. Eq. 4.13 ensures that an upper bound on the number of

patients of each type arriving for treatment on a given day is respected.

4.5 Analytical Models for Itinerary Completion

In Section 4.3 we developed the stochastic models to capture the aggregate level

system behavior. In this section, we develop and analyze the stochastic models to

support the patient centered path-based layer of our paradigm. For purposes of

exposition, this section focuses on our particular application, itinerary completion,

though this modeling paradigm is generalizable to capture other objectives involving

outpatients with differing needs and priorities.

Itinerary completion is defined as a patient completing a contiguous treatment

path within one business week. The reason for this definition is tied to the particular

dynamics of a destination healthcare organization. In such an organization, many

patients come from a long distance. Nationally or internationally originating patients

who can’t complete their medical itinerary by Friday must stay over the weekend

since most outpatient services don’t operate on the weekends. This is a significant

concern for the high level of patient satisfaction required for a sustainable destination

healthcare service. Itinerary completion is impacted by both the level of congestion

(through the ability to obtain an appointment in a timely manner) and the day of

the week the patient is admitted. The congestion level was addressed in Sec. 4.4.
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The day of week component is combined with the congestion modeling from Sec. 4.4

in this and the following section.

The following sections build toward a flow model for each patient’s path through

the congested network. By analyzing this model we are able to capture the patient’s

sojourn time from treatment initiation to completion. Importantly, we are able to

capture this sojourn time linearly in the decision variable of when to schedule each

type of patient.

4.5.1 Phase-Type Model for Critical Path Flow Times

To calculate the treatment length, including delay caused by blocking, for one

contiguous segment of treatment that begins on day d, it is necessary to break the

treatment into appointments along the patient’s critical path. These are appoint-

ments that, if delayed, will delay the entire treatment cycle. Details of how to

determine the critical path are discussed in Sec. 4.7.1.

The critical path is defined by the tuple C = (R,P), where R are the services

that lie along the critical path and P are the precedence relations. For example,

R = {u1, u2, . . . , un} and P = {(ui, c) : ui ∈ R, c = 1, 2, . . . , N}, where the tuple

(ui, c) represents the scenario where an appointment at service ui is required in the

cth step (order of precedence) of treatment. That is if a < b, then (ui, b) can only

occur after (uj, a) have been completed for all j.

In the following three subsections we build up to a model to allow multiple ap-

pointments that can be done in parallel at each precedence level, but for the initial

analysis we assume each precedence level has only one appointment. Let B = [βui,d]

be the matrix of blocking probabilities by clinical service (ui) by day of week (d),

which is calculated from the workload smoothing optimization (see Eq. 4.57 of Sec.

4.6). The total time to complete the treatment segment is denoted by δC,d(B), which
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captures the sojourn time through a congested network with blocking matrix B.

δC,d(B) is comprised of δui,d(B), which is the time to complete the ith appointment

along the critical path, given that the patient began requesting an appointment on

day d. Let K be the deadline for completing the itinerary. Then the probability a

patient will not complete their itinerary within the planning horizon given they were

admitted on day d ∈ {0, 1, . . . , K} of the horizon is:

(4.14) P(δC,d(B) > K − d)

4.5.2 Phase-type Base Model

In this section, a base model is developed in which all items along the critical

path must be completed. The next two sections incorporate the possibility that not

all patients need appointments at all of the services along the critical path and each

stage may have multiple tasks. To calculate the CDF for the sojourn time δC,d(B) for

the base model, we exploit the blocking probabilities computed from the workload

smoothing stage. On each day d the patient is either able to get the appointment at

service u (w.p. 1−βu,d) or is blocked from getting the appointment (w.p. βu,d). The

time to complete an appointment at service ui given an initial attempt to schedule

on day d, δui,d(B), therefore follows a discrete phase-type distribution characterized

by a Markov Chain with a phase transition probability matrix
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Tu | T0
u

0 | 1

 =



0 β1,u 0 0 0 | 1− β1,u

0 0 β2,u 0 0 | 1− β2,u

0 0 0 β3,u 0 | 1− β3,u

0 0 0 0 β4,u | 1− β4,u

β5,u 0 0 0 0 | 1− β5,u

0 0 0 0 0 | 1


(4.15)

where Tu · 1 + T0
u = 1. In particular, δui,d(B) is the time until absorption in

the discrete time Markov Chain defined by the Eq. 4.15. The Markov chain, and

therefore the discrete phase-type distribution, are completely characterized by Tu,

which is called the generator matrix of the phase-type distribution. This is because

Tu represents the transitions between the transient states of the chain and T0
u can

be calculated by subtracting the row sum of Tu from 1 for each row of Tu. It is well

known (see [58]) that the CDF and pmf of δui,d(B) are given for integral x number

of stages/days by

F (x) = 1− ed(Tu)
x · 1(4.16)

f(x) = ed(Tu)
x−1 ·T0

u,(4.17)

where ed is taken to be the unit column vector with 1 in the dth position and 0

elsewhere. The intuition behind Eq. 4.16 is the following. From Markov chain

theory, the probability that the chain has not left the transient states by time x is

ed(Tu)
x · 1, where ed is the state that the chain starts in and multiplying by 1 sums

up the probabilities of being in each of the transient states at time x. The probability

that the time to absorption is smaller than x is therefore one minus the probability
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that the chain is still in the transient state at time x. The intuition behind Eq. 4.17

follows from the same line of reasoning.

The total delay for a patient is the sum of the correlated delays for each service

along the critical path. Fortunately, it can be shown that this sum also has a phase-

type distribution. The transition probability matrix that characterizes the phase-

type distribution for total length of the critical path is given by the block diagonal

matrix

TC | T0
C

0 | 1

 =



T1
u1

T2
u1

0 0 . . . 0 | 0

0 T1
u2

T2
u2

0 . . . 0 | 0

. . . . . . | ...

0 0 0 0 . . . T1
un
| T0

un

0 0 0 0 . . . 0 | 1


,(4.18)

where T1
ui

and T0
un

are defined as in Eq. 4.15. Additionally, Let

T2
ui

=



1− β1,u 0 0 0 0

0 1− β2,u 0 0 0

0 0 1− β3,u 0 0

0 0 0 1− β4,u 0

0 0 0 0 1− β5,u


.(4.19)

To see that this matrix does indeed represent the desired transition probability matrix

of a Markov Chain whose time to absorption represents the length of a patient’s care

path, consider the phase transition diagram (Fig. 4.5) of the chain described by Eq.

4.18.

From this diagram it is clear that when a patient starts task 1 of their critical

path on day d, they are either blocked from receiving an appointment (w.p. βu1,d) or
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Figure 4.5: State transition diagram of a Markov Chain whose time to absorption represents the
length of a patient’s care path. The state is a tuple (task, day), where ui is the task
and the days are from 1, . . . , 5, representing weekdays

they complete their task (w.p. 1−βu1,d). If the patient is blocked, the Markov Chain

transitions to the next day, (d+ 1) mod 5, but remains within task 1. If the patient

is not blocked, the patient transitions to task 2. When the patient is on the final

task of their critical path and they are not blocked, then the patient transitions to

the absorbing state, (0, 0), which indicates that the treatment segment is completed.

Thus the time to absorption is the time it would take for a patient to complete their

critical path.

Hence, the time for a patient to complete their critical path given that they were

initially scheduled to begin treatment on day d can be described by a discrete time

phase-type distribution with pmf and CDF given by Eq.’s 4.20 and 4.21.

F (x) = 1− ed (TC)
x · 1(4.20)

f(x) = ed (TC)
x−1 ·T0

C.(4.21)

Remark IV.4. With the phase-type structure it is also possible to capture precedence
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relationships that require task j to begin no earlier than n = 1, . . . , N days after

task i is completed (where N is the length of the planning horizon). This is useful

if, for example, task i is a medical test that will require n days to process. This

delayed precedence can be captured by modifying the matrix that transitions to task

j, inputting mandatory transitions w.p. 1 for the required waiting time until the

patient can transition to j. This holds for all future sections as well, enabling our

complete phase-type model for itinerary completion to capture this feature.

4.5.3 Incorporating Probabilistic Resource Needs into the Phase-type Itinerary Com-
pletion Model

Based on the analysis of the Out-PATTERN stochastic location process it is clear

that patients may only require each task along their critical path with a probability

that is less than one. By employing the Out-PATTERN stochastic location process

model it is possible to construct a more general critical path representation that

contains the inherent stochasticity in care path transitions. We allow each visit along

the critical path to be skipped (i.e., it was not needed for the given patient) with

some probability that is fixed and calculated based on the Out-PATTERN location

process.

Consider a typical uncapacitated patient flow path characterizing the probability

that patients require certain clinical services over time in a setting without blocking

(as discussed in Sec. 4.3.2). An example of such a flow path is given in Table 4.3.

In this case, all patients have a visit to the breast diagnostic clinic on their first day,

while 17% visit medical oncology. On their second day of treatment 24% of patients

visit the breast diagnostic clinic and 4% visit medical oncology. etc.

The probability that a patient of type k will require task i (requiring service ui) in

precedence level d along their critical path, νk,ui(d), is easy to compute from the data



131

Day Breast Diagnostic Med. Oncology Radiation Onc. Gen Surg Plastic Surg
0 1 0.17 0.25 1 0.29
1 0.24 0.04 0.04 0.01 0.03
2 0.06 0.05 0.01 0.05 0.04
3 0.05 0.04 0.01 0.01 0.01
4 0.05 0.05 0.01 0.03 0.01

Table 4.3: Sample of a logistical care pathway model for breast cancer patients

(and will be discussed in Sec. 4.7). To combine this probability measure with the

discrete phase-type distribution it is necessary to modify the prior Markov chain of

Fig. 4.5. Figure 4.6 presents part of the modified Markov chain that is representative

of the entire chain. When a patient completes any task j, they will move to the next

task only if the task is required, w.p. νk,uj+1
(d). If task j + 1 is not required (w.p.

1− νk,uj+1
(d)), then the chain can jump to task j + 2. If both tasks j + 1 and j + 2

are not required, which occurs w.p. (1 − νk,uj+1
(d))(1 − νk,uj+2

(d)), then the chain

can jump to task j + 3 and so forth.

1 , 1 , 	 ,
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Figure 4.6: State transition diagram of the care path Markov chain that includes probabilities of
not visiting a specific tasks.

The new transition probability matrix then has the upper triangular form
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TC | T0
C

0 | 1

 =



T1
u1

T2
u1

T3
u1

T4
u1

. . . Tn
u1
| T0

u1

0 T1
u2

T2
u2

T3
u2

. . . Tn
u2
| T0

u2

. . . . . . | ...

0 0 0 0 . . . T1
un
| T0

un

0 0 0 0 . . . 0 | 1


.(4.22)

T1
ui

and T0
un

remain the same as in Eq. 4.18. For the remaining terms, we redefine

them as

Tj
ui

= νk,ui+j−1
(j)

i+j−2∏
m=i+1

(1− νk,um(m))



1− β1,ui 0 0 0

0 1− β2,ui 0 0

0 0
. . . 0

0 0 0 1− β5,ui


,(4.23)

for j = 2, . . . , n− i+ 1. For the remaining terms

T0
ui

=

[
n∏

m=i+1

(
1− νk,um(m)

)][
1− β1,ui 1− β2,ui 1− β3,ui 1− β4,ui 1− β5,ui

]′
.

(4.24)

Eq.’s 4.23 and 4.24, use the convention that an empty product is equal to 1.

Beyond the change to the transition probability matrix, the data showed that the

starting point of the patient’s critical path is not deterministic. For a type k patient,

let κk be the probability vector κk(i) is the probability that the patient begins their

critical path on service i.

κk =

[
νk,u1(1), νk,u2(2)(1− νk,u1(1)), . . . , νk,un(n)

n−1∏
j=1

(1− νk,uj(j))

]′
.(4.25)

Now let ηk,d be the initial distribution on the starting location of a patient of type

k that is scheduled for their initial appointment on day d. This distribution is given
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by

ηk,d = [νk,u1(1)ed, νk,u2(2)(1− νk,u1(1))ed, . . . , νk,un(n)
n−1∏
j=1

(1− νk,uj(j))ed, 0]′.(4.26)

The (N · n + 1) × 1 vector ηk,d combines the initial service the patient enters (κk)

with the day the patient enters that service (ed), to start the patient’s path in the

correct location at the correct time. Now, for a patient of type k, we can calculate

the discrete time phase-type distribution of the probability that itinerary completes

on or before stage/day x (CDF denoted by Fk) and the probability that the patient

leaves the system at time x (pmf denoted by fk).

Fk,d(x) = 1− ηk,d (TC)
x · 1(4.27)

fk,d(x) = ηk,d (TC)
x−1 ·T0

C.(4.28)

4.5.4 Tasks in Parallel: Maximum of Phase-type Distributions

The third and final feature we desire to add to the outpatient service model is

that the critical path may contain non-identical tasks that can occur in parallel.

That is, in precedence level d, there can be n parallel tasks with time to completion

denoted by X1, X2, . . . , Xn. From the modeling approach detailed in Sec. 4.5.2,

each Xi follows a phase-type distribution characterized by generator matrix Ti. The

time to complete all tasks is given by X = max{X1, X2, . . . , Xn}. To analyze the

distribution of X it is necessary to present the following definition (from [13]).

Definition IV.5. The Kronecker Product of matrices A and B, A⊗B, is an oper-

ation on two matrices, such that if A is an m× n matrix and B is a p× q then the

mp× nq matrix is:
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(4.29) A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 .

Lemma IV.6 shows that the maximum of n phase-type distributions is a phase-

type distribution. The proof builds upon Davio (see [13]), who shows the result for

two phase-type distributions. While the generator matrix for the the maximum does

have a closed form solution, it is extremely complex and so we present the more

simple recursive formula for the generator matrix, from which it is easier to gain

intuition.

Lemma IV.6. Let X1, X2, . . . , Xn be phase-type distributed random variables with

generating matrices T1, . . . ,Tn and the normalizing absorbing probability vector T0
1,

. . . ,T0
n. Let X(n) = max{X1, X2, . . . , Xn}. Then X(n) is phase-type distributed and

the generator matrix for X(n) is upper triangular and has block form defined by the

recursive relationship

TX(n) =


TX(n−1) ⊗Tn TX(n−1) ⊗T0

n T0
X(n−1) ⊗Tn

0 TX(n−1) 0

0 0 Tn

 ,(4.30)

where TX(1) = T1.

Proof. To show the result, we begin with the maximum of two phase-type distri-

butions and then apply the relationship recursively to obtain the general result.

The maximum of two phase type distributions, X1, X2, with generator matrices
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T1 (with absorbing probability vector T0
1) and T2 (with absorbing probability vec-

tor T0
2) respectively can be shown to have a phase-type distribution by combin-

ing the states of the Markov Chains for each individual distribution. That is if

the chain for X1 has m states a1, . . . , am and chain for X2 has n states b1, . . . , bn,

then the combined chain would have m · n states {(ai, bj) : i ∈ {1, . . . ,m + 1}, j ∈

{1, . . . , n+ 1}}/{(am+1, bn+1)}, where am+1 and bn+1 represent the state where chain

X1 and chain X2 respectively have entered the absorbing state. We remove the case

where both X1 and X2 have entered the absorbing state, because this is the absorb-

ing state for the chain max(X1, X2) and thus is not included in the generator matrix.

The transitions are then defined by

P((ai, bj)→ (ak, b`)) = P(ai → ak)P(bj → b`) for i, k ∈ {1, . . . ,m}, j, ` ∈ {1, . . . , n}

(4.31)

P((ai, bj)→ (ak, bn+1)) = P(ai → ak)

(
1−

n∑
r=1

P(bj, br)

)
for i, k ∈ {1, . . . ,m},

(4.32)

j ∈ {1, . . . , n}

P((ai, bj)→ (am+1, b`)) =

(
1−

m∑
r=1

P(ai, ar)

)
P(bj → b`) for i ∈ {1, . . . ,m},

(4.33)

j, ` ∈ {1, . . . , n}

P((ai, bn+1)→ (ak, bn+1)) = P(ai → ak) for i, k ∈ {1, . . . ,m}

(4.34)

P((am+1, bj)→ (am+1, b`)) = P(bj → b`) for j, ` ∈ {1, . . . , n}.

(4.35)

By arranging the transition matrix properly one can see that (1) Eq.’s 4.31 are
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captured by the matrix T1 ⊗ T2, (2) Eq.’s 4.32 are captured by T1 ⊗ T0
2, (3) Eq.’s

4.33 are captured by T0
1 ⊗ T2, (4) Eq.’s 4.34 are precisely T1, and (5) Eq.’s 4.35

are precisely T2. Certain transitions are prohibited, such as (am+1, bj)→ (ak, b`) for

k 6= m + 1 because once chain X1 enters the absorbing state it doesn’t leave. This

creates blocks of zeros in the transition matrix for max(X1, X2). Again, arranging the

states in the right order yields the generator matrix that captures all the transitions:

Tmax(X1,X2) =


T1 ⊗T2 T1 ⊗T0

2 T0
1 ⊗T2

0 T1 0

0 0 T2

 .(4.36)

Since max(X1, X2) is still a phase-type distribution, it allows us to apply Eq. 4.36

recursively. For example max(X1, X2, X3) = max(max(X1, X2), X3). Thus we can

construct the recursive definition from Eq. 4.30

From Lemma IV.6 the maximum of n phase-type distributions has block upper

triangular form. To obtain the closed for solution for the maximum of n phase-type

distributions, first consider the result that the Kronecker product is distributive

among blocks of a block matrix. That is,A B

D C

⊗N =

A⊗N B⊗N

D⊗N C⊗N

 .(4.37)

Combining the result from Eq. 4.37 and Lemma IV.6, the closed form solution for

the recursion in Eq. 4.30 can be obtained. The solution, however, is notationally

complex and therefore is not presented here.

4.5.5 A Tractable Representation of the “Max” Phase-type Generator

One of the primary drawbacks of the general representation of the generator ma-

trix for the maximum of L phase-type distributions given by Eq. 4.30 is the size of
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the matrix. If each matrix in the maximum is size N ×N , then the generator matrix

of the maximum would be of size (N+1)L−1×(N+1)L−1. The exponential growth

of the size of the matrix in the number of terms of the maximum is a concern. In

our case study each individual generator matrix is 5× 5 and we consider 5 possible

services along the critical path, so the generator matrix for the maximum of those 5

services would be of size 7, 775× 7, 775, with 60, 450, 625 entries. If we were to add

just one more service, the result would be a matrix with 2, 176, 689, 025 entries.

Since representations for phase-type distributions are in most cases not unique, we

will exploit the special structure of our phase-type model to obtain a representation,

V, that is significantly more compact. The matrix simplification follows by elim-

inating the possibility of certain transitions and thereby reducing the state space.

First, in the general form of the phase-type distribution, transitions can occur from

any state to any other state. For itinerary completion, however, when an attempt to

get an appointment is blocked, the chain never transitions more than one day ahead

(i.e., transitions occur only from Day 1 to Day 2, or Day 2 to Day 3, etc.). Arranging

the states properly in the Markov chain representation, allows us to create a sparse

matrix structure that provides for efficient computation of powers. Secondly, for the

general form of the maximum of phase-type random variables, each individual phase-

type random variable that comprises the maximum is allowed to start in any state,

independent of the other random variables in the maximum. Thus it is possible that

the first random variable of the maximum starts on day 1, while the second starts

on day 3. In the itinerary completion model, however, we begin attempting to get

each individual appointment on the same day. In the previous example, all random

variables of the maximum would start on the same day. This allows us to eliminate

states such as (1,3), where the first appointment is attempting to get scheduled on
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day 1 while the second appointment is attempting to get scheduled on day 3. The

compact matrix, V, has the following form, which will be explained in the following

paragraphs.

V =



Day 1 Day 2 Day 3 Day 4 Day 5

Day 1 0 V1,2 0 0 0

Day 2 0 0 V2,3 0 0

Day 3 0 0 0 V3,4 0

Day 4 0 0 0 0 V4,5

Day 5 V5,1 0 0 0 0


.(4.38)

Define i⊕ 1 as 1 if i+ 1 = N + 1 (N being the length of the planning horizon) and

as i + 1 otherwise (similar to mod). The blocks of zeroes in Eq. 4.38 are a result

of the fact that on day i, the only possible next state for each appointment is day

i⊕1 or that the appointment has been completed. Each block, Vi,i⊕1, represents the

transitions on day i. These transitions simply account for how many of the L services

the patient was able to obtain an appointment at on day i. The 2L states represented

by Vi,i⊕1 take the form (a1, a2, . . . , aL), where aj = 1 means that the patient has

completed their appointment at service j and aj = 0 means that the patient has not

yet gotten an appointment at service j. As an example, trying to get an appointment

at services 1 and 3 on day i, having already completed an appointment at service 2

yields on possible transition

P((0, 1, 0)→ (0, 1, 1)) = P(Get Appt at Svc 3)P(Not Get Appt at Svc 1)

= β1,i(1− β3,i).

For each day (Vi,i⊕1), we only consider which of the remaining services the patient

is able to get appointments in. The events of whether or not a patient can get an
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appointment on day i in a single service uj can be captured by the simplified 2× 2

t.p.m.

Auj ,i =

βuj ,i 1− βuj ,i

0 1

 .(4.39)

βuj ,i is the probability that the patient couldn’t get an appointment in service uj on

day i. If this event occurs, the patient is directed to the following day (e.g., i ⊕ 1)

and attempts to get the appointment again. Otherwise, the patient has finished the

task and enters the absorbing state (i.e. task complete) for that task. Thus, Auj ,i

describes the daily transition for a single service. The transition probabilities, Vi,i⊕1,

for the possible outcomes of trying to get appointments in L different services (i.e.

success or failure on day i) can be calculated by combining the single service t.p.m’s,⊗L
j=1Auj ,i.

Theorem IV.7. Suppose there are L phase-type distributed random variables, Xu1 ,

. . . , XuL, with generator matrices, Tu1 , . . . ,TuL, following the structure in Eq. 4.15.

Let Auj ,i be the compact representation of the single service t.p.m.’s for day i given

by Eq. 4.39. Then Eq. 4.38 is a generator for maxj{Xuj}, whereVi,i⊕1 | V0
i

0 | 1

 =
L⊗
j=1

Auj ,i.(4.40)

Proof. This can be shown via equivalence of the compact Markov Chain with the

Markov Chain for the general solution in Eq. 4.30. For the sake of expositional

clarity we present a proof for the case of the maximum of 2 phase-type distributions

because the general case follows using the exact same arguments.

Consider 2 phase-type distributions, Xu1 and Xu2 with generator matrices Tu1

and Tu2 respectively. The state space for the general solution is given by the {(i, j) :
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i, j ∈ {1, 2, . . . , 6}}, where 6 denotes service copmleted. Due to the structure of Tu1

and Tu2 , the only possible transitions and their probabilities are given by

P ((i, j)→ (i⊕ 1, j ⊕ 1)) = βi,u1βj,u2(4.41)

P ((i, j)→ (i⊕ 1, 6)) = βi,u1(1− βj,u2)(4.42)

P ((i, j)→ (6, j ⊕ 1)) = (1− βi,u1)βj,u2(4.43)

P ((i, 6)→ (i⊕ 1, 6)) = βi,u1(4.44)

P ((6, j)→ (6, j ⊕ 1)) = βj,u2(4.45)

P ((i, 6)→ (6, 6)) = 1− βi,u1(4.46)

P ((6, j)→ (6, 6)) = 1− βj,u2(4.47)

P ((6, 6)→ (6, 6)) = 1.(4.48)

For this chain, the difference between i and j will remain constant until one of them

enters the absorbing state (State 6). Considering this and the fact that the initial

distribution in our application (ed) starts the search for both appointments on the

same day of the week further reduces the the state space that needs be modeled to

the state space {(i, i) : i ∈ 1, . . . , 5} ∪ {(i, 6) : i ∈ 1, . . . , 6} ∪ {(6, i) : i ∈ 1, . . . , 5}

because there is no path to any of the states where i 6= j for i, j < 6.

Without loss of generality, another way to compute the Vij blocks of Eq. 4.38 for

the example of (i, j) = (1, 2):

V1,2 =



State (2, 2) (2, 6) (6, 2)

(1, 1) β1,u1β2,u2 β1,u1(1− β2,u2) (1− β1,u1)β2,u2

(1, 6) 0 β1,u1 0

(6, 1) 0 0 β2,u2


,(4.49)

where the states are listed on the top and side of the matrix for exposition. By

examining the entries of Eq. 4.49 it is clear that the transition probabilities match
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those from the general phase-type representation Eq.’s 4.41 - 4.45. Eq.’s 4.46 -

4.48 come from the transitions to the absorbing state, which can be calculated by

subtracting each row sum from 1. In the case of day 1, the transitions to the absorbing

state from states (1, 1), (1, 6), and 6, 1 have probabilities (1− β1,u1)(1− β2,u2), (1−

β1,u1), and (1 − β2,u2) respectively. These match the transitions from the general

phase-type representation of the maximum. All other days have the same structure

as day 1, thus we have shown that the two Markov Chains are equivalent because

they have the same t.p.m.

Corollary IV.8. Let U(n) be the computational complexity of multiplying n × n

upper triangular matrices together. Let N be the length of the planning horizon

for the blocking phase-type distribution described by Eq. 4.38. The computational

complexity of calculating the CDF of the itinerary completion phase-type distribution

for the maximum of L phase-type distributions using the compact approach is given

by

Ocompact(F (x)) = N · x · U(2L)(4.50)

Proof. We prove the result by construction, presenting an algorithm for computing

F (x) that achieves the required complexity. Consider a matrix that has block form

V =



0 V1,2 0 0 0

0 0 V2,3 0 0

0 0 0
. . . 0

0 0 0 0 VN−1,N

VN,1 0 0 0 0


.(4.51)
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Each time V is taken to the xth power, each block Vi,i⊕1 is shifted up by x−1 blocks

(wrapping around to the bottom when the block reaches the top most block in the

matrix) and multiplied sequentially on the left by the non-zero blocks to the left of

it (again wrapping around to the right as necessary). This is best demonstrated by

a simple example.

V2 =



0 0 V1,2V2,3 0 0

0 0 0
. . . 0

0 0 0 0 VN−2,N−1VN−1,N

VN−1,NVN,1 0 0 0 0

0 VN,1V1,2 0 0 0



(4.52)

V3 =

(4.53)



0 0 0
. . . 0

0 0 0 0 VN−3,N−2VN−2,N−1VN−1,N

VN−2,N−1VN−1,NVN,1 0 0 0 0

0
. . . 0 0 0

0 0 VN,1V1,2V2,3 0 0


,

where the diagonal dots,
. . ., in Eq. 4.53 represent a continuation of the pattern from

the columns to the left of it where non-zero blocks will appear along the diagonal.

Thus the calculation of Vx decomposes into the multiplication of x matrices for

each non-zero block and shifting that block’s position up by x blocks. Because each

matrix Vd,d+1 is a portion of the Kronecker product of L matrices of size 2× 2, the

size of Vd,d+1 is (2L − 1)× (2L − 1). To calculate the non-zero block of each colum
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of Vx it requires x− 1 multiplications of the (2L − 1)× (2L − 1) matrices, which is

of order x · U(2L). Since there are N − 1 columns, this procedure must be repeated

N − 1 times, leading to the desired complexity on the order of N · x · U(2L).

First note that the computational complexity grows linearly in the length of the

planning horizon, which is far slower than the traditional representation. As an

illustration of the importance of the above decomposition method, we compare the

computational complexity of the compact representation (Ocompact) with the standard

representation (Ofull) of the phase-type distribution. Let M(n) be the computational

complexity of regular matrix multiplication. Then

Ocompact(F (x)) = N · x · U(2L)(4.54)

Ofull(F (x)) = x ·M((N + 1)L).(4.55)

The size of the matrix multiplication in Eq. 4.55 grows far more quickly than in Eq.

4.54. We compact the state space and compute the matrix power by multiplying

smaller sub-matrices instead of the entire matrix. With the 5 day planning horizon

and 5 services that could be potentially visited in parallel, the compact representation

only requires matrix multiplication of size 31 × 31 that have 961 entries, where as

the general representation requires matrix multiplication of a size 7, 775 × 7, 775

matrix with 60, 450, 625 entries. If we again consider adding just one more service

the contrast becomes even more stark: 3, 969 entries versus 2, 176, 689, 025 entries.

4.5.6 Phase-type Model for Itinerary Completion

We have developed a phase-type model of blocking that considers (1) completing

a sequence of appointments with precedence constraints, (2) some tasks may be

completed in parallel, and (3) the idea that some appointments along the critical

path may not be required by all patients (i.e. there is a probability that patients can
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skip over certain appointments on the critical path). In this section we incorporate

all of the features of itinerary completion into a phase-type approach to calculate the

probability of whether or not a patient will complete their itinerary given an initial

appointment on day d.

Let Rd ⊆ R be a cluster of services that are required in precedence level d. Let

V(Rd) be the generator for the phase-type model of completion time per Eq. 4.38

from Sec. 4.5.4. The phase-type model that captures itinerary completion is given

by replacing the generator, T1
ud

for each individual service in Eq. 4.22 with V1(Rd).

The transition from precedence level d to d + i, Vi(Rd), (or to the absorbing state

V0(Rd)) is calculated the same way as Ti
ud

(or T0
ud

) from Eq. 4.23 by subtracting

the row sum of each row of the matrix from 1 and multiplying by the probability

the cluster of services in level d+ i is needed, P(11{Rd+i}). It is too large to display

here. Because this generator matrix has block form with a significant number of

zero blocks, the computation of the power of the phase-type generator matrix for the

entire path, V(C), can be calculated by multiplying the smaller blocks of the total

matrix together using an algorithm that is quite similar to the one proposed in the

proof of Corollary IV.8.

Let ηk,d be the initial distribution for patients of type k beginning their itinerary

on day d of the planning horizon. We define ηk,d using the same form as previously

given in Eq. 4.26, but with the proper dimensions. The probability that a type k

patient’s itinerary completes before the end of the work week given that they were

admitted on day d ∈ {0, . . . , 4} is then given by

P (11k,d{Itinerary Complete} = 1) = P (δC,d(B) ≤ 5− d) = 1− ηk,d(V(C))5−d · 1.

(4.56)

Recall that δC,d(B) is the sojourn time for a patient with critical path C who was
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originally admitted on day d and V(C)(5−d) can be calculated efficiently using the

algorithm developed in the proof of Cor. IV.8. In Sec. 4.6 we develop an optimiza-

tion model that takes the phase-type model as an input and maximizes itinerary

completion for the priority fast-track patients.

4.6 Itinerary Completion Optimization

For the second stage optimization problem, we begin with the workload dynamics

of the system resulting from the workload smoothing optimization and we add a

prioritized class for fast-track scheduling. That is, for each national or international

patient, we can calculate the probability that their treatment segment will not com-

plete by Friday based on the day they initiated treatment, their critical path, and

the amount of delay they experience. The latter depends on the blocking proba-

bilities from the workload smoothing optimization, which parameterize the discrete

phase-type CDF from Eq. 4.56.

To ensure that blocking probabilities in the itinerary completion optimization

closely match those of the optimal schedule of the workload smoothing optimization,

we add a constraint on the service level at each resource to the itinerary comple-

tion optimization. Let Θ∗ be the optimal schedule from the workload smoothing

optimization. Then the service level at service u on day d is given by

τu,d =
Cu,d − µu,d(Θ∗)

σu,d(Θ∗)
,(4.57)

where Cu,d is the capacity, µu,d(Θ
∗) and σu,d(Θ

∗) are the mean and standard deviation

of the workload under schedule Θ∗. By constraining the service level in the itinerary

completion optimization to respect the service levels under Θ∗, we ensure that the

itinerary completion model is properly parameterized with similar flow dynamics to

Θ∗. This is important because F̄k(t), the itinerary completion probability, is depen-
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dent on the blocking probabilities from the solution of the workload smoothing stage.

Thus, as long as the blocking is not much worse in the second stage optimization,

F̄k(t) will be an upper bound on the probability of not completing an itinerary.

The key to the itinerary completion fast-track optimization is that we enrich

the patient type to include each patient’s geocode (national/international vs lo-

cal/regional). For example, the breast cancer patient type would become local breast

cancer patient, national breast cancer patient, etc. instead of just breast cancer pa-

tient as in the first stage model. We use the same variable definitions as in the

workload smoothing optimization, with the following changes.

Parameters

θNk,d current admission volumes of type k national/international patients on

day d.

θLk,d current admission volumes of type k local/regional patients on day d.

θ̂Nk,d maximum number of admissions of type k national/international

patients allowed on day d.

θ̂Lk,d maximum number of admissions of type k local/regional patients

allowed on day d.

τu,d the maximum allowable coefficient of the workload standard deviation

values obtained from the solution of the workload smoothing

optimization)

F̄k(t) the probability that a type k patient’s critical path takes longer than t

units of time. F̄k(t) = 1− Fk(t), where Fk(t) is given by Eq. 4.56 for

patient type k.

Decision Variables
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ΘN
k,d number of type k ∈ D national/international patients scheduled on day d

ΘL
k,d number of type k ∈ D local/regional patients scheduled on day d

This optimization model maximizes the itinerary completion for national / inter-

national patients while constraining the system to the smoothed aggregate system

flow from the workload smoothing stage.
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min
ΘN ,ΘL

∑
k∈D

5∑
d=1

ΘN
k,dF̄k(6− d)

(4.58)

s.t.

µu,d(Θ
N + ΘL) + τu,d ·

1

2

(
σ2
u,d(Θ

N + ΘL)

σ̂u,d(ΘN + ΘL)
+ σ̂u,d(Θ

N + ΘL)

)
≤ Cu,d + ε

∀u ∈ U , d = 1, . . . , 5

(4.59)

5∑
d=1

ΘN
k,d =

5∑
d=1

θNk,d ∀k ∈ D

(4.60)

ΘN
k,d ≤ θ̂Nk,d ∀k ∈ D, d = 1, . . . , 5

(4.61)

5∑
d=1

ΘL
k,d =

5∑
d=1

θLk,d ∀k ∈ D

(4.62)

ΘL
k,d ≤ θ̂Lk,d ∀k ∈ D, d = 1, . . . , 5

(4.63)

ΘL
k,d,Θ

N
k,d ∈ Z+.

The objective function, Eq. 4.58, minimizes the expected number of incomplete

itineraries across all patient types. Itinerary completion of a patient of type k be-

ginning their itinerary on day d is modeled as a Bernoulli random variable with

probability Fk(6− d), where Fk is given by Eq. 4.56. Eq. 4.59 is the constraint that

enforces the service level factor, τu,d, for any given schedule ΘL+ ΘN using our New-

ton’s method-based approximation of the square root function from Section 4.4.1.
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Essentially Eq.’s 4.59 ensure that the system will retain a flow that is characterized

by Fk(·), the minimum blocking solution of workload smoothing. We add ε to ensure

that there are sufficiently many solutions for CPLEX to solve the problem easily and

not be hampered by round-off errors.

Note that ΘL + ΘN encompasses all the patients that Θ did in the workload

smoothing optimization. Eq.’s 4.60 and 4.62 constrain the optimal weekly volume

to be equal to the current weekly volume for both national/international patients

and local/regional patients. Eq.’s 4.61 and 4.63 ensure that an upper bound on the

number of patients of each type arriving for treatment on a given day is respected

for both national/international patients and local/regional patients.

4.7 Analysis and Case Study of Itinerary Completion Improvement

In this section, we present an application of our outpatient flow paradigm to

improve itinerary completion for national/international breast cancer patients at the

Mayo Clinic. In principle the methods can be applied to the ensemble of services

offered by the Mayo Clinic, but given that this is a research project, we tested our

model on the scheduling of new breast cancer patients.

4.7.1 Data and Model Parametrization

Clinical Resources. The first challenge in parameterizing the theoretical models

developed in the chapter was to determine how to categorize the clinical resources

that patients place a load on. Key considerations for effective resource categories

include:

1. Are the definitions of resources amenable to measurement of patient workload

(e.g. number of appointments, OR time, etc.)?

2. Is it possible to quantify the resource’s capacity?
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3. Is the resource a bottleneck; i.e. is the resource capacity constrained?

Taking into account these considerations, we decided to categorize resources by clin-

ical service (e.g. general surgery, radiation oncology) and, where appropriate, by the

particular type of appointment at the clinical service (e.g. surgical consult, regis-

tered nurse, diagnostic imaging). The workload and capacities at these services were

quantified in terms of number of appointments per day as detailed in the following

paragraphs.

Patient Types. Choosing the patient types defines the granularity of the model.

It is important to have enough differentiation between patients to make patient

types meaningful, but to have enough data for each patient type category to be

able to effectively estimate the stochastic location processes. In our case study,

we decided to further subdivide breast cancer patients into categories by geo-code

(local, regional, national, international). Not only did patients from different regions

exhibit different care paths and resource usage, the geo-coded region also facilitates

the second stage optimization in which the goal is to maximize itinerary completion

for national/international patients.

Logistic Care Pathways. To parameterize the breast cancer stochastic location

processes, we desire pathways that are not distorted by access block. Thus we pulled

patient flow data from periods of low congestion during 2006 - 2011. This set of

breast cancer patients placed a load on 77 different clinical specialties over this time

period, all of which were modeled. Breast cancer patients were further characterized

by their geo-code (local, regional, national, international). An example of the care

paths can be found in Appendix 4.9.2, Figure 4.11.

Clinical Service Capacities and Workloads. The total workload at each re-

source was measured in terms of number of appointments. Historical workloads for
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two of the main breast cancer services are given in Figure 4.10 in Appendix 4.9.2.

To calculate the utilization, we divide the total appointments by the FTEs at

the service to get the ratio of appointments per FTE. To estimate the capacity in

each clinical service, we developed a quantile chart that plots the proportion of days

that didn’t exceed a certain level of appointments per FTE. We then chose an upper

range as the “capacity” per FTE. It was mutually decided with the Mayo Clinic that

the 90% quantile would be a good measure of staff capacity to serve patients in the

Breast Diagnostic Clinic, because it is believed that patients are being “squeezed”

in the top 10% of days worked. An example of the quantile plot for the Breast

Diagnostic Clinic is given in Appendix 4.9.2, Fig. 4.12. The capacity, in terms of

number of appointments, was then calculated by multiplying the maximum number

of appointments per staff member by the number of staff members on duty for each

day of the planning horizon.

An additional complication was that the clinical services that we studied did

not exclusively serve breast cancer patients. In our case study, we only control

the breast cancer patient arrival stream so we model the other patients that use

the same services as exogenous, uncontrolled demand. The uncontrolled demand

is approximated as a normal distribution with the mean and variance parameters

estimated from historical data. Clearly controlling all of the demand is the ideal

and would allow for the best possible results. However, in healthcare organizations

there are many independent parties and not all participants are able or willing to

change their scheduling practice. This inflexibility can lead to significant extra costs,

but as we show in the following case study, great benefits can be achieved even by

controlling a small (e.g. 25%) fraction of the demand.
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Breast Cancer Critical Paths. One of the key challenges in this research lies

in determining critical paths for patients in a scalable manner. Working with the

Mayo Clinic, we investigated a number of approaches for determining the critical

path for each patient type. For scalability, we decided upon a data driven approach

that identifies resources that are:

1. Commonly Used. A significant proportion of patients from a given patient type

visited at least once

2. Caused Itinerary Completion Failure. Comprised a significant percent of the

visits that exceeded the one week mark. These can be deduced to be critical

appointments.

For the breast cancer patients in our proof-of-concept case study, we identified 5

services that lay along the critical path that met both criteria: Breast Diagnostic

Clinic, Medical Oncology, Radiation Oncology, General Surgery, and Plastic Surgery.

A table of the top resources used on the 2nd week (i.e. caused an itinerary completion

failure) is shown in Figure 4.13 of Appendix 4.9.2.

4.7.2 Case Study Results

In this section we present the results obtained by applying the (1) workload

smoothing and (2) itinerary completion optimization models to the critical resources

associated with breast cancer care. This case study provides a detailed analysis and

solution to the breast cancer patient scheduling problem that would provide the de-

cision rules for managing itinerary completion for new breast cancer patients. In

this study only the new breast cancer patient schedules would be modified, and thus

exogenous demand at each service was modeled but not controlled. In each service

along the breast cancer critical path, breast cancer patients amounted to less than
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25% of the total volume of appointments. The results demonstrate that significant

gains can be achieved even with this small amount of control.

To illustrate how the two-stage method works, we first present the intermediate

workload smoothing results (stage 1) for the Breast Diagnostic Clinic and discuss

the implication of this stage of the optimization. Then we present the final results

in terms of breast cancer patient schedule and itinerary completion improvement

after both the workload smoothing and itinerary completion optimizations were run

sequentially.

Workload Smoothing Optimization. In this section we present the intermediary

result for the workload smoothing optimization. To illustrate the concepts at play, we

focus on a detailed analysis of the Breast Diagnostic Clinic. Because we are studying

breast cancer patients, the Breast Diagnostic Clinic provides a rich environment

for illustrating the insights from this intermediary stage. At the clinic, the key

appointments were (1) Physician Visit (MD) and (2) Diagnostic Procedure (PR).

Fig. 4.7 shows the results in terms of the utilization of the physicians and diagnostic

imaging machines by day of week.
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Figure 4.7: Workloads for the physician (MD) appointment type and the diagnostic procedure (PR)
appointment type. Observe that the MD capacity is the bottleneck

In Fig. 4.7 it can be seen that the physician visit is the bottleneck resource
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at the Breast Diagnostic Clinic. In fact, the physician’s workload at the Breast

Diagnostic Clinic is over capacity on three out of the five weekdays (Fig 4.7 (a)).

The optimal schedule (Fig. 4.7 (b)) smooths the physician workload relative to

capacity - only slightly exceeding capacity on one out of the five weekdays. In the

optimal schedule there is more variation in the diagnostic procedure service, but

this is acceptable to achieve the gains in the physician workload because the average

utilization of the diagnostic imaging machines is well below peak levels. Fig. 4.8

presents the optimization results for the physician schedule at the Breast Diagnostic

Clinic in greater detail; showing the non-controllable (non-BC) and controllable (BC)

appointment workloads.Current Schedule – Level Capacity
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Figure 4.8: Physician appointments at the Breast Diagnostic Clinic for breast cancer (BC) and
non-breast cancer (Non-BC) patients.

The key insight from Fig. 4.8 is the following: by controlling the schedules of a

small fraction of the patient population, it is possible to mold the controlled workload

to the exogenous workload like fitting pieces of a puzzle together to smooth work-

loads and reduce congestion in critical clinical services. Take, for example, Tuesday

and Wednesday. In the original schedule (Fig. 4.8 (a)) the physicians experience

about the same amount of BC patient workload on both days despite the fact that

the exogenous workload is much higher on Wednesday than on Tuesday. After op-

timization (Fig. 4.8 (b)), patients are scheduled in such a way that the BC patient
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appointment workloads are light on Wednesday when the exogenous workload is

high, and higher on Tuesday when the exogenous workload is low. Thursday is still

overutilized due to the extremely high level of non-controllable workload and the

fact that any admissions of BC patients on Monday, Tuesday or Wednesday implies

some follow-up workload on Thursday. This clearly demonstrates the potential value

of controlling a larger segment of the patient population in a more comprehensive

system-wide design.

Itinerary Completion Optimization. From the solution of the workload smooth-

ing optimization, we calculated the (1) blocking probabilities to parameterize the

national/international patient’s phase-type care paths, (2) blocking quantiles to en-

sure that blocking probabilities are bounded above by the first stage solution (see

Eq. 4.59), (3) the phase-type care paths with blocking incorporated. In setting the

blocking quantile constraints, we relaxed the capacity by 1% of the original capacity

(e.g., ε = 0.34 for Breast Diagnostic Clinic).

The resulting schedule from the itinerary completion optimization in compari-

son with the original schedule is given in Fig. 4.9. The stage two optimization

essentially pushes the national/international demand to the beginning of the week,

while maintaining the workload smoothing properties of the stage one optimization

so that mid-week blockages don’t delay itinerary completion. This gives the na-

tional/international patients the best chance to complete their itinerary before the

weekend. Note that this is the schedule of new patient starts (first day appointments)

only. Subsequent and return return visits are accounted for in the workload forecast

location model.

The result of this improved schedule increases the itinerary completion from 74%

to 88%, as can be seen in Table 4.4. In the optimal schedule, the number of new breast
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Figure 4.9: Comparing the original schedule with the stage 2 optimal schedule for national / inter-
national patients versus local / regional patients.

Current Schedule Improved Schedule
Itinerary Completion 74% 88%

Table 4.4: Itinerary completion improvement using optimization

cancer patient appointments on Monday is low because there will be a significant

number of follow-up appointments on Mondays, being driven by the fact that most of

the local/regional patients are being shifted to Thursday and Friday. Because most

national/international itineraries can be completed in 4 days or less if there are few

appointment delays, starting the majority of “priority” patients on Tuesday doesn’t

greatly affect their chance of completing their itinerary by Friday.

The power of the approach is that patient service/throughput can be improved

without adding capacity (the traditional approach to solving congestion problems in

healthcare). Providing better and more efficient care with fixed capacity will become

increasingly important as healthcare capacity becomes more and more constrained.

4.8 Conclusions

In this chapter we developed a two stage optimization approach to maximizing

itinerary completion for a priority class (national/international) of patients in a des-

tination hospital. The workload smoothing stage builds a stochastic arrival-location
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model of patient flow along with linearizing approximations of blocking to optimize

and smooth workloads across the critical services in the outpatient clinical service

network. This approach to demand control in queueing networks transforms the

stochastic problem into a determinstic one that can be solved via linear program-

ming. The workload smoothing optimization stabilizes the environment through

which patients flow. Within the stabilized environment designed by the workload

smoothing optimization, the second stage allows for further differentiation of patients

by “priority” (national/international vs local/regional). The second stage linear pro-

gram maximizes itinerary completion based on the CDF of a phase-type distribution

parameterized by the blocking probabilities endogenous to the smoothed workload

stable environment.

The theoretical models were tested on breast cancer patients at the Mayo Clinic.

A full model was developed and parameterized to model and control the flow of breast

cancer patients only, accounting for non-breast cancer demand at each clinical service

as exogenous demand. This model was able to achieve significant improvements in

itinerary completion - increasing from 74% to 88% completion rate - while controlling

less than 25% of the demand in each service.

While this approach was developed for and applied to itinerary completion of

national/international patients at a destination hospital, it is generalizable to a

prevalent problem in the healthcare industry: how to reduce delays and improve

throughput by scheduling in a manner that uses expensive fixed capacity more ef-

fectively. Through analytical solutions, we have been able to design control systems

for queueing networks that can enable hospitals to meet the growing need to serve

patients for efficiently and effectively under increasing capacity constraints.
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4.9 Appendix

4.9.1 Notation

The notation for the chapter is presented below, categorized by the section in

which it first appears.

Section 4.3

M the number of clinical services in the care network

S the vector state space for the Out-PATTERN stochastic location

process consisting of S0, representing the clinical services and ∆

representing being at home.

Ls,k(t) the stochastic location process that represents random location of

patient type k at time t given they began treatment at time s

Σs the function space containing outcomes of the stochastic location

process for patients beginning treatment at time s.

Σ the collection of all Σs.

ps,k,r(j, t) the probability that a patient of type k who initiates a new

treatment at time s requires j appointments in clinical service r

at time t

D set of all patient diagnosis types

Θ a decision variable matrix representing the new appointment

schedule over the planning horizon. Θi,d is the number of type i

new patients to start on day d of the planning horizon.
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Mr the maximum number of visits to resource r in a given day

µd,r(Θ) the mean workload in terms of number of appointments in unit u

on day d under schedule Θ

σ2
d,r(Θ) the variance of the workload in unit u on day d

Dt
r,d the random variable representing demand for clinical service r on

day d of week t

D∞r,d the random variable representing the steady state demand for

clinical service r on day d

Section 4.4

M′ an index that creates a discrete grid with N sections.

M discrete grid values corresponding to the index M′.

m(·) function mapping the grid index M′ to the grid M.

Xu,d(Θ) the normal approximation of the amount of demand for service u

on day d given admission schedule Θ

Cu,d the capacity in service u on day d.

δu,d,i as a decision variable that calculates the amount of overflow at

m(i) standard deviations above the mean

E[Ou,d] the expected overflow approximation in service u on day d

σ̂(Θ) a guess of the workload standard deviation; can be chosen to be the

historical standard deviation
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θk,d current admission volumes of type k on day d.

θ̂k,d maximum number of admissions of type k allowed on day d.

wu,d the weight assigned to expected overflow in service u on day d

Section 4.5

C the tuple (R,P) defining a patient’s critical path

R set of clinical services along a patient’s critical path. R ⊆ U

P set of precedence relations between clinical services on the critical

path

βui,d blocking probability at clinical service ui on day d of the planning

horizon

B = [βui,d] the matrix of blocking probabilities by clinical service (ui) by day

of week (d)

δui,d(B) time to complete the ith appointment (at service ui) along the

critical path given that the appointment was first requested for

day d given blocking probabilities B

δC,d(B) The total time to complete the treatment segment for an initial

appointment on day d, given blocking probabilities B

K deadline for completing the itinerary

T1
ui

The phase-type generator matrix for the time to complete an

appointment at service ui

T0
ui

The probability vector for transitioning to the absorbing state
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Tj
ui

The matrix that routes the patient to service ui+j−1 after

completing an appointment at service ui

TC The phase-type generator for critical path C

νk,i(d) The probability that a patient of type k will require task i along

their critical path given that they were admitted on day s

κk the initial distribution of where the patient begins their critical

path

ηk,d the initial distribution on the starting location of a patient of

type k that is scheduled for their initial appointment on day d

V compact representation of the maximum of phase-type

distributions for the itinerary completion model

Vi,j Block of V representing the transition from day i to day j

Vi(Rd) the compact representation equivalent of Ti
ud

Auj ,i a 2× 2 phase-type generator matrix that represents the attempt to

get an appointment in service j on day i

Section 4.6

θNk,d current admission volumes of type k national/international patients on

day d.

θLk,d current admission volumes of type k local/regional patients on day d.

θ̂Nk,d maximum number of admissions of type k national/international

patients allowed on day d.

θ̂Lk,d maximum number of admissions of type k local/regional patients

allowed on day d.
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τu,d the service level factor for resource u on day d; calculated from the

workload smoothing optimal schedule

F̄k(t) the probability that a type k patient’s critical path takes longer than t

units of time. F̄k(t) = 1− Fk(t), where Fk(t) is given by Eq. 4.20 for

patient type k.

ΘN
k,d number of type k ∈ D national/international patients scheduled on day

d

ΘL
k,d number of type k ∈ D local/regional patients scheduled on day d

4.9.2 Mayo Clinic Breast Cancer Case Study Results and Analysis
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Figure 4.10: Workloads in two major breast cancer services over time.

The breast cancer pathways by patient type in Fig. 4.11 demonstrate the dif-

ferent ways in which local patients use resources versus international patients. The

international patients use more resources early on in their treatment path but tend

to taper of the further into the future on looks. On the other hand, the local patients

use less resources at once but rather spread their care out over a longer period of

time.
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Figure 4.11: Representation of breast cancer patient logistic care pathways by patient type.
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Clinical Service
% 2nd Week 

Visits Appointment Area
% 2nd Week 

Visits Appointment Type
% 2nd Week 

Visits
Surgery, General 20% MD ‐ Staff Physician 33% Consult/Limited Exam 35%
Medical Oncology 17% PR ‐ Procedure/Diagnostic Testing 28% Subsequent Visit 31%
Radiology, Nuclear Medicine 15% IN ‐ Individual 13% Radiology 22%
Breast Diagnostic Clinic 13% CL ‐ Clinic 12% Procedure/Diagnostic testing 8%
Surgery, Plastic 7%
Radiation Oncology 6%

Figure 4.13: Critical resources categorized by percent of 2nd week visits that occurred in each
resource.



CHAPTER V

Conclusions

In healthcare, admission/scheduling practices have a great impact on care delivery

performance in terms of cost, quality, and access. This body of work develops ana-

lytical tools for managing workloads in networks of healthcare resources to smooth

workloads and enable more effective care delivery with fixed care resources. At a

high level this work will allow hospitals to serve more patients and provide better

access without expanding resource capacities. Through case studies developed using

historical data from a number of hospitals the methods proposed here have been

shown to

1. Reduce blocking and cancelation by 17%-32% while maintaining current patient

volumes.

2. Serve 7% more patients without increasing blocking (a conservative estimate).

3. Increase the percent of patients completing their itinerary within a work week

from 74% to 88%.

The theoretical contributions of the work lie in designing methods for tractable

optimization of workloads in large and complex queueing networks. Chapter II devel-

ops a new controlled arrival-location model (CALM) and linearizing approximations

164
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that transform stochastic metrics into a linear deterministic optimization problem.

This approach allows for the optimization of elective inpatient admission schedules.

Such optimization was not tractable using simulation-based optimization. Chapter

III develops and analyzes a new stylized Markov Decision Process model, obtaining

closure properties for a new queueing operator and threshold structure of the opti-

mal policy. Chapter IV extends the CALM model of Chapter II and develops and

analyzes a phase-type model for the flow of individual patients through a congested

system.

In conclusion, this work has developed new methods for understanding flows and

blocking in queueing networks that model the flow of patients in networks of health-

care services. These methods also provide insight and decision support for managing

one of the highest impact controls in healthcare: the scheduling and admission of

patients.
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