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ABSTRACT

Correlation Functions in Two-Dimensional Critical Systems with Conformal
Symmetry

by

Steven Miguel Flores

Co-Chairs: Charles R.Doering and Peter Kleban

This thesis presents a study of certain conformal field theory (CFT) correlation func-

tions that describe physical observables in conformally invariant two-dimensional

critical systems. These are typically continuum limits of critical lattice models in

a domain within the complex plane and with a boundary. Certain clusters, called

boundary clusters, anchor to the boundary of the domain, and many of their features

are governed by a conformally invariant probability measure. For example, percola-

tion is an example of a critical lattice model, and when it is confined to a domain

with a boundary, clusters of connected, activated bonds that touch that boundary

are the boundary clusters. This thesis is concerned with how the boundary clusters

interact with each other according to that measure. One question that it considers

are “how likely are these clusters to repel each other or to connect with one another in

a certain topological configuration?” Chapter one non-rigorously derives an already

well-known elliptic system of partial differential equations (PDE) closely tied to this

matter by using standard techniques of CFT, chapters two and three rigorously infer

certain properties concerning the solution space of this system, and chapter four uses
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some of those results to predict an answer to this question. This thesis also considers

local variations of this question such as “what regions of the domain do the perime-

ters of the boundary clusters explore,” and “how often will several boundary clusters

connect at just a single, specified point in the domain?” Chapter five predicts precise

answers to these questions. All of these answers are quantitative predictions that we

verify via high-precision computer simulation. Chapters four and five also present

these simulation results. Further material that supplements chapter one is included

in two appendices.

This thesis is a blend of research in mathematics and physics, and although math-

ematics is the language of physics, these two areas of study adhere to different stan-

dards of proof. Mathematics is inductive and based on rigorous proof while physics

is deductive and based on agreement between prediction and observation. To empha-

size this distinction, I have attempted to confine these two approaches to different

chapters, although there is mixing in chapter three. Chapter one provides back-

ground material and context for the application of CFT to critical phenomena in

two-dimensions, and it obviously belongs to the realm of physics. On the other hand,

chapters two and three belong to the realm of mathematics as they rigorously prove

certain theorems concerning a system of PDEs that arises in chapter one. Chapter

four combines the results of the first three chapters to calculate observables called

crossing probabilities, and chapter five, somewhat separate from all but chapter one,

calculates other observables called pinch-point densities. Because these last two chap-

ters rely on the results of chapter one, their results are predictive rather than rigorous.

Thus, they belong to the realm of physics. To differentiate between these two ap-

proaches, definitions, lemmas, and theorems are typeset apart from the regular text

in the mathematics sections, while definitions and predictive results are contained

within the text of the physics sections. Also, I have reserved the word “conjecture”

for a precise mathematical conjecture, and I have reserved the word “supposition”

xviii



for a more ambiguous guess that is not precisely defined in mathematical terms yet

whose main idea is apparent.
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CHAPTER I

Introduction

Two-dimensional lattice models are an important class of models in statistical

mechanics used to describe two-dimensional crystals, ferromagnets, polymers, and

more. Such models are typically defined on the lattice aZ
2 with a the (very small)

lattice spacing and with some collection of variables associated with each lattice

site. These lattice variables interact via a Hamiltonian particular to the model, and

the ensemble of possible system configurations is Boltzman-weighted. Often, these

systems are simple enough for their quantitative properties to be exactly known and

complicated enough to exhibit the macroscopic behavior of the real-world phenomena

that they model. Many different lattice models are studied in the physics literature.

Among them are the Q-state Potts model [1], the O(n) model [2], ice-type models,

six-vertex and eight-vertex models, and more [3, 4, 5].

We suppose that the underlying lattice of the model under consideration has

infinite size. In this situation, many lattice models, including all of those mentioned

above, exhibit a (second-order) phase transition at a critical temperature (or critical

point) Tc, and these models are of particular interest to this thesis. This critical

point is often characterized by the divergence of the correlation length ξ measuring

the average size of the largest cluster within a sample of the model [3]. A cluster

is a collection of (usually) nearest-neighbor lattice sites that share some common
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feature (such as an equal lattice variable). Above the critical point, large clusters

are suppressed and ξ is finite. At the critical point, the size of every cluster is finite

typically (this is proven true for percolation [6] and more recently for certain Ising

model clusters [7]), but the supremum of the cluster size, and therefore ξ, is infinite.

Below the critical point, an infinite-sized cluster exists, and ξ is redefined to be on the

order of the largest finite cluster. This redefined ξ is finite. (These statements are true

almost surely.) The distinctive behavior of the system is found at the critical point,

which is loosely defined as the temperature for which ξ is infinite. The phenomenon

of an infinite correlation length has meaning only for a model defined on an infinite

lattice such as aZ
2, and we typically call this the thermodynamic limit of the same

model defined on a finite lattice.

Most lattice models of interest are defined via local interactions between lattice

sites. As such, they are isotropic, so their observables must be invariant under trans-

lations and rotations. At the critical point, the infinite correlation length signals

the vanishing of a length-scale, so these lattice models must also be invariant under

dilations. However, there is another length scale, the lattice spacing a, that must

be removed in order for this to be completely true. This is done by considering the

continuum limit of the model. Though often difficult to capture mathematically, this

limit has an intuitive definition: the continuum limit of a lattice with lattice spacing

a is a process in which two simultaneous events transpire. First, the lattice spacing

a is sent to zero, and second, new sites are constantly added to the lattice during

this contraction so that the lattice does not eventually vanish but continues to fill

the original domain D ⊂ C that it occupied. The continuum limit is (conceptually)

achieved when every point z ∈ D marks a lattice site of the resulting continuum

model. Sometimes, the continuum model can be studied through a suitable limit of

the observables of the corresponding discrete model [8, 9]. Also, the continuum limit

may be viewed as an appropriate thermodynamic limit for a model contained within
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a bounded domain since the number of lattice sites increases without bound.

Many critical continuum lattice models are supposed to exhibit an even stronger

invariance property: conformal invariance [3, 9]. That is, the statistics of the system

do not change when the system domainD is conformally mapped onto another domain

D� in the complex plane. Conformal transformations are compositions of translations,

rotations, dilations, all of which were mentioned above, and inversions, which are new.

Taken together, the full conformal symmetry yields a powerful set of computational

techniques that lead to many interesting exact results concerning scaling behavior

and correlation functions of lattice variables at (or near) the critical point.

Several different methods have been used to calculate these quantities in two-

dimensional critical models. One method, invented by physicists, is called confor-

mal field theory (CFT) [10, 11]. CFT is essentially a quantum field theory in two-

dimensional Euclidean space-time (R2 ∼= C with a Euclidean metric) governed by

a massless Lagrangian that endows the theory with conformal symmetry. CFT is

not a rigorously developed mathematical theory, though representation-theoretic el-

ements of it are rigorous and approaches to its axiomatization have been explored

with success [12, 13]. Nonetheless, it provides many exact results with relatively lit-

tle computation. (The price to pay is a serious detour into its formalism in order to

understand it.) Furthermore, only certain CFTs, usually the minimal models, have

been observed to possess the right structure to describe a critical lattice models. Be-

cause these theories are relatively few, models with the same macroscopic properties

but different microscopic properties are presumed to have identical continuum limits

in order to correspond with the same CFT. Physicists call this phenomenon univer-

sality and call a collection of models with identical continuum limits a universality

class. For example, bond percolation and site percolation on the square lattice are

different percolation models with different critical activation probabilities. Yet at

their respective critical probabilities, their common observables are either proven or
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observed through simulation to be equal in the continuum limit, so they belong to

the same universality class.

A second and relatively new method called Schramm-Löwner evolution (SLE)

has been used with recent success to prove many outstanding conjectures concerning

various critical lattice models in their continuum limits. A subject of probability

theory, SLE is a two-dimensional random growth process that generates planar curves

with conformally invariant probability measures in a domain with a boundary [14,

15]. In many lattice models with conformally invariant continuum limits, cluster

perimeters are conjectured, and in some cases proven, to have the statistics of SLE

curves [8, 16]. In this thesis, we will primarily work within the CFT setting, frequently

re-examining our results from the SLE point of view.

In this introduction, we present a survey of some critical lattice models that will

be frequently mentioned in this work, and we present a brief introduction to the CFT,

SLE, and Coulomb gas techniques that will give context to the research presented in

this thesis.

1.1 Three critical lattice models

In this section, we briefly survey some classic lattice models with thermodynamic

limits that exhibit a conformally invariant critical point. We will study the Ising model

and two of its generalizations: the Q-state Potts model and the O(n) model. The

observations that we make concerning these models will be essential to understanding

many of the results in this thesis.

1.1.1 The Ising model

The two-dimensional Ising model approximates certain two-dimensional lattice

models with short-range interactions. To define it, consider an N ×N square lattice

with lattice spacing a and with each site exhibiting one of two states: up (+) or
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down (−). These states may be envisaged as the two spin states in a model for the

magnetic moment of an atom. At the i-th lattice site, we represent these states by a

spin variable σi that assumes one of two values:

σi =






+1 if spin up

−1 if spin down.
(1.1)

Two sites i and j are nearest neighbors if site i is either immediately right, left,

above, or below site j, and their pairing is denoted by �ij�. When two sites i and j are

nearest neighbors, their proximity allows their spins to interact, introducing an energy

Eij = −Jσiσj/2 into the system. Here, J is a coupling constant, and the interaction is

called ferromagnetic when J > 0. (We assume ferromagnetic interactions throughout

this thesis.) If an external magnetic field H is applied perpendicular to the lattice,

then each spin couples to the field too, introducing an additional energy Ei = −Hσi

into the system. If {σ} = {σi}N
2

i=1
is a particular spin configuration, then the total

energy of configuration {σ} is

E[{σ}] = −J

2

�

�ij�

σiσj −H
�

i

σi,

where the sum is taken over all nearest-neighbor pairs. The different spin configu-

rations are weighted by the Boltzman distribution, so the probability of observing

configuration {σ} is given by

P{σ} =
e−βE[{σ}]

Z
, Z =

�

{σ}

e−βE[{σ}], (1.2)

where β = 1/kT , T is the temperature of the system, k is Boltzman’s constant, and

Z is the partition function for the system. The statistics implied by (1.2) define the

two-dimensional Ising model on the N×N lattice. We note that the Boltzman distri-
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bution favors configurations in which spins align with the magnetic field (i.e., H > 0

implies more + spins than − spins) and with their neighbors when the interactions

are ferromagnetic (i.e., J > 0).

The Ising model may be defined on any lattice as long as the nearest neighbors

of each site are clearly specified. For example, we will also consider the Ising model

on the triangular lattice or on its dual, the honeycomb lattice. On either lattice, the

nearest neighbors of a site are defined as the collection of sites closest to that particular

site. Hence, each site of the triangular (resp. honeycomb) lattice (excluding boundary

sites) has six (resp. three) nearest neighbors.

Also, we will need to specify a boundary condition (BC) for Ising models defined

in domains with boundaries. If no BC is specified, then no conditioning is imposed

on the spins of the boundary sites, and the boundary is said to be free. We may also

condition a sequence of adjacent boundary sites to exhibit a particular spin state,

and the segment of the boundary with this constraint is called wired or fixed. Other

BCs are possible. For example, for a periodic BC, we topologically identify certain

boundary segments with other boundary segments, thereby requiring the identified

lattice sites to exhibit the same state.

Now we investigate the critical behavior of the thermodynamic limit of the Ising

model. Critical points manifest themselves as singularities of thermodynamic ob-

servables, which are typically derivatives of the partition function. For example, we

consider the average M(T,H) of the mean spin-per-lattice-site σ̄ over all possible

configurations:

M(T,H) :=
1

βZ

�

{σ}

σ̄e−βE[{σ}] =
1

N2β

∂

∂H
log Z, σ̄ :=

1

N2

�

i

σi. (1.3)

M(T,H) is called the average magnetization per site. If H > 0, then samples with

more + spins than − spins are favored, and M > 0. Next, we wish to know how
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M(T,H) behaves in the limit H ↓ 0. To answer, we note that when H = 0, each

configuration {σ} and its opposite configuration, generated by flipping all of the spins

in {σ}, have the same weight but opposite mean spin. Thus M(T, 0) = 0, and because

M(T,H) is continuous when N is finite, we find that M(T,H) ↓ 0 as H ↓ 0. That

is, no residual abundance of + spins remains as H ↓ 0, and the system forgets its

original + spin bias. The same is true with − spins if H starts out negative.

Now we take the thermodynamic limit N → ∞. One can show that for each

fixed pair (T,H) with T > 0, the limit of M(T,H) as N → ∞ exists, and we may

study its behavior as H vanishes. This second limit follows the thermodynamic limit,

and the two limits do not commute. With N infinite, we cannot suppose that the

thermodynamic limit of M(T,H) is continuous and conclude that it vanishes just as

the magnetization of the finite system vanishes as H approaches zero. In fact, this

will happen only if T is greater than a certain critical temperature Tc. If T is less

than Tc, the system can remember its original spin bias:

lim
H→0±

lim
N→∞

M(T,H) =






0 if T ≥ Tc

±M0(T ) if T < Tc

, where M0(T ) > 0. (1.4)

In the thermodynamic limit, the magnetization exhibits a jump discontinuity at H =

0 when the temperature is below the critical temperature [3]. Consequently, the

system always (resp. never) remembers its spin up bias as H is decreased to zero

when T < Tc (resp. T ≥ Tc). This phenomenon is called spontaneous magnetization.

The discontinuity divides the system into two phases, positive H and negative H,

and the discontinuous behavior of the magnetization as the strength of the magnetic

field passes through zero when T < Tc is called a first order phase transition. At

the critical point T = Tc, the discontinuity vanishes, and the passage between these

phases is called a second order phase transition. When T > Tc, the magnetization is a

continuous function of the magnetic field, so we do not witness a phase transition. The
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T <T c T = Tc T >T c

Figure 1.1: The thermodynamic limit of the ferromagnetic Ising model. Black (resp. white)
disks represent sites in the + (resp.−) state. Below the critical temperature, samples with
more + (resp.−) states scale away to a sea of + (resp.−) spin states. Above the critical
temperature, samples scale away to a sea of uncorrelated + and − spin states with the
appearance of white noise. At the critical temperature, finite clusters of either + or − spin
states and of all sizes prevail.

passage from the lack of spontaneous magnetization to the exhibition of spontaneous

magnetization indicates a phase transition within the zero-field (i.e. H = 0) Ising

model at the critical point Tc. The first published derivation of these claims is given

in [17]. They are also proven by relating the zeros of the partition function (1.2) as a

function of a complex magnetic field with the magnetization [5]. These zeros, called

Yang-Lee zeros, are determined in [18].

It is helpful to characterize this critical point in a way that does not initially require

the magnetic field to be nonzero since we will generalize only the zero-field Ising model

to other models below, and we want our understanding of the critical point to carry
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over to these generalizations. This can be done in terms of the correlation length ξ.

To define the correlation length, we first define the spin cluster of the i-th lattice site

to be the set of lattice sites generated through the following recursion. We begin by

including the i-th lattice site in the set, and presently, the set contains only this lattice

site. Next, we add to the set those nearest neighbors of the i-th site that exhibit the

same spin state as the i-th site. Next, we add to the set those nearest neighbors of

any site in the set that exhibit the same spin state as that site, and so on. With spin

clusters defined, we next define the correlation length ξ to be the average size of the

largest finite-sized spin cluster. Now, we suppose that the magnetic field is zero. If

the temperature is above the critical point, then the diameters of the spin clusters

are finite, the magnetization is zero, and the correlation length is finite. On the other

hand, if the temperature is at the critical point, then spin clusters of all finite sizes

and spin types emerge, the magnetization is still zero, but the correlation length is

infinite. Finally, if the temperature is below the critical point, then an infinite-size

cluster exists and covers most of the system in each sample, the magnetization is

nonzero, and the correlation length, now measuring the size of the largest finite-size

cluster, is finite (figure 1.1). (These statements are true almost surely.)

The thermodynamic limit of the zero-field Ising partition function was calculated

exactly in a landmark article by L.Onsager [19], and this result originally led to the

discovery of the Ising model critical point in the thermodynamic limit. The article

derives an expansion for the free energy per lattice site of the Ising model on a

square lattice in a rectangle with doubly-periodic BCs (left/right sides identified and

top/bottom sides identified). The expansion is [5]

f = lim
N→∞

log Z

N2β
=

4

πβ
(K −Kc)

2 log |K −Kc|+ . . . , (1.5)

where K := βJ , Kc = log(
√

2 + 1), and the ellipsis stand for terms that are regular
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in the limit K → Kc. Although this quantity is continuous at K = Kc, the specific

heat C := ∂2

K
f(K) is singular there, so Kc is a critical point. From knowing the

thermodynamic limit partition function exactly, we further observe that the Ising

model has a unique critical point, so Kc = J/kTc where Tc is the critical temperature

for the spontaneous magnetization.

These characterizations of the critical point are supposed to be true for the Ising

model on the triangular lattice and on the honeycomb lattice. Indeed, all of these

models are supposed to belong to the same universality class. The critical points of

the square, triangular, and honeycomb lattices are calculated in [20], and they are

Ksqr

c
= log(

√
2 + 1), Ktri

c
= log

√
3, Khcb

c
= log[(

√
3 + 1)/(

√
3− 1)]. (1.6)

Many different observables characterize the physical attributes of the Ising model.

For example, the two-point function of the spin variables

�σiσj� := E[σiσj] (1.7)

measures the correlation of the spins between the lattice sites i and j. Also, the

energy εi from interactions of the i-th lattice site with its neighbors,

εi =
1

4

�

�ij�

Eij, (1.8)

defines another lattice variable that quantifies energy distribution in the system. The

two variables ε and σ are the fundamental lattice variables that characterize local

properties of the Ising model. Together with a so-called “identity” 1, the collection

of these three fields constitute a closed operator algebra in their corresponding CFT

[3, 11]. We will delve deeper into the meaning of this statement in section 1.2.7.
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1.1.2 The O(n) model

The two-dimensional O(n) model is a natural extension of the Ising model [2].

To define it, we promote each spin variable σi of the Ising model to an n-component

vector �σi with Euclidean norm one, and we replace the product σiσj in the nearest

neighbor interaction with the dot product �σi · �σj (hence an obvious O(n) symmetry).

The new partition function defines the O(n) model:

ZO(n) =

�

|�σ1|=1

. . .

�

|�σN2 |=1

eβJ
P

�ij� �σi·�σj/2 dσ1 . . . dσN2 . (1.9)

The O(1) model is clearly the Ising model, and in this special case, the integrations

in (1.9) are replaced by sums over the two possible spin states. In this special case,

one may exactly represent each term in the O(1) partition function by a collection

of non-crossing loops consisting of bonds between nearest-neighbor lattice sites [5].

To uncover this expansion, we insert exσ = cosh(x) + σ sinh(x) for σ = ±1 into the

partition function (1.9) with n = 1 and perform some elementary algebra to find

ZO(1) = cosh2N
2

(K/2)
�

{σ}

�

�ij�

(1 + tanh(K/2)σiσj), (1.10)

where K := βJ , and we expand the product out into 22N
2

terms, where 2N2 is the

number of nearest neighbor pairs when we impose doubly periodic BCs on the sides

of the N ×N lattice. Each term has the form tanhm(K/2)(σi1σi2) . . . (σi2m−1σi2m) for

some positive integer m, where sites i1 and i2 are nearest neighbors, sites i3 and i4

are nearest neighbors, etc. Therefore, each pair of factors can be represented by a set

{β} of bonds βijij+1 between nearest-neighbor sites ij, ij+1, with j odd, on the lattice.
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Figure 1.2: Illustration of loops (red) formed from bonds on the honeycomb lattice (left)
and on the square lattice (right).

Next, we compute the the spin configuration sum over each term, and we find

�

{σ}

(σi1σi2)(σi3σi4) . . . (σi2m−1σi2m) =






2N
2

if {β} consists of only loops

0 otherwise

(1.11)

for the following reason. If the bonds in {β} do not form only loops, then the sum

will have the same number of +1 terms as −1 terms as a result of the ± symmetry, so

it equals zero. However, if the bonds in {β} form a loop (figure 1.2), then the indices

of the spins may be arranged so that σi2 = σi3 , σi4 = σi5 , etc., and σi2m = σi1 . With

this rearrangement, we see that each term in the sum is one, so with |{σ}| = 2N
2

terms, we arrive with (1.11). Similar reasoning leads to the same result when the

collection of bonds {β} consists of several non-crossing loops. Therefore we can write

the partition function as

ZO(1)(K) = 2N
2
cosh2N

2

(K/2)
�

{γ}

x�, x := tanh(K/2), (1.12)

where {γ} is the collection of non-crossing loops, � is the total number of bonds that

comprise the loops of {γ}, and the sum is taken over all collections of non-crossing

loops. This is the high-temperature expansion of the Ising model, so called because it

is a power series in x centered at zero, or equivalently, in the temperature centered

at infinity.

We momentarily digress to exploit the self-duality of the square lattice in order
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to compute the unique critical point of the Ising model on the square lattice. (The

calculation supposes doubly-periodic BCs, but the critical point is the same regardless

of our choice of BC.) This technique was originally used in [21] to locate the critical

point of the Ising model, assuming its existence and uniqueness, before Onsager’s

solution. By representing each spin configuration as a collection {γ∗} of non-crossing

loops surrounding the + spin clusters and formed from the bonds of the dual lattice

(i.e., the lattice constituting the corners of square plaquettes that lie one-to-one on

top of the original lattice sites and tesselate the plane), we find that

ZO(1)(K) = 2eKN
2
�

{γ∗}

e−K�
∗
, (1.13)

where �∗ is the total number of bonds that comprise the loops of {γ∗} and the sum is

taken over all collections {γ∗} of such non-crossing loops. This is the low-temperature

expansion of the Ising model, so called because it is a power series in e−K centered

at zero, or equivalently, in the temperature centered at zero. Now, we define the dual

temperature K∗ relative to K through the relation

e−K
∗

= tanh K/2. (1.14)

Then because the rectangular lattice is self-dual, the sum in (1.12) is identical to the

sum in (1.13) upon replacing K with K∗ in the latter. Therefore, we have

ZO(1)(K)

2N2 cosh2N2
(K/2)

=
ZO(1)(K∗)

2eK∗N2 , (1.15)

so if K is a critical point, then K∗ is also a critical point. But because the Ising

model has a unique critical point Kc, we must have K∗

c
= Kc. Plugging this relation

into (1.14) gives Kc = log(
√

2 + 1).

Now we return to the O(n) model. When n �= 1, such models do not have the
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exact loop expansion (1.12) unless we modify the partition function (1.9) slightly to

ZO(n) =

�

|�σ1|=1

. . .

�

|�σN2 |=1

�

�ij�

(1 + K�σi · �σj/2) dσ1 . . . dσN2 . (1.16)

This modified partition function is found by expanding the exponential in (1.9) and

dropping terms past first order. Although these two partition functions are only

approximately equal in the high-temperature limit, the continuum limits of their

respective models are supposed to belong to the same universality class [11], so we

may identify them. Now, (1.16) has the following loop expansion that generalizes the

expansion (1.12) for the case n = 1:

ZO(n) ∝
�

{γ}

x�nNl , x := tanh(K/2). (1.17)

Here, {γ}, �, and the sum are defined identically to those in (1.12), and Nl is the

number of loops in the particular collection {γ} [22]. The proportionality constant is

an irrelevant, lattice-dependent factor.

Equation (1.17) shows that the O(n) model furnishes an example of a more general

lattice model called a loop gas. A loop gas is a lattice model for which each sample

is a collection of non-crossing loops that visit the various lattice sites. The weight

of each sample equals a product of fugacity factors, one for each loop, multiplying a

“temperature” x raised to the power of the total length of the loops in the collection.

Equation (1.17) shows that the O(n) model (1.16) is equivalent to a loop gas in which

all loops have fugacity n. Because a loop fugacity does not necessarily have to be an

integer, the expansion (1.17) extends the O(n) model to n �∈ Z
+.

A continuum limit description of the O(n) model with n ∈ [−2, 2] may be for-

mulated through its loop gas representation. This continuum limit is realized non-

rigorously by shrinking the lattice and coarse-graining the loops in the sum (1.17) via
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a renormalization group scheme. The renormalization is done in terms of the Coulomb

gas in [22]. We find that the renormalization group flow has two fixed points in the

positive temperature space with conformally invariant continuum limits, xc(n) and

x̃c(n) > xc(n). The former (resp. latter) fixed point is unstable (resp. stable, allowing

us to identify the range (xc(n),∞) with a common continuum limit). These fixed

points are conjectured for the honeycomb lattice to be [22, 9]

xc(n) = [2 +
√

2− n]−1/2, x̃c(n) = [2−
√

2− n]−1/2. (1.18)

These two fixed points correspond to two phases. A nice physical description

of these phases is given in [23], and it goes as follows. First, if we start with a

low temperature x ∈ (0, xc), the x will decrease under the renormalization group

flow, suppressing long loops and encouraging short loops of finite length. Only the

short loops survive almost surely, and they contract to points in the continuum limit,

rendering the model trivial.

On the other hand, if we start with the critical temperature x = xc, then x will

not change under the renormalization group flow. Very long loops are encouraged,

and in the continuum limit they become non-self-intersecting fractal loops almost

surely. This nontrivial limit is called the dilute phase of the O(n) model (or of the

loop gas). Because the diameters of the loops span all length scales, this limit exhibits

dilation invariance, a prerequisite for conformal invariance. Since Ising spin cluster

perimeters on the triangular lattice do not self-intersect almost surely, we identify the

Ising model with the n = 1 dilute phase of the O(n) model. Using (1.18), we check

that the Ising model critical point on the honeycomb lattice agrees with the critical

temperature xc(1) of the dilute O(1) model:

x = tanh(Khcb

c
/2) = 1/

√
3 = xc(1). (1.19)
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Finally, if we start with a high temperature x ∈ (xc,∞), then x will approach the

fixed point x̃c under the renormalization group flow. Configurations with every site

visited by very long loops dominate with high probability, and in the continuum limit

they become self-intersecting (but still non-crossing) fractal loops almost surely. This

nontrivial limit is called the dense phase of the O(n) model (or of the loop gas). In

the dense phase, n ∈ [0, 2] , and in the dilute phase, n ∈ [−2, 2].

1.1.3 The Q-state Potts model

The two-dimensional Q-state Potts model [1] exemplifies another natural extension

of the Ising model with a loop gas representation. In the Potts model, the spin variable

of each lattice site can assume any one of Q values, sometimes called colors, among

the Q roots of unity:

σi ∈ {exp(2πiθ/Q) : θ ∈ {0, 1, . . . Q− 1}}. (1.20)

Only interactions between nearest-neighbor sites, say i and j, contribute an energy

Eij = −Jδσi,σj to the system, and we again only consider ferromagnetic systems

(J > 0). The total energy of a spin configuration is found by summing over all

nearest-neighbor energies, and the Potts model is given by Boltzman-weighting the

ensemble of all spin configurations. Thus, its partition function ZQ is given by (1.2)

with Eij as defined above. We recover the Ising model partition function to within a

factor when Q = 2.

The Potts model may also be viewed as a generalization of bond percolation [1].

Letting {β} be a collection of activated bonds connecting nearest-neighbor sites of

the lattice, we say that spin configuration {σ} and bond configuration {β} agree if

all activated bonds join sites of like spin (figure 1.3), and we write {σ} ∼ {β}. Then

by expanding the partition function in a manner similar to that of the O(n) model
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Figure 1.3: Two possible bond configurations that agree with a given spin configuration
on a square lattice. Sites exhibit either the + (blue) or the − (orange) state. Bonds
are activated (solid) only between nearest-neighbor sites of the same spin with probability
p = 1− e−K .

in (1.10), one can show that to within a factor, the partition function is given by

ZQ(p) = (1− p)Nb
�

{β}

�
p

1− p

�Nβ �

{σ}

1({σ} ∼ {β})

=
�

{β}

pNβ(1− p)Nb−NβQNc with eK = 1/(1− p), (1.21)

where K := βJ , 1 is the indicator function, Nb is the number of bonds on the lattice,

and Nβ and Nc are the number of activated bonds and bond clusters in configuration

{β} respectively. A bond cluster is a connected graph comprised of activated bonds,

and Nc includes clusters of size zero, or lattice sites that do not touch activated

bonds. If the system is confined to a domain with a boundary and a segment of the

boundary is wired, then (1.21) sums exclusively over bond configurations in which all

bonds between nearest-neighboring sites of that segment are activated.

The partition function (1.21) is identical to that of bond percolation with bond

activation probability p, except with Q different colors uniformly distributed among

the bond clusters (figure 1.4). This generalization of bond percolation is called the

random cluster model, and the colored bond clusters are called Fortuin-Kasteleyn

(FK) clusters [24]. When Q = 1, we recover percolation, and when Q = 2, the

partition function (1.21) furnishes another representation of the Ising model. One

can show that the correlation between two spins σi and σj, defined below, equals the

probability that the two lattice sites i and j belong to a common FK cluster, which
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Figure 1.4: A sample bond configuration in the Q = 4 random cluster model. The four
available colors are distributed with uniform probability across the bond clusters.

we write as zi ↔ zj:

E[σiσ
∗

j
+ σ∗

i
σj] = P{zi ↔ zj}. (1.22)

(The star denotes the complex conjugate throughout this thesis unless stated other-

wise in a particular instance.) Thus, we can compute spin correlation in the Potts

model by calculating FK-cluster-connection probabilities in the corresponding ran-

dom cluster model.

The absence of an exact solution for the Q-state Potts model with Q > 2 prevents

us from rigorously establishing the existence of a unique critical point. However,

strong numerical evidence suggests that a unique critical point does exist [1]. By cou-

pling the Potts model to an external field and looking for spontaneous magnetization,

one can show that such a critical point is first order for Q > 4 and second order for

Q ≤ 4 [25]. The Q ≤ 4 zero-field critical Potts models is supposed to be conformally

invariant, so we focus our attention on these models.

In spite of the lack of an exact solution, the critical point of the Q ≤ 4 Potts model

can be calculated exactly in certain cases by exploiting the symmetries of the lattice

on which it is defined. In particular, we may exploit the self-duality of the square
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lattice to compute the critical point [26] in a manner similar to the Ising model [21].

To begin, we consider a specific bond configuration {β} together with the collection

{β}∗ of dual bonds (bonds between nearest-neighbor dual sites) that do not cross the

bonds of {β}. Now, the regular (resp. dual) bonds form N� (resp.N∗

�
) loops around

the isolated dual (resp. regular) lattice sites. We let N∗

c
be the number of dual bond

clusters, and let N∗

β
be the number of activated dual bonds. We therefore have

Nc = N∗

�
+ 1, N∗

c
= N� + 1, Nb = Nβ + N∗

β
. (1.23)

We let Ns be the number of sites. Then the Euler relation for planar graphs says that

N� = Nβ + Nc −Ns. (1.24)

We may use these relations to write the partition function (1.21) as

ZQ(p) = (1− p)Nb

�
p

Q(1− p)

�Nb

QNs−1
�

{β}∗

�
Q(1− p)

p

�N
∗
β

QN
∗
c . (1.25)

Now we define the dual activation probability p∗ relative to p through the relation

p∗

1− p∗
=

Q(1− p)

p
. (1.26)

Because the square lattice is self-dual, we may reuse the reasoning that led to (1.15)

to conclude from (1.21, 1.25) that ZQ(p) is proportional to ZQ(p∗), and therefore

the unique critical point must satisfy p∗
c

= pc. Together with the requirement that

0 ≤ pc ≤ 1, this constraint gives the bond activation probability for the random

cluster representation of the Potts model on the square lattice:

psqr

c
=

√
Q

1 +
√

Q
⇐⇒ Ksqr

c
= log(

�
Q + 1). (1.27)
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We note that when Q = 2, Ksqr

c
agrees with the critical point of the Ising model on

the square lattice (1.6), and when Q = 1, psqr

c
= 1/2 is the bond-activation probability

for critical bond percolation on the square lattice. A more complicated method using

the “star-triangle transformation” [4] is used in [20] to calculate the critical bond

activation probability for the random cluster model on the triangular lattice and on

the honeycomb lattice. They are respectively

ptri

c
=

1

1 + Qµ
, phcb

c
=

µ

µ + 1
, (1.28)

µ :=
2√
Q

cos

�
1

3
arctan

�
4

Q
− 1

�
. (1.29)

Their respective critical temperatures Kc are given by the relation eKc = 1/(1− pc).

We note that Ktri

c
and Khcb

c
agree with (1.6) when Q = 2, as they must.

The random cluster representation of the Potts model on the square lattice has a

loop gas representation [27]. An example of the loop configuration that corresponds

with a particular bond configuration {β} ∪ {β}∗ is shown in figure 1.5. The figure

shows that each cluster of activated regular bonds or dual bonds is surrounded by

a loop which may be generated through a hull-walk [28]. The hull-walk takes place

on the medial lattice, another square lattice at angle π/4 to the original and formed

from the midpoints of the regular and dual bonds of the original lattice. Starting at

a specified medial lattice site, we walk along the bonds of the medial lattice so that

our walk never steps backward or crosses an activated regular (resp. dual) bond of

the regular (resp. dual) lattice, and our walk eventually returns to its starting point

to form a loop. Each loop either traces the outer perimeter of a cluster of activated

regular bonds (including clusters of size zero) or fills a hole within such a cluster. In a

given bond configuration, there are respectively N� and Nc of each type, where N� and

Nc are defined above, and the total number of loops Nl equals N�+Nc. Exploiting the

Euler relation (1.24), we find that the partition function (1.21) at the critical point
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Figure 1.5: The loop configuration corresponding to a particular regular/dual bond con-
figuration. The loops are generated through a hull-walk on the medial lattice. (The steps
of the walk have been rounded into quarter-circles in the figure.)

psqr

c
can be written as

ZQ(psqr

c
) = (1− psqr

c
)NbQNs/2

�

{β}

(
�

Q)Nl . (1.30)

Each bond configuration {β} corresponds one-to-one with a unique loop configuration

in which each side of an activated regular or dual bond is touched by a loop, so (1.30)

is really a sum over all such loop configurations. At the critical point, the presence

of clusters of all sizes implies loops of all lengths. Because every lattice site is visited

by a loop, this partition function is supposed to flow onto a renormalized dense-

phase loop gas with each loop enjoying a fugacity of n =
√

Q. We therefore call

the random cluster representation of the Potts model the dense phase of the Potts

model. Interestingly, this supposition provides a direct link between the continuum

limits of the Potts model and the O(n) model. Such a relation is surprising since

these generalizations of the Ising model initially appear to be quite different.

We have shown that the statistics of the Ising spin cluster perimeters have n = 1

dilute-phase loop gas descriptions thanks to (1.12) while the statistics of the Ising

FK cluster perimeters have n =
√

2 dense-phase loop gas descriptions thanks to
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(1.30). We might posit a similar dilute-versus-dense phase description for the spin-

cluster versus FK-cluster perimeters respectively for 2 < Q ≤ 4. In particular, the

loops for the dilute phase description of the 2 < Q ≤ 4 Potts model should be

interfaces between clusters in which all spins exhibit some specific state, say, a, and

clusters in which all spins exhibit any spin but a. The dense phase description is

conveyed in (1.30), but the other, called the dilute phase of the Potts model has, to

my knowledge, not been explicitly established by working with the discrete model.

However, the relation between spin-cluster perimeters and FK-cluster perimeters is

conjectured more easily by exploiting duality in SLE. We will describe this relation

in more detail in section 1.2.8.

The terminology “dilute phase” and “dense phase” applied to the critical Q-state

Potts model may seem odd. Indeed, the Q-state Potts model already has a high-

temperature and a low-temperature phase separated by a unique critical point Kc.

Now our terminology suggests that at the critical point, the Q-state Potts model

itself has two different phases, dense and dilute, yet this assertion cannot be true

since there is no adjustable parameter with its own critical point separating these

so-called phases. Rather, the dense phase and the dilute phase are simply names for

two different representations of the Potts model. The first is synonymous with the

spin-cluster representation, that is, the original definition of the Potts model, and the

second is synonymous with the random cluster representation. This terminology will

become more natural when we introduce SLE in section 1.2.8.

1.1.4 Common features among lattice models

The Ising model and its generalizations that we have discussed have continuum

limits that exhibit common special features at their critical points. The first feature is

the emergence of conformally invariant observables at the critical point, which endows

these models with CFT descriptions. The second is a connection to loop gases with
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conformally invariant probability measures. The latter feature leads to an explicit

construction of the minimal CFTs via the Coulomb gas formalism and, separately,

the rigorous SLE/conformal loop ensemble (CLE) approach [29, 30].

We first investigate the emergence of conformal invariance in these models as we

approach the critical point. Our treatment is similar to that in [3, 31]. We consider a

Potts model on the infinite lattice aZ
2 with small lattice spacing a. To measure the

covariance of two spins, one at site i and the other at site j, we study the observable

Cov[σj, σj] := �σiσj� − �σi��σj�. (1.31)

Here, �. . .� denotes averaging with respect to the Boltzman distribution. The one-

point function �σi� is zero by the SQ symmetry of the Potts model, so Cov[σj, σj]

equals the two-point correlation function �σiσj�. Because spins may be averaged over

clusters of size on the order of the correlation length ξ, the correlation length sets a

length-scale in the model that governs the long-distance decay of �σiσj�. When the

distance r between sites i and j is much greater than a, we typically find

�σiσj� ∼ C2

σ

�a

r

�2∆σ

e−r/ξ, a � r. (1.32)

Here, ∆σ > 0 is called the scaling weight of the spin variable σ, and it is one of several

temperature-dependent critical exponents used to characterize a lattice model. Also,

Cσ is a constant that depends on microscopic details of the model such as the lattice

type. The two-point function (1.32) is clearly translation/rotation-invariant as it

must be since the system is isotropic, but off of the critical point, the finite correlation

length spoils dilation invariance. Also, we expect that correlation between sites i and

j will vanish in the continuum limit (a → 0, r fixed) since these sites grow more

isolated from each other as more sites are added to the lattice, and equation (1.32)

exhibits this presumption.
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Now we examine the continuum limit. We let z be the location of the i-th lattice

site in the complex plane, and we consider the spin density σ(z), or the average of

the spin variables at lattice sites in an �-ball centered at z, in the limit a → 0:

1

π(�/a)2

�

|j−i|<�

σj −→
a→0

σ(z). (1.33)

The sum on the left side contains O(a−2) terms, so it is reasonable to suppose that

this limit exists. Next, we let z1 and z2 be the respective locations of sites i1 and i2

in the complex plane, and we define the averaged two-point function

�σ(z1)σ(z2)� := lim
a→0

1

π2(�/a)4

�

|j1−i1|<�

�

|j2−i2|<�

� �

a

�2∆σ

�σj1σj2�. (1.34)

Then as a → 0, the correlation length vanishes, so the original two-point function

�σj1σj2�, and therefore the averaged two-point function, vanishes exponentially fast.

But at the critical point, the correlation length is infinite, so �σ(z1)σ(z2)� does not

vanish. Instead, it behaves just as (1.32) with a �→ � and ξ �→ ∞ when � � |z2 − z1|:

�σ(z1)σ(z2)� ∼
�→0

C2

σ
�2∆σΥ(z1, z2), Υ(z1, z2) = |z2 − z1|−2∆σ . (1.35)

Four important features of (1.35) are worth noting. First, the two-point function is

dilation-invariant at the critical point. That is, it is invariant under the replacements

|z2 − z1| �→ λ|z2 − z1|, and � �→ λ�.

Second, Υ is now a power law in the distance |z2 − z1| between the lattice sites

with exponent −2∆σ. Power law decay, as opposed to exponential decay, typifies the

behavior of correlation functions at the critical point.

Third, the asymptotic behavior of �σ(z1)σ(z2)� factors into one nonuniversal con-

stant Cσ for each point times one scaling factor �∆σ for each point times a universal

function Υ. In a given lattice model with a unique critical point, it is therefore natu-
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ral to posit that for some set of lattice N not-necessarily-distinct variables {α, . . . , ζ}

with respective universal scaling weights {∆α, . . . , ∆ζ}, the N-point function

�α(z1) . . . ζ(zN)� := lim
a→0

1

π(�1/a)2
. . .

. . .
1

π(�N/a)2

�

|j1−i1|<�1

. . .
�

|jN−iN |<�N

��1

a

�∆α

. . .
��N

a

�∆ζ

�αj1 . . . ζjN �, (1.36)

with σi the value of the σ lattice variable at the i-th site located at zi ∈ C (here, σ

is a symbol for a generic lattice variable), exhibits the same factorized behavior as

�1, . . . , �N → 0:

�α(z1) . . . ζ(zN)� ∼
�i→0

Cα . . . Cζ�
∆α
1

. . . �
∆ζ

N
Υ(z1, . . . , zN). (1.37)

Again, Υ is some universal function which we typically write as a correlation function

of local fields φσ(z) defined in terms of the densities σ(z) thus:

σ(z) ∼
�→0

Cσ�
∆σφσ(z). (1.38)

The field φσ and its scaling weight are universal, or the same for all models within a

universality class. On the other hand, the constant Cσ is nonuniversal, or depends

on the microscopic details of the model such as the lattice type. For notational

convenience, we write the universal function Υ as a correlation function of the fields,

Υ(z1, . . . , zN) = �φα(z1) . . . φζ(zN)�, (1.39)

to remind us of its relation to the true N -point function (1.37).

Fourth, (1.35) reveals more than dilation invariance. It also reveals (global) con-

formal invariance. Before we elaborate on this point, we state a few definitions. We

let Ĉ = C ∪ {∞} be the one-point compactification of the complex plane with the
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extra point ∞ called “infinity,” and we bijectively map Ĉ onto the Riemann sphere

S2 via a stereographic projection s so that infinity maps to the north pole. We let

D be a connected subset of Ĉ, and we let f : D → Ĉ. Then s lifts f to the map

F : S2 → S2 given by F = s ◦ f ◦ s−1. Given z ∈ D, we let γ1 and γ2 be any two

smooth curves in s(D) ⊂ S2 that intersect at s(z), and we let F (γ1) and F (γ2) be the

images of γ1 and γ2 respectively. These image curves necessarily intersect at F (s(z)).

Furthermore, we let θ and θ� be the intersection angle of γ1 with γ2 and of F (γ1) with

F (γ2) respectively. Then we say that f is conformal at z if θ = θ�. If f is conformal

at a point z ∈ D, then f is necessarily conformal in a neighborhood of that point, and

we call f a local conformal transformation. If f is conformal at every point z ∈ D,

then we say that f is conformal in D.

The stereographic map itself preserves angles between intersecting curves except

when the intersection occurs at infinity, in which case the intersection angle is not

defined. Therefore, if z ∈ D and f(z) are finite, then we can streamline our definition

to one that does not invoke the Riemann sphere as follows. We let γ1 and γ2 be

any two smooth curves in Ĉ that intersect at z, and we let f(γ1) and f(γ2) be their

respective images under f which necessarily intersect at f(z). We also let θ and

θ� be the angle of intersection of γ1 with γ2 and of f(γ1) with f(γ2) respectively.

Then we say that f is conformal at z if θ = θ�. This is the more conventional

definition of conformality [32]. If z and f(z) are finite, then it follows that f is

conformal at z if and only if f is complex-differentiable (i.e., analytic or holomorphic

as discussed in section A of the appendix) at z and the magnitude of its derivative

at z is finite and nonzero. For instance, the maps f(z) = z−1 and f(z) = z−1/2 are

not conformal at zero according to the latter definition. However (resp.Moreover),

the map f(z) = z−1 (resp. f(z) = z−1/2) is (resp. is not) conformal at zero according

to the former definition that invokes the Riemann sphere. We will use the former

definition throughout this thesis because it gives a more elegant statement of the

26



following important fact.

A global conformal transformation is bijective map f : Ĉ → Ĉ that is conformal on

Ĉ. A famous theorem from complex analysis [32] states that every global conformal

transformation is a Möbius transformation, or a transformation of the form

f(z) =
az + b

cz + d
, a, b, c, d ∈ C with ad− bc = 1, (1.40)

and vice versa. It is straightforward to show that the set of all global conformal

transformations forms a group, called the global conformal group, under composition

that is isomorphic to SL2(C)/Z2.

These definitions set the stage for the following important observation. If f is a

global conformal transformation and z�
i
= f(zi), then under f , the right side of the

two-point function (1.35) transforms into

C2

σ
|�∂f(z1)|∆σ |�∂f(z2)|∆σΥ(z�

1
, z�

2
). (1.41)

On the other hand, we also observe that Υ(z1, z2) = |z2−z1|−2∆σ satisfies the following

functional equation:

Υ(z�
1
, z�

2
) = |∂f(z1)|−∆σ |∂f(z2)|−∆σΥ(z1, z2). (1.42)

After inserting (1.42) into the transformed two-point function (1.41), we find the

original two-point function that preceded the transformation. We therefore conclude

that the two-point function (1.35) is invariant under global conformal transformations,

and we say that the two-point function is conformally invariant.

This observation leads us to posit that the N -point functions are also conformally

invariant. According to the preceding discussion, if an N -point function of N lattice

variables at respective sites z1, . . . , zN and with respective scaling weights ∆1, . . . , ∆N
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exhibits this symmetry, then its universal function Υ(z1, . . . , zN) will satisfy the func-

tional equation

Υ(z�
1
, . . . , z�

N
) = |∂f(z1)|−∆1 . . . |∂f(zN)|−∆N Υ(z1, . . . , zN) (1.43)

for any global conformal transformation f . A function Υ satisfying property (1.43) is

said to be conformally covariant at zi with scaling weight ∆i for each i ∈ {1, . . . , N}.

Conformal invariance of N -point functions has been observed in many critical lattice

models [3], and when it is observed, it lays the foundation for nearly all continuum

limit mathematical descriptions of these models.

The second common feature among the models discussed so far is the existence

of their loop gas representations, which is useful for understanding their continuum

limits. The continuum limit of a lattice model can be very elusive to capture directly.

Some renormalization methods attempt to characterize it through coarse-graining

the system and supposing that, with suitable modifications, the lattice variables flow

onto a Gaussian free field (see [23, 33] and references therein), but these methods

are non-rigorous, only give approximate results, and do not present a clear picture

of the continuum limit. A more rigorous picture can be found not by studying the

individual lattice variables but by studying the perimeters of their clusters which

go to non-crossing fractal loops with conformally invariant probability measures in

the continuum limit. These measures are conjectured, and in some cases proven, to

be those of SLE/CLE [14, 15, 29, 30], and the loop gas representation of a model

can often be used to identify a critical lattice model with one of these measures.

Therefore, this second feature is very useful for developing rigorous constructions of

the continuum limits of some of these critical systems, though proving the existence

of the continuum limit and that this construction is indeed the correct description for

it is technically very difficult. We will not pursue these matters in this thesis.
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1.2 A Survey of conformal field theory

This section present a brief survey of the essential ingredients of conformal field

theory (CFT), first proposed in [10]. Our treatment is similar to that in [3, 11, 34].

Our immediate goal is to develop a CFT description of the critical lattice models

explored in the previous sections in bounded domains. Some basic familiarity with

quantum field theory is assumed.

The philosophy behind our approach can be summarized as follows. In physics, one

constructs a mathematical model of observed phenomena in order to predict further

unobserved phenomena that can be verified in an experiment. For this reason, the

development of the model proceeds heuristically rather than rigorously, and in spite

of this, it often has compelling, unstudied mathematical structure. During or after

the construction of the model, one may begin a new program to construct a rigorous

mathematical theory that exhibits the same structure, giving the model rigorous

footing and possibly even extending it. This description captures the evolution of

CFT, which is loosely understood to be any mathematical structure with certain

specific ingredients specified by its initial use in string theory, critical phenomena,

and other topics. In this exposition, we will follow the more heuristic approach of

CFT’s early development. A more rigorous treatment can be found in [12] and the

many references therein.

1.2.1 The continuum limit: from lattice variables to fields

One approach to constructing a continuum representation of a lattice model is

to represent each lattice variable density σ(z) at site z with a local field φσ(z) as in

(1.38). The field φσ(z) is universal in the sense that it corresponds to a particular

lattice variable density σ(z) common to all models within a universality class. We

will refer to a generic field as φ.

In a rigorous setting, the field φ is really a field operator which is a kind of
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operator-valued distribution mapping a suitable space of test functions onto a set

of self-adjoint operators acting on a Hilbert space of “states.” This point of view is

taken by some rigorous treatments of CFT. For now, we ignore these technicalities

and suppose that φ is either a smooth function of Ĉ (as treated in the path integral

approach to quantum field theory) or an operator acting on some state space (as

treated in the operator approach to quantum field theory), depending on which point

of view is more convenient.

In section 1.1.4, we observed that correlation functions of fields are conformally

covariant (1.43). We generalize (1.43) slightly to

�φ�
1
(z�

1
, z̄�

1
) . . . φ�

N
(z�

N
, z̄�

N
)�

Ĉ
= ∂f(z1)

−h1 ∂̄f̄(z̄1)
−h̄1 . . .

× . . . ∂f(zN)hN ∂̄f̄(z̄N)−h̄N �φ1(z1, z̄1) . . . φN(zN , z̄N)�
Ĉ
, (1.44)

for any global conformal mapping f : Ĉ → Ĉ. Again, z�
i

:= f(zi). For notational

convenience, we treat z and z̄ as independent holomorphic and antiholomorphic vari-

ables and f and f̄ as independent holomorphic and antiholomorphic maps instead

of complex conjugates. We discuss this point of view further in section A of the

appendix. In (1.44), the numbers h and h̄ are respectively called the holomorphic

conformal weight and antiholomorphic conformal weight of the field φ, and they are

not complex conjugates of each other. Rather, they are distinct numbers.

The primes on the fields on the left side of (1.44) indicate that the fields transform

under the global conformal map too, and the nature of this transformation is discussed

further in section B of the appendix. However, because the angled brackets � . . . �
Ĉ

denote a thermal averaging over all possible fields with the common domain Ĉ and

weighted against a (globally) conformally invariant measure, the correlation function

on the left side of (1.44) must equal the correlation function on the right side with

z�
i
replacing zi for each i ∈ {1, . . . , N}. In other words, if we use the notation of the
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previous section and define the N -point function

Υ(z1, z̄1, . . . , zN , z̄N) := �φ1(z1, z̄1) . . . φN(zN , z̄N)�
Ĉ
, (1.45)

then (1.44) amounts to the functional relation

Υ(z�
1
, z̄�

1
, . . . , z�

N
, z̄�

N
) =

N�

i=1

∂f(zi)
−hi ∂̄f̄i(z̄i)

−h̄iΥ(z1, z̄1, . . . , zN , z̄N). (1.46)

We will explore the consequences of this equation further in the next section. Also,

we will drop the subscript Ĉ from the angled brackets for concision from now on.

We define the scaling weight and the spin of the field φ in terms of its conformal

weights respectively as

∆ := h + h̄, s := h− h̄, (1.47)

and if a field is spinless, that is s = 0, then the rule (1.44) reduces to the previous

rule (1.43) when we set z̄ = z∗ and f̄ = f ∗. All of the fields that we will encounter in

this thesis are spinless.

Motivated by the transformation rule (1.44), we suppose that a field φ transforms

according to the conformal covariance law

φ(z, z̄) �→ φ�(z�, z̄�) = ∂f(z)−h∂̄f̄(z̄)−h̄φ(z, z̄) (1.48)

when f is a global conformal mapping. (We motivate this transformation rule in

section B of the appendix.) We call such a field a quasi-primary field. The rule (1.48)

is completely local, so to extend it to a local conformal transformation is natural. To

this end, we call a field φ that transforms according to (1.48) for any transformation

f : Ĉ → Ĉ and at any z ∈ Ĉ where f is conformal a primary field. More informally,

we say that a primary field transforms according to (1.48) under a local conformal

transformation while a quasi-primary field transforms according to (1.48) under a
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global conformal transformation. Clearly, a primary field is quasi-primary, but the

converse is not necessarily true.

An N -point function Υ of quasi-primary (or primary) fields will obviously satisfy

relation (1.46) for a global conformal mapping f . If all of the fields in the N -point

function are primary, then we expect this constraint to strengthen since the trans-

formation law (1.48) of a primary field holds for more than just global conformal

transformations. However, to suppose that (1.46) is true for local conformal transfor-

mations which are conformal at z1, . . . , zN is incorrect. Indeed, the measure against

which the N -point function averages the product of N fields is only invariant under

global conformal transformations. So if f is conformal at z1, . . . , zN but is not a

global conformal transformation, then the measure will change, and the correlation

function on the left side of (1.44) will not equal that on the right side with z�
i
replac-

ing zi. Instead, we find a prescription for calculating the new correlation function

with the image measure. This is easiest to understand if f maps Ĉ onto a region D

that is a proper subset of Ĉ. In this case, the new correlation function ΥD is com-

pletely different from the original Υ. For one, they have different domains DN and

Ĉ
N respectively. However, they are related through the transformation rule

ΥD(z�
1
, z̄�

1
, . . . , z�

N
, z̄�

N
) =

N�

i=1

∂f(zi)
−hi ∂̄f̄i(z̄i)

−h̄iΥ(z1, z̄1, . . . , zN , z̄N). (1.49)

For example, the map f(z) = (L/2π) log z sends the complex plane onto the infinite

strip (−∞,∞)× [−L/2, L/2] with its top and bottom sides identified, or equivalently

onto an infinite cylinder with circumference L. According to (1.49), the two-point

function (1.35) of two spinless fields with scaling weight ∆ transforms into

�φ(z�
1
, z̄�

1
)φ(z�

2
, z̄�

2
)�cyl. =

�
2π

L

�2∆ �
4 sinh

π(z�
1
− z�

2
)

L
× c.c.

�−∆

, (1.50)

where we have set z̄ = z∗ and z̄� = f(z)∗ and “c.c” stands for the complex conjugate
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of the collection of factors that it multiplies. If the distance r := |z�
1
− z�

2
| between

the image points is much less than L, then the cylinder locally looks Euclidean, and

we recover the original two-point function r−2∆ on the plane. On the other hand,

if r is much greater than L, then the image two-point function (1.50) behaves as

(2π/L)2∆ exp(−Re(r)/ξ) with a correlation length ξ = L/2π∆. The phenomenon of

a finite correlation length occurs as a consequence of the finite length-scale intrinsic

to the cylinder, namely its circumference.

A typical CFT consists of an infinite collection of fields organized into a hierarchy,

and the top of this hierarchy B0 comprises of a set of primary fields {φα}α∈B0 . If a CFT

characterizes a critical lattice model, then these fields usually correspond with the

fundamental lattice variables of the model, such as spin or energy density in the Ising

model. The rest of the hierarchy B1 consists of secondary fields, or fields {φα}α∈B1

that are not primary but may be quasi-primary. Each secondary field depends on a

primary field in some way, so the transformation law of a secondary field under a local

conformal transformation, while not (1.48), is determined both by this law and the

relation of the secondary field to its “parent” primary field. Usually, this law is (1.48)

with correction terms added to it. These details will be discussed a little further in

section 1.2.4.

1.2.2 Correlation functions in conformal field theory

Correlation functions serve as the principal observables of a critical lattice model.

For this reason, the goal of a CFT is to calculate the correlation functions of all of

its fields. These correlation functions are sometimes computed by using the operator

formalism, in which the fields are promoted to quantum field operators that act on

the sample space of the system. We let |Ω� denote the configuration of lowest energy,

called the vacuum state. Then we suppose that the CFT correlation function and its
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quantum version are equivalent:

�φ1(z1, z̄1) . . . φN(zN , z̄N)� ←→ �Ω|φN(z1, z̄1) . . . φ1(zN , z̄N)|Ω�. (1.51)

The fields shown in the correlation function on the right side are operators, and

they must typically be radially ordered, that is |z1| < . . . < |zN |, in order for the

correlation function on the right side to be well-defined. This detail is an artifact

inherited from the time-ordering prescription of quantum field theory, and it usually

does not concern us because the formulas for the N -point functions often can be

analytically continued to the domain in C
N with zi �= zj for all indices i �= j. We will

survey a useful operator method called the Coulomb gas formalism in section 1.2.9.

To begin our study of correlation functions in CFT, we investigate how equation

(1.46) restricts the form of an N -point function of quasi-primary operators. We let f

be a global conformal transformation that is infinitesimal in a large disk D which is

centered at some ζ ∈ C and contains the points z1, . . . , zN . Such a transformation is

necessarily of the form

f(z) =
(1 + b/2)(z − ζ) + a

−c(z − ζ) + 1− b/2
, z, ζ ∈ D (1.52)

with a, b, c ∈ C sufficiently small, and has the following expansion to first order in

a, b, and c:

f(z) = z + �(z), �(z) = a + b(z − ζ) + c(z − ζ)2 + . . . . (1.53)

The first term in �(z) signifies translation, the second term signifies rotation and di-

lation, and the third term signifies an special conformal transformation (SCT), which

is essentially an inversion followed by a translation followed by another inversion.

The infinitesimal versions of these three transformations constitute the infinitesimal
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generators of the global conformal group. We break �(z) into its three constituent

pieces �(z) = a, b(z − ζ), or c(z − ζ)2, substitute each piece in (1.46), and expand to

lowest order in these parameters to find the conformal Ward identities:

N�

i=1

∂iΥ = 0,
N�

i=1

(zi∂i + hi)Υ = 0,
N�

i=1

(z2

i
∂i + 2hizi)Υ = 0. (1.54)

By repeating these steps for the antiholomorphic sector with �̄(z̄) = ā, b̄(z̄ − ζ̄), and

c̄(z̄ − ζ̄)2, we recover an identical set of partial differential equation (PDE)s in the

antiholomorphic coordinates z̄i and the conformal weights h̄i. When N = 1, 2, 3, we

can solve the Ward identities to find explicit formulas for the one-point, two-point,

and the three-point functions of quasi-primary operators:

Υ(z1, z̄1) = 0, (1.55)

Υ(z1, z̄1, z2, z̄2) = C12δh1,h2δh̄1,h̄2
(z2 − z1)

−2h1 × c.c., (1.56)

Υ(z1, z̄1, z2, z̄2, z3, z̄3) = C123

�
(z2 − z1)

−h1−h2+h3 (1.57)

×(z3 − z2)
−h2−h3+h1(z1 − z3)

−h3−h1+h2 × c.c.
�
.

Here “c.c.” stands for the antiholomorphic contribution which is identical to the

holomorphic part except with antiholomorphic coordinates and conformal weights re-

placing their holomorphic counterparts. The normalization of the two-point function

is arbitrary, but the normalization of the three-point function depends on that of the

two-point function. We will briefly investigate this dependence later.

When N ≥ 4, the conformal Ward identities may also be solved via the method

of characteristics. We find that an N -point function of quasi-primary operators must

always exhibit the ansatz
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Υ(z1, z̄1, . . . , zN , z̄N)

=
�

1≤i<j≤N

z
µij

ij
G




N − 3 independent cross-ratios

formed from {zi}N

i=1



× c.c., (1.58)

where zij := zi−zj, where G is an unspecified function with its i-th partial derivative

existing everywhere except possibly when zi = zj for some j �= i, and where µij is

subject to the constraint

�

j �=i

µij = −2hi for all i ∈ {1, . . . , N}. (1.59)

A cross-ratio is a function f(zi, zj, zk, zl) = zijzkl/zikzjl with i, j, k and l as distinct

indices, and it is invariant under a global conformal transformation. The ansatz (1.58)

explicitly exhibits the conformally covariant transformation law (1.46).

While an N -point function of quasi-primary operators must assume the form

(1.58), the form of an N -point function of primary operators is even further con-

strained. We will examine these constraints later in section 1.2.5.

Typically, an additional condition is imposed on the N -point functions of primary

operators. We require that when N = 2, 3, 4, such an N -point function Υ is invariant

under the monodromy transformation induced by letting zj (resp. z̄j) wind counter-

clockwise (resp. clockwise) around zi (resp. z̄i) for all j �= i. When N = 2, 3, 4, this

condition is satisfied if the spin of each field in the correlation function is an integer

[3]. With this condition imposed, we can use (1.46) with f(z) = 1−z and f(z) = 1/z

to uncover the crossing relations

Gij:kl(η, η̄) = Gkj:il(1− η, 1− η̄), Gij:kl(η, η̄) = η−2hj η̄−2h̄jGlj:ki(1/η, 1/η̄), (1.60)
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where Gij;kl(η, η̄) is defined by

Gij:kl(η, η̄) = lim z2hl
l

z̄2h̄l
l

Υ(z1, z̄1, . . . , z4, z̄4), (1.61)

with “lim” standing for the limit (zi, zj, zk, zl) → (0, η, 1,∞) and (z̄i, z̄j, z̄k, z̄l) →

(0, η̄, 1,∞), and with the indices {i, j, k, l} in one-to-one correspondence with {1, 2, 3, 4}.

The crossing relations are used to fix the coefficient of the three point function (1.57)

and in some cases the explicit form of the four-point function.

1.2.3 The stress tensor and conformal families

In the next few sections, we investigate the extra constraints that local conformal

invariance imposes on correlation functions of primary operators. These constraints

are embodied in a special field called the stress tensor. In a quantum field theory, this

is the conserved current associated with the translation invariance of the action. From

this association, the stress tensor appears naturally in CFTs modeled by quantum

field theories. In CFT, the stress tensor is always divergence-free, and it can be

adjusted to be symmetric and traceless in space-time coordinates by exploiting the

conformal symmetry of the theory. In holomorphic/antiholomorphic coordinates,

the stress tensor is diagonal, and its 00 (resp. 11) component is holomorphic (resp.

antiholomorphic). We call this component (modulo a conventional factor of −2π)

T (z) (resp. T̄ (z̄)). The two-point functions of these components are

�T (z1)T (z2)� =
c/2

(z1 − z2)4
, �T̄ (z̄1)T̄ (z̄2)� =

c/2

(z̄1 − z̄2)4
, �T (z1)T̄ (z̄2)� = 0, (1.62)

with the central charge c some constant whose physical meaning we will discuss later.

Now we investigate how the stress tensor determines the variation δφ := φ�− φ of

the field φ under an infinitesimal transformation f(z) = z + �(z) that is conformal at
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z. By using Nöther’s theorem, one may show that this variation is given by [11]

δφ(z, z̄) = − 1

2πi

�

z

dw �(w)T (w)φ(z, z̄) + c.c.. (1.63)

This formula follows from the radial quantization scheme of CFT. The contour used

for the integral is a simple loop of very small radius winding counterclockwise around

the point z once. Letting X stand for a product of fields φ1(z1, z̄1) . . . φN(zN , z̄N),

the leading order contribution to the variation δ�X� of �X� under the infinitesimal

transformation f is given by

δ�X� = − 1

2πi

�

Γ

dw �(w)�T (w)X�+
1

2πi

�

Γ̄

dw̄ �̄(w̄)�T̄ (w̄)X�, (1.64)

where Γ (resp. Γ̄) is a contour that winds counterclockwise (resp. clockwise) around

each point among z1, . . . , zN (resp. z̄1, . . . ,z̄N) once. This identity indicates that the

holomorphic and antiholomorphic sectors of the theory are decoupled. Therefore,

results pertaining to the antiholomorphic sector will be identical to those of the holo-

morphic sector except with anitholomorphic variables and conformal weights replacing

their holomorphic counterparts. So for concision, we will only show the holomorphic

sector in our calculations for now.

Now, if we suppose that any correlation function of the form �T (w)φ(z)X�, where

X is a product of fields, has a Laurent series expansion
�

k
Ak(z −w)k for z near w,

then upon inserting this expansion into (1.64), we find

�δφ(z)X� = − 1

2πi

�

z

dw �(w)
∞�

k=−∞

Ak(z − w)k. (1.65)

If φ is quasi-primary and �(z) = (z− ζ)2 for z sufficiently close to ζ, then the left side

equals −[(z − ζ)2∂z + 2(z − ζ)h]�φX� to lowest order in z − ζ. This follows from the

transformation rule (1.48). On the right side, we may evaluate the integral by the
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method of residues, and after matching the result with the left side, we find two of

the coefficients in the series expansion:

A−2 = h�φ(z)X�, A−1 = �∂φ(z)X�. (1.66)

Here, h is the holomorphic weight of φ. Furthermore, if φ is primary, then we may

repeat this calculation for �(z) = (z − ζ)p with p > 2 to find that Ak = 0 for all

k < −2. Therefore, the correlation function �T (w)φ(z)X� has the expansion

�T (w)φ(z)X� =
h�φ(z)X�
(w − z)2

+
�∂φ(z)X�

w − z
+ terms regular as w → z, (1.67)

when φ is primary. When φ is quasi-primary, the series is the same except that its

singular part does not terminate with an order-two pole unless φ is primary too.

Of course, the variation of a correlation function of quasi-primary fields must

vanish under an infinitesimal global conformal transformation such as f(z) = z +

(z − ζ)2 with z very close to ζ. The Ward identities (1.54) already guarantee this

symmetry. By expanding

δ�X� = −
N�

i=1

[(zi − ζ)2∂i + 2(zi − ζ)hi]�X�, (1.68)

collecting like powers of ζ, and using the Ward identities, we find that δ�X� = 0.

And also, by inserting (1.67) (including the higher order poles) and �(z) = (z − ζ)2

into (1.64) and evaluating the integral by the method of residues, we again find that

δ�X� = 0, so our theory is consistent.

Because (1.67) is true for any string of fields X, we may drop these fields and

write this relation in terms of just the stress tensor T and the primary field φ:

T (w)φ(z) ∼
w→z

hφ(z)

(w − z)2
+

∂φ(z)

w − z
, φ primary. (1.69)
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This is an example of an operator product expansion (OPE). An OPE is a kind of

multiplication of two fields that equals the singular behavior of their composition

within a correlation function as their respective points approach each other. Because

the observables of CFT are the correlation functions, the OPE product and the com-

position product cannot be distinguished by any observable, so we denote both by

T (w)φ(z). A similar OPE exists for T̄ (w̄)φ(z̄) as w̄ → z̄.

In explicit quantum-field-theoretic examples of CFT, the OPE of the stress tensor

with itself has the following form that implies its two-point function (1.62):

T (w)T (z) ∼
w→z

c/2

(z − w)4
+

2T (z)

(z − w)2
+

∂T (z)

z − w
. (1.70)

Examples include the massless free boson (c = 1) and the massless free fermion

(c = 1/2). The OPE (1.70) indicates that the holomorphic part of the stress tensor

is quasi-primary with holomorphic weight two. (The antiholomorphic weight is zero

since ∂̄T = 0.) By inserting this OPE into (1.63) and integrating, we can calculate the

variation of the holomorphic part of the stress tensor under an infinitesimal mapping

that is conformal at z. This leads to the transformation rule

T �(z�) = ∂f(z)−2

�
T (z)− c

12
{w; z}

�
, (1.71)

where f is a map that is conformal at z. Here, z� = f(z), and {w; z} is the Schwarzian

derivative [32]. This transformation law is perturbed from the transformation law

of a primary field by a term proportional to the central charge. Because {w; z}

vanishes only if f is a global conformal transformation, we explicitly see that the

holomorphic part of the stress tensor is quasi-primary with holomorphic weight two

and antiholomorphic weight zero.

Now we suppose that the holomorphic part of the stress tensor admits a Laurent
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Figure 1.6: Illustration of the evaluation of the commutator appearing in (1.73).

expansion about a point ζ in the complex plane:

T (z) =
∞�

k=−∞

(z − ζ)−k−2Lk(ζ) ⇐⇒ Lk(ζ) =
1

2πi

�

ζ

dw (w − ζ)k+1T (ζ). (1.72)

We call Lk(ζ) the k-th mode of the holomorphic part of the stress tensor. The k-th

mode is analogous to the generator �k of the Witt algebra (B.30), presented in section

B of the appendix, in that if we assume the point-of-view that φ is a quantum field

operator acting on a Hilbert space of states, then the k-th mode is the infinitesimal

generator of the transformation on these states under the map f(z) = z + (z− ζ)k+1.

A commutator may defined through the radial ordering prescription [11], men-

tioned at the beginning of section 1.2.2, so that the commutator −[Lk(ζ), φ(z)] equals

the field variation δφ when the map f(z) = z + (z − ζ)k+1 is conformal (i.e., when

k ≥ −1). For any integer k, this commutator is given by

[Lk(ζ), φ(z)] =
1

2πi

� �

ζ,z

−
�

ζ

�
dw (w − ζ)k+1T (w)φ(z) (1.73)

=
1

2πi

�

z

dw (w − ζ)k+1T (w)φ(z). (1.74)

Here, the contour of the first integral in (1.73) encircles ζ and z once while the contour

of the second integral encircles ζ but not z once (figure 1.6). By substituting the OPE

for the product T (w)φ(z) and integrating, we find that the commutator is given by

[Lk(ζ), φ(z)] = h(k + 1)(z − ζ)kφ(z) + (z − ζ)k+1∂φ(z). (1.75)
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After inserting f(z) = z + (z − ζ)k+1 with k ≥ −1 into (1.48) and expanding to low

order in (z − ζ), we find that the right side of (1.75) indeed equals −δφ.

In the same manner, we can compute the commutator between two stress-tensor

modes located at the same point ζ. Because these modes serve a role analogous to the

generators of the Witt algebra (B.30) for scalar fields, we expect their commutators

to be the same. Again, the radial ordering prescription gives

[Ln(ζ), Lm(ζ)] =
1

(2πi)2

� �

ζ

dw1

�

ζ,w1

dw2 −
�

ζ

dw2

�

ζ,w2

dw1

�

× (w2 − ζ)n+1(w1 − ζ)m+1T (w2)T (w1). (1.76)

Again, the subscripts on the integral sign indicate the variables encircled by the inte-

gration contours. The integration variable w1 (resp.w2) serves as w in the definition

of Lm(ζ) (resp.Ln(ζ)) in (1.72). The difference of integrals may be rewritten as an

integration of w2 around w1 followed by an integration of w1 around ζ (figure 1.7). Af-

ter substituting the OPE (1.70) into the integrand, the integration may be explicitly

performed to reveal

[Ln(ζ), Lm(ζ)] = (n−m)Ln+m(ζ) + c

12
n(n + 1)(n− 1)δn,−m,

[L̄n(ζ), L̄m(ζ)] = (n−m)L̄n+m(ζ) + c

12
n(n + 1)(n− 1)δn,−m,

[Ln(ζ), L̄m(ζ)] = 0.

(1.77)

(Now we are including the antiholomorphic sector.) That is, the holomorphic and

anitholomorphic modes generate independent copies of the Virasoro algebra, an infinite-

dimensional Lie algebra whose commutation relations are given by the top line of

(1.77). The commutation relations (1.77) differ from those of the Witt algebra (B.30)

by the addition of the second conformal anomaly term containing the central charge.

If the central charge is nonzero, then the set of generators {L−1, L0, L1} for the

global conformal group spans the only subalgebra of the Virasoro algebra for which
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Figure 1.7: Illustration of the evaluation of the the stress-tensor-mode commutator in
(1.73).

the conformal anomaly term vanishes. This indicates that while the global conformal

symmetry (expressed through the covariance of correlation functions of quasi-primary

fields under infinitesimal global conformal transformations) is preserved, the local con-

formal symmetry (expressed through the covariance of these same correlation func-

tions under infinitesimal local conformal transformations) is broken. For example, if

we map our CFT onto a cylinder of circumference L via f(z) = (L/2π) log z, then

the one-point function (or vacuum expectation value in the quantum-field-theoretic

picture) of the stress tensor no longer vanishes as it does in the plane, but is propor-

tional to −cπ2/6L2, as can be verified from (1.71). This value is nonzero only when

the central charge is nonzero and the conformal anomaly term of the Virasoro algebra

is therefore present.

1.2.4 Verma modules

In this section, we investigate the representation theory of the Virasoro algebra

from the physicist’s point-of-view as a means to construct secondary fields from the

primary fields of a CFT. A more mathematically rigorous account of the representa-

tion theory of the Virasoro algebra is given in [35].

The stress-tensor modes introduced in the previous section may be used to gener-

ate secondary fields from a parent primary field φ. In particular, we have from (1.75)

with k = −1, 0 that

[L0(ζ), φ(z)] = hφ(z), [L−1(ζ), φ(z)] = ∂φ(z). (1.78)
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The left commutator indicates that, in the adjoint representation, φ(z) is an eigenvec-

tor of L0(ζ) with eigenvalue h. The right commutator produces a completely new field

that is the derivative of the original primary field. After acting on it with ad L0(ζ),

we find via the Jacobi identity that the new field satisfies

[L0(ζ), ∂φ(z)] = [L−1(ζ), [L0(ζ), φ(z)]] + [[L0(ζ), L−1(ζ)]φ(z)] (1.79)

= (h + 1)∂φ(z). (1.80)

We thus conclude that ∂φ(z) = [L−1(ζ), φ(z)] is another eigenvector of L0(ζ) but with

eigenvalue h + 1 instead of h. We therefore interpret L−1(ζ) as a lowering operator.

The field ∂φ(z) is an example of a descendant field of φ(z).

In imitation of the quantum theory of angular momentum, we generate a repre-

sentation of the Virasoro algebra through repeated application of raising (k > 0) and

lowering (k < 0) operators ad Lk(ζ) to a primary field φ(z) of conformal weight h.

The representation Lk(ζ) �→ ad Lk(ζ) together with the infinite-dimensional vector

space V (c, h) on which it acts is called a Verma module. Here, V (c, h) is spanned by

the primary field and the descendent fields spawned by repeated application of the

Virasoro generators to these fields, and c is the central charge of the theory. (In an

abuse of terminology, we often call V (c, h) the Verma module.) The descendent fields

of the parent primary field are [Lk(ζ), φ(z)] for some k ∈ Z, and it is natural to send

ζ → z so that the descendent fields are local. Letting ζ → z in (1.75), we find

[Lk(z), φ(z)] = 0, k ≥ 1. (1.81)

Thus a primary field is a highest-weight vector in a Verma module, and all other

nonzero descendant fields in V (c, h) are generated by applying lowering operators to

it. Next, when k = 0,−1, [Lk(ζ), φ(z)] is independent of ζ and is given by (1.78).

Finally, when k < −1, the limit ζ → z diverges, but morally, it should equal (1.74)
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Figure 1.8: Illustration of the normal ordering prescription in (1.82). The point z is placed
inside of the integration contour for the stress contour mode before sending z → ζ.

with the replacement ζ �→ z. This direct replacement drops the divergent contribution

that arises in the limit and in this sense can be viewed as a generalization of the

normal ordering prescription in quantum field theory (figure 1.8). We define this

normal ordering by

[Lk(ζ), φ(z)] �→ (Lkφ)(z) :=
1

2πi

�

z

dw (w − z)k+1T (w)φ(z). (1.82)

Repeated application of the lowering operators {Lk}k<0 to the primary field φ(z)

generates all of its descendants which span V (c, h). Starting from (1.82), they may

be defined recursively by

φ(−kn,−kn−1,...,−k1)(z) = (L−knL−kn−1 . . . L−k1φ)(z) (1.83)

:=
1

2πi

�

z

dw (w − z)−kn+1T (w)φ(−kn−1,...,−k1)(z). (1.84)

We call such a field a level l descendant of the primary field φ(z), where l :=

kn + . . . + k1. The collection of a primary field φ(z) and its descendants is called

a conformal family, and it is denoted by [φ]. The conformal family constitutes a basis

for the infinite dimensional vector space V (c, h), and the subspace Vl(c, h) of level

l descendants is spanned by the set of φ(−kn,−kn−1,...,−k1) with l = kn + . . . + k1 and

1 ≤ kn ≤ . . . ≤ k1. Thus, the dimension of Vl(c, h) equals the number of integer

partitions of l.

We pause to introduce an alternative notation used by physicists. From the per-
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spective of quantum field theory, the field is thought to act on a collection of elements

in a Hilbert space containing the states of the system under study. In our application,

these states are continuum limits of lattice model configurations. This state space is

supposed to have a unique vacuum state |Ω� that physically represents the state of

lowest energy, and other states are generated by allowing the field operators of the

theory to act on this state. In particular, a primary field φ(z) of conformal weight h

acts on |Ω� to produce a “state” |h� := φ(z)|Ω�. Furthermore, we write

|{ki}; h� := L−knL−kn−1 . . . L−k1|h� := φ(−kn,−kn−1,...,−k1)(z)|Ω�. (1.85)

In this notation, (1.81) becomes Lk|h� = 0 for k ≥ −1. We require that the vacuum

state is invariant under global conformal transformations, implying that the infinites-

imal generators of these transformations, L−1, L0, and L1, annihilate it. Using the

commutation relations (1.77), we can show that this implies the more general rule

Lk|Ω� = 0, k ≥ −1. (1.86)

This condition guarantees that the stress tensor one-point function vanishes, indicat-

ing that the energy of the vacuum state is zero, as desired.

We briefly describe the transformation properties of the descendant fields. Some

descendant fields are quasi-primary, and because they transform identically to their

parent primary field under global conformal transformations, ad L1 must annihilate

them according to (1.81). This operator maps the subspace Vl(c, h) of level l states

in V (c, h) onto the subspace Vl−1(c, h) of level l − 1 states. Using (1.77), one can

show that L1 will not annihilate those pre-image states L−kn . . . L−k1|h� in Vl(c, h)

with kn = 1, and there are exactly enough of these states for their images under L1

to span Vl−1(c, h). Thus, we can choose a basis for Vl(c, h) consisting of these states

and those states annihilated by L1, the latter being quasi-primary. For example, at
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the second level of a Verma module generated by the primary field φ(z), we find the

quasi-primary operator

φ(−2)(z) = (L−2φ)(z)− 3

2(2h + 1)
(L−1L−1φ)(z). (1.87)

Under a stronger restriction, this operator will play a central role in the work pre-

sented in this thesis. Now, a straightforward calculation using (1.77) shows that each

descendant |{ki}; h� of the highest-weight state |h� is an eigenvector of L0:

L0|{ki}; h� = (h + k1 + . . . + kn)|{ki}; h�. (1.88)

If the descendant field is quasi-primary, then the eigenvalue h + k1 + . . . + kn is its

conformal weight. If a descendant field is not primary, then its transformation law

under global conformal transformations is usually the holomorphic part of (1.48) with

holomorphic weight h + k1 + . . . + kn plus additional correction terms.

Next, we endow the Verma module V (c, h) with an inner product. The subspace

Vl(c, h) of level l states is spanned by |{ki}; h� with k1 + . . . + kn = l and 1 ≤ kn ≤

. . . ≤ k1. For example (figure 1.9),

V1(c, h) = span{L−1|h�}, V2(c, h) = span{L2

−1
|h�, L−2|h�}

V3(c, h) = span{L3

−1
|h�, L−1L−2|h�, L−3|h�}

. (1.89)

If we can define an appropriate Hermitian conjugate for the stress tensor modes, then

a Verma module has a natural inner product given by

�h ; {ji}|{ki}; h� = �h|L†

−j1
. . . L†

−jm
L−kn . . . L−k1|h�. (1.90)

Now, we wish for the spectrum of L0 to be real since it consists of conformal weights

of primary operators, and this is guaranteed if L†

0
= L0. For this and other physical
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reasons, it is natural to define L†

k
:= L−k. Using this definition and the commutators

(1.77), we can compute the Gram matrix of the basis for V (c, h) consisting of |h� and

its descendent states by pushing all of the positive-index modes in (1.90) from left

to right so that they annihilate the vacuum on the right side. We find that states

at different levels of V (c, h) are orthogonal to one another, so the Gram matrix is

block-diagonal with each block corresponding to a different level subspace Vl(c, h).

A Verma module is called unitary if it contains no negative-norm states. It has

been shown that a Verma module with c > 1, h > 0 or with

c = 1− 6

m(m + 1)
, m ∈ Z

+, (1.91)

h = hr,s :=
[(m + 1)r −ms)]2

4m(m + 1)
, 1 ≤ r ≤ m, 1 ≤ s ≤ r, (1.92)

is unitary while all others are not [36]. In fact, the hr,s are the zeros of the determinant

of the Gram matrix, called the Kac determinant. We will see that many of the critical

lattice models surveyed in (1.1) are described by a CFT with a central charge among

(1.91) and that their essential lattice variables are described by primary fields with

conformal weights among (1.92).

There exists a simple relationship between a correlation function of primary fields

φ1(z1), . . . ,φN(zN) and the same correlation function with one primary field φ1(z1)

replaced by its descendant field φ(−k)

1
(z1). The relation is

�φ(−k)

1
(z1)φ2(z2) . . . φN(zN)� = L−k�φ1(z1)φ2(z2) . . . φN(zN)� (1.93)

with L−k the differential operator

L−k :=
N�

i=2

�
(k − 1)hi

(zi − z1)k
− ∂i

(zi − z1)k−1

�
, k ≥ 1. (1.94)

This identity is found by replacing the descendent field φ(−k)(z1) on the left side of
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(1.93) with its integral representation (1.82) and using the OPE (1.67) to perform

the integration by the method of residues. This identity generalize further to

�φ(−k1,...,−kn)

1
(z1)φ2(z2) . . . φN(zN)� =

L−k1 . . .L−kn�φ1(z1)φ2(z2) . . . φN(zN)�, ki ≥ 1, (1.95)

where φ2(z2), . . . ,φN(zN) are either primary fields or descendants of primary fields.

Consequently, if we have an explicit formula for an N -point function of primary

fields, then we effectively have an explicit formula for all N -point functions of the

descendants of those primary fields too.

By invoking that the spectrum of L0 is bounded from below, one can argue that a

CFT consists of a collection of primary fields and their respective conformal families,

and these families consist of quasi-primary fields and derivatives of primary and quasi-

primary fields. Then a CFT is essentially a direct sum of the product of Verma

modules V (c, h) ⊗ V (c, h̄) over all primary fields φh,h̄ in the theory. The second

Verma module V (c, h̄) in the tensor product pertains to the antiholomorphic sector.

Because the stress tensor is not primary, it must be the descendant of a primary

field. Upon examining (1.82), it is apparent that T must be the φ(−2) descendant of a

nonlocal (i.e. independent of z) primary identity field 1 with the property 1|Ω� = |Ω�.

Such a field necessarily has conformal weight zero and is nonlocal in the sense that

its derivative vanishes everywhere.

1.2.5 Operator product expansions of primary fields

An OPE of two fields φ1(z1) and φ2(z2) is a formal series that, when inserted into

any correlation function, gives a series representation of the correlation function in

powers of the distance between the points for those fields. We have already seen two

important examples of OPEs, (1.62) and (1.67).
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The requirement of conformal covariance restricts the OPE of two primary fields

to the general form (we now include the antiholomorphic sector)

φ1(z1, z̄1)φ2(z2, z̄2) ∼
z2→z1

�

α∈B0

Cα

12

�

l,l̄≥0

z−h1−h2+hα+l

21
z̄−h̄1−h̄2+h̄α+l̄

21

×
�

{ki}l,{k̄i}l̄

βα;{ki}l
12

β̄
α;{k̄i}l̄
12

φ(−{ki}l;−{k̄i}l)
α

(ζ, ζ̄), (1.96)

where the first sum is formally over all primary fields in the theory under consid-

eration, the second sum is over all descendant levels, and the third sum is over all

partitions {ki}l of the positive integer l. The α index that appears of the first sum is

sometimes called a fusion channel, and it has both holomorphic and antiholomorphic

entries. Also, z21 is the difference z2 − z1 of the points, ζ = tz1 + (1 − t)z2 for some

t ∈ [0, 1], and the unspecified coefficients βα

12
depend on t. We usually take t = 0 or

1/2 or 1. Again, variables with bars over them simply pertain to the antiholomorphic

sector and are not complex conjugates of the corresponding unbarred variables.

If we insert the OPE (1.96) into a two-point function, then the existence of a

identity field among the primary fields appearing in the OPE ensures that the result

does not vanish but gives the right side of (1.56). If we insert the OPE (1.96) into

a three-point function and use (1.95), then because the conformal weights of two

primary fields must be equal in order for their two-point function to not vanish, only

one field in the first sum in (1.96) contributes to this series (if we identify all fields

with equal conformal weights, which is a common practice but can have some pitfalls

in logarithmic CFT). We thus find a series representation for the three-point function

in terms of the two-point function. We can also find a similar series representation

through straightforward algebra, which imposes a relatively weak constraint on the

beta coefficients.

The observations of the previous paragraph illustrate the utility of the OPE. Its

insertion into an N -point function of primary fields reduces that correlation function
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to a series in derivatives of (N − 1)-point functions. Repeating this process until

a series in derivatives of two-point functions is reached, we find an explicit series

representation of the original N -point function. If we do this for all N -point functions

of primary fields and use (1.93), then we find series representations for all of the

correlation functions in the CFT under consideration. Although this procedure works

in principle, it is clearly impractical for large N from a computational point of view.

Nonetheless, the OPE allows us to relate primary operators in a new way that will

be necessary to describe the reducible structure of the unitary Verma modules in the

next section.

In order for this method to be useful, the requirement of conformal invariance

must be strong enough to determine the coefficients Cα

12
and βα;{kn}l

12α
, and in fact,

this is true. Demanding that both sides of (1.96) transform identically under the

conformal transformation f(z) = z + �k(z− ζ)k+1 that is infinitesimal at z1 and z2 for

each integer k ≥ −1 determines a system of p(l) equations in the unkowns βα;{kn}l
12

for each level l, where p(l) is the integer partition function. If t = 1 and the system

is invertible, then the first few βα

12
are given by

βα;{1}

12
=

�
(hα + h1 − h2)β

α;{0}

12

�
/2, (1.97)

βα;{1,1}

12
=

�
− 12h1hα + 6h2hα − 6h2

α
)βα;{0}

12
+ (c(1 + h1 − h2 + hα) (1.98)

+ 8(hα + h1hα − h2hα + h2

α
))βα;{1}

12

��
2(c + 2(c− 5)hα + 16h2

α
)
�−1

,

βα;{2}

12
=

�
2hα(−h2 + hα − 2h2hα + 2h2

α
+ 2h1(1 + 2hα))βα;{0}

12
(1.99)

− 6hα(1 + h1 − h2 + hα)βα;{1}

12

��
c + 2(c− 5)hα + 16h2

α

�−1

.

The antiholomoprhic coefficients β̄α;{k̄i}

12
are the same as their holomorphic counter-

parts after replacing the holomorphic weights with antiholomorphic weights. We note

that the first coefficient βα;{0}

12
is not fixed by this method, but all other coefficients

are multiples of it, so it can be absorbed into Cα

12
. All of the systems of equations for

51



these coefficients are invertible whenever the Kac determinant is nonzero.

By inserting the OPE (1.96) into the three-point function (1.57), we immediately

see that the OPE coefficient C3

12
is simply the coefficient C123 of the three-point

function. C3

12
is usually computed by exploiting the so-called crossing symmetry of

the four-point function. That is, within the four-point function, we let z2 → z1 and

z4 → z3, and we substitute the OPE (1.96) for both limits to find (showing only the

holomorphic sector for now)

�φ1(z1)φ2(z2)φ3(z3)φ4(z4)�

∼
z2→z1
z4→z3

�

α, β∈B0

Cα

12
Cβ

34
z−h1−h2+hα
21

z
−h3−h4+hβ

43
�φα(z1)φβ(z3)�+ . . . (1.100)

The structure of the two-point function (1.56) shows that only terms with α = β

contribute to the expansion. This expansion prompts us to suppose that we may

decompose Gij:kl, defined in (1.61), into a sum of products of conformal blocks Fα

ij:kl
(η)

and F̄α

ij:kl
(η̄) as follows:

Gij:kl(η) =
�

α∈B0

Cα

ij
Cα

kl
Fα

ij:kl
(η)F̄α

ij:kl
(η̄). (1.101)

Here, Fα

ij:kl
(η) (resp. F̄α

ij:kl
(η̄)) is the holomorphic (resp. antiholomorphic) part of the

series in the OPE of φi(0)φj(η) pertaining to the α conformal family. In this context,

the crossing relations (1.60) become

�

α∈B0

Cα

ij
Cα

kl
Fα

ij:kl
(η)Fα

ij:kl
(η̄) =

�

α∈B0

Cα

kj
Cα

il
Fα

kj:il
(1− η)Fα

kj:il
(1− η̄) (1.102)

= η−2hj η̄−2h̄j
�

α∈B0

Cα

lj
Cα

ki
Fα

lj:ki
(1/η)Fα

lj:ki
(1/η̄). (1.103)

(The sums are only formal, as they make sense only when B0 is finite. Such theories,

called minimal models, will be examined in the next section.) These two conditions,
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when considered over arbitrary choices of primary fields i, j, k, l ∈ B0 are supposed

to completely fix the three-point function coefficient Cα

ij
.

Later, we will loosely refer to (the holomorphic or antiholomorphic part of) a 2N -

point function of primary fields in which these fields are collected into pairs whose

respective OPEs pass through exactly one channel as a “conformal block.”

1.2.6 Null states, fusion rules, and minimal models

Suppose that the Verma module V (c, h) has a descendant field at level l that is

primary. Such a descendant, called a null-state, is the highest-weight state of its own

Verma submodule V (c, h + l) ⊂ V (c, h) consisting of its own descendants. Because

this submodule is invariant under the action of the stress tensor modes, its presence

inside V (c, h) deems the larger module reducible. A null-state earns its name from

the fact that it has zero norm and a zero inner product with all other elements of

V (c, h). In this section, we investigate the reducibility of the Verma modules that

contain null-states, and we will observe how the presence of null-states within a Verma

module leads to new PDEs that govern certain correlation functions.

Because it is primary, a null-state |h+l�must be annihilated by the modes {Lk}k≥1,

and we can show that this property follows if L1|h + l� = L2|h + l� = 0 by using the

commutation relations of the Virasoro algebra (1.77). These two conditions restrict

h to particular values, and they lead to explicit expressions for the null-states. For

example, in order for |h + 1� = L−1|h� to be a level one null-state, we must have

L1|h + 1� = L2|h + 1� = 0. By using (1.77), we can show that the conformal weight

h of the highest-weight state |h� must be zero. We call this conformal weight h1,1.

Next, we construct a level two null-state, which necessarily has the form |h+2� =

(aL2

−1
− L−2)|h� for a ∈ C. The condition that L1|h + 2� = 0 makes this state quasi-

primary and fixes a = 3/2(2h + 1) as in (1.87). The condition that L2|h + 2� = 0

makes this state primary and fixes h to one of the following two functions of the
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central charge:






h = h1,2 := 1

16

�
5− c +

�
(c− 1)(c− 25)

�

h = h2,1 := 1

16

�
5− c−

�
(c− 1)(c− 25)

� . (1.104)

Thus, the Verma modules V (c, h1,2) and V (c, h2,1) each contain a level two null-state.

We let φ1,2 denote a primary field of conformal weight h1,2. Because its level two

null-state is necessarily orthogonal to the other elements of its parent Verma module

V (c, h1,2), any N -point function that contains it must vanish. We therefore have

��
3

2(2h1,2 + 1)
φ(−1,−1)

1,2
(z1)− φ(−2)

1,2
(z1)

�
φ2(z2) . . . φN(zN)

�
= 0. (1.105)

Using (1.93), we factor the stress tensor modes out into differential operators acting

on the N -point function. In so doing, (1.105) becomes the following semi-elliptic PDE

governing the correlation function �φ1,2(z1)φ2(z2) . . . φN(zN)�:

�
3∂2

1

2(2h1,2 + 1)
+

N�

j=2

�
∂j

zj − z1

− hj

(zj − z1)2

��
�φ1,2(z1)φ2(z2) . . . φN(zN)� = 0.

(1.106)

Here, we have used translation invariance to write L−1 = −∂2 − . . .− ∂N = ∂1. This

PDE is central to the work presented in this thesis. It will prove essential in studying

interfaces between boundary clusters in lattice models. A similar PDE may be inferred

from the level-two null-state in V (c, h2,1) by replacing (h1,2, φ1,2) �→ (h2,1, φ2,1).

Equation (1.106) does not place new restrictions on the two-point function (1.56)

with h1 = h1,2 or h2,1. However, (1.106) restricts the conformal weight h3 of the pri-

mary operator φ3(z3) in the three-point function �φ1(z1)φ2(z2)φ3(z3)� with h1 = h1,2

or h2,1 to one of two values depending on h2:
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h1 = h1,2, =⇒ h3 = h1,2 + h2 + ∆±

1,2
(h2, c), (1.107)

h1 = h2,1, =⇒ h3 = h2,1 + h2 + ∆±

2,1
(h2, c). (1.108)

Here, ∆±

1,2
and ∆±

2,1
are given by

∆±

1,2
(h, c) =

1

24

�
c− 1 +

�
(1− c)(25− c)± |

√
25− c−

√
1− c|

√
1− c + 24h

�
,

∆±

2,1
(h, c) =

1

24

�
c− 1−

�
(1− c)(25− c)± |

√
25− c +

√
1− c|

√
1− c + 24h

�
.

If the third conformal weight h3 does not equal either of the two allowed values that

are shown above, then the three-point function is necessarily zero. We note that

∆+

1,2
(h, c) is the famous KPZ formula from Liouville quantum gravity [37].

The rule (1.107, 1.108) is expressed more clearly if we define the variables

α± :=

√
1− c±

√
25− c√

24
, χ0 :=

c− 1

24
, (1.109)

and parameterize the conformal weight h in terms of a variable χ as

h(χ) =
χ2

4
+ χ2

0
. (1.110)

>|h |h1,2 > |h2,1 >or

level-two null-state

L−1|h

L−2|h

L−1L−2|h L−3|hL3
−1|h >

>

> >
>L2

−1|h >

Figure 1.9: The graded structure of a generic Verma module (left), and the level-two
null-state of either Verma module V1,2 or V2,1 and its submodule (right).
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(In section 1.2.9, α0 will serve as the background charge of the Coulomb gas.) Then

the above results imply that in a three-point function �φ1(z1)φ2(z2)φ3(z3)� with h1 =

h1,2 or h2,1, either the weights h3 = h(χ3) and h2 = h(χ2) are related by

h3 = h(χ3), χ3 =






χ2 + α− or χ2 − α− h1 = h1,2

χ2 + α+ or χ2 − α+ h1 = h2,1

, (1.111)

or else the three-point function is zero. This selection rule limits the number of

channels that can appear in the OPE (1.96) of the primary fields φ1,2 or φ2,1 with φ2

to two possibilities. Letting φ1,2, φ2,1, and φχ stand for fields with weights h1,2, h2,1,

and h(χ) respectively, we express this rule as

[φ1,2]× [φχ] = [φχ−α− ] + [φχ+α− ]

[φ2,1]× [φχ] = [φχ−α+ ] + [φχ+α+ ]
. (1.112)

This abuse of notation requires explanation. The × sign on the left side indicates a

type of multiplication between conformal families called fusion. Meanwhile, the +

sign on the right side indicates not a literal sum but a statement of what conformal

families appear in the OPE of φ1,2 or φ2,1 with φχ.

If we continue this analysis, then we ultimately find that a Verma module V (c, hr,s)

with highest-weight vector φr,s with conformal weight

hr,s :=
1

4
(rα+ + sα−)2 − α2

0
, r, s ∈ Z

+, (1.113)

=
1− c

96




�

r + s + (r − s)

�
25− c

1− c

�2

− 4



 , (1.114)

called a Kac weight, has a null-state at level rs. This is a consequence of the fact

that the conformal weights of (1.113) exhaust the zeros of the Kac determinant. The

primary field φr,s of conformal weight hr,s is called a Kac operator. Equation (1.112)
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generalizes further to [11]

[φr,s]× [φχ] =
k=r−1�

k=1−r

k+r=1 (mod2)

l=s−1�

l=1−s

l+s=1 (mod2)

[φχ+kα++lα− ]. (1.115)

(The summation index increments by two.) We note that φ1,1 serves as the identity

field in this fusion rule, with conformal weight h1,1 = 0.

By exploiting the commutativity of the fusion operation, one can argue that the

product of two Kac operators will exclusively contain Kac operators and consist of

fewer fields than indicated in (1.115), a phenomenon called truncation. The new rule

is

[φr1,s1 ]× [φr2,s2 ] =
k=r1+r2−1�

k=1+|r1−r2|

k+r1+r2=1 (mod2)

l=s1+s2−1�

l=1+|s1−s2|

l+s1+s2=1 (mod2)

[φk,l], (1.116)

and it exemplifies a CFT whose primary field content comprises of only a countable

collection of Kac operators.

We might further speculate on the existence of a CFT comprised of a finite col-

lection B0 of conformal families of Kac operators. In such a theory, the other Kac

operators in (1.116) that arise in the OPEs of the elements in B0 appear as descen-

dants of the other Kac operators in B0. Indeed, this phenomenon is observed in CFTs

with a central charge such that pα− + p�α+ = 0 for p, p� coprime. After isolating the

central charge from this relation, we find that

c = 1− 6
(p− p�)2

pp�
, p�, p coprime, (1.117)

and if we order the indices so that p� < p, then the Kac weights are

hr,s =
(pr − p�s)2 − (p− p�)2

4pp�
. (1.118)

Such a theory is called a (p, p�) minimal model, and it is generated through fusions of
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Kac operators among the finite set B0 = {φr,s : 1 ≤ r < p�, 1 ≤ s < p}.

Now we verify the claims of the previous paragraph. To start, we divide the

Z
+ × Z

+ lattice, called the conformal grid, into the boxes

{(r, s) ∈ Z
+ × Z

+ : (m− 1)p� < r < mp�, (n− 1)p < s < np}, m, n ∈ Z
+. (1.119)

Figure 1.11 shows part of the conformal grid divided into boxes for the (4, 3) minimal

model. Each box contains (p − 1)(p� − 1) = 6 lattice points, and each Kac weight

hr,s is represented by a colored disk at the lattice point (r, s), possibly with a slash

passing through it. A disk of a particular color and with its slash (if it has one)

pointing in a particular direction identifies a conformal weight that is unique within

that box. From (1.118), we immediately see that

hr,s = hr+p�,s+p, hr,s = hp�−r,p−s. (1.120)

The first property identifies all boxes that live on the same π/4 radian diagonal, and

figure 1.11 indicates this property by using identical illustrations for these boxes. The

figure also shows that Kac operators with either the r index equaling a multiple of p� or

the s-index equaling a multiple of p are excluded from the theory since these operators

are equivalent to Kac operators in the zeroth row or column. These operators lie

outside of the conformal grid and thus outside of the theory. Consequently, the entire

operator content of the theory belongs to the boxes in (1.119). The second property

of (1.120) indicates that half of the conformal grid is redundant, and this redundancy

is illustrated in figure 1.11 as follows. Two disks of the same color, with their slashes

pointing in the same direction (if they both have a slash), and belonging to boxes

with the same background shade of gray have equal conformal weights.

We call the bottom-left box in figure 1.11 the Kac table. Half of the Kac table is

redundant as each point (r, s) on one side of the line connecting (0, 0) with (p, p�) is

58



r

s
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Figure 1.10: The conformal grid for the (4, 3) minimal model. The bottom-left box is the
Kac table. Boxes with the same shade of gray are identified with one another.

identified with another point (p� − r, p − s) on the other side of the diagonal thanks

to the reflection property hr,s = hp�−r,p−s of (1.120). The disks corresponding to these

two points in the Kac table are identified with each other in figure 1.11 by having

both the same color and no slash passing through them. This reflection property also

indicates that, in addition to its level rs null-state, the module Vr,s := V (cp,p� , hr,s),

will harbor a null-state at level (p� − r)(p− s). These two null-states have respective

conformal weights

hr,s + rs = hp�−r,p+s = hp�+r,p−s, (1.121)

hr,s + (p� − r)(p− s) = hr,2p−s = h2p�−r,s. (1.122)

Remarkably, these conformal weights are Kac weights of the box immediately above

or right of the Kac table. This is indicated by the gray background color of the

plaquettes on the right side of (1.121-1.122). Therefore, these two null-states are also

Kac operators which in turn generate their own Verma modules Vp�−r,p+s
∼= Vp�+r,p−s
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and Vr,2p−s
∼= V2p�−r,s, each with their own two null-states. The null-states of Vp�−r,p+s

are

hp�−r,p+s + (p� − r)(p + s) = hr,2p+s = h3p�−r,p−s, (1.123)

hp�−r,p+s + (p� + r)(p− s) = hp�−r,3p−s = h2p�+r,s, (1.124)

while the null-states of Vr,2p−s are

hr,2p−s + r(2p− s) = hp�−r,3p−s = h2p�+r,s, (1.125)

hr,2p−s + (2p� − r)s = hr,2p+s = h3p�−r,p−s. (1.126)

The fact that weight (1.123) equals weight (1.126) (resp. weight (1.124) equals weight

(1.125)) indicates that the corresponding null-states are identical and belong to the

same box along the bottom or left side of the conformal grid. Therefore, the two null-

states φp�−r,p+s and φp�+r,p−s generate the same two null-states φr,2p+s and φp�−r,3p−s

which live in the intersection Vp�−r,p+s ∩Vr,2p−s. These null-states in turn spawn their

own Verma modules Vr,2p+s
∼= V3p�−r,p−s and Vp�−r,3p−s

∼= V2p�+r,s which share two

null-states (also with Kac weights) in their intersection, and so on. This pattern

|hr,s>

Figure 1.11: The infinite sequence of nested Verma submodules within the parent module
Vr,s in the (p, p�) minimal model. The yellow and red submodules are Vp�−r,p+s

∼= Vp�+r,p−s

and Vr,2p−s
∼= V2p�−r,s respectively, and the blue and green submodules are Vr,2p+s

∼=
V3p�−r,p−s and Vp�−r,3p−s

∼= V2p�+r,s respectively.
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repeats indefinitely, and we find that Vr,s contains a single infinite tower of pairs of

Verma submodules with each of their intersections nesting yet another pair of Verma

submodules. Each Verma module is generated by a null-state whose Kac weight

belongs to a box along the bottom or left side of the conformal grid (figure 1.11). In

fact, one can show that any Kac operator belonging to one of these boxes is a null-state

descendant of a Kac operator in the Kac table. After identifying these boxes with

their diagonals thanks to the left equation of (1.120), we see that each Kac operator

generated by the OPE of two members of the conformal grid is a descendant of another

member of the Kac table. In other words, the (p, p�) minimal model comprises of a

finite number of conformal families, namely those that belong to the Kac table.

Minimal models apparently exhibit very rich structure. With this structure now

essentially understood, we can consider how to combine the holomorphic and anti-

holomorphic minimal models into one theory. This question is typically answered

by requiring this combination to be invariant under modular transformations [3, 11].

One possibility that achieves this goal is for all operators to be spinless. Such a theory

is called a diagonal minimal model and is denoted by M(p, p�). Modular invariant

non-diagonal theories may be constructed too, and some of them give more authentic

representations of continuum lattice models than any diagonal theory. However, we

will not investigate such theories in this thesis.

The minimal model M(p, p�) is unitary if each of its Verma modules Vr,s with

1 ≤ r < p�, 1 ≤ s < p, are unitary. Because h must be positive in order for V (c, h) to

be unitary, a unitary minimal model contains no negative Kac weights. This condition

is physically reasonable as it implies that all two-point functions decay with distance.

An argument invoking Bezout’s lemma indicates that only the M(p, p− 1) minimal

models are unitary [11], and upon letting p = m + 1, p� = m in (1.117) and (1.118),

we indeed recover the c < 1 unitary Verma modules of (1.91, 1.92).
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1.2.7 Diagonal unitary minimal models and critical lattice models

The diagonal unitary minimal models M(m + 1, m) describe many important

critical lattice models, including many of those surveyed in section 1.1. In this section,

we examine some of these descriptions.

The first diagonal unitary minimal model M(3, 2) (c = 0) describes the contin-

uum limit of critical bond percolation via the FK bonds of a Q = 1 Potts model.

This minimal model consists of a single field φ1,2
∼= φ1,1, the identity field, so this

description is trivial in the same sense that a single-state Potts model is trivial. In

reality, critical percolation is very rich with interesting observables that stem from

fields that are not present in M(3, 2) but are present in minimal model representa-

tions of Q-state Potts model with Q > 1, and they are studied through a suitable

Q → 1 limit. We will study some of these observables later.

The smallest nontrivial diagonal unitary minimal model M(4, 3) (c = 1/2) de-

scribes the continuum limit of the Ising model [10]. It contains three conformal

families, one corresponding with a spin density field σ, another corresponding with

an energy density field ε, and a final corresponding with an identity field 1.

φ1,1
∼= φ2,3 ⇐⇒ 1 Identity, (1.127)

φ1,2
∼= φ2,2 ⇐⇒ σ Spin Density, (1.128)

φ1,3
∼= φ2,1 ⇐⇒ ε Energy Density. (1.129)

The fusion table follows from (1.116):

[σ]× [σ] = [1] + [ε], [σ]× [ε] = [σ], [ε]× [ε] = [1]. (1.130)

The identification of M(4, 3) with the critical Ising model is made by comparing the

scaling weights of the former with those calculated in the exact solution of the latter.
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The result is

�σ(zi)σ(zj)� ∝
1

|zi − zj|2∆σ
=⇒ hσ = ∆σ/2 = 1/16 = h1,2,

�ε(zi)ε(zj)� ∝
1

|zi − zj|2∆ε
=⇒ hε = ∆ε/2 = 1/2 = h1,3,

(1.131)

which leads to the identification (1.127-1.129) above. With this identification, we find

the three-point functions of these fields via (1.57). We can also calculate four-point

functions of these fields by solving the φ1,2 and φ2,1 null-state PDEs, which reduce

to hypergeometric ODEs in the unknown function G when the ansatz (1.58) is used.

Certain details concerning how to join the holomorphic and antiholomorphic sectors

must be addressed too, but we will not consider them here.

The next nontrivial diagonal unitary minimal model M(5, 4) (c = 7/10) describes

the tricritical Ising model [38], which may be realized as a generalization of the Ising

model that allows site vacancies. This model contains a second “spin” variable τi,

equaling zero (resp. one) if site i is vacant (resp. occupied) and that complements the

usual spin variable σi which exists only for occupied sites. The energy of a spin

configuration {(σ, τ)} is defined to be

E[{(σ, τ)}] = −
�

�ij�

τ 2

i
τ 2

j
(δσi,σj + J)− µ

�

i

τi. (1.132)

The first sum assigns energy J + 1 (resp. J) to each pair of equal (resp. unequal)

nearest-neighbor spins, and the second sum controls the number of vacancies via a

chemical potential µ. Similar to the regular Ising model, one can associate an energy

density with each of the three terms in (1.132). The identity, two spin densities,

and three energy densities correspond one-to-one with the six conformal families of

M(5, 4). The correspondence is

φ1,s
∼= φ3,5−s, 1 ≤ s < 2 ⇐⇒ Identity, (1.133)
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φ2,s
∼= φ2,5−s, 1 ≤ s < 3 ⇐⇒ Spin Density, (1.134)

φ3,s
∼= φ1,5−s, 1 ≤ s < 4 ⇐⇒ Energy Density, (1.135)

and their respective weights and fusion rules given by (1.118) and (1.116) respectively.

The next unitary model M(6, 5) (c = 4/5) comprises of ten conformal families

with a sub-algebra of six families that closes under fusion. This sub-algebra describes

the three-state Potts model [39], and it contains an identity field 1, a spin field σ,

an energy field ε, and three additional fields X and Y related to the energy density

and Z related to the spin density. However, it does not capture the entire three-state

Potts model because it is not symmetric under the parity transformation (σ, Z) �→

(−σ,−Z). A better description of this model is furnished by a modular-invariant

non-diagonal minimal model [11].

For Q ∈ {1, 2, 3, 4}, the relation between m and Q is given by [3]

Q = 4 cos2

�
π

m + 1

�
, (1.136)

(The case Q = 4 corresponds with m → ∞.) The spin density field and energy

density field are respectively identified with the Kac operators

σ ∼= φm+1
2 ,

m−1
2

∼= φm+1
2 ,

m+1
2

∼= φ1/2,0, ε ∼= φ2,1
∼= φm−1,m−1, (1.137)

through their scaling exponents, which are computed in [40] using renormalization

group methods.

All of the M(m+1, m) models represent a lattice model of some kind, for example

the restricted solid-on-solid model when m ≥ 3 [11]. In many of these examples, other

operators outside of the Kac table have a physical interpretation in these theories, as

can be seen in (1.137). We will describe some of these additional operators and the

roles that they play in the next section.
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1.2.8 Boundary conformal field theory and Schramm-Löwner evolution

The CFTs presented so far reside on the extended complex plane. It is also useful

to formulate CFT in a simply connected domain D ⊂ C with a (for now) smooth

boundary ∂D such as the upper half-plane H. In this section, we will investigate how

to construct such a theory.

As usual, we suppose that the critical system under study is conformally invari-

ant. By this, we now mean the following. Consider a conformal bijection taking a

simply connected domain onto another simply connected domain, and suppose that

a critical lattice model lives in the first domain. (For now, we assume that the BC is

free.) Then in the continuum limit, the likelihood of any event of the image model in

the second domain equals that of the original model in the first domain. This conjec-

ture was originally supported by strong numerical evidence [41, 42] (resp. [43]) and

subsequently proven for percolation and the Ising model in [16] and [44] respectively.

To be specific, we suppose that the first domain is the upper half-plane H, and

we let f be a conformal bijection taking H onto a simply connected domain D. (Such

a mapping always exists thanks to the Riemann mapping theorem.) Then conformal

invariance implies the usual covariant transformation rule (1.49) relating an N -point

function ΥD of primary fields with domain D to one ΥH with domain H. This is

ΥD(z�
1
, z̄�

1
, . . . , z�

N
, z̄�

N
) =

N�

i=1

∂f(zi)
−hi ∂̄f̄(z̄i)

−h̄iΥH(z1, z̄1, . . . , zN , z̄N). (1.138)

Thus, calculating an N -point function ΥD of primary fields amounts to computing

its half-plane version ΥH and transforming it to D using (1.138). (To simplify our

notation, we will suppress the superscript H on all half-plane N -point functions from

now on.) We presently think of the antiholomorphic section as a completely inde-

pendent copy of the holomorphic sector, but later, we will set z̄ = z∗ and f̄ = f ∗.

If f is a global conformal bijection taking the upper half-plane onto itself (that is, a
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Möbius transformation (1.40) with a, b, c, and d real), then we recover the functional

equation (1.46). The usual conformal Ward identities (2.2) follow by considering

the infinitesimal global conformal transformations �(z) = a, bz, or cz2 that carry

the half-plane onto itself (i.e., a, b, c are real and infinitesimal), and they restrict the

half-plane N -point function Υ to the usual ansatz (1.58). Again, transformation law

(1.138) motivates us to suppose that the transformation law for the primary fields is

φ�
h,h̄

(z�, z̄�) = ∂f(z)−h∂̄f̄i(z̄)−h̄φh,h̄(z, z̄). (1.139)

Now we motivate a method, similar to the method of images in electrostatics, for

computing the half-plane N -point function

ΥH(z1, z̄1, . . . , zN , z̄N) = �φh1,h̄1
(z1, z̄1) . . . φhN ,h̄N

(zN , z̄N)�H. (1.140)

This method was originally proposed by J. Cardy in [45]. Because the holomor-

phic and antiholomorphic coordinates live in different half-planes, and because we

ultimately wish to set z̄i = z∗
i
, it is convenient to position z1, . . . , zN in the upper

half-plane H and z̄1, . . . , z̄N in the lower half-plane H
∗. We let D be a large, bounded

domain containing z1, . . . , zN , z̄1, . . . , z̄N , and we let �(z) (resp. �̄(z̄)) be a conformal

transformation of H (resp. H∗) that is infinitesimal in D. The variation law (1.64) is

still true as long as the contour surrounding the holomorphic (resp. antiholomorphic)

coordinates is in H (resp. H∗). Because the contour surrounding the antiholomorphic

coordinates is in the lower half-plane, its orientation is now counterclockwise. Next,

we suppose that �(z) and �̄(z̄) are real-valued and equal on R ∩D. Then in D ∩H
∗,

�̄ must be the Schwarz-reflection of � in D ∩ H. We further require that the stress

tensor satisfy T (x) = T̄ (x) for x ∈ R, which may be interpreted as the condition that

energy does not cross the system boundary (the real axis). Thus, the integrands of

the two integrals of the variation law (1.64) are identical, and their contours may be
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Figure 1.12: The method of images combines the N degrees of freedom of the holomorphic
sector and the N degrees of freedom of the antiholomorphic sector of a boundary CFT in
the upper half-plane into the holomorphic sector of a CFT over the complex plane and with
2N degrees of freedom.

fused into a single contour Γ winding around all of the points z1, . . . , zN , z̄1, . . . , z̄N

once to give the variation rule

δ�X� = − 1

2πi

�

Γ

dw �(w)�T (w)X�. (1.141)

This happens to also be the variation law for a correlation function with 2N holo-

morphic variables z1, . . . , zN , z̄1, . . . , z̄N of holomorphic weights h1, . . . , hN , h̄1, . . . , h̄N

and no antiholomorphic sector. With this interpretation, we posit that the half-plane

correlation function (1.140) equals the whole-plane correlation function,

�φh,h̄(z1, z̄1) . . . φh,h̄(zN , z̄N)�H = �φh,0(z1)φh̄,0(z̄1) . . . φh,0(zN)φh̄,0(z̄N)�
Ĉ
, (1.142)

with 2N holomorphic variables z1, . . . , zN , z̄1, . . . , z̄N of holomorphic weights h1, . . . , hN ,

h̄1, . . . , h̄N and no antiholomorphic sector. This supposition has been used to suc-

cessfully calculate many observables of systems in domains with boundary, including

those presented in this thesis.

The introduction of a boundary invites the consideration of BCs. This possibility

is realized when we consider the one-point function in the half-plane

�φ(z)�H = �φh(z)φh(z̄)�
Ĉ

= C(z − z̄)−2h. (1.143)
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The one-point function over H vanishes only when C = 0. If φ is, for example, a

spin-variable in a Potts model, then a one-point function averages over all possible

spins that can occur at that point. A one-point function that vanishes regardless of

proximity to the boundary indicates that the spin variables of the boundary sites in

the real axis are free, or not constrained. But if C �= 0, then the one-point function

blows up since h > 0, indicating that these boundary sites are fixed to the same state.

These BCs were previously considered for the Potts model in section 1.1.3. Other

BCs may be considered with the condition that they be conformally invariant [46].

The BC of a system in the upper half-plane does not have to be homogeneous but

may change at a point x0 ∈ R, and this change is induced by a boundary condition

change (BCC) operator φ(x0). BCC operators are examples of boundary operators,

or boundary fields with the real axis as their domains. They are created by letting

a bulk operator, that is, a field in the bulk (i.e. interior, in this case the upper half-

plane), approach a boundary point in the real axis. In so doing, the bulk operator

approaches its image in the lower half-plane and fuses with it to create a boundary

operator. This process is called bulk-image fusion.

We suppose that the conformal bijection f : H → D extends continuously to the

real axis and is real on an interval I ⊂ R so that its Schwarz reflection f̄ analytically

continues f to the lower half-plane. Now we let a spinless bulk field φh,h at z ∈ H

approach x ∈ I and fuse with its image to create a boundary field φhb
(x). Then in

this limit, then the law (1.139) may be expanded into

|f(z)− f̄(z̄)|−2h+hbφ�
hb

(x�) + . . .

= |∂f(x)|−2h|z − z̄|−2h+hbφhb
(x) + . . . . (1.144)

After isolating the boundary field φ�
hb

(x�) on the right side and sending z, z̄ → x, we
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find a conformal covariance law for the boundary field:

φ�
hb

(x�) = |∂f(x)|−hbφhb
(x). (1.145)

If we suppose that transformation law (1.145) is true even when the bulk point z

approaches a point in the real axis not in I, then an (N + M)-point function Υ of N

bulk operators and M boundary operators will obey the transformation law

ΥD(z�
1
, z̄�

1
, . . . , z�

N
, z̄�

N
; x�

N+1
, . . . , x�

N+M
) =

N�

i=1

∂f(zi)
−hi ∂̄f̄i(z̄i)

−h̄i

×
M�

i=1

|∂f(xN+i)|hN+iΥH(z1, z̄1, . . . , zN , z̄N ; xN+1, . . . , xN+M). (1.146)

Again, this rule reduces to a functional equation that restricts this (N + M)-point

function to the ansatz (1.58) when D = H. Also, the OPE structure (1.96) is supposed

to exist between a pair of boundary fields or a bulk field and a boundary field, but

with only one sector instead of two. Typically, the OPE coefficients differ between

bulk-bulk, bulk-boundary, and boundary-boundary fusion scenarios, but they are

interrelated because boundary operators are appropriate limits of bulk operators.

The conformal weights of the BCC operators are inferred from a variety of heuristic

arguments [47, 11]. Here, we quote the results in the case of the Q-state Potts model.

We consider the fixed-to-free (resp. free-to-fixed) BCC first. A BCC at x0 from the

fixed to state a BC for x < x0 (resp.x > x0) to free for x > x0 (resp.x < x0) is

induced by the φ1,2(x0) Kac operator, and we denote it by φaf

1,2
(x0) (resp.φfa

1,2
(x0)). If

we fuse φαf

1,2
(x1) with φfb

1,2
(x2) by sending x2 → x1, then the fusion rule (1.116) shows

that the OPE contains the identity family and the φ1,3 family. In our application,

this is

φaf

1,2
(x1)φ

fb

1,2
(x2) ∼

x2→x1

δab1
aa + φab

1,3
(x1), (1.147)
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with the following physical interpretation. If a �= b, then in this limit, the two BCCs

join into one BCC that takes us from fixed state a to fixed state b at x1 as we pass

rightward, and this fixed-to-fixed BCC is implemented by the boundary operator

φab

1,3
(x1). If a = b, then the lack of a BCC at x1 is captured by the identity term in

the OPE. The second term on the right side of (1.147) includes all configurations

with an infinitesimal free segment (x1, x2) that abuts a fixed segment on either end

so that the FK boundary cluster anchored to the left fixed segment is disconnected

from that anchored to the right fixed segment. These configurations are also counted

in the identity term. Of course, the order of the BCC may be switched so that we

fuse φfa

1,2
(x1) with φaf

1,2
(x2). Here, we need both BCC operators to involve the same

fixed BC for physical consistency. We find a similar fusion rule:

φfa

1,2
(x1)φ

af

1,2
(x2) ∼

x2→x1

1ff + φfaf

1,3
(x1). (1.148)

Now, the second boundary operator φfaf

1,3
(x1) on the right side conditions the existence

of an infinitesimal segment at x1 fixed to state a, and this forces a spin a FK boundary

cluster to anchor to this infinitesimal segment.

In either of these cases, we may continue this fusion process an arbitrary number

of times to create an arbitrary number of BCCs proximal to x1. From (1.116), we

have the fusion rule

φ1,2(x1)φ1,s+1(x2) ∼
x2→x1

φ1,s(x1) + φ1,s+2(x1), (1.149)

with the superscripts indicating the BCCs suppressed. In this rule φ1,s+1(x2) stands

for s distinct BCCs clumped very near x2, and fusing φ1,2(x1) with φ1,s+1(x2) either

annihilates one of these BCCs or adds a new one. This explains product on the right

side of (1.149).

Now we consider another BCC. The BCC from fixed to state a for x < x0
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Figure 1.13: A boundary loop (red) surrounding an FK boundary cluster. If all sites
inside (resp. outside) of the red curve are (resp. are not) in spin state a, then the green loop
of activated dual bonds is a boundary loop surrounding a spin boundary cluster.

(resp.x > x0) to free but excluding state a for x > x0 (resp.x < x0) is induced

by the φ2,1(x0) Kac operator, and we denote it by φa �a

2,1
(x0) (resp.φ�aa

2,1
(x0)). By free

but excluding a, we mean that boundary sites exhibit any spin state except a with

uniform probability. If we fuse φa �a

2,1
(x1) with φ�aa

2,1
(x2) by sending x2 → x1, then the

rule (1.116) shows that the OPE contains the identity family and the φ3,1 family. In

our application, this is

φa �a

2,1
(x1)φ

�aa

2,1
(x2) ∼

x2→x1

1aa + φa �aa

3,1
(x1). (1.150)

The interpretation of (1.150) is basically identical to that of (1.147) (except that

φa �aa

3,1
(x1) will now separate two disjoint boundary spin clusters with an infinitesimal

free segment).

From now on, we will typically refer to the BCC at x0 induced by either φ1,2(x0)

or φ2,1(x0) as “fixed-to-free” or “free-to-fixed,” even though this description is not

completely accurate for φ2,1(x0).

The BCC operator φ1,2(x0) bears a second interpretation as a boundary arc opera-

tor. In the loop gas representation of the Potts model, a single loop, called a boundary

loop, surrounds the FK boundary cluster anchored to the fixed segment at the side of

x0 and passes through x0 (figure 1.13). The portion of the boundary loop in the upper

half-plane, called a boundary arc, tightly wraps around the cluster’s perimeter. Thus,
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φ1,2(x0) earns its second name by conditioning a single boundary arc (resp. boundary

loop) to anchor to (resp. pass through) x0. The φ2,1(x0) BCC operator earns this

name too by conditioning a boundary arc, the interface between a spin a boundary

cluster and an adjacent boundary cluster that excludes spin a, to anchor to x0.

Now we consider a four-point function �ψab(xi)ψbc(xj)ψcd(xk)ψda(xl)� of BCC op-

erators with xi < xj < xk < xl. Here, ψab is a BCC operator taking us from BC a

to BC b as we move rightwards along the real axis. Because the relative locations of

the four points are constrained by their ordering on the real axis, only the functions

Gij:kl and Gkj;il of (1.61) are well-defined, and they satisfy the crossing relation (in

just the variable η as there is only one sector)

Gij:kl(η) = Gkj:il(1− η). (1.151)

As is true with bulk correlation functions, the Gij:kl may be decomposed into confor-

mal blocks Fα

ij;kl
(η), so the crossing relation (1.151) becomes

�

α∈B0

Cα

ij
(a, c; b)Cα

kl
(c, a; d)Fα

ij;kl
(η) =

�

α∈B0

Cα

kj
(b, d; c)Cα

il
(b, d; a)Fα

kj;il
(1− η). (1.152)

Our notation indicates that the boundary OPE coefficients may depend on the BCs.

Some of these coefficients are computed in [48].

A rigorous mathematical theory called SLE captures the statistics of the boundary

arcs described above. We give a brief description of SLE, and more information about

it can be found in [14, 15, 49]. In the standard SLE setup, we condition our critical

system in the upper half-plane to exhibit a free-to-fixed (resp. fixed-to-free) BCC

at some x0 ∈ R and a fixed-to-free (resp. free-to-fixed) BCC at infinity. Then a

single boundary arc connects x0 ∈ R with infinity and fluctuates in H with the law

of SLE, for which we now give a brief description. SLE is a conformally invariant

stochastic process driven by Brownian motion that grows a fractal curve in H from a
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Figure 1.14: Density plot of Re[gt(z)] with the deterministic driving function ξt =
3
√

1− 2t − 2 and t(θ) = 1

2

�
1− cos4 θ

2

�
at θ = π/4, π/2, 3π/4, π. The semi-circular dis-

continuity {eiφ : 0 ≤ φ ≤ θ} is the curve γ[0, t(θ)]. All points in the unit disk intersected
with H are swallowed, or mapped to −2, at their common swallowing time τ = 1/2 (θ = π).

specified boundary point x0 ∈ R. The curve explores H without crossing itself or the

real axis as the Brownian motion evolves, and in the long time limit, the tip of the

curve approaches infinity. (By “conformally invariant,” we mean that the probability

measure is invariant under dilation about x0 and the statistics of the completed SLE

curve are invariant under the inversion z �→ −1/(z − x0).)

We assign a parameterization γ : [0,∞) → H to the SLE curve (i.e., boundary arc)

so that γ(0) = x0 and γ(t) → ∞ as t → ∞. Then the curve is completely described

by a random sequence of bijections {gt}t≥0 that conformally send the domain H \Ht

onto H, where Ht is the connected component of H \ γ(0, t] containing infinity. If γ is

a simple curve, then we may think of gt as a “slit-mapping.” Informally speaking, this

slit-mapping cuts into the upper half-plane along γ from x0 up to γ(t) with scissors,

conformally maps the part of the upper half-plane not touched by the scissors onto the

upper half-plane, and in so doing melts the left and right “sides” of the curve γ[0, t],

now infinitesimally separated by the cut made by the scissors, into adjacent segments
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of the real axis that touch at the image of the tip of the curve ξt := gt(γ(t)) ∈ R.

The random real-valued stochastic process ξt is called the driving function, and a

particular ξs specified for all s ∈ [0, t] completely specifies the portion γ[0, t] of the

boundary arc. The maps {gt}t≥0 are uniquely determined when they are required to

satisfy the hydrodynamic normalization at infinity,

gt(z) ∼
z→∞

z +
b(t)

z
+ O

�
1

z2

�
, (1.153)

where the differentiable function b(t), called the half-plane capacity of Ht, is deter-

mined by our parameterization of γ. Conventionally, we use the parameterization

that leads to b(t) = 2t. With this choice, one can show that gt(z) obeys the Löwner

differential equation,

∂tgt(z) =
2

gt(z)− ξt

, g0(z) = z, z ∈ H. (1.154)

Now, in order for γ to have the statistics of the lone boundary arc in the system

described above, O. Schramm argues [14] that the driving function ξt must be a one-

dimensional Brownian motion with speed κ and starting at x0. That the driving

function should be a Brownian motion in order to capture the law of a boundary

arc is fixed by two special properties of SLE, conformal invariance, or the invariance

of the probability measure under the scaling transformation f : H → H given by

f(z) = λ(z−x0)+x0 for some λ > 0, and the “domain Markov property” [49, 15, 14].

As κ increases from zero, the roughness of the curves (i.e., their Hausdorff dimen-

sion, equaling 1 + κ/8 [50]) increases, and there is a phase change at κ = 4. In the

dilute phase κ ∈ [0, 4], the SLE curve γ(0,∞) does not intersect itself or the real axis,

and in the dense phase κ > 4, γ intersects but does not cross itself and the real axis

on all length scales. When κ ≥ 8, γ is a space-filling curve in H. (These statements

are true almost surely.) The results of this thesis will not extend to the κ ≥ 8 regime.
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Random walk or critical lattice model κ c Current status

The loop-erased random walk [51] 2 −2 proven [52]
The self-avoiding random walk [53] 8/3 0 conjectured [54]
Q = 2 Potts spin cluster perimeters [1] 3 1/2 proven [44]
Q = 3 Potts spin cluster perimeters [1] 10/3 4/5 conjectured [9]
Q = 4 Potts spin/FK cluster perimeters [1, 24] 4 1 conjectured [9]
The level line of a Gaussian free field [55] 4 1 proven [55]
The harmonic explorer [55] 4 1 proven [55]
Q = 3 Potts FK cluster perimeters [24] 24/5 4/5 conjectured [9]
Q = 2 Potts FK cluster perimeters [24] 16/3 1/2 proven [44]
Percolation and smart-kinetic walks [6, 56] 6 0 proven [16]
Uniform spanning trees [52] 8 −2 proven [52]

Table 1.1: Models conjectured or proven to have conformally invariant continuum limits
with SLE descriptions.

For each z ∈ H, gt(z) is determined up to the swallowing time τz when gτz(z) = ξτz

and the Löwner differential equation (1.154) is no longer well-defined. Since gt(γ(t)) =

ξt, the swallowing time may be the time when the boundary arc first touches the point

z ∈ H, an event with zero probability. This is always true in the dilute phase where

τz = ∞ almost surely since γ is simple. But in the dense phase, γ may lasso z and

cut it off from infinity with an intersection with itself or the real-axis. At the moment

of a self-intersection t1, all points z enclosed by the loop γ[t0, t1], where t0 < t1 is the

biggest time such that γ(t0) = γ(t1), are swallowed, or mapped to ξt, and τz = t1. A

similar statement can be made when γ intersects the real axis. In the dense phase, all

points are eventually swallowed this way (as opposed to touching γ), and Ht, defined

above, is the half-plane complement of the set of point swallowed before or at time t.

In the dilute phase, Ht = γ(0, t]. Again, these statements are true almost surely.

SLE accounts for a BCC induced by the insertion of a φ1,2 or φ2,1 operator at x0,

but it does not specify which side of x0 is free and which side is fixed, as the growth

of γ is symmetric about the x = x0 axis. It also does not specify the precise state of

the fixed side as this statement only has meaning in an appropriate lattice model.

Because boundary arcs are part of the boundary loops from the loop gas repre-
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Figure 1.15: The O(n) loop fugacity (red) (1.155) and the central charge (1.170) (blue)
as a function of κ over the range κ ∈ (2, 8). We note that n ∈ [−2, 0] corresponds with just
the dilute phase (gray) while n ∈ [0, 2] corresponds with both a dilute and dense κ value.

sentation of the O(n) model, we anticipate a relation between the parameters κ and

n. This relationship is conjectured to be [9]

n(κ) = −2 cos(4π/κ), κ ∈ [2, 8], (1.155)

and it matches the dilute and dense phases of both models (figure 1.15). In particular,

perimeters of boundary FK clusters in the Q-state Potts model must be SLE curves

with their speed related to Q via Q =
�

n(κ). An argument in the next paragraph

will show that κ > 4 too.

Both FK and spin boundary cluster perimeters are conjectured, and in some cases

proven, to approach SLE curves in the continuum limit, and the speeds of these two

SLE curves are related through a property known as duality. By definition, each FK

cluster sits within a spin cluster, and perimeters of either cluster are the same except

that the FK-cluster perimeter will have fjords that cut into the spin cluster, making

it rougher than the spin-cluster perimeter (figure 1.13). If these fjords are filled, then

we recover the less-rough perimeter of the parent spin cluster. In the continuum limit,

the fjords are the regions of the upper half-plane lassoed by a dense-phase SLE curve
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as described above, and if we erase these fjords, then we should recover another SLE

curve for some other speed κ̂ in the dilute phase. Duality in SLE states that this is

true with κ̂ = 16/κ, and we say that κ̂ and κ are dual to each other.

With duality in mind, we collect the boundary arc operators φ1,2 and φ2,1 under

a common name, boundary one-leg operators, and a common notation ψ1:

ψ1(x0) :=






φ1,2(x0), κ > 4

φ2,1(x0), κ ≤ 4

with weight θ1 :=






h1,2, κ > 4

h2,1, κ ≤ 4

. (1.156)

The conformal weight θ1 is sometimes called the boundary one-leg weight or SLE

scaling exponent. In this thesis, we adopt the convention that the boundary one-leg

operator ψ1(x0) sums over all possible BCCs that it may induce at x0 after we commit

the segment to its left to fixed and the segment to its right to free or vice versa. Also,

we normalize its two-point function to

Υ(x1, x2) = �ψ1(x1)ψ1(x2)� = C0

11
|x2 − x1|−2θ1 , C0

11
= n, (1.157)

where n is the fugacity of the single boundary loop. (This two-point function cor-

responds to a modified SLE that starts at x1 and ends at a second BCC located at

x2 instead of infinity.) This boundary loop surrounds the single boundary cluster

anchored to either (x1, x2) or (x2, x1).

We may generalize the definition of a boundary one-leg operator ψ1 with boundary

one-leg weight θ1 to a definition of a boundary s-leg operator ψs with boundary s-leg

weight θ1. These are given by

ψs(x0) =






φ1,s+1(x0) κ > 4

φs+1,1(x0) κ ≤ 4

with weight θs :=






h1,s+1 κ > 4

hs+1,1 κ ≤ 4

, (1.158)
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and they are so called because s distinct boundary arcs emanate from the BCC at x0.

Again, ψs(x0) sums over all possible BCCs that it may induce at x0 after we commit

the segment to its left to fixed and the segment to its right to free or vice versa. From

(1.116), we have the fusion rules

ψ1(x1)ψs(x2) ∼
x2→x1

ψs−1(x1) + ψs+1(x1), (1.159)

θs±1 = θ1 + θs + ∆±

1
(θs, κ) (1.160)

where ∆±

1
:= ∆±

1,2
when κ ≥ 4 and ∆±

1
:= ∆±

2,1
when κ < 4. Here, the KPZ formula

[37] ∆±

1
(1.109) is written in terms of the SLE speed:

∆±

1
(h, κ) =

κ− 4±
�

(κ− 4)2 + 16κh

2κ
. (1.161)

This rule may be interpreted as follows. If the boundary arc anchored to x1 connects

with the leftmost of the boundary arcs anchored to x2 > x1, then this boundary arc

contracts to a point almost surely as x2 → x1, leaving s−1 boundary arcs emanating

from x1. This explains the first term in (1.159). On the other hand, if these adjacent

= +

= +

?

ψ1 ψ3

ψ1 × ψ2

Figure 1.16: The fusion rule ψ1×ψ2 = ψ1 +ψ3. Each s-leg operator sums over all possible
spin types of all boundary clusters anchored to it. Our use of different colors for the left
versus right boundary cluster merely indicates this fact, and it does not indicate that these
two clusters must exhibit different spins. However, the ψ1 fusion channel is observed only
for those samples in which both of these boundary clusters do exhibit the same spin state.
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= +

= +

?

?

1 1− ψ2 ψ2

ψ1 ψ1

Figure 1.17: The fusion rule ψ1×ψ1 = 1+ψ2. The identity family imposes no conditioning
on the mutual connectivity of the two boundary arcs, and the two-leg family conditions the
two boundary arcs to not mutually connect.

boundary arcs do not connect, then we find s + 1 distinct boundary arcs emanating

from x2 as x2 → x1. This explains the second term in (1.159). The case s = 1 is

exceptional. On the right side of (1.159), we have a zero-leg operator (i.e., the identity)

and a two-leg operator. The two boundary arcs of a pair of one-leg operators whose

fusion contains only the identity (resp. two-leg) family are not (resp. are) conditioned

to mutually connect.

Now we show how BCC operators are used to condition the BC of a system through

an example. For an Ising model in the upper half-plane, we let the bulk spin field

σ ∼= φ1,2 approach the real axis and fuse with its image to create a boundary spin field

φ1,3. According to (1.22), the correlation of the boundary spin field at x1 ∈ R with the

boundary spin field at x2 ∈ R equals the probability that x1 and x2 are connected by

a boundary FK cluster. In the latter situation, the part of the boundary R \ {x1, x2}

is free with infinitesimal wired segments at x1 and x2. This exactly describes the BC

induced by inserting boundary two-leg operators at x1 and x2, which invites us to

reinterpret the boundary spin field as a (dense-phase) two-leg operator: ψ2
∼= φ1,3

(figure 1.18). The probability of observing this BC event is therefore

P(BC) ∼
�i→0

c2

2
�2θ2
1

�2θ2
2
�ψ2(x1)ψ2(x2)�. (1.162)
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σ(z1)
σ(z2)

ψ2(x1) ψ2(x2)

Figure 1.18: The bulk-image fusion of two bulk-spin operators (left) into two boundary-
spin operators, or equivalently two (dense-phase) boundary two-leg operators (right). The
shaded blue region is an FK cluster, and the red boundary in the right figure is a boundary
loop.

This result requires some explanation. The BC event described above is really the

collection of samples in which the i-th free-fixed-free BCC happens within a small

distance �i from xi. Also, c2 is a nonuniversal constant that arises from the scaling

limit of the boundary spin field.

Now we generalize (1.162). We posit that the probability that a system exhibits

the particular BC event ς characterized by an s1-leg BCC within distance �1 from x1,

an s2-leg BCC within distance �2 from x2, etc., is given by

P(ς) ∼
�i→0

cs1 . . . csN �
2θs1
1

. . . �
2θsN
N

�ψs1(x1) . . . ψsN (xN)�, (1.163)

where cs is the nonuniversal scaling constant associated with ψs through (1.38). Fur-

thermore, the expectation value of a product α(z1) . . . ζ(zN) of lattice variable densi-

ties with z1, . . . , zN ∈ H and conditioned on the BC event ς is given by [57]

E[β(z1) . . . ζ(zM) | ς] ∼
�i→0

cα . . . cζ�
2hα
1

. . . �
2hζ

M

× �α(z1) . . . ζ(zM)ψs1(x1) . . . ψsN (xN)�H
�ψs1(x1) . . . ψsN (xN)�R

. (1.164)

With this understanding, we can infer a relationship between the SLE speed and

the conformal weight of the one-leg operator. We follow the method used in [58]. We

80



let N = 2, x1 = 0, and x2 = ∞ in (1.164), we allow an SLE to evolve up to time t,

and we define the random variable

Xt(z1, . . . , zM) :=
�α(z1) . . . ζ(zM)ψ1(γ(t))ψ1(∞)�Ht

�ψ1(γ(t))ψ1(∞)�∂Ht

= ∂gt(z1)
h1 ∂̄ḡt(z̄1)

h̄1 . . .

× . . . ∂gt(zM)hM ∂̄ḡt(z̄M)h̄M
�α(gt(z1)) . . . ζ(gt(zM))ψ1(ξt)ψ1(∞)�H

�ψ1(ξt)ψ1(∞)�R
, (1.165)

where ḡt is the Schwarz reflection of gt into the lower half-plane. Xt averages over all

realizations of the SLE curve γ connecting zero to infinity conditioned on the event

that the bottom segment γ(0, t] is the particular curve determined by the specified

sequence of conformal maps {gs}0≤s≤t. By averaging Xt over all realizations of the

bottom segment, we should recover X0, so Xt must be a martingale. Thus, the drift

term of its Itô derivative, which is proportional to

�κ

4
L2

−1
− L−2

� �
�α(gt(z1)) . . . ζ(gt(zM))ψ1(ξt)ψ1(∞)�H

�ψ1(ξt)ψ1(∞)�R

�
(1.166)

with the differential operators

L−1 := ∂ξt , L−2 :=
M�

i=1

�
hi

(gt(zi)− ξt)2
− ∂i

gt(zi)− ξt

+ c.c.

�
, (1.167)

must vanish. The differential operator acting on the ratio of correlation functions in

(1.166) is reminiscent of the differential operator in (1.106) that annihilates this ratio.

They are matched by identifying the coefficients of their second derivative. We find

κ

4
=






3

2(2h1,2+1)
=⇒ h1,2 = (6− κ)/2κ, κ > 4

3

2(2h2,1+1)
=⇒ h2,1 = (6− κ)/2κ, κ ≤ 4

, (1.168)
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and this leads to an explicit formula for the boundary one-leg weight in terms of κ:

θ1 =
6− κ

2κ
. (1.169)

Using (1.104), (1.114), and (1.169), we can use (1.169) to derive formulas for the

central charge c and Kac weights hr,s in terms of κ:

c(κ) =
(6− κ)(3κ− 8)

2κ
, hr,s =

1

16κ






(κr − 4s)2 − (κ− 4)2, κ > 4

(κs− 4r)2 − (κ− 4)2, κ ≤ 4

. (1.170)

The boundary s-leg weight will be of particular use in this thesis, and now we see

that in terms of κ it is given by

θs =
s(2s + 4− κ)

2κ
. (1.171)

The result (1.170) is consistent with previously made claims. Except for the global

maximum c(4) = 1 over κ > 0, exactly two positive κ values correspond with each

value of c. If one value is κ, then the other is the dual speed κ̂ = 16/κ. Dual speeds

must have the same central charge since they must correspond with the same critical

system, so it is reassuring to see that this requirement is met by (1.170).

In this thesis, we study critical lattice models in simply connected domains and

with a free/fixed side-alternating boundary condition (FFBC). This BC is comprised

of an even number of free-to-fixed or fixed-to-free BCCs on the real axis, with the

i-th BCC occurring within some small distance �i from a specified point xi on the

real axis, and with x1 < x2 < . . . < x2N−1 < x2N . Thus, the BC alternates from fixed

to free to fixed, etc. , or vice-versa, as we move rightward along the real axis (figure

1.19). Moreover, we can condition a pair of fixed sides to be independently wired, or

not constrained to exhibit the same state, or we can condition them to be mutually
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ψ1(x3) ψ1(x4) ψ1(x2N−1) ψ1(x2N )ψ1(x1) ψ1(x2) ψ1(x5) ψ1(x6) . . .

fixed (wired)

free

Figure 1.19: An illustration of the side-alternating free/fixed boundary condition.

wired, or constrained to exhibit the same state. Many different FFBC events can be

considered by mutually wiring different collections of fixed segments with each other.

The likelihood of a observing a system configuration in the upper half-plane

that exhibits the specified FFBC event ς is given by (1.163) with N �→ 2N and

s1, . . . , s2N = 1. This is

P(ς) ∼
�i→0

c2N

1
�2θ1
1

. . . �2θ1
2N

Υς , Υς(x1, . . . , x2N) := �ψ1(x1) . . . ψ1(x2N)�. (1.172)

We call Υς the universal partition function of the FFBC event ς.

In addition to the three Ward identities (1.54), Υς must obey the null-state PDE

(1.106) with the replacements zj �→ xj ∈ R, N �→ 2N , h1,2 �→ θ1, and hj �→ θ1.

Because each BCC hosts a boundary one-leg operator, this 2N -point function must

also obey the 2N − 1 distinct PDEs generated by cyclically permuting the indices

{1, . . . , 2N}. Overall, this system is

�
κ

4
∂2

i
+

2N�

j �=i

�
∂j

xj − xi

− θ1

(xj − xi)2

��
Υς(x1, . . . , x2N) = 0, i ∈ {1, . . . , 2N}.

(1.173)

(This system is also derived from a multiple-SLE process modeling the same phenom-

ena in [59, 60].) Remarkably, many classical solutions of the system (1.173) that also

solve the Ward identities can be explicitly constructed through a method known as
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the Coulomb gas formalism which we will survey in the next section. The primary

goal of chapter two is to show that all classical solutions of (1.173) are given by this

method.

1.2.9 The Coulomb gas formalism

To directly solve the composite system of null-state PDEs (1.173) and Ward iden-

tities (1.54) is very difficult. Another approach to finding solutions is to construct

an explicit theory and use the computational techniques native to it to calculate the

correlation functions. Though potentially simpler, this approach will only generate

solutions of physical relevance in that particular theory. It could be that observables

in other yet unknown theories solve the same system, implying the existence of an-

other class of physically relevant solutions. So this approach does not address the

extent to which known solutions that are particular to a theory fill out the complete

solution space of the system. These issues will be addressed in the next chapter.

The explicit CFT that we will employ is called the Coulomb gas or Liouville field

theory, and the methods born from it are called the Coulomb gas formalism. These

methods were first presented in [61, 62]. Textbook treatments can be found in [3, 11].

To construct the Coulomb gas (non-rigorously), we begin with a massless bosonic

free field ϕ(z, z̄) over the complex plane. There is a rigorous mathematical theory

called the Gaussian free field that captures many of the essential features of the

bosonic free field [63]. Here, we will pursue the non-rigorous treatment used in the

physics literature. The massless free boson has the conformally invariant action

S0[ϕ] =
1

8π

�

C

d2x ∂ϕ(z, z̄)∂̄ϕ(z, z̄). (1.174)

In the operator formalism, ϕ is quantized in terms of ladder operators that raise

or lower the energy of the system. It may be broken into a sum of a holomorphic
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component and an antiholomorphic component ϕ(z, z̄) = ϕ(z)+ ϕ̄(z̄) with respective

two-point functions

�ϕ(z1)ϕ(z2)� = −1

2
log z21, �ϕ̄(z̄1)ϕ̄(z̄2)� = −1

2
log z̄21, �ϕ(z1)ϕ̄(z2)� = 0, (1.175)

where z21 := z2 − z1 (resp. z̄21 := z̄2 − z̄1) and |z2| > |z1| (resp. |z̄2| > |z̄1|). Thus, the

complete two-point function �ϕ(z1, z̄1)ϕ(z2, z̄2)� equals log |z12| which is the Coulomb

potential in two-dimensional electrostatics. This justifies the name “Coulomb gas.”

The stress-tensor (i.e., the conserved current that follows from translation invariance

of the theory) is

T (z) = −1

2
: ∂ϕ(z)∂ϕ(z) :, T̄ (z̄) := −1

2
: ∂̄ϕ̄(z̄)∂̄ϕ̄(z̄) : (1.176)

where “: . . . :” indicates a normal-ordering of the ladder operators in the ladder

operator expansion of ∂ϕ and ∂̄ϕ̄ [11]. By using Wick’s theorem to compute the OPE

of T with itself and comparing with (1.70), we discover that the central charge of the

theory is one.

We define a holomorphic (resp. antiholomorphic) field called a chiral operator of

charge α (resp. ᾱ) by

Vα(z) := : ei
√

2αϕ(z) :, V̄ᾱ(z̄) := : ei
√

2ᾱϕ̄(z̄) : . (1.177)

By investigating their OPE with the stress tensor and comparing with (1.69), we

find that Vα (resp. V̄ᾱ) is a primary field with conformal weights h = α2 and h̄ = 0

(resp.h = 0 and h̄ = ᾱ2). Using the ladder-operator expansion of ϕ and ϕ̄, we can

compute an N -point function of chiral operators, finding

�Vα1(z1) . . . VαN (zN)� = δα1+...+αN , 0

�

i<j

z
2αiαj

ij
, (1.178)
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with a similar result for the antiholomorphic sector. The Kronecker delta shows that

the total charge of the N -point function must be zero in order for the N -point function

to be nonzero. This condition, called the neutrality condition, emerges naturally in

the calculation, and it also emerges as a consequence of requiring the N -point function

to satisfy the conformal Ward identities.

To broaden the scope of this theory to theories with central charge less than one,

we add to the free action (1.174) a term that couples the free boson to the scalar

curvature R of the Riemann sphere on which the theory is defined. (Now we are

working with the one-point compactification of C.) The action is now

S[ϕ] = S0[ϕ] +
γ

4π

�

C

d2x ϕ(z, z̄)R. (1.179)

This additional term modifies the stress tensor to

T (z) = −1

2
: ∂ϕ(z)∂ϕ(z) : + γ∂2ϕ(z) (1.180)

(with a similar modification to the antiholomorphic component), and by taking the

OPE of T (z) with itself, we find that the central charge of the theory has shifted to

c = 1 + 12γ2. (1.181)

We wish for c to be less than one since this range includes the minimal models and

corresponds with SLE. Thus, we write γ = iα0

√
2 with α0 > 0 so that c = 1− 24α2

0
.

By computing the OPE of a chiral operator Vα(z) with the modified stress tensor, we

discover that the conformal weight of Vα(z) is shifted from h = α2 to

h(α) = α(α− 2α0). (1.182)
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We say that the charges α and 2α0 − α are conjugate because the conformal weights

of the chiral operators Vα and V2α0−α are equal.

Thanks to the Gauss-Bonnet theorem, the total scalar curvature 1

8π

�
d2xR of

the Riemann sphere is a topological invariant equaling one. Thus, we may distribute

its scalar curvature R anywhere across the Riemann sphere without altering this

quantity. To concentrate the curvature at infinity is the most natural choice, for

then (1.179) reduces to (1.174) for almost all of C and we can compute correlation

functions with this latter action. If we formally insert R = 8πδ(x−∞) into (1.179),

then the action reduces to

S[ϕ] = S0[ϕ] + i
√

2(2α0)ϕ(∞). (1.183)

A chiral N -point function equals an average over all possible field configurations ϕ

weighted by the exponentiated action e−S[ϕ]. In our case, this weight factors into

exp(−S[ϕ] ) = ei
√

2(−2α0)ϕ(∞) exp(−S0[ϕ] ). (1.184)

Thus, an N -point function in the Coulomb gas model with the modified action (1.179)

equals an N -point function in the original Coulomb gas model (1.174) with a chiral

operator of background charge −2α0 placed at infinity. At an infinite distance from

the other points z1, . . . , zN , this chiral operator does not interact with any of the

other chiral operators. Its presence simply shifts the neutrality condition in (1.178)

to α1 + . . . + αN = 2α0. Therefore, an N -point function in this modified theory is

given by

�Vα1(z1) . . . VαN (zN)� = δα1+...+αN ,2α0

�

i<j

z
2αiαj

ij
, α0 =

�
1− c

24
. (1.185)

Having extended our original c = 1 Coulomb gas theory to the c < 1 regime, we
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seek a means to relax the neutrality condition in order to calculate some correlation

functions that are not a-priori neutral. We begin by searching for chiral operators

with conformal weight one. According to (1.182), these operators necessarily have

charge α±, where the screening charge α± is one of the two roots of the equation

α±(α± − 2α0) = 1. Solving for these roots and using (1.170), we find

α± = ±






(
√

κ/2)± κ > 4

(
√

κ/2)∓ κ ≤ 4

, (1.186)

and because these charges are obviously conjugate to each other, we have 2α0 =

α+ + α−. Next, we construct a screening operator from the chiral operator V ±(u) :=

Vα±(u), by integrating u along a closed contour Γ in the complex u-plane:

Q± :=

�

Γ

V ±(u) du. (1.187)

Screening operators are non-local and have weight zero, so their insertion into a

correlation function will not alter the latter’s conformal properties. Consequently, if

a correlation function has an −mα+ − nα− charge deficit with m, n ∈ Z
+, we may

insert m copies of Q+ and n copies of Q− into the correlation function to neutralize

it. Finally, we must determine an appropriate closed contour Γ for each screening

charge, and these choices will depend on the specific fusion rules that we wish for the

chiral operators in the correlation function to exhibit.

Now we apply these methods, i.e., the Coulomb gas formalism, to calculate a holo-

morphic four-point function with all four primary fields sharing the same conformal

weight h. In this formalism, each field may be represented by either the chiral oper-

ator Vα or the chiral operator V2α0−α, both with conformal weight h = α(α − 2α0).
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We thus find five candidate correlation functions,

�VαVαVαVα�, �VαVαVαV2α0−α�, �VαVαV2α0−αV2α0−α�, (1.188)

�VαV2α0−αV2α0−αV2α0−α�, �V2α0−αV2α0−αV2α0−αV2α0−α�, (1.189)

none of which can be made neutral by inserting screening operators Q± unless 2α is

an integer combination of α+ and α−. Therefore, we need α to assume one of the

following values called Kac charges :

α±

r,s
=

�
1± r

2

�
α+ +

�
1± s

2

�
α−, r, s ∈ Z. (1.190)

We note that α±

r,s
and α∓

r,s
are conjugate, and by using (1.182) and (1.113), we can

show that the conformal weight of the chiral operator V ±

r,s
:= V

α
±
r,s

is simply the Kac

weight hr,s defined in (1.113):

h(α±

r,s
) =

1

4
(rα+ + sα−)2 − α2

0
, r, s ∈ Z

+ = hr,s. (1.191)

Thus, we can use this method to compute the four-point function �φhφhφhφh� only if

h = hr,s for some r, s ∈ Z. It is interesting to witness the natural appearance of Kac

operators in the Coulomb gas formalism.

As an example, we use this theory to calculate the holomorphic four-point function

consisting of boundary one-leg operators:

Υ(z1, . . . , z4) := �ψ1(z1)ψ1(z2)ψ1(z3)ψ1(z4)�. (1.192)

In the dense phase (κ > 4), the chiral representation of this four-point function that

requires the fewest screening operators is
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�V −

1,2
(z1)V

−

1,2
(z2)V

−

1,2
(z3)V

+

1,2
(z4)Q

−� =
3�

i<j

(zi − zj)
2α

−
1,2α

−
1,2

×
3�

i=1

(zi − z4)
2α

−
1,2α

+
1,2

�

Γ

3�

i=1

(u− zi)
2α

−
1,2α−(u− z4)

2α
+
1,2α− du. (1.193)

Explicit formulas for the exponents appearing in (1.193) in terms of κ are found from

(1.186, 1.190), and they are

2α−
1,2

α−
1,2

=
2

κ
, 2α−

1,2
α+

1,2
= 1− 6

κ
, 2α−

1,2
α− = −4

κ
, 2α+

1,2
α− =

12

κ
− 2. (1.194)

By replacing V ±

1,2
�→ V ±

2,1
and Q− �→ Q+ in this example, we obtain the dilute phase

(κ ≤ 4) version of this four-point function. But since none of the powers in (1.194)

change as a result of this switch, the formula (1.193) is the same function in either

phase. This is true for any N -point function of boundary s-leg operators, so we will

always use notation consistent with the dense phase.

The closed contour Γ must wind around the branch points of the integrand in order

for the integral in (1.193) to be nonzero, and in so doing, Γ will cross the branch cuts

of the integrand and pass onto different Riemann sheets. Because the powers (1.194)

are usually irrational, the winding number of Γ around each branch point must be

zero in order to guarantee its closure. The simplest path that achieves this goal is a

Pochhammer contour P(z1, z2) that entwines two of the branch points {zi, zj} (figure

1.20). There are
�
4

2

�
= 6 possible contours, but as we will see in chapter two, at most

two choices are linearly independent. In our present example, we choose Γ to be

either P(z1, z2) or P(z3, z4).

If the respective exponents βi and βj of (zi − u) and (zj − u) in the integrand are

greater than negative one, the Pochhammer contour P(z1, z2) can be replaced by a

simple curve that starts at zi and ends at zj. By contracting P(zi, zj) so that it hugs

the line segment [zi, zj] and including the phases that the integrand accumulates with
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x1 x2 x1 x2

= 4 eπi(β1−β2) sin πβ1 sin πβ2

Figure 1.20: The Pochhammer contour P(x1, x2). If the numbers β1 and β2, where e2πiβ1

and e2πiβ2 are the monodromy factors associated with x1 and x2 respectively, are greater
than negative one, then a Pochhammer contour may be replaced with the simple contour
shown on the right.

each wind around these branch points, one can show that

�

P(z1,z2)

(zi − v)βi(v − zj)
βj . . . dv

= 4 exp πi(βi − βj) sin πβi sin πβj

�
zj

zi

(zi − v)βi(v − zj)
βj . . . dv. (1.195)

If βi or βj is less than or equal to negative one, then the integral on the right side

diverges, and this equality no longer holds. (The equality would hold if we kept the

divergent endcap contributions that come from integrating around the tight loops of

Γ that surround zi and zj, but the identity that would follow is not useful.) Equation

(1.194) shows that we may replace the contours P(z1, z2) and P(z3, z4) for the

integral in (1.193) with [x1, x2] and [x3, x4] respectively only in the dense phase.

The selection of integration contours affects some of the fusion rules of the chi-

ral operators in a correlation function. The OPE of two chiral operators (1.177)

of respective charges α1 and α2 contains only the conformal family of a chiral op-

erator with charge α1 + α2. This is in direct analogy with the usual algebra rule

ei
√

2α1ϕei
√

2α2ϕ = ei
√

2(α1+α2)ϕ. To within a fusion constant, the leading term of the

OPE is then

Vα1(z1)Vα2(z2) ∼
z2→z1

(z2 − z1)
2α1α2Vα1+α2(z1) + . . . . (1.196)

We note that the exponent 2α1α2 equals −h(α1)− h(α2) + h(α1 + α2) as it must in

order for (1.196) to have the structure of an OPE of primary fields.

Now we look at how our choice of integration contours can change the fusion rule
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α−1,2 α−1,2

α−

α−1,2 α−1,2

α−1,2

α−

α−1,2α−1,3

α−1,1 α+
1,3

α+
1,1

α+
1,2

α+
1,2

Figure 1.21: Fusion rules for pairs of boundary one-leg chiral operators both entwined
and not entwined by a Pochhammer contour along which a screening charge is integrated.

(1.196) in example (1.193). The total charge of the chiral operators at the pairs of

points {z1, z2} (resp. {z3, z4}) is

α−
1,2

+ α−
1,2

= α−
1,3

, (resp.α−
1,2

+ α+

1,2
= α+

1,1
), (1.197)

which is that of a two-leg operator (resp. identity operator), so only the conformal

family of this operator appears in the fusion of V −

1,2
(z1) with V −

1,2
(z2) (resp.V −

1,2
(z3)

with V +

1,2
(z4)). Now we suppose that Γ = P(z1, z2) (resp.Γ = P(z3, z4)). Then

because Γ is entwined with the two points, the screening charge α− is pulled in with

the fusion and adds to the total charge of the product. The new total charge is

α−
1,2

+ α−
1,2

+ α− = α−
1,1

, (resp.α−
1,2

+ α+

1,2
+ α− = α+

1,3
). (1.198)

The total charge has changed from that of a two-leg operator (resp. identity operator)

to that of an identity operator (resp. two-leg operator) (figure 1.21).

So far, our calculations have pertained to only the isolated holomorphic or an-

tiholomorphic sector. If ψ1(z) (resp.ψ1(z̄)) is a holomorphic (resp. antiholomorphic)

component of a spinless bulk field ψ1(z, z̄) with conformal weights h = h̄ = θ1, then

we must sew the holomorphic and antiholomorphic sectors together to obtain the

complete four-point function

Υ(z1, z̄1, . . . , z4, z̄4) := �ψ1(z1, z̄1)ψ1(z2, z̄2)ψ1(z3, z̄3)ψ1(z4, z̄4)� (1.199)
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= z−2θ1
21

z−2θ1
43

η2θ1 z̄−2θ1
21

z̄−2θ1
43

η̄2θ1G12:34(η, η̄), (1.200)

with G12:34, defined in (1.61), equaling a linear combination of the products of the

conformal blocks pertaining to the holomorphic and antiholomorphic sectors:

G12:34(η, η̄) =
�

m,m̄=0,2

C(mm̄)

12
C(mm̄)

34
Fm

12:34
(η)F m̄

12:34
(η̄). (1.201)

We note that C(mm̄)

ij
= C(mm̄)

kl
for all i, j, k, and l since all of the fields are ψ1, and to

reflect this, we write the OPE coefficient as C(mm̄)

11
. The fusion coefficient C(mm̄)

11
is

chosen so that G12:34(η, η̄) is single-valued for all (η, η̄) ∈ C
2. In particular, G12:34(η, η̄)

must be invariant as η and η̄ wind counterclockwise and clockwise respectively around

the branch points zero, one, and infinity of Fm

ij:kl
. This condition requires m = m̄ and

fixes the ratio (C2

11
/C0

11
)2, the denominator of which is simply the coefficient of the

bulk two-point function �ψ1(z, z̄)ψ1(z, z̄)�.

In this thesis, we will almost exclusively work with boundary operators, the cor-

relation functions of which exhibit just one sector. Thus, the methods described in

the previous paragraph cannot be used to calculate the boundary OPE coefficients,

though other methods are available [48].

1.3 Summary

In this chapter, we have introduced several examples of lattice models with critical

behavior and explained their relation with CFT. We have also proposed a method for

studying these critical lattice models confined to domains with boundary and with a

specified FFBC event, a setting in which we will work for the rest of this thesis. Using

CFT, we argued that the universal partition function for such a system is governed

by the system of differential equations (1.54, 1.173).

The remainder of this thesis investigates certain observables associated with the
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critical systems and governed by the systems of PDEs described above. In chapter

two, we begin this effort by seeking a complete description of the solution space of

the system (1.54, 1.173). In chapter three, we reexamine special cases for which

the solution space exhibits exceptional properties that are noted in chapter two. In

chapter four, we apply the results of chapter two to calculate a fundamental set of

observables called crossing probabilities for these critical systems. In chapter five, we

use the techniques presented in chapter one to calculate another set of observables

for these critical systems called pinch-point densities.
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CHAPTER II

A solution space for a system of null-state

differential equations

The goal of this chapter is to rigorously characterize the solution space of the

system of PDEs that governs a 2N -point function of boundary one-leg operators

�ψ1(x1) . . . ψ1(x2N)�. We achieve this goal modulo the proofs of two conjectures to be

stated later. The first, conjecture II.7, seems to be a minor, technical detail, but the

second, conejcture II.16, supports a major step in the proof of the results presented

in this chapter. We propose an incomplete proof for the latter conjecture.

As we observed in chapter one, the system governing the 2N -point function

�ψ1(x1) . . . ψ1(x2N)� consists of the collection of 2N null-state PDEs (1.173),

�
κ

4
∂2

i
+

2N�

j �=i

�
∂j

xj − xi

− θ1

(xj − xi)2

��
F (x1, . . . x2N) = 0, i ∈ {1, 2, . . . , 2N} (2.1)

(θ1 := (6−κ)/2κ is the conformal weight (1.169) of the one-leg operator ψ1(xi)), and

the three conformal Ward identities,






�
2N

i=1
∂iF (x1, . . . x2N) = 0

�
2N

i=1
(xi∂i + θ1)F (x1, . . . x2N) = 0

�
2N

i=1
(x2

i
∂i + 2θ1xi)F (x1, . . . x2N) = 0

. (2.2)
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We call the i-th null-state PDE among (2.1) the null-state PDE centered on xi. This

system is defined for κ �= 0, and we will focus our attention on κ ∈ (0, 8).

The subsystem of 2N null-state PDEs (2.1) is undefined on the locus of diagonal

points, or points (x1, . . . , x2N) with at least two of its coordinates equal. We let Ω

be the complement of the locus of diagonal points in R
2N . Then the diagonal points

make up the boundary ∂Ω, and together they divide Ω into connected components,

each of the form

Ωσ := {x ∈ Ω : xσ(1) < xσ(2) < . . . < xσ(2N−1) < xσ(2N)} (2.3)

for some permutation σ ∈ S2N . We will write x for the tuple (x1, . . . , x2N) ∈ Ωσ. In

this chapter and up through section 2.3, we will refer to x as a point and each xi as

a coordinate of that point, but in the rest of this thesis, we will refer to xi as a point.

By symmetry, it suffices to restrict the domain of our solutions to the component Ω0

corresponding to the identity permutation.

Indeed, the subsystem (2.1) is elliptic, so all of its solutions exhibit strong regu-

larity. After summing over the 2N null-state PDEs, we find that any solution obeys

a linear, homogeneous, strictly elliptic PDE whose coefficients are analytic in Ω0. (In

fact, the principal part of this PDE is simply the Laplacian.) It follows from the

theorem of Hans Lewy [64] that all of its solutions are analytic in Ω0.

As we mentioned earlier, the Ward identities (1.54) can be solved by the method

of characteristics. It follows that any solution F of these identities must have the

form

F (x) = G(η1, . . . , η2N−3)
2N�

i=1

|xi − xσ(i)|−θ1 (2.4)

where σ is a pairing (i.e., a permutation σ ∈ S2N with σ = σ−1) of the indices

{1, . . . , 2N}, where {η1, . . . , η2N−3} is any set of 2N −3 independent cross-ratios that

can be formed from x1, . . . , x2N , and where G(η1, . . . , η2N−3) is an analytic function
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of x on Ω0. The absolute value signs around the differences in (2.4) are included so

that F is real. Without it, F would have a constant phase on Ω0. The ansatz (2.4)

implies that F satisfies the usual covariant transformation rule

F (x�) = |∂f(x1)|−θ1 . . . |∂f(x2N)|−θ1F (x), (2.5)

where f is a Möbius transformation taking the upper half-plane onto itself, x�
i

:=

f(xi), and x� := f(x) := (x�
1
. . . , x�

2N
). (Actually, such transformations are composi-

tions of translation by a ∈ R, multiplication by b > 0, and the inversion x �→ −1/x,

all of which have positive derivatives. Thus the absolute value signs in (2.5) are not

necessary.) Some of these transformations may send Ω0, the domain of F , onto an-

other connected component of Ω. Transformation (2.108) gives such an example. In

this case, F (x�) is given by the right side of (2.4) with xi �→ x�
i
and the cross-ratios un-

changed since they are invariant under f . This function F over the different domain

clearly solves the system (2.1-2.2) in the primed coordinates (x�
1
, . . . , x�

2N
).

Before we begin our analysis, we state a prediction of the rank (i.e., dimension

of the solution space) of the system (2.1-2.2) that is motivated by the discussion

surrounding equation (1.173). The 2N boundary one-leg operators inserted at the

points x1, . . . , x2N introduce N noncrossing boundary arcs into the critical system in

the upper half-plane that anchor to and connect these 2N points pairwise. These

boundary arcs fluctuate in the upper half-plane according to the law of multiple-SLE

[59, 60]. Similar to SLE, multiple-SLE is a stochastic process that evolves 2N curves in

the upper half-plane from 2N origin-points x1, . . . , x2N on the real axis until they join

pairwise to form N distinct boundary arcs. But unlike regular SLE (or 2N multiple-

SLE with N = 1), the law of 2N multiple-SLE with N > 1 is not uniquely determined

by conformal invariance alone since the multiple-SLE curves of the latter process may

be conditioned to join pairwise in more than one connectivity. Indeed, we must also
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specify a function, called a “partition function” in [59], to drive the multiple-SLE

process. [59, 60] argues that the partition function must solve the system (2.1-2.2)

and that any solution of this system can serve as the partition function. Ref. [59, 60]

also argue that our choice of partition function biases the boundary arcs to join

pairwise in a certain boundary arc connectivity (BAC) and suppose the existence of a

basis for the solution space of the system (2.1-2.2) in which each element conditions

the boundary arcs to join in a particular BAC almost surely.

There are CN possible BACs, where CN is the N -th Catalan number. To prove

this claim, we let CN simply be the number of possible boundary arc connectivities

for now. In each connectivity, an arc will connect x1 with some other point xj (where

j is necessarily even) and divide H into two simply connected domains. One domain

will contain (j − 2)/2 boundary arcs connecting the points x2, . . . , xj−1 in one of

Cj/2−1 connectivities, and the other will contain N − j/2 boundary arcs connecting

xj+1, . . . , x2N in one of CN−j/2 connectivities. Summing over all even j from j = 2 to

2N , we find a recursive relation among the CN , with the initial condition C1 = 1.

CN =
2N�

j=2, even

Cj/2−1CN−j/2, C1 = 1. (2.6)

This is the recursion relation of the Catalan numbers, and it may be solved with a

generating function to find the explicit formula

CN =
(2N)!

N !(N + 1)!
. (2.7)

Thus, [60] predicts that the rank of the system (2.1-2.2) is CN . A major goal of this

chapter is to prove this statement.
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2.1 The Coulomb gas solutions

Remarkably, many exact solutions of the system (2.1-2.2) are known, and they are

constructed by using the Coulomb gas formalism outlined in section 1.2.9. We endow

all but one coordinate xc of x ∈ Ω0 with the standard charge α−
1,2

, we endow xc with

the conjugate charge α+

1,2
, and we use N − 1 screening operators. (When working

with chiral operators, we will always use notation consistent with the dense phase of

SLE for convenience, keeping in mind that the formulas are the same in both phases.)

These choices give a neutral 2N -point function of chiral operators,

�V −

1,2
(x1) . . . V −

1,2
(xc−1)V

+

1,2
(xc)V

−

1,2
(xc+1) . . . V −

1,2
(x2N)Q−

1
. . . Q−

N−1
�, (2.8)

that should satisfy the system (2.1-2.2). Using the results of section 1.2.9 and (2.132),

we may write an explicit formula for (2.8). The formula is

F ({Γm}N−1

m=1
|x) :=

�

i<j

i,j �=c

(xj − xi)
2/κ

�

i�=c

(xc − xi)
1−6/κ

× IN−1



βkl =






−4/κ, k �= c

12/κ− 2, k = c





; γpq =

8

κ

����� {Γm}N−1

m=1

����� x



 , (2.9)

where c ∈ {1, . . . , 2N}, IM with M ∈ Z
+ is the M -fold Coulomb-gas integral

IM({βkl}; {γpq} | {Γm}M

m=1
|x1, . . . , x2N) :=

�

Γ1

�

Γ2

. . .

�

ΓM

�
2N�

k=1

M�

l=1

(xk − ul)
βkl

� �
M�

p<q

(up − uq)
γpq

�
duM . . . du2 du1, (2.10)

and {Γm} is a collection of closed contours in C. Throughout this thesis, we will use

the branch of the logarithm such that arg(z) ∈ [−π, π) for z ∈ C. This determines

the orientations of the branch cuts of the integrand for IM .
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Definition II.1. A linear combination of the functions given in (2.9) is called a

Coulomb gas solution.

The Coulomb gas formalism is non-rigorous, so we must prove that the candidate

solution (2.9) indeed solves the system (2.1-2.2). This proof was originally given in

[60], and we give the same proof here with a slightly different presentation.

Theorem II.2. Every Coulomb gas solution solves the system (2.1-2.2).

Proof. In the proof, we will use the notation x2N+k := uk and from (1.186, 1.190),

α+ =
√

κ/2, α− = −2/
√

κ, 2α0 = α+ + α−, (2.11)

α−
1,2

= −α−/2 = 1/
√

κ, α+

1,2
= α+ + 3α−/2 = (κ− 6)/2

√
κ. (2.12)

These are the dense-phase values of the Kac and screening charges to be used in this

proof.

We begin with a different construction of the Coulomb gas solution (2.9) that

suggests how it will solve the null-state PDEs (2.1). For a collection of real “charges”

{αi}2N+M

i=1
, we define the function

Φ(x1, . . . , x2N+M) :=
2N+M�

i<j

(xj − xi)
2αiαj . (2.13)

In the Coulomb gas formalism, αi is the charge associated with chiral operator lo-

cated at the coordinate xi. Our strategy is to choose the αi such that for each

i ∈ {1, . . . , 2N}, we have

�
κ

4
∂2

i
+

2N�

j �=i

�
∂j

xj − xi

− (6− κ)/2κ

(xj − xi)2

��
Φ =

2N+M�

k=2N+1

∂k( . . . ), (2.14)

where “ . . . ” stands for some analytic function. Once done, we integrate the coordi-

nates x2N+1, . . . , x2N+M on both sides of (2.14) around closed, nonintersecting con-
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u1

u2

Figure 2.1: The integration of u1 along a contour Γ1 that crosses the contour Γ2 of u2.
The integrand for the u1 integration restricted to Γ1 × Γ2 is not a continuous function of
u2 since whether or not Γ1 crosses the u2 branch cut depends on the location of u2.

tours {Γ1, . . . , ΓM} (such as non-intersecting Pochhammer contours). Because either

side of (2.14) is absolutely integrable on each path, we can perform these integrations

in any order. Integrating the right side of (2.14) will therefore give zero. Finally,

because the contours do not intersect (figure 2.1), we have sufficient continuity to use

the Leibniz rule of integration to exchange the order of differentiation and integration

on the left side of (2.14). We therefore find that F :=
�

Φ solves the null-state PDEs

(2.1). We note that M counts the number of screening charges to be used in the

Coulomb gas construction (2.8).

With some algebra, we find that for any collection of real “conformal weights”

{hj}, “charges” {αj}, a positive integer M , and each i ∈ {1, 2, . . . , 2N + M},

�
κ

4
∂2

i
+

2N+M�

j �=i

�
∂j

xj − xi

− hj

(xj − xi)2

��
Φ

=




2N+M�

j,k �=i

j �=k

αjαk(κα2

i
− 1)

(xj − xi)(xk − xi)
+

2N+M�

j �=i

αiαj(καiαj − κ/2 + 2)− hj

(xj − xi)2



 Φ. (2.15)

If hj = (6− κ)/2κ for 1 ≤ j ≤ 2N and hj = 1 for j > 2N (the conformal weight of a

boundary one-leg operator and screening operator respectively), then for 1 ≤ i ≤ 2N ,

(2.15) can be written as

�
κ

4
∂2

i
+

2N�

j �=i

�
∂j

xj − xi

− (6− κ)/2κ

(xj − xi)2

��
Φ =

2N+M�

k=2N+1

∂k

�
− Φ

xk − xi

�
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+




�

j,k �=i

j �=k

αjαk(κα2

i
− 1)

(xj − xi)(xk − xi)
+

�

j �=i

αiαj(καiαj − κ/2 + 2)− hj

(xj − xi)2



 Φ. (2.16)

We recognize the differential operator of the null-state PDE centered on xi (2.1) on

the left side of (2.16). Now we choose a particular i �= 2N . One way to obtain the

form (2.14) for this particular i is by choosing the αi and {αj}j �=i such that

αi = α−
1,2

= 1/
√

κ, α±

j
= α0 ±

�
α2

0
+ hj, j �= i, (2.17)

so that the term in brackets on the right side of (2.16) vanishes. Note that for

j ∈ {1, . . . , i− 1, i + 1, . . . , 2N}, hj = (6− κ)/2κ implies α±

j
= α±

1,2
, and for j > 2N ,

hj = 1 implies α±

j
= α±. If we choose the − sign for all αj, then the bracketed term

will vanish again for the other 2N − 1 null state PDEs, and for 1 ≤ i ≤ 2N we find

�
κ

4
∂2

i
+

2N�

j �=i

�
∂j

xj − xi

− (6− κ)/2κ

(xj − xi)2

��
Φ =

2N+M�

k=2N+1

∂k

�
− Φ

xk − xi

�
. (2.18)

As previously discussed, the function F =
�

Φ is annihilated by the differential oper-

ator on the left for all 1 ≤ i ≤ 2N provided that none of the M integration contours

intersect.

However, the function F as prescribed above does not obey the Ward identities

(2.2), so we cannot use this choice of signs for (2.17). The Ward identities dictate

that F must have the form (2.4). This is equivalent to requiring that the function

G(x1, . . . , x2N) :=
2N�

j=1, odd

(xj+1 − xj)
2θ1F (x1, . . . , x2N)

=
2N�

j=1, odd

(xj+1 − xj)
6/κ−1

�

Γ1

. . .

�

ΓM

Φ(x1, . . . , x2N+M) dx2N+1 . . . dx2N+M (2.19)

is invariant under Möbius transformations, or equivalently, depends on only a set of
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2N − 3 independent cross-ratios that can be formed from {x1, . . . , x2N}. We choose

these cross-ratios to be

ηi = f(xi) with f(x) :=
(x− x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − x)
, (2.20)

so that η1 = 0 < η2 < η3 < . . . < η2N−2 < f(x2N−1) = 1 < f(x2N) = ∞. Then this

condition amounts to requiring that G satisfy

G(x1, x2, x3, . . . , x2N−2, x2N−1, x2N) = G(0, η1, η2, . . . , η2N−3, 1,∞). (2.21)

Now we seek sign choices for (2.17) that may lead to this identity. Because the right

side is necessarily finite, we momentarily ignore its infinite factors. Using (2.19), we

see that the k-th integral on the right side of (2.21) has the form

�
ηβ1

k
(1− ηk)

β2N−1

2N−2�

i=2

(ηi − ηk)
βi

2N+M�

j=2N+1

j �=k

(ηj − ηk)
βj dηk (2.22)

while the k-th integral on the left side of (2.21) has the form

� 2N�

i=1

(xi − xk)
βi

2N+M�

j=2N+1

j �=k

(xj − xk)
βj dxk. (2.23)

We note that the integrand of (2.23) contains an extra factor that was dropped in

(2.22) when x2N was sent to infinity. The simplest condition that achieves the equality

in (2.21) is for the integrals (2.22) and (2.23) to be the same up to algebraic prefactors.

After the change of variables ηi = f(xi), the first integral (2.22) transforms into

P(x1, . . . , x2N)

� 2N−1�

i=1

�
xi − xk

x2N − xk

�βi 2N+M�

j=2N+1

j �=k

�
xj − xk

x2N − xk

�βj dxk

(x2N − xk)2
, (2.24)
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where P(x1, . . . , x2N) is an algebraic prefactor whose explicit formula is presently

unimportant. To match the integral in (2.24) with that in (2.23), we must have

β2N =
�

j �=k,2N

βj − 2. (2.25)

In other words, the sum of the powers in the integrand of each integral (2.23) ap-

pearing in
�

Φ must equal negative two. (We note that this is achieved if all of the

αi in (5.119) sum to the background charge 2α0. This is the Coulomb gas neutrality

condition discussed in section 1.2.9:

−2 =
�

j �=k

βj = 2αk

�

j �=k

αj = 2αk

�
�

j

αj − αk

�
= 2α±

�
�

j

αj − α±

�
(2.26)

⇐⇒
�

j

αj = 2α0. (2.27)

To arrive with (2.27), we use the identities α+ + α− = 2α0 and α+α− = −1.)

Let σk be the sum of the powers of the k-th integral in
�

Φ. The results of the

previous paragraph suggest that we should choose the signs in (2.17) so that σk = −2

for all k ∈ {2N + 1, . . . , 2N + M}. If we choose






αj = α−
1,2

j ∈ {1, . . . , p}

αj = α+

1,2
, j ∈ {p + 1, . . . , 2N}

αj = α−, j ∈ {2N + 1, . . . , 2N + q}

αj = α+, j ∈ {2N + q + 1, . . . , 2N + M}

, (2.28)

and let p� := 2N − p and q� := M − q, then the condition σk = −2 for all k ∈

{2N + 1, . . . , 2N + M} becomes

σk = [2pα−
1,2

+ 2p�α+

1,2
+ 2(q − 1)α− + 2q�α+]α− (2.29)
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= −2, k ∈ {2N + 1, . . . , 2N + q} if q �= 0, (2.30)

σk = [2pα−
1,2

+ 2p�α+

1,2
+ 2qα− + 2(q� − 1)α+]α+ (2.31)

= −2, k ∈ {2N + q + 1, . . . , 2N + M} if q� �= 0. (2.32)

Equation (2.31) implies that p�+ q�−1 = 0, which is impossible for p�, q� ∈ Z
+. Thus,

q� = 0, q = M , and requirement (2.31) vanishes. Equation (2.29) gives

p� = 1, p = 2N − 1, M = N − 1. (2.33)

To satisfy these requirements, we choose the − (resp.+) sign in (2.17) for the αj with

j �= 2N (resp. j = 2N).

With the charges and number of integrals set, we see that (2.18) is true for M =

N − 1 and i < 2N . Now we must also show that when i = 2N the term in brackets

on the right side of (2.16) with M = N − 1 is a sum of derivatives with respect to

x2N+1, . . . , x3N−1. This amounts to tedious algebra that is explicitly done in [60] with

the result

�
κ

4
∂2

2N
+

�

j �=2N

�
∂j

xj − x2N

− (6− κ)/2κ

(xj − x2N)2

��
Φ =

3N−1�

k=2N+1

∂k

�
− Φ

xk − x2N

�

+
1

2

3N−1�

k=2N+1

∂k




8− κ

xk − x2N




2N−1�

l=1

xk − xl

x2N − xl

3N−1�

m=2N+1

m�=k

�
x2N − xm

xk − xm

�2



 Φ



 . (2.34)

Thus,
�

Φ solves the null-state PDEs (2.1).

To finish, we need to prove that
�

Φ solves the Ward identities (2.2) too. This

is equivalent to showing that G, as defined in (2.19), satisfies the condition (2.21).

We can prove this condition by changing integration variables on the right side of

(2.21) from xi to ηi via f (2.20) as described above, and doing some straightforward

but tedious algebra. We omit the details. This proves that linear combinations of
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the functions (2.9) with c = 2N solve the system (2.1-2.2). Because the system is

invariant under permutation of the coordinates, we see that (2.9) with c equaling any

index among {1, . . . , 2N − 1} solves this system too.

As we discussed in section 1.2.9, all of the integration contours must wind non-

trivially around some of the branch points of the integrand in order for the solution to

not be zero, and the winding number of each contour around each branch point must

zero in order for the contour to close. Finally, the contours must not intersect for the

reason mentioned in the proof (figure 2.1). For large N , there are many choices of

contours that satisfy these criteria, and by carefully choosing the correct contours, we

may construct different solutions with important physical interpretations in various

critical lattice models of interest. These choices will be explored in chapter four.

2.2 Some low dimensional cases

Before considering the system (2.1-2.2) for general N , we examine the cases N =

1, 2, and 3 with κ = 6 for which the solution space is known exactly. In each case,

the solution space is finite dimensional with dimension equaling the N -th Catalan

number CN (2.7).

We begin with the case N = 1. The first Ward identity of (2.2) implies that any

solution is only a function of the difference x2 − x1. Using this ansatz, the two null-

state PDEs (2.1) become the same Euler differential equation, the general solution of

which has two characteristic powers: 1 − 6/κ and 2/κ. The second and third Ward

identities exclude the second power. Thus, the solution space has dimension C1 = 1

and is spanned by

Π1(x) = (x2 − x1)
1−6/κ. (2.35)

This is the familiar two-point function of CFT for two boundary one-leg operators

with identity fusion coefficient C0

11
chosen to equal one.
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Next, we consider the case N = 2. The Ward identities demand that our solutions

have the form (2.4). We write

F (x) = x−2θ1
42

x−2θ1
31

G(η), (2.36)

where xij := xi−xj and η = x21x43/x31x42. By substituting (2.36) into any one of the

null-state PDEs, we find that [η(1−η)]−2/κG(η) solves a second order hypergeometric

differential equation. Upon solving it, we find that the solution space has dimension

C2 = 2 and is spanned by

Πk(x) =
Γ(12/κ− 1)Γ(4/κ)

Γ(8/κ)Γ(8/κ− 1)
(x42x31)

1−6/κGk(η), k = 1, 2, (2.37)

where

G1(η) = G2(1− η) = η2/κ(1− η)1−6/κ
2F1

�
4

κ
, 1− 4

κ
;
8

κ

���� η

�
, (2.38)

with 2F1 the Gauss hypergeometric function. The solutions (2.37) may also be found

by using the Coulomb gas formalism. We define

I1(Γ |x1, . . . , x4) := β(−4/κ,−4/κ)−1

×
�

Γ

N [(x1 − u)−4/κ(x2 − u)−4/κ(x3 − u)−4/κ(x4 − u)12/κ−2] du , (2.39)

where β is the Euler beta function, Γ is a line segment with endpoints at branch

points of the integrand, and N orders the differences in the integrand so that I1 is

real. Then one can show that

Π1(x) = n(x21x31x32)
2/κ(x41x42x43)

1−6/κI1([x3, x4] |x), (2.40)

Π2(x) = n(x21x31x32)
2/κ(x41x42x43)

1−6/κI1([x4, x1] |x), (2.41)

where n is the loop fugacity (1.155) of the O(n) model. By integrating along [x1, x2]
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and [x2, x3] instead, we find another pair of linearly independent solutions,

F1(x) = n2(x21x31x32)
2/κ(x41x42x43)

1−6/κI1([x2, x3] |x), (2.42)

F2(x) = n2(x21x31x32)
2/κ(x41x42x43)

1−6/κI1([x1, x2] |x). (2.43)

These solutions are related as follows:

F1 = n2Π1 + nΠ2, F2 = nΠ1 + n2Π2. (2.44)

Both the Πk, the Fk, and their interrelation (2.44) will bear important physical in-

terpretations in chapter four, and the Fk will serve a useful purpose later in this

chapter.

Although the integration in (2.39) converges only for κ > 4, I1 may be analytically

continued to κ ≤ 4 by replacing the contour Γ with a Pochhammer contour that

entwines the endpoints of Γ. The relation between these latter contours and the

simple contours used above is captured by (1.195).

Finally, we consider the case N = 3. These solutions are easily constructed

through the Coulomb gas formalism. We define

I2(Γ1, Γ2 |x) = β(−4/κ,−4/κ)−2

�

Γ1

�

Γ2

N
�
(u2 − u1)

8/κ . . .

. . .× (x6 − u1)
12/κ−2(x6 − u2)

12/κ−2

5�

i=1

2�

j=1

(xi − uj)
−4/κ

�
du1 du2, (2.45)

where Γ1 and Γ2 are line segments with endpoints at the branch points of the integrand

and N orders the differences of the integrand so that I2 is real. Then the linearly

independent set of five functions

F1(x) = n3P(x) I2([x1, x2], [x3, x4] |x), (2.46)
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F2(x) = n3P(x) I2([x2, x3], [x4, x5] |x), (2.47)

F3(x) = n3P(x) I2([x1, x2], [x4, x5] |x), (2.48)

F4(x) = n3P(x) I2([x1, x4], [x2, x3] |x), (2.49)

F5(x) = n3P(x) I2([x2, x5], [x3, x4] |x), (2.50)

with the prefactor

P(x) = (x61x62x63x64x65)
1−6/κ(x21x31x41x51x32x42x52x43x53x54)

2/κ, (2.51)

solve the system (2.1-2.2) with N = 3. If these solutions are linearly independent, then

the dimension is at least C3 = 5. Later, we will see that these five solutions are indeed

linearly independent for most values of κ. The dimension can be shown to equal five

exactly when κ = 6 by converting the system (2.1-2.2) into a hypergeometric system

whose solution space is spanned by four Lauricella functions FD [60]. We believe that

this process can be repeated for κ �= 6 too, which would prove that the dimension of

the solution space is indeed C3 = 5.

Computing the dimension of the solution space clearly becomes very difficult for

N > 3. For this reason, we will rely on a different approach to be developed in the

next section.

2.3 A solution space SN for the system (2.1-2.2)

To glean a deeper understanding of the system (2.1-2.2), we investigate the behav-

ior of solutions near ∂Ω0. This approach is motivated by interpreting the solutions

of the system as 2N -point functions of boundary one-leg operators. We choose an

i ∈ {1, . . . , 2N − 1} and send xi+1 → xi so that operators ψ1(xi) and ψ1(xi+1) fuse

into some combination of an identity operator ψ0(xi) (which is actually independent

of xi necessarily) and a boundary two-leg operator at ψ2(xi). Inserting their OPE
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into the 2N -point function, we find

�ψ1(x1) . . . ψ1(xi)ψ1(xi+1) . . . ψ1(x2N)�

= C0

11
(xi+1 − xi)

−2θ1+θ0�ψ1(x1) . . . ψ0(xi)ψ1(xi+2) . . . ψ2N(x2N)�+ . . . (2.52)

+ C2

11
(xi+1 − xi)

−2θ1+θ2�ψ1(x1) . . . ψ2(xi)ψ1(xi+2) . . . ψ2N(x2N)�+ . . . . (2.53)

Equations (2.52) and (2.53) correspond to the identity and two-leg fusion channel

respectively, and for our present purposes, C0

11
and C2

11
are arbitrary real constants.

We recall that θs is the conformal weight (1.171) of the boundary s-leg operator.

Motivated by this fact from CFT, we might suppose that a generic solution F of

the system (2.1-2.2) has a Frobenius series expansion in (xi+1−xi) as xi+1 → xi with

one of two indicial powers. If we suppose this to be true, then for xi+1 near xi, we

may write

F (x1, . . . , x2N) = (xi+1 − xi)
pF0(x1, . . . , xi, xi+2, . . . , x2N)

+ (xi+1 − xi)
p+1F1(x1, . . . , xi, xi+2, . . . , x2N)

+ (xi+1 − xi)
p+2F2(x1, . . . , xi, xi+2, . . . , x2N) + . . . . (2.54)

Plugging this expansion into null-state PDEs centered on xi and xi+1 and collecting

the leading order contributions, we find from either equation that

�
κ

4
p(p− 1) + p− 6− κ

2κ

�
F0 = 0. (2.55)

Solving this equation for p, we find the two exponents p1 = −2θ1 + θ0 = 1− 6/κ and

p2 = −2θ1 + θ2 = 2/κ that appear in (2.52) and (2.53) respectively. At next order,

the null-state PDEs centered on xi and xi+1 respectively imply that

−κp∂iF0 +

�
κ

4
(p + 1)p + (p + 1)− 6− κ

2κ

�
F1 = 0 (2.56)
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−2∂iF0 +

�
κ

4
(p + 1)p + (p + 1)− 6− κ

2κ

�
F1 = 0. (2.57)

Taking their difference when p = 1−6/κ gives ∂iF0 = 0, so F1 = 0. In the language of

CFT, the condition ∂iF0 = 0 is equivalent to the identity operator being nonlocal, and

the condition that F1 = 0 is equivalent to the vanishing of the level-one descendant

of the identity operator. After comparing (2.54) with (2.52), we interpret F0 as a

(2N−2)-point function of boundary one-leg operators. If this supposition is true, then

F0 must solve the system (2.1-2.2) in the coordinates {xj}j �=i,i+1 and with N �→ N−1.

When p = 2/κ, the equations (2.56) and (2.57) are identical, and ∂iF is typically not

zero.

These heuristic calculations suggest that we investigate the behavior of solutions

F of (2.1-2.2) near ∂Ω. To this end, we let a point x ∈ Ω0 approach ∂Ω0 along a path

in Ω0 such that only two adjacent coordinates xi and xi+1 approach each other, while

the other coordinates remain bounded away from each other and from xi and xi+1. As

this happens, we also require that the sign of F does not change infinitely often as we

follow this path. This condition rules out behavior that would otherwise be physically

inconsistent with the applications that we have in mind. We will investigate these

applications in chapter four.

Lemma II.3. Let F : Ω0 → R solve the system (2.1-2.2), and let κ ∈ (0, 8). Suppose

that for every x0 ∈ ∂Ω0 with only two coordinates equal, say xi = xi+1, there exists a

region V ⊂ Ω0 of the form

V := {x ∈ Ω0 : xi < xi+1 < xi + δ} ∩ U, (2.58)

with U :=
�

j �=i+1

{x ∈ Ω0 : (x0)j − δ < xj < (x0)j + δ}, (2.59)

for some small δ(x0) > 0 such that F restricted to V is nonpositive or nonnegative.
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(Here, (x0)j is the j-th coordinate of x0.) Then (with θ1 := (6− κ)/2κ), we have






F (x) = O((xi+1 − xi)−2θ1)

∂jF (x) = O((xi+1 − xi)−2θ1)

∂j∂kF (x) = O((xi+1 − xi)−2θ1)






as xi+1 → xi

for all j, k �= i, i + 1,
(2.60)

for all x ∈ V .

Proof. Let x0 = (x1, . . . , xi−1, xi, xi, xi+2, . . . , x2N) with the i-th and (i + 1)-th coor-

dinates being the only two coordinates that are equal. We let � := xi+1− xi < δ(x0),

we let x := xi, we relabel the variables {xj}j �=i,i+1 as {ξ1, ξ2, . . . , ξ2N−3, ξ2N−2} in

ascending order, and we let ξ := (ξ1, . . . , ξ2N−2). For (ξ, x, �) ∈ V , we define

F̃ (ξ; x, �) := F (ξ1, . . . , ξi−1, x, x + �, ξi, . . . , ξ2N−2). (2.61)

In these variables, we must prove that for fixed ξ and x, F̃ (ξ; x, �), ∂jF̃ (ξ; x, �) and

∂j∂kF̃ (ξ; x, �) are O(�1−6/κ) as � ↓ 0.

Using the first Ward identity (2.2), we write the null-state PDE centered on xi as

L[F̃ ] = M[F̃ ], where

M :=
�

j

�
(6− κ)/2κ

(ξj − x− �)2
− (ξj − x)∂j

�(ξj − x− �)

�
, L :=

κ

4
∂2

�
+

∂�

�
− (6− κ)/2κ

�2
. (2.62)

Thinking of � as a time variable propagating backwards from an initial condition at

some b ∈ (0, δ) to zero, we can invert the Euler differential operator L with a Green

function that solves the adjoint problem

L∗[G](�, η) :=

�
κ

4
∂2

η
− ∂η

η
− (6− κ)/2κ− 1

η2

�
G(�, η) = δ(η − �) (2.63)

with � > 0 a parameter. We choose the initial conditions G(�, 0) = ∂ηG(�, 0) = 0.

Also, G must be continuous at η = �, and ∂ηG must have a jump discontinuity of 4/κ
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(ξ,x)
0

b

η

ε

Figure 2.2: The setup for the inversion of the Euler operator L in (2.62). The integration
variable propagates from its initial condition at b > � to � > 0. The Green function is zero
outside of the gray region.

at η = � in order to solve the adjoint equation (2.63). The unique solution to this

initial value problem is

G(�, η) =
4η

8− κ
Θ(η − �)

��
�

η

�1−6/κ

−
�

�

η

�2/κ
�

, 0 < �, η < b. (2.64)

The Heaviside function Θ enforces causality (G(�, η) = 0 when η ≤ �). Using the

usual Green identity [65]

�
b

0

[L[F̃ ](ξ; x, η)G(�, η)− F̃ (ξ; x, η)L∗[G](�, η)] dη

=
κ

4

�
G(�, η) ∂�F̃ (ξ; x, η)− ∂ηG(�, η)F̃ (ξ; x, η)

�b

0

+
1

b
G(�, η)F̃ (ξ; x, η)

���
b

0

, (2.65)

we find that for all b ∈ (0, δ), F̃ solves the integral equation

F̃ (ξ; x, �) =

�
b

�

G(�, η)M[F̃ ](ξ; x, η) dη

− κ

4

�
G(�, b) ∂�F̃ (ξ; x, b)− ∂ηG(�, b)F̃ (ξ; x, b)

�
− 1

b
G(�, b)F̃ (ξ; x, b). (2.66)

All of the terms on the right side except the integral are manifestly O(�1−6/κ), so we

only need to bound the integral. After estimating the coefficients in the integrand

and estimating G for κ < 8, we find
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|F̃ (ξ; x, �)| ≤ 8

8− κ

�
b

�

�
�

η

�1−6/κ �

j

�
sup

0≤η≤b

����
ξj − x

ξj − x− η

���� |∂jF̃ (ξ; x, η)|

+ sup
0≤η≤b

����
η(6− κ)/2κ

(ξj − x− η)2

���� |F̃ (ξ; x, η)|
�

dη + O(�1−6/κ). (2.67)

It is natural to define H(ξ; x, �) := �6/κ−1F̃ (ξ; x, �) so that proving the lemma amounts

to showing that H(ξ; x, �), ∂jH(ξ; x, �), and ∂j∂kH(ξ; x, �) are bounded as � ↓ 0. Then

for sufficiently small �, there are positive functions c0(ξ, x, b) and c1(ξ, x, b) such that

|H(ξ; x, �)| ≤ c1 + c0

�
b

�

�
|H(ξ; x, η)|+

�

j

|∂jH(ξ; x, η)|
�

dη. (2.68)

Next, we bound terms in (2.68) that contain derivatives of H. For j �= i, i + 1, the

null-state PDE centered on xj becomes

�
κ

4
∂2

j
+

�

k �=j

�
∂k

ξk − ξj

− (6− κ)/2κ

(ξk − ξj)2

�
+

∂x

x− ξj

− �∂�

(x− ξj)(x + �− ξj)

− (6− κ)/2κ

(x− ξj)2
− (6− κ)/2κ

(x + �− ξj)2
+

6/κ− 1

(x− ξj)(x + �− ξj)

�
H = 0, (2.69)

now for j ∈ {1, . . . , 2N − 2}, while that centered on xi becomes

�
κ

4
(∂x−∂�)

2 +
∂�

�
+

(6− κ)(∂x − ∂�)

2�
+

�

k

�
∂k

ξk − x
− (6− κ)/2κ

(ξk − x)2

� �
H = 0 (2.70)

and that centered on xi+1 becomes

�
κ

4
∂2

�
− (∂x − ∂�)

�
− (6− κ)∂�

2�
+

�

k

�
∂k

ξk − x− �
− (6− κ)/2κ

(ξk − x− �)2

��
H = 0. (2.71)

Also, the three Ward identities (2.2) are (again with θ1 := (6− κ)/2κ)

�
k

∂kH + ∂xH = 0 (2.72)
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�
k

(ξk∂k + θ1)H + x∂xH + �∂�H = 0 (2.73)
�

k

(ξ2

k
∂k + 2θ1ξk)H + x2∂xH + �2∂�H + 2x�∂�H = 0. (2.74)

Summing over (2.69) and using (2.72-2.73), we find that H(ξ; x, �) obeys a uniformly

elliptic linear PDE in the coordinates of ξ and with x and � as parameters:

�

j

�
κ

4
∂2

j
+

�

k �=j

�
∂k

ξk − ξj

− (6− κ)/2κ

(ξk − ξj)2

�
−

�

k

∂k

x− ξj

−
�

k

(x− ξk)∂k

(x− ξj)(x + �− ξj)
+

(N − 1)(6/κ− 1)

(x− ξj)(x + �− ξj)

− (6− κ)/2κ

(x− ξj)2
− (6− κ)/2κ

(x + �− ξj)2
+

6/κ− 1

(x− ξj)(x + �− ξj)

�
H = 0.

(2.75)

Now let B = (ξ̃1 − b, ξ̃1 + b)× . . .× (ξ̃2N−2 − b, ξ̃2N−2 + b). We may use the Schauder

interior estimates [66] to find that for all j, k ∈ {1, . . . , 2N − 2} and ξ ∈ B,

dist(ξ, ∂B)|∂jH(ξ; x, �)| ≤ C sup
ψ∈B

|H(ψ; x, �)|, (2.76)

dist(ξ, ∂B)|∂j∂kH(ξ; x, �)| ≤ C sup
ψ∈B

|H(ψ; x, �)|, (2.77)

where the positive function C(ξ, x, �) depends on � implicitly through the supremums

of the coefficients of (2.75) over B. Because these supremums are bounded as � ↓ 0,

it follows that C is bounded by a function C � independent of � for all � ∈ (0, b), and

we may replace C by C � in (2.76-2.77). Thus, (2.68) becomes

|H(ξ; x, �)| ≤ c1 + c2

�
b

�

sup
ψ∈B

|H(ψ; x, η)| dη (2.78)

where c2 = c0(1 + C �(N − 2)/dist(ξ, ∂B)). Because F̃ is nonpositive or nonnegative
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on V which contains B, the elliptic PDE (2.75) implies the Harnack inequality [66]

sup
ψ∈B

|H(ψ; x, η)| ≤ c inf
ψ∈B

|H(ψ; x, η)|

≤ c |H(ξ; x, η)|, η ∈ (0, b). (2.79)

where the positive function c(ξ, x, η, δ, b) depends on η only through the supremums

of the coefficients in (2.75) over V , which are bounded as η ↓ 0 since the coordinate

of ξ are bounded away from each other. Thus, this function may be replaced by a

function c3(ξ, x, δ, b) independent of η in (2.79), and (2.68) with t = 1/�, s = 1/η

becomes

|H(ξ; x, 1/t)| ≤ c1 + c2c3

�
t

1/b

1

s2
|H(ξ; x, 1/s)| ds. (2.80)

Using the Gronwall inequality, we conclude from (2.80) that |H(ξ; x, �)| ≤ c1ec2c3(b−�)

and is thus bounded as � → 0. From (2.76-2.77) and the boundedness of H, we also

conclude that all ∂jH(ξ; x, �), ∂j∂kH(ξ; x, �) are bounded as � ↓ 0 too.

A main step in our proof of lemma II.3 involves bounding the magnitudes of the

derivatives ∂jF (x) and ∂j∂kF (x) with j, k �= i, i + 1 by C|F (x)| when xi+1 → xi,

where C does not depend on xi+1. Our approach involves summing over the null-state

PDEs centered on xj with j �= i, i + 1 to obtain a strictly elliptic PDE and using the

interior Schauder estimates and the Harnack inequality. This step holds only if F (x)

does not change sign infinitely often as xi+1 → xi in some V ⊂ Ω0 whose boundary

contains the boundary point of interest with only the two coordinates xi+1 and xi

equal. This requirement on F (x) is physically reasonable, but we currently do not

know how to prove it.

Now, we expect F (x) to be comparable with its derivatives with respect to xj

with j �= i, i+1 as xi+1 → xi because we anticipate that F (x) behaves like a product

of powers of the differences of pairs of the coordinates of x. And we anticipate this

latter property by noting the resemblance of the null-state PDE centered on xj (2.1)
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to a second order Euler differential equation in the j-th coordinate. But by summing

over the null-state PDEs in our proof, we discard this important information. This

effect suggests that elliptic PDE theory is not sufficient to prove lemma II.3 with the

positivity condition on V omitted.

We will encounter a similar situation when we state conjecture II.16. Elliptic PDE

theory will suggest an obvious proof, but the proof is incomplete without supposing

another seemingly reasonable but less apparent condition to be true. We will propose

a different partial proof of this conjecture that bypasses these shortcomings by working

with the individual null-state PDEs. This latter proof seems to be the better avenue

for proving this conjecture (II.16), to be stated later.

Lemma II.4. Let F : Ω0 → R solve the system (2.1-2.2), let κ ∈ (0, 8), and suppose

that F satisfies (2.60) for all x ∈ Ω0. Then for all i ∈ {1, . . . , 2N − 1}, the limit

F �(x�) := lim
xi+1→xi

(xi+1 − xi)
2θ1F (x) (2.81)

exists for all points in x� ∈ D := {π(x) ∈ R
2N−1 : x ∈ Ω0} where π projects away

the (i + 1)-th coordinate (that is, D is the part of ∂Ω0 with only the two coordinates

xi and xi+1 equal). Furthermore, F �(x�) solves the system (2.1-2.2) with N �→ N − 1

in the coordinates {xj}j �=i,i+1 and does not depend on xi. Lastly, (xi+1 − xi)2θ1F (x)

extends continuously to D .

Proof. We let H, ξ, x, and � be defined as in the proof of lemma II.3. First, we show

that H(ξ; x, �) has a limit as � ↓ 0. Since H(ξ; x, �) is bounded as � ↓ 0, it suffices to

show that its superior limit and inferior limit are equal. From (2.66), we have that

for any b ∈ (0, ξi − x) and � ∈ (0, b) that

H(ξ; x, �) = H(ξ; x, b)− κ

4
J(�, b)∂�H(ξ; x, b) +

�
b

�

J(�, η)M[H](ξ; x, η) dη, (2.82)
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where M[H](ξ; x, η) is given in (2.62), and where J is the modified Green function

J(�, η) =
4η

8− κ
Θ(η − �)

�
1−

�
�

η

�8/κ−1
�

, 0 < �, η < b. (2.83)

The bracketed factor in J(�, η) is bounded by two since κ < 8, and ηM[H](ξ; x, η) is

a bounded function of η over (0, b) according to previous arguments. Thus, we may

replace the lower limit of integration in (2.82) with zero and take the supremum of

both sides over � ∈ (0, b) to find

sup
0<�<b

|H(ξ; x, �)−H(ξ; x, b)| ≤ 2κ

8− κ

�
|b∂�H(ξ; x, b)|+ 4b

κ
c4(b)

�
, (2.84)

where c4(ξ, x, b) := sup0<η<b
|ηM[H](ξ; x, η)|. Next, we show that b∂�H(ξ; x, b) van-

ishes as b ↓ 0. We can differentiate (2.82) with respect to � to find a similar integral

equation governing �∂�H(ξ; x, �). We find

�∂�H(ξ; x, �) =
��

b

�8/κ−1

b∂�H(ξ; x, b)− 4

κ

�
b

�

�
�

η

�8/κ−1

ηM[H](ξ; x, η) dη. (2.85)

Reusing the same argument that justified the second term on the right side of (2.84),

it follows from (2.85) that

|�∂�H(ξ; x, �)| ≤
��

b

�8/κ−1

|b∂�H(ξ; x, b)|

+
2c4(ξ, x, b)

|κ− 4| �8/κ−1|b2−8/κ − �2−8/κ| −→ 0 as � ↓ 0 (2.86)

since κ < 8. Because c4(ξ, x, b) is obviously nonincreasing as b ↓ 0, we find from

(2.84) that

lim
b↓0

sup
0<�<b

|H(ξ; x, �)−H(ξ; x, b)| = 0, (2.87)

and we conclude that the inferior and superior limits of H(ξ; x, �) as � ↓ 0 are equal.

Furthermore, we can show that the limit of H(ξ; x, �) as � ↓ 0 is approached
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uniformly over any sufficiently small neighborhood U ⊂ D . By replacing � with zero

and then b with � in (2.82) and taking a supremum over all (ξ, x) ∈ U , we find

sup
U

|H(ξ; x, �)−H(ξ; x, 0)| ≤ κ

8− κ
sup

U

|�∂�H(ξ; x, �)|

+
4

8− κ

�
�

0

sup
U

|ηM[H]ξ; x, η)|dη. (2.88)

After taking the supremum of both sides of (2.86) over all (ξ, x) ∈ U , we see that

sup
U
|�∂�H(ξ; x, �)| vanishes as � ↓ 0. Furthermore, the integrand in (2.88) is bounded

as η ↓ 0 according to previous arguments, so the integral vanishes in this limit. Thus,

the supremum on the left side of (2.88) vanishes as � ↓ 0, so the convergence is uniform

over U . From this, we infer that the limit of H(ξ; x, �) as � ↓ 0 is continuous on D ,

and furthermore, that H(ξ; x, �) extends continuously to Ω0 ∪D .

We can recycle these arguments to show that ∂jH(ξ; x, �) and ∂2

j
H(ξ; x, �) uni-

formly approach limits as � ↓ 0 for all j ∈ {1, . . . , 2N − 2}. By taking the j-th partial

derivative of (2.82) (because H(ξ; x, �) is analytic in Ω0, we can exchange the order of

integration and differentiation), we find an equation similar to (2.82) but with a few

changes. First, the integrand, though slightly changed from that of (2.82), will still

be a bounded function of η on (0, b) since each of the first two derivatives of H(ξ; x, �)

is bounded in the coordinates of ξ. Second, �∂�H(ξ; x, �) in the first term of (2.82)

will be replaced with �∂�∂jH(ξ; x, �). By taking the j-th partial derivative of (2.85)

and following the reasoning that led to (2.86), we find that �∂�∂jH(ξ; x, �) vanishes

as � ↓ 0. Thus, we may reuse all of the reasoning presented above to show that

∂jH(ξ; x, �) approaches a limit as � ↓ 0 uniformly in sufficiently small neighborhoods

of D . It follows immediately from (2.69) that each ∂2

j
H(ξ; x, �) approaches a limit as

� ↓ 0 uniformly in sufficiently small neighborhoods of D too.

Now we show that this limit of H(ξ; x, �) solves the system (2.1-2.2) in the co-

ordinates of ξ and with N �→ N − 1. We prove this by showing that (2.69, 2.72-
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2.74) approaches this system as � ↓ 0. Upon inspection, it is evident that we need

�∂�H(ξ; x, �) and ∂xH(ξ; x, �) to vanish as � ↓ 0. Having proven the former statement

in (2.86), we now prove the latter. Upon subtracting (2.71) from (2.70), we find the

following PDE:

�
κ

4
∂x −

κ

2
∂� +

8− κ

2�

�
∂xH(ξ; x, �)

=
�

j

�
�∂j

(ξj − x)(ξj − x− �)
+

[� + 2(x− ξj)]�(6− κ)/2κ

(ξj − x)2(ξj − x− �)2

�
H(ξ; x, �). (2.89)

We choose an a > 0 less than min{x− ξi−1, (b− �)/2}, and we let Z(t) := ∂xH(ξ; x−

t, � + 2t) for t ∈ [0, a]. Upon evaluating (2.89) at (ξ; x, �) �→ (ξ, x − t, � + 2t) and

multiplying both sides by −4(� + 2t)1−8/κ/κ, we find

d

dt

�
(� + 2t)1−8/κZ(t)

�
= −4

κ
(� + 2t)2−8/κ

�

j

�
∂j

(ξj − x + t)(ξj − x− �− t)

+
[� + 2(x− ξj)](6− κ)/2κ)

(ξj − x + t)2(ξj − x− �− t)2

�
H(ξ; x− t, � + 2t). (2.90)

Integrating both sides with respect to t from 0 to a, we have

∂xH(ξ; x, �) =

�
�

� + 2a

�8/κ−1

∂xH(ξ; x− a, � + 2a)

+
4

κ
�8/κ−1

�
a

0

dt (� + 2t)2−8/κ
�

j

�
∂j

(ξj − x + t)(ξj − x− �− t)

+
[� + 2(x− ξj)](6− κ)/2κ)

(ξj − x + t)2(ξj − x− �− t)2

�
H(ξ; x− t, � + 2t).

(2.91)

Because the sum inside of the integrand is a function of t bounded over (0, a) uniformly

in � ∈ (0, b), we have that for some positive function c5(ξ, x, a)

|∂xH(ξ; x, �)| ≤
�

�

� + 2a

�8/κ−1

|∂xH(ξ; x− a, � + 2a)|
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+ c5�
8/κ−1

�
a

0

dt (� + 2t)2−8/κ. (2.92)

We therefore have

∂xH(ξ; x, �) = O(�8/κ−1) + O(�2) → 0 as � ↓ 0. (2.93)

So by sending � ↓ 0 in (2.69) and (2.72-2.74), we find equations almost identical to

the (2N − 2) null-state PDEs and the three Ward identities in the coordinates of ξ:

κ

4
lim
�↓0

∂2

k
H +

�

j �=k

�
1

ξj − ξk

lim
�↓0

∂jH − (6− κ)/2κ

(ξj − ξk)2
lim
�↓0

H

�
= 0 (2.94)

�

j

lim
�↓0

∂jH = 0 (2.95)

�

j

ξj lim
�↓0

∂jH + θ1 lim
�↓0

H = 0 (2.96)

�

j

ξ2

j
lim
�↓0

∂jH + 2θ1ξj lim
�↓0

H = 0. (2.97)

Because the limit of each derivative is approached uniformly in a sufficiently small

neighborhood of D , we may commute the limit with each differentiation in (2.94-2.97)

to find that H solves the (2N − 2) null-state PDEs and the three Ward identities in

the coordinates of ξ.

Equation (2.72) shows that we may also commute the limit � ↓ 0 with a single

derivative with respect to x. Because ∂xH(ξ; x, �) vanishes as � ↓ 0, it therefore

immediately follows that the limit of H(ξ; x, �) does not depend on x.

We note some facts that are implied by the proof of lemma II.4. First, this proof

leads to some interesting integral equations that H(ξ; x, �) and F̃ (ξ; x, �) must satisfy.
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After replacing � with zero and replacing b with � in (2.82), we find

H(ξ; x, �) = H(ξ; x, 0) +
κ�

8− κ
∂�H(ξ; x, �)− 4

8− κ

�
�

0

ηM[H](ξ; x, η) dη. (2.98)

This integral equation is interesting because it integrates over all η ∈ (0, �) instead of

over all η > � up to some positive cutoff b. By moving the middle term on the right

side to the left side, rewriting the left side as a derivative, and integrating up to some

cutoff b (sufficiently small so that the integral is not improper), we further find that

H(ξ; x, �) =
��

b

�8/κ−1

H(ξ; x, b) +

�
1−

��

b

�8/κ−1
�

H(ξ; x, 0)

− 4�8/κ−1

κ

�
b

�

�
β

0

β−8/κηM[H](ξ; x, η) dη dβ. (2.99)

In terms of F̃ (ξ; x, �), this is

F̃ (ξ; x, �) =
��

b

�2/κ

F̃ (ξ; x, b) +

���

b

�1−6/κ

−
��

b

�2/κ
�

b1−6/κH(ξ; x, 0)

− 4�2/κ

κ

�
b

�

�
β

0

β−8/κη6/κM[F̃ ](ξ; x, η) dη dβ. (2.100)

We will use these integral equations later.

Second, because the limit F �(x�) in (2.81) does not depend on xi, we may take

the trivial limit xi → xi−1 after sending xi+1 → xi so that the domain of F � is

Ω�

0
:= {(x1, . . . , xi−1, xi+2, . . . , x2N) ∈ R

2N−2 : x1 < . . . < xi−1 < xi+2 < . . . < x2N}.

Definition II.5. We call F � : Ω�

0
→ R in lemma II.4 a limit solution.

Definition II.6. Let κ ∈ (0, 8). Define S1 be the one-dimensional vector space

spanned by the solution (2.35) for the system (2.1-2.2) when N = 1. Let SN be the

subspace of solutions for the system (2.1-2.2) that satisfy the conditions (2.60) for all
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x ∈ Ω0, the equivalent condition at infinity,






F (−t, x2, . . . , x2N−1, t) = O(t−2θ1)

∂jF (−t, x2, . . . , x2N−1, t) = O(t−2θ1)

∂j∂kF (−t, x2, . . . , x2N−1, t) = O(t−2θ1)

as t →∞ (2.101)

for all x2 < x3 < . . . < x2N−2 < x2N−1 and all j, k ∈ {2, . . . , 2N − 1}, and have all of

their limit solutions in SN−1.

The new condition at infinity will be used below. The space SN is defined recur-

sively, which is somewhat awkward. The low-dimensional examples of section 2.2 and

the discussion following lemma II.3 suggest the following conjecture.

Conjecture II.7. Let κ ∈ (0, 8). Then SN constitutes the entire solution space of

the system (2.1-2.2).

We can prove the conjecture if we can prove lemma II.3 with the condition that

the solution not change sign infinitely often as xi+1 → xi dropped, since this gives

(2.60). The condition at infinity is then proven by mapping −t and t to adjacent

points f(−t) and zero via the mapping (2.108), to be used below, and using the

proven lemma II.3. Further details are presented in the discussion following (2.108).

The discussion preceding (2.7) suggests that the dimension of SN equals the N -

th Catalan number CN . Next, we show that dimSN ≤ CN if a certain conjecture,

conjecture II.16, is true. We obtain this upper bound by studying the dual space S∗
N

for which lemma II.4 suggests a construction. We start with an element of SN , take

the limit shown in (2.81), and arrive with an element of SN−1. Then we repeat this

process N − 1 more times until we arrive with an element of S0 = R. Because it is a

linear map of SN into the real numbers, this sequence of limits is an element of S∗
N

.

This leads us to the notion of a consistently ordered sequences of limits.
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Definition II.8. Let M ≤ N , and let S = {xi1 , . . . , xi2M} ⊂ {x1, . . . , x2N} be a

subset of coordinates such that for all j, k ∈ {1, . . . ,M},

• xi2j−1 < xi2j ,

• if xi2j−1 < xi2k−1
< xi2j , then xi2j−1 < xi2k−1

< xi2k
< xi2j ,

• if xi2j−1 < xi2k
< xi2j , then xi2j−1 < xi2k−1

< xi2k
< xi2j ,

• the set {x1, . . . , x2N}\S is in either in the interval (xi2j−1 , xi2j) or is in the interval

(xi2j , xi2j−1) := (−∞, xi2j−1) ∪ (xi2j ,∞) with the two infinities identified.

Let the symbols �̄j and �
j

stand for the limits

�̄j := {xi2j → xi2j−1}, �
j
:= {xi2j →∞, xi2j−1 → −∞},

and let �j stand for either. Let L be the ordered collection {�1, . . . , �M}. Then L is

said to be a consistently ordered sequence of limits involving the coordinates in S if

the following are true for all j, k ∈ {1, . . . ,M}:

• Either �̄j ∈ L or �
j
∈ L , but not both.

• If M < N , then which of either �̄j or �
j

is in L is determined as follows:

{x1, . . . , x2N} \ S ⊂ (xi2j , xi2j−1) =⇒ �̄j ∈ L , (2.102)

{x1, . . . , x2N} \ S ⊂ (xi2j−1 , xi2j) =⇒ �
j
∈ L . (2.103)

• If xi2j−1 < xi2k−1
< xi2k

< xi2j , then we say that �j nests �k, and

�̄j ∈ L =⇒ �̄k ∈ L , and k < j, (2.104)

�
k
∈ L =⇒ �

j
∈ L , and j < k. (2.105)
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• If xi2j−1 < xi2j < xi2k−1
< xi2k

or xi2k−1
< xi2k

< xi2j−1 < xi2j , then we say that

�j does not nest �k, and

�
j
∈ L =⇒ �̄k ∈ L , and k < j. (2.106)

If M = N , then the above rules may not determine which of �̄j or �
j

is in L . If this

is true, then either �̄j or �
j

may be in L . We call M the length of L . Now let F

be some function of xi2j−1 and xi2j . We promote the symbols �̄j and �
j

to transforms

that act on F by

�̄jF := lim
xi2j→xi2j−1

(xi2j −xi2j−1)
2θ1F (xi2j−1 , xi2j), �

j
F = lim

t→∞
(2t)2θ1F (−t, t), (2.107)

provided that these limits exist, and we say that �̄j (resp. �
j
) collapses the interval

(xi2j−1 , xi2j) (resp. (xi2j , xi2j−1)). We define the action of L = {�1, . . . , �M} on F :

Ω0 → R as L F = �M�M−1 . . . �2�1F when this limit exists.

According to theorem II.4, the limit �̄F with �̄ = {xi+1 → xi} exists and is in

SN−1 for all F ∈ SN and all i ∈ {1, . . . , 2N − 1} when κ ∈ (0, 8). This definition

tackles the issue of how to take several of these limits in sequence in a way that is

well-defined. For example, if x1 < x2 < x3 < x4, then the limit x4 → x1 must follow

the limit x3 → x2. Definition II.8 prescribes the necessary conditions to ensure that

this happens.

Next, we show that the limit �F exists for � = {x2N → ∞, x1 → −∞} and is

in SN−1 for all F ∈ SN and all i ∈ {1, . . . , 2N − 1} when κ ∈ (0, 8). We also call

this limit a limit solution of F , naturally extending definition II.5. To show that �F

exists, we employ the Möbius transformation

f(x) =
(x2N−1 − x2N−2)(x− x2N)

(x2N − x2N−2)(x− x2N−1)
, (2.108)
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and we write x� = f(x) in the computations that follow. A straightforward calculation

shows that f cyclically permutes the coordinates rightward along the real axis so that

x�
2N

= 0 < x�
1

< x�
2

< . . . < x�
2N−2

= 1 < x�
2N−1

= ∞. From (2.5), we find

(2t)2θ1F (−t, x2, . . . , x2N−1, t)

∼
t→∞

|∂f(x2)|θ1 . . . |∂f(x2N−1)|θ1x�2θ1
1

F (x�
1
, . . . , x�

2N
). (2.109)

We note that the point x� := (x�
1
, . . . , x�

2N
) is not in Ω0 since x�

2N
< x�

1
, yet if we

write F (x) in the form (2.4) with σ(1) = 2N , then F (x�) is defined by the right side

of (2.4) and solves the system (2.1-2.2) in the primed coordinates. Moreover, the

condition at infinity (2.101) implies that F (x�) satisfies the condition (2.60) in the

primed coordinates with i �→ 2N and i + 1 �→ 1. The limit t → ∞ is equivalent to

x�
1
→ x�

2N
, so if we let �̄ = {x�

1
→ x�

2N
}, then we have

�F (x2, . . . , x2N−1) = |∂f(x2)|θ1 . . . |∂f(x2N−1)|θ1 �̄F (x�
2
, . . . , x�

2N−1
). (2.110)

According to lemma II.4, the limit on the right side exists and, upon transforming

back to the unprimed coordinates (which eliminates the derivative prefactors), solves

the system (2.1-2.2) in the unprimed coordinates x2, . . . , x2N . It is therefore in SN−1.

Thus, an “underbar” limit � is essentially equivalent to an “overbar limit” �̄. This

result together with lemma II.4 proves the following lemma.

Lemma II.9. Let κ ∈ (0, 8), and let L = {�1, . . . , �M} be a consistently ordered

sequence of limits of length M . Then the limit L F exists for all F ∈ SN and is in

SN−M . In particular, if M = N , then the limit is a real number.

Proof. We let SM = {xi1 , . . . , xi2M} ⊂ {x1, . . . , x2N}, and we let L =: LM =

{�1, �2, . . . , �M} be a consistently ordered sequence of limits involving the coordinates

in SM . If the first element of LM is �̄1 = {xi2 → xi1}, then according to definition II.8,
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�̄1 cannot nest any other element of LM , and no coordinate among {x1, . . . , x2N}\SM

is in (xi1 , xi2). It follows that xi1 = xi and xi2 = xi+1 for some i ∈ {1, . . . , 2N − 1}.

According to lemma II.4, the limit �̄1F exists and is in SN−1. Or, if the first element

of LM is �1 = {xi2 → ∞, xi1 → −∞}, then according to definition II.8, no other

element of LM can nest �1, and all coordinates among {x1, . . . , x2N} \ SM must be

in (xi1 , xi2). It follows that xi1 = x1 and xi2 = x2N . According to the calculation

presented before lemma II.9, the limit �1F exists and is in SN−1. We are now left with

showing that the limit LM−1�1F with LM−1 = {�2, . . . , �M} exists. It is straightfor-

ward to check that LM−1 is a consistently ordered sequence of limits involving the

coordinates in SM−1 = {xi1 , . . . , xi2M} as a subset of {x1, . . . , x2N} \ {xi1 , xi2}. But

because �1F ∈ SN−1, we can repeat the reasoning presented above to conclude that

�2�1F exists and is in SN−2. We may repeat this reasoning M − 2 more times until

we find that �M . . . �1F exists and is in SN−M .

The set of consistently ordered sequences of limits forms a vector space with a

natural partition into equivalence classes given by the following definition.

Definition II.10. We say that two consistently ordered sequences of limits L =

{�1, . . . , �M} and L � = {��
1
, . . . , ��

M
} involving the same coordinates {x1, . . . , x2M}

are equivalent if at least one of the following are true.

• There exists a permutation σ ∈ S2M on {1, . . . ,M} such that ��
j

= �σ(j) for all

j ∈ {1, . . . ,M}.

• For any j ∈ {1, . . . ,M}, �̄j (resp. �
j
) in L is replaced by �

j
(resp. �̄j) in L �.

This defines an equivalence relation on the set of all consistently ordered sequences

of limits of length M , and we let [L ] stand for the equivalence class containing L .

When M = N , we let B∗

N
:= {[L1], [L2], . . .} be the set of all equivalence classes.

Lemma II.11. The cardinality of B∗

N
equals the N-th Catalan number CN .
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[Lk1 ] = [Lk2 ] = [Lk3 ] =

Figure 2.3: Polygon diagrams for three different equivalence classes of consistently ordered
sequences of limits of length N = 4. The other C4− 3 = 11 diagrams are found by rotating
one of these three.

Proof. To each [L ] of length M , we associate a unique interior arc connectivity

diagram via the following recipe. If {xi2j → xi2j−1} ∈ [Lk], then we connect xi2j to

xi2j−1 with an interior arc in the upper half-plane. We do this for each limit �j in

[L ], taking care to ensure that the arcs do not intersect (which is possible if and only

if the sequences of limits are consistently ordered). Thus, each [L ] corresponds to a

unique arc connectivity diagram, and vice versa. But in the discussion surrounding

(2.7), we proved that the number of such diagrams equals the M -th Catalan number.

Now set M = N .

Definition II.12. We define the half-plane diagram of [L ] to be the diagram de-

scribed in the proof of lemma II.11. We define the polygon diagram of [L ] to be the

image of the half-plane diagram under the conformal map sending the coordinates

x1, . . . , x2N and the upper half-plane to the vertices and interior of a 2N -sided poly-

gon respectively (figure 2.3). Often, we will refer to both of these diagrams simply as

the diagram of [L ], or more generally, as interior arc connectivity diagrams. When

M = N , we call the interior arc connectivity exhibited by the diagram for [Lk] the

k-th arc connectivity.

Lemma II.13. Let F ∈ SN , let κ ∈ (0, 8), and let [L ] be an equivalence class of

consistently ordered sequences of limits of length M ≤ N . Then [L ]F is well-defined.

Proof. We let F ∈ SN , and we let [L ] be an equivalence class of consistently ordered

sequences of limits of length M ≤ N . The proof of the lemma is by induction on M .
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To begin, we suppose that [L ] has length two. If the arcs for �1 and �2 in the half-

plane diagram of [L ] are un-nested, we let �̄1 = {xi+1 → xi} and �̄2 = {xj+1 → xj}.

We must show that �̄1�̄2F = �̄2�̄1F , or

lim
xi+1→xi

lim
xj+1→xj

(xi+1 − xi)
2θ1(xj+1 − xj)

2θ1F (x)

= lim
xj+1→xj

lim
xi+1→xi

(xi+1 − xi)
2θ1(xj+1 − xj)

2θ1F (x). (2.111)

If the arc for �2 nests the arc for �1, then by transforming (2.111) via (2.110), we will

have proven the equivalent statement �̄1�2F = �2�̄1F .

We let x := xi, x� := xj, � := xi+1 − xi, �� := xj+1 − xj with j �= i − 1, i, i +

1, we relabel the other 2N − 4 coordinates {xk}k �=i,i+1,j,j+1 in ascending order by

{ξ1, . . . , ξ2N−4}, and we let ξ = (ξ1, ξ2, . . . , ξ2N−5, ξ2N−4). (This definition of ξ is not

the same as that in the proof of lemma II.3). We restrict to � ∈ (0, b], �� ∈ (0, b�] where

b and b� are small enough to ensure that xi+1 and xj+1 are respectively less than xi+2

and xj+2. We let I(ξ; x�, ��; x, �) equal ��2θ1�2θ1F . Now for all � ∈ (0, b�], (2.82) gives

I(ξ; x�, ��; x, �) = I(ξ; x�, ��; x, b)− κ

4
J(�, b)∂�I(ξ; x�, ��; x, b)

+

�
b

�

J(�, η)N [I](ξ; x�, ��; x, η)dη, (2.112)

where J(�, η) is defined in (2.83) and where we have

N :=
∂x

η
−

�

k

�
∂l

ξl − x− η
− (6− κ)/2κ

(ξl − x− η)2

�
− ∂x� − ∂��

x� − x− η

− ∂��

x� + �� − x− η
+

(6− κ)/2κ

(x� − x− η)2
+

(6− κ)/2κ

(x� + �� − x− η)2
. (2.113)

Now we fix ξ, x, and x� to different values, and we let I� : [0, b�] → R be such that

I�(��) = I(ξ; x�, ��; x, �) for �� ∈ (0, b�] and I�(0) equals the limit of I�(��) as �� ↓ 0

(which is guaranteed to exist when κ ∈ (0, 8) thanks to lemma II.3) so that each I�
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is continuous on [0, b�]. By taking the supremum over all �� ∈ [0, b�], we find

sup
��∈[0,b�]

|I�(�
�)− I�(0)| ≤ κ

8− κ
sup

��∈[0,b�]
|�∂�I(��)|

+
4

8− κ

�
�

0

sup
��∈[0,b�]

|ηN [Iη](�
�)| dη. (2.114)

It is evident from (2.113) and previous arguments in the proof of lemma II.3 that the

integrand is bounded over [0, b] × [0, b�], so the integral vanishes in the limit � ↓ 0.

Furthermore, we can use this former fact and (2.86) to show that sup
��∈[0,b] |�∂�I(��)|

vanishes as � ↓ 0. Thus, the right side of (2.114) vanishes as � ↓ 0, I�(��) approaches

its limit I0(��) uniformly over [0, b�], and we may exchange the order of the limits

as demonstrated in (2.111). Consequently, we have shown that [L ]F is well-defined

when the length of [L ] is two.

Now we suppose that for all F ∈ SN and all [L �] of length less than M , [L �]F is

well-defined. We choose an F ∈ SN and an [L ] = {�1, . . . , �M}. (Unlike in definition

II.8, this set is not ordered. It becomes ordered when we specify an element L ∈ [L ],

and in this proof, the subscript of �n does not indicate this ordering. Rather the

subscript labels the arcs in the diagram for [L ].) Each element of [L ] equals �mLm

for some m ∈ {1, . . . ,M} and some Lm ∈ [Lm] = {�k}k �=m of length M − 1. We

let A be the set of all indices m for which there is an element of [L ] that ends

with �m. For fixed m ∈ A, all elements of [L ] of the form �mLm are equivalent by

definition, and we represent their equivalence sub-class by �m[Lm]. By the induction

hypothesis, [Lm]F is well-defined for all m ∈ A, so to finish the proof, we must show

that �m[Lm]F = �n[Ln]F for each pair (m, n) ∈ A× A.

If we suppose that M < N , then the condition that m, n ∈ A and m �= n places

constraints on the arc connectivities in the half-plane diagram of [L ]. In this diagram,

the arc for �m (resp. �n) connects the coordinates xi2m−1 and xi2m (resp.xi2n−1 and xi2n).

We let S := {xi1 , . . . , xi2M} be the set of coordinates involved in [L ] (or the set of
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xi2m−1 xi2n−1 xi2n xi2m

Figure 2.4: A possibile interior arc connectivity for an [L ] that can be decomposed as
�m[Lm] and �n[Ln]. The arcs for �n and �m are shown while the other M − 2 arcs, not
shown, are in the gray regions. The tick marks locate the coordinates in {x1, . . . , x2N} \ S.

coordinates connected together by arcs in the diagram for [L ]), and we suppose that

the arc for �m nests the arc for �n. We recall that m ∈ A if there is an element of

[L ] in which the limit �m is taken last. Then if m, n ∈ A, one can show that since

M < N ,

1. all coordinates in {x1, . . . , x2N} \ S must be in (xi2m−1 , xi2n−1) ∪ (xi2n , xi2m), or

else it will not be possible to collapse either �m or �n last (a contradiction), and

2. no arc in the half-plane diagram of [L ] may connect an xi ∈ (xi2m−1 , xi2n−1)

with an xj ∈ (xi2n , xi2m), or else it will not be possible to collapse either �m or

�n last (a contradiction).

The last restriction follows from the first restriction. Figure 2.4 gives an example

diagram for such an [L ]. As a consequence of these two restrictions, the coordinates

xi2m−1 ,xi2n−1 ,xi2n , and xi2m divide the M − 2 arcs in the half-plane diagram for [L ]

not associated with �m or �n into four “bins.” The first bin contains arcs whose two

endpoints are in (−∞, xi2m−1) ∪ (xi2m ,∞), the second in (xi2m−1 , xi2n−1), the third
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in (xi2n−1 , xi2n), and the fourth in (xi2n , xi2m). Because these arcs are isolated into

bins, there exists a consistently ordered sequence of limits Lm,n that collapses all of

the intervals of these arcs, leaving only the arc for �m and the arc for �n. Because,

Lm,n ⊂ L , lemma II.9 implies that Lm,nF ∈ SN−M+2. We have already proven that

�
m

�̄nLm,nF = �̄n�m
Lm,nF in (2.111). But also, �̄nLm,n ∈ [Lm] and �

m
Lm,n ∈ [Ln],

so this equality and the induction hypothesis imply that �
m

[Lm]F = �̄n[Ln]F for

m, n ∈ A. Thus, [L ]F is well-defined when M < N . The proof for the case where

the arcs for �m, �n are un-nested proceeds similarly.

When N = M , the two constraints mentioned above no longer apply. First, the set

{x1, . . . , x2N} \S is empty, and second (supposing again that the arc for �m nests the

arc for �n), an arc may connect an xi ∈ (xi2m−1 , xi2n−1) with an xj ∈ (xi2n , xi2m). If the

latter possibility is not exhibited, then the argument of the previous paragraph proves

that [L ]F is well-defined when M = N . If it is exhibited, then we let �k1 , . . . , �kl
label

the l arcs connecting an xi ∈ (xi2m−1 , xi2n−1) with an xj ∈ (xi2n , xi2m) from outermost

at �k1 to innermost at �kl
. When M = N , it is easy to see that all elements of [L ] are

in A. Thus, we may use the previous result to conclude that �
m

[Lm]F = �̄k1 [Lk1 ]F ,

then (because {x1, . . . , x2N} \S is empty) �
k1

[Lk1 ]F = �̄k2 [Lk2 ]F , etc., until we reach

�
kl

[Lkl
]F = �̄n[Ln]F . Thus, �m[Lm]F = �n[Ln]F , so [L ]F is well-defined when

M = N . The proof for the case where the arcs for �m and �n are un-nested proceeds

similarly.

Now we define an identity interval, a two-leg interval, and a mixed interval, and

these definitions will clearly be motivated by CFT considerations. Namely, if each

endpoint of an interval (xi, xi+1) host a one-leg operator, then upon sending xi+1 → xi,

these operators will fuse into a combination of an identity operator and a two-leg

operator. As previously discussed, these two fusion channels are observed in the

Frobenius series expansions of the correlation function in xi+1 about xi. A series with

indicial power p = −2θ1 + θ0 = 1− 6/κ (resp. p = −2θ1− θ2 = 2/κ) corresponds with
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the identity (resp. two-leg) family of the OPE. Lemma II.4 allows us to capture this

phenomenon in a slightly more general way that applies to any element of SN .

Definition II.14. Let F ∈ SN , let κ ∈ (0, 8), let i ∈ {1, . . . , 2N−1}, and let x ∈ Ω0.

We call the open interval (xi, xi+1)

• a two-leg interval if limxi+1→xi(xi+1 − xi)2θ1F (x) = 0,

• an identity interval if limxi+1→xi(xi+1 − xi)2θ1F (x) �= 0 and (xi+1 − xi)2θ1F (x)

(continuously extended to Ω0 ∪D) is analytic at xi+1 = xi for all κ ∈ (0, 8),

• a mixed interval if limxi+1→xi(xi+1 − xi)2θ1F (x) �= 0 and (xi+1 − xi)2θ1F (x)

(continuously extended to Ω0∪D) is not analytic at xi+1 = xi for some κ ∈ (0, 8).

In fact, the Green function (2.64) that we used in the proof of lemma II.3 gives the

power law for the rate of decay of the limit in the two-leg interval definition. This is

simply the two-leg exponent 2/κ = −2θ1 + θ2, as we expect.

Lemma II.15. Let F ∈ SN , let κ ∈ (0, 8), and let D be as defined in lemma II.4. If

(xi, xi+1) is a two-leg interval, then F (x) = O((xi+1−xi)−2θ1+θ2) as xi+1 → xi for all

x� ∈ D , where θ2 := 8/κ− 1 is the conformal weight (1.171) of the boundary two-leg

operator. Furthermore, the limit

F2(x
�) := lim

xi+1→xi

(xi+1 − xi)
2θ1−θ2F (x) (2.115)

exists for all κ ∈ (0, 8) and all points x� ∈ D and is not zero if F is not zero. Finally,

for each j ∈ {1, . . . , i − 1, i + 2, . . . , 2N}, F2(x�) solves the modified null-state PDE

centered on xj,

�
κ

4
∂2

j
+

2N�

k �=j,i,i+1

�
∂j

xk − xj

− θ1

(xk − xj)2

�
+

∂i

xi − xj

− θ2

(xi − xj)2

�
F2(x

�) = 0,

(2.116)
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and the modified Ward identities






�
2N

j=1
∂jF2(x�) = 0

��
2N

j �=i
(xj∂j + θ1) + ∂i + θ2

�
F2(x�) = 0

��
2N

j �=i
(x2

j
∂j + 2θ1xj) + x2

i
∂i + 2θ2xi

�
F2(x�) = 0

. (2.117)

Proof. Because F ∈ SN , the integrand for the η integration in (2.100) is bounded

as η ↓ 0. Thus, the complete term in (2.100) with the double integral is O(�2−6/κ).

Furthermore, H(ξ; x, 0) = 0 since (xi, xi+1) is a two-leg interval, so F̃ (ξ; x, �) = O(�p)

for p = min{2/κ, 2−6/κ}. If p = 2−6/κ, then we insert this result back into (2.100)

and repeat these steps to find that F̃ (ξ; x, �) = O(�p) for p = min{2/κ, 3− 6/κ}. We

continue this process until we have p = 2/κ = −2θ1 + θ2.

Now we show that the limit (2.115) exists and is approached uniformly over

small neighborhoods of D . The reasoning follows the proof of lemma II.4. We let

K(ξ; x, �) := �−2/κF̃ (ξ; x, �). Then (2.100) shows that

K(ξ; x, �)−K(ξ; x, b) = −4

κ

�
b

�

1

β

�
β

0

�
η

β

�8/κ−1

ηM[K](ξ; x, η) dη dβ. (2.118)

According to previous arguments, the integrand of the η integral is bounded for all

η ∈ (0, b). Thus, the integral vanishes as �, b ↓ 0, we have

lim
b↓0

sup
0<�<b

|K(ξ; x, �)−K(ξ; x, b)| = 0, (2.119)

and the limit F2(ξ; x) of K(ξ; x, �) as � ↓ 0 exists. Letting b = 0 in (2.118) and letting

U be a sufficiently small neighborhood of (ξ, x) in D , we have

sup
U

|K(ξ; x, �)−K(ξ; x, 0)| ≤ 4

κ

�
�

0

1

β

�
β

0

sup
U

|ηM[K](ξ; x, η)| dη dβ

−→ 0 as � ↓ 0. (2.120)
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The limit follows because the supremum of the integrand of the η integral is bounded

for all η ∈ (0, b). Hence, the limit F2(ξ; x) is approached uniformly in U and is

therefore continuous. The same is shown to be true of its first and second derivatives

with respect to the coordinates of ξ by following the same procedure.

Next, we show that the limit F2(ξ; x) = K(ξ; x, 0) is not zero. To the contrary,

we suppose that K(ξ; x, 0) is zero while F̃ is not zero. Letting b = 0 in (2.118) and

recalling that |ηM[K](ξ; x, η)|, |η∂jM[K](ξ; x, η)| ≤ C0(ξ; x) for all η ∈ (0, �) and

some positive function C0(ξ; x), we find that there is a positive function C(ξ; x) such

that

|K(ξ; x, �)| ≤ C0(ξ; x)C(ξ; x)�. (2.121)

A similar O(�) bound exists for the first partial derivatives of K(ξ; x, �) with respect

to the coordinates of ξ, and we may choose the function C(ξ; x) to be the same for

all of them. By inserting this estimate back into (2.118) and iterating this process

p− 1 times, we find that

|K(ξ; x, �)| ≤ C0(ξ; x)
C(ξ; x)p

p!
�p for all p ∈ Z

+. (2.122)

Letting p →∞, we conclude that the left side is zero, implying that F̃ (ξ; x, �) is zero,

a contradiction.

To show that F2(ξ; x) solves (2.116-2.117), we insert F̃ (ξ; x, �) = �−2θ1+θ2K(ξ; x, �)

into the null-state PDEs centered on xj with j �= i, i + 1 and into the three Ward

identities, multiply through by �2θ1−θ2 , and send � ↓ 0. That this limit is uniform

in sufficiently small neighborhoods of D allows us to commute the limit with the

derivatives appearing in these PDEs. Thus, we recover the PDEs (2.116-2.117). The

details are identical to those for the similar task presented at the end of the proof of

lemma II.4.

In the language of CFT, F2 is, to within a factor, a (2N − 1)-point function

135



with a boundary two-leg operator at xi and a boundary one-leg operator at each

x1, . . . , xi−1, xi+2, . . . , x2N . This (2N − 1)-point function follows from the OPE of

the boundary one-leg operators ψ1(xi) and ψ1(xi+1). Because (xi, xi+1) is a two-leg

interval, this OPE leads with a boundary two-leg operator:

F� �� �
�ψ1(x1) . . . ψ1(xi−1)ψ1(xi)ψ1(xi+1)ψ1(xi+2) . . . ψ1(x2N)�

∼
xi+1→xi

(xi+1 − xi)
−2θ1+θ2 C2

11
�ψ1(x1) . . . ψ1(xi−1)ψ2(xi)ψ1(xi+2) . . . ψ1(x2N)�� �� �

F2

.

(2.123)

CFT therefore implies that F2 solves the null-state PDEs (2.116) associated with the

2N − 2 boundary one-leg operators on the right side of (2.123). Because xi now

hosts a boundary two-leg operator whose conformal weight is θ2 rather than θ1, the

original null-state PDEs (2.1) centered on xj with j �= i, i + 1 are modified to (2.116)

to account for this change.

With this understanding, we anticipate an adaptation of lemmas II.3, II.4, and

II.15 into lemmas concerning the limiting behavior of F2 as xi+2 → xi. For example,

by studying the null-state PDE (2.116) with j = i + 2, we can show that

F2(x1, . . . , xi, xi+2, . . . , x2N) = O((xi+2 − xi)
−θ1−θ2+θ1), as xi+2 → xi. (2.124)

The proof is identical to the proof of lemma II.3. Again, we assume that F2 does not

change sign infinitely often as xi+2 → xi, a condition that we believe is ultimately

unnecessary although we currently do not how to prove this. Furthermore, we can

also prove that the limit of (xi+2 − xi)θ1+θ2−θ1F2 as xi+2 → xi exists, and if it is zero,

then the limit F3 of (xi+2 − xi)θ1+θ2−θ3F2 as xi+2 → xi exists and is not zero. Here,

θ3 := 3(10 − κ)/2κ is the weight of the boundary three-leg operator. The proof of

these two claims are respectively identical to the proofs of lemmas II.4 and II.15, and
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the latter situation is consistent with an OPE of ψ2(xi) with ψ1(xi+2) that leads with

the boundary three-leg operator:

F2� �� �
C2

11
�ψ1(x1) . . . ψ1(xi−1)ψ2(xi)ψ1(xi+2)ψ1(xi+3) . . . ψ1(x2N)�

∼
xi+2→xi

(xi+2 − xi)
−2θ1+θ2 C2

11
C3

21
�ψ1(x1) . . . ψ1(xi−1)ψ3(xi)ψ1(xi+3) . . . ψ1(x2N)�� �� �

F3

.

(2.125)

We mention that F2 solves another PDE not included among (2.116-2.117). This

is the null-state PDE associated with the boundary two-leg operator ψ2(xi), and it

is given by the Benoit-Saint-Aubin formula [67]. This PDE is not used to prove any

of the claims made in the previous paragraph, so we do not show it. (In fact, the

null-state PDE centered on xi is only used to prove that the limit solution (2.81)

does not depend on xi in the original situation of lemma II.4. This is obviously not

a feature of F2.)

We can continue this generalization further. We let Fs be the (2N − s + 1)-point

function

Fs(x1, . . . , xi, xi+s, . . . , x2N) =
s�

k=2

Ck

k−1,1

× �ψ1(x1) . . . ψ1(xi−1)ψs(xi)ψ1(xi+s) . . . ψ1(x2N)�. (2.126)

Here, Cs+1

s,1
is the OPE coefficient of the fusion ψs × ψ1 = ψs+1. CFT says that Fs

must solve the system of (2N − s) null-state PDEs

�
κ

4
∂2

j
+

2N�

k �=j,i,...,i+s−1

�
∂j

xk − xj

− θ1

(xk − xj)2

�
+

∂i

xi − xj

− θs

(xi − xj)2

�
Fs = 0,

(2.127)
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with j ∈ {1, . . . , i− 1, i + s, . . . , 2N}, and the modified Ward identities






�
2N

j �=i,...i+s−1
∂jFs = 0

��
2N

j �=i,...i+s−1
(xj∂j + θ1) + xi∂i + θs

�
Fs = 0

��
2N

j �=i,...i+s−1
(x2

j
∂j + 2θ1xj) + x2

i
∂i + 2θsxi

�
Fs = 0

. (2.128)

Here, θs is the conformal weight of the s-leg operator (1.171)

θs =
s(2s + 4− κ)

2κ
. (2.129)

This system of PDEs implies the growth condition

Fs(x1, . . . , xi, xi+s, . . . , x2N) = O((xi+s − xi)
−θ1−θs+θs−1), as xi+s → xi. (2.130)

The proof is identical to the proof of lemma II.3, with a few slight alterations. After

letting � := xi+s− xi and relabeling the variables {xj}j �=i,...,i+s as {ξ1, . . . , ξ2N−s−1} in

ascending order, we find that the differential operator Ls of (2.62) is now

Ls :=
κ

4
∂2

�
+

∂�

�
− θs

�2
, (2.131)

while M does not change (except that the number of coordinates for ξ decreases to

2N − s− 1). The characteristic exponents of Ls are

p1 = −θ1 − θs + θs−1 = 1− 2(s + 2)/κ, p2 = −θ1 − θs + θs+1 = 2s/κ, (2.132)

and the Green function (2.64) is altered to

Gs(�, η) =
4η

κ(θs+1 − θs−1)
Θ(η − �)

��
�

η

�−θ1−θs+θs−1

−
�

�

η

�−θ1−θs+θs+1
�

. (2.133)
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Again, to prove (2.130), we assume that Fs does not change sign infinitely often

as xi+s → xi, a condition that we believe is ultimately unnecessary although we

currently do not know how to prove it. Furthermore, we may also prove that the

limit of (xi+s − xi)θ1+θs−θs−1Fs as xi+s → xi exists, and if it is zero, then the limit

Fs+1 of (xi+s − xi)θ1+θs−θs+1Fs as xi+s → xi exists, is not zero, and solves the system

(2.127-2.136) with s �→ s+1. The proof of these two claims are respectively identical

to the proofs of lemmas II.4 and II.15, and the latter situation is consistent with an

OPE of ψs(xi) with ψ1(xi+s) that leads with the boundary (s + 1)-leg operator:

Fs� �� �
C2

11
. . . Cs

s−1,1
�ψ1(x1) . . . ψ1(xi−1)ψs(xi)ψ1(xi+s)ψ1(xi+s+1) . . . ψ1(x2N)�

∼
xi+s→xi

(xi+s − xi)
−θ1−θs+θs+1

× C2

11
. . . Cs+1

s1
�ψ1(x1) . . . ψ1(xi−1)ψs+1(xi)ψ1(xi+s+1) . . . ψ1(x2N)�� �� �

Fs+1

.
(2.134)

The case s = 1 reproduces lemmas II.3, II.4, and II.15 with F1 := F ∈ SN .

These observations serve as a significant part of the proof that dimSN ≤ CN for

the following reasons. First, it is reasonable to suppose that the two possibly different

power laws that F ∈ SN exhibits as xi+1 → xi+1 or xi+2 → xi+1 determines which of

the two power laws among (2.132) that F2 will exhibit as xi+2 → xi. For instance, we

suppose that the adjacent intervals (xi, xi+1), and (xi+1, xi+2) are two-leg intervals.

In chapter one, we noted that boundary arcs anchored to the endpoints of a two-leg

interval are conditioned to not mutually connect. Therefore, none of xi, xi+1, and xi+2

may be connected by a common boundary arc, and the limit xi+1 → xi followed by the

limit xi+2 → xi should produce a boundary three-leg operator at xi. Consequently,

we expect that we can prove that if (xi, xi+1), and (xi+1, xi+2) are two-leg intervals,

then F2(x1, . . . , xi, xi+2, . . . , x2N) = O((xi+2 − xi)−θ1−θ2+θ3).

Next, we suppose that each of (xi, xi+1), . . . , (xi+s−1, xi+s) is a two-leg interval.
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ψ1(x1) ψ1(x2) ψ1(x3) . . .

. . .

. . .1 2 3

ψ1(x2N−1) ψ1(x2N )

2N − 1

ψ2N−1(x1) ψ1(x2N )

Figure 2.5: The existence of a solution with all intervals among (x1, x2), . . ., (x2N−1, x2N )
as two-leg intervals implies the existence of a nonzero two-point function of a boundary
(2N − 1)-leg operator and a boundary one-leg operator, an impossibility.

Again, this implies that none of xi, . . . , xi+s may be connected by a common boundary

arc, for otherwise a pair xj, xj+1 among them must be mutually connected through

a boundary arc, contradicting that (xj, xj+1) is a two-leg interval. Then the same

argument of the previous paragraph suggests that

Fs(x1, . . . , xi, xi+s, . . . , x2N) = O((xi+s − xi)
−θ1−θs+θs+1). (2.135)

Again, we expect that we can prove (2.135) and that the proof will be a straightfor-

ward generalization of the proof for the case s = 2.

Finally, we choose an F ∈ SN not equal to zero, we let i = 1, and we suppose

that each of (x1, x2), . . . , (x2N−1, x2N) is a two-leg interval. Then according to the

preceding arguments, F2N−1 is not zero and solves the three modified Ward identities

(2.117) with s = 2N − 1. This system is






[∂1 + ∂2N ]F2N−1(x1, x2N) = 0

[x1∂1 + x2N∂2N + θ2N−1 + θ1]F2N−1(x1, x2N) = 0

[x2

1
∂1 + x2

2N
∂2N + 2x1θ2N−1 + 2x2Nθ1]F2N−1(x1, x2N) = 0

. (2.136)

It is straightforward to show that only zero solves this system. This implies that

F2N−1 is zero, a contradiction. (Or in terms of CFT, F2N−1 is a two-point function
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with a boundary (2N − 1)-leg operator and a boundary one-leg operator (figure 2.5),

and because these operators have different conformal weights, this two-point function

is zero.) Thus, we have motivated the following conjecture.

Conjecture II.16. Let F ∈ SN , and let κ ∈ (0, 8). If each of (x1, x2),. . ., (x2N−1, x2N)

are two-leg intervals, then F is zero.

We expect that the proof of this conjecture follows from the preceding discussion

and is most straightforwardly completed by proving (2.135) for all s ∈ {1, . . . , 2N−2}

(and by proving, or finding a way to drop, the supposition that the sign of Fs does not

change infinitely often as we send xi+s → xi for all s ∈ {1, . . . , 2N − 1}, a condition

that we strongly suspect is true anyway).

It is interesting to note that conjecture II.16 is not true if we omit the Ward

identities (2.2) and only consider the 2N null-state PDEs (2.1). Then (as long as the

notion of a “two-leg interval” is well-defined for a solution of this reduced system),

the conjecture is false, as the following counterexample shows:

F (x) =
2N�

i<j

(xj − xi)
2/κ. (2.137)

This function, for which each of the intervals (x1, x2), . . . , (x2N−1, x2N) are two-leg

intervals, solves the 2N null-state PDEs and the first Ward identity, but it does not

solve the other two Ward identities.

The weak maximum principle might seem to lend a more straightforward proof

of conjecture II.16, but this approach encounters technical difficulties. Such a proof

would proceed as follows. We fix x1 = a, x2N = b with a < b, we let F ∈ SN , we let

Ωa,b = {(x2, . . . , x2N−1) ∈ R
2N−2 : a < x2 < . . . < x2N−1 < b}, (2.138)

and we let FR : Ωa,b → R be given by FR(x2, . . . , x2N−1) = F (a, x2, . . . , x2N−1, b).
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After using the first two Ward identities of (2.2) to eliminate all derivatives in x1, x2N ,

the null-state PDE centered on xj with j ∈ {2, . . . , 2N − 1} becomes

�
κ

4
∂2

j
+

�

k �=j,1,2N

�
∂k

xk − xj

− (6− κ)/2κ

(xk − xj)2

�
−

�

k �=1,2N

(xk − a)∂k

(b− xj)(xj − a)

+
�

k �=1,2N

∂k

xj − a
− N(6/κ− 1)

(b− xj)(xj − a)
− (6− κ)/2κ

(xj − a)2
− (6− κ)/2κ

(b− xj)2

�
FR = 0. (2.139)

If we sum (2.139) over j ∈ {2, . . . , 2N − 1}, then we find a strictly elliptic PDE

with a nonpositive constant term if κ ∈ (0, 6]. Because all of its intervals are two-

leg intervals, FR continuously extends to and equals zero on ∂Ωa,b \ E, according to

lemma II.4, where E is the set of points (a, x2, . . . , x2N−1, b) ∈ ∂Ω0 with three or

more coordinates equal. If we show that FR continuously extends to and equals zero

on E too, then we can invoke the weak maximum principle to prove conjecture II.16

for κ ∈ (0, 6]. However, we have not found a way to justify this claim, nor have

we found bounds on the growth of FR near E for which we could use a Phragmén-

Lindelöf maximum principle to skirt this issue. Furthermore, such a principle would

be difficult to apply since the coefficients of (2.139) are not bounded as the points in

E are approached.

Supposing that conjecture II.16 is true, the proof that dimSN ≤ CN follows

immediately.

Lemma II.17. Let F ∈ SN , let κ ∈ (0, 8), and suppose that conjecture II.16 is true.

Let v : SN → R
CN be the map with the k-th coordinate of v(F ) equaling [Lk]F for

[Lk] ∈ B∗

N
. Then v is a linear injection, so dimSN ≤ CN .

Proof. The map v is clearly linear. To show that it is injective, we argue that its

kernel is trivial. Suppose that F is not zero. We construct a consistently ordered

sequence of limits L such that L F �= 0 as follows. By conjecture II.16, F has at

least one mixed interval or identity interval (xi1 , xi2) = (xi, xi+1). We let �̄1 collapse
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this interval. Then according to lemma II.3, �̄1F ∈ SN−1. Also, �̄1F is not zero since

(xi1 , xi2) is not a two-leg interval, so it must have at least one identity interval or

mixed interval (xi3 , xi4). Repeating this process N − 1 times leaves us with a nonzero

number L F , where L = {�1, �2, . . . , �N}. Thus, v(F ) �= 0, and ker v = {0}. The

dimension theorem of linear algebra then implies that dimSN ≤ CN .

In the next section, we will show that dimSN = CN , assuming conjecture II.16.

Before we do this, we state a corollary that justifies our exclusive consideration of the

system (2.1-2.2) with an even number of independent variables. Up until now, the

results of this section have not required this number to be even, so they hold even

when it is odd (though M should always be even in definition II.8). We therefore let

SN+1/2 be defined exactly as SN for the system (2.1-2.2) with 2N + 1 independent

variables.

Corollary II.18. Let F ∈ SN+1/2, and suppose that conjecture II.16 is true. If

κ ∈ (0, 6) ∪ (6, 8), then SN+1/2 = {0}.

Proof. We suppose that F ∈ SN+1/2 is not zero. Then as noted in the proof of

lemma II.17, there exists a consistently ordered sequence of limits L of length N

such that F � := L F is not zero. Lemma II.3 shows that F � is a function of only one

xk ∈ {x1, . . . , x2N+1} and solves the system

κ

2
∂2

k
F � = 0, ∂kF

� = 0, [xk∂k + θ1]F
� = 0, [x2

k
∂k + 2xkθ1]F

� = 0. (2.140)

If κ �= 6, then θ1 �= 0 and F � is zero, a contradiction.

We conjecture a similar corollary for the case κ = 6, for which θ1 = 0, and we

propose a proof of this conjecture that is similar to the proposed proof of conjecture

II.16.
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Conjecture II.19. Let F ∈ SN+1/2. If κ = 6, then SN+1/2 = R.

We expect the proof of this conjecture to ultimately proceed as follows. If we

differentiate the three conformal Ward identities and the null-state PDEs centered on

x1, . . . , x2N with respect to x2N+1 and let G = ∂2N+1F , then we find the system of

2N null-state PDEs,

�
κ

4
∂2

i
+

2N+1�

j �=i

∂j

xj − xi

− 1

(x2N+1 − xi)2

�
G(x1, . . . , x2N+1) = 0, i ∈ {1, . . . , 2N},

(2.141)

together with the system of three conformal Ward identities:






�
2N+1

i=1
∂iG(x1, . . . x2N+1) = 0

�
2N+1

i=1
xi∂iG(x1, . . . x2N+1) + G(x1, . . . x2N+1) = 0

�
2N+1

i=1
x2

i
∂iG(x1, . . . x2N+1) + 2x2N+1G(x1, . . . x2N+1) = 0

. (2.142)

We note that relative to G, the coordinates x1, . . . , x2N have conformal weight zero

while the anomalous coordinate x2N+1 has weight one. Now we argue that if G is not

zero, then at least one of the intervals among (x1, x2), . . . , (x2N−1, x2N) is not a two-leg

interval by reusing the proposed proof for conjecture II.16. We describe the general

idea using CFT and omit further details. If we assume the contrary, then it should be

possible to fuse the boundary one-leg operators at the coordinates x1, . . . , x2N into a

single boundary 2N -leg operator, leaving us with a two-point function of a boundary

2N -leg operator and a derivative of a boundary one-leg operator. The conformal

weights of these operators are different, so this two-point function vanishes, implying

that G is zero. This is a contradiction.

We continue to assume that G is not zero. Having established the existence

of an interval (xi, xi+1) among (x1, x2), . . . , (x2N−1, x2N) that is not a two-leg in-

terval, we collapse it to find a nonzero limit. Then the arguments of the pre-
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vious paragraph can be reused to prove the existence of another interval among

(x1, x2), . . . , (xi−1, xi), (xi, xi+2), . . . , (x2N−1, x2N) that is not a two-leg interval, and

we collapse that interval too. We repeat the process indefinitely until all intervals

among (x1, x2), . . . , (x2N−1, x2N) have been collapsed. The limit of this sequence of

interval collapses is a function not equal to zero and also a conformally covariant

function of just x2N+1 with conformal weight one there. However, the only function

with this latter property is trivially zero, a contradiction. We therefore conclude that

G is indeed zero.

The conclusion of the previous paragraph that G := ∂2N+1F = 0 may be inserted

into the null-state PDE for F centered on x2N+1 to find

2N�

j=1

(x2N+1 − xj)
−1∂jF (x1, . . . , x2N) = 0. (2.143)

We fix the coordinates x1, . . . , x2N to arbitrary values, and we fix x2N+1 to 2N distinct

arbitrary values greater than x2N to create an invertible system of 2N equations in

the unknowns ∂1F (x1, . . . , x2N), . . . , ∂2NF (x1, . . . , x2N). The one unique solution of

this system is the zero solution, so all of the unknowns equal zero. Finally, because

x1, . . . , x2N were chosen arbitrarily, we conclude that ∂1F, . . . , ∂2NF are zero too.

Thus F must be a constant. This concludes our proposed proof of conjecture II.19.

2.4 A basis BN for SN and the meander matrix

Having found an upper bound on the dimension of SN in lemma II.17 (under the

assumption of conjecture II.16), we next prove that dimSN = CN (again, assuming

this conjecture) by selecting a certain subset BN ⊂ SN of cardinality CN and showing

that this set is linearly independent. Such a set BN therefore serves as a basis for SN

which proves the claim. In this section and in the rest of this thesis, we will refer to

the coordinates x1, . . . , x2N of x as “points.”
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Definition II.20. For k ∈ {1, . . . , CN}, let Fk be the Coulomb gas solution (2.9),

with c = 2N , times

n(κ)Nβ(−4/κ,−4, κ)1−N , (2.144)

where n(κ) is the O(n) loop fugacity (1.155), where β(a, b) is the Euler beta function,

and with the integration contours {Γm} chosen as follows. Each pair of points {xi, xj}

linked by an arc in the half-plane diagram for [Lk] is connected by a simple contour

among {Γm} and starting and ending at xi and xj respectively, except for the pair

with the point x2N . Each contour resides in H, and they bend in H so that no two

integration contours intersect. Furthermore, we order the differences in the factors of

the integrand for each Fk so that each is real. (This is always possible, as we show

in the discussion following the proof of lemma II.22 below.) Let BN = {F1 . . . , FCN}.

Let the polygon (resp. half-plane) diagram of Fk be the diagram of [Lk] except with

exterior arcs drawn on the outside of the 2N -sided polygon (resp. drawn inside the

lower half-plane). We call either diagram an exterior arc connectivity diagram.

The calculations that we present below make evident the fact that BN ⊂ SN . In

particular, we indirectly prove that Fk(x) = O((xi+1 − xi)−2θ1) by directly showing

that limit of (xi+1−xi)2θ1Fk(x) as xi+1 → xi exists. We can also prove this statement

for first and second partial derivatives of Fk ∈ BN not with respect to xi or xi+1 by

differentiating the explicit formula for Fk, and this proves (2.60). Moreover, we will

show that the limit of (xi+1 − xi)2θ1Fk as xi+1 → xi is a multiple of an element in

BN−1, so it follows that Fk ∈ SN . (The condition (2.101) at infinity can be proven

similarly by using transformation rule (2.5) with the mapping (2.108).)

If κ ≤ 4, then the integrations prescribed in this definition will diverge. Conver-

gence is restored by replacing each integration contour connecting the pair of points

xi and xj with the Pochhammer contour P(xi, xj), taking care to ensure that no two

such contours intersect. To keep the same normalization as used for when κ > 4, we

146



divide by one factor of 4 sin2(4π/κ) for each contour. Thus, when κ ≤ 4, we use the

prefactor

n(κ)N

�
4 sin2

�
4π

κ

�
β(−4/κ,−4, κ)

�1−N

(2.145)

instead of the original prefactor (2.144). The arguments that follow presume the

integration contours to be simple curves described in definition II.20, but they hold

for either type of contour for reasons that will be given below.

We will prove that BN is linearly independent (assuming conjecture II.16) for all

but the following SLE speeds and is linearly dependent otherwise.

Definition II.21. An SLE speed is called an exceptional speed if it equals any of

κq,q� := 4q/q�, κq,2mq±q� , m ∈ Z
+, (2.146)

where (q, q�) are a pair of coprime integers with 1 ≤ q� < q.

To prove the linear independence of BN , we will show that the set v(BN) := {v(Fk)}CN
k=1

is linearly independent and invoke lemma II.17. To calculate the vectors in v(BN),

we must compute [Lk]Fk� for all Fk� ∈ BN and all [Lk] ∈ B∗

N
. As each computa-

tion involves taking N somewhat complicated limits, this task might seem tedious.

However, it can be simplified by using the diagrams for [Lk] and Fk� .

We start with a sample calculation. We choose an Fk� ∈ BN , an [Lk] ∈ B∗

N
, and an

arc in the diagram for [Lk] linking a pair of adjacent points xi and xi+1. Topological

considerations show that at least one such arc with neither endpoint being x2N exists,

and we choose this arc to represent the first limit �̄1 = {xi+1 → xi} taken in [Lk].

Now the value of �̄1Fk� depends on how the integration contours interact with the

interval (xi, xi+1) to be collapsed. The limit �̄1Fk� is

�̄1Fk� = lim
xi+1→xi

(xi+1 − xi)
2θ1Fk�

= lim
xi+1→xi

(xi+1 − xi)
6/κ−1n(κ)Nβ(−4/κ,−4/κ)1−N (2.147)
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×
�

(xi+1 − xi)
2/κ . . .

�

Γ1

du1 (xi+1 − u1)
−4/κ(u1 − xi)

−4/κ . . .

�
. (2.148)

The ellipses stand for the additional factors and integrations in Fk� that appear in

(2.9). Some of these factors contain xi and xi+1 and are therefore affected by the

limit. But none of them have zero or infinite limits, so they do not matter in the

present calculation. Now we suppose that no contour among {Γm} has its endpoints

at xi or xi+1. (This is actually not possible, but we consider this case anyway because

it will come up as a consequence of deforming the integration contours later.) Then

the limit of the integrand approaches a finite value uniformly in u1, the limit of the

integral is finite, and �̄1Fk� = 0 if κ < 8. Evidently, (xi, xi+1) is a two-leg interval.

Now we suppose that Γ1 = [xi, xi+1]+. (The plus sign indicates that the contour

bends up into the upper half-plane with endpoints still at xi and xi+1.) In this case,

the limit of the integrand is not approached uniformly in u1 ∈ Γ1. The substitution

u(t) = (1 − t)xi + txi+1 factors the (xi+1 − xi)-dependence out of the integral, and

we find that the limit �̄1Fk� is not zero. In fact, the limit is Fk� but with factors

containing xi, xi+1, and u1 dropped, the integration along Γ1 dropped, and a factor

of β(−4/κ,−4/κ)−1 dropped. To within an extra factor of n, this limit is clearly in

BN−1, and (xi, xi+1) is evidently an identity interval.

In addition, Γ1 may have just one of its endpoints equal xi or xi+1, and in this

case (xi, xi+1) is a mixed interval as a more careful calculation in section 2.5 will

show. These observations point to a certain fact: by touching xi and/or xi+1 (or

crossing (xi, xi+1)), an integration contour converts a two-leg interval (xi, xi+1) into

an identity interval or a mixed interval.

Lemma II.22. Let κ ∈ (0, 8), and suppose that conjecture II.16 is true. If κ is

not (resp. is) an exceptional speed with q ≤ N + 1, then BN is linearly independent

(resp. linearly dependent).

Proof. To prove the lemma, we will show that {v(F1), . . . , v(FCN )} is linearly inde-
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pendent when κ is not an exceptional speed with q ≤ N + 1 by computing [Lk]Fk�

for all Fk� ∈ BN . In the calculation, we make sure to never collapse an interval that

has x2N for an endpoint so that the conjugate charge remains upon taking the limit.

This is always possible since any diagram for any consistently ordered sequence of

limits has at least two distinct arcs connecting either a pair of adjacent points or x1

with x2N .

We choose a first limit �̄1 = {xi+1 → xi} in [Lk]. As we noted earlier, when we

collapse an interval in the domain of Fk� ∈ BN , the outcome depends on whether the

endpoints of that interval are endpoints of an integration contour. There are four

different cases to consider (figure 2.6). The explicit computations that pertain to

each are deferred to section 2.5. We simply summarize the results.

In the first case, neither xi nor xi+1 is an endpoint of a contour, (xi, xi+1) is a

two-leg interval, and the limit �̄1Fk� is zero (2.147).

In the second case, both xi and xi+1 are endpoints of the same contour Γ1, (xi, xi+1)

is an identity interval, and the limit �̄1Fk� is nF �

k� , with F �

k� ∈ BN−1 as described above.

In the third case, only one of the endpoints among {xi, xi+1} is the endpoint of

a contour Γ1. This situation requires more care. We suppose that one endpoint of

Γ1 is at xi but the other endpoint is not at xi+1. We break Γ1 into a contour Γ�
1

0 ×

1 ×

n−1 ×

Γ1

Γ1

Γ1 Γ2 Γ

Case 1:

Case 2:

Case 3:

Case 4: n−1 ×

Figure 2.6: The four cases of interval collapse. The dashed curve connects the endpoints
of the intervals to be collapsed, and the solid curves indicate the integration contours. (Case
four is shown in more detail in figure 2.7.)
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that terminates at xi−1 and another along [xi−1, xi]+. Now we must take the limit of

(xi+1 − xi)6/κ−1 times

Fk� =
2N−1�

m<j

(m,j) �=(i,i+1)

(xj − xm)2/κ(x2N − xm)1−6/κ

�

{Γm>1}

du2 . . . duN−1

×




�

m≥1

k>1

(uk − xm)−4/κ(uk − x2N)12/κ−2





�
�

1<k<l

(uk − ul)
8/κ

�

×
�
(xi+1 − xi)

2/κ

��

Γ�
1

+

�
xi

xi−1

du1

� �
�

k>1

(uk − u1)
8/κ

�

× (u1 − x2N)12/κ−2

2N−1�

m=1

(u1 − xm)−4/κ

�
(2.149)

as xi+1 → xi. (Although we have not explicitly done this here, the differences in the

integrand of (2.149) should be ordered so that Fk is real. Below, we argue that this

is always possible.) In the bracketed factor spanning the last two lines of (2.149), the

u1 integral along Γ�
1

falls under the first case and vanishes in the limit, and the u1

integral along (xi−1, xi) is identical to that in (2.167) with βi = βi+1 = −γ/2 = −4/κ.

The asymptotic behavior of this integral is given in (2.172) in section 2.5.3, so this

limit equals that of the second case multiplied by an extra factor of n−1 accumulated

from deforming Γ1. Therefore, in the third case, the limit �̄1Fk� = F �

k� is an element

of BN−1. Also, (xi, xi+1) is a mixed interval.

In the fourth and most complicated case, xi is an endpoint of Γ1 and xi+1 is

an endpoint of a different contour Γ2. Similar to case three, we separate the u1

and u2 integrals from the other N − 3 integrals, and we break Γ1 (resp.Γ2) into a

contour Γ�
1

(resp.Γ�
2
) that terminates at xi−1 (resp.xi+2) and another along [xi−1, xi]+

(resp. [xi+1, xi+2]+) (figure 2.7). This results in four terms. The first integrates u1

and u2 along Γ�
1

and Γ�
2

respectively, and because neither of these contours terminates

at xi or xi+1, we are in the first case. The limit is thus zero. The second term
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0 ×

n−1 ×

n−1 ×

Γ2

Γ1 Γ2
n−1 ×

Γ1 Γ1

Γ1 Γ1

Γ2

Γ2Γ2

+

+

+
{=

= n−1 ×

Γ0

Γ=Γ 0 +Γ 1 +Γ 2

Figure 2.7: The decomposition of the fourth case into the first three cases. The top and
middle terms fall in the first and third cases respectively.

integrates u1 along [xi−1, xi]+ and u2 along Γ�
2
. This term falls under the third case,

and its limit is the element of BN−1 with contours {Γ�
2
, Γ3, . . . , ΓN−1}. The third term

integrates u1 along Γ�
1

and u2 along [xi+1, xi+2]+. It also falls under the third case,

and its limit is the element of BN−1 with contours {Γ�
1
, Γ3, . . . , ΓN−1}. The fourth

and most complicated term integrates u1 along [xi−1, xi]+ and u2 along [xi+1, xi+2]+.

Its asymptotic behavior as xi+1 → xi is computed in section 2.5.4, and the result

is (2.188). Its limit is the element of BN−1 with contours {Γ�
0
, Γ3, . . . , ΓN−1}, where

Γ�
0

:= [xi−1, xi+2]+. Summing all four terms gives the element of BN−1 with contours

{Γ, Γ3, . . . , ΓN−1}, where Γ := Γ�
0
+ Γ�

1
+ Γ�

2
is the contour generated by the joining of

Γ1 with Γ2 induced by pinching their respective endpoints xi and xi+1 together.

These calculations are facilitated by a diagrammatic method. We draw the poly-

= n2[Lk] = Fk = [Lk]Fk =

Figure 2.8: A example of the diagram for an [Lk] ∈ B∗
N

, the diagram for an Fk� ∈ BN ,
and the diagram for their product [Lk]Fk� = n2.
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gon diagram for [Lk] and that for Fk� on the same polygon (figure 2.8) and call this

the diagram for [Lk]Fk� . The interior and exterior arcs respectively represent the lim-

its of [Lk] to be taken and the integration contours of Fk� (except for the exterior arc

with an endpoint at x2N , which has no associated integration contour). These arcs

join to form loops that dodge in and out of the 2N -sided polygon through its vertices.

We suppose that vertices xi and xi+1, neither of which are x2N , are connected by an

interior arc, so we can take the limit xi+1 → xi first. Topological considerations show

that at least one such interior arc exists in the diagram of each [Lk]. Then either one

of two cases may occur. First, xi and xi+1 may also be connected through an exterior

arc that joins with the interior arc to form a loop intersecting the polygon at just

xi and xi+1. This limit falls under the second case. Collapsing the interval (xi, xi+1)

amounts to deleting this side and the loop that surrounds it from the polygon, cre-

ating a (2N − 2)-gon (after dropping the leftover vertex xi since the limit does not

depend on it), and the limit is n times the element of BN−1 whose diagram is given

by the remaining interior and exterior arcs. Or second, xi and xi+1 are not connected

by a single exterior arc. This limit falls under the third or fourth case. Collapsing the

interval (xi, xi+1) amounts to deleting this interval and its interior arc while joining

the two exterior arcs into one, and the limit is the element of BN−1 whose diagram is

given by the remaining interior and exterior arcs. We perform this process N times

so that each loop is eventually contracted away and leaves a factor of n in its wake.

If the number of loops in the diagram for [Lk]Fk� (with the polygon deleted) is lk,k� ,

then we have

[Lk]Fk� = nlk,k� . (2.150)

This result establishes a natural inner product on the space of diagrams for the

elements of B∗

N
identical to the inner product on Temperley-Lieb algebras studied in

[68]:

� [Lk], [L ]k�� := [Lk]Fk� = nlk,k� . (2.151)
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The Gram matrix MN(κ) of this inner product is called the meander matrix [68],

and it is clearly symmetric. In our application, the rows (or columns) of this matrix

are {v(F1), . . . , v(FCN )}. Assuming that conjecture II.16 is true, we conclude from

lemma II.17 that BN is linearly independent if and only if det MN(κ) �= 0.

The determinant of the meander matrix is computed in [68], and it is

det MN(κ) =
N�

q=1

Uq(n(κ))a(N,q) (2.152)

=
�

1≤q�<q≤N+1

(n(κ)− nq,q�)
a(N,q−1), nq,q� = −2 cos

�
πq�

q

�
, (2.153)

where Uq is the q-th Chebychev polynomial of the second kind, and the power a(N, q)

is given by

a(N, q) =

�
2N

N − q

�
− 2

�
2N

N − q − 1

�
+

�
2N

N − q − 2

�
. (2.154)

Because (2.153) only depends on the ratio q�/q, we adopt the convention that the pair

(q, q�) labeling nq,q� is coprime. Table 2.1 shows a list of the first few nq,q� . Because

κ� = κq,q� or κq,2mq±q� for any positive integer m are the only SLE speeds such that

n(κ�) = nq,q� , and n(κq,2mq±q�) = nq,q� , the lemma follows. (All of the other zeros of

det MN(κ) are κq,−q� and κq,2mq±q� with m a negative integer. They are negative and

therefore cannot be SLE speeds, so we do not consider them.)

It is always possible to order the differences of the factors that are outside and

inside of the integrand of each Fk ∈ BN so that Fk is real. The correct ordering of the

differences of the factors that are outside of the integrand is obvious, and we assume

that this is ordering is already used. The correct ordering of the differences of the

factors that are inside of the integrand may be found by considering the action of

[Lk] on Fk. Topological considerations show that there exists at least one interval

(xi, xi+1) of Fk whose endpoints are connected by an integration contour Γ1. Then
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�̄1 = {xi+1 → xi} is a limit of [Lk] which we may choose to take first. Furthermore, it

is always possible to deform all of the contours that arc over (xi, xi+1) so that they do

not pass over this interval but pass over infinity instead. We let um be the integration

variable for the contour Γm, and recalling that all contours are in H, we flatten the

contours so that each is arbitrarily close to the real axis. Then um with m > 1 couples

with xi, xi+1, and u1 only through the product of factors

(um − xi+1)
−4/κ(um − xi)

−4/κ(um − u1)
8/κ. (2.155)

As long as we order the differences in the factors as in (2.155), this product is real

for all um ∈ Γm with m > 1. This statement is true even if Γm arcs over (xi, xi+1)

since, after deforming Γm so that it passes over infinity instead of (xi, xi+1), either

um < xi, xi+1, u1 or um > xi, xi+1, u1 for all um ∈ Γm and m > 1. Consequently, we

can order the differences in the factors of the integrand for the u1 integration so that

this integration is real for all xi < xi+1 and um ∈ Γm with m > 1. Next, we take

the limit �̄1Fk, which equals n times an element of BN−1, and we repeat the previous

step. The integration variable, previously u1, is now labeled u2. Performing the

second step determines how to order the differences in the factors of the integrand for

the u2 integration in �̄1Fk so that this integration is real for all um ∈ Γm with m > 2.

We repeat this process until we reach [Lk]Fk = nN . Altogether, these steps determine

an ordering of the differences in all of the factors in the complete integrand of Fk.

Because [Lk]Fk is real and because none of the limits alter the phase, we conclude

that Fk, with this ordering imposed on the integrand, is real. We let “N ” be the

operator that orders the differences in the factors of the integrand this way, and we

indicate that this ordering is done by placing the integrand within the brackets of
�

Γ1
. . .

�
ΓN−1

N [ . . . ] du1 . . . duN−1.

Lemma II.17 establishes an interesting corollary. We choose an Fk ∈ BN and
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c ∈ {1, . . . , 2N − 1}, and we let F (c)

k
be the Coulomb gas solution (2.9) with the

same normalization and integration contours as Fk, except that the contour with an

endpoint at xc is omitted and a contour with endpoints at x2N and the coordinate

xi connected to x2N in the half-plane diagram for Fk is included. As usual, the new

contour is simple, is in H, does not intersect the other contours, and if κ < 4, is

replaced by a Pochhammer contour that entwines xi with x2N . Clearly, F (2N)

k
= Fk.

Also, when c �= 2N , we still order the differences in the factors of the integrand of

F (c)

k
so that F (c)

k
is real by following the recipe prescribed in the previous paragraph.

If we follow this procedure, then because c �= 2N , at one of the steps the interval

to be collapsed might not be of the form (xi, xi+1) for some i ∈ {1, . . . , 2N − 1} but

rather may be (x2N , x1), so the limit �̄ = {xi+1 → xi} is replaced with � = {x1 →

−∞, x2N →∞}. We represent F (c)

k
with the same diagram as that for Fk ∈ BN .

The proof of lemma II.22 shows that [Lk]F
(c)

k� = [Lk]Fk� for all k, k� ∈ {1, . . . , CN}.

Therefore, lemma II.17 implies the following corollary.

Corollary II.23. Let κ ∈ (0, 8), let F (c)

k
be defined relative to Fk ∈ BN as described

above, and suppose that conjecture II.16 is true. Then F (c)

k
= F (c�)

k
for all c, c� ∈

{1, . . . , 2N}.

This corollary may be explained in terms of CFT as follows. We may think of Fk as a

2N -point conformal block in the sense that only the identity fusion channel propagates

between each pair of operators ψ1(xi) and ψ1(xj) whose coordinates xi and xj are

connected by an arc in the diagram for Fk. For good reasons (related to a physical

interpretation for the elements of BN to be presented in chapter four), we expect these

conformal blocks to correspond one-to-one with the CN arc connectivity diagrams.

On the other hand, the Coulomb gas formalism gives seemingly different formulas for

conformal blocks, Fk and F (c)

k
, with the same diagram. These formulas differ only by

the placement of their conjugate charge. Corollary II.23 shows that they are all equal

(if we assume that conjecture II.16 is true). Therefore, the correspondence between
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the conformal blocks and the CN arc connectivity diagrams is indeed one-to-one.

The proof of lemma II.22 establishes another useful corollary that we will use in

chapter three.

Corollary II.24. Let κ ∈ (0, 8), and suppose that conjecture II.16 is true. Then the

rank of BN equals the rank of the meander matrix MN(κ).

In [69], the nullity of the meander matrix is shown to equal the multiplicity dN(q, q�)

of the root nq,q� in its determinant formula (2.153), so by the dimension theorem, we

have

rank MN(κ)

=






CN , κ �= κq,q� or κq,2mq±q�

CN − dN(q, q�), κ = κq,q� or κq,2mq±q�

�������

1 ≤ q < q� ≤ N + 1,

q, q� coprime, m ∈ Z
+

. (2.156)

In [68], the following summation formula for the rank of MN(κ), is computed and

shown to equal an integer, a fact that is not immediately apparent from the formula:

rank MN(κq,q�) = rank MN(κq,2mq±q�) =
1

2q

q−1�

l=1

�
2 sin

πl

q

�2 �
2 cos

πl

q

�2N

. (2.157)

We use lemma II.22 to prove most of the following theorem. This is the main

result of this chapter.

Theorem II.25. Let κ ∈ (0, 8), and suppose that conjecture II.16 is true. Then

dimSN = CN , and SN is spanned by the Coulomb gas solutions (2.9). If κ is not an

exceptional speed with q ≤ N + 1, then BN is a basis for SN .

Proof. The theorem follows immediately from lemma II.22 when κ is not an excep-

tional speed. To prove the theorem when κ is an exceptional speed, we will construct

a linearly independent set B�
N

of cardinality CN from the linearly dependent set BN

by perturbing κ away from the exceptional speed.
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Let κ� be an exceptional speed corresponding to the root nq,q� of det MN . We see

from (2.156) that BN has rank CN − dN(q, q�). Therefore, the solutions in BN will

satisfy exactly l = dN(q, q�) different linear dependences, which we write as

�
k

aj,kFk(κ
�) = 0, j ∈ {1, . . . , l}, (2.158)

where the vectors aj := (aj,1, . . . , aj,CN ) are linearly independent and span the kernel

of MN(κ�).

Next, we construct a new linearly independent set B�
N

of cardinality CN . We let

A be any CN × CN invertible matrix whose first k rows are aj, and for arbitrary κ,

we consider the set of solutions

��
k

a1,kFk(κ), . . . ,
�

k

al,kFk(κ),

�
k

al+1,kFk(κ), . . . ,
�

k

aCN ,kFk(κ)
�

. (2.159)

For κ �= κ�, this new set is also linearly independent since det A �= 0, but when κ = κ�,

the first l entries are zero while the others form a linearly independent set. Because

each Fk(κ) is analytic at κ�, the j-th entry vanishes at rate O((κ− κ�)mj) as κ → κ�

for each j ∈ {1, . . . , l}, with mj a positive integer. So we adjust the set (2.159) so

that all of its entries are O(1) as κ → κ�:

B�
N

:=
�

(κ− κ�)−m1
�

k

a1,kFk(κ), . . . , (κ− κ�)−ml
�

k

al,kFk(κ),

�
k

al+1,kFk(κ), . . . ,
�

k

aCN ,kFk(κ)
�

. (2.160)

We let Λj(κ) be the j-th element of B�
N

, as they are ordered in (2.160). To show that

B�
N

is linearly independent when κ = κ�, we check that the determinant of the matrix
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M �

N
(κ) whose j-th column is v(Λj) is not zero. This determinant equals

det M �

N
(κ) = (κ− κ�)−m1−...−ml det A det MN(κ)

= O((κ− κ�)dN (q,q
�)−m1−...−ml). (2.161)

Now, det M �

N
(κ�) is finite since all of its entries are finite, and dN(q, q�) = l [69]. So

because all of the exponents mj are positive integers, each must equal one. Thus,

det M �

N
(κ) = O(1) as κ → κ�.

We look more closely at the exceptional speeds κ� corresponding to n(κ�) = n2,1 =

0. In this case, BN exhibits l = dN(2, 1) = CN distinct linear dependences. That

is, each of its elements equals zero when κ = κ�. In the proof of theorem II.25,

we therefore have aj,k = δj,k. The proof shows that each element is O(κ − κ�) as

κ → κ�, and it prescribes that we multiply each by (κ− κ�)−1 before sending κ → κ�

to construct a linearly independent set B�
N

that spans SN .

This observation invites us to look more closely at the normalization of the el-

ements of BN . We begin with the exceptional speeds κ� ∈ (0, 8) corresponding to

n2,1 = 0, all of which equal 8/m for some odd positive integer m > 1 according to

(2.146). Since κ� ≤ 4 in each case, each Fk ∈ BN will bear the full prefactor (2.145):

n(κ)

�
n(κ)Γ(2− 8/κ)

4 sin2(4π/κ)Γ(1− 4/κ)2

�N−1

. (2.162)

The bracketed factor and the integral that it multiplies to give Fk(κ) are O(1) as

κ → κ�. If we include the leftmost factor of n(κ) = O(κ− κ�) in (2.162), then Fk(κ)

is O(κ−κ�), but if we drop it, then Fk(κ) is O(1). This is just the renormalization of

BN described in the previous paragraph. Also, dropping the factor of n(κ) amounts

to dividing det MN(κ) by n(κ)CN , and because n(κ�) = 0 is a zero of det MN(κ�) with

multiplicity CN , this division adjusts the determinant so it is O(1).
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The previous paragraph covers half of the singularities of the prefactor (2.162).

All of the other singularities occur at κ� = 8/m for some even positive integer m.

These speeds are not exceptional, and because each is less than or equal to four, each

Fk(κ) ∈ BN is again endowed with the full prefactor in (2.162) when κ = κ�. For

these cases, one can check that (2.162) is O((κ−κ�)1−N) as κ → κ�. But also, the set

{κ� = 8/m : m > 0, even} is exactly the set of speeds for which the points entwined

by the Pochhammer contours of the N − 1 integrals in Fk(κ�) are poles rather than

branch points. In this event, each Pochhammer contour P(xi, xj) in each Fk ∈ BN

decomposes into four loops. Two loops encircle xi in opposite directions, two loops

encircle xj in opposite directions, so the integration around P(xi, xj) is zero. Further,

one can check that each of the N − 1 integrals in Fk(κ) is O(κ − κ�) as κ → κ�. So

when multiplied by the prefactor (2.162), we have that Fk(κ) is O(1) as κ → κ� as

needed.

The composite set {κ� = 8/m : m ∈ Z
+ \ {1}} combining the cases of the

previous two paragraphs covers all cases in which the prefactor (2.162) for Fk(κ)

may vanish or blow up and in which branch points of the integrals in Fk(κ) become

poles. Interestingly, these are exactly the SLE speeds for which the two characteristic

powers 2/κ and 1 − 6/κ of the Euler differential operator L in (2.62) differ by a

positive integer. Now we explore the consequences of this observation.

It is easy to show that each element of BN as a function of xi+1 with i ∈

{1, . . . , 2N − 1} equals a linear combination of two Frobenius series centered on xi,

each with coefficients that depend on xj with j �= i+1. With theorem II.25, this fact

leads to the following corollary.

Corollary II.26. Let F ∈ SN , let κ ∈ (0, 8) not be an exceptional speed with q ≤

N + 1, and let i ∈ {1, . . . , 2N − 1}. Then F as a function of xi+1 equals a linear

combination of at most two distinct Frobenius series centered at xi, with coefficients

depending on xj with j �= i + 1, and with respective indicial powers 1− 6/κ and 2/κ.
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We anticipated this corollary earlier in the discussion surrounding (2.54), and we note

that the indicial powers stated in the corollary agree with the powers (2.55) predicted

in this discussion. If κ = κ� is an exceptional speed with q ≤ N + 1, then BN is

linearly dependent, and in the proof of theorem II.25 we find a new basis for SN by

expanding the linear combinations of BN that vanish to first order in κ near κ� and

keeping only the first order contribution with κ = κ�. Because κ appears only in the

powers of the elements of BN , this first order term will have factors of logarithms

in the distances between the points. This invites the consideration of logarithmic

conformal field theory [70].

Now when κ is in the set {κ� = 8/m : m ∈ Z
+ \ {1}}, the two indicial powers

1−6/κ and 2/κ differ by a positive integer, and the two Frobenius series coalesce into

one. If m is even, then κ� is not an exceptional speed, BN is linearly independent,

and corollary II.26 is true. But if m is odd, then κ� is an exceptional speed with

q = 2 ≤ N + 1, BN is linearly dependent, and some solutions in SN will equal

logarithms multiplying Frobenius series expansions. This is reminiscent of similar

phenomena in the Frobenius theory of second order, linear, homogeneous differential

equations. Near a regular singular point x0, solutions of such differential equations

typically equal linear combinations of two Frobenius series centered at x0 and with

different indicial powers. But if these two powers differ by an integer, then just

one of the two linearly independent solutions may not have such a Frobenius series

expansion. Instead, that second solution equals a logarithm of the distance to x0

multiplying a Frobenius series plus another Frobenius series. Interestingly, when

κ = 8/m with m > 1 an odd integer, the elements of SN seem to generalize this

phenomenon.

Corollary II.26 allows us to reinterpret the definition II.14 of “identity,” “two-

leg,” and “mixed” intervals in a way that is more native to CFT. Namely, an interval

(xi, xi+1) of F ∈ SN is a mixed interval if F equals a linear combination of two
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Frobenius series in xi+1 centered on xi with respective indicial powers 1 − 6/κ and

2/κ, an identity interval if it equals just one such Frobenius series with indicial power

1− 6/κ, and a two-leg interval if it equals just one such Frobenius series with indicial

power 2/κ or if F is zero. In CFT, these three cases respectively imply that the

OPE of ψ1(xi) with ψ1(xi+1) has both the identity and the two-leg fusion channel,

the identity fusion channel exclusively, and the two-leg channel exclusively (if F is

not zero in this last case).

We end our discussion about exceptional speeds with some remarks on the special

O(n) loop fugacities nq,q� of (2.153) and the minimal models. The correspondence

between the O(n) model and SLE captured by (1.155) holds only for κ ≥ 2. When

nq,q� ≥ 0, two exceptional speeds correspond with nq,q� , and they are

κq,q� = 4q/q�, κq,2q−q� = 4q/(2q − q�), (2.163)

in the dense and dilute phases of SLE and the O(n) model respectively. We note that

these two speeds are not dual to one another. When nq,q� < 0, one exceptional speed

κq,2q−q� corresponds with nq,q� . Some well known examples are n2,1 = 0 corresponding

to κ2,1 = 8 (the uniform spanning tree) and κ2,3 = 8/3 (the self-avoiding walk), and

n3,2 = 1 corresponding to κ3,2 = 6 (percolation cluster perimeters) and κ3,4 = 3 (Ising

spin cluster perimeters). More generally, we can show from (1.170) that c(κq,q�) is

the central charge cq,q� = 1− 6(q − q�)2/qq� of the (q, q�) minimal model in CFT. We

explore the connection between exceptional speeds and minimal models further in

chapter three.

We end this section with a result that completes our understanding of the dual

space S∗
N

.

Lemma II.27. Let κ ∈ (0, 8), and suppose that conjecture II.16 is true. Then B∗

N

is a basis for S∗
N
.
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❍❍❍❍q
�

q
1 2 3 4 5 6

1 × 0 −1 −
√

2 −
1 +

√
5

2
−
√

3

2 × × 1 0
1−

√
5

2
−1

3 × × ×
√

2
−1 +

√
5

2
0

4 × × × ×
1 +

√
5

2
1

5 × × × × ×
√

3

Table 2.1: The first few zeros nq,q� of the meander determinant. From left to right, the
superdiagonal harbors the dense phase O(n) loop fugacities of the uniform spanning tree,
percolation, the Ising model, the tri-critical Ising model, and the three-state Potts model
respectively.

Proof. If conjecture II.16 is true, then lemma II.17 shows that dimSN < ∞, so

dimS∗
N

= dimSN = CN . We let M = {[Lk]}M

k=1
be a maximal linearly independent

subset of B∗

N
. We will prove the lemma by showing that M = CN .

First, we show that M is nonempty. If If n(κ) �= 0, then no [Lk] can be the

zero-functional since [Lk]Fk� = n(κ)lk,k� �= 0. If n(κ) = 0 = n2,1, then the discussion

following theorem II.25 shows that we must drop a factor of n(κ) from each element

of BN so that the meander determinant is not zero after this adjustment. This implies

the existence of at least one Fk� ∈ BN for each [Lk] ∈ B∗

N
such that [Lk]Fk� �= 0. So

when n(κ) = 0, no [Lk] is the zero-functional either. Thus, M is nonempty.

Now suppose that M < CN . Then S∗
N

has a finite basis for which M can serve as

a proper subset. We let

B∗

N
= {[L1], . . . , [LM ], fM+1, . . . fCN}

BN = {Π1, . . . ΠM , ΠM+1, . . . , ΠCN}

be dual bases for S∗
N

and SN respectively. Then we have [Lk]Πk� = 0 for all k ≤ M

and all k� > M . Moreover, the elements {[LM+1], . . . , [LCN ]} of B∗

N
that are not

in M must be linear combinations of those in M since M is maximal, so they also
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annihilate Πk� for all k� > M . Then v(Πk�) = 0, so Πk� is zero for all k� > M ,

according to lemma II.17. But this contradicts the fact that each Πk� is an element

of a basis. We therefore conclude that M = CN .

This lemma allows us to define a basis BN for SN that is dual to B∗

N
. In chapter

four, we present a physical interpretation for the elements of BN in terms of cluster

crossing probabilities in a 2N -sided polygon with a specified FFBC.

2.5 Asymptotic behavior of Coulomb-gas integrals under in-

terval collapse

The purpose of this section is to calculate the asymptotic behavior of the Coulomb

gas integral IM (2.10) when the interval (xi, xi+1) is collapsed, under certain condi-

tions placed on the powers βkl and γpq that are consistent with the application in

this chapter. The results of this calculation were used to prove lemma II.22. There,

we alluded to these results, but we postponed their justification to this section. In

what follows, we will assume that the collection {Γm} of nonintersecting contours con-

necting the various branch points of the integrand of IM pairwise are simple curves.

The results remain true when these simple curves are replaced by nonintersecting

Pochhammer contours entwining the endpoints of those curves, and we will explain

why below.

There are four different cases to consider (figure 2.9). In the first case, no contour

among {Γm} ends at either xi or xi+1. In the second case, one contour Γ1 follows

along and just above (xi, xi+1) with endpoints at xi and xi+1. In the third case, one

contour Γ1 will end at one, but not both, of xi and xi+1, and no contour will end at

the other point. In the fourth case, a contour Γ1 terminates at xi, and a different

contour Γ2 terminates at xi+1.

In order to compute the asymptotic behavior of IM in each of these cases, we will
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typically need to deform one or two of the integration contours. In order to do this

correctly, we must specify a choice of branch for the logarithm function. We choose

the branch so that arg z ∈ [−π, π) for all z ∈ C. Thus the integrand of (2.10), viewed

as a function of the integration variable uj, has several branch cuts with each starting

at a branch point, following along the real axis, and terminating at x2N . (These

statements are not quite true and need refinement when κ is an exceptional speed.

We will consider these special cases in the next chapter.) With this convention set,

we have the following identitiy which will prove useful later. Suppose that x, u, β ∈ R

with x < u. Then for positive � � u, we have

(x− (u± i�))β = e∓πiβ(u± i�− x)β. (2.164)

2.5.1 The first case

In the first case, no contour among {Γm} in IM ends at either xi or xi+1. In this

case, the result is trivial. The integrand approaches a limit as xi+1 → xi uniformly

in the integration variables, and the limit is found by simply setting xi+1 = xi in IM .

2.5.2 The second case

In the second case, the contour Γ1 in IM follows just above (xi, xi+1) with its

endpoints at xi and xi+1. The factors of the integrand of IM approach a limit as

xi+1 → xi uniformly in u1, except for (u1 − xi)βi and (u1 − xi+1)βi+1 which must

be treated with care since u1 is drawn in with the limit. Therefore, we only need

Γ1 Γ2

Case 1:

Case 2:

Case 3:

Case 4:

Γ1

Γ1

Figure 2.9: The four cases of interval collapse. The dashed curves connect the endpoints
of the interval to be collapsed, and the solid curves indicate the integration contours.
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to study the integration with respect to u1. This integral has the form of I1 with

arguments {xj}j �=i,i+1 ∪ {uk}k>1, where each uk is fixed to some value in Γk (which

we may take to be real by forcing Γk to touch the real axis there). If we relabel

the variables x1, . . . , x2N , u2, . . . , uM in ascending order as x1, x2, . . . (and adjust the

values of i − 1, i, and i + 1 so that they are still the indices of the original points

xi−1, xi and xi+1 respectively before the relabeling), then the integration with respect

to u1 is

I1({βj} | [xi, xi+1] |x1, . . . ) =

�
xi+1

xi

N
�
�

j

(u1 − xj)
βj

�
du1. (2.165)

The operator N orders the differences in the integrand so that they are positive.

By using the substitution u(t) = (1 − t)xi + txi+1 and factoring the dependence on

xi+1−xi out of the integral, we find the asymptotic behavior of I1 under the interval

collapse xi+1 → xi:

I1 ∼
xi+1→xi

(xi+1 − xi)
βi+βi+1+1N

�
�

j �=i

(xi+1 − xj)
βj

� �
1

0

tβi(1− t)βi+1 dt

=
Γ(βi + 1)Γ(βi+1 + 1)

Γ(βi + βi+1 + 2)
(xi+1 − xi)

βi+βi+1+1N
�
�

j �=i

(xi+1 − xj)
βj

�
. (2.166)

If βi ≤ −1 or βi+1 ≤ −1, then the integral diverges. In this case, we analytically

continue the result by replacing Γ1 with the Pochhammer contour P(xi, xi+1) (figure

1.20) and dividing by 4eπi(βi−βi+1) sin πβi sin πβi+1 so that I1 exists.

2.5.3 The third case

In the third case, one contour Γ1 of IM ends at either one, but not both, of xi and

xi+1, and no contour ends at the other point. Without loss of generality, we suppose

that the endpoint of Γ1 is xi, and we assume that Γ1 follows just above (xi−1, xi) with

its other endpoint at xi−1. This assumption is accommodated by the proof of lemma
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II.22. The factors of the integrand of IM approach a limit as xi+1 → xi uniformly in

u1, except for (u1 − xi+1)βi+1 . Therefore, we only need to study the integration with

respect to u1. If we relabel the K = 2N + M − 1 variables x1, . . . , x2N , u2, . . . , uM

in ascending order as x1, x2, . . . (and adjust the values of i − 1, i and i + 1 so that

they are still the indices of the original points xi−1, xi, and xi+1 respectively before

the relabeling), then the integration with respect to u1 is

Ii := I1({βj} | [xi−1, xi] |x1, . . . , xK) =

�
xi

xi−1

N
�
�

j

(u1 − xj)
βj

�
du1. (2.167)

We require the sum
�

j
βj to equal an integer so that infinity is not a branch point.

We also require the sum to be less than negative one so that the integral converges

if one of its bounds is infinite. This is consistent with our application in section 2.4.

There, the exponents βi, βi+1, γ, and βj with j �= i, i + 1 satisfy

�
j

βj = −2, βi = βi+1 = −4/κ,

βj = −4/κ or 8/κ or 12/κ− 2 for j �= i, i + 1 and κ ∈ (0, 8). (2.168)

If βi−1 ≤ −1 or βi ≤ −1, then the integral diverges, and we analytically continue it

by replacing Γ1 with P(xi−1, xi) and dividing by 4eπi(βi−1−βi) sin πβi−1 sin πβi.

To calculate the asymptotic behavior of Ii as xi+1 → xi, we rewrite it as a linear

combination of the {Ik}k �=i−1,i+1, with Ik defined as in (2.167) except with its limits of

integration at xk−1 and xk. An integration along a large semicircle of radius R with

. . . . . .
k k +1ii− 1 i +1ii− 1 i +1

Σ= . . . . . .. . .. . .
k = i +1

Figure 2.10: The third case. The dashed curve connects the endpoints of the interval
to be collapsed. The integration contour is pushed from [xi−1, xi] onto any interval except
[xi+1, xi+2].
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counterclockwise (resp. clockwise) orientation in the upper (resp. lower) half-plane

with its base on the real axis gives zero according to Cauchy’s theorem. As R →∞,

the integration along the circular part of the semi-circle vanishes as R−
P

j βj+1, and we

find (with the − (resp.+) sign corresponding with the upper (resp. lower) half-plane

setting)
K�

k=1

e±πi
Pk

l=1 βlIk+1 = 0. (2.169)

(Here, we identify xK+1 with x1.) Now, we can solve for Ii (2.167) in terms of Ik+1

with k �= i + 1 (figure 2.10). The solution is

Ii = −
i−2�

k=1

sin π
�

i+1

l=k+1
βl

sin π(βi + βi+1)
Ik+1 +

K�

k=i+2

sin π
�

k

l=i+2
βl

sin π(βi + βi+1)
Ik+1

− sin πβi+1

sin π(βi + βi+1)
Ii+1. (2.170)

(If any of these integrals diverge, then we analytically continue it as prescribed above,

and (2.170) is still true for the analytic continuation.) The integral Ik+1 with k �=

i (resp. k = i) falls under the first (resp. second) case, so we find the asymptotic

behavior

Ii ∼
xi+1→xi

−
i−2�

k=1

sin π
�

i+1

l=k+1
βl

sin π(βi + βi+1)

�
xk+1

xk

N
�
(u− xi)

βi+βi+1
�

j �=i,i+1

(u1 − xj)
βj

�
du1

+
K�

k=i+2

sin π
�

k

l=i+2
βl

sin π(βi + βi+1)

�
xk+1

xk

N
�
(u− xi)

βi+βi+1
�

j �=i,i+1

(u1 − xj)
βj

�
du1

− sin πβi+1 Γ(βi + 1)Γ(βi+1 + 1)

sin π(βi + βi+1)Γ(βi + βi+1 + 2)

× (xi+1 − xi)
βi+βi+1+1N

�
�

j �=i,i+1

(xi+1 − xj)
βj

�
. (2.171)

If βi + βi+1 ≥ −1, then all terms are finite and Ii has a limit. If βi + βi+1 < −1, then

the last term will blow up while the others remain finite, and we have
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Ii ∼
xi+1→xi

− sin πβi+1 Γ(βi + 1)Γ(βi+1 + 1)

sin π(βi + βi+1)Γ(βi + βi+1 + 2)

× (xi+1 − xi)
βi+βi+1+1N

�
�

j �=i,i+1

(xi+1 − xj)
βj

�
, βi + βi+1 < −1. (2.172)

This latter case is consistent with our application (2.168). We note that (2.172) is

identical to (2.166) except for the ratio of sine functions and factor of negative one

multiplying the former. This ratio equals the negative reciprocal of the O(n) fugacity

factor (1.155) in our application (2.168).

It is straightforward to check that the asymptotic behavior of Ii+2 is also given by

the right side of (2.172). Both of these situations exhaust the third case.

2.5.4 The fourth case

In the fourth case, one contour Γ1 of IM ends at xi, and a different contour Γ2

ends at xi+1. The factors of the integrand of IM approach a limit as xi+1 → xi

uniformly in (u1, u2) ∈ Γ1×Γ2, except for the factors (u1− xi+1)βi+1 , and (u2− xi)βi .

Therefore, we only need to study the integrals with respect to u1 and u2. This

double integral has the form of I2, and without loss of generality, we suppose that Γ1

(resp.Γ2) follows just above (xi−1, xi) (resp. (xi+1, xi+2)) with its other endpoint at

xi−1 (resp.xi+2)). This assumption is accommodated by the proof of lemma II.22. If

we relabel the K = 2N + M − 2 variables x1, . . . , x2N , u3, . . . , uM in ascending order

. . . . . .
k k +1ii− 1 i +1Σ= . . . . . .

. . . . . .
k k +1ii− 1 i +1Σ= . . . . . .. . . . . .

m m +1
m = i +1
k = i− 1

k = i− 1ii− 1 i +1
. . .. . .

i +2

Figure 2.11: The fourth case. The dashed curve connects the endpoints of the inter-
val to be collapsed. The left (resp. right) integration contour is pushed from [xi−1, xi]
(resp. [xi+1, xi+2]) onto any interval except [xi+1, xi+2] (resp. [xi−1, xi]).
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as x1, x2, . . . , xK (and adjust the values of i − 1, i, i + 1, and i + 2 so that they are

still the indices of the original points xi−1, xi, xi+1, and xi+2 respectively before the

relabeling), then the integration with respect to u1 and u2 is

Ii,i+2 := I2({βj}; γ | [xi−1, xi], [xi+1, xi+2] |x1, . . . )

=

�
xi

xi−1

�
xi+2

xi+1

N
��

j

(u1 − xj)
βj(u2 − xj)

βj(u2 − u1)
γ

�
du2 du1. (2.173)

Here, we assume that the sum
�

j
βj + γ is an integer less than negative one so

that infinity is not a branch point and so that integrating from end to end of and

just above or below the real axis gives zero. In our application in section 2.4, the

exponents βi, βi+1, γ, and βj with j �= i, i + 1 satisfy

�
j

βj + γ = −2, βi = βi+1 = −4/κ, γ = 8/κ,

βj = −4/κ or 8/κ or 12/κ− 2 for j �= i, i + 1 and κ ∈ (0, 8). (2.174)

Again, if βi−1 ≤ −1 or βi ≤ −1 (resp.βi+1 ≤ −1 or βi+2 ≤ −1), then the integral

diverges, and we analytically continue it by replacing Γ1 (resp.Γ2) with P(xi−1, xi)

(resp.P(xi+1, xi+2)) and dividing by 4eπi(βi−1−βi) sin πβi−1 sin πβi (resp. 4eπi(βi+1−βi+2)

sin πβi+1 sin πβi+2). As in the third scenario, this replacement analytically continues

all of the linear dependences that we will derive below to these cases.

To calculate the asymptotic behavior of Ii,i+2, we pursue the strategy used in the

third case. We rewrite Ii,i+2 as a linear combination of the elements of {Ij,k}j,k �=i,i+2

where Ij,k is defined as in (2.173) except with its u1 (resp.u2) limits of integration at

xj−1 and xj (resp.xk−1 and xk). All integrals in the linear combination will fall under

the first or second case, so their asymptotic behavior is already understood.

Now a subtlety arises that we must address. Due to the factor (u2−u1)γ appearing

in the integrand of Ij,k, it is impossible to arrange the integrand of any Ij,j so that
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the double integral is real. This issue can be corrected by noting that

�
xj+1

xj

�
u1

xj

N
��

j

(u1 − xj)
βj(u2 − xj)

βj(u1 − u2)
γ

�
du2 du1

=

�
xj+1

xj

�
xj+1

u1

N
� �

j

(u1 − xj)
βj(u2 − xj)

βj(u2 − u1)
γ

�
du2 du1. (2.175)

Because these integrals are real, we redefine Ij,j to be either of them.

We now repeat the steps of case three, and the work that follows is straightforward

but tedious. Because the complete result is complicated and unnecessary for our

purposes, we will specialize to cases with certain conditions imposed on {βj, γ} that

are consistent with (2.174). By integrating u2 just along the top and bottom of the

real axis and using Cauchy’s theorem, we find

i−2�

k=1

e±πi
Pk

l=1 βlIi,k+1 + e±πi
Pi−1

l=1 βl(1 + e±πiγ)Ii,i

+
K�

k=i

e±πi(
Pk

l=1 βl+γ)Ii,k+1 = 0. (2.176)

(Here, we identify xK+1 with x1.) We solve this system of equations for Ii,i+2 in terms

of Ii,k+1 with k �= i− 1. The result is (figure 2.11)

Ii,i+2 =
i−2�

k=1

sin π(
�

i−1

l=k+1
βl + γ/2)

sin π(βi + βi+1 + γ/2)
Ii,k+1 −

sin π(βi + γ/2)

sin π(βi + βi+1 + γ/2)
Ii,i+1

−
K�

k=i+2

sin π(
�

k

l=i
βl + γ/2)

sin π(βi + βi+1 + γ/2)
Ii,k+1. (2.177)

Now, if the asymptotic behavior of Ii,i+2 for general {βj, γ} with
�

j
βj +γ an integer

less than negative one is desired, one must isloate the remaining Ii,k+1 in terms of

Ij,k+1 with j �= i + 2 using the same method. This task is very difficult to do in

complete generality. If βi + βi+1 < −1, as it is in our application (2.174), then the
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Ii,i+1 term will give many terms that blow up as (xi+1 − xi)βi+βi+1+1 while each of

the other terms will only give one such term. To avoid this complication, we assume

βi + γ/2 = 0 so that this term vanishes. Overall, we have assumed the conditions

�
j

βj + γ ∈ Z
− \ {−1}, βi + γ/2 = 0 (2.178)

which are consistent with our application (2.174). To address the other terms in

(2.177), we integrate u1 just along the top and bottom of the real axis to find that

k−1�

m=1

e±πi
Pm

n=1 βnIm+1,k+1 + e±πi
Pk

n=1 βn(1 + e±πiγ)Ik+1,k+1

+
K�

m=k+1

e±πi(
Pm

n=1 βn+γ)Im+1,k+1 = 0. (2.179)

Now we isolate each Ii,k+1 with k �= i − 1, i, i + 1 in terms of all Im+1,k+1 with

m �= i+1 and substitute the result into (2.177). This process, though straightforward,

is tedious. However, if we add a third condition βi + βi+1 < −1 to (2.178),

�
j

βj + γ ∈ Z
− \ {−1}, βi + γ/2 = 0, βi + βi+1 < −1, (2.180)

then we see from (2.172) that Ii+1,k+1 will dominate over all Im+1,k+1 with m �= i+1, so

we only concern ourself with the former integral. Condiditons (2.180) are consistent

with our application (2.174). Thus we find

Ii,k+1 ∼
xi+1→xi

− sin πβi+1

sin π(βi + βi+1)
Ii+1,k+1. (2.181)

The asymptotic behavior of the integral from xi to xi+1 inside of Ii+1,k+1 as xi+1 → xi

falls under the second case and can be computed using the results of section 2.5.2.

Under the assumptions of (2.180), substituting (2.181) into (2.177) gives
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Ii,i+2 ∼
xi+1→xi

�
−

i−2�

k=1

sin π(
�

i−1

l=k+1
βl + γ/2)

sin π(βi + βi+1 + γ/2)
+

K�

k=i+2

sin π(
�

k

l=i
βl + γ/2)

sin π(βi + βi+1 + γ/2)

�

×
�

xk+1

xk

N
�
(u2 − xi)

βi+βi+1+γ
�

j �=i,i+1

(u2 − xj)
βj

�
du2

× sin(πβi+1)Γ(βi + 1)Γ(βi+1 + 1)

sin π(βi + βi+1)Γ(βi + βi+1 + 2)
(xi+1 − xi)

βi+1+βi+1

×N
�

�

j �=i,i+1

(xj − xi)
βj

�
. (2.182)

This is the asymptotic behavior of Ii,i+2 as xi+1 → xi under the conditions (2.180).

Equation (2.182) can be simplified considerably if we introduce a fourth condition

that is consistent with our application (2.174). First, we consider the integral

I �
i+2

:=

�
xi+2

xi−1

N
�

�

j �=i,i+1

(u2 − xj)
βj

�
du2. (2.183)

The prime signifies that the points xj with j �= i, i+1 are in the domain of I �
i+2

while

xi and xi+1 are not. If we add the condition βi+1 = βi to (2.180) so that we have

assumed overall that

�
j

βj + γ ∈ Z
− \ {−1}, βi + γ/2 = 0, βi + βi+1 < −1, βi = βi+1, (2.184)

then the sum of the powers in (2.183)
�

j �=i,i+1
βj is an integer less than negative one.

So by integrating u just across the top and bottom of the real axis, we find

A± :=

K��

k=1

e±πi
P�k

l=1 βlI �
k+1

= 0, (2.185)

where the prime indicates summation over indices except k, l = i, i + 1. Conditions

(2.184) are consistent with our application (2.174). Now after isolating I �
i+2

from the
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linear combination

A+e−πi
P�i−1

l=1 βleπi(βi+βi+1+γ/2) − A−eπi
P�i−1

l=1 βle−πi(βi+βi+1+γ/2) = 0, (2.186)

we find

I �
i+2

=

�
i−2�

k=1

sin π(
�

i−1

l=k+1
βl − βi − βi+1 − γ/2)

sin π(βi + βi+1 + γ/2)

−
K�

k=i+2

sin π(
�

k

l=i
βl + γ/2)

sin π(βi + βi+1 + γ/2)

� �
xk+1

xk

N
�

�

j �=i,i+1

(u2 − xj)
βj

�
du2. (2.187)

With the condition that βi+1 = βi in (2.184), the right side of (2.187) equals the

product of the first bracketed factor with the integral on the right side of (2.182). We

can use this fact to write (2.182) is a simpler form. Overall, we find

Ii,i+2 ∼
xi+1→xi

− sin(πβi+1)Γ(βi + 1)Γ(βi+1 + 1)

sin π(βi + βi+1)Γ(βi + βi+1 + 2)
(xi+1 − xi)

βi+1+βi+1

×N
�

�

j �=i,i+1

(xj − xi)
βj

� �
xi+2

xi−1

N
�

�

j �=i,i+1

(u2 − xj)
βj

�
du2. (2.188)

Remarkably, under the conditions (2.184), the interval collapse xi+1 → xi appears

to have joined contours Γ1 and Γ2 of (2.173) into a single contour Γ connecting the

leftmost endpoint xi−1 of Γ1 with the rightmost endpoint xi+2 of Γ2. The points xi

and xi+1 do not participate in the remaining integral. We note that the ratio of the

sine functions equals the negative reciprocal of the O(n) fugacity factor (1.155) in our

application (2.174).

A summary of the nontrivial asymptotic behaviors of the integrals studied in cases

two, three, and four are presented in figure 2.12.
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ii− 1 i +1
. . .. . . − sin πβi+1 Γ( βi +1)Γ( βi+1 +1)

sin π(βi + βi+1 )Γ( βi + βi+1 +2)

Π (xi+1 − xj)βj[ [j = i,i +1

− sin πβi+1 Γ( βi +1)Γ( βi+1 +1)
sin π(βi + βi+1 )Γ( βi + βi+1 +2)

Π (xi+1 − xj)βj[ [j = i,i +1 i− 1
. . .. . .

i +2

~

~

i +2

ii− 1 i +1
. . .. . .

i +2

ii− 1 i +1
. . .. . . Π (xi+1 − xj)βj[ [j = i,i +1

~
i +2

(xi+1 − xi)βi+βi+1 +1 N

× N

× N

(xi+1 − xi)βi+βi+1 +1

(xi+1 − xi)βi+βi+1 +1

Figure 2.12: A summary of the asymptotic behaviors of the Coulomb gas integrals studied
in this section under the interval collapse of cases two, three, and four. The dashed curve
connects the endpoints of the interval to be collapsed.

2.6 Summary

We summarize the main results of this chapter and suggest extensions of this

research. The principal result is theorem II.25, which says that, if conjecture II.16 is

true, then the solution space SN (definition II.6) for the system (2.1-2.2) of 2N null-

state PDEs and three Ward identities has dimension CN , with CN the N -th Catalan

number (2.7). Still assuming this conjecture, BN of definition II.20 serves as a basis

for SN when κ is not an exceptional speed (2.146) with q ≤ N +1. This latter fact was

proven by establishing an isomorphism between the elements of BN and the columns

of the meander matrix MN(κ) whose k, k�-th entry is given by (2.150) with n(κ) given

by (1.155). When κ is an exceptional speed with q ≤ N + 1, the determinant of the

meander matrix is zero, so BN is linearly dependent. In this case, an “adjusted” set

B�
N

, whose construction from BN is given in the proof of theorem II.25, serves as a

basis for SN .

The principal goal of proving that the solution space of the system (2.1-2.2) has

dimension CN and is spanned by the Coulomb gas solutions is still unfinished, al-

though most of the work towards this end is done in this chapter. Conjecturers II.7
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and II.16 must be proven in order to achieve this ultimate goal, and we have devoted

some discussion about how this might be done. We feel that these two matters are

technical rather than monumental and that a complete proof can be formed from the

work presented in this chapter.

Another extension of this work is to extend these results to systems of PDEs

that govern correlation functions of an arbitrary number of boundary multiple-leg

operators (or any correlation function of fields belonging exclusively to either the

first row or the first column, but not both, of the conformal grid). These PDEs are

explicitly given by the Benoit-Saint-Aubin formula [67]. We recall from chapter one

that a boundary s-leg operator is created by fusing together s distinct boundary one-

leg operators. Thus, the correlation functions studied in this chapter are building

blocks for these more complicated correlation functions in that we can, in principal,

study the latter as a suitable limit of the former. As such, it should be possible to

glean information about them by looking at the results of this chapter in this limit.
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CHAPTER III

Exceptional SLE speeds and CFT minimal models

We recall that the Verma module V (c, h) is reducible when the conformal weight

h is that of a Kac operator φr,s due to the existence of a level rs null-state. CFT

translates this reducibility into a differential equation that governs any correlation

function containing this Kac operator. For example, a correlation function including

the Kac operator φ1,2 satisfies the differential equation (1.106). Now, the (p, p�)

minimal model, or a CFT with central charge

cp,p� = 1− 6(p− p�)2

pp�
, p < p� coprime, (3.1)

has additional structure described in section 1.2.6. The operator content of the theory

is comprised of the conformal families of the Kac operators φr,s with 1 ≤ r < p� and

1 ≤ s < p. The Verma module Vr,s with φr,s as its highest-weight vector has not just

one null-state at level rs, but an infinite tower of null-states at levels (p� − r)(p −

s), rs + (p� − r)(p + s), rs + (p� + r)(p − s), etc., which implies that a correlation

function containing φr,s must satisfy an infinite system of null-state PDEs, including

the original null-state PDE that follows from the level rs null-state.

In chapter two, we focused our attention on 2N -point functions with all fields

either φ1,2 or φ2,1. Such correlation functions are governed by the system of 2N φ1,2

null-state PDEs (2.1) and three Ward identities (2.2). In chapter two, we observed
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that the set BN of particular Coulomb gas solutions is linearly independent, and thus

serves as a basis for the solution space SN for this system, only when κ is not an

exceptional speed (2.146) with q ≤ N + 1 and is linearly dependent otherwise (if we

assume conjecture II.16). As this linear dependence may be indicative of additional

constraints imposed on the 2N -point functions, we speculate that this phenomena and

that of the previous paragraphs are related, so the additional constraints are these

extra PDEs that complement the original system. This speculation is supported by

the fact that each exceptional speed corresponds with the central charge of a minimal

model. From (1.114) and (1.117), we have

c(κq,q�) = 1− 6(q − q�)2

qq�
= cp,p�

hr,s(κq,q�) =
(pr − p�s)2 − (p− p�)2

4pp�

,
p := max{q, q�}

p� := min{q, q�}
. (3.2)

That is, c(κq,q�) is the central charge of the (p, p�) minimal model with p = max{q, q�}

and p� = min{q, q�}.

In this chapter, we will use the explicit form of the Coulomb gas solutions (2.9) to

investigate why BN is linearly dependent and how these linear dependences appear

only when κ is an exceptional speed with q ≤ N + 1. By answering these questions,

we will witness how the elements of BN exhibit the truncation of the first row/column

of the conformal grid to the Kac table in a minimal model. Moreover, we will con-

jecture that if κ is an exceptional speed with q ≤ N + 1, then BN is a basis for the

solution space of the infinite tower of null-state PDEs governing the 2N -point func-

tion �ψ1(x1) . . . ψ1(x2N)� in the corresponding minimal model. If this is true, then

the dimension of the solution space of this infinite system is immediately given by

the rank of BN (2.157).

Throughout this chapter, we will assume that conjecture II.16 is true, and the

term “solution” will mean an element of SN . This semantic matter is irrelevant if

conjecture II.7 is true. Also, we will use the Coulomb gas notation consistent with
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the dense phase (κ > 4).

3.1 Linear dependences of s-leg solutions

In this section, we study a collection of solutions called s-leg solutions which arise

through a natural selection of integration contours. These solutions will provide a

framework for most of the results of this chapter.

The s-leg solutions are found among a relatively simple choice of integration con-

tours {Γm} for the Coulomb-gas integral IN−1 defined in (2.10). As mentioned in

chapter two, each contour must wind around the branch points, its winding number

around each branch point must be zero, and different contours may not intersect each

other. With no other contours specified, we choose the contour Γ1 first. The simplest

choice that satisfies the necessary criteria is a Pochhammer contour P(xi, xj) (figure

1.20) entwining the pair of branch points xi and xj. Because the next contour Γ2

cannot cross Γ1, we identify the closure of the interior of Γ1 with a point p and let

Γ2 be a Pochhammer contour entwining any pair of points in the set {p} ∪ {xk}k �=i,j.

By repeating this process N − 3 more times, we generate a collection {Γm} of N − 1

nonintersecting, nested, closed contours that wind around the branch points and each

other. We call such a collection a simple configuration.

Definition III.1. A simple configuration is a collection of Pochhammer contours

{Γm} in C such that both loops of each Pochhammer contour nest either one branch

point among x1, . . . , x2N or one sequence of nested Pochhammer contours in {Γm}.

A Coulomb gas solution of the form (2.9) is called a simple solution if its set of

integration contours {Γm} is a simple configuration.

Of course, not all solutions are simple since a loop of a Pochhammer contour may

encircle more than one branch point or other closed contour and since a contour can

be something more complicated than a Pochhammer contour. However, if conjecture
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II.16 is true, then all solutions are linear combinations of simple solutions, namely

those in BN . This is a consequence of lemma II.22 and theorem II.25.

In this chapter, we use identity (1.195) to replace some of the Pochhammer con-

tours P(xi, xj) with integration along the arc [xi, xj]+ as long as this latter integral

does not diverge. The arc [xi, xj]+ is formed by bending [xi, xj] into the upper half

plane while keeping the endpoints fixed at xi, xj. If κ is such that the integration

along [xi, xj]+ does diverge (κ ≤ 4), then this replacement is not possible, but we can

use an analytic continuation in κ (as demonstrated in section 2.5.3) to show that the

results of this chapter extend to such κ in spite of this.

For many choices of simple configurations, IN−1 is zero as a result of a special

property involving a charge-neutral-pair.

Definition III.2. A charge-neutral pair is a pair of adjacent points xi and xi+1 among

x1, . . . , x2N , each with charge α−
1,2

(as defined by the Coulomb gas construction that

gives the solutions (2.9)), and a Pochhammer contour P(xi, xi+1) (or a bent contour

[xi, xi+1]+ replacing it when κ > 4).

The term “charge-neutral pair” originates from the fact that, in the Coulomb gas

formalism, the total charge of such a configuration is 2α−
1,2

+ α− = 0, where the

screening charge α− is the charge of the integration variable.

Now we suppose that IN−1 with N > 2 has a charge-neutral pair at, say, x1 and x2,

and one of its contours Γ is a simple loop that winds once around the charge-neutral

x1 x2

= 0

Figure 3.1: The integration of a screening charge around a simple loop surrounding a
charge-neutral pair equals zero.
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pair. (We note that Γ closes in this special case.) Then IN−1 is zero since

�

Γ

�

[x1,x2]+

(u1 − x1)
−4/κ(x2 − u1)

−4/κ(u2 − x1)
−4/κ

× (x2 − u2)
−4/κ(u2 − u1)

8/κ . . . du2 du1 = 0. (3.3)

(The ellipsis stands for the other factors that appear in the integrand of IN−1.) This

identity is verified as follows. After fixing u2 to a specific value in [x1, x2], we de-

compose the portion of Γ above (resp. below) [x1, x2] into the segments [x1, u2]+ and

[u2, x2]+ (resp. [x1, u2]− and [u2, x2]−). Then the total integration around Γ gives

I1(u2) + e−8πi/κI2(u2)− I2(u2)− e−8πi/κI1(u2), (3.4)

where we have defined

I1(u2) :=

�
u2

x1

(u1 − x1)
−4/κ(x2 − u1)

−4/κ(u2 − u1)
8/κ . . . du1, (3.5)

I2(u2) :=

�
x2

u2

(u1 − x1)
−4/κ(x2 − u1)

−4/κ(u1 − u2)
8/κ . . . du1, (3.6)

with the ellipsis standing for the same omitted factors as in (3.3). Upon multiplying

both sides of (3.4) by (u2 − x1)−4/κ(x2 − u2)−4/κ, integrating u2 from x1 to x2, and

using identity (2.175), we prove (3.3).

Identity (3.3) restricts the number of nonzero simple solutions. In particular, we

see that if any charge-neutral pair is nested by a Pochhammer contour, then (3.3)

implies that IN−1 is zero. However, if one of the two points xi and xj entwined

by P(xi, xj) bears the conjugate charge α+

1,2
, then P(xi, xj) can be nested within

another Pochhammer contour to give a nonzero simple solution (as long as the other

loop of the outer Pochhammer contour does not nest a charge-neutral pair). In

our Coulomb gas solutions (2.9), we have chosen xc to bear the conjugate charge.

180



x1 x2 x3 x1 x2 x3

x1 x2 x3

= 0 = 0

= 0

Figure 3.2: Various nestings allowed in a simple configuration. If a Pochhammer contour
surrounds a charge-neutral pair, then integration around such a contour gives zero. (In the
figures of chapters three and four, a blue (resp. orange, resp. red) circle marks a point of
charge α−

1,2
(resp.α+

1,2
, resp.α−) in the dense phase.)

Therefore, the set of contours for a nonzero simple solution consists of a set of s−1 ≤

N − 1 nested Pochhammer contours encircling a collection of s points xi1 , . . . , xis ,

with xc one of the two most deeply nested points, and N − s un-nested Pochhammer

contours, each entwining its own unique pair of points among xis+1 , . . . , xi2N into a

charge-neutral pair (figure 3.3). This observation leads to the following definition.

Definition III.3. Let 1 < s ≤ N . A simple solution other than zero is an s-leg

solution if its unique sequence of nested Pochhammer contours consists of s − 1

contours entwining s adjacent points and the most deeply nested contour encircles

the point that bears the conjugate charge. (The points x2N and x1 are considered

to be adjacent in the sense that they are adjacent to each other when the real axis

is mapped onto a circle.) If a simple solution other than zero has no Pochhammer

contour that entwines the point bearing the conjugate charge with another point,

then it is called a zero-leg solution. If an s-leg solution F (κ) goes to zero as κ → κ�

for some κ� then F (κ) = O((κ− κ�)p) for some p ∈ Z
+ since F is analytic at κ�, and

in this case, we define the s-leg solution to be the limit of (κ− κ�)−pF (κ) as κ → κ�.

We note that every element of BN is a zero-leg solution by definition and that, ac-

cording to corollary II.23, every zero-leg solution is an element of BN too.
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. . . . . . . . . . . .x1 x2 x3 x4 x2N−s−1 x2N−s x2N−2 x2N−1 x2Nx2N−s+1

Figure 3.3: A simple configuration with s − 1 nested contours corresponding to an s-leg
solution. The ellipses denote additional points not shown in the picture. We note that the
charge-neutral pair entwining x2 with x3 can be un-nested from the contour that surrounds
it by using identity (3.3).

The term “s-leg solution” derives from terminology used in CFT. The total charge

of the collection of s points entwined by the sequence of s− 1 nested contours is

(s− 1)α−
1,2

+ α+

1,2
+ (s− 1)α− = α+

1,s+1
, (3.7)

which is the charge of a chiral operator with the conformal weight θs of an s-leg

operator (1.171). So if all of these nested points are brought together, then all of

the s − 1 screening charges are drawn in, and the fusion product will contain just

the conformal family of the s-leg operator. (A process in which we bring more than

two points together at a time is not well-defined in the sense of an OPE. It may

still be achieved in a certain sense by pulling the two points nested by the deepest

contour together, say x2N → x2N−1, and omitting the descendant terms and the

factor of (x2N −x2N−1)−2θ1+θ2 on the leading term. In the leading term, which is now

equivalent to a (2N − 1)-point function with a two-leg operator at x2N−1, the point

x2N−1 is entwined with the next point, say x2N−2, by what was the second most deeply

nested contour in the original s-leg solution. This contour is now the most deeply

nested contour. We repeat this process s− 2 times until all s− 1 nested contours are

contracted away and we are left with an s-leg operator.)

We suppose that κ is not an exceptional speed with q ≤ N +1. Because BN spans
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SN (if we assume conjecture II.16), the s-leg solutions are linear combinations of the

zero-leg solutions. Now we demonstrate how to uncover these linear dependences from

the explicit forms of the s-leg solutions. This is a first step towards our ultimate goal

of understanding why BN becomes linearly dependent when κ equals an exceptional

speed with q ≤ N + 1. We will specialize to the arrangement illustrated in figure

3.3 where the points x2N−s+1, . . . , x2N are entwined by the sequence of s − 1 nested

contours and where x2N bears the conjugate charge.

Starting with N = 2, we decompose a two-leg solution into a linear combination

of the zero-leg solutions. We let F (Γ) be the Coulomb gas solution (2.9) with N = 2,

c = 4, and integration contour Γ. Next, we choose Γ to be a clockwise-oriented,

simple, closed curve that tightly wraps around [x1, x4], and for j = 1, 2, 3, we let

[xj, xj+1]+ (resp. [xj, xj+1]−) be the part of Γ just above (resp. below) [xj, xj+1].

Because the branch points x1, x2, and x3 have a monodromy factor of exp(−8πi/κ),

the integrand I1 of I1 restricted to [xj, xj+1]+ differs by a factor of exp(−8πij/κ) from

I1 restricted to [xj, xj+1]− (figure 3.4), and they combine into a real-valued integral

along [xj, xj+1]+ times 2i sin(4πj/κ). By Cauchy’s theorem,
�

Γ
I1 = 0, so by using

βi−1 βi βi+1 βi+2 βi−1 βi βi+1 βi+2

0 =
x1 x2 x3 x4 !

. . . . . .. . . . . . − sin π(β1 + . . . + βi)

sin
4π

κ

+ sin
8π

κ

+ sin
12π
κ

Figure 3.4: The decomposition of a two-leg solution into a linear combination of two
zero-leg solutions when N = 2. The illustration at the top illustrates the combination of
integrations above and below an interval into a single integration above that interval. The
monodromy factor of a point with βi marked above it is exp(2πiβi).
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(2.164), we have

sin

�
4π

κ

�
|F ([x1, x2]

+)|+ sin

�
8π

κ

�
|F ([x2, x3]

+)|

= − sin

�
12π

κ

�
|F ([x3, x4]

+)|. (3.8)

(The absolute value sign merely eliminates a constant phase that is already accounted

for in the factors with the sine function.) Equation (3.8) has the linear relation we

sought since the left side is a linear combination of zero-leg solutions while the right

side is just a two-leg solution. This decomposition is illustrated in figure 3.4. With

small modifications, it is equivalent to the crossing relation (1.152). In general, linear

dependences among simple solutions with N > 2 may be interpreted as generalizations

of crossing relations.

Next with N = 3, we decompose a three-leg solution into a linear combination of

two-leg solutions, and then we decompose each of those two-leg solutions into a linear

combination of the zero-leg solutions. We let F (Γ1, Γ2) be a Coulomb gas solution

(2.9) with N = 3, c = 6, and integration contours Γ1 and Γ2 with Γ2 = [x5, x6]+,

and we let Γ be a clockwise-oriented, simple, closed curve that tightly wraps around

[x1, x6]. By pinching the top and bottom halves of Γ together at x4, we divide Γ into

two clockwise-oriented loops anchored to x4. The left loop Γl surrounds [x1, x4], and

the right loop Γr surrounds Γ2 (figure 3.5). Γl can be decomposed similarly to the

N = 2 case, and we have

2i sin

�
4π

κ

�
|F ([x1, x2]

+, [x5, x6]
+)|+ 2i sin

�
8π

κ

�
|F ([x2, x3]

+, [x5, x6]
+)|

+ 2i sin

�
12π

κ

�
|F ([x3, x4]

+, [x5, x6]
+)|+ F (Γr, [x5, x6]

+) = 0. (3.9)

The right contour Γr is not closed since the integrand I2 of I2 acquires a mon-

odromy factor of exp(−32πi/κ) as it is traced clockwise. To close Γr, we add
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0 =
x1 x2 x3 x4 x5 x6

=

Γ
Γl Γr

Γl

= !
Γr

. . .

. . .=

. . .

=

Γ1

two-leg

three-leg

sin
4π

κ

+ sin
8π

κ

+ sin
12π
κ

!
(1 − e−32πi/κ )

− e−32πi/κ

Figure 3.5: The decomposition of a three-leg solution into three two-leg solutions when
N = 3.

− exp(−32πi/κ)F (Γr, [x5, x6]+) to F (Γr, [x5, x6]+). In this combination, two copies of

Γr live on different Riemann sheets of I2, are oriented in opposite directions, and join

to form the Pochhammer contour Γ1 = P(x4, Γ2) that entwines x4 with Γ2 (figure

3.5). We find that

2 sin

�
4π

κ

�
|F ([x1, x2]

+, [x5, x6]
+)|+ 2 sin

�
8π

κ

�
|F ([x2, x3]

+, [x5, x6]
+)|

+ 2 sin

�
12π

κ

�
|F ([x3, x4]

+, [x5, x6]
+)| = i(1− e−32πi/κ)−1F (Γr, [x5, x6]

+). (3.10)

This is the linear dependence that we seek since the left side is a linear combination

of two-leg solutions while the right side is just a three-leg solution.

Next, we decompose each of the two-leg solutions appearing on the left side of
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(3.10) into a linear combination of the zero-leg solutions. We explicitly show how

to do this for the two-leg solution F ([x2, x3]+, [x5, x6]+), and the procedure may be

used with the other two-leg solutions. The procedure is identical to that used for

the N = 2 case except for one subtlety. If we replace [x5, x6]+ in the two-leg solu-

tion F ([x2, x3]+, [x5, x6]+) by a clockwise-oriented, simple, closed curve Γ that tightly

wraps around [x1, x6] and decompose Γ into smaller contours along the segments

[xj, xj+1]+, then some of these contours risk touching the other contour [x2, x3]+ at

its endpoints. (We recall from the proof of theorem II.2 that F (Γ1, Γ2) is a solution

of the system (2.1-2.2) if the contours Γ1 and Γ2 do not touch.) Using identity (3.3),

we avoid this issue by letting the bottom half of Γ cross [x1, x2] to above the real

axis, pass above the contour [x2, x3]+, and cross [x3, x4] to below the real axis as we

move from left to right (figure 3.6). The entire section on the lower half of Γ that now

passes above the real axis differs from the corresponding section on the upper half of

Γ by only the monodromy factor of x1. Thus, we find a linear dependence between

zero-leg solutions in B3 and a two-leg solution:

− sin

�
4π

κ

�
|F ({[x2, x3]

+, [x1, x4]
+})|− sin

�
8π

κ

�
|F ({[x2, x3]

+, [x4, x5]
+})|

= sin

�
12π

κ

�
|F ({[x2, x3]

+, [x5, x6]
+})|. (3.11)

We can find similar linear dependences for the other two two-leg solutions on the left

side of (3.10), and when all of these relations are combined, we have decomposed the

three leg solution into a linear combination of zero-leg solutions.

The “invisibility” of a charge neutral pair to this mitotic process indicates a useful

Γ

=

Figure 3.6: The deformation of an integration contour around a charge-neutral pair.
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fact. We suppose that we have some linear relation between a collection of s-leg

solutions in SN . Then by splicing a common collection of M charge-neutral pairs

into each solution that appears in the linear relation, we promote this relation to one

between s-leg solutions in SN+M . This fact might seem obvious from the Coulomb

gas point-of-view. In this case, we add a charge-neutral pair by multiplying the

collection of chiral operators on both sides of the linear relation by the three chiral

operators that comprise the pair. But when correlations of these chiral operators are

taken, those belonging to the charge-neutral pair become entwined with the other

chiral operators in the formulas that follow, and this “multiplication” interpretation

of their insertion is obfuscated.

When κ is not an exceptional speed with q ≤ N + 1, this process can be repeated

for arbitrarily large N and 1 < s ≤ N . We start by replacing the outermost contour

of the s − 1 nested contours in an s-leg solution F by a clockwise-oriented, simple,

closed curve that tightly wraps around [x1, x2N ]. This leads to a linear dependence of

F on several (s−1)-leg solutions. Next, we replace the outermost contour of the s−2

nested contours in each of these (s− 1)-leg solutions by a clockwise-oriented, simple,

closed curve that tightly wraps around [x1, x2N ]. This leads to a linear dependence

of each (s − 1)-leg solution on several (s − 2)-leg solutions. We repeat this process

until we reach the zero-leg solutions, thereby finding a direct (though tedious) way

to express any s-leg solution as a linear combination of the zero-leg solutions.

As previously mentioned, the conclusion of the previous paragraph is false only

when κ is an exceptional speed κ� (2.146) with q ≤ N +1, in which case BN is linearly

dependent. To understand the failure of the method in these cases, we consider an

s-leg solution F0(κ) with s = q− 1 and q the larger index of the exceptional speed κ�.

We replace the outermost nested contour of F0(κ) with a clockwise-oriented, simple,

closed curve Γ that wraps around [x1, x2N ] and the other s − 2 nested contours. As

usual, the integration around Γ gives zero. Next, we pinch the upper and lower halves
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of Γ together along I := [x2N−s+1, x2N−s+2], and we perform the integration around

Γ before any of the other s− 2 integrations. The integrand changes by a phase of

exp[2πi(2N − s + 1)(−4/κ)� �� �
1.

+ 2πi(N − s)(8/κ)� �� �
2.

] = exp[−8πi(s + 1)/κ] (3.12)

as we move from the part of Γ just above I to the part just below I. The first term of

the exponential arises from the 2N−s+1 points xj to the left of I, and the second term

arises from the N − s screening charges to the left of I. When κ = κ� and s = q − 1,

this phase equals one, so the integrations along the part of Γ just above and below

I sum to zero. Consequently, Γ splits into a left, clockwise-oriented, closed contour

Γl that wraps around [x1, x2N−s+1] and a right, clockwise-oriented, closed contour Γr

= !
Γl

Γr

+

Γl

0=

x6 x7 x8

0 =
x1 x2 x3 x4 x5

Γl

x1 x2 x3 x4 x5

Γl

Γr

x1 x2 x3 x4 x5

Γl

0=

x6 x7 x8

Figure 3.7: The linear dependency involving three-leg solutions when N = 4 and κ = κ5,q� .
In the top line, the integration along the upper purple segment cancels that of the lower
purple segment because there is no branch cut along [x5, x6]. This breaks the integration
along the outer loop into integration along Γl and Γr. Integration around the latter, and
therefore also the former, contour equals zero.
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that is totally separated from Γl and that wraps around both [x2N−s+2, x2N ] and the

other N−2 nested contours. The sum of the integration around Γl and the integration

around Γr equals zero. Figure 3.7 illustrates an example with s = N = 4 and q = 5.

Now we argue that the integration around Γr equals zero. Earlier, we observed

that for generic κ, the integration around Γr is proportional to the s-leg solution

F0(κ) (figure 3.5). However, when κ = κ�, the lack of a branch cut along I allows

Γr to cross this interval and close into a simple loop that separates [x2N−s+2, x2N ]

from [x1, x2N−s+1]. Consequently, the integration around Γr delivers a solution to the

system (2.1-2.2). If this integration gives an s-leg solution in SN , then eliminating

the charge-neutral pairs with a sequence of limits must leave an s-leg solution Π in

Ss. However, after taking this sequence of limits, all s intervals to the left of I are

two-leg intervals of Π. Each diagram of every element of B∗

s
has an arc that mutually

connects the endpoint of one of these intervals, so every element of B∗

s
annihilates Π.

Lemma II.17 implies that Π is thus zero, so the integration around Γr is zero too.

The integration along Γl can be decomposed into a linear combination of (s −

1)-leg solutions, then (s − 2)-leg solutions, etc., by following the process described

above. Next, we argue that this process indeed can be continued until we reach a

linear combination of the zero-leg solutions. At each step, we encounter several s�-leg

solutions for some s� < s = q − 1. Such a solution consists of s� − 1 nested contours,

entwining the points x2N−s�+1, . . . , x2N together, and N−s� charge-neutral pairs. Now

we consider the integration around Γs
�

r
, the outermost of the s� − 1 nested contours,

before all other integrations in this s�-leg solution. Its integrand will change by the

phase (3.12) with s �→ s� as we cross the interval Is� := [x2N−s�+1, x2N−s�+2]. Because

s� < s = q − 1, this phase never equals one, so Γs
�

r
does not close into a simple loop

that crosses Is� . Rather, Γs
�

r
entwines x2N−s�+1 with the other s�−2 nested contours of

the s�-leg solution in the usual way shown in figure 3.5. Therefore, we can decompose

each s�-leg solution that arises into a linear combination of (s�−1)-leg solutions when
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s� ∈ {3, . . . , s−1}. And when we reach s� = 2, we can decompose each two-leg solution

that arises in this penultimate step into a linear combination of zero-leg solutions.

Consequently, the integration along Γl delivers an ultimate linear combination of the

zero-leg solutions.

That the integration around Γr gives zero immediately implies that integration

around Γl gives zero too. Because the latter integration equals a linear combination

of the zero-leg solutions, we have constructed a sought linear dependence of BN .

Above, we noted that the integration around Γr delivers an s-leg solution when

κ �= κ� and zero when κ = κ�. According to the proof of theorem II.25, the s-

leg solution F0(κ) is recovered in this latter case as the limit of (κ − κ�)−1F0(κ) as

κ → κ�. Thus, we have proven the following theorem.

Theorem III.4. Let κ ∈ (0, 8), and suppose that conjecture II.16 is true. If κ is not

an exceptional speed with 2 < q ≤ N +1, then each s-leg solution with s ∈ {3, . . . , N}

equals a linear combination of (s − 1)-leg solutions, and each two-leg solution equals

a linear combination of zero-leg solutions. If κ is an exceptional speed (2.146) with

2 < q ≤ N+1, then each s-leg solution with s ∈ {q, . . . , N} equals a linear combination

of (s − 1)-leg solutions, each s-leg solution with s ∈ {3, . . . , q − 2} equals a linear

combination of (s− 1)-leg solutions if q > 4, and each two-leg solution equals a linear

combination of zero-leg solutions if q > 3.

When κ �= κ�, the s-leg solution F0(κ) with s ≥ q − 1 equals a linear combination of

the elements of BN . If we multiply both sides of this equation by (κ − κ�)−1 before

sending κ → κ�, then the coefficients of the linear combination will blow up in the

limit, spoiling the decomposition. This observation suggests the s ≥ q − 1 solutions

are “cut off” from the s < q − 1 solutions, as we state in the following theorem.

Theorem III.5. Let κ ∈ (0, 8), and suppose that conjecture II.16 is true. If κ is an

exceptional speed (2.146) with q > 2, then no s-leg solution with s ≥ q − 1 equals a

linear combination of elements of BN .
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Proof. We let κ� be an exceptional speed (2.146), and we let F0(κ) be an s-leg solution

with s ≥ q− 1. First, we prove this theorem for the case where s = N and the points

xN+1, . . . , x2N are entwined by the sequence of N − 1 nested Pochhammer contours.

According to [69], there is a subset B(q)∗

N
⊂ B∗

N
with the following three properties:

1. The cardinality of B(q)∗

N
equals the rank of the meander matrix MN(κ).

2. B(q)∗

N
does not contain the element [Lk0 ] whose diagram is the “rainbow dia-

gram” [68] shown in figure 3.8.

3. The determinant of the Gram matrix A(κ) for B(q)∗

N
, a minor of the meander

matrix, is nonzero when κ = κ�.

We let B(q)∗

N
= {[Lk1 ], . . . , [LkM ]}, and we let B(q)

N
:= {Fk1 , . . . , FkM}. Then because

det A(κ�) �= 0, lemma II.17 implies that B(q)

N
is a linearly independent subset of BN

when κ = κ�. Also because q ≤ s + 1 and s = N , lemma II.22 implies that BN is

linearly dependent with rank M , so B(q)

N
is maximal.

If we assume that the theorem is false, then because B(q)

N
is a maximal linearly

x1 x2 x3 x4 x5 x6 x7 x8

Figure 3.8: The N = 4 rainbow diagram.
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independent subset of BN , there will exist nonzero constants ck such that

F0(κ
�) =

�

k∈{k1,...,kM}

ckFk(κ
�). (3.13)

Now, the intervals (x1, x2), . . . , (xN−1, xN) are two-leg intervals of F0(κ). Conse-

quently, every element of B∗

N
whose diagram connects a pair of adjacent points among

x1, . . . , xN annihilates F0(κ). The only diagram that does not meet this criterion is

[Lk0 ], which is not in B(q)∗

N
. Therefore, if we act on both sides of (3.13) with the

elements of B(q)∗

N
, then we find the matrix equation A(κ�)c = 0, where c is an M -

dimensional vector whose coordinates are the coefficients ck. Because det A(κ�) �= 0,

each ck must equal zero, a contradiction. This proves the theorem in the case where

s = N and the points xN+1, . . . , x2N are entwined by the sequence of N − 1 nested

Pochhammer contours.

Next, suppose that the points xi, . . . , xi+N−1 are entwined by the sequence of N−1

nested contours with i �= N + 1 (or i �= 1, as the proof presented above holds for this

case too). In this situation, [Lk0 ] will not annihilate F0(κ). But as we reasoned

earlier, all but one element [Lk
�
0
] of B∗

N
will annihilate F0(κ), and it is apparent that

the polygon diagram for [Lk
�
0
] will be some rotation of that for [Lk0 ]. If we apply this

rotation to the polygon diagram of every element of the set B(q)∗

N
, then we generate

a new set B̃(q)∗

N
⊂ B∗

N
that satisfies the three conditions listed above. From here, the

proof proceeds as before.

Finally, suppose that s < N . Then F0(κ) will harbor N − s charge-neutral pairs

that may be eliminated through a sequence of N−s limits in which each limit contracts

one of the pairs away. If F0(κ�) equals a linear combination of the elements of BN ,

then upon taking the sequence of limits, this equality becomes an equality between

an s-leg solution in Ss and a linear combination of elements of Bs. This contradicts

the theorem for the proven case s = N .
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Theorem III.4 implies an important property of the minimal models: the confine-

ment of their operator content to the Kac table. For example, suppose that κ equals

the exceptional speed κq,q� for q, q� coprime and 1 ≤ q� < q ≤ N + 1. These excep-

tional speeds belong to the dense phase, and their corresponding minimal models have

central charge c(κq,q�) = cq,q� . This includes all minimal models (p, p�) with p = q.

These minimal model are generated by the primary fields φr,s+1 with 1 ≤ r < q� and

0 ≤ s < q− 1. In the dense phase, the s-leg operator is φ1,s+1, so the theory contains

all s-leg operators with s < q − 1, but it does not contain the (q − 1)-leg operator.

On the other hand, the likelihood of an s-leg event in which s distinct boundary

arcs anchor to a point on the real axis is found from an s-leg solution essentially by

fusing all s adjacent points within that solution’s sequence of s− 1 nested contours.

Thus, the construction of an s-leg solution from the zero-leg solutions is equivalent to

building linear combinations of the elements in BN that isolate the s-leg channel from

the fusion of s adjacent one-leg operators ψ1 = φ1,2. The result is an s-leg solution.

If the s-leg operator is (resp. is not) present in the theory, then this construction is

(resp. is not) possible. This is precisely what we have observed for the exceptional

speed κq,q� in theorem III.4.

We can extend this observation to all of the other exceptional speeds κq,2mq±q� with

m ∈ Z
+. These exceptional speeds belong to the dilute phase, and their corresponding

minimal models have central charge c(κq,2mq±q�) = c2mq±q�,q. This includes all minimal

models (p, p�) with p� = q. These minimal model are generated by the primary fields

φr+1,s with 0 ≤ r < q − 1 and 1 ≤ s < 2mq ± q�. In the dilute phase, the r-leg

operator is φr+1,1, and because the maximum r-index is q− 2, the theory contains all

r-leg operators with r < q − 1, but it does not contain a (q − 1)-leg operator. The

connection between this fact and the linear dependence of BN is argued exactly as in

the previous paragraph.

Lemma II.22 shows that BN is linearly dependent for all N ≥ q− 1 and is linearly

193



independent for all N < q − 1, when κ is an exceptional speed. Now we intuitively

understand why this should be true. When N < q− 1, we lack a sufficient number of

points to construct an (q − 1)-leg solution that decouples from the rest of the simple

solutions. We need at least 2(q − 1) points, but only 2N are available.

We close this section with an interesting fact about s-leg solutions. To prove the

following theorem by direct computation would be very difficult. This gives evidence

of the power of lemma II.17.

Theorem III.6. Let κ ∈ (0, 8), and suppose that conjecture II.16 is true. Then

two s-leg solutions with identical charge-neutral pairs and whose sequence of nested

Pochhammer contours entwine the same s points are proportional to each other, and

any interval (xi, xi+1) whose two endpoints are among these s entwined points is a

two-leg interval.

Proof. We prove this lemma for the case s = N first. Without loss of generality,

we consider N -leg solutions with their nested Pochhammer contours entwining the

points xN+1, . . . , x2N . At first, there seem to be many. For one, we may endow any

one point xc among xN−1, . . . , x2N with the conjugate charge. And second, depending

on which of these points is xc, there may be more than one way to entwine the points

xN+1, . . . , x2N together as described in definition III.3. However, all of these N -leg

solutions share a common feature. For each, the intervals (x1, x2), . . . , (xN−1, xN) are

two-leg intervals, so each is annihilated by every element of B∗

N
except that element

[Lk0 ] whose half-plane diagram is the rainbow diagram in figure 3.8. Therefore, their

images under the map v defined in lemma II.17 are proportional to each other, so by

the same lemma, they are proportional to each other.

In fact, in the special case s = N , we can conclude something slightly stronger.

Suppose that we “reflect” the arrangement of the previous paragraph across a verti-

cal axis so that each N -leg solution is sent to another N -leg solution with its nested

Pochhammer contours entwining the points x1, . . . , xN . The same arguments show
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that these new N -leg solutions are annihilated by every element of B∗

N
except [Lk0 ]

too. Consequently, all of these N -leg solutions and all of those in the previous para-

graph are proportional to each other, so the intervals (xN+1, xN+2), . . . , (x2N−1, x2N)

are two-leg intervals for the latter.

Finally, if s < N , we suppose that two s-leg solutions with identical charge-

neutral pairs and whose sequence of nested contours entwine the same s points are

not proportional to each other. That is, any arbitrary linear combination of these

two solutions must equal another nonzero solution. Now we take the sequence of

N −s limits on both sides of this equality that eliminates the common charge-neutral

pairs on the left side. As this sequence of limits only collapses identity intervals, the

right side of this equality will go to something nonzero. The left side of this equality

will go to a linear combination of two s-leg solutions in Ss whose sequence of nested

Pochhammer contours entwine the same s points. We thus conclude that any linear

combination of the two s-leg solutions under consideration and in Ss must not equal

zero, but this contradicts the proven case s = N .

3.2 Exceptional speeds and the extended system

In this section, we exploit the connection between exceptional speeds and mini-

mal models to predict the dimension of the solution space RN of the complete infinite

system of null-state PDEs and the Ward identities (2.2). We also examine the con-

sequences of this prediction for certain specific models. Throughout this section, we

will implicitly assume that conjecture II.16 is true.

Recall that, in the (p, p�) minimal model, the Verma modules V1,2 and V2,1 each

harbor an infinite tower of null-states in addition to their generic null-state at level

two (section 1.2.6), and each null-state determines a set of 2N null-state PDEs that

govern the 2N -point function �ψ1(x1) . . . ψ1(x2N)�. We call the infinite collection of
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all of these PDEs together with the Ward identities the extended system, and we

define RN to be the subset of SN that solves the extended system.

Because of its explicit CFT construction via the Coulomb gas formalism, we expect

that the elements of BN will solve the extended system of the (p, p�) minimal model,

and even stronger, we posit that RN = spanBN . This supposition is motivated by

the following reasoning.

First, we strengthen the discussion in the introduction of this chapter to show that

c(κ) is a minimal model central charge if and only if κ is an exceptional speed (2.146).

In the introduction, we proved the “if” statement of this claim, so now we prove the

“only if” statement. Simple algebra shows that κp,p� = 4p/p� and κp�,p = 4p�/p are

the speeds corresponding with the central charge cp,p� (3.2) of a minimal model. As

usual, we take 1 ≤ p� < p and p and p� coprime. Then first, κp,p� is in the dense

phase and is therefore an exceptional speed of the form κq,q� with 1 ≤ q� < q and

q and q� coprime, so q = p and q� = p�. Or second, κp�,p is in the dilute phase and

is therefore an exceptional speed of the form κq,2mq±q� with 1 ≤ q� < q, q and q�

coprime, and m ∈ Z
+. This implies that q and 2mq± q� are coprime, so q = p�. Also,

q� < p� must be the unique positive integer such that p∓q� is a positive multiple 2mp�

of 2p� in either (p − p�, p − 1] or [p + 1, p + p�). Because p and p� are coprime and

(p−p�, p+p�) has length 2p�, this interval contains a unique multiple of 2p� in it that is

not p. Therefore, this unique integer must be in (p−p�, p−1]∪ [p+1, p+p�), and this

uniquely determines q�, the sign, and thus m in the relation 2m = (p ∓ q�)/p�. So in

conclusion, each exceptional speed corresponds with a minimal model central charge,

and each minimal model central charge corresponds with two exceptional speeds.

Next, if BN solves the extended system, then because the extended system is

contains the original system (2.1-2.2), we anticipate that the extended system imposes

additional constraints on BN , causing it to perhaps exhibit some special property

that would vanish when the central charge is perturbed from cp,p� . In the previous
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paragraph, we observed that the central charge is that of a minimal model (3.2) if

and only if κ is an exceptional speed, so by lemma II.22, this linear dependence is

likely the special property that we anticipate.

If our supposition that RN = spanBN is true, then according to corollary II.24,

the dimension of RN is immediately given by the rank of the meander matrix (2.157).

As we have shown above, there are two possible exceptional speeds that will go with

cp,p� . One is κq,q� in the dense phase and with q = p, and the other is κq,2mq±q� in the

dilute phase and with q = p�. In the first (resp. second) case, RN is the solution space

of the extended system for the 2N -point function of φ1,2 (resp. φ2,1) operators, and

if it is spanned by BN , then its dimension is found by letting q = p (resp. q = p�) in

(2.157). In general, the dimensions of these two cases are different, and remarkably,

neither depends on q�.

A direct proof of our supposition appears to be difficult. Not all of the null-state

PDEs of the extended system are explicitly known, although they may be calculated

by fusing Verma modules in a very tedious process described in [71]. Therefore, in lieu

of a proof, we study a few explicit examples. Below, we let κ� denote the exceptional

speed under consideration.

First, we examine cases with N = 2. The elements of B2 are given in (2.42-2.43).

For generic κ, they are linearly independent, and suitable linear combinations give

the two-leg solutions (2.40-2.41). The exceptional speeds are given by the roots of

the meander matrix det M2(κ) (2.153), which are κ� such that n(κ�) = n2,1, n3,1, or

n3,2 (table 2.1). The meander matrix is

M2(κ) =




n2 n

n n2



 . (3.14)

When n = n2,1 = 0, M2(κ�) is the zero matrix and B2 = {0}, but both may be restored

to rank two by dividing (2.42-2.43) by n before sending κ → κ�. If n = n3,1 = −1,
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then one element of B2 is the opposite of the other, and if n = n3,2 = 1, then both

elements of B2 are equal. We examine the last scenario more closely.

First, we choose n(κ�) = n3,2 = 1 and κ� = κ3,2 = 6 so that (p, p�) = (3, 2).

In section 1.2.7, we identified this case with critical percolation. Because we are in

the dense phase, ψ1 = φ1,2, so the four-point function �ψ1(x1) . . . ψ1(x4)� obeys the

φ1,2 null-state PDEs (2.1) with N = 2. But also when κ� = 6, h1,2 = h1,1 = 0, so

V1,2
∼= V1,1 also has a level-one null-state φ(−1)

1,2
:= (L−1φ1,2) = (L−1φ1,1). Therefore,

�φ(−1)

1,2
(xi)φ1,2(xj)φ1,2(xk)φ1,2(xl)� = 0 for any one-to-one correspondence of indices

i, j, k, and l with 1, 2, 3, and 4. By factoring out the L−1 stress tensor mode via

(1.93), we find that the four-point function must satisfy the φ1,1 null-state PDEs

∂x1F = 0, ∂x2F = 0, ∂x3F = 0, ∂x4F = 0, (3.15)

and therefore be a constant. The level-one null-state tops an infinite tower of null-

states in V1,2, each a linear combination of stress tensor modes acting on φ1,2. Because

h1,2 = 0, the constant term of each factored-out mode in (1.94) is zero, so the constant

solution will solve the extended system. Thus R2 = R. Knowing that B2 has rank

one, we see that B2 = {1} by inspecting the original system (2.1-2.2) with κ = 6.

Thus, R2 = spanB2, confirming our supposition for this case.

In order to recover S2 from R2, we might “complete” B2 by adding a non-constant

solution of the original system (2.1-2.2) to it, restoring its rank to two. This amounts

to ignoring the PDEs of the extended system that are not in the original system

(2.1-2.2). For example, we can include either of the two-leg solutions Π1 or Π2 in

(2.40-2.41). By including Π1, we directly add the two-leg family to the OPEs of

φ1,2(x1) with φ1,2(x2) and φ1,2(x3) with φ1,2(x4) since (x1, x2) and (x3, x4) are two-leg

intervals of Π1. And since Π2 = 1 − Π1, we indirectly add the two-leg family to the

OPEs of φ1,2(x1) with φ1,2(x4) and φ1,2(x2) with φ1,2(x3) as well. This amounts to
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directly inserting the two-leg operator φ1,3 that is missing from the (3, 2) minimal

model into it, and the result is a logarithmic CFT [72].

Next, we choose n(κ�) = n3,2 = 1 and κ� = κ3,4 = 3 so that (p, p�) = (4, 3). In

section 1.2.7, we identified this case with the Ising model. Because we are in the dilute

phase, ψ1 = φ2,1, so the four-point function �ψ1(x1) . . . ψ1(x4)� will obey the φ2,1 null-

state PDEs (2.1) with N = 2. But also when κ� = 3, h2,1 = h1,3, so V2,1
∼= V1,3.

Because the V1,3 Verma module harbors the level-three null-state [10]

(h1,3 + 2)(L−3φ1,3)− 2(L−1L−2φ1,3) +
1

(h1,3 + 1)
(L3

−1
φ1,3), (3.16)

the four-point function must also obey the four φ1,3 null-state PDEs (with h1,3 =

κ/2− 1 when κ ≤ 4 (1.170)). For generic κ, these PDEs are

�
2

κ
∂3

i
+ 2

4�

j �=i

�
∂j

xj − xi

− κ/2− 1

(xj − xi)2

�
∂i

−
�κ

2
− 1

� 4�

j �=i

�
∂j

(xj − xi)2
− κ− 2

(xj − xi)3

��
F = 0, i = 1, . . . , 4. (3.17)

One can verify that the elements of B2 (2.42-2.43) satisfy (3.17) when κ� = κ3,4 = 3,

but the functions Π1 and Π2 of (2.40-2.41) do not. The exclusion of the two-leg

solutions from R2 implies that this solution space is at most one-dimensional, while

B2 is exactly one-dimensional. In order for R2 to be one-dimensional, the two equal

elements of B2 must solve the rest of the extended system. To show this directly

is very difficult for the reasons that were mentioned above. But because the four-

point function represents a nontrivial observable (to be argued in chapter four), we

expect R2 to be one-dimensional when κ� = κ3,2, so spanB2 = R2, confirming our

supposition again.

As we have just observed in the case κ� = 6, the linear dependence that emerges

in the κ� = 3 case is linked to the absence of the two-leg channel φ3,1 from the (4, 3)
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minimal model. The two-leg channel may be restored to all pairs of adjacent operators

by ignoring the null-state PDEs of the extended system that are not in the original

system (2.1-2.2). Similar conclusions can be made for the other exceptional speeds

κ3,6m±q� with m ∈ Z
+, which correspond with the O(n) loop fugacity n = n3,q� =

(−1)q
�
with q� = 1, 2.

Next, we survey some cases with N ≥ 2. From (2.157), we can show that when

n(κ�) = n3,q� (so κ� = κ3,q� or κ3,6m±q� with m ∈ Z
+) for q� = 1, 2,

rankBN = CN − dN(3, q�) = 1 for all N ∈ Z
+. (3.18)

When n(κ�) = n3,1 = −1, the k-th column of the meander matrix is (−1)pk,k� times the

k�-th column, where pk,k� = lm,k − lm,k� is the difference in the number of loops in the

diagram for [Lm]Fk and in that for [Lm]Fk� . (Interestingly, this difference does not

depend on m.) Thus, Fk = (−1)pk,k�Fk� for all Fk, Fk� ∈ BN . When n(κ�) = n3,2 = 1,

all of the entries of the meander matrix equal one, so all of the elements of BN

equal the same function F . Earlier, we argued that this function is a constant when

κ� = κ3,2 = 6 and N = 2. This argument also shows that F is a constant when

κ� = 6 and N > 2 too, and because [Lk]F = 1, we conclude that this constant is one.

Consideration of the explicit formula for F given by the product of (2.9) with the

prefactor (2.144) leads to the indirect evaluation of the following CN definite integrals:

�����

�

Γ1

. . .

�

ΓN−1

�
2N−1�

k=1

N−1�

l=1

(xk − ul)
−2/3

� �
N−1�

p<q

(up − uq)
4/3

�
duN−1 . . . du1

�����

=
Γ(1/3)2N−2

Γ(2/3)N−1

2N−1�

i<j

|xi − xj|1/3. (3.19)

Here, {Γm} is one of CN possible collections of nonintersecting simple contours in H,

where both endpoints of each contour are at different points among x1, . . . , x2N−1,

and one endpoint of each contour carries an even index while the other carries an odd
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index. (Exactly one point among x1, . . . , x2N−1 is not the endpoint of a contour.) The

absolute value sign in (3.19) merely eliminates a constant phase that could otherwise

be eliminated by a prudent ordering of the differences in the factors of the integrand,

as was noted in the discussion following the proof of lemma II.22. To prove (3.19) by

working directly with the integral expression is very difficult if not impossible. This

demonstrates the power of using the meander determinant in this special situation.

When κ� = 6, none of the PDEs in the extended system have a constant term since

h1,2 = 0, so we explicitly see that RN = spanBN . This appears to be the only case

where we can directly prove our supposition. In all of the other cases with n(κ�) = n3,q�

and κ� < 8, κ� has the form κ3,6m±q� and is in the dilute phase where the boundary

one-leg operator is φ2,1. Here, the second null-state in the Verma module V2,1 has Kac

weight h1,6m±q−1 which belongs to the first row of the conformal grid. The null-state

PDEs that follow from this null-state are explicitly given by the Benoit-Saint-Aubin

formula [67], so it is possible (in principle) to directly check that only multiples of

the one element of BN among those solutions in SN = spanB�
N

(as constructed in

the proof of theorem II.25) solve these additional PDEs. Thus, RN is at most one-

dimensional. Moreover, we expect RN to not be {0} since the 2N -point function in

it represents a nontrivial observable (to be argued in chapter four). If both of these

statements are true, then we would have spanBN = RN .

Finally, we examine n(κ�) = nN+1,q� with q� ∈ {1, . . . , N}. These κ� are roots

of det MN(κ�) with multiplicity dN(N + 1, q�) = 1 (2.157), so rankBN = CN − 1.

The roots of n(κ�) = nN+1,q� are the dense phase speed κ� = κN+1,q� with q� <

N + 1, corresponding to minimal model (N + 1, q�) and the dilute phase speeds

κN+1,2m(N+1)±q� , with q� < N + 1 and m ∈ Z
+, corresponding to minimal models

(2m(N + 1) ± q�, N + 1). In all cases, the first column or row of the Kac table

truncates at the (N − 1)-leg operator. According to theorem III.5, an N -leg solution

cannot equal a linear combination of the elements of BN . There are N such N -leg
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Figure 3.9: An s-leg solution with s = N = 6 is annihilated by all but one element [Lk]
of B∗

N
. In the polygon diagram for [Lk], the interior arcs must connect antipodal vertices

so that the diagram is some rotation of the twelve-gon shown here.

solutions {Π1, . . . , ΠN}, and the polygon diagram for the unique [Lk] that does not

annihilate Πk will connect antipodal vertices of the 2N -sided polygon. By ignoring

the null-state PDEs of the extended system that are not in the original system (2.1-

2.2) and introducing a single N -leg solution into BN , we restore the rank of BN to

CN . The inclusion of one of these solutions, say Π1, in BN will introduce the N -leg

fusion channel to the two antipodal collections of N adjacent vertices connected by

the arcs in the diagram for [L1]. Apparently, this inclusion also introduces the N -leg

fusion channel to all other N − 1 collections of N adjacent vertices. Interestingly, we

do not need to insert Π2, . . . , ΠN into BN as well in order to introduce this channel

into the other N − 1 antipodal collections of N adjacent vertices that go around the

polygon since BN will have full rank after the first insertion.

3.3 Summary

We summarize the main results of this chapter. The exceptional speeds are in

two-to-one correspondence with the central charges of the minimal models. In the

(p, p�) minimal model, the Kac operator fusion rules close under a finite set {φr,s :

1 ≤ r < p�, 1 ≤ s < p}. In particular, the dense (resp. dilute) (p − 1)-leg operator
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φ1,p (resp. (p� − 1)-leg operator φp�,1) is absent from the (p, p�) minimal model. This

absence is closely tied to the linear dependence of BN when κ is an exceptional speed

with q ≤ N + 1. In particular, theorem III.4 states that a (q− 1)-leg solution cannot

equal a linear combination of elements of BN when κ is an exceptional speed of the

form κq,q� in the dense phase (resp.κq,2mq±q� in the dilute phase). The central charge

corresponding to this exceptional speed is that of a (p, p�) minimal model with p = q

(resp. p� = q). Because a CFT description of a (q − 1)-leg, or now a (p − 1)-leg

(resp. (p� − 1)-leg), solution requires a (p − 1)-leg (resp. (p� − 1)-leg) operator, we

have established the connection between the linear dependence of BN when κ is an

exceptional speed with q ≤ N +1 and the first row (resp. column) operator truncation

of the minimal models. We propose that the linear dependence of BN is the result

of BN solving an extended system of null-state PDEs that arises as a special feature

of the minimal models, and we give some examples of this phenomenon. We further

suppose that BN spans the solution space RN of this extended system, and we use

the meander determinant to thus compute the rank of RN under this supposition.
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CHAPTER IV

Partition functions and crossing formulas for

critical systems in polygons

We consider a 2N -sided polygon P whose interior harbors the continuum limit of a

critical lattice model, in particular a Q-state Potts model with an FFBC. A boundary

cluster anchors to each wired side of P , and each boundary cluster may cross the

interior of P and connect with other wired sides, forming a crossing configuration

of at most N distinct boundary clusters that traverse the interior of P . A crossing

formula gives the probability that these boundary clusters will connect the wired

sides of P in a certain topological crossing cofiguration.

Crossing formulas are simple examples of nonlocal observables that capture critical

behavior. On a discrete, infinite lattice and below the critical point (for example, the

critical FK bond activation probability for the Q-state Potts model), cluster diameters

do not grow larger than a certain correlation length, while above the critical point,

a cluster of infinite size will exist. By confining the continuum limit of the model to

the interior of P , we see that no boundary cluster may connect two different wired

sides when the system temperature is below the critical point, but a single boundary

cluster will connect all wired sides when the temperature is above the critical point.

At the critical point, cluster sizes will saturate all length scales on a discrete, infinite

lattice, so in the continuum limit, boundary clusters can connect the wired sides of P
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Figure 4.1: Crossing probability χ as a function of bond activation probability for perco-
lation on a square lattice in a 10× 10, 25× 25, 50× 50, and 100× 100 square. We observe
that χ approaches a step function that jumps at the critical probability pc = 0.5 as the
system size increases. This indicates the existence of a phase transition at p = pc in the
thermodynamic limit of the system.

in many nontrivial crossing configurations (figures 4.1, 4.2). (All of these statements

are true almost surely.) Thus, a crossing formula characterizes a (presumably unique)

critical point of the system. Off of the critical point, the crossing formulas are trivial,

but at the critical point, they are given by nontrivial, conformally invariant formulas

that depend on the shape of P .

The simplest critical lattice model that illustrates these points is percolation. The

probability that a percolation cluster connects the left/right wired sides of a rectangle

R as a function of the aspect ratio R is given by Cardy’s formula [41]

P






left/right

crossing





=






0 p < pc

3Γ(2/3)

Γ(1/3)2
(1−m)1/3

2F1

�
1

3
,
2

3
;
4

3

����� 1−m

�
p = pc

1 p > pc

, (4.1)

where pc is the critical activation probability (which depends on microscopic details
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p =0 .45 p = pc =0 .5 p =0 .55

Figure 4.2: Typical configurations for bond percolation on a large square lattice with the
bond activation probability p slightly below, at, and slightly above the critical probability
pc = 0.5. Bonds belonging to the largest cluster are colored red.

such as the lattice type, the type (site-versus-bond) of percolation, etc.), and where m

is related to the aspect ratio R (length divided by height) of the rectangle through R =

K(m)/K(1−m) with K(m) the elliptic function of the first kind. We observe a phase

transition at the critical point p = pc. We note that when m goes to zero (resp. one),

the aspect ratio goes to zero (resp. infinity), and the likelihood of a left/right crossing

goes to one (resp. zero). Because our wiring scheme does not affect the statistics of

the interior system in percolation, this crossing probability is actually the same for

any choice of BC. This fact is not true in other models such as the Potts model,

where the presence of a wired boundary affects the statistics of the bulk system. Nor

is it true for critical percolation in polygons with more than two wired sides, as two

wired sides may connect indirectly if their boundary clusters, while not touching in

P , touch a common third wired side.

Crossing formulas have other interpretations. For instance, we may interpret them

as the probability that the boundary arcs, or the perimeters of the boundary clusters,

connect the vertices of P pairwise in any one of the CN possible BACs exemplified

by the polygon diagrams for the elements of B∗

N
. This BAC interpretation of a

crossing formula was proposed via multiple-SLE in [59], and we will frequently use it

in this chapter. (BACs were defined in the discussion preceding (2.7), and B∗

N
and
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its polygon diagrams were defined in definitions II.10 and II.12.) In this chapter and

in chapter five, we let λ denote a specified BAC, and in an abuse of notation, we also

let λ denote the event of the specified BAC. We define the polygon diagram and the

half-plane diagram for λ to be that of the element of B∗

N
whose interior arcs connect

the vertices of P as in the BAC event λ, and we let ACN be the set of all CN possible

BAC events. In this chapter we index the elements of B∗

N
so that [Lλ] ∈ B∗

N
and

λ ∈ ACN have identical diagrams.

Because they are among the simplest observables that capture critical behavior,

crossing probabilities have interested researchers for some time. Crossing probabilities

were shown to be the same for critical site and bond percolation on various lattices

via computer simulation [73], supporting the assumption that these models belong to

the same universality class. Shortly after, J. Cardy used CFT to predict the crossing

formula (4.1) in [41] and showed that his prediction agrees with the measurements of

previous computer simulations in [73]. The conformal invariance and other features

of the crossing formula were further discussed in [42]. A rigorous proof of Cardy’s

formula for site percolation on the triangular lattice was discovered by S. Smirnov [16].

Critical Ising spin and FK cluster crossings for the rectangle with wired left/right sides

were also computed by D.Bauer, M.Bernard, and K.Kytölä [59]. Moreover, critical

percolation crossing formulas for a hexagon with an FFBC and alternating short/long

sides were computed by J. Dubédat in [60], and more recently, this computation was

extended to multiple-SLE curve connectivities for a hexagon of arbitrary shape and

(almost) arbitrary κ by J. Simmons [74].

In this chapter, we use the results of chapters one and two to calculate crossing

probabilities in an 2N -sided polygon P with a specified FFBC. The derivation con-

sists of several steps. In section 4.1, we construct partition functions and crossing

formulas for a system with a specified FFBC among a set of CN possibilities. These

partition functions are linear combinations of crossing weights, which are essentially
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un-normalized crossing probabilities. In section 4.2, we calculate the crossing weights

in terms of the elements of BN (definition II.20). In section 4.3, we uncover a relation

between the partition functions that we construct in section 4.1 and the elements of

BN that further simplifies our crossing formulas. Finally in section 4.5, we confor-

mally transform these formulas into functions of 2N − 3 variables that determine the

shape of P . (Actually, this transformation is trivial since crossing formulas are con-

formally invariant. Nonetheless, the universal partition functions that go into them

are conformally covariant, so we include the details for completeness. This section is

not completely necessary to understand the results of this chapter, but it will be help-

ful in the next chapter.) In section 4.6, we compare our crossing formula predictions

for Q = 1, 2, 3 FK boundary clusters connecting the independently wired sides of a

hexagon against high-precision computer simulation, finding excellent agreement.

The crossing formulas that we will derive, though explicit and exact for arbitrary

N , have shortcomings. First, they are very complicated. Second, they are singular

when the SLE speed κ is an exceptional speed (2.146), and their finite value as κ

approaches an exceptional speed relies on the cancellation of many infinite quantities.

Unfortunately, the most commonly studied models have SLE descriptions with κ an

exceptional speed. However, more prudent choices of integration contours can often

fix both of these problems, and we give examples of these better choices for the

rectangle, the hexagon, and the octagon in section 4.4.

4.1 Partition functions for polygons with side-alternating

free/fixed boundary conditions

We begin by deriving a loop representation for the random cluster partition func-

tion of a Q-state Potts model in a domain with a specified FFBC. Because of univer-

sality, the continuum limit of these partition functions are supposed to be independent
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of the lattice we use, so we choose the infinite square lattice aZ
2 intersecting H with

a small lattice spacing a. The points x1, . . . , x2N in the real axis host the free-to-

fixed or fixed-to-free BCCs. In the discussion that follows, we describe our critical

Potts model as residing in a 2N -sided polygon P whose i-th vertex is the image of

xi under a conformal map taking the upper half-plane onto P . For now, our system

really resides in the upper half plane, but because these two domains are conformally

equivalent, this detail is not relevant to the arguments that follow. Later in section

4.5, we will transform our results into results for a Potts model in P .

In this chapter and in chapter five, we let ς denote a specified FFBC, and in an

abuse of notation, we also let ς denote the event of the specified FFBC. Now we

suppose that our system exhibits the specified FFBC event ς, and we recall equation

(1.172) which gives the probability of observing the FFBC event ς with the i-th BCC

occurring within distance �i from xi:

P(ς) = Zς/Zf (4.2)

∼
�i→0

c2N

1
�2θ1
1

. . . �2θ1
2N

Υς , Υς := �ψ1(x1) . . . ψ1(x2N)�. (4.3)

As indicated, we interpret this probability as the ratio of two partition functions

Zς and Zf . The partition function Zς (resp.Zf ) sums exclusively over samples in ς

(resp. sums over all samples), and in the continuum limit, Zς and Zf are infinite while

their ratio is finite. We recall from chapter one that we call Υς a “universal partition

function.”

In the discrete setting, Zς is a finite sum over FK-bond configurations {β} ex-

hibiting the FFBC event ς. At the critical point (1.27), the partition function (1.21)

becomes (after dropping irrelevant factors)

Zς =
�

{β}

QNc,ς+Nβ/2, (4.4)

209



where Nc,ς is the number of bond clusters in {β} after we identify all boundary clusters

that are mutually wired with each other in accordance with the FFBC event ς. (This

identification ensures that, for example, we attribute a factor of Q instead of Q2 to

a pair of disjoint boundary clusters that are anchored to different sides of P that are

mutually wired.)

We may also consider a partition function Z(λ|ς) that sums exclusively over samples

in the FFBC event ς and the BAC event λ. We have

Z(λ|ς) =
�

{β}

QNc,ς+Nβ/21({β} ∈ λ), (4.5)

where 1({β} ∈ λ) is the indicator function on the event that {β} ∈ λ, and in the

continuum setting, (4.5) becomes

P(λ ∩ ς) = Z(λ|ς)/Zf

∼
�i→0

c2N

1
�2θ1
1

. . . �2θ1
2N

Υ(λ|ς)(x1, . . . , x2N) (4.6)

for some universal partition function Υ(λ|ς).

We can decompose Υ(λ|ς) into the product of a factor that depends on ς and λ

and a factor that only depends on λ by constructing a loop representation for (4.5),

and this construction is possible for a certain collection of FFBC events. We define

BCN to be the collection of all FFBC events with the following two properties:

1. Either the index of the left endpoint of each wired interval (xi, xi+1) is even for

all ς ∈ BCN , or this index is odd for all ς ∈ BCN .

2. There exists a crossing configuration that connects each collection of mutually

wired sides and does not connect any pair of independently wired sides. This

crossing configuration is unique for each element of BCN , so we can represent

each with a polygon diagram created by reflecting the boundary arcs of its
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crossing configuration into the exterior of P .

Each polygon diagram of an element in BCN matches that of an element in BN , and

because this correspondence is one-to-one, the cardinality of BCN is CN . In this

chapter, we index the elements of BN so that Fς ∈ BN and ς ∈ BCN have identical

diagrams.

The sets BC2 and BC3 contain all possible FFBC events for the rectangle and

hexagon, but BC4 does not contain all possible FFBC events for the octagon. For

example, the FFBC with just the antipodal fixed sides of the octagon mutually wired

does not have a crossing configuration that respects it. That is, there is no crossing

configuration in the octagon that contains two disjoint boundary clusters with one

connecting the top and bottom wired sides and the other connecting the left and right

wired sides.

Now we construct a loop representation for (4.6). If ς is the unique FFBC event

with all fixed sides wired independently of each other, then Nc,ς = Nc where Nc is

the total number of clusters in bond configuration {β}, and a loop representation

is given by (1.30). If any of the fixed sides are mutually wired with other fixed

sides, then Nc,ς does not necessarily equal Nc since boundary clusters anchored to

distinct but mutually wired sides should not be treated as distinct. A natural way

to incorporate this effect is by reinterpreting the N exterior arcs of the diagram for

ς as activated bonds inserted into the FK bond configuration of every event in ς

[75]. These extra activated bonds connect the mutually wired sides so that they are

constrained to exhibit the same state (figure 4.4). Let {β ; ς} stand for this augmented

bond configuration, or the bond configuration {β} with these N extra activated bonds.

Then the partition function (4.5) becomes

Z(λ|ς) = Q−N/2
�

{β ; ς}

QNc+Nβ/21({β} ∈ λ), (4.7)
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where the Nβ (resp.Nc) is the number of bonds (resp. clusters) in the augmented bond

configuration {β ; ς}, and where the factor of Q−N/2 omits the superfluous factors that

arise from the N exterior activated bonds. Now we can write a loop representation for

this partition function similar to (1.30). The loops are closed medial lattice walks that

trace the interior and exterior perimeter of every FK cluster (including the exterior

perimeters of size-zero clusters, which are isolated lattice sites), and the Euler formula

for planar graphs reads Nl + Ns = 2Nc + Nβ, where Ns the total number of lattice

sites and Nl is the total number of loops. Dropping a constant factor of nNs , we find

the loop representation

Z(λ|ς) = n−N
�

{β ; ς}

nNl 1({β} ∈ λ), n =
�

Q. (4.8)

Under renormalization, (4.9) is supposed to flow onto the loop representation of a

dense phase O(n)-model partition function with loop fugacity n. The loops in each

term of the sum are either bulk loops that surround interior FK clusters or boundary

loops that trace the perimeters of the boundary clusters (figures 4.3). We may decom-

pose Nl into a sum Nb + Nblk where Nb (resp.Nblk) equals the number of boundary

loops (resp. bulk loops). The number of boundary loops is the same for any bond

configuration {β ; ς} ∈ λ, so (4.9) becomes

Z(λ|ς) = nmλ,ς
�

{β}

nNblk1({β} ∈ λ), mλ,ς := Nb −N, (4.9)

Because the fugacity factors for the boundary loops are factored out of the sum,

the right side of (4.9) reverts back to a sum over bond configurations without the

exterior activated bonds. Also, the sum may be viewed as a partition function for the

system with boundary loops having fugacity one. Such a partition function clearly

does not depend on our choice of FFBC event ς ∈ BCN , but it does depend on our

choice of BAC event λ ∈ ACN . We let Πλ be the continuum limit version of this
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Figure 4.3: Bulk loops and boundary loops trace the inner faces and outer perimeters of
the bond clusters. In the figure, boundary loops are red while bulk loops are any color but
red.

partition function, we call it the type-λ (half-plane) crossing weight, and we define

its polygon or half-plane diagram to be that of λ ∈ ACN . (Below, we will discover a

more precise definition for a crossing weight that uses the formalism of chapter two.)

The continuum limit version of (4.9) is then

Υ(λ|ς) = nmλ,ςΠλ, (4.10)

which may be inserted into (4.6). Summing over BACs gives a decomposition of Υς

into a linear combination of the crossing weights,

Υς =
�

λ∈ACN

nmλ,ςΠλ, (4.11)

which may be inserted into (4.2). The probability of the crossing event λ given the

FFBC event ς is therefore

χ(λ|ς)(x1, . . . , x2N) := P(λ | ς) (4.12)

=
Υ(λ|ς)

Υς

=
nmλ,ςΠλ�

λ�∈ACN
nmλ�,ςΠλ�

. (4.13)
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Thus, the calculation of a crossing probability reduces to the calculation of the cross-

ing weights Πλ and the exponents mλ,ς . A more convenient version of this formula

will be presented later.

A more formal definition of a crossing weight to be given below will show that

each crossing weight solves the system (2.1-2.2) and therefore has the ansatz (2.4).

Thus, the crossing formula depends only on the cross-ratios η1, . . . , η2N−3, defined by

ηi−1 := f(xi), i ∈ {1, . . . , 2N − 3}, f(x) =
(x− x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − x)
, (4.14)

and is therefore conformally invariant. (We note that 0 < η1 < η2 < . . . < η2N−4 <

η2N−3 < 1.) So by replacing x �→ f(x), we find

χ(λ|ς)(x1, . . . , x2N) = χ(λ|ς)(0, η1, . . . , η2N−3, 1,∞). (4.15)

We will write the right side of (4.15) as χ(λ|ς)(η1, . . . , η2N−3) when it is clear from

context that we have dropped the three other variables at zero, one, and infinity.

The constant mλ,ς can be calculated from a certain graph that follows from the

polygon diagram for [Lλ]Fς . To begin, we color the regions bounded by the boundary

arcs and the wired (resp. free) sides of P black (resp. white), so that the boundary arcs

divide the interior of P into adjacent black regions and white regions, and we identify

each black region with a point to find a new planar graph Gλ,ς (figure 4.7). This

graph is the same for all augmented bond configurations {β; ς} ∈ λ. The 2N edges

of Gλ,ς correspond to the exterior activated bonds, and the vertices of Gλ,ς correspond

to the black regions. To each internal face (resp. component) of Gλ,ς , we associate

a loop that traces that face’s interior (resp. that component’s exterior) perimeter.

This collection of loops corresponds one-to-one with the collection boundary loops of

each configuration {β; ς} ∈ λ. We let Iλ,ς and Cλ,ς be the set of internal faces and
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Figure 4.4: Boundary loops for a bond configuration in a rectangle without exterior
bonds (top), with two horizontal exterior bonds (middle), and with two vertical exterior
bonds (bottom). With the two exterior horizontal (resp. vertical bonds) included, the fixed
left/right sides are always mutually (resp. independently) wired. The boundary arcs of all
three rectangles connect the vertices horizontally in pairs. Thus, the top (resp.middle,
resp. bottom) rectangle has one (resp. three, resp. three) boundary loop(s).
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components of Gλ,ς respectively. Then Nb = |Iλ,ς |+ |Cλ,ς |, and from (4.9) we have

mλ,ς = |Iλ,ς |+ |Cλ,ς |−N. (4.16)

4.2 Crossing weights in polygons

In the discussion preceding (2.7) in chapter two, we predicted the dimension of the

solution space of the system (2.1-2.2) by supposing that the space was spanned by a

basis of CN “partition functions,” [59] where each function conditions the boundary

arcs of the underlying multiple-SLE process to connect the vertices of P in a certain

connectivity. Because Υς solves this system, its decomposition (4.11) into a linear

combination of the crossing weights suggests that the crossing weights are these par-

tition functions. Therefore, we should be able to isolate the crossing weights in terms

of the elements of BN .

We begin to isolate the crossing weights this way by using the following boundary

condition argument. We recall from section 1.2.8 that (xi, xi+1) is a two-leg interval

if the boundary arcs anchored to xi and xi+1 are conditioned to not mutually connect

and (xi, xi+1) is an identity interval if the mutual connectivity of the boundary arcs

anchored to xi and xi+1 is not conditioned (figure 1.17). By subtracting the two-leg

family from the identity family (after correctly weighting these two families relative to

each other), we condition these boundary arcs to mutually connect. In this situation,

we call the mixed interval (xi, xi+1) a zero-leg interval, and we can use the crossing

relation (1.152) to show that the boundary one-leg operators located at its endpoints

exhibit the OPE

ψ1(x1)ψ1(x2) ∼
x2→x1

C0

11
(x2 − x1)

−2θ1ψ0(x1)− C2

11
(x2 − x1)

−2θ1+θ2ψ2(x1) (4.17)

under its collapse, where C0

11
(resp.C2

11
) is the boundary one-leg-one-leg-to-identity
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(resp. one-leg-one-leg-to-two-leg) OPE coefficient.

The definition of a crossing weight implies that we know the type of each interval

corresponding to a side of P for a given λ ∈ ACN . Each is either a two-leg interval

or zero-leg interval. We also recall from chapter two that when a two-leg interval is

collapsed, the crossing weight goes to zero, and when a zero-leg interval is collapsed,

the boundary arc connecting its endpoints becomes a loop that lassos a region in the

upper half-plane and anchors to the real axis at a single point. In the latter case, the

area of the lassoed region is zero almost surely. Thus, the boundary arc contracts to

a point as its zero-leg interval is collapsed, and the crossing weight for a 2N -sided

polygon goes to a crossing weight for a (2N − 2)-sided polygon.

The ratio C2

11
/C0

11
of the OPE coefficients appearing in (4.17) is fixed by the

crossing relation (1.152) between the conformal blocks (summed over all possible

free-to-fixed or fixed-to-free BCCs that can happen at each vertex of P in the event

ς ∈ BCN). (We note the double use of “crossing” in this section.) It is given by [48]

C2

11

C0
11

=

�

n(κ)
Γ(12/κ− 1)Γ(2− 8/κ)

Γ(8/κ)Γ(1− 4/κ)
=

�
Γ(12/κ− 1)Γ(4/κ)

Γ(8/κ)Γ(1− 4/κ)
. (4.18)

Because boundary loops have fugacity one in each sample contributing to a crossing

weight, we must set C0

11
= 1, in contrast with the convention in (1.157). We therefore
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have the behavior for zero-leg and two-leg intervals (x1, x2),

Πλ(x1, . . . , x2N) ∼
x2→x1






�
Γ(12/κ− 1)Γ(4/κ)

Γ(8/κ)Γ(1− 4/κ)

× (x2 − x1)
−2θ1+θ2Ξλ,2(x1, . . . , x2N)





two-leg

(x2 − x1)
−2θ1Ξλ,0(x1, . . . , x2N)

−
�

Γ(12/κ− 1)Γ(4/κ)

Γ(8/Γ)Γ(1− 4/κ)

× (x2 − x1)
−2θ1+θ2Ξλ,2(x1, . . . , x2N)






zero-leg

,

(4.19)

where Ξλ,0 and Ξλ,2 are analytic at x2 = x1, and where Ξ0(x2, x2, x3, . . . , x2N) is

independent of x2 and equals the crossing weight for the (2N − 2)-sided polygon

whose half-plane diagram is identical to that for Πλ but with x1 and x2 and the

interior arc connecting them removed.

When N is sufficiently small, one can isolate the crossing weights in terms of

elements of BN by using (4.19) as boundary conditions. For example, we consider

the case of the rectangle R. Here, N = 2. The two crossing weights Π1 := Πλ1 and

Π2 := Πλ2 sum exclusively over all samples with BAC event λ1
∼= {x1 ↔ x4, x2 ↔ x3}

and λ2
∼= {x1 ↔ x2, x3 ↔ x4} respectively. (The notation “a ↔ b” indicates that

vertices a and b ofR are mutually connected by a boundary arc.) The intervals (x1, x2)

and (x3, x4) must be two-leg intervals of Π1 (resp. zero-leg intervals of Π2) while

(x2, x3) and (x4, x1) must be zero-leg intervals of Π1 (resp. two-leg intervals of Π2).

By expanding the two elements of B2 (2.42, 2.43) in the limit that the length of these

intervals go to zero and taking suitable linear combinations, we straightforwardly find

the expressions (2.40, 2.41) for these crossing weights.

Unfortunately, the boundary conditions (4.19) are not sufficient to specify a partic-

ular BAC and isolate its crossing weight when N is sufficiently large. The sixteen-gon
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Figure 4.5: Two different BACs in a sixteen-gon with each side of the same interval type
(zero-leg or two-leg).

in figure 4.5 shows that we need to specify these conditions for intervals correspond-

ing to not just one side of P but to multiple adjacent sides too. Fortunately, the

formalism of chapter two can be used to do this efficiently. We consider the action

of some [Lλ] on the crossing weight Πλ� . If λ �= λ�, then the interior arcs in the

half-plane diagrams for [Lλ] and Πλ� do not exhibit the same arc connectivity, [Lλ]

eventually collapses a two-leg interval of some limit solution of Πλ, and [Lλ]Πλ is

therefore zero. But if λ = λ�, then these diagrams do exhibit the same arc connec-

tivity, [Lλ] only ever collapses zero-leg intervals of limit solutions of Πλ, and [Lλ]Πλ

is therefore nonzero. Every zero-leg-interval collapse generates a crossing weight of

a polygon with two fewer sides until we eventually reach the N = 1 crossing weight

Π1 = (x2 − x1)−2θ1 (2.35) of the two-gon. Because (x2 − x1)2θ1Π1 → 1 as x2 → x1,

we have [Lλ]Πλ� = δλ,λ� , and because B∗

N
spans S∗

N
according to lemma II.27, we

conclude that the set of crossing weights is dual to B∗

N
.

Definition IV.1. Suppose that κ ∈ (0, 8) and that conjecture II.16 is true. Let BN

be the basis for SN dual to the basis B∗

N
for S∗

N
. We call the element of BN dual to

[Lλ] the type-λ crossing weight, and we denote it by Πλ.

By exploiting the dual relationship between BN and B∗

N
, it is easy to show that
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the crossing weights are related to the solutions in BN by

Fς =
�

λ∈ACN

([Lλ]Fς)Πλ =
�

λ∈ACN

nlλ,ςΠλ (4.20)

where lλ,ς is the number of loops in the polygon diagram for [Lλ]Fς (with P deleted

from the diagram). In terms of the meander matrix, this is





F1

...

FCN




= MN(κ)





Π1

...

ΠCN




. (4.21)

With the elements of BN explicitly defined in definition II.20, we must simply invert

(4.21) to find all CN crossing weights.

While this method works for arbitrarily large N , it does have drawbacks. First,

we cannot invert MN(κ) when κ equals any of the exceptional speeds κ� in (2.146)

with q ≤ N +1 since det MN(κ�) is zero. This is unfortunate since most lattice models

correspond with one of these speeds. We can circumvent this issue by inverting (4.21)

at κ = κ� + � and sending � → 0. This limit exists and is not zero since Πλ is always

an element of a basis for SN . Unfortunately, computing this limit directly is very

awkward as we must rely on the cancellation of infinite quantities in order to arrive

with a finite crossing weight. Second, we have expressed our crossing weights as

linear combinations of all CN solutions in BN , each solution containing a complicated

(N −1)-fold integral. Although BN is the simplest basis to use for proving the results

in chapter two, it does not give the simplest expressions for the crossing weights.

Often, we can find simpler expressions for the crossing weights through a careful

selection of integration contours. For example, when N = 2, the method outlined
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above gives 


Π1

Π2



 =
1

n2(n2 − 1)




n2 −n

−n n2








F1

F2



 , (4.22)

where F1, F2 ∈ B2 are given in (2.42, 2.43). But Π1 and Π2 are also given by (2.40) and

(2.41) respectively. (We can show that both formulas are the same by using Cauchy’s

theorem.) The latter choice is better because it does not accrue canceling infinite

quantities when κ → κ� with n(κ�) = ±1. (We recall that the limit of F1/n and F2/n

as κ → κ� with n(κ�) = 0 is finite. Thus, the n = 0 case does not raise concern.) Also,

with a single integral expression, the latter choice is simpler than (4.22) which includes

a linear combination of two integrals. This advantage becomes significant when N

is large and the numerical evaluation of many (N − 1)-fold Coulomb-gas integrals

becomes very time consuming. We will show how to construct simpler formulas for

crossing weights when N = 2, 3, and 4 in section 4.4.

4.3 The polygon crossing formula

Having devised a method for calculating explicit formulas for all crossing weights

in BN , the probability of observing the crossing event λ ∈ ACN conditioned on

the FFBC event ς ∈ BCN can be computed from formula (4.12). This formula is

inconvenient because of the need to calculate the exponents mλ,ς and all CN crossing

weights Πλ, which is tedious when N is large. Both of these tasks are dramatically

simplified after we observe a special relation between Υς and Fς .

To anticipate the forthcoming result, we consider the rectangle R (N = 2) with

wired left/right sides. We let λ1 (resp.λ2) be the BAC event {x1 ↔ x4, x2 ↔ x3}

(resp. {x1 ↔ x2, x3 ↔ x4}), we let ς1 (resp. ς2) be the FFBC event in which the left

side (x4, x1) and right side (x2, x3) of R are independently (resp.mutually) wired, and

we let Υk := Υςk
, Fk := Fςk

, and Πk := Πλk
. From (4.11) and (4.16), we immediately
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find that

Υ1 = n2Π1 + nΠ2, (4.23)

Υ2 = Π1 + nΠ2. (4.24)

We see that these decompositions are correct for the following reasons. In the BAC

event λ1, the two distinct boundary clusters, one anchored to the left side of R and

the other anchored to the right side, are each surrounded by a loop that is counted

with fugacity one in Π1. To restore the fugacity of both loops to n, we must multiply

Π1 by n2. In the BAC event λ2, one crossing boundary cluster connecting the left

and right sides is surrounded by a single loop that is counted with fugacity one in

Π2. To restore its fugacity to n, we must multiply Π2 by n. This justifies (4.23). In

(4.24), the coefficients are argued in the same way except for one modification. In the

BAC event λ1, n2Π1 sums exclusively over events in which the disjoint left and right

boundary clusters independently exhibit any one of the Q spin states for Q2 possible

combinations. But if these sides were mutually wired, then this term should include

only events in which the disjoint left and right boundary clusters exhibit the same

state for Q possibilities. To reconcile this difference, we must divide n2Π1 by Q = n2.

In the BAC event λ2, this modification is not necessary since a crossing boundary

cluster always connects the left and right sides. This justifies (4.24).

In chapter two, we noted a similar decomposition of the elements of B2 in terms

of the crossing weights. It is (2.44)

F1 = n2Π1 + nΠ2, F2 = nΠ1 + n2Π2. (4.25)

Comparing (2.44) with (4.25), we find

F1 = Υ1, F2 = nΥ2. (4.26)

222



That is, the elements of B2 equal the universal partition functions modulo a factor

that depends on the FFBC event. If this is true for all N ≥ 2, then we may replace Υς

with Fς in the denominator of the crossing formula (4.12). To do this poses a major

advantage since a single element Fς of BN is much easier to calculate than is the

universal partition function Υς , the latter being a linear combination of all crossing

weights which are in turn linear combinations of the elements of BN . We will show

that this supposition is true, and more precisely that

Fς = nlϑ,ς−1Υς , (4.27)

where ϑ ∈ ACN is the particular BAC event with the two endpoints of every free

interval mutually connected by a boundary arc, and where lλ,ς is again the number

of loops in the polygon diagram for [Lλ]Fς (with P deleted from the diagram). In

an abuse of terminology, we will call these loops boundary loops. This definition of a

boundary loop is different from that given in section 4.1. (In the earlier definition,

the number of boundary loops equaled mλ,ς +N (4.16), and in the current definition,

the number of boundary loops equals lλ,ς .)

Now we prove (4.27). Comparing (4.11) with (4.20), we see that Fς and Υς are

proportional only if the difference of the exponents

dλ,ς := lλ,ς −mλ,ς = lλ,ς − (|Iλ,ς |+ |Cλ,ς |−N) (4.28)

is a number dς independent of λ, so Fς = ndςΥς . To show that this is true, we

use this following fact. We can pass from any interior arc connectivity in P to any

other interior arc connectivity in P by exchanging a finite number of pairs of interior

arcs in a suitable progression. By exchanging, we mean the following process. We

consider the k-th interior arc connectivity diagram, corresponding with the BAC

event λk ∈ ACN . If the interior arcs γ1 and γ2 connect the vertices {a, b} and {c, d}
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Figure 4.6: An illustration of the sequence of arc exchanges that take us from the kϑ-th
arc connectivity to the arc connectivity of the top right octagon. Upward (resp. downward)
pointing arrows indicate an arc exchange (deletion), and the last upward pointing arrow
indicates that we have restored all deleted arcs to arrive with our target arc connectivity.

of P respectively and are not separated by other arcs, then they may be replaced

with non-intersecting interior arcs γ�
1

and γ�
2

that connect either vertices {a, d} and

{b, c} respectively or vertices {a, c} and {b, d} respectively, (Only one of these choices

will allow γ�
1

and γ�
2

to not intersect.) This replacement takes us from the k-th arc

connectivity to some other, say the k�-th, arc connectivity, and we say that the arcs

γ1 and γ2 have exchanged to form arcs γ�
1

and γ�
2
.

To prove the claim of the previous paragraph, it suffices to show that we can go

from the kϑ-th arc connectivity, corresponding to the BAC event ϑ ∈ ACN , to any

other, say the k-th, arc connectivity through a sequence of exchanges since such a

process is reversible. (We recall that in the kϑ-th arc connectivity, the endpoints of

each free side of P are joined by a common interior arc.) We begin by deleting all

M interior arcs common to both the kϑ-th and the k-th arc connectivity to arrive

with the kϑ-th and the k0-th arc connectivities respectively in the 2(N −M)-gon P0.

Next, we exchange an adjacent pair of arcs in the kϑ-th connectivity of P0 to create

two new arcs, one of which γ mutually connects two endpoints of a side of P0 in the

k0-th arc connectivity of P0. (Topological considerations show that such a γ always

exists.) Then we delete the shared arc γ from both connectivities to arrive with the

kϑ-th and the k1-th arc connectivities respectively in the 2(N −M − 1)-gon P1. We

repeat this process of exchanging followed by deleting until all arcs have been deleted.
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Figure 4.7: The three topologically distinct BACs (boundaries of black regions) in an
octagon with diagonal sides wired. The same FFBC (i.e., exterior arcs) is shown for all three
octagons, and the corresponding graph Gλ,ς appears beneath each octagon. Boundary arcs
are exchanged through white (resp. black) regions as we move leftwards (resp. rightwards).
In each column, the difference between the number of boundary loops in the top row minus
the sum of the number of internal faces and components in the graph in the bottom row is
always negative two.

Now if we restore all of the deleted arcs to the (now trivial) kϑ-th arc connectivity in

the zero-gon, then we find the k-th arc connectivity in the original 2N -sided polygon

P , as desired. An illustration of this process is presented in figure 4.6.

Now we return to proving that dλ,ς is independent of λ. By the results of the

previous paragraphs, it suffices to check that dλ,ς does not change when two boundary

arcs are exchanged. To this end, we consider the diagram for [Lλ]Fς , which contains

lλ,ς boundary loops. The exchanging of two boundary arcs changes their respective

boundary loops in one of two ways. First, if the boundary arcs belong to different

boundary loops, then this exchange will join two distinct boundary loops into one,

decreasing lλ,ς by one (figure 4.7). This exchange will also alter the graph Gλ,ς ,

defined in the discussion preceding (4.16). If the two original boundary arcs are

separated by a black region (resp. white region), then the number of internal faces
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|Iλ,ς | (resp. components |Cλ,ς |) of Gλ,ς will decrease by one. Thus, dλ,ς does not change

(figure 4.7). Second, if the boundary arcs belong to the same boundary loop, then this

exchange will split the boundary loop into two boundary loops with one nested inside

of the other, increasing lλ,ς by one (figure 4.7). Again, this exchange will also alter

Gλ,ς . If the two original boundary arcs are separated by a black region (resp. white

region), then the number of components |Cλ,ς | (resp. internal faces |Iλ,ς |) of Gλ,ς will

increase by one. Thus, dλ,ς does not change (figure 4.7). We conclude that dλ,ς is a

number dς independent of λ.

The most straightforward way to calculate dς is by examining the graph Gϑ,ς .

Again, in the BAC event ϑ, the endpoints of each free side of P are mutually connected

by a boundary arc. We let Eς and Vλ,ς be the set of edges and the set of vertices of

Gλ,ς respectively. It is easy to see that Gϑ,ς is comprised of |Cϑ,ς | = 1 component,

|Vϑ,ς | = 1 vertex, and |Eς | = N edges. (The right column of figure 4.7 illustrates Gϑ,ς

for a particular ς and with N = 4.) Then by Euler’s formula for planar graphs, which

says that

|Cϑ,ς |+ |Eς | = |Iϑ,ς |+ |Vϑ,ς |, (4.29)

it follows that Gϑ,ς has |Iϑ,ς | = N internal faces. From (4.28) we therefore have

Fς = ndςΥς , dς = dϑ,ς = lϑ,ς − (|Iϑ,ς |+ |Cϑ,ς |−N) (4.30)

= lϑ,ς − 1. (4.31)

This proves (4.27).

We may use this result to simplify the crossing formula (4.12). By multiplying the

numerator and denominator of this formula by nlϑ,ς−1, we find that the probability of

the crossing event λ ∈ ACN conditioned on the FFBC event ς ∈ BCN is

χ(λ|ς) =
nlλ,ςΠλ

Fς

, (4.32)
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where the functions and variables that appear in this formula are given as follows.

• The BAC event λ ∈ ACN (defined in the introduction of this chapter) is rep-

resented by a diagram of N non-intersecting interior arcs inscribed in P that

join its vertices pairwise in the same connectivity as the boundary arcs of any

sample in λ.

• The FFBC event ς ∈ BCN (defined in section 4.1) is represented by a diagram

of N non-intersecting exterior arcs that connect the vertices of P pairwise.

There exists a unique crossing event λ� ∈ ACN that connects each collection

of mutually wired sides of ς and does not connect any pair of independently

wired sides. The exterior arcs are created by reflecting the boundary arcs of the

diagram for λ� into the exterior of P .

• lλ,ς is the number of loops formed by joining the interior arcs in the diagram for

λ with the exterior arcs in the diagram for ς at the vertices of P and deleting

P from the diagram that results.

• n is the loop fugacity of the O(n) model, given by n(κ) = −2 cos(4π/κ), with

κ the SLE speed.

• The partition function Fς is given by (2.9)

Fς({Γm} |x1, . . . , x2N) :=

n(κ)N
Γ(2− 8/κ)N

Γ(1− 4/κ)2N

2N−1�

i<j

(xi − xj)
2/κ

2N−1�

i=1

(x2N − xi)
1−6/κ

× IN−1



βkl =






−4/κ i �= 2N

12/κ− 2 i = 2N





; γpq =

8

κ

����� {Γm}
����� x1, . . . , x2N



 ,

(4.33)
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where IM , M ∈ Z
+ is the M -fold complex-contour integral

IM({βkl}; {γpq} | {Γm}M

m=1
|x1, . . . , x2N) :=

×
�

Γ1

. . .

�

ΓM

�
2N�

k=1

M�

l=1

(xk − ul)
βij

� �
M�

p<ql

(up − uq)
γkl

�
duM . . . du1. (4.34)

Here, xi is the pre-image of the i-th vertex of P under a conformal map taking

the upper half-plane onto P , and xi < xj when i < j. Also, the collection

{Γm} of integration contours consists of N − 1 non-intersecting simple curves

that connect the points xi pairwise just as their images as vertices of P are

connected in the diagram for ς. There is one exception to this statement. No

integration contour connects the point x2N with the point to which it is joined

by an arc in the diagram for ς.

• The crossing weight is given by Πλ = [M−1

N
]λ,ςFς , where the λ, ς-th entry of the

CN × CN “meander matrix” MN equals nlλ,ς [68]. M−1

N
does not exist when κ

is an exceptional speed (2.146). However, the limit of Πλ as κ approaches an

exceptional speed exists, and we use this limit in this case.

To finish, we technically must conformally map the upper half-plane onto the

interior of P in order to obtain the true crossing formulas χP
(λ|ς)

for P . We call the

map that accomplishes this task f . But because the partition functions Z(λ|ς) and Zς

are conformally invariant, the crossing formula must also be conformally invariant.

That is, we must have

χP
(λ|ς)

(w1, . . . , w2N) = χ(λ|ς)(x1, . . . , x2N), (4.35)

where wi = f(xi) is the i-th vertex of P . There are some subtleties that we have

overlooked related to the failure of f to be conformal at the vertices of P where the

BCCs reside. Ultimately, these details will not spoil conformal invariance, and (4.35)
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remains true. We will examine these details further in section 4.5.

We can extend our results beyond FK cluster connectivities to probabilities of

multiple-SLE arc connectivities, as we noted in the introduction of chapter two. We

recall that a multiple-SLE process is driven in part by a “partition function” Z, which

is any solution of the system (2.1-2.2). Assuming that conjecture II.16 is true, the

results of chapter two imply that we may decompose Z into a sum over crossing

weights:

Z =
�

λ∈ACN

cλΠλ. (4.36)

As previously argued, we expect that the curves of a multiple-SLE process in P driven

by the solution Πλ will join pairwise as in the BAC event λ. Now, conjecturing the

existence of CN such crossing weights Πλ, [59] argues that if we drive the multiple-

SLE process by the partition function (4.36), then the probability that the boundary

arcs connect as in the BAC event λ is

P(λ | {cλ�}λ�∈ACN ) =
cλΠλ�

λ�∈ACN
cλ�Πλ�

. (4.37)

The authors of [59] pose the question of calculating all of the CN crossing weights Πλ.

In this chapter, we propose an answer by giving explicit formulas for all of them.

The connection with multiple-SLE extends into the dilute phase. Because κ ≤ 4

in this phase, we must replace each integration contour of Fς ∈ BN connecting two

points, say xi and xj, with the Pochhammer contour P(xi, xj) so that all of the

integrals in the crossing formula (4.32) converge.

Because the crossing formula extends into the dilute phase, (4.32) gives crossing

probabilities for Potts model spin clusters too. In the dilute phase, the one-leg oper-

ator φ2,1 induces a BCC from fixed to, say, spin a, to free but excluding spin a, and

then it sums over all Q possible spins. In this case, the wired sides are automatically

constrained to be mutually wired, so the only admissible FFBC event is ϑ ∈ BCN ,
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x1 x2 x3 x4

Π1 =

Figure 4.8: The one topologically distinct BAC in the rectangle and its corresponding
integration contour choice. The bottom-left vertex of the rectangle is sent to the leftmost
point on the real axis, and moving counterclockwise around the rectangle corresponds to
moving rightwards along the real axis.

where the endpoints of every free side are connected by an exterior arc. Another way

to see this fact is by immersing the system in P in a sea of spin a sites if a is the

state of the wired sides. The partition function for the immersed system equals that

of the original system to within an irrelevant constant, and the boundary arcs of the

immersed system are the perimeters of the spin a boundary clusters. These boundary

arcs close into boundary loops through external arcs that pass just outside the free

sides. This external arc connectivity is exactly that of ϑ, so all of our samples must

lie in the FFBC event ϑ.

4.4 Crossing weights in rectangles, hexagons, and octagons

In this section, we derive alternative formulas for the crossing weights of the

rectangle, the hexagon, and the octagon that are simpler than those prescribed by

(4.21) and are typically not singular when κ equals an exceptional speed (2.146)

with q ≤ N + 1. Each crossing weight necessarily has the form (2.9), so for each

BAC event λ ∈ ACN , we must simply select the integration contours and normalize

the result so that [Lλ]Πλ = 1. The hexagon crossing formulas of this section were

originally discovered by J. Simmons in presently unpublished work [74]. Throughout

this section, we let Πk := Πλk
for some indexed BAC event λk ∈ ACN .
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4.4.1 Crossing weights in rectangles

There are C2 = 2 possible BACs in a rectangle R. Both connectivities are topo-

logically identical, so we only compute the weight Π1 for the vertical connectivity λ1

(figure 4.8). The other can be found by rotating R.

The vertices of R in figure 4.8 are sent to real numbers so that moving counter-

clockwise around R corresponds to moving rightward along the real axis, and the

bottom-left vertex is sent to x1. From the figure, we see that Π1 is a two-leg solution.

According to section 3.1, we must therefore entwine x3 and x4 with a Pochhammer

contour Γ1 = P(x3, x4), and according to (1.195), the Pochhammer contour may be

replaced by an integration along [x3, x4] when κ > 4. With the proper normalization,

the result is (2.40). The weight Π2 for the horizontal BAC event λ2 is given in (2.41).

Earlier, we wrote Π2 in terms of a hypergeometric function (2.37-2.38), and now

we note that this formula reduces to Cardy’s formula (4.1) when κ = 6, as it must

since this speed captures critical percolation. (The cross-ratio η = x21x43/x31x42 is

equivalent to the modular parameter m in Cardy’s formula.)

4.4.2 Crossing weights in hexagons

There are C3 = 5 possible BACs in a hexagon H, and they can be grouped into

the two topologically distinct classes shown in figure 4.9. We compute one weight per

class as the others can be found by rotating H.

The vertices of H in figure 4.9 are sent to real numbers so that moving counter-

clockwise around H corresponds to moving rightward along the real axis, and the

bottom-left vertex is sent to x1. From the top hexagon in the figure, we see that Π1

is a three-leg solution. According to section 3.1, we must entwine x5 and x6 with a

Pochhammer contour Γ1 = P(x5, x6), and we must entwine Γ1 and x4 with a second

Pochhammer contour Γ2 to arrive with Π1.

When κ > 4, we can decompose the double integral in Π1 into a linear combination
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x1 x2 x3 x4 x5 x6

Π1 =

Π2 =
x1 x2 x3 x4 x5 x6

Figure 4.9: The two topologically distinct BACs in the hexagon and their corresponding
integration contour choices. The bottom-left vertex of the hexagon is sent to the leftmost
point on the real axis, and moving counterclockwise around the hexagon corresponds to
moving rightwards along the real axis.

of double integrals that integrate along the individual sides ofH. The result is simplest

if we place the one conjugate charge at x5. For i, j ∈ {1, . . . , 6} with i �= j, we let

Iij :=

�������
I2



βmn =






−4/κ m �= 5

12/κ− 2 m = 5





; γpq =

8

κ

�������

[xi−1, xi]

[xj−1, xj]

�������
x1, . . . , x6





�������
,

(4.38)

where the Coulomb gas integral IM is defined in (2.10). The absolute value sign

eliminates a phase that is independent of x1, . . . , x6. We note that Iij = Iji by

Fubini’s theorem. Now if we momentarily suppose that u1 is frozen at a specific

location in (x5, x6), then the integration along Γ2 decomposes into (figure 4.10)

e4πi/κJx5
x4

+ e−8πi/κJu1
x5

+ e−16πi/κJx6
u1
− e−28πi/κJx5

x4
− e−16πi/κJu1

x5
− e−8πi/κJx6

u1

+ e−36πi/κJx5
x4

+ e−24πi/κJu1
x5

+ e−16πi/κJx6
u1
− e−4πi/κJx5

x4
− e−16πi/κJu1

x5
− e−24πi/κJx6

u1
.

(4.39)

Here, J b

a
is the magnitude of the integrand of Iij with u1 frozen at a location in (x5, x6)
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e−πiβ

eπiβ

e2πiβ

1

1 e−πiβ

1

1

eπiβ

1

1

1

1 e−2πiβ

e2πiβe−2πiβ

Figure 4.10: A summary of the phase factors accrued as an integration contour winds
either ±π or ±2π radians around a branch point with monodromy factor e2πiβ.

and with u2 integrated from a to b. This may also be written as

2i sin

�
4π

κ

�
(1− e−32πi/κ)Jx5

x4
+ (e−8πi/κ − 2e−16/πi/κ + e−24πi/κ)(Ju1

x5
− Jx6

u1
). (4.40)

Now, the integrations of Ju1
x5

and Jx6
u1

with respect to u1 from x5 to x6 are equal. Thus,

by integrating u1 along [x5, x6], we find that (figure 4.11)

I2(Γ1, Γ2) ∝ I56. (4.41)

The correct normalization is found by multiplying the right side by (x4 − x3)6/κ−1,

sending x4 → x3, and requiring that we recover the rectangle crossing weight Π1 with

x3 �→ x5 and x4 �→ x6 in the limit. We thus find

Π1 = n2I56

6�

i<j

i,j �=5

|xj − xi|2/κ

6�

i�=5

|x5 − xi|1−6/κ. (4.42)

Next, we calculate the crossing weight Π2 for the BAC event λ2. We rely on

techniques explained in section 1.2.9 to determine the appropriate contours. The

bottom hexagon in figure 4.9 illustrates λ2, and we see that (x1, x2), (x3, x4) and

(x5, x6) must be two-leg intervals. Before we introduce any contours, we also see that

x5 is the endpoint of two adjacent identity intervals since it bears the conjugate charge.

To convert (x5, x6) into a two-leg interval, we entwine x5 and x6 with a Pochhammer
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Figure 4.11: Integration around the nested pair of Pochhammer contours shown on the
left is proportional to performing the first integration along the right interval and the second
integration along the left interval.

contour Γ1. On the other hand, (x1, x2) and (x3, x4) are already two-leg intervals

since neither of their endpoints bear the conjugate charge. To preserve this feature,

we require Γ2 to not cross these intervals. Next, (x6, x1), (x2, x3) and (x4, x5) must be

zero-leg intervals. Prior to choosing Γ2, (x2, x3) is a two-leg interval, and to convert

it into a zero-leg interval, we let Γ2 cross (x2, x3). The simplest way to satisfy these

requirements is by entwining (x1, x2) and (x3, x4) with a Pochhammer contour Γ2.

This choice is consistent with the requirement that we find a two-leg operator when

we send x2, . . . , x4 → x1 since the net charge of this fusion is −4α−/2 + α− = α−
1,3

.

When κ > 4, we can decompose Π2 into a linear combination of the Iij. As we

observed earlier, Γ1 can be replaced by an integration over [x5, x6]. If we make

this replacement and decompose the integration along Γ2 into integrations along

[x1, x2], [x2, x3], and [x3, x4], then we find

I2(Γ1, Γ2) ∝ e4πi/κI25 + e8πi/κI35 + e12πi/κI45 − e20πi/κI25 − e24πi/κI35 − e20πiκI45

+ e12πi/κI2 + e8πi/κI35 + e4πiκI45 − e−4πi/κI25 − e−8πi/κI35 − e−4πi/κI45, (4.43)

which may also be written as (figure 4.12)

I2(Γ1, Γ2) ∝ (e4πi/κ − e20πi/κ + e12πi/κ − e−4πi/κ)[I26 + I46 − nI36]. (4.44)

The correct normalization is found by multiplying the right side by (x3 − x2)6/κ−1,
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− n{ +

Figure 4.12: The decomposition of the integration along the left Pochhammer contour for
the hexagon crossing weight Π2 (figure 4.9).

sending x3 → x2, and requiring that we recover the rectangle crossing weight Π1 with

x2 �→ x4, x3 �→ x5, and x4 �→ x6 in the limit. We thus find

Π2 =
n2

n2 − 2
[nI36 − I26 − I46]

6�

i<j

i,j �=5

|xj − xi|2/κ

6�

i�=5

|x5 − xi|1−6/κ. (4.45)

4.4.3 Crossing weights in octagons

There are C4 = 14 possible BACs in an octagon O, and they can be grouped into

the three topologically distinct class shown in figure 4.13. We compute one weight

per class as the others can be found by rotating O.

The vertices of O in figure 4.9 are sent to real numbers so that moving counter-

clockwise around O corresponds to moving rightward along the real axis, and the

bottom-left vertex is sent to x1. From the top octagon in the figure, we see that

Π1 is a four-leg solution. According to section 3.1, we must entwine x7 and x8 with

a Pochhammer contour Γ1, we must entwine Γ1 and x6 with a second Pochhammer

contour Γ2, and we must entwine Γ2 and x5 with a third Pochhammer contour Γ3 to

arrive with Π1.

When κ > 4, we can decompose the triple integral in Π1 into a linear combination

triple integrals along the individual sides of O. For this purpose, we will use the
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Π1 =

Π2 =

Π3 =

x6 x7 x8

x5 x6 x7 x8x1 x2 x3 x4

x5x1 x2 x3 x4

x1 x2 x3 x4 x6 x7 x8x5

Figure 4.13: The three topologically distinct BACs in the octagon and their corresponding
integration contour choices. The bottom-left vertex of the octagon is sent to the leftmost
point on the real axis, and moving counterclockwise around the octagon corresponds to
moving rightwards along the real axis.

integral

Iijk :=

����������

I3




βmn =






−4/κ m �= 7

12/κ− 2 m = 7





; γpq =

8

κ

����������

[xi−1, xi]

[xj−1, xj]

[xk−1, xk]

����������

x1, . . . , x8





����������

,

(4.46)

defined for i, j, k ∈ {1, . . . , 8}, i �= j �= k. Again, the absolute value sign elimi-

nates a phase that is independent of x1, . . . , x8. We note that Iijk is invariant under

permutation of its indices by Fubini’s theorem. We will also use Iiik, defined by

Iiik := |I3([xi−1, u2], [xi−1, xi], [xk−1, xk])|, (4.47)
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where u2 is the integration variable that is integrated along [xi−1, xi]. As we observed

in the case of the hexagon, the double integration over the nested pair Γ2×Γ1 can be

replaced by a double integration along [x6, x7]× [x7, x8]. If we momentarily suppose

that u1 and u2 are frozen at specific locations in (x7, x8) and (x6, x7) respectively,

then the integration along Γ3 decomposes into

+e4πi/κJx6
x5

+ e8πi/κJu2
x6

+ Jx7
u2

+ e−12πi/κJu1
x7

+ e−20πi/κJx8
u1

(4.48)

−e−36πi/κJx6
x5
− e−40πi/κJu2

x6
− e−32πi/κJx7

u2
− e−20πi/κJu1

x7
− e−12πi/κJx8

u1
(4.49)

+e−44πi/κJx6
x5

+ e−48πi/κJu2
x6

+ e−40πi/κJx7
u2

+ e−28πi/κJu1
x7

+ e−20πi/κJx8
u1

(4.50)

−e−4πi/κJx6
x5
− Ju2

x6
− e−8πi/κJx7

u2
− e−20πi/κJu1

x7
− e−28πi/κJx8

u1
, (4.51)

where J b

a
is the magnitude of the integrand of Iijk with u1 and u2 frozen at locations

in (x7, x8) and (x6, x7) respectively and with u3 integrated from a to b. This can also

be written as

2i sin

�
4π

κ

�
[(1− e−40πi/κ)Jx6

x5
+ (1− e−40πi/κ)(e4πi/κ + e−4/πi/κ)Ju2

x6

+ (e−4πi/κ − e−36/πi/κ)(Jx7
u2
− Ju2

x6
) + (e−16πi/κ − e−24/πi/κ)(Ju1

x7
− Jx8

u1
)]. (4.52)

Now, the integrations of Ju1
x7

and Jx8
u1

(reps. Jx7
u2

and Ju2
x6

) with respect to u1 (resp.u2)

from x7 to x8 (resp.x6 to x7) are equal. Thus, by integrating u1 and u2 along [x7, x8]

and [x6, x7] respectively, we find that (figure 4.14)

I3(Γ1, Γ2, Γ3) ∝ I3([x6, x7], [x7, x8], Γ3) (4.53)

∝ I678 − nI778. (4.54)

The correct normalization is found by multiplying the right side by (x5 − x4)6/κ−1,

sending x5 → x4, and requiring that we recover the hexagon crossing weight Π1 with
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− n{
Figure 4.14: Integration around the three nested Pochhammer contours shown on the left
is proportional to the difference of the two integrations shown on the right.

x4 �→ x6, x5 �→ x7, x6 �→ x8 in the limit. We thus find

Π1 = n3(I678 − nI778)
8�

i<j

i,j �=7

|xj − xi|2/κ

8�

i�=7

|x7 − xi|1−6/κ. (4.55)

The second crossing weight is more complicated. From figure 4.13, we see that

(x1, x2), (x2, x3), (x4, x5), (x6, x7), and (x7, x8) must be two-leg intervals. Prior to

choosing contours, (x6, x7) and (x7, x8) start as identity intervals in (2.9), and in

order to convert them into two-leg intervals, we choose Γ1 and Γ2 as in Π1. Next,

(x1, x2), (x2, x3) and (x4, x5) start as two-leg intervals, and to preserve this, Γ3 must

not cross any of them. On the other hand, (x3, x4) and (x5, x6) must be zero-leg

intervals of Π2. Because they start as two-leg intervals, a contour must cross them

in order to convert them into zero-leg intervals. In particular, Γ3 must cross (x3, x4).

The simplest way to satisfy these requirements is by entwining [x1, x3] and [x4, x5]

with a Pochhammer contour Γ3. This choice is consistent with the requirement that

we find a three-leg operator when we send x2, . . . x5 → x1 since the net charge of this

fusion is −5α−/2 + α− = α−
1,4

.

When κ > 4, we can decompose Π2 into a linear combination of the Iijk. As we

observed earlier, the integration over Γ2×Γ1 can be replaced by a double integration

over [x6, x7] × [x7, x8]. If we decompose the integration along Γ3 into integrations
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along [x1, x2], . . . , [x4, x5], then we find

I3(Γ1, Γ2, Γ3) ∝ e4πi/κI278 + e8πi/κI378 + e12πi/κI478 + e16πi/κI578 (4.56)

−e20πi/κI278 − e24πi/κI378 − e28πi/κI478 − e24πi/κI578 (4.57)

+e12πi/κI278 + e8πi/κI378 + e4πi/κI478 + I578 (4.58)

−e−4πi/κI278 − e−8πi/κI378 − e−12πi/κI478 − e−8πi/κI578. (4.59)

After factoring out a common phase of e8πi/κ, we can rewrite this as

I3(Γ1, Γ2, Γ3) ∝ e8πi/κ(n2 − 4)[n(I278 − nI378) + (n2 − 1)(nI478 − I578)]. (4.60)

The correct normalization is found by multiplying the right side by (x4 − x3)6/κ−1,

sending x4 → x3, and requiring that we recover the hexagon crossing weight Π1 with

x3 �→ x5, x4 �→ x6, x5 �→ x7, and x6 �→ x8 in the limit. We thus find

Π2 =
n3

n4 − 3n2 + 1
[n(I278 − nI378) + (n2 − 1)(nI478 − I578)]

×
8�

i<j

i,j �=7

|xj − xi|2/κ

8�

i�=7

|x7 − xi|1−6/κ. (4.61)

The third crossing weight is the most complicated. To begin, we choose Γ1 as

in Π1 and Π2 to convert (x7, x8) into a two-leg interval. Next, (x1, x2), (x3, x4), and

(x5, x6) must be two-leg intervals, and because they start off as such in (2.9), neither

Γ2 nor Γ3 can cross these intervals. Moreover, (x8, x1), (x2, x3), (x4, x5) and (x6, x7)

must be zero-leg intervals, but because they start as two-leg intervals, an integration

contour must cross each of them to convert them into two-leg intervals. In particular,

Γ2 or Γ3 must cross (x2, x3) and (x4, x5). To satisfy these requirements, we entwine

[x1, x2] and [x3, x4] with a Pochhammer contour Γ2, and we entwine [x5, x6] and Γ2

with a Pochhammer contour Γ3. This choice is consistent with the requirement that
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=

Figure 4.15: We decompose the nested Pochhammer contour for the octagon crossing
weight Π3 into three integrations, one of which is shown on the left. Using identity (3.3),
we may deform the outer Pochhammer contour so that it does not contain any of these
three integrations, as shown on the right.

we find a two-leg operator when we send x2, . . . , x6 → x1 since the net charge of this

fusion is −6α−/2 + 2α− = α−
1,3

. We also note a second option to entwine [x3, x4]

and [x5, x6] with a Pochhammer contour Γ2 and entwine [x1, x2] and Γ2 with another

Pochhammer contour Γ3. Using lemma II.17, we can show that both options are the

same to within a constant.

Now we decompose Π3 into a linear combination of the Iijk. The decomposition

for Γ2 was done in (4.44), and we found three terms (figure 4.12). The first term

integrates along [x1, x2], the second integrates along [x2, x3], and the last integrates

along [x3, x4]. Using identity (3.3), we can deform Γ3 around each of these integrations

so that Γ3 entwines [x5, x6] with [x3, x4], with x1 and x4, and with [x1, x2] in the first,

second, and third terms respectively (figure 4.15). Thus Γ3 can be decomposed in the

same way as Γ2 in each term, giving nine terms total. Using the identity shown in

figure 4.16, we find the decomposition

− n{=

+

Figure 4.16: The pair of nested integration contours shown on the left decomposes into
the sum of integrations shown on the right.
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I3(Γ1, Γ2, Γ3) ∝ I468 − nI458 + n2I448 − 2nI348 + 2I248

− nI368 + n2I358 + n2I338 − nI238 + I268 − nI258. (4.62)

The correct normalization is found by multiplying the right side by (x3 − x2)6/κ−1,

sending x3 → x2, and requiring that we recover the hexagon crossing weight Π2 with

x2 �→ x4, . . . , x6 �→ x8 in the limit. We thus find

Π3 =
8�

i<j

i,j �=7

|xj − xi|2/κ

8�

i�=7

|x7 − xi|1−6/κ

× n3

(n2 − 2)2
[I468 − nI458 + n2I448 − 2nI348 + 2I248

− nI368 + n2I358 + n2I338 − nI238 + I268 − nI258]. (4.63)

Occasionally, simpler expressions can be found by working with collections of so-

lutions in which the conjugate charge not always located at the same vertex. Also,

we could consider special cases with extra symmetry, such as regular polygons, that

require many of these integrals to be equal. These strategies may simplify the crossing-

weight formulas that we have encountered, but beyond the octagon where these cal-

culations become extremely cumbersome, they give limited help. For this reason, we

will not pursue them here.

4.5 Transforming the universal partition functions

In this section, we transform our crossing partition functions into partition func-

tions for the appropriate 2N -sided polygon, but before we address polygons, we con-

sider more general simply connected domains. The Riemann mapping theorem guar-

antees the existence of a conformal bijection f from the upper half-plane onto a simply

connected domain D �= C. We further suppose that f extends to and bijectively sends
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the extended real axis onto ∂D and is conformal at each BCC (in the sense of sending

infinitesimal half-disks onto infinitesimal half-disks). If D = H, then for a given BAC

event λ ∈ ACN and FFBC event ς ∈ BCN , we have (4.6)

Z(λ|ς)/Zf ∼
�i→0

c2N

1
�θ1
1

. . . �θ1
2N

Υ(λ|ς), (4.64)

where xi marks the center of the disk of radius �i that contains the i-th BCC along

the real axis. If D is some other domain and f is as described above, then under this

mapping, �i �→ δi(wi) = |∂f(xi)|�i where wi = f(xi). To compensate this change,

Υ(λ|ς) transforms covariantly (1.146),

ΥD

(λ|ς)
(w1, . . . , w2N) = |∂f(x1)|−θ1 . . . |∂f(x2N)|−θ1Υ(λ|ς)(x1, . . . , x2N), (4.65)

so that Z(λ|ς) is invariant under the transformation:

ZD

(λ|ς)
(w1, . . . , w2N)/Zf = Z(λ|ς)(x1, . . . , x2N)/Zf . (4.66)

For the domain D, we now have

ZD

(λ|ς)
/Zf ∼

δi(wi)→0

c2N

1
δ1(w1)

θ1 . . . δ2N(w2N)θ1ΥD

(λ|ς)
. (4.67)

The free partition function Zf does not depend on x1, . . . , x2N as its BC is free, so it

does not transform.

The partition function ZD

(λ|ς)
is unnatural because the radii δi(wi) are not constant

but depend on the centers of their respective disks. A more natural partition function

to use is (4.67) with each δi(wi) replaced by a fixed, small number δi so that we can

confine each BCC to a uniformly small segment in ∂D. This modifies ZD

(λ|ς)
to a new
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partition function ZD

(λ|ς)
given by

ZD

(λ|ς)
/Zf ∼

δi→0

c2N

1
δθ1
1

. . . δθ1
2N

ΥD

(λ|ς)
. (4.68)

The partition function ZD

ς
follows from a similar modification of ZD

ς
and is found by

summing ZD

(λ|ς)
over all BAC events λ ∈ ACN .

Now we may propose the following more natural definition of a crossing probability

for D:

χD
(λ|ς)

:= ZD

(λ|ς)
/ZD

ς
. (4.69)

We see that, with this definition, the crossing probability is indeed conformally in-

variant:

χD
(λ|ς)

:=
ZD

(λ|ς)

ZD
ς

=
Z(λ|ς)

Zς

= χ(λ|ς). (4.70)

More generally, we have χD1
(λ|ς)

= χD2
(λ|ς)

for any two simply connected domains D1 and

D2 that are images of respective conformal bijections f1 : H → D1 and f2 : H → D2

that satisfy the requirements described above. Apparently, the adjustment of ZD

(λ|ς)
to

ZD

(λ|ς)
does not affect our crossing formula. However, this adjustment will be relevant

to the calculation of pinch-point densities in the next chapter. For this reason, we

mention it here.

Now we suppose that f does not does not conformally extend to the BCCs on

the real axis but that it does conformally extend to a deleted neighborhood of each

BCC. We have in mind that D is simply connected and its boundary is smooth

except at a finite number of corner points, and if wi is located at a corner point, then

|∂f(xi)| is infinite or zero. In this event, the radius δi(wi) is infinite or zero, and the

asymptotic statement δi(wi) → 0 in (4.67) has no meaning. The replacement δi(wi) �→

δi would seem to remedy this fact. However, the product δ1(w1)θ1 . . . δ2N(w2N)θ1ΥD

(λ|ς)

is already finite and nonzero, a quality that such a replacement would spoil. Instead,

we remedy this problem by proposing an appropriate redefinition of the universal

243



partition function.

Before we propose the redefinition, we note that the crossing formula (4.32) is not

affected by the situation in which some or all BCCs occur at corner points. Indeed,

(4.70) remains true as we let wi approach a corner point due to the cancellation of

the identical derivative factors appearing in the numerator and denominator. For

this reason, what follows may seem superfluous, and if we simply wish to prove the

invariance of the crossing formula, then this is true. But because universal partition

functions are physically relevant in their own, we propose a good redefinition of them

for these cases anyway. This is the main point of this section.

Now we propose a redefinition of the universal partition functions to accommodate

the cases where the BCCs occur at corner points. We specialize to the situation where

D is a 2N -sided polygon P with wi the i-th vertex. In this situation, f is the Schwarz-

Christoffel transformation [32]

f(z) = a

�
z

x1

(x1 − ζ)φ1/π−1 . . . (x2N − ζ)φ2N/π−1 dζ + b, (4.71)

where φi is the interior angle of P at the i-th vertex, xi is the preimage of wi, and a and

b are unspecified complex constants that determine the position, size, and orientation

of P in the complex plane. The failure of f to be conformal at xi is manifested by

the behavior of its derivative as a point x�
i
> xi approaches xi. We can express this

behavior as a function of the difference w�

i
− wi, where w�

i
= f(x�

i
) is slightly shifted

away from wi along the side [wi, wi+1] of P . That is,

w�

i
− wi = εi exp i

�
arg(a) +

i�

j=1

(π − φj)

�
, (4.72)

for some very small εi > 0. Now, w�

i
is given by

w�

i
= f(x�

i
) = wi + a

�
x
�
i

xi

(x1 − ζ)φ1/π−1 . . . (x2N − ζ)φ2N/π−1 dζ, (4.73)
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and by introducing the substitution ζ(t) = (1 − t)xi + x�
i
t, we immediately find the

asymptotic behavior

w�

i
= f(x�

i
) ∼

εi→0
wi +

aπ

φi

(xi − x�
i
)φi/π

�

j �=i

(xj − xi)
φj/π−1. (4.74)

After isolating x�
i
− xi in terms of w�

i
− wi, we can use (4.74) to write |∂f(x�

i
)| to

leading order in εi. We have

|∂f(x�
i
)| ∼

εi→0

�
|a|π
φi

�π/φi
�

φi

π
ε1−π/φi

i

� �

j �=i

|xj − xi|φj/φi−π/φi . (4.75)

As we expect, the derivative blows up or vanishes as εi → 0 when φi �= π.

Now we use (4.75) to give a proper redefinition of ΥP

(λ|ς)
. The product on the right

side of (4.64) evaluated at x�
1
, . . . , x�

2N
may be written as

δ1(w
�

1
)θ1 . . . δ2N(w�

2N
)θ1ΥP

(λ|ς)
(w�

1
, . . . , w�

2N
), (4.76)

where, as usual, we have used the covariant transformation rule (4.65) and also

δi(w�

i
) = �i|∂f(x�

i
)|. Next, we make the replacement

δi(wi) = |∂f(xi)|�i −→ δ̃i(wi) = �i lim
εi→0

|∂f(x�
i
)|

�
π

φi

επ/φi−1

i

�
, (4.77)

and we also make the replacement

ΥP

(λ|ς)
(w1, . . . , w2N) = |∂f(x1)|−θ1 . . . |∂f(x2N)|−θ1Υ(λ|ς)(x1, . . . , x2N)

−→ Υ̃P

(λ|ς)
(w1, . . . , w2N) = lim

εi→0

�
φ1

π
ε1−π/φ1
1

�θ1

|∂f(x�
1
)|−θ1 . . .

. . .

�
φ2N

π
ε1−π/φ2N

2N

�θ1

|∂f(x�
2N

)|−θ1Υ(λ|ς)(x
�

1
, . . . , x�

2N
). (4.78)
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Thus, δ̃i and Υ̃P

(λ|ς)
are both finite and nonzero as εi → 0, and furthermore

lim
εi→0

δ1(w
�

1
)θ1 . . . δ2N(w�

2N
)θ1ΥP

(λ|ς)
(w�

1
, . . . , w�

2N
)

= δ̃1(w1) . . . δ̃2N(w2N)Υ̃P

(λ|ς)
(w1, . . . , w2N). (4.79)

(In the limit, we are sending all εi to zero simultaneously.) Now we replace the

right side of (4.67) with the right side of (4.79), and because each δ̃i(wi) is finite and

nonzero, we may replace each with a number δi to obtain the regularized version of

(4.68) in the limit εi → 0:

Z̃P

(λ|ς)
/Zf ∼

δi→0

c2N

1
δθ1
1

. . . δθ1
2N

Υ̃P

(λ|ς)
. (4.80)

The regularized universal partition function Υ̃P

(λ|ς)
may also be expressed in terms

of corner operators [45, 76]. For a polygon P with a vertex at the boundary point w,

we define the corner operator φc

h
(w) associated with the boundary primary operator

φh(w) of conformal weight h by

φc

h
(w) = lim

ε→0

�
φ

π
ε1−π/φ

�h

φh(w + ε). (4.81)

Then the replacement in (4.78) is equivalent to replacing all boundary one-leg oper-

ators ψ1 with corner one-leg operators ψc

1
in the correlation function for ΥP

(λ|ς)
:

ΥP

(λ|ς)
= �ψ1(w1) . . . ψ1(w2N)�P −→ Υ̃P

(λ|ς)
= �ψc

1
(w1) . . . ψc

1
(w2N)�P . (4.82)

Using (4.78), we write an explicit expression for the regularized universal partition

function when all 2N interior angles of P equal φ = (N−1)π/N . We typically choose

246



the parameters for the map (4.71)

a =
φ

πc
x1−φ/πe−i(π−φ), b = 0, x1 = 0, x2 = m1, . . . (4.83)

. . . , x2N−2 = m2N−3, x2N−1 = 1, x2N = x →∞, (4.84)

where c is some unspecified real constant. With these choices, the interior of P resides

in the upper half-plane, x1 is sent to zero, and the bottom side [w1, w2] of P sits flush

against the real axis. From (4.73), we find that as we send εi → 0,

x�
1
∼ (cε1)

N/(N−1)
�

j

m1/(N−1)

j
, (4.85)

x�
i
∼ mi−1 + (cεi)

N/(N−1)
�

j �=i

|mj −mi|1/(N−1), i = 2, . . . , 2N − 2, (4.86)

x�
2N−1

∼ 1 + (cε2N−1)
N/(N−1)

�

j

(1−mj)
1/(N−1), (4.87)

x�
2N

∼ (cε2N)−N/(N−1). (4.88)

Because x2N has been sent to infinity, the last point x�
2N

< 0 is not found from (4.73).

Instead, by substituting ζ(t) = x�
2N

/t into the map (4.71) with parameter choices

(4.83-4.84), we find (4.88). By direct substitution into ∂f(z), we also find that

|∂f(x�
2N

)| ∼
ε2N→0

cN/(N−1)ε2N/(N−1)

2N

�
φ

π
ε1−π/φ

2N

�
, φ = (N − 1)π/N. (4.89)

If we synthesize these results together in (4.78), then we arrive at the following expres-

sion for the regularized universal partition function Υ̃(λ|ς) in the equiangular 2N -sided

polygon:

Υ̃P

(λ|ς)
(m1, . . . ,m2N−3) =

�
�

i

mi

�

i<j

(mj −mi)
�

i

(1−mi)

�(1−6/κ)/(N−1)

× cN(1−6/κ)/(N−1) lim
x→∞

x6/κ−1Υ(λ|ς)(0, m1, . . . ,m2N−3, 1, x). (4.90)
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It is evident from the ansatz (2.4) that the limit in (4.90) exists. We may also define a

regularized crossing weight Π̃P

k
related to its half-plane version Πλ as in (4.90) so that

(4.10) becomes Υ̃P

(λ|ς)
= nmλ,ς Π̃P

λ
. Finally, we can sum over all BAC events λ ∈ ACN

to find that the adjusted universal partition function Υ̃P

ς
is related to its half-plane

version Υς through (4.90) too.

Now we can propose the following more natural definition of a crossing probability

for the 2N -sided polygon P :

χP
(λ|ς)

(w1, . . . , w2N) :=
Z̃P

(λ|ς)

Z̃P
ς

=
Υ̃P

(λ|ς)

Υ̃P
ς

. (4.91)

We immediately observe that this new crossing formula equals its half-plane version,

as we predicted:

χP
(λ|ς)

(w1, . . . , w2N) =
Υ̃P

(λ|ς)
(m1, . . . ,m2N−3)

Υ̃P
ς
(m1, . . . ,m2N−3)

(4.92)

=
Υ(λ|ς)(0, m1, . . . ,m2N−3, 1,∞)

Υς(0, m1, . . . ,m2N−3, 1,∞)
(4.93)

= χ(λ|ς)(0, m1, . . . ,m2N−3, 1,∞). (4.94)

Because x1 = 0, x2 = m1, . . . , x2N−2 = m2N−3, x2N−1 = 1, x2N = ∞, the cross-

ratio ηi, defined in (4.14), equals the parameter mi. The set of 2N − 3 numbers

{m1, . . . ,m2N−3} control the relative side-lengths of P , but they do not control the

location, size, or orientation of P in the complex plane. Thus, the crossing formula is

unchanged when we translate, rotate, or dilate P , a fact that must be true in order

for it to be conformally invariant.

4.6 Simulation results for crossings in hexagons

In this section, we present computer simulation measurements of the crossing

probabilities for an equiangular hexagon harboring a critical Q-state Potts model
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(x + y/2,y
√

3/2)(x,y )

Figure 4.17: The transformation from a square lattice to a triangular lattice. Dotted lines
connect the centermost site with its nearest neighbors.

on a triangular lattice with Q = 1, 2, 3. We create the triangular lattice from a

square lattice as shown in figure 4.17. Our simulations sampled thirty-three hexagons

with their bottom and top-left/right (resp. top and bottom-left/right) sides wired

(resp. free) and with their side-lengths alternating between two lengths � and ��. In

each hexagon, we generated 3, 276, 800 samples.

We generate a hexagon H with the properties described above as the image of

the upper half-plane under the conformal mapping (4.71, 4.83-4.84) with c = 1. This

map is (figure 4.18)

f(z) =
2

3

�
z

0

ζ−1/3(m1 − ζ)−1/3(m2 − ζ)−1/3(m3 − ζ)−1/3(1− ζ)−1/3 dζ (4.95)

with 0 < m1 < m2 < m3 < 1 < ∞ the preimages of the vertices w1, . . . , w6 of P . We

further have

m1 =
m2

2

1−m2 + m2
2

, m3 =
m2

1−m2 + m2
2

(4.96)

so that the side-length alternates between two values. We number the vertices of H

starting with the bottom-left endpoint as vertex one and proceeding counterclockwise,

so that the first vertex is w1 = f(0) = 0, the second vertex is w2 = f(m1) > 0,

Π123̄

Π1̄2̄3̄

Π123

0

λ1

λ1

λ2

λ3

1

∞

λ3

1

∞

0

λ1

λ2

λ3

1

5

∞

0

λ1

λ2

λ3

2

λ2

λ3

6

∞

λ2

λ3

3

∞

4

∞

m1 m2 m3

Figure 4.18: The transformation of the upper half-plane to the interior of the rectangle
and the hexagon and our enumeration of the vertices of either shape.
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the third vertex is w3 = f(m2) ∈ H, etc. Thus, the length of the bottom side is

� = w2 > 0, and the equation f(m1) = � puts all � ∈ (0,∞) in one-to-one relation

with all m1 ∈ (0, 1). We plot our crossing-probability measurements as a function of

the ratio

R :=
�

��
=

f(m1)

|f(m2)− f(m1)|
. (4.97)

We enumerate three of the possible crossing configurations in figure 4.19 so that

the k-th configuration corresponds with the BAC event λk. In general there are

five distinct crossing configurations. However, when the side-length of the hexagon

alternates, the probabilities of the three configurations that are some rotation of

the k = 1 arc connectivity are equal by symmetry. This leaves the three crossing

configurations shown in figure 4.19.

In our simulations, we independently wired the bottom and top-left/right sides of

each hexagon. The exterior arc connectivity for this FFBC is created from the third

hexagon in figure 4.19 by reflecting the boundary arcs from the inside to the outside.

So according to our labeling scheme, we are conditioning on the FFBC event ς3.

Throughout this section, we write χ(k|k�) := χ(λk|ςk� ) for some indexed BAC event

λk ∈ ACN and some indexed FFBC event ςk� ∈ BCN . The probabilities χH
(1|3)

and

χH
(2|3)

of the first two configurations are given by (4.32, 4.94), with the crossing weights

given by (4.42) and (4.45) respectively. The probability χH
(3|3)

of the third configu-

ration is found by rotating the crossing weight Π2 (i.e., replacing xi+1 �→ xi, where

x7 := x1). Altogether, we have

χH
(1|3)

=
n2Π1

F3

=
n4I56

I24

, (4.98)

χH
(2|3)

=
nΠ2

F3

=
n3(nI36 − I26 − I46)

(n2 − 2)I24

, (4.99)

χH
(3|3)

=
n3Π3

F3

=
n5(nI �

41
− I �

31
− I �

51
)

(n2 − 2)I24

. (4.100)
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(3 , 3)(k,k ) = (1 , 3) (2 , 3)

Figure 4.19: The BACs of the three crossing configurations in a hexagon with alternating
side-length. The exterior arc connectivities indicate that the bottom and top-left/right sides
are wired in each hexagon.

Here, the Iij and I �
ij

are given by

I56 =

����
�

1

m3

�
∞

1

. . . du1 du2

���� , I24 =

����
�

m1

0

�
m3

m2

. . . du1 du2

���� , (4.101)

I36 =

����
�

m2

m1

�
∞

1

. . . du1 du2

���� , I26 =

����
�

m1

0

�
∞

1

. . . du1 du2

���� , (4.102)

I46 =

����
�

m3

m2

�
∞

1

. . . du1 du2

���� , I �
41

=

����
�

m3

m2

�
0

−∞

. . . du1 du2

���� , (4.103)

I �
31

=

����
�

m2

m1

�
0

−∞

. . . du1 du2

���� , I �
51

=

����
�

1

m3

�
0

−∞

. . . du1 du2

���� , (4.104)

with the integrand of the Iij being

(u2 − u1)
8/κ

�

i=1,2

u−4/κ

i
(ui − 1)12/κ−2

3�

j=1

(ui −mj)
−4/κ (4.105)

and with the integrand of the I �
ij

being

(u2 − u1)
8/κ

�

i=1,2

u−4/κ

i
(ui − 1)−4/κ

3�

j=1

(ui −mj)
−4/κ. (4.106)

In the Q-state Potts model with Q ∈ {1, 2, 3, 4}, the function χH
(k|3)

equals the

probability that the FK boundary clusters connect the independently wired sides

of the hexagon as in the k-th crossing configuration (or BAC) shown in figure 4.19

conditioned on the independent wiring FFBC event. We tested this prediction by

sampling FK clusters of the Q = 1, 2, 3 Potts models on the triangular lattice, which
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corresponded with the dense phase SLE speeds κ = 6, 16/3, and 24/5 respectively

(table 1.1), and tracking the frequency of each crossing configuration. We found very

good agreement with our measurements. (Actually, we only sampled percolation

hull-walks in the case Q = 1 since this case corresponds with percolation. Details are

presented in the following section.)

In addition, the function χH
(k|ς)

equals the probability that the Potts model spin

boundary clusters connect the wired sides of the hexagon as in the k-th crossing

configuration shown in figure 4.19. Here, ς must be the mutual-wiring boundary

condition event, as explained in the last paragraph of section 4.3, and this is the FFBC

event ς2 according to figure 4.19. Furthermore, the SLE speeds of the spin cluster

interfaces belong to the dilute phase (table 1.1), so the integrals in (4.101-4.104)

diverge. We can remedy this problem by replacing the simple integration contours

with Pochhammer contours, but because the integrals that follow are difficult to

evaluate numerically, we did not test these cases.

4.6.1 Critical percolation

The FK clusters of the Q = 1 Potts model are bond percolation clusters. Because

site percolation and bond percolation belong to the same universality class, probabil-

ities of like crossing configurations for either model should be equal. Assuming this

fact, we sampled site percolation clusters on the triangular lattice instead of bond

percolation clusters since the former is easier to simulate.

In site percolation on the triangular lattice, each lattice site is activated or deacti-

vated with critical probability pc = 1/2. Because nearest-neighbor sites do not inter-

act, it is sufficient for our simulations to only sample the boundary cluster perimeters

(boundary arcs) in order to measure the probability of each crossing event.

We describe the generation of each sample. It starts with the state of each site in

H or the boundary of H undecided, except for the states of the sites in the wired sides
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of H, which start as activated. This is the independent-wiring boundary condition.

Then a walk, called a site-percolation hull-walk, is performed to create a boundary

cluster perimeter in H. Each step of the hull-walk takes us from a site z in H to

a nearest neighbor of z in H. We perform two hull-walks in each sample. The first

walk begins at the left endpoint w1 of the bottom wired side and considers a first step

in the �v1 direction pointing into the adjacent free side. Before taking that step, the

neighboring site onto which it would step is activated or deactivated with probability

pc or 1− pc respectively. If it is activated, then the walk steps onto that site. If it is

deactivated, then the walk rotates its direction by −π/3 radians, considers a first step

in that new direction, and the process repeats. Because the bottom side is wired, a

first step is eventually taken. Now, after the (i−1)-th step, the walk considers an i-th

step in the �vi direction rotated π/3 radians from the �vi−1 direction of its previous step.

The nearest-neighboring site in the �vi direction was either activated or deactivated

by this process earlier, or is activated or deactivated now with probability pc or 1−pc

respectively. If it is activated, then the walk takes its i-th step onto this site. If it

is deactivated, then the walk rotates its direction by −π/3 radians and considers a

next step in this new direction. The walk follows the same process to determine if it

will step in this new direction or turn −π/3 radians again, and the process repeats

until a next step is taken. Ultimately, the walk will take an i-th step, although this

step may cause the walk to backtrack on its path. To keep the walk from leaving the

system, we surround the boundary of H with a ring of deactivated sites off of which

the hull-walk reflects.

We note three important facts concerning the hull-walk described in the previous

paragraph. First, the walk never becomes trapped with no possible next step. Second,

the walk never forms a loop that it traces an infinite number of times. Third, a

hull-walk starting at an odd (resp. even) vertex of H will eventually reach an even

(resp. odd) vertex. This is a feature of a hexagon with a FFBC.
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?

Figure 4.20: A hull-walk starting from the first vertex of the hexagon and deciding
its twelfth step (left hexagon), and a complete sample exhibiting the k = 1 BAC. Black
(resp. white, resp. gray) sites are activated (resp. deactivated, resp. undecided).

The first hull-walk starts at the first vertex w1 of the hexagon, so it eventually

touches an even vertex. When it reaches this vertex, we end the first hull-walk, we

begin a second hull-walk from vertex five (top-left), and we end the second hull-walk

when it touches an even vertex that is necessarily not the end of the first hull-walk.

When the second hull-walk ends, we have two boundary arcs, and each connects an

odd vertex with an even vertex. Because the third hull-walk would necessarily connect

the remaining two vertices, we know the BAC, and thus the crossing configuration,

of the sample without performing the third walk. By tallying the number of each

type of BAC that we observe and dividing by the total number of samples, we find

the measured probability of each BAC for a specified side-length ratio R.

We chose the side-lengths of each hexagon so that a long side and a short side are

comprised of about 2048 lattice sites altogether. (In our simulations, side-length was

defined to be the total number of lattice points within that side excluding the right

endpoint, which was considered to be a member of the adjacent side.) We considered

thirty-three different side-lengths, with the length of the wired sides in the i-th choice

equaling

�i =

�
2048

5
+

i

32

�
8192

5
− 2048

5

��
, i ∈ {0, . . . , 32}, (4.107)
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Figure 4.21: Crossing probabilities versus log R, with R the ratio of the wired side-length
to the free side-length, for critical site percolation on the triangular lattice in a hexagon.
Note that χ(2|3) and χ(3|3) are reflections of each other about log(R) = 0 and that χ(1|3) is
symmetric about this same axis.

and the length of the free sides equaling 2048 − �i ≈ �32−i. With this choice, the �i

were approximately uniformly distributed between �0 and �32, and R0 ≈ 1/4, R16 = 1,

and R32 ≈ 4 where Ri := �i/(2048− �i) is the ratio of the side-lengths.

In figure 4.21, we plot the three crossing formulas χH
(1|3)

, χH
(2|3)

, and χH
(3|3)

versus

log(R) (solid curves) with our measurements of the probability of these crossing events

(points). The figure shows excellent agreement with our predictions. The log(R)-

values of the data points increase from log(R0) ≈ − log(4) on the far left to log(R32) ≈

log(4) on the far right. The double integrals in these crossing formulas were evaluated

by using the “NIntegrate” function in Mathematica (version 8) with the “Method”

option set to “MultiPeriodic.” Table 5.3 presents the average error and the standard

deviation of the error from this average.

Figure 4.21 suggests that χH
(2|3)

and χH
(3|3)

are reflections of each other about the

(log(R) = 0)-axis (i.e., χH
(2|3)

(R) = χH
(3|3)

(1/R)), and that χH
(1|3)

is an even function of

log(R) (i.e., χH
(1|3)

(R) = χH
(1|3)

(1/R)). To explain this symmetry, we consider lining
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the free sides of H with a collection of deactivated sites just outside of H. (In a

very large system, this has a negligible affect on the shape of H.) If we do this, then

the statistics of the activated sites in H with side-length ratio R are the same as

the statistics of the deactivated sites with side-length ratio 1/R. This explains the

identity.

The simulation results presented in the following section will show that these

symmetries are unique to percolation among the random cluster models. Because

the addition of any collection of conditioned sites placed behind a free side of H will

interact with that free side and affect the statistics of the model when Q �= 1, the

argument of the preceding paragraph cannot be used in these cases. We therefore do

not expect our Q �= 1 Potts model simulation results to exhibit these identities for

FK clusters, and indeed our data, presented in figure 4.23 below, does not.

Avg. error χ(1|3) χ(2|3) χ(3|3)

FKQ = 1 1.42× 10−5 6.67× 10−5 8.92× 10−5

FKQ = 2 −4.411× 10−4 1.9984× 10−3 3.2274× 10−3

FKQ = 3 −7.924× 10−4 3.9962× 10−3 1.9474× 10−3

Std. dev. χ(1|3) χ(2|3) χ(3|3)

FKQ = 1 4.13× 10−5 2.591× 10−4 4.273× 10−4

FKQ = 2 6.22× 10−5 4.5270× 10−3 5.0539× 10−3

FKQ = 3 1.326× 10−4 6.7855× 10−3 4.0168× 10−3

Table 4.1: The error (theory minus simulation) averaged over log(R), and the standard
deviation of the error from that average, of the data displayed in figures 4.21, 4.23, and
4.24.

4.6.2 Critical Q-state Potts model: Q = 2, 3

We used the Swendsen-Wang (SW) algorithm [77] to sample FK clusters in the

critical Q-state Potts models. This algorithm is born from the random cluster repre-

sentation of the Potts model (1.21). Beginning with a random collection of spins on

the lattice, we update to a new sample by activating or deactivating the bonds be-
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Figure 4.22: Hull-walks along the outer perimeter of a boundary Ising FK cluster. Spin
+ (resp.−) sites and the FK bonds between them are colored blue (resp. black). The left
figure shows the partially complete first hull-walk, with each step marked by an orange
“×,” and the right figure shows the complete first (resp. second) hull-walk, with each step
marked with an orange (resp. green) “×.” Each step common to both hull-walks is marked
by a yellow “×.”

tween nearest-neighbor sites of like spin. Each bond is activated (resp. deactivated)

with critical probability ptri

c
(1.28) (resp. 1 − ptri

c
), except for those bonds within a

wired boundary which are always activated to maintain the fixed BC on that side.

Each cluster of activated bonds is an FK cluster by definition. After each bond is

activated or deactivated, we choose an FK cluster and a spin σ0 from among the Q

possibilities with uniform probability, and we update the spin of each site in the FK

cluster to σ0. We repeat this process for each FK cluster (including those of size zero)

so that all spins are updated. Thus, we generate a new sample from the original.

After repeating this update procedure many times, the simulation eventually starts

to sample spin configurations according to the Boltzman distribution.

After each update, we checked the BAC of the new sample to determine the

crossing configuration that it exhibits. We took the boundary arcs to be the activated

bonds that comprise the perimeter of an FK boundary cluster. To determine how

they connect the vertices of H pairwise in a given sample, we performed two hull-

walks. The first hull-walk started at the center of the activated bond in the bottom
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Figure 4.23: Crossing probabilities versus log R, with R the ratio of the wired side-length
to the free side-length, for critical Q = 2 FK clusters on the triangular lattice in a hexagon.

wired side and with the left endpoint at the first vertex of H, and it stepped along

the midpoints of the activated bonds that form the perimeter of the FK boundary

cluster anchored to the bottom wired side (figure 4.22). The walk eventually stepped

onto the midpoint of an activated bond in a wired side and with an endpoint at an

even vertex of H, and when this happened, we ended the walk. Then we started a

second walk from the midpoint of the activated bond in the top-left wired side of H

with an endpoint at vertex five, and we ended the walk when it stepped onto the

midpoint of an activated bond in a wired side and with an endpoint at an even vertex

of H. Knowing the endpoints of these two hull-walks was sufficient to determine the

BAC, and thus the crossing configuration, of the sample without performing the third

walk. By tallying the number of each type of BAC that was observed and dividing

by the total number of samples, we found the measured probability of each BAC for

a specified ratio R.

We chose the side-lengths of each hexagon so that a long side and a short side

comprised of about 2048 lattice sites altogether. Actually, only every other lattice
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Figure 4.24: Crossing probabilities versus log R, with R the ratio of the wired side-length
to the free side-length, for critical Q = 3 FK clusters on the triangular lattice in a hexagon.

site was physical in the sense that it harbored a Potts model spin variable. All of

the other lattice sites fell on the midpoints of the FK bonds connecting the physical

lattice sites, and each harbored a variable that equaled zero (resp. one) if its FK

bond was deactivated (resp. activated). Thus, our lattice size and side-lengths were

effectively half of those used for percolation. In order to create this setup, we needed

all side-lengths of H to be even. Thirty-three different side-lengths were considered.

The length of the wired sides in the i-th choice was

�i = 2

�
1

2

�
2048

5
+

i

32

�
8192

5
− 2048

5

���
, i ∈ {0, . . . , 32}. (4.108)

and the length of the free sides was 2048 − �i ≈ �32−i. With this choice, the �i were

approximately uniformly distributed between �0 and �32, and R0 ≈ 1/4, R16 = 1, and

R32 ≈ 4 where Ri := �i/(2048− �i) is the ratio of the side-lengths.

In figure 4.23 (resp. figure 4.24), we plot the three Q = 2 (resp.Q = 3) FK

cluster crossing formulas χH
(1|3)

, χH
(2|3)

, and χH
(3|3)

versus log(R) (solid curves) with our

measurements of the probability of these crossing events (points), and we observe
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excellent agreement with our predictions. The explanation of this figure is the same

as for figure 4.21. Table 5.3 presents the average error and the standard deviation

of the error from this average. We note from figure 4.23 (resp. figure 4.24) that the

difference between the prediction for χH
(2|3)

(resp.χH
(3|3)

) and the simulation results is

larger when R is large (resp. small), but we do not offer an explanation since it is not

clear if this is a finite-size effect or a consequence of the numerical evaluation of the

double integral in the crossing formulas.

4.7 Summary

We summarize the main results of this chapter. The elements of the basis BN

(definition II.20) are interpreted as universal partition functions for a continuum

limit critical lattice model in a 2N -sided polygon with a certain FFBC among those

in the collection BCN (defined in section 4.1). In particular, Fς ∈ BN is the universal

partition function summing exclusively over samples in the FFBC event ς. Universal

partition functions summing exclusively over the intersection of the FFBC event ς and

the BAC event λ are given by nlλ,ςΠλ, where lλ,ς equals the number of loops created

by fusing the exterior arcs of the diagram for Fς with the interior arcs of the diagram

for [Lλ], with n given by (1.155), and where the type-λ crossing weight Πλ is the

element of SN dual to [Lλ] ∈ B∗

N
. Thus, the probability of observing the BAC event

λ conditioned on the FFBC event ς is given by the crossing formula nlλ,ςΠλ/Fς . This

result is predictive rather than rigorous, and we confirm this prediction via computer

simulation for the case of an equiangular hexagon with independently wired sides

and with a side-length that alternates between two possibilities as we move around

it. Our simulations sampled FK clusters in the Q = 1, 2, 3 Potts model (κ = 6, 16/3,

and 24/5 respectively), and our measurements show very good agreement with our

predictions.
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CHAPTER V

Cluster pinch-point densities for critical systems in

polygons

We consider critical bond percolation on a very fine square lattice inside of a rect-

angle R with wired left and right sides. Of intrinsic interest to the system are bonds

whose activation or deactivation will respectively join or disconnect the percolation

boundary cluster anchored to the left side of R from that anchored to the right side.

Such a bond that connects them is an example of a red bond [78]. Red bonds in-

herit their name from the following scenario. If we suppose that only activated bonds

conduct electricity and the wired left and right sides are attached to opposite leads

of a battery, then an activated red bond carries the total current, and its deactiva-

tion stops the flow of current. Red bonds carry similar significance in other physical

scenarios modeled by percolation. Many of their properties have been studied be-

fore, first in context with cluster ramification [79]. The average number of red bonds

weighted by cluster size was measured in [78], and the fractal dimension of the set

of red bonds is predicted in [27, 80], and measured in [81]. Further fragmentation

properties of percolation clusters are considered in [82]. In this chapter, we calculate

the density (i.e., frequency of occurrence) of red bonds at a given bulk point w ∈ R

and some generalizations which we now explore.

In percolation, red bonds are marked by pinch points, or bulk points where distinct
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Figure 5.1: A percolation configuration with the red bonds, or two-pinch-points (colored
red) and the boundary arcs connecting the vertices of the rectangle pairwise (colored green
and blue). The left illustration is a sample in the discrete setting while the right figure only
shows the (filled) boundary clusters of a sample in the continuum limit.

percolation clusters touch. We consider the two boundary arcs of the percolating

system in R. At the center w of a red bond, the two boundary arcs pass very close to

each other, separated there by only the red bond (figure 5.1). In the continuum limit,

four distinct boundary arcs appear to emanate from w, each ending at a different

vertex of R. In reality, these four curves are not distinct but join pairwise at (or pass

very close to) w to form two boundary arcs. Each boundary cluster is pinched into

a narrow channel between an adjacent pair of boundary arcs, and they touch each

other at (or pass very close to) w where the tips of these channels meet (or almost

meet). Thus, we call w a pinch point [83] (figure 5.1). The detail of whether or not

the red bond at w is activated is lost in the continuum limit where, formally speaking,

bonds do not exist but their clusters do. But the location of the red bond remains.

It is marked by the pinch point at w. Thus, the continuum limit of the density of red

bonds in R equals the density of pinch points between the left and right boundary

clusters in R.

The connection between red bonds and pinch points generalizes the problem of

computing the red bond density in R to computing the pinch-point density involving

s boundary clusters in a 2N -sided polygon P . In particular, we suppose that P
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harbors critical percolation in its interior and exhibits a specified FFBC. We define

an s-pinch point to be a bulk point w ∈ P where s distinct boundary clusters touch.

In the continuum limit, 2s boundary arcs emanate from w, each ending at a different

vertex of P (figure 5.1). Clearly, we must have 1 ≤ s ≤ N since at most N distinct

boundary clusters can anchor to the wired sides of P . When s = 1 we define a one-

pinch point to be a bulk point touched by just one of the boundary arcs. As the

continuum limit is approached, the density of pinch-point events decays as a power

law of the shrinking lattice spacing (section 5.2.2). This power, with other scaling

exponents, is determined in [27, 83]. (For 2N -sided polygons with N > 2, the density

of red bonds is still dominated by pinch points involving two clusters in the large

system limit, since s-pinch points with s > 2 occur much less often, as discussed in

section 5.3.)

We obtain another generalization by considering the statistics of the boundary

arcs, which, as mentioned in the introduction of chapter two, fluctuate in P with the

law of multiple-SLE. In these terms, an s-pinch point is a bulk point w ∈ P where

s distinct multiple-SLE curves touch (or pass very near each other). In particular, a

one-pinch point is a bulk point on (or very near) one of these curves (figure 5.2), and

the problem of calculating its density generalizes the same problem for when there

is one SLE curve. The latter was originally solved in [50]. In our generalization,

the regions that a boundary arc can explore in P are influenced by the presence

of the other boundary arcs, so a one-pinch point can be interpreted as measuring

the repulsion between the various boundary arcs. In the case of percolation, this

“repulsion” is not felt until the boundary arcs actually collide due to the locality

property of SLE with κ = 6 [15].

As we have observed, the range κ ∈ (0, 8) describes boundary arcs in many inter-

esting critical lattice models, including those of the Q-state Potts model for Q ≤ 4.

As in percolation, an s-pinch point is still a bulk point where s distinct boundary
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clusters touch in the Q-state Potts model, but now there are two different types of

clusters to consider: FK clusters and spin clusters. In section 1.2.8, we saw that

boundary arcs of the former type are multiple-SLE curves with speed κ in the dense

phase and related to Q through [8]

Q = n(κ)2 = 4 cos2(4π/κ), κ ∈ (4, 8), (5.1)

while boundary arcs of the latter type are multiple-SLE curves with the dual speed

κ̂ = 16/κ in the dilute phase and κ related to Q through (5.1). Scaling exponents and

fractal dimensions associated with pinch points are found in [80]. The generalization

of red bonds from percolation to other models is also considered in [81].

In this chapter, we calculate various continuum limit pinch-point densities in the

rectangle R and in the hexagon H (and for s = N in any 2N -sided polygon) with

a specified FFBC and for arbitrary κ ∈ (0, 8), but before we begin, we refine our

definition of a pinch point. We let the event Λ contain all samples in which exactly

s distinct boundary arcs, each with both endpoints among 2s specified vertices of P ,

pass within a small distance δ from a specified point w ∈ P and the other boundary

arcs join the remaining vertices of P in some particular connectivity. Then for a

specified FFBC event ς ∈ BCN , the type-Λ s-pinch-point density ρP
(Λ|ς)

(w) is the

probability of the pinch-point event Λ conditioned on the FFBC event ς, and it equals

the ratio of the (continuum limit) partition function Z̃P

(Λ|ς)
summing exclusively over

samples in Λ ∩ ς divided by the partition function Z̃P

ς
summing exclusively over

samples in ς.

Our goal is to study the asymptotic behavior of ρP
(Λ|ς)

(w) as δ → 0. The asymptotic

behavior of the partition functions Z̃P

(Λ|ς)
is supposed to be a natural generalization
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Figure 5.2: An illustration of one-pinch-point events on the perimeters of the boundary
clusters (orange and purple) in the discrete (left) and continuum (right) settings.

of that of Z̃P

(λ|ς)
in (4.80) with λ a specified BAC event. This generalization is

Z̃P

(Λ|ς)
/Zf ∼

δ,δi→0

c2N

1
C2

s
δθ1
1

. . . δθ1
2N

δ2ΘsΥ̃P

(Λ|ς)
, (5.2)

Z̃P

ς
/Zf ∼

δi→0

c2N

1
δθ1
1

. . . δθ1
2N

Υ̃P

ς
, (5.3)

where Zf is the free partition function, where the functions Υ̃P

(Λ|ς)
and Υ̃P

ς
are uni-

versal partition functions given by (2N +2)-point and 2N -point correlation functions

respectively, where θ1 is the boundary one-leg weight (1.169), and where Θs is the

bulk 2s-leg weight, a new scaling exponent to be explicitly given below and associated

with the s-pinch-point event. Also, c1 is the nonuniversal scaling coefficient associ-

ated with the boundary one-leg operator ψ1, Cs is a nonuniversal scaling coefficient

associated with the s-pinch-point event, and the i-th BCC occurs within distance δi

from the i-th vertex wi of P . Then the density ρP
(Λ|ς)

behaves as

ρP
(Λ|ς)

= Z̃P

(Λ|ς)
/Z̃P

ς
(5.4)

∼
δ→0

C2

s
δ2ΘsΥ̃P

(Λ|ς)
/Υ̃P

ς
. (5.5)

The function Υ̃P

ς
was determined in chapter four for any FFBC event ς ∈ BCN . Thus,

determining the behavior of ρP
(Λ|ς)

to within a constant amounts to determining Υ̃P

(Λ|ς)
.
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The organization of this chapter is as follows. In section 5.1, we equate the

universal partition function Υ̃P

(Λ|ς)
with a bulk-boundary CFT correlation function

of certain primary operators, and we find a formula for it using the Coulomb gas

formalism. Also in this section, we calculate the N -pinch-point weight (defined below)

of a 2N -sided polygon, and we find that it is completely algebraic. In section 5.2, we

compute various s-pinch-point densities in the rectangle (N = 2) and in the hexagon

(N = 3). We find that the formulas for the (N−1)-pinch-point densities are given by

algebraic factors times Lauricella functions of cross-ratios of (the half-plane conformal

images of) the bulk point w and the vertices wi of P . In section 5.3, we compare

some of our predictions with high-precision simulations of percolation and Ising FK

clusters inside of a rectangle and a regular hexagon and find very good agreement.

The research presented in this chapter is also presented in our preprint [84].

5.1 Conformal field theory description

In the continuum limit, Υ̃P

(Λ|ς)
is a correlation function of appropriate CFT primary

operators that are chosen as follows. To alternate the BC on the sides of P from free

to fixed, we insert a corner one-leg operator ψc

1
(wi) at each vertex wi of P into the

correlation function. Corner operators are defined in (4.81). The collection of 2N

corner one-leg operators introduces N non-crossing boundary arcs that connect the

Ψ1

Ψ2

Ψ3

Figure 5.3: An s-pinch-point event is induced by the insertion of a bulk 2s-leg operator.
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vertices w1, . . . , w2N pairwise in one of CN possible connectivities (figure 4.9), with

CN the N -th Catalan number and given by (2.7). Now to generate an s-pinch point at

w ∈ P, we require s of these arcs to touch at (or come very close to) this point. One

may view this as the event in which 2s distinct boundary arcs emanate from w, which

is conditioned by the insertion of a spinless bulk 2s-leg operator Ψs(w, w̄) into the

correlation function [23, 83] (figure 5.3). Hence, Υ̃P

(Λ|ς)
is given by the (2N + 2)-point

function

Υ̃P

(Λ|ς)
= �ψc

1
(w1)ψ

c

1
(w2) . . . ψc

1
(w2N−1)ψ

c

1
(w2N)Ψs(w, w̄)�P . (5.6)

The half-plane version of this correlation function is

Υ(Λ|ς) = �ψ1(x1)ψ1(x2) . . . ψ1(x2N−1)ψ1(x2N)Ψs(z, z̄)�H (5.7)

= �ψ1(x1)ψ1(x2) . . . ψ1(x2N−1)ψ1(x2N)Ψs(z)Ψs(z̄)�C, (5.8)

where we have used Cardy’s method of images, discussed in section 1.2.8, to rewrite

the half-plane correlation function on the right side of (5.7) as the whole-plane cor-

relation function (5.8). First, we will focus on calculating Υ(Λ|ς), and later in section

5.2.3, we will transform Υ(Λ|ς) to Υ̃P

(Λ|ς)
.

In the multiple-SLE picture, the bulk 2s-leg operator conditions 2s of the 2N

available multiple-SLE curves to grow from their respective origin points at the ver-

tices of P towards the common bulk point w ∈ P until they join pairwise very near w

in any one of Cs possible connectivities, where Cs is the s-th Catalan number (2.7).

The s-pinch-point event Λ, defined above, contains all samples exhibiting any one of

these Cs connectivities near the pinch-point. Each is equally likely, and the i-th con-

nectivity will imply a certain number pi of boundary loops in the system that depends

on the specified FFBC event ς. By factoring out the fugacity factors associated with
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the boundary loops, we may write Υ(Λ|ς) in the form

Υ(Λ|ς) = (np1 + . . . + npCs )ΠΛ. (5.9)

Here, ΠΛ is called the (half-plane) type-Λ pinch-point weight, and it bears the same

partition function interpretation as Υ(Λ|ς), but with the boundary loops having fu-

gacity one. This interpretation is analogous with that of the type-λ crossing weight

in chapter four.

The bulk 2s-leg and boundary s-leg operators Ψs and ψs are primary operators of

a boundary CFT in the upper half-plane. The highest-weight vector of their Verma

modules respectively belongs to the (0, s) and (1, s + 1) (resp. (s, 0) and (s + 1, 1))

positions of the Kac table in the dense phase (resp. dilute phase) of SLE [23]. Their

respective conformal weights Θs (for both holomorphic and antiholomorphic sector of

Ψs) and θs in terms of the SLE speed κ therefore follow from (1.170) and are

Θs =
16s2 − (κ− 4)2

16κ
, θs =

s(2s + 4− κ)

2κ
. (5.10)

As demonstrated in section 1.2.6, CFT translates the reducibility of the V1,2 (resp.V2,1)

Verma module associated with each boundary one-leg operator into the following

semi-elliptic system of 2N PDEs that govern the correlation function (5.7), or equiv-

alently, the pinch-point weight ΠΛ:

�
κ

4
∂2

i
+

2N�

j �=i

�
∂j

xj − xi

− θ1

(xj − xi)2

�

+
∂z

z − xi

− Θs

(z − xi)2
+

∂z̄

z̄ − xi

− Θs

(z̄ − xi)2

�
ΠΛ = 0, i ∈ {1, . . . , 2N}. (5.11)

The domain of ΠΛ is

Ω0 := {(x1, . . . , x2N , z, z̄) : x1 < . . . < x2N , z ∈ H, z̄ ∈ H
∗}, (5.12)
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and we always set z̄ = z∗ at the end of our calculations. In addition, the three Ward

identities (1.54) ensure that ΠΛ is conformally covariant such that each xi has scaling

weight θ1 and z and z̄ have respective holomorphic and antiholomorphic weight Θs:

�
∂z + ∂z̄ +

2N�

i=1

∂xi

�
ΠΛ = 0 (5.13)

�
z∂z + z̄∂z̄ + 2Θs +

2N�

i=1

(xi∂xi + θ1)

�
ΠΛ = 0 (5.14)

�
z2∂z + z̄2∂z̄ + 2Θs(z + z̄) +

2N�

i=1

(x2

i
∂i + 2θ1xi)

�
ΠΛ = 0. (5.15)

The Ward identities restrict ΠΛ to a conformally covariant ansatz which may be

chosen as

ΠΛ(x1, . . . , x2N ; z, z̄) = |z − z̄|−2Θs

N�

i=1

(x2i − x2i−1)
−2θ1G(η2, . . . , η2N−2; µ, ν) (5.16)

with

ηi :=
(xi − x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − xi)
, i = 2, . . . , 2N − 2, (5.17)

µ :=
(z − x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − z)
, ν :=

(z̄ − x1)(x2N − x2N−1)

(x2N−1 − x1)(x2N − z̄)
, (5.18)

where {η2, . . . , η2N−2, µ, ν} is a maximal set of independent cross-ratios that can be

formed from the points x1, . . . , x2N , z, z̄ and G is an analytic function of x1, . . . , x2N

thanks to the analyticity theorem for elliptic PDEs [64]. This ansatz reduces the

number of variables in the problem from 2N + 2 to 2N − 1. A standard approach

that takes advantage of this reduction is to transform (5.11) into a system of PDEs

governing x2θ1
2N

ΠΛ and take the limit

{x1, x2, . . . x2N−2, x2N−1, x2N , z, z̄}→ {0, η2, . . . , η2N−2, 1,∞, µ, ν}. (5.19)

This gives a system of 2N PDEs governing the unknown function G from which we
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can glean information, ideally exact solutions. Because we mainly consider the cases

N = 1, 2 and 3 in this chapter, we use the following notation throughout:

η := η2, τ := η3, σ := η4. (5.20)

We can explicitly solve (5.11-5.15) in the case s = N = 1 (i.e., the two-gon).

In this one-pinch-point event, a boundary arc γ connecting x1 with x2 passes some

very small distance � from the specified point z ∈ H. We denote the corresponding

pinch-point weight by Π12. Substituting the ansatz

Π12(x1, x2; z, z̄) = |z − z̄|−2Θ1(x2 − x1)
−2θ1G(υ), υ :=

(x1 − z)(x2 − z̄)

(x1 − z̄)(x2 − z)
(5.21)

(slightly modified from (5.16)) into (5.11) yields a second-order, linear, homogeneous

differential equation in G. The general solution is

F (x1, x2; z, z̄) =
(x2 − x1)−2θ1+θ2|z − z̄|−2Θ1+θ2

|x1 − z|8/κ−1|x2 − z|8/κ−1

×
�
c1 + c2 β

�
4

κ
, 1− 8

κ

����
(x1 − z)(x2 − z̄)

(x1 − z̄)(x2 − z)

��
, (5.22)

where β is the incomplete beta function, c1 and c2 are arbitrary real constants, and

the weights θ1, θ2, and Θ1 are given in (5.10). We argue that c2 = 0 in our application

by letting z → x ∈ R\{x1, x2}. Because the boundary arc γ is conditioned to touch z,

γ will touch the real axis at x in this limit, and two boundary arcs will emanate from

x1 x2

z

Figure 5.4: The one-pinch-point configuration in the upper half-plane. Note that the
limits x2 → x1 and z → x ∈ R \ {x1, x2} each generate a boundary two-leg operator.
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x. Thus, the bulk operator Ψ1(z) must fuse with its image Ψ1(z̄) to create a boundary

two-leg operator ψ2(x) to leading order. Or instead suppose that x2 approaches x1.

Then in this limit, the two endpoints of γ touch at x1, and the boundary operators

ψ1(x1) and ψ1(x2) fuse to create ψ2(x1) to leading order as well (figure 5.4). In both

cases, υ → 1. Because

β(a, b | υ) ∼
υ→1

b−1(1− υ)b if b < 0, (5.23)

and because b = −θ2 < 0 for κ < 8 (5.10), we see that

F (x1, x2; z, z̄) ∼
υ→1

(x2 − x1)−2θ1+θ2|z − z̄|−2Θ1+θ2

|x1 − z|8/κ−1|x2 − z|8/κ−1

×
�
c1 −

c2

θ2

�
(x2 − x1)(z − z̄)

(x1 − z̄)(x2 − z)

�−θ2
�

. (5.24)

To ensure that the bulk-image or boundary-boundary fusion has the two-leg channel

at leading order, the second term in the brackets must be absent. Thus, c2 = 0, and

we find the one-pinch-point weight for an SLE connecting the real points x1 and x2:

Π12(x1, x2; z, z̄) =
(x2 − x1)2/κ|z − z̄|(8−κ)2/8κ

|x1 − z|8/κ−1|x2 − z|8/κ−1
. (5.25)

If we put x1 = 0 and x2 = ∞ as in the usual setup for SLE, then we have

lim
x2→∞

x2θ1
2

Π12(0, x2, z, z̄) = |z − z̄|κ/8−1 sin arg(z)8/κ−1 (5.26)

� �−2Θ1P{B(�, z) ∩ γ �= ∅}, κ ∈ (0, 8), (5.27)

where P{B(�, z)∩ γ �= ∅} is the probability that γ intersects a ball B(�, z) centered at

z of small radius �. Equation (5.27) is rigorously proven in [50]. This rigorous result

is supposed to be stronger by the formalism presented in this thesis. Namely, it is
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expected to be

P{B(�, z) ∩ γ �= ∅} ∼
�→0

�2Θ1|z − z̄|κ/8−1 sin arg(z)8/κ−1. (5.28)

This is equivalent to the prediction (5.2) when N = 1. Note that Θ1 > 0 for κ < 8,

so this probability goes to zero as � → 0 as it must. Below, we will compute this

pinch-point weight with another method.

As we have observed this example, it is generally true that the set of pinch-point

densities span a proper subspace of the solution space of the system (5.11-5.15). This

follows from the result (5.128) in the appendix 5.4.

The system (5.11-5.15) is very difficult to solve directly when N > 1, but fortu-

nately the Coulomb gas formalism (section 1.2.9) provides a tractable approach to

finding solutions. To this end, we write a chiral operator representation for (5.8).

Adopting dense phase notation conventions, we represent ψ1(xi) by the chiral oper-

ator V −

1,2
(xi), and we represent Ψs(z, z̄) by the vertex operator V +

0,s
(z)V̄ +

0,s
(z̄). The

correlation function now has total charge

2Nα−
1,2

+ 2α+

0,s
= 2α0 + (s−N)α−, (5.29)

which equals 2α0 only if N = s.

We momentarily restrict our attention to the case s = N , where the correlation

function is neutral. Here, (1.178) gives an explicit, algebraic formula for the upper

half-plane N -pinch-point weight in a 2N -sided polygon:

ΠN -pinch point(x1, . . . , x2N ; z, z̄) = |z − z̄|(4N+4−κ)2/8κ

×
2N�

i<j

(xj − xi)
2/κ

2N�

i=1

|z − xi|1−4(N+1)/κ. (5.30)

The bulk point z is connected to all boundary points xi hosting the BCCs via the N
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boundary arcs that touch at z. We note that (5.30) is identical to (5.25) when N = 1,

as it must be.

Next, we consider the cases with s < N . In order for the total charge (5.29) of

the correlation function to equal 2α0, we must insert N − s Q− screening operators,

leading to the following modified (2N + 2)-point function:

�

Γ1

. . .

�

ΓN−s

�V −

1,2
(x1) . . . V −

1,2
(x2N)V +

0,s
(z)V +

0,s
(z̄)V−(u1) . . . V−(uN−s)� du1 . . . duN−s.

(5.31)

What remains is to determine a collection of closed, non-intersecting integration con-

tours {Γm}N−s

m=1
appropriate for a particular type-Λ pinch-point event. The simplest

closed contour along which an integration is nonzero is a closed Pochhammer contour

entwining only a pair among the branch points x1, . . . , x2N , z, and z̄ of the inte-

grand, as shown figure 1.20. Throughout this chapter, we take each Γm to be such a

Pochhammer contour. We may use (1.178) to write out the integrand of (5.31). After

including a useful prefactor, we find that (5.31) is

�
N−s�

m=1

n(κ)Γ(2− 8/κ)

4 exp πi(β1m − β2m) sin πβ1m sin πβ2mΓ(1− 4/κ)2

�

× |z − z̄|(κ−4s−4)2/8κ

�
2N�

i<j

(xj − xi)
2/κ

� �
2N�

i=1

|z − xi|(κ−4s−4)/κ

�

×
�

Γ1

. . .

�

ΓN−s

�
2N�

k=1

N−s�

l=1

(xk − ul)
−4/κ

� �
N−s�

p<q≤

(up − uq)
8/κ

�

×
�

N−s�

m=1

(z − um)(4s+4−κ)/κ(z̄ − um)(4s+4−κ)/κ

�
du1 . . . duN−s.

(5.32)

Here, e2πiβ1m and e2πiβ2m are the monodromy factors (relative to um) of the two branch

points entwined by the m-th contour, n(κ) is the O(n) model loop fugacity (1.155),

and we choose the branch of the logarithm with arg z ∈ [−π, π) for all z ∈ C so that

each branch cut is parallel to the real axis. Every pinch-point weight ΠΛ will be some
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linear combination of functions of the form (5.32), with each term using a different

set of contours {Γm}. A proof that (5.32) solves the system (5.11-5.15) is given in

section 5.4.

Now we explain convenience of the prefactor in (5.32). A first reason involves the

limit xi+1 → xi that sends the 2N -sided polygon to a (2N−2)-sided polygon. In most

of our formulas, each Pochhammer contour will entwine a pair of the points among

x1, . . . , x2N . After multiplying the half-plane weight ΠΛ by (xi+1 − xi)2θ1 and taking

this limit, this product goes to either zero or an s-pinch-point density in a (2N − 2)-

gon. Meanwhile, one can show that (5.32) goes to either zero or the same expression

except with all factors containing xi, xi+1, and uN−s omitted, the uN−s integration

omitted, a factor of β(−4/κ,−4/κ)−1 = Γ(2− 8/κ)/Γ(1− 4/κ)2 and [4 sin2(4π/κ)]−1

omitted (with β(a, b) the Euler beta function), and possibly a fugacity factor n(κ)

omitted. So to within a factor of n(κ), we retain the same normalization as in the

2N -sided polygon with N �→ N − 1. A second reason is to ensure that (5.32) is finite

and nonzero when κ = 8/m for some even, positive integer m, and a third reason

involves replacing each Pochhammer contour with a simple curve (figure 1.20) in the

dense phase. Both matters were considered in the discussion surrounding (2.162).

5.2 Pinch-point densities

In this section, we calculate the explicit formula for the type-Λ s-pinch-point

density ρP
(Λ|ς)

conditioned on the FFBC event ς for various Λ and 1 ≤ s ≤ N in either

a rectangle R (N = 2) or a hexagon H (N = 3). We proceed in four steps. First

we compute the half-plane pinch-point weight ΠΛ. Second, we construct from ΠΛ the

universal partition function Υ(Λ|ς) that sums exclusively over the event ς ∩ Λ. Third,

we transform Υ(Λ|ς) into the universal partition function Υ̃P

(Λ|ς)
with the appropriate

polygon P for its domain. Fourth, we divide Υ̃P

(Λ|ς)
by the universal partition function

Υ̃P

ς
that sums exclusively over the FFBC event ς to obtain formulas for pinch-point
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densities in R or H.

5.2.1 Half-plane pinch-point weights

N=2, s=2 and N=3, s=3: First, we consider the two-pinch-point weight Π1234

for N = 2 and the three-pinch-point weight Π123456 for N = 3. The subscripts on each

weight indicates the indices of the points xi that are connected to the pinch point.

The weights are given by (5.30) with N = 2 and N = 3 respectively, and both may

be expressed in the covariant form (5.16) which we will find convenient later. We find

that the (s = N = 2)-pinch-point density is

Π1234(x1, . . . , x4; z, z̄) = [(x2 − x1)(x4 − x3)]
1−6/κ|z − z̄|κ/8−6/κ−1

× η8/κ−1(1− η)2/κ|µ− ν|24/κ−2[µν(η − µ)(η − ν)(1− µ)(1− ν)]1/2−6/κ, (5.33)

and the (s = N = 3)-pinch-point density is

Π123456(x1, . . . , x6; z, z̄) = [(x2 − x1)(x4 − x3)(x6 − x5)]
1−6/κ|z − z̄|κ/8−16/κ−1

× [η(σ − τ)]8/κ−1[τσ(τ − η)(σ − η)(1− η)(1− τ)(1− σ)]2/κ|µ− ν|48/κ−3

× [µν(η − µ)(η − ν)(τ − µ)(τ − ν)(σ − µ)(σ − ν)(1− µ)(1− ν)]1/2−8/κ,
(5.34)

where the cross-ratios η, τ, σ, µ, ν are defined in (5.17, 5.20). The correct normaliza-

tion of these pinch-point weights depends on bulk-boundary fusion coefficients, but

because it is not needed for our purposes, we ignore it in this chapter.

Before we calculate s-pinch-point weights for s < N , we comment on the normal-

izations of these weights too. When s < N , almost all samples in the s-pinch-point

event Λ will have at least one interval (xi, xi+1) with its endpoints mutually con-

nected by a boundary arc that does not pass near the pinch-point. The fugacity of

this boundary arc is one since we are working with pinch-point weights, so when we
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collapse this interval, we must recover an s-pinch-point weight in a system with BCCs

at the remaining 2(N − 1) points on the real axis. Continuing this process until no

such intervals remain, we eventually reach an s-pinch-point weight in a system with

BCCs at the remaining 2s points on the real axis. The weight of this event is given by

(5.30) with N = s. Therefore, the s-pinch-point weights with s < N are normalized

so that they equal the s-pinch-point weight with N = s when all of the intervals

whose touching boundary arcs do not pass near the pinch-point are collapsed.

N=2, s=1: Next, we consider one-pinch-point events with N = 2 boundary arcs.

Here, one boundary arc γ1 connects the points xi and xj with a bulk point w ∈ H

while the other γ2 connects the remaining points xk and xl. The weight Πij:kl of this

event is given by (5.32) with N = 2 and s = 1.

The formula for Πij:kl has a single contour integral, and the contour Γij:kl is chosen

so that the chiral operators exhibit specific fusion rules that depend on which vertices

are connected to z through γ1. For example, we consider Π23:41 (figure 5.5). If we

let z approach a point x in the segment (x1, x2), then γ1 must touch (x1, x2) at x in

this limit, which is equivalent to placing a boundary two-leg operator ψ2(x) there.

Therefore the bulk operator Ψ1(z) must fuse with its image Ψ1(z̄) to give ψ2(x) to

leading order. Now, when the two chiral operators V +

0,1
(z) and V +

0,1
(z̄) fuse, their

product is a boundary chiral operator with charge 2α+

0,1
= α+

1,3
which carries the

weight θ2 of a boundary two-leg operator as required (5.10). The same is true of the

intervals (x2, x3) and (x3, x4).

x1 x2 x3 x4 x1 x2 x3 x4

zz

Figure 5.5: The configuration Π23:41. The left (resp. right) figure shows that a
boundary two-leg (resp. four-leg) operator is generated when z approaches the intervals
(x1, x2), (x2, x3), and (x3, x4) (resp. the interval (x4, x1)).

276



Next, we let z and z̄ approach a point x in the interval (x4, x1). Because γ2 links

x1 with x4, topological considerations show that both γ1 and γ2 must touch (x4, x1) at

x in this limit (figure 5.5). Therefore the leading operator of the ensuing bulk-image

fusion must be a boundary four-leg operator. Above, we saw that the total charge of

the bulk-image pair equals that of a boundary two-leg operator. But if we add the

screening charge α−, this total charge becomes 2α+

0,1
+ α− = α+

1,5
, which is that of a

chiral operator with the desired boundary four-leg weight θ4 (5.10). The screening

charge is pulled in with the bulk-image fusion only if Γ23:41 contracts to a point in

the process. Thus, Γ23:41 must be a simple curve starting at z̄ and ending at z.

In order for Π23:41 to be a continuous function of z and z̄, each point of Γ23:41

must reside on the same Riemann sheet of the integrand, so Γ23:41 can only cross the

real axis through a specific segment (xi, xi+1). (Here, x5 := x1.) This segment must

be (x4, x1) in order to ensure that Γ23:41 contracts to a point when we let z and z̄

approach a point in (x4, x1). This choice creates another desired effect. In the event

of a bulk-image fusion over (x1, x4) \ {x2, x3}, Γ23:41 does not contract to a point,

the screening charge is not drawn in, and an undesired boundary four-leg operator

in (x1, x4), which would contradict the assertions of the previous paragraph, is not

produced.

By cyclically permuting the indices, we find four one-pinch-point weights:

{Π12:34, Π23:41, Π34:12, Π41:23}. (5.35)

Each weight is given by (5.32) with N = 2, s = 1, and Γij:kl a simple curve connecting

z with z̄ and crossing the real axis only through (xk, xl). In the formula for each

weight, we order the differences in the factors of the integrand so that the branch cuts

do not intersect Γij:kl and the integrand restricted to Γij:kl is therefore a continuous

function of x1, . . . , x4, z, z̄, and u := u1.
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It is useful to decompose these one-pinch-point weights (5.35) into a linear com-

bination of the integrals (with x5 := z and x6 := z̄)

Ii := β(−4/κ,−4/κ)−1

�
xi

xi−1

du N
�

4�

j=1

(xj − u)−4/κ

× (x5 − u)8/κ−1(x6 − u)8/κ−1

�
, i ∈ {1, . . . , 6}, (5.36)

for the purpose of explicitly showing that these weights are real (or at least share

a common phase) as they must be for physical reasons and for expressing them in

terms of Lauricella functions. Just as in chapter two, the operator “N ” orders the

differences in the factors of the integrand so that Ii is real. (I1 is a sum of integrations

from x0 := x6 to ∞ and from −∞ to x1.) Because arg(z) ∈ [−π, π) for z ∈ C, the

integrand has a branch cut that starts at each xj with j < i (resp. j ≥ i) and points

leftward (resp. rightward) along the real axis. For simplicity, we momentarily suppose

that x5 and x6 are real as we decompose each one-pinch-point weight into a linear

combination of the various Ii times algebraic factors. For example, we can use figure

5.6 to find the decomposition

Π12:34 = A

�
2i sin

�
4π

κ

�
I5 + e4πi/κI6

�
(x5 − x6)

κ/8+8/κ−2

×
4�

i<j

(xj − xi)
2/κ

4�

i=1

(x5 − xi)
1/2−4/κ(x6 − xi)

1/2−4/κ. (5.37)

The proportionality constant A will be determined below. Now, to show that the one-

pinch-point weights are real, we seek a basis of integrals for the span of {I1, . . . , I6}

that are real when x5 = z and x6 = z̄. Integrating the screening charge along a

contour parallel to and immediately above (resp. below) the real axis gives the −
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x1 x2 x3 x4 x1 x2 x3 x4 x5 x6

z

z̄

Figure 5.6: The contour used for the one-pinch-point weight Π12:34. To facilitate calcu-
lation, we at times place z and z̄ at adjacent locations x5, x6 respectfully on the real axis
as in the right figure. (In each figure of this chapter, a blue (resp. orange, resp. red) circle
marks a point of charge α−

1,2
(resp.α+

0,s
, resp.α−) in the dense phase.)

(resp.+) branch of the linear relation

I1 + e±4πi/κI2 + e±8πi/κI3 + e±12πi/κI4 + e±16πi/κI5 − e±8πi/κI6 = 0, (5.38)

which allows us to write I5 and I6 in terms of I1, . . . , I4. Then because the integral

I1 := β(−4/κ,−4/κ)−1

�
x1

x4

du N
�
(z − u)8/κ−1(z̄ − u)8/κ−1

×
4�

j=1

(u− xi)
−4/κ

�
= I5 − e8πi/κI6 + I1 (5.39)

is real when x5 = z and x6 = z̄, we find a real basis {I1, I2 := I2, I3 := I3, I4 := I4}

for the span of {Ii}6

i=1
. We anticipate that the coefficients found from decomposing

the Πij:kl over this basis will share a common phase.

However, it is more useful for our purposes (of calculating one-pinch point weights

for the hexagon later) to compute this decomposition via a different approach in

which the four integrals Ii arise naturally as conformal blocks. We consider the one-

pinch-point weight Π12(x1, x2; z, z̄), given by �ψ1(x1)[2]ψ1(x2)Ψ1(z)[2]Ψ1(z̄)�. Here, the

bracketed subscript between a pair of operators indicates the unique fusion channel

propagating between that pair, so [s] indicates the s-leg channel for s > 0 and the

identity channel for s = 0. To increase N form one to two, we insert the charge-

neutral collection
�

x4

x3
du V −

1,2
(x3)V

−

1,2
(x4)V−(u) with x2 < x3 < x4 into the chiral
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−∞ × v2 (λ− v2) (ρ− v2) (σ − v

= n
=

+

=

+

n

x1 x2 x3 x4

z

Figure 5.7: The decomposition of (5.40) into a linear combination of the weights
Π12:34,Π41:23, and Π23:41 as given in (5.42).

operator representation of this four-point function. We find

�ψ1(x1)[2]ψ1(x2)ψ1(x3)[0]ψ1(x4)Ψ1(z)[2]Ψ1(z̄)�

= nJ(x1, . . . x4; z, z̄) I4(x1, . . . x4; z, z̄), (5.40)

where the function J is given by (5.32) with N = 2 and s = 1:

J(x1, . . . , x4; z, z̄) := |z − z̄|κ/8+8/κ−2

4�

i<j

(xj − xi)
2/κ

4�

i=1

|z − xi|1−8/κ. (5.41)

The new pair of boundary one-leg operators at x3 and x4 fuse through only the identity

channel because the screening charge is integrated along a simple curve connecting x3

with x4. The original boundary one-leg operators at x1 and x2 still fuse through only

the two-leg channel. Three of the four one-pinch-point events (ij:kl) are consistent

with these fusion rules, (12:34), (41:23), and (23:41), so (5.40) must be a linear

combination of the pinch-point weights Π12:34, Π41:23, and Π23:41 with the coefficients

shown below (figure 5.7):

Π41:23 + nΠ12:34 + Π23:41 = nJ(x1, . . . x4; z, z̄) I4(x1, . . . x4; z, z̄). (5.42)

As usual, n is the loop fugacity (1.155) of the O(n) model.

The coefficients of the linear combination on the left side of (5.42) are found in the
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following way. First, to find the coefficient of Π12:34, we send x4 → x3 on both sides

of (5.42). (We always implicitly multiply by (xj − xi)6/κ−1 before sending xj → xi so

that the limit exists. This is the usual convention for collapsing intervals that we used

in chapters two, three, and four.) Then Π41:23, Π23:41 → 0 while Π12:34 → Π12 (5.25),

and nJ × I4 → nΠ12. This justifies the coefficient of n that dresses Π12:34 in (5.42).

Next, to find the coefficient of Π41:23, we send x3 → x2. On the left side of (5.42),

Π12:34, Π23:41 → 0 while Π41:23 → Π14, or really Π12 with x2 �→ x4. On the right side,

we use (5.38) to write nJ × I4 as a linear combination of nJ × I1, nJ × I3, nJ × I5,

and nJ × I6. (These are the four nJ × Ii that have either both or neither bounds of

integration among {x2, x3}. Again, x5 = z and x6 = z̄ as usual.) All of the integrals

in this combination except nJ × I3 vanish in this limit, while nJ × I3 goes to nΠ12.

Because nJ × I3 carries a coefficient of n−1 in this linear combination, the right side

of (5.42) becomes Π12 with x2 �→ x4. This justifies the coefficient of one that dresses

Π12:34 in (5.42). The same reasoning gives the coefficient of one for Π23:41 in (5.42).

Cyclically permuting the indices in (5.42) gives three more equations relating the

four one-pinch-point weights (5.35) to the four integrals Ii. Upon inverting these

equations to isolate the weights, we find

Πij:kl = J

�
2 Ij + (n2 − 2) Il − n Ii − n Ik

n2 − 4

�
. (5.43)

For each index i, we can multiply J ×Ii by (x2−x1)6/κ−1(x4−x3)6/κ−1|z− z̄|1−κ/8 to

arrive with a function Gi that depends only on cross-ratios η, µ, and ν, according to

(5.16). After making the replacement (x1, x2, x3, x4, z, z̄) �→ (0, η, 1,∞, µ, ν), we find

G1(η, µ, ν) =
(η|µ− ν|)8/κ−1(1− η)2/κ

(µν(η − µ)(η − ν)(1− µ)(1− ν))4/κ−1/2
(5.44)

× FD

�
1− 4

κ
;
4

κ
, 1− 8

κ
, 1− 8

κ
; 2− 8

κ

���� 1− η, 1− µ, 1− ν

�
,

G2(η, µ, ν) =
(µν|µ− ν|2)4/κ−1/2(1− η)2/κ

((η − µ)(η − ν)(1− µ)(1− ν))4/κ−1/2
(5.45)
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× FD

�
1− 4

κ
;
4

κ
, 1− 8

κ
, 1− 8

κ
; 2− 8

κ

���� η,
η

µ
,
η

ν

�
,

G3(η, µ, ν) =
(η2(1− µ)(1− ν)|µ− ν|2)4/κ−1/2

(µν(η − µ)(η − ν))4/κ−1/2(1− η)6/κ−1
(5.46)

× FD

�
1− 4

κ
;
4

κ
, 1− 8

κ
, 1− 8

κ
; 2− 8

κ

���� 1− η,
1− η

1− µ
,
1− η

1− ν

�
,

G4(η, µ, ν) =
(η|µ− ν|)8/κ−1(1− η)2/κ

(µν(η − µ)(η − ν)(1− µ)(1− ν))4/κ−1/2
(5.47)

× FD

�
1− 4

κ
;
4

κ
, 1− 8

κ
, 1− 8

κ
; 2− 8

κ

���� η, µ, ν

�
.

We have expressed each Gi in terms of the Lauricella function FD, defined as [85]

FD(a, b1, . . . , bm, c |x1, . . . , xm) :=
Γ(a)

Γ(c)Γ(c− a)

×
�

1

0

ta−1(1− t)c−a−1(1− x1t)
−b1 . . . (1− xmt)−bm dt, (5.48)

by writing the integration variable u of Ii as the following Möbius transformation of

the integration variable t in (5.48):

i = 1 : u =
t− 1

t
, (5.49)

i = 2 : u = η t, (5.50)

i = 3 : u = 1− (1− η)t, (5.51)

i = 4 : u =
1

t
. (5.52)

These transformations are chosen so that each FD has m = 3 arguments with the first

argument between zero and one and the last two arguments being complex conjugates

of each other. This choice ensures that each FD is real. Thus, the Πij:kl, expressed in

the covariant form (5.16), are
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Πij:kl(x1, . . . , x4; z, z̄) = [(x2 − x1)(x4 − x3)]
1−6/κ|z − z̄|κ/8−1

×
�
2Gj + (n2 − 2)Gl − nGi − nGk

n2 − 4

�
(η, µ, ν), (5.53)

with η, µ, ν, and n defined in (5.17, 5.18, 5.20, 1.155) respectively. We note that our

normalization in (5.53) ensures that (xl − xk)2θ1Πij:kl → Πij (5.25) as xl → xk. Now,

if we let κ approach 4/m with m ∈ Z
+ so that n → ±2, then Πij remains finite.

Thus (5.53) must be finite when n = ±2, though showing this explicitly appears to

be difficult. Comparing (5.53) with (5.37), we find that A = −in/
√

4− n2.

N=3, s=2: Next, we consider two-pinch-point events with N = 3 boundary

arcs. Here, two boundary arcs γ1 and γ2, with endpoints respectively at xi, xj ∈ R

and xk, xl ∈ R, touch at a bulk point z, and the remaining boundary arc γ3 has

endpoints at xm and xn. We note that this setup restricts the allowed BACs to those

in which γ3 does not separate γ1 from γ2, so xm and xn must be adjacent. The weight

Πijkl:mn of this event is given by (5.32) with N = 3 and s = 2. By cyclically permuting

the indices, we find six such two-pinch-point configurations.

The formula for Πijkl:mn contains a single contour integral Γijkl:mn that is deter-

mined via the same reasoning that was used for the case N = 2 and s = 1 above. We

summarize the argument. The two-pinch-point event is conditioned by the insertion

of a bulk four-leg operator Ψ2(z). Topological considerations (as can be understood

upon examining figure 5.8) show that fusing this operator with its image across any

interval (xa, xb) with (a, b) �= (m, n) (resp. (a, b) = (m, n)) must, to leading order, give

rise to a boundary four-leg (resp. six-leg) operator ψ4 (resp.ψ6). Because 2α+

0,2
= α+

1,5

is the charge of a chiral operator with the boundary four-leg weight θ4, this require-

ment is already satisfied when (a, b) �= (m, n). If Γijkl:mn is a simple curve with end-

points at z and z̄ and crossing the real axis only through (xm, xn), then the screening

charge is drawn into a bulk-image fusion across this interval, shifting the product to

a chiral operator with net charge 2α+

0,2
+ α− = α+

1,7
. This operator has the desired
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boundary six-leg weight θ6 (5.10).

To express the two-pinch-point weights in terms of Lauricella functions, we write

them as linear combinations of the six real integrals

Ki := β(−4/κ,−4/κ)−1

�
xi

xi−1

duN
�
(z − u)12/κ−1(z̄ − u)12/κ−1

×
6�

j=1

(u− xj)
−4/κ

�
, i = 1, . . . , 6. (5.54)

(As before, the operator “N ” orders the differences in the factors of the integrand so

that the integrand is real, and K1 is integrated from x0 := x6 to ∞ and then from

−∞ to x1.) To proceed, we consider the two-pinch-point weight Π1234. Inserting the

charge-neutral collection
�

x6

x5
du V −

1,2
(x5)V

−

1,2
(x6)V−(u) into the chiral representation of

its six-point function �ψ1(x1)[2]ψ1(x2)ψ1(x3)[2]ψ1(x4)Ψ1(z)[4]Ψ1(z̄)� with x4 < x5 < x6

gives the conformal block

�ψ1(x1)[2]ψ1(x2)ψ1(x3)[2]ψ1(x4)ψ1(x5)[0]ψ1(x6)Ψ1(z)[4]Ψ1(z̄)�

= nL(x1, . . . , x6; z, z̄)K6(x1, . . . , x6; z, z̄), (5.55)

0 −∞ × v2 (λ− v2) (ρ− v2) (σ − v2)

=

+

I14(λ, ρ,σ,µ, ν)
I16(λ, ρ,σ,µ, ν)

:=
0 σ
λ
0

ρ
−∞

N × v1 (λ− v1) (ρ− v1) (σ − v1)
× v−4/κ

2 (λ− v2)−4/κ(ρ− v2)−4/κ(σ − v2)−4

=

+

× v1 (λ− v1) (ρ− v1) (σ − v1) (1 − v1)
× v−4/κ

2 (λ− v2)−4/κ(ρ− v2)−4/κ(σ − v2)−4/κ(1 − v2)−4/κ

dv1 dv2.

=

+

x1 x2 x3 x4 x5 x6

z

n

Figure 5.8: The decomposition of (5.55) into a linear combination of the weights
Π6123:45,Π1234:56, and Π2345:61, as given in (5.57).
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where the pre-factor L is given by (5.32) with N = 3 and s = 2:

L(x1, . . . , x6; z, z̄) := |z − z̄|κ/8+18/κ−3

6�

i<j

(xj − xi)
2/κ

6�

i=1

|z − xi|1−12/κ. (5.56)

After following the reasoning that led to (5.42), we find (figure 5.8)

Π6123:45 + nΠ1234:56 + Π2345:61 = nL(x1, . . . , x6; z, z̄)K6(x1, . . . , x6; z, z̄). (5.57)

Another five equations relating the six weights with the six integrals Ki may be found

by cyclically permuting the indices in (5.57). These equations may be simultaneously

solved to give

Πijkl:mn = nL

�
(2− n2)(Ki +Km) + n(Kj +Kl)− 2Kk + (n3 − 3n)Kn

(n2 − 4)(n2 − 1)

�
. (5.58)

(We note the double use of n as an index and the loop fugacity of the O(n) model.)

To finish, we seek a form for the weights that expresses the Ki in terms of Lauricella

functions and exhibits the conformally covariant ansatz of (5.16). To this end, we

define the function

Hi(x1, . . . , x6; z, z̄) := [(x2 − x1)(x4 − x3)(x6 − x5)]
2θ1 |z − z̄|2Θ2L×Ki (5.59)

= [(x2 − x1)(x4 − x3)]
6/κ−1|z − z̄|1+6/κ−κ/8L� ×K�

i
, (5.60)

with L and Ki adjusted to respective quantities L� and K�
i
that are finite in the limit

x6 →∞:

L�(x1, . . . , x6; z, z̄) := (x6 − x5)
2/κ−1L, (5.61)

K�

i
(x1, . . . , x6; z, z̄) := (x6 − x5)

4/κKi. (5.62)
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According to (5.16), Hi is strictly a function of the cross-ratios η, τ, σ, µ, and ν. After

making the replacement (x1, x2, x3, x4, x5, x6, z, z̄) �→ (0, η, ρ, σ, 1,∞, µ, ν), we find

Hi(η, τ, σ, µ, ν) = K�

i
(η, τ, σ, µ, ν)

× [η(σ − τ)]8/κ−1[τσ(τ − η)(σ − η)(1− η)(1− τ)(1− σ)]2/κ|µ− ν|24/κ−2

× [µν(µ− η)(ν − η)(µ− τ)(ν − τ)(µ− σ)(ν − σ)(µ− 1)(ν − 1)]1/2−6/κ,
(5.63)

with each K�

i
(η, τ,σ, µ, ν) := K�

i
(0, η, τ,σ, 1,∞; µ, ν) finite and equaling a Lauricella

function FD times algebraic prefactors:

K�

1
(η, τ,σ, µ, ν) = FD

�
{χj}

���� 1− η, 1− τ, 1− σ, 1− µ, 1− ν

�
, (5.64)

K�

2
(η, τ,σ, µ, ν) = η1−8/κτ−4/κσ−4/κµ12/κ−1ν12/κ−1FD

�
{χj}

���� η,
η

τ
,
η

σ
,
η

µ
,
η

ν

�
, (5.65)

K�

3
(η, τ,σ, µ, ν) = η1−8/κτ 4/κ−1(τ − η)1−8/κ(σ − η)−4/κ(1− η)−4/κ (5.66)

× (µ− η)12/κ−1(ν − η)12/κ−1FD

�
{χj}

���� 1− η

τ
,
σ(τ − η)

τ(σ − η)
,

τ − η

τ(1− η)
,
µ(τ − η)

τ(µ− η)
,
ν(τ − η)

τ(ν − η)

�
,

K�

4
(η, τ,σ, µ, ν) = τ−4/κ(τ − η)1−8/κ(σ − η)4/κ−1 (5.67)

× (σ − τ)1−8/κ(1− τ)−4/κ(µ− τ)12/κ−1(ν − τ)12/κ−1

× FD

�
{χj}

����
σ − τ

σ − η
,
η(σ − τ)

τ(σ − η)
,
(1− η)(σ − τ)

(1− τ)(σ − η)
,

(µ− η)(σ − τ)

(µ− τ)(σ − η)
,
(ν − η)(σ − τ)

(ν − τ)(σ − η)

�
,

K�

5
(η, τ,σ, µ, ν) = (1− η)−4/κ(1− τ)−4/κ(1− µ)12/κ−1(1− ν)12/κ−1 (5.68)

× (1− σ)1−8/κFD

�
{χj}

���� 1− σ,
1− σ

1− η
,
1− σ

1− τ
,
1− σ

1− µ
,
1− σ

1− ν

�
,

K�

6
(η, τ,σ, µ, ν) = FD

�
{χj}

���� η, τ,σ, µ, ν

�
.

Again, we have expressed each K�

i
in terms of FD by writing its integration variable
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u as the following Möbius transformation of the integration variable t in (5.48):

i = 1 : u =
t− 1

t
, (5.69)

i = 2 : u = η t, (5.70)

i = 3 : u =
ητ

τ − (τ − η)t
, (5.71)

i = 4 : u =
η(σ − τ)t− τ(σ − η)

(σ − τ)t− (σ − η)
, (5.72)

i = 5 : u = 1− (1− σ)t, (5.73)

i = 6 : u =
1

t
. (5.74)

The transformations are chosen so that the first three arguments of each FD is between

zero and one and the last two arguments are complex conjugates. This choice ensures

that each FD is real. Each FD uses the same set of seven parameters:

{χj}7

j=1
=

�
1− 4

κ
;
4

κ
,
4

κ
,
4

κ
, 1− 12

κ
, 1− 12

κ
; 2− 8

κ

�
. (5.75)

Combining (5.58) and (5.59), we find that each weight is given by the conformally

covariant formula

Πijkl:mn(x1, . . . , x6; z, z̄) = (n2 − 4)−1(n2 − 1)−1

× [(x2 − x1)(x4 − x3)(x6 − x5)]
1−6/κ|z − z̄|κ/8−6/κ−1

× [n(2− n2)(Hi + Hm) + n2(Hj + Hl)

− 2nHk + n2(n2 − 3)Hn](η, τ,σ, µ, ν), (5.76)

with each Hi explicitly given among (5.63-5.69), η, τ,σ, µ, and ν given by (5.17, 5.20),

and n given by (1.155). We note that our normalization in (5.58) ensures that (xn −

xm)2θ1Πijkl:mn → Πijkl (5.33) as xn → xm. Upon letting κ approach the zeros 4/m

and 12/(3m ± 1), with m ∈ Z
+, of the denominator of (5.76) in this relation, Πijkl
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remains finite, so (5.76) must be finite when n = ±2,±1, although this seems to be

very difficult to prove directly.

N=3, s=1: Last, we consider one-pinch-point events with N = 3 boundary arcs.

Here, a boundary arc γ1 connects xi, xj and z, another γ2 connects xk and xl, and

the last γ3 connects xm and xn. We denote the half-plane weight of this event by

Πij:kl:mn, and it is given by (5.32) with N = 3 and s = 1. This formula contains a

double contour integral, and the contours must not intersect in order to guarantee a

solution of the system of null-state PDEs (figure 2.1). According to the discussion

preceding (2.7), there are C3 = 5 possible BACs, and in each, z may touch any one

of the three boundary arcs to give a total of fifteen possible one-pinch-point events.

Now we associate certain choices of integration contours with particular linear

combinations of these configurations. In the previously considered cases with one

screening charge, we noted that a half-plane pinch-point weight with a simple contour

connecting z with z̄ by crossing a specified interval (xa, xb) corresponds to a specified

pinch-point event, and now we investigate to what extent this remains true in our

present situation with two screening charges. We suppose that γ1 connects x1, x2, and

z. Then x3, . . . , x6 are connected pairwise by the two remaining boundary arcs in one

of two possible ways. In both cases, topological considerations show that fusion of the

bulk two-leg operator Ψ1(z) with its image across intervals (x3, x4) or (x5, x6) must

0 −∞ × v2 (λ− v2) (ρ− v2) (σ − v2)

=

+

λ)(σ − λ)(1 − λ)(1 − ρ)(1 − σ)]
ρ)(µ− σ)(ν − σ)(µ− 1)(ν − 1)]8/κ−1

Ikm (λ, ρ,σ,µ, ν) (103)

1(µ− v2)8/κ−1(ν − v1)8/κ−1(ν − v2)8/κ−1(v2 − v1)8/κ

4/κ(λ− v1)−4/κ(ρ− v1)−4/κ(σ − v1)−4/κ(1 − v1)−4/κ

4/κ(λ− v2)−4/κ(ρ− v2)−4/κ(σ − v2)−4/κ(1 − v2)−4/κ

dv1 dv2.

=

λ, ρ,σ,µ, ν)
0 −∞ × v2 (λ− v2) (ρ− v2) (σ − v2) (1 −

=

+

u3

u4

w

w̄

z

z̄

x1 x2 x3 x4 x5 x6

n

Figure 5.9: The decomposition of the integral in (5.77) into a linear combination of the
weights Π12:34:56 and Π12:36:45. The contour Γ12 connecting z with z̄ in the top-left figure
can be deformed into the contour that is a vertical reflection of Γ12 plus the dashed contour
in the top-right figure. According to (3.3), integration along the dashed contour gives zero.
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give rise to a boundary four-leg operator to leading order. Hence, we choose the first

contour Γ12 to be a simple curve connecting z and z̄ and crossing the real axis only

through (x3, x4). A natural choice for the second contour would be the same as for

the first but crossing (x5, x6) instead, yet this is not allowed because the contours

would then intersect at z and z̄. Suppose that the second contour is [x4, x5] instead.

Identity (3.3) allows us to deform Γ12 into a simple curve crossing the real axis only

through (x5, x6), so a bulk-image fusion across (x5, x6) will produce a boundary four-

leg operator there as well (figure 5.9). The formula that follows from these contour

choices sum over both possible boundary arc connectivities between x3, . . . , x6. Their

relative coefficients can be found in the usual way. Thus, we have from (5.32) with

N = 3 and s = 1 that

Π12:34:56 + nΠ12:36:45 =
n|z − z̄|κ/8+8/κ−2

iβ(−4/κ,−4/κ)2
√

4− n2

×
6�

i<j

(xj − xi)
2/κ

6�

i=1

|z − xi|1−8/κ

�

Γ12

�
x5

x4

du1 du2N
�

. . .

�
. (5.77)

The normalization follows form requiring the we recover the two-pinch-point weight

Π12:34 with x6 �→ x4 upon sending x5 → x4. The ellipsis stands for the rest of the

integrand in (5.32). Although this density is a natural observable, the left side is not

a single one-pinch-point configuration. Cyclic permutation of the indices generates

only five more equations involving just twelve of the fifteen possible weights. One of

the missing weights is Π14:23:56, and the other two missing weights are generated by

rotating the hexagon.

In order to isolate all fifteen weights, we pursue our usual second strategy of

splicing charge-neutral pairs into simpler correlation functions. We begin the one-

pinch-point weight Π12(xi, xj; z, z̄), given by �ψ1(xi)[0]ψ1(xj)Ψ1(z)[2]Ψ1(z̄)�. We in-

sert into its chiral representation a first charge-neutral collection
�

xl

xk
V −

1,2
(xk)V

−

1,2
(xl)

V−(u1) du1, chosen so that xk and xl are not separated within the real axis by xi and

289



M ×K12;34 M ×K12;45 M ×K12;56 M ×K12;63

0 0 0 0

0 n n2 n

n2 n 0 n

0 1 1 1

1 n 1 0

1 0 1 0

0 n n 1

0 1 n 1

n 1 0 1

n 1 0 1

n 1 0 1

0 1 n 1

0 0 0 0

n n2 n 0

n 0 n n2

Table 5.1: The M × Kkl;mn (columns) may be decomposed into linear combinations of
the fifteen one-pinch-point densities (rows). (Relative) coefficients for four of the fifteen
decompositions are shown in this table.

xj, and then a second collection
�

xn

xm
V −

1,2
(xm)V −

1,2
(xn)V−(u2) du2, chosen so that xm

and xn are not separated within the real axis by xi, xj, xk, or xl. We find fifteen dis-

tinct conformal blocks, each with n = m+1 and k = l+1 (i.e., the inserted boundary

arcs are not nested) or k = l + 3 (i.e., the inserted boundary arcs are nested) (The

case n = 7 or k = 7, 8, 9 is identified with n = 1 or k = 1, 2, 3 respectively). Each

block has the form
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�ψ1(xi)[2]ψ1(xj)ψ1(xk)[0]ψ1(xl)ψ1(xm)[0]ψ1(xn)Ψ1(z)[2]Ψ1(z̄)�

= n2M(x1, . . . , x6; z, z̄)Kkl;mn(x1, . . . , x6; z, z̄), (5.78)

where Kkl;mn is the real-valued integral

Kkl;mn := β(−4/κ,−4/κ)−2

�
xl

xk

�
xn

xm

du1 du2 N
�
(u1 − z)8/κ−1(u1 − z̄)8/κ−1

× (u2 − z)8/κ−1(u2 − z̄)8/κ−1(u2 − u1)
8/κ

6�

i=1

(u1 − xi)
−4/κ(u2 − xi)

−4/κ

�
, (5.79)

and where M follows from (5.32):

M(x1, . . . , x6; z, z̄) := |z − z̄|κ/8+8/κ−2

6�

i<j

(xj − xi)
2/κ

6�

i=1

|z − xi|1−8/κ. (5.80)

The Kkl;mn can be decomposed into linear combinations of the fifteen crossing weights

in the usual way. This decomposition is shown for four of the Kkl;mn in the top row of

table 5.1, and the other eleven are found by cyclically permuting the indices. We thus

find an invertible system of fifteen equations with the fifteen weights as unkowns. The

formulas that follow from this inversion are complicated, and we leave their further

investigation to the interested reader.

5.2.2 Half-plane universal partition functions

In this section, we construct half-plane universal partition functions Υ(Λ|ς) from

the weights computed in section 5.2.3. We complete these calculations only for the

cases N = 2 and 3. However, the method is clearly generalizable to polygons with

more sides.

For simplicity, our language will suggest that we have conformally mapped the

upper half-plane onto the interior of a 2N -sided polygon P so that the vertices are

numbered counterclockwise in ascending order starting with the bottom-left vertex,
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the i-th vertex wi is the image of xi, and P will have a bottom side [w1, w2] sitting

flush against the real axis (figure 5.13). However, we will postpone the actual im-

plementation of this mapping to the next subsection because of subtleties that arise

with the use of corner one-leg operators.

Also, we enumerate the five possible BACs as in figure 5.10 for N = 2 and 3, and

we enumerate the five possible exterior arc connectivities, or FFBCs, identically to

the BACs after reflecting the interior arcs into exterior arcs that are outside of P .

In order to write a formula for Υ(Λ|ς), we need to know the number of boundary

loops present in the system. Throughout this section, we use the second definition

of “boundary loops” given in chapter four. These are the boundary loops formed

by joining the exterior arcs in the diagram for the FFBC event ς ∈ BCN with the

interior arcs in the diagram for the BAC event λ ∈ ACN . The number of boundary

loops is denoted by lλ,ς . We recall that these boundary loops are not the same as

the physical boundary loops induced by, for example, treating those exterior arcs

as fictional bonds in the Q-state Potts model. The difference dς in the number of

boundary loops between the second and first definitions is given by (4.30) and does

1 2

3 4 521

Figure 5.10: An illustration of the labeling that we will use for the boundary arc connec-
tivities of R and H.
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where c2 = C2/C 0. Notice that the j scaling factors of Z, Z̄ cancel with those of the pinch-point partition functions.

n n2

u1 u2 u3 u4 w

scaling factors of Z, Z̄ cancel with those of the pinch-point partition functions.

n n2

1 u2 u3 u4 w w̄

n2n2

Figure 5.11: The four boundary loop configurations for R. Each boundary loop con-
tributes a factor of n.

not depend on Λ. Thus, the universal partition functions Υ(Λ|ς) is given by

Υ(Λ|ς) = n−dς
�

λ∈ACN
λ∩Λ�=∅

nlλ,ςΠΛ. (5.81)

The extra factor of n−dς will have no bearing since it appears in the numerator and

denominator of (5.5) and thus cancels with itself. But to be technically correct, we

include it anyway. This factor is given in (4.30).

First, we sum (5.81) for pinch-point events in the rectangle R with the left/right

sides wired. With N = 2, there are two possible FFBC events, and they are enumer-

ated according to figure 5.10. Thus, ς1 is the independent wiring event and ς2 is the

mutual wiring event. Both FFBC events are possible in the dense phase while only

the latter is possible in the dilute phase. If Λ is a specified one-pinch-point event,

then the boundary arcs connect in exactly one way, so there is only one term in the

sum (5.81). From figure 5.11, we find (with dk := dςk
)

Υ(12:34|1) = n−d1+1Π12:34 Υ(34:12|1) = n−d1+1Π34:12

Υ(41:23|1) = n−d1+2Π41:23 Υ(23:41|1) = n−d1+2Π23:41






independently

wired,
(5.82)

Υ(12:34|2) = n−d2+2Π12:34 Υ(34:12|2) = n−d2+2Π34:12

Υ(41:23|2) = n−d2+1Π41:23 Υ(23:41|2) = n−d2+1Π23:41






mutually

wired,
(5.83)

with the one-pinch-point half-plane weight Πij:kl and the loop fugacity n given in

(5.53) and (1.155) respectively. Also dς is given by (4.30), so d1 = 0 and d2 = 1. If

Λ is the two-pinch-point event, then the tips of the four multiple-SLE curves, each
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Figure 5.12: Three possible exterior arc connectivities (equivalently three FFBCs) of H
out of five possibilities. Left to right, there are two, two, and three boundary loops, giving
rise to fugacity factors n2, n2, n3 respectively.

anchored to a different corner of R, are conditioned to evolve towards a common

specified bulk point w ∈ R. As these tips approach w, they are equally likely to

connect vertically or horizontally, so there are two terms in the sum (5.81). For the

mutual wiring and independent wiring events, we respectively find

Υ(1|1234) = n−d1(n + n2)Π1234, Υ(2|1234) = n−d2(n + n2)Π1234, (5.84)

with the two-pinch-point half-plane weight Π1234 and the loop fugacity n given in

(5.33) and (1.155) respectively. Again, d1 = 0 and d2 = 1.

Next, we sum (5.81) for pinch-point events in the hexagon H with the bottom

and top left/right sides wired. When N = 3, there are five possible FFBCs. They

are enumerated according to figure 5.10, so ς3 is the independent wiring event, ς2

is the mutual wiring event, and ς1 (resp. ς4, resp. ς5) is the event with the bottom

and top-left (resp. bottom and top-right, resp. top-left and top-right) sides mutually

wired and the remaining fixed side independently wired. We call ς1, ς4, and ς5 a mixed

FFBC. As usual, only the mutual wiring event is possible in the dilute phase. If Λ

is a specified one-pinch-point event, then there is only one term in the sum (5.81)

since the exterior arcs connect with the boundary arcs to form the same number

p ∈ {1, 2, 3} of boundary loops for each sample Λ (figure 5.12). Therefore,

Υ(ij:kl:mn|ς) = n−dς+pΠij:kl:mn (5.85)
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with the loop fugacity n and dς given in (1.155) and (4.30) respectively, and the half-

plane weight Πij:kl:mn given by inverting the system of equations that is partly shown

in table 5.1. If Λ is a specified two-pinch-point event, then there are two terms in

the sum (5.81) since the two boundary arcs touching at the two-pinch-point can be

separated into two nonintersecting boundary arcs in two ways. The first and second

way will have p1 and p2 boundary loops respectively, with {p1, p2} = {1, 2} or {2, 3}.

Therefore,

Υ(ijkl:mn|ς) = n−dς (np1 + np2)Πijkl:mn, (5.86)

with the two-pinch-point half-plane weight Πijkl:mn, the loop fugacity n, and dς given

in (5.76, 1.155, 4.30) respectively. If Λ is the three-pinch-point event, then there are

five terms in the sum (5.81) since the three boundary arcs touching at the three-pinch-

point can be separated into any of the five possible BACs shown in figure (5.10). We

therefore find

Υ(123456|ς) = n−dς (n + 3n2 + n3)Π123456,






ς the independently wired

or the mutually wired FFBC,
(5.87)

Υ(123456|ς) = n−dς (2n + 2n2 + n3)Π123456, ς a mixed FFBC, (5.88)

with the three-pinch-point half-plane weight Π123456, the loop fugacity n, and dς given

in (5.34, 1.155, 4.30) respectively.

There are many possible combinations of pinch-point configurations Λ and FFBCs

events ς ∈ BCN for the hexagon. We give explicit formulas for type-Λ pinch-point

densities for a few different Λ and with the independent wiring event ς3. (The ex-

ponent d3 is zero.) Except for the three-pinch-point density, which is too rare to

accurately measure, these results are verified via simulation in section 5.3. First, the

following combination sums exclusively over samples with a specified one-pinch-point
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w on a boundary arc connecting vertex one with vertex two:

Υ(12:34:56|3) + n2Υ(12:36:45|3) = n3[Π12:34:56 + nΠ12:36:45]. (5.89)

The linear combination on the left side is chosen so that the right side is given by

(5.77). Next, the universal partition function for a two-pinch point between two

boundary arcs that connect vertices w6, w1, w2, and w3 of the hexagon is given by

(5.86). We find

Υ(6123:45|3) = (n + n2)Π6123:45, (5.90)

with n and Π6123:45 given in (1.155) and (5.105) respectfully. Finally, the three-pinch-

point partition function Υ(123456|3) is already given in (5.87).

5.2.3 Transforming the universal partition functions

In this section, we transform the universal partition functions to functions with

the appropriate 2N -sided polygons for their domains. Most of the main points and

calculations are done in section 4.5, and we use those results here. The FFBC events

of BCN are labeled as in the previous section (see figure 5.10).

Let ZD

(Λ|ς)
be the partition function for the system in a simply connected domain

D with a smooth boundary and with the invariance relation

ZD

(Λ|ς)
(w1, . . . , w2N ; w) = Z(Λ|ς)(x1, . . . , x2N ; z), (5.91)

where f is a conformal bijection taking the upper half-plane onto D, wi = f(xi) ∈ ∂D

and w = f(x). As the upper half-plane partition function Z(Λ|ς) has the asymptotic

behavior

Z(Λ|ς)/Zf ∼
�i,�→0

C2

s
c2N

1
�θ1
1

. . . �θ1
2N

�2ΘsΥ(Λ|ς), (5.92)
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ZD

(Λ|ς)
will have the asymptotic behavior

ZD

(Λ|ς)
/Zf ∼

δi,δ→0

c2N

1
δ1(w1)

θ1 . . . δ2N(w2N)θ1δ(w)2ΘsΥD

(Λ|ς)
, (5.93)

with δi = �i|∂f(xi)|, δ = �|∂f(x)|, and with

ΥD

(Λ|ς)
:= |∂f(x1)|−θ1 . . . |∂f(x2N)|−θ1|∂f(z)|−2ΘsΥ(Λ|ς). (5.94)

In section 4.5, we argued that, although conformally invariant, the pinch-point density

given by ZD

(Λ|ς)
/ZD

ς
is unnatural because the disk size δ(w) (resp. δi(wi)) containing

the pinch-point (resp. i-th BCC) varies with its location w in D (resp.wi in ∂D).

Indeed, when we measured some of the pinch-point densities via computer simulation

(see section 5.3), we naturally counted a sample as an s-pinch-point event at w ∈ D

if s distinct boundary arcs passed within zero or one lattice spacings of w (depending

on the lattice) regardless of the location of w in D. To this end, it is natural to replace

ZD

(Λ|ς)
−→ ZD

(Λ|ς)
∼

δi,δ→0

c2N

1
δθ1
1

. . . δθ1
2N

δ2ΘsΥD

(Λ|ς)
(5.95)

with δ and each δi independent of w and wi respectively.

Now we suppose that the boundary of D is smooth except at a finite number of

corner points w1, . . . , w2N ∈ ∂D. We have in mind the case that D is an equiangular

2N -sided polygon P with vertices w1, . . . , w2N , near which the 2N BCCs occur. Then

to replace δ(w) with δ as prescribed above is valid as long as w is sufficiently far from

the vertices, but to replace the other δi(wi) with δi is not valid since the derivative of

f is either infinite or zero at the vertices. According to section 4.5, we must instead

replace

ZP

(Λ|ς)
−→ Z̃P

(Λ|ς)
∼

δi,δ→0

c2N

1
δθ1
1

. . . δθ1
2N

δ2ΘsΥ̃D

(Λ|ς)
, (5.96)

where Υ̃P

(Λ|ς)
is the correlation function (5.6) using corner one-leg operators at the
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vertices of P .

First, we transform the N = 2 half-plane universal partition functions into func-

tions with the rectangle R for their domains (figure 5.13). The rectangle will have

aspect ratio R and vertices w1 = 0, w2 = R, w3 = R + i, and w4 = i. The interior

angles are φ = π/2, so (4.78) gives

Υ̃R

(Λ|ς)
= �ψc

1
(0)ψc

1
(R)ψc

1
(R + i)ψc

1
(i)Ψs(z, z̄)�R = lim

εj→0
(16ε1ε2ε3ε4)

−θ1

× �ψ1(ε1)ψ1(R + iε2)ψ1(R + i− ε3)ψ1(i− iε4)Ψs(z, z̄)�R. (5.97)

We use the Schwarz-Christoffel map f of (4.71) with parameters (4.83-4.84), m := m1,

and c = K �(m) := K(1 −m) where K is the elliptic function of the first kind. This

map sends (x1, x2, x3, x4) �→ (0, m, 1,∞). Here, m is the modular parameter of the

transformation, related to the aspect ratio R (length divided by height) of R through

R = K(m)/K �(m), m =

�
ϑ4(0, e−πR)

ϑ3(0, e−πR)

�4

, (5.98)

where ϑ3 and ϑ4 are the Jacobi theta functions of the third and fourth kinds respec-

tively. Using the covariance rule (5.94), we have

Π1̄23

Π12̄3

Π123̄

Π1̄2̄3̄

Π123

0

λ1

Π123̄

Π1̄2̄3̄

Π123

0

λ1

λ2

λ3

1

∞

Π123

0

λ1

λ2

λ3

1

∞

Π12̄3

Π123̄

Π1̄2̄3̄

Π123

0

λ1

λ2

λ3

1

0

λ1

λ2

λ3

5

∞

Π12̄3

Π123̄

Π1̄2̄3̄

Π123

0

λ1

λ2

λ3

2

Π1̄2̄3̄

Π123

0

λ1

λ2

λ3

6

∞

Π1̄2̄

Π123

0

λ1

λ2

λ3

3

∞

0

λ1

λ2

λ3

4

∞

m1 m2 m3

123

Π1̄2̄3̄

Π123

0

λ1

λ2

λ3

1

∞

λ1

λ2

λ3

1

∞

λ3

1

∞

λ1

λ2

λ3

1

∞

λ1

λ2

λ3

2

∞

3

∞

4

∞

m

Figure 5.13: The transformation of the upper half-plane to the interior of the rectangle
and the hexagon and our enumeration of the vertices of either shape.
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Υ̃R

(Λ|ς)
(m; z, z̄) = |∂f(z)|−2Θs lim

εj→0
(16ε1ε2ε3ε4)

−θ1

×
4�

j=1

|∂f(x�
j
)|−θ1Υ(Λ|ς)(x

�

1
, x�

2
, x�

3
, x�

4
; z, z̄), (5.99)

with x�
1
, . . . , x�

4
given in (4.85-4.88). Using the inverse of the transformation f , given

by z = f−1(w) = m sn(w K � |m)2 with “sn” the Jacobi sine function, we find

Υ̃R

(Λ|ς)
(m; w) = |2mK �sn(wK � |m)cn(wK � |m)dn(wK � |m)|[16s

2−(κ−4)2]/8κ

× n−dς [m(1−m)]6/κ−1K �24/κ−4 lim
x→∞

x6/κ−1Υ(Λ|ς)(0, m, 1, x; z, z̄). (5.100)

We note that η → m as ε1, . . . , ε4 → 0.

The expression for the universal partition function Υ̃R

ς
in the rectangle was com-

puted in section 4.5, and it is given by (4.90) with N = 2. Using the Euler integral

definition of the hypergeometric function, we find that they are given by

Υ̃R

1
(m) = n−d1+2K �(m)24/κ−4

2F1

�
2− 12

κ
, 1− 4

κ
; 2− 8

κ

����� 1−m

�
, (5.101)

Υ̃R

2
(m) = n−d2+2K �(m)24/κ−4

2F1

�
2− 12

κ
, 1− 4

κ
; 2− 8

κ

����� m

�
. (5.102)

In accordance with our conventions, Υ̃R

1
(resp. Υ̃R

2
) corresponds to a rectangle with

independently (resp.mutually) wired sides. We recall that d1 = 0 while d2 = 1.

Next we transform the N = 3 half-plane universal partition functions into func-

tions with their domain the hexagon H with vertices w1 = 0, w2 > 0, w3, . . . , w6 in

the upper half-plane, and interior angles φ = 2π/3 (figure 5.13). Equation (4.78) says

Υ̃H

(Λ|ς)
= �ψc

1
(w1)ψ

c

1
(w2)ψ

c

1
(w3)ψ

c

1
(x4)ψ

c

1
(w5)ψ

c

1
(w6)Ψs(w, w̄)�H

= lim
εj→0

�
729
√

ε1ε2ε3ε4ε5ε6

64

�−θ1
�

6�

j=1

ψ1(wj + εje
(j−1)πi/3)Ψs(w, w̄)

�

H

. (5.103)
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We use the Schwarz-Christoffel map f given by (4.71) with parameters (4.83-4.84)

and c = 1. (The parameter c sets the length of the side [w1, w2].) Using the covariance

rule (5.94), we have

Υ̃H

(Λ|ς)
(m1, m2, m3; w) = |∂f(z)|−2Θs lim

εj→0

�
729
√

ε1ε2ε3ε4ε5ε6

64

�−θ1

×
6�

j=1

|∂f(x�
j
)|−θ1Υ(Λ|ς)(x

�

1
, x�

2
, x�

3
, x�

4
, x�

5
, x�

6
; z, z̄), (5.104)

with x�
1
, . . . , x�

6
given in (4.85-4.88). This becomes (with z = f−1(w))

Υ̃H

(Λ|ς)
(m1, m2, m3; w) = n−dς |27z(m1 − z)(m2 − z)(m3 − z)(1− z)/8|[16s

2−(κ−4)2]/24κ

× [(m2 −m1)(m3 −m1)(m3 −m2)(1−m1)(1−m2)(1−m3)]
(6−κ)/2κ

× [m1m2m3]
(6−κ)/2κ lim

x→∞
x6/κ−1Υ(Λ|ς)(0, m1, m2, m3, 1, x; z, z̄).

(5.105)

We note that (η, τ,σ) → (m1, m2, m3) as ε1, . . . , ε6 → 0.

The expression for the universal partition function Υ̃H

ς
in the hexagon was com-

puted in section 4.5, and it is given by (4.90) with N = 3. There are five half-plane

universal partition functions Υς , and each is proportional to an element of B3 (4.27).

We will only consider the function Υ3 with the sides (x1, x2), (x3, x4), and (x5, x6)

independently wired. In this case, d3 = 0, so Υ3 = F3. We therefore have

Υ̃H

3
(m1, m2, m3) = n3β(−4/κ,−4/κ)−2[m1m2m3]

(10−κ)/2κ

× [(m2 −m1)(m3 −m1)(m3 −m2)(1−m1)(1−m2)(1−m3)]
(10−κ)/2κ

×
�

m1

0

�
m3

m2

N
� 2�

i=1

ui(1− ui)
3�

j=1

(mj − ui)

�−4/κ

(u2 − u1)
8/κ du2 du1.

(5.106)
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5.2.4 Pinch-point densities in polygons

In this section, we give the general formula for pinch-point densities and explicit

expressions for some of these densities in the rectangle R (N = 2) and in the hexagon

H (N = 3). The type-Λ pinch-point event is defined in the introduction of this

chapter, and the FFBC event ς ∈ BCN is defined in section 4.1. The type-Λ pinch-

point density ρP
(Λ|ς)

in the polygon P with the FFBC event ς ∈ BCN behaves as

ρP
(Λ|ς)

(w) = Z̃P

(Λ|ς)
/Z̃P

ς
(5.107)

∼
δ→0

C2

s
δ2ΘsΥ̃P

(Λ|ς)
/Υ̃P

ς
, (5.108)

with the bulk s-leg exponent Θs given by (5.10) and with the universal partition

functions Υ̃P

(Λ|ς)
and Υ̃ς computed in section 5.2.3 for the rectangle and the hexagon.

Also, 1 ≤ s ≤ N necessarily.

Now we examine some particular pinch-point density formulas for the rectangle

and the hexagon. First, we summarize some details pertaining to the case N = 2.

The rectangle R is generated by conformally mapping the upper half-plane onto the

domain

R = {w ∈ C : 0 < Re(w) < R, 0 < Im(w) < 1} (5.109)

via the Schwarz-Christoffel f transformation sending (0, m, 1,∞) to the vertices

(0, R, R + i, i) of R,

f(z) =
1

2K �

�
ζ

0

ζ−1/2(m− ζ)−1/2(1− ζ)−1/2 dζ, (5.110)

where K �(m) = K(1−m) with K(m) the complete elliptic function of the first kind,

and where the aspect ratio R equals K(m)/K �(m). The vertices of R are labeled one

through four starting with the bottom-left vertex and proceeding counterclockwise.

By convention, we wire the left and right sides of R, and the set BCN contains two
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FFBC events, the independent wiring event ς1 and the mutual wiring event ς2.

Next, we summarize the details pertaining to the case N = 3. The upper half-

plane is mapped onto the hexagon H via the following Schwarz-Christoffel transfor-

mation sending (0, m1, m2, m3, 1,∞) to the vertices (w1 = 0, w2 > 0, w3, . . . , w6) of

H:

f(z) =
2

3

�
ζ

0

ζ−1/3(m1 − ζ)−1/3(m2 − ζ)−1/3(m3 − ζ)−1/3(1− ζ)−1/3 dζ. (5.111)

The vertices of H are labeled one through six starting with the bottom-left vertex and

proceeding counterclockwise. By convention, we wire the bottom, the top-left, and

the top-right sides of H, and the set BCN contains five FFBC events, the independent

wiring event ς3, the mutual wiring event ς1, and the three mixed wiring events ς2, ς4,

and ς5.

Explicit formulas for pinch-point densities in R and H with independently wired

sides are presented on the following pages.
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1 2

34

δ

w

Figure 5.14: Illustration of the type-(12 : 34) pinch-point configuration in the rectangle.
The boundary cluster is shaded gray.

The density of type-(12 : 34) one-pinch-points in the rectangleR with the left/right

sides independently wired is

ρR
(1|12:34)

(m; w) ∼
δ→0

C2

1
δ1−κ/8

�
(1−m)6/κ−1

2F1(2− 12

κ
, 1− 4

κ
; 2− 8

κ
| 1−m)

�

×
�

Im[ sn(w K � |m)2]

K �|sn(wK � |m)cn(wK � |m)dn(wK � |m)|

�κ/8−1

×
�
2G2 + (n2 − 2)G4 − nG1 − nG3

n(n2 − 4)

�
(m, z, z̄) .

(5.112)

The Gi are given in (5.44-5.47), and n is given in (1.155). The density ρR
(2|12:34)

with the left/right sides mutually wired is found by replacing the argument of the

hypergeometric function with 1−m in (5.112) and multiplying by n.

2.4

2

1.87

1.6

1.2

0.4

0.8

Figure 5.15: Contour plot of Ising FK cluster one-pinch-point density ρR
(1|12:34)

.
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1 2

34

δ

w

Figure 5.16: Illustration of the two-pinch-point configuration in the rectangle. Boundary
clusters are shaded gray.

The density of two-pinch-points in the rectangle R with the left/right sides inde-

pendently wired is

ρR
(1|1234)

(m; w) ∼
δ→0

C2

2
δ6/κ−κ/8+1

�
224/κ−2K �6/κ−κ/8+1(n−1 + 1)[m(1−m)]8/κ−1

2F1(2− 12

κ
, 1− 4

κ
; 2− 8

κ
| 1−m)

�

×
�

Im [sn(wK � |m)2]

|sn(wK � |m)cn(wK � |m)dn(wK � |m)|

�κ/8+18/κ−3

. (5.113)

The density ρR
(2|12:34)

with the left/right sides mutually wired is found by replacing

the argument of the hypergeometric function with 1−m in (5.113).
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Figure 5.17: Contour plot of Ising FK cluster two-pinch-point density ρR
(1|1234)

.
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Figure 5.18: Illustration of the type-(12 : 34 : 56) one-pinch-point configuration plus n2

times the (12 : 36 : 45) one-pinch-point configuration in the hexagon. Boundary clusters
are shaded gray.

Equation (5.89) is a combination of one-pinch-point densities in the hexagon H

with the bottom and top-left/right sides independently wired (figure 5.18). We have

[ρH
(12:34:56|3)

+ n2ρH
(12:36:45|3)

](m1, m2, m3; w) ∼
δ→0

C2

1
δ1−κ/8n(4− n2)−1/2|z − z̄|κ/8+8/κ−2

× |27z(m1 − z)(m2 − z)(m3 − z)(1− z)/8|1/3−κ/24
|I1(m1, m2, m3; z, z̄)|

I2(m1, m2, m3)
. (5.114)

Here, I1 is

I1(m1, m2, m3; z, z̄) :=

�

Γ

�
1

m3

N
�

�

i=1,2

(ui − z)8/κ−1(ui − z̄)8/κ−1

×(u2 − u1)
8/κ

�

i=1,2

u−4/κ

i
(1− ui)

−4/κ

3�

j=1

(mj − ui)
−4/κ

�
du1 du2 (5.115)

with the contour Γ starting at z̄, crossing the real axis through either (m2, m3) or

(1,∞), and ending at z. One can show that I1 is purely imaginary. Also, I2 is

I2(m1, m2, m3) :=

�
m1

0

�
m3

m2

N
� �

i=1,2

u−4/κ

i
(1− ui)

−4/κ
�

j=1,2,3

(mj − ui)
−4/κ

�

× (u2 − u1)
8/κ du2 du1. (5.116)
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Figure 5.19: Illustration of the type-(6123 : 45) two-pinch-point configuration in the
hexagon. Boundary clusters are shaded gray.

The density of two-pinch-points in the hexagon H with the top and bottom-

left/right sides independently wired is

ρH
(6123:45|3)

(m1, m2, m3; w) ∼
δ→0

C2

2
δ6/κ−κ/8+1(n−1 + 1)β(−4/κ,−4/κ)2|z − z̄|κ/8−6/κ−1I2(m1, m2, m3)

−1

× [m1(m3 −m2)]1−6/κ|27z(m1 − z)(m2 − z)(m3 − z)(1− z)/8|1/3−κ/24+2/κ

[m1m2m3(m2 −m1)(m3 −m1)(m3 −m2)(1−m1)(1−m2)(1−m3)]2/κ

×
�
(2− n2)(H6 + H4) + nH1 − 2H2 + nH3 + n(n2 − 3)H5

(n2 − 4)(n2 − 1)

�
(m1, m2, m3; z, z̄),

(5.117)

where I2 is given in (5.116) and the Hi are given in (5.63, 5.64-5.69).
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Figure 5.20: Contour plot of Ising FK cluster two-pinch-point density ρH
(3|6123:45)
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Figure 5.21: Illustration of the three-pinch-point configuration in the hexagon. Boundary
clusters are shaded gray.

The density of three-pinch-points in the hexagon H with the top and bottom-

left/right sides independently wired is

ρH
(6123:45|3)

(m1, m2, m3; w) ∼
δ→0

C2

3
δ16/κ−κ/8+1(27/8)16/3κ−κ/24−1/3(n−2 + 3n−1 + 1)

× |z(m1 − z)(m2 − z)(m3 − z)(1− z)|4/3−κ/24−32/3κ

× |z − z̄|κ/8+32/κ−4β(−4/κ,−4/κ)2I2(m1, m2, m3)
−1,

(5.118)

where I2 is given in (5.116).
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Figure 5.22: Contour plot of Ising FK cluster two-pinch-point density ρH
(3|123456).
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5.3 Simulation results

In this section, we present simulation results that verify our predicted pinch-

point densities ρR
(12:34|1)

and ρR
(1234|1)

(5.112, 5.113) for the rectangle and ρH
(12:34:56|3)

+

n2ρH
(12:36:45|3)

and ρH
(6123:45|3)

(5.114, 5.117) for the hexagon. We simulated critical

bond percolation on a 2000×1000 square lattice (aspect ratio R = 2) in a rectangle R

and critical site percolation on a triangular lattice in a regular hexagon H inscribed

in a 2000×2000 rhombus. Using the SW algorithm [77], we also sampled critical

Ising FK clusters on the same lattices in R and H. We independently wired the

left/right sides of R and independently wired the bottom and top left/right sides of

H, leaving all other sides free. Our simulation results show good agreement with our

predictions. We used Mathematica (version 8) to evaluate all Coulomb gas integrals

that appear in our analytic predictions, and we used the Schwarz-Christoffel toolbox

[86] for MATLAB to numerically perform the transformation from the upper half-

plane to the interior of H.

To approximate the continuum limit of these critical models, we used very large

lattices in our simulations. This suppressed the frequency of each s-pinch-point event

at every lattice site, so we generated many samples in order to compensate this effect.

Overall, about sixteen months of computer time (with about a 2 GHz processor) were

used to sample percolation clusters in R and H and Ising FK clusters in R. Over

thirty-two months of computer time were used to sample Ising FK clusters in H.

As usual, we number the vertices of R and H counterclockwise, starting with the

left vertex of the bottom side of either polygon as vertex one. In this section, we also

shift the hexagon so that its center coincides with the origin.

5.3.1 The rectangle

To measure the density of percolation pinch points (κ = 6), we simulated criti-

cal bond percolation on the square lattice in R. One-pinch points are bonds inside
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Figure 5.23: Typical percolation (left) and Ising FK (right) cluster and hull-walk samples
in R generated by our simulations. Two-pinch points are colored red. We note that for
percolation (left), our simulation only generates bonds that comprise the boundary clusters’
perimeters.

R and on the perimeter of a boundary cluster, and two-pinch points are red bonds

whose activation or deactivation respectively connects or disconnects the left and right

boundary clusters. Because pinch points occur only on a boundary cluster perime-

ters, our simulations only sampled these perimeters via percolation hull-walks on the

medial lattice [28]. They did not generate entire percolation bond configurations.

We performed two hull-walks to generate the two boundary cluster perimeters in

R (figure 5.23). Hull-walks were defined in section 1.1.3. The first (resp. second)

walk starts at the medial lattice site a/2 units below vertex one (resp. above vertex

three), where a is the lattice spacing. One walk ends at the medial lattice site a/2

units below vertex two, and the other ends at a/2 units above vertex four. Each

step of the walk is located at the midpoint of a bond, and at each step we decide to

activate or deactivate that bond with critical bond activation probability psqr

c
= 1/2.

If the bond is activated, then the walk turns right. Otherwise it turns left. Each

site that is visited by either hull-walk is a one-pinch point, and each site that is

visited by both hull-walks is a two-pinch point, or red bond. (Actually, one-pinch-

point events and two-pinch-point events at z ∈ R are mutually exclusive according

to our definitions. However, our method counts a two-pinch point as a one-pinch
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point of both hull walks too. This miscounting is insignificant though because the

ratio of the two-pinch-point density to any one-pinch-point density vanishes as the

system size increases, or equivalently, as the lattice spacing a goes to zero with power

a2(Θ2−Θ1) = a6/κ.)

When all of the hull-walks finish, we note how they connect the vertices of R

and bin one-pinch-point events accordingly. If they connect vertex one with vertex

two and vertex three with vertex four (resp. vertex one with vertex four and vertex

two with vertex three) to create a horizontal (resp. vertical) crossing, then one-pinch-

point events on the first and second hull-walks contribute to ρR
(12:34|1)

and ρR
(34:12|1)

(resp. ρR
(41:23|1)

and ρR
(23:41|1)

) respectively. Two-pinch-point events did not need to be

sorted this way, although it is interesting to note that the red bonds are activated

(resp. deactivated) in the event of a horizontal (resp. vertical) crossing. After gener-

ating about 2× 108 samples, we tallied the number of each kind of pinch-point event

at each site in an array and divide the total by the corresponding array value at the

center of R to eliminate the nonuniversal constant and scaling factor appearing in

(5.112, 5.113). With this normalization scheme, our measured densities always equal

one at the center of R.

Our percolation pinch-point simulation results are compared with our theory pre-

dictions for ρR
(12:34|1)

and ρR
(1234|1)

(respectively (5.112) and (5.113) with κ = 6) in

figure 5.24. In the figure, R has been centered at (1, 0.5) and rescaled to have length

two and height one, and we have fixed y to 0.1, 0.2, 0.3, 0.4, and 0.5. The top plot

shows the density ρR
(12:34|1)

of points touched by the hull-walk connecting vertices one

and two. The left/right peaks of the top curve in the figure show that these events

are most likely to occur near vertices one and two, and this is expected because these

vertices are connected by the hull-walk. The bottom plot shows the density ρR
(1234|1)

of two-pinch points, or red bonds. Our results show that these events are most likely

to occur near the center of R, and this is expected because there is more room in the
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Figure 5.24: Density of percolation one-pinch-points ρ12:34 (top) and two-pinch-points
ρ1234 (bottom) versus x in a 2000×1000 rectangle rescaled to 2 × 1. Both densities are
normalized to equal one at the center of R.
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Figure 5.25: Density of Ising FK one-pinch points ρ(1|12:34) (top) and two-pinch-points
ρ(1|1234) (bottom) versus x in a 2000×1000 rectangle rescaled to 2 × 1. Both densities are
normalized to equal one at the center of R.
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center of R for the hull-walks to collide. Errors averaged over x and the standard

deviation from this average are shown in table 5.2.

To measure the density of Ising FK pinch points (κ = 16/3), we generated

about 4 × 108 samples of critical Ising FK clusters on the square lattice in R via

the SW algorithm, described in section 4.6, with critical bond activation probability

pc =
√

2/(1 +
√

2) (1.27). In each sample, the left/right sides of R were indepen-

dently wired. That is, all FK bonds of either side were activated and necessarily the

same color as the other bonds in its boundary cluster, but the bond color of the left

boundary cluster was allowed to differ from that of the right. The perimeters of the

boundary clusters anchored to these wired sides were explored via the hull-walk used

for percolation to detect the pinch points (without ever activating or deactivating FK

bonds during the walk) (figure 5.23). One-pinch-point events and two-pinch-point

events were detected by the hull-walk in the same way as in bond percolation. How-

ever, we note that the “red bond definition” of a two-pinch point in percolation does

not have a perfect analog with FK clusters. If two boundary FK clusters of different

colors are separated by a single unactivated bond, we cannot activate this bond and

join the clusters, so such a bond is not “red” according to the definition of a “spin

red bond” in [81]. (Although, the fractal properties of the set of spin red bonds and

the set of two-pinch-point bonds is the same since the Q colors of the Q-state Potts

model are distributed uniformly across the FK clusters.)

Our Ising pinch-point simulation results are compared with our theory predictions

for ρR
(12:34|1)

and ρR
(1234|1)

(respectively (5.112) and (5.113) with κ = 16/3) in figure 5.25.

Explanations and noteable features of these two plots are the same as in figure 5.24,

except that y is fixed to 0.1, 0.3, 0.4, 0.5, and 0.6. In addition, we note that our

measurements of the one-pinch-point density consistently exceeded our predictions

by a small amount that increased as y decreased. We suspect that this is a finite-size

effect that may be reduced by sampling from a larger system. A similar effect was
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observed for the simulations in [75].

Avg. error y = 0.1 y = 0.2 y = 0.3 y = 0.4 y = 0.5 y = 0.6

Perc. s = 1 −0.004 0.023 −0.003 0.012 −0.002 –
Perc. s = 2 0.010 0.012 0.014 0.014 0.014 –
Ising s = 1 −0.080 – −0.062 −0.048 −0.036 −0.346
Ising s = 2 0.008 – 0.009 0.012 0.014 0.046

Std. dev. y = 0.1 y = 0.2 y = 0.3 y = 0.4 y = 0.5 y = 0.6

Perc. s = 1 0.002 0.026 0.002 0.025 0.000 –
Perc. s = 2 0.003 0.003 0.003 0.005 0.004 –
Ising s = 1 0.008 – 0.006 0.013 0.006 0.042
Ising s = 2 0.004 – 0.006 0.005 0.007 0.034

Table 5.2: The error (theory minus simulation) averaged over x, and the standard deviation
of the error from that average, of the data displayed in figures 5.24 and 5.25.

5.3.2 The hexagon

To measure the density of percolation pinch points, we generated about 6.56 ×

108 samples of critical site percolation (site activation probability pc = 1/2) on the

triangular lattice in H. Again, because pinch-point events occur on the perimeters of

the three boundary clusters, our simulations sampled only these perimeters via three

distinct site-percolation hull-walks on the triangular lattice (left picture in figure 5.26).

These hull-walks are described in section 4.6. The first, second, and third hull-walks

respectively started at vertices one, three, and five and in the direction pointing into

the adjacent free side of H. Each hull-walk ended at an even vertex, and no two

hull-walks could end at the same vertex. The finished hull-walk actually consists of

two juxtaposed paths of neighboring activated and deactivated sites. We will call the

former (resp. latter) path the inner (resp. outer) boundary arc of the boundary cluster

(figure 5.26). A path, called a smart kinetic walk, passes between these juxtaposed

paths with each step on the dual (honeycomb) lattice [56].

Pinch-point events were counted in almost the same way as with the simulations

for the rectangle. Each point on the inner boundary arc is a one-pinch point, activated
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Figure 5.26: Typical percolation (left) and Ising FK (right) cluster samplesH generated by
our simulations. In the left illustration, black, red, blue, and green (resp. gray, yellow, pink,
light blue, resp. white) sites are activated (resp. deactivated, resp. undecided), black paths
are smart kinetic walks, red, blue, and green (resp. gray) sites form the inner (resp. outer)
boundary arc of a boundary cluster, and yellow, pink, and light blue sites are two-pinch
points. In the right illustration, red sites and centers of red bonds are two-pinch points.

(resp. deactivated) sites shared between two inner or outer boundary arcs are two-

pinch points, and activated (resp. deactivated) sites shared between three inner or

outer hulls are three-pinch points. Again, although one-pinch-point, two-pinch-point,

and three-pinch-point events are technically mutually exclusive, we also counted three-

pinch-point events as two-pinch-point events and two-pinch-point events as one-pinch-

point events in our simulations, knowing that this over-counting has a negligible effect

on our results.

Our percolation pinch-point simulation results are compared with our theory pre-

dictions for ρH
(12:34:56|3)

+ ρH
(12:36:45|3)

and ρH
(6123:45|3)

(respectively (5.114) and (5.117)

with κ = 6) in figure 5.27. (Three-pinch-point events were so rare that we could not

generate enough samples to verify our three-pinch-point density prediction (5.118).)

In the figure, H has been centered at the origin, rescaled to have side-length one, and

oriented as in figure 5.26, and we have fixed y to −0.69,−0.52,−0.31, and −0.03.

The top plot shows the density ρH
(12:34:56|3)

+ρH
(12:36:45|3)

of one-pinch points touched by

the hull-walk connecting vertices one and two. (This density includes all such events
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Figure 5.27: Density of percolation one-pinch points (top) and two-pinch points (bottom)
versus x in a regular hexagon inscribed in 2000×2000 rhombus and adjusted to have side-
length 1 and center at the origin. Both densities are normalized to one at the center of
H.
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without regard to how the other two walks connect vertices three through six.) As

expected, this density is greatest near vertices one and two which are connected by

the hull-walk. The right plot shows the density ρH
(6123:45|3)

of two-pinch points, or

sites touched by a hull-walk connecting vertices one and two and another hull walk

connecting vertices three and six. This density grows at first as we move from the

bottom side of H towards its center, as expected, and then it diminishes as the center

is approached. This diminishing is also expected since ρH
(6123:45|3)

is greatest below the

center of the rectangle conformally equivalent to H with vertices one, two, three, and

six, and the image of this point in H is below the origin and on the y-axis.

To measure the density of Ising FK pinch points, we generated 5.68×108 samples

of critical Ising FK clusters on the triangular lattice in H via the SW algorithm. The

critical probability of FK bond activation on the triangular lattice is pc = (
√

3 −

1)/
√

3 ≈ 0.42265 (1.28). In each sample, the perimeters of the three FK boundary

clusters were explored via the same hull-walk used in section 4.6 to detect FK cluster

crossing events in the hexagon. The steps of this walk constitute the inner boundary

arc. We also tracked the activated dual bonds that form the outer boundary arc

that traces the inner boundary arc. The s-pinch-point events were identified with

intersections between s distinct inner or outer boundary arcs in the same way as with

percolation (figure 5.26).

Our Ising FK cluster pinch-point simulation results are compared with our theory

predictions for ρH
(12:34:56|3)

+2ρH
(12:36:45|3)

and ρH
(6123:45|3)

(respectively (5.114) and (5.117)

with κ = 16/3) in figure 5.28. (Again, three-pinch-point events were so rare that we

could not generate enough samples to reasonably verify our three-pinch-point density

prediction (5.118).) Explanations and noticeable features of these two plots are the

same as in figure 5.27. The top plot shows the density ρH
(12:34:56|3)

+2ρH
(12:36:45|3)

of one-

pinch points touched by the hull-walk connecting vertices one and two. The factor

of two arises from the factor of n2 in (5.114) and because n =
√

2 when κ = 16/3.
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Figure 5.28: Density of Ising FK one-pinch points (top) and two-pinch points (bottom)
versus x in a regular hexagon inscribed in 2000×2000 rhombus and adjusted to have side-
length one and center at the origin. Both densities are normalized to one at the center of
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This factor may seem unnatural, but omitting it considerably worsens the agreement

of prediction and simulation. Thus, the agreement we find a non-trivial verification

of our prediction for the relative coefficients between the two densities in (5.114).

We note that this one-pinch-point density deviates from our prediction by much less

than that in the rectangle. The deviations of our two-pinch-point simulation results

from our prediction (5.117) with κ = 16/3 are larger than those for percolation. This

may be understood as follows. The two-pinch-point density scales as a2Θ2 as the

lattice spacing a goes to zero. For percolation (κ = 6), the power is 5/4, but for

Ising FK clusters (κ = 16/3), the power increases to 35/24. Thus on a very large

lattice, the frequency of Ising FK two-pinch-point events are suppressed even more

than the percolation two-pinch-point events. Indeed, this is what have observed. We

expect that more samples would lessen the deviation. However, such simulations

would require very considerable computer resources.

Avg. error y = −0.69 y = −0.52 y = −0.31 y = −0.03

Perc. s = 1 −0.005 −0.004 −0.003 −0.002
Perc. s = 2 −0.017 −0.024 −0.024 −0.013
Ising s = 1 0.006 0.001 −0.000 −0.000
Ising s = 2 0.140 −0.002 0.005 0.068

Std. dev. y = −0.69 y = −0.52 y = −0.31 y = −0.03

Perc. s = 1 0.004 0.004 0.003 0.002
Perc. s = 2 0.011 0.015 0.013 0.006
Ising s = 1 0.006 0.006 0.004 0.002
Ising s = 2 0.052 0.114 0.107 0.045

Table 5.3: The error (theory minus simulation) averaged over x, and the standard deviation
of the error from that average, of the data displayed in figures 5.27 and 5.28.

5.4 A solution space of the system (5.11-5.15)

We demonstrate that the Coulomb gas solution (5.32) solves the null-state PDEs

(5.11) and the Ward identities (5.13-5.15). This calculation closely resembles the proof
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of lemma II.2. Throughout this section, we use the dense phase conventions for our

Kac charge and screening charge notations (1.190), we modify the notation of (5.32)

by letting x2N+1 = z, x2N+2 = z̄, and x2N+2+i := ui, and we assume that s < N . When

s = N , (5.32) reduces to (5.30), and because this formula is purely algebraic, it is easy

to directly verify that it solves the system. As usual, x1 < x2 < . . . < x2N−1 < x2N .

To begin, we consider the function

Φ( x1, . . . , x2N+2+M) =
2N+2+M�

i<j

(xj − xi)
2αiαj . (5.119)

Our strategy is to choose the αi (i.e., the charges of the chiral operators) such that

for 1 ≤ i ≤ 2N ,

�
κ

4
∂2

i
+

2N�

j �=i

�
∂j

xj − xi

− θ1

(xj − xi)2

�
+

∂2N+1

x2N+1 − xi

+
∂2N+2

x2N+2 − xi

− Θs

(x2N+1 − xi)2
− Θs

(x2N+2 − xi)2

�
Φ =

2N+2+M�

k=2N+3

∂k( . . . ), (5.120)

where we recognize the differential operator of the null-state PDE centered on xi

on the left side of (5.120), and then integrate x2N+3, . . . , x2N+2+M on both sides

of (5.120) around nonintersecting closed contours Γ1, . . . , ΓM such as Pochhammer

contours entwining pairs of the points x1, . . . , x2N+2 (figure 1.20). Integration on

the right side gives zero. On the left side, the integrand is a smooth function of

x1, . . . , x2N+M+2 because the contours do not intersect. Thus, we may commute each

differentiation with each integration to find that the M -fold integral
�

Φ solves the

system (5.11).

With some algebra, we find that for any choice of {hj}, {αj}, M ∈ Z
+, and

1 ≤ i ≤ 2N ,
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�
κ

4
∂2

i
+

2N+2+M�

j �=i

�
∂j

xj − xi

− hj

(xj − xi)2

��
Φ

=




2N+2+M�

j,k �=i

j �=k

αjαk(κα2

i
− 1)

(xj − xi)(xk − xi)
+

2N+2+M�

j �=i

αiαj(καiαj − κ/2 + 2)− hj

(xj − xi)2



 Φ. (5.121)

If we set hj = θ1 for 1 ≤ j ≤ 2N , hj = Θs for j = 2N + 1, 2N + 2, and hj = 1 for

j > 2N + 2 (the conformal weight of the V± chiral operators that generate screening

operators (1.187)), then for 1 ≤ i ≤ 2N , we can write (5.121) as

�
κ

4
∂2

i
+

2N�

j �=i

�
∂j

xj − xi

− θ1

(xj − xi)2

�

+
∂2N+1

x2N+1 − xi

+
∂2N+2

x2N+2 − xi

− Θs

(x2N+1 − xi)2
− Θs

(x2N+2 − xi)2

�
Φ

=




2N+2+M�

j,k �=i

j �=k

αjαk(κα2

i
− 1)

(xj − xi)(xk − xi)
+

2N+2+M�

j �=i

αiαj(καiαj − κ/2 + 2)− hj

(xj − xi)2



 Φ

+
2N+2+M�

k=2N+3

∂k

�
− Φ

xk − xi

�
. (5.122)

Next, we choose a particular i ∈ {1, . . . , 2N}. If we set

αi = α−
1,2

= 1/
√

κ, αj = α0 ±
�

α0 + hj, j �= i, (5.123)

then the term in brackets on the right side of (5.122) vanishes, giving the desired form

(5.120). In order to satisfy (5.123) for all 1 ≤ i ≤ 2N , we need

αj = α−
1,2

1 ≤ j ≤ 2N, (5.124)

αj = α±

0,s
2N + 1 ≤ j ≤ 2N + 2, (5.125)

αj = α± 2N + 3 ≤ j ≤ 2N + 2 + M. (5.126)
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Explicit formulas for (5.124-5.126) are given by (1.190). If we make this choice, then
�

Φ solves the 2N null-state equations.

To finish, we choose M and the signs of the square roots in (5.125,5.126) so

that the total charge
�

j
αj equals 2α0 and

�
Φ therefore solves the Ward identities.

We suppose that m+ (resp.m−) of the screening charges equal α+ (resp.α−) with

m+ + m− = M necessarily. Then the total charge is

2α0 =
�

j

αj = 2Nα−
1,2

+ α±

0,s
+ α±

0,s
+ m+α+ + m−α−

= −Nα− + α+ + (1± s)α−/2 + (1± s)α−/2 + m+α+ + m−α−

=






(m+ + 1)α+ + (−N + s + m− + 1)α− ++

(m+ + 1)α+ + (−N − s + m− + 1)α− −−

(m+ + 1)α+ + (−N + m− + 1)α− +−

.
(5.127)

The ++ (resp.−−) case corresponds to using the + (resp.−) sign for both α0,s, and

the +− case corresponds to using the + sign for one of the α0,s and the − sign for

the other. In order for these expressions to equal 2α0, we need the coefficients of α+

and α− in (5.127) to equal one. Therefore, m+ = 0 and m− = M , so all M screening

charges use the − sign. The number of screening charges is thus given by

M =






N − s ++

N + s −−

N +−

. (5.128)

The ++ case is used exclusively in this chapter since it apparently contains all of the

pinch-point densities when N = 1, 2, and 3. We anticipate that the ++ case contains

all pinch-point densities for all N ∈ Z
+. Moreover, we see that these solutions span
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a subspace of a larger solution space containing all cases in (5.128) (among possibly

more solutions).

5.5 Summary

We summarize the main results of this chapter. The half-plane weight ΠΛ of the

type-Λ s-pinch-point configuration is given by (5.53, 5.33) for the cases N = 2 and

s = 1 and 2 and is given by (5.77, 5.76, 5.34) for the cases N = 3 and s = 1, 2, and 3

also for various pinch-point events Λ. After specifying a particular FFBC event ς, we

construct the universal partition function Υ(Λ|ς) that sums exclusively over the event

Λ ∩ ς, and we transform it into a universal partition function with the rectangle R

or the hexagon H for its domain. The results are (5.100) and (5.105) respectively.

Then to within nonuniversal factors, the type-Λ pinch-point density ρP
(Λ|ς)

is found

by dividing the transformed universal partition function by the partition function Υ̃ς

of chapter four. This prediction agrees well with measurements by simulation that

sampled one-pinch-point and two-pinch-point events between critical percolation and

Ising FK boundary clusters in rectangles and hexagons with independently wired

sides.
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APPENDIX A

Holomorphic and antiholomorphic coordinates

This section of the appendix supplements chapter one of this thesis. Its purpose is

to give a more complete explanation of holomorphic versus antiholomorphic complex

coordinates and of the treatment of z̄ not as the complex conjugate of z (this is

denoted by z∗ in this thesis) but as a number independent of z. These matters are

important to much of the material presented in chapter one where we witnessed the

“decoupling” of the holomorphic and antiholomorphic sectors of a CFT defined on

the complex plane. This phenomenon follows from properties of holomorphic and

antiholomorphic functions on C
2.

A.1 Holomorphic and antiholomorphic coordinates

Let f : D → C be a function of one complex variable z = x + iy defined on

a domain D ⊂ C. We can write f(z) = u(x, y) + iv(x, y) with u : R
2 → R and

v : R
2 → R. Necessary and sufficient conditions for the differentiability of f are for

first partial derivatives of u and v to exist and satisfy the Cauchy-Riemann equations:

∂xu = ∂yv ∂yu = −∂xv. (A.1)
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If f satisfies these conditions at z, then the derivative of f at z is defined and equals

Dzf(z) = ∂xf(z) = −i∂yf(z). (A.2)

In this situation, we say that f is complex-differentiable at z. A major theorem

in the theory of functions of one complex variable is that a function f is complex-

differentiable at z if and only if it is analytic at z, and typically the term “analytic”

is used in place of “complex-differentiable.” If f is complex-differentiable at every

z ∈ C, then we say that f is complex-differentiable.

There is an interesting interpretation of complex-differentiability that introduces

the idea of holomorphic and antiholomorphic coordinates. Let z̄ := x − iy be the

complex conjugate of z (for now), so that

z = x + iy, z̄ = x− iy ⇐⇒ x =
z + z̄

2
, y =

z − z̄

2i
. (A.3)

If we momentarily think of z and z̄ as independent variables, then the chain rule gives

∂zf(z) =
1

2
[∂xf(z)− i∂yf(z)] = Dzf(z) (A.4)

∂z̄f(z) =
1

2
[∂xf(z) + i∂yf(z)] = 0. (A.5)

The last identity is proven by inserting f = u + iv and using the Cauchy-Riemann

equations (A.1). To say that f depends on z but does not depend on z̄ is a natural

interpretation of (A.4-A.5), but such an interpretation is meaningless since z and z̄

depend on each other.

We can give certain meaning to this interpretation by promoting x and y to

complex variables ξ and ψ so that the variables z := ξ + iψ and z̄ := ξ − iψ are

independent. This construction is inspired by the following fact. If g : R → R is such
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that the principal value of the integrals

u1(x, y) =
1

π

�
∞

−∞

g(s)
y

(x− s)2 + y2
ds, (A.6)

u2(x, y) =
1

π

�
∞

−∞

g(s)
x− s

(x− s)2 + y2
ds, (A.7)

exist for all (x, y) ∈ R
2, then the function f = u1 + iu2 is the unique complex-

differentiable function whose real part equals g on the real axis. We can verify this

by checking that u := u1 and v := u2 satisfy the Cauchy-Riemann equations (A.1).

(To match our previous notation, we set u := u1 and v := u2. We will find both

of these notations useful below.) Thus, we extend the real function g to a complex-

differentiable function f = u + iv.

Now we repeat this extension a second time. We promote the functions u = u1

and v = u2 to functions with domain C × R by promoting x to a complex variable

ξ := x + ix�, and we suppose that the principal values of the integrals

uj1(x, x�; y) =
1

π

�
∞

−∞

uj(s, y)
x�

(x− s)2 + x�2
ds, (A.8)

uj2(x, x�; y) =
1

π

�
∞

−∞

uj(s, y)
x− s

(x− s)2 + x�2
ds, (A.9)

exist. By construction u� and v� are each complex-differentiable functions of ξ. Let

f � be f but with uj �→ (uj1 + iuj2). We write

u� := u11 + iu12, v� = u21 + iu22 (A.10)

so that u� and v�, with y fixed, are complex-valued extensions of the original functions

u and v and

f �(x, x�; y) = u�(x, x�; y) + iv�(x; x�, y) (A.11)
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= [u11 − u22 + i(u12 + u21)](x, x�; y). (A.12)

Then we can use the Cauchy-Riemann equations (A.1) to verify that the function

f �(x, x�; y) is a complex-differentiable function of x + iy and ξ.

Now we repeat this extension a last time. We promote the functions u� and v� to

functions with domain C×C by promoting y to a complex variable ψ := y + iy�, and

we suppose that the principal values of the integrals

ujk1(x, x�; y, y�) =
1

π

�
∞

−∞

ujk(x, x�; s)
y�

(y − s)2 + y�2
ds, (A.13)

ujk2(x, x�; y, y�) =
1

π

�
∞

−∞

ujk(x, x�; s)
y − s

(y − s)2 + y�2
ds, (A.14)

exist. By construction, u�� and v�� are each complex-differentiable functions of ξ and

ψ. Let f �� be f � but with ujk �→ (ujk1 + iujk2). We write

u�� = (u111 + iu112) + i(u121 + iu122), v�� = (u211 + iu212) + i(u221 + iu222) (A.15)

so that u�� and v��, with x and x� fixed, are complex extensions of u� and v� and

f ��(x, x�; y, y�) = u��(x, x�; y, y�) + iv��(x, x�; y, y�)

= [(u111 − u221 − u122 − u212) + i(u112 − u222 + u121 + u211)](x, x�; y, y�). (A.16)

Then we can use the Cauchy-Riemann equations (A.1) to verify that the function

f �� = u�� + iv�� is a complex-differentiable function of x + iy and ξ and ψ.

We have promoted the complex-differentiable function f of one variable z = x+iy

to a function f �� : C
2 → C of two complex variables ξ and ψ. We have also shown that

f �� is a complex-differentiable function of x+iy, and it is apparent that f ��(x, 0; y, 0) =

f(x, y) (i.e., f(z) with z = x + iy).

By construction, u�� and v�� and therefore f �� are complex-differentiable functions
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of ξ and ψ, so we can differentiate f �� with respect to the coordinates z = ξ + iψ and

z̄ = ξ = iψ. By using the relation

(z, z̄) = (ξ + iψ, ξ − iψ) ⇐⇒ (ξ, ψ) =

�
z + z̄

2
,
z + z̄

2i

�
(A.17)

with ξ := x+ ix�, ψ = y + iy� and x, x�, y, and y� ∈ R and writing ∂ := ∂z and ∂̄ := ∂z̄,

we find

∂f �� =
1

2
(∂ξ − i∂ψ)f �� (A.18)

=
1

2
(∂xu + i∂xv)− i

2
(∂yu + i∂yv), (A.19)

∂̄f �� =
1

2
(∂ξ + i∂ψ)f �� (A.20)

=
1

2
(∂xu + i∂xv) +

i

2
(∂yu + i∂yv). (A.21)

Because f �� is also a complex-differentiable function of x+ iy, we can use the Cauchy-

Riemann equations (A.1) to conclude that

∂f �� = ∂xu + i∂xv = ∂xf
�� = −i∂yf

��, (A.22)

∂̄f �� = 0. (A.23)

The first line shows that a derivative with respect to z is equivalent to a derivative

with respect to x or iy.

If a complex function f �� : C
2 → C satisfies (A.22-A.23) at the point (z, z̄) ∈ C

2,

then we say that f �� is holomorphic at (z, z̄), and we call z (resp. z̄) the holomorphic

(resp. antiholomorphic) coordinate. The coordinate representation (z, z̄) of a point

in C
2 may be replaced by the representation (ξ, ψ) defined through (A.17). These

coordinates, sometimes called space-time coordinates, may be written as ξ = x + ix�

and ψ = y + iy� for x, y, x�, y� ∈ R. In either set of coordinates, we may define the
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real surface

S = {(z, z̄) ∈ C
2 : z̄ = z∗} = {(ξ, ψ) ∈ C : x� = y� = 0}. (A.24)

Here and in the rest of this appendix, z∗ denotes the complex conjugate of z.

Our construction shows that if f is complex-differentiable at z ∈ C, then under

appropriate conditions, there exists a function f �� : C
2 → C holomorphic at (z, z̄) ∈ C

2

whose restriction to the real surface equals f . In an abuse of terminology, we say that

f is holomorphic at z if it is complex-differentiable at z. When we restrict to the

real surface, equations (A.22-A.23) become (A.2, A.5), and this gives meaning to the

interpretation of f as independent of z̄ (in a neighborhood of z).

Also in chapter one, we sometimes invoke the function f̄ �� = u − iv with u�� and

v�� defined in (A.15). This function is not the complex conjugate of f �� since u�� and

v�� may be complex. Repeating the calculations that led to (A.22-A.23), we find

∂f̄ �� = 0 (A.25)

∂̄f̄ �� = ∂xu− i∂xv = ∂xf̄
�� = −i∂yf̄

��. (A.26)

If a function f̄ �� : C
2 → C satisfy (A.25-A.26) at the point (z, z̄) ∈ C

2, we say that f̄ ��

is antiholomorphic at (z, z̄) ∈ C
2. We note that when restricted to the real surface,

f̄ is the complex conjugate of the function f used above.

A.2 Holomorphic tensors and space-time tensors

In this section, we briefly describe the transformation of space-time coordinates

to holomorphic coordinates for vectors and tensors. We let x ∈ C
2 with space-

time coordinates x0 = ξ, x1 = ψ and holomorphic coordinates x0 = z and x1 = z̄.

Throughout this section, we use the Greek labels µ, ν for space-time indices and α, β
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for holomorphic indices. We can use the relation (A.17) to convert between these

indices, and we have the contravariant rule

xα = hα

µ
xµ, ⇐⇒ xµ = (h−1)µ

α
xα, (A.27)

with h the tensor

hα

µ
=




1 i

1 −i



 , (h−1)µ

α
=

1

2




1 1

−i i



 . (A.28)

The conversion rule (A.27) may be generalized in the usual way for multiple tensor

indices. For example, if gαβ is a tensor, then

gαβ = hα

µ
hβ

ν
gµν , gµν = (h−1)µ

α
(h−1)ν

β
gαβ. (A.29)

In particular, if gµν is the metric tensor for the Euclidean metric, that is gµν = δµν ,

then we have the following metric tensor in holomorphic indices:

gαβ =




0 2

2 0



 , (g−1)αβ =




0 1

2

1

2
0



 . (A.30)

So far, we have given rules for conversion between two types of contravariant indices.

To convert a holomorphic index from covariant to contravariant, we use the usual rule

xα = gαβxβ, xα = (g−1)αβxβ, (A.31)

which leads to the relation xα = 2xβ �=α. This is the holomorphic version of the trivial

rule xµ = xµ. Finally, we can use these relations to uncover the covariant version of
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conversion rule (A.27):

xµ = xµ = (h−1)µ

α
xα = (h−1)µ

α
gαβ xβ = (k−1) β

µ
xβ, (A.32)

with k−1 := h−1g so that

k µ

α
=

1

2




1 −i

1 i



 , (k−1) α

µ
=

1

2




1 1

i −i



 . (A.33)

Thus, we have the conversion rule

xα = k µ

α
xµ, ⇐⇒ xµ = (k−1)µ

α
xα. (A.34)

Using these identities, we can transform usual space-time (i.e., cartesian) covariant

and contravariant transformation rules for tensor components to rules that work with

holomorphic/antiholomorphic coordinates. For example, one can now show that if φ

is the component of a tensor with covariant indices α = 0, β = 1 or α = 1, β = 0

component of a tensor, then under a holomorphic/antiholomorphic pair of maps f, f̄ ,

it will transform as

φ(z, z̄) �→ φ�(z�, z̄�) = ∂f(z)∂̄f̄(z̄)φ(z, z̄). (A.35)

In the next section, we will derive a generalization of this rule.

These conversion rules will be used in the next section of the appendix. There, we

will contrast the phenomenon of conformal invariance in more-than-two dimensions

to that in two-dimensions. In so doing, we will work with space-time indices in more-

than-two dimensions, and we will work with holomorphic indices in two dimensions

to exploit their notational convenience. The identities presented in this section will

allow us to convert between these two settings.
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APPENDIX B

A motivation of the conformal covariance

transformation law

This section of the appendix supplements chapter one of this thesis, and its pur-

pose is to motivate the transformation rule (1.48) for quasi-primary fields in CFT.

Throughout this section, we let φ be a smooth field (i.e., scalar, spinor, vector) on

R
d, we let f be a smooth, invertible transformation taking a subdomain of R

d into

R
d, and we let x� = f(x). Then f induces a transformation on φ, sending it to a new

field φ� for which x� is its argument. The transformation rule is written as

φ �→ φ�, φ�(x�) = F [φ](x) = F [φ] ◦ f−1(x�). (B.1)

The transformation F accounts for orientation change and other effects on the field φ

induced by f , and it depends on the point x in general. The field φ is called a scalar

field if F is the identity for any smooth f . In this case, (B.1) reads φ�(x�) = φ(x).

Suppose that the transformation f is infinitesimal within some subdomain Ω ⊂ R
d

and determined by a set of infinitesimal parameters {ωa} there. For example, if

f : R
3 → R

3 is a rotation, then this set consists of three infinitesimal Euler angles,

and Ω is a ball of sufficiently small radius centered at the origin. If we expand (B.1)

to first order in the infinitesimal parameters near zero, then we find that f has the
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following infinitesimal effect at x ∈ Ω:

xµ �→ x�µ = xµ + �µ(x), �µ(x) = ωa

δxµ

δωa

, (B.2)

φ �→ φ� = φ ◦ f−1 + δF [φ] ◦ f−1, δF [φ] = ωa

δF [φ]

δωa

, (B.3)

= φ− �µ∂µφ + δF [φ]. (B.4)

The generator Ga of the infinitesimal transformation is defined in terms of the vari-

ation of the field δφ = φ� − φ:

Ga[φ] := −i
δxµ

δωa

∂µφ + i
δF [φ]

δωa

, =⇒ −iωaGa[φ] = δφ. (B.5)

A transformation f : R
d → R

d is conformal at x is it preserves the metric tensor

there to within a local scale factor and is conformal in Ω ⊂ R
d if it is conformal

at every point in Ω. (In two dimensions, this definition reduces to the definition

for conformality that is given in section 1.1.4.) One can show that when d > 2, a

transformation x �→ f(x) = x + �(x) that is infinitesimal and conformal in Ω has the

following expansion to first order in its infinitesimal parameters:

�µ(x) = aµ +ωµ
ν (xν−ξν)+b(xµ−ξµ)+[2(xµ−ξµ)x ·c−cµ|x−ξ|2], x, ξ ∈ Ω. (B.6)

Here, the infinitesimal real parameters are aµ, b,ωµ
ν , cν , and ξ is some reference point

in Ω. The first, second, and third term signifies a translation, rotation about ξ, and

dilation about ξ respectively, and the last term signifies a SCT, which is in inversion

about ξ followed by an translation followed by another inversion about ξ. The rotation

tensor ωµν in two dimensions is given in terms of the rotation angle θ by

ωµν =




0 −θ

θ 0



 . (B.7)
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It is evident from (B.6) that a transformation that is infinitesimal in Ω cannot be

infinitesimal over all of R
d unless b, ωµ

ν , and cν are all zero. In the following discussion,

we assume that the infinitesimal parameters are so small that zero is in Ω and we can

choose ξ = 0.

The generator corresponding with each of these four transformations may be com-

puted for a scalar field (δF [φ] = 0) via (B.5). These generators, which we generically

label as Ga, are given in table B.1. Their commutation relations generate the confor-

mal Lie algebra:

[D,Pµ] = iPµ (B.8)

[D,Kµ] = −iKµ (B.9)

[Kµ,Pν ] = 2i(ηµνD − Lµν) (B.10)

[Kρ,Lµν ] = i(ηρµKν − ηρνKµ) (B.11)

[Pρ,Lµν ] = i(ηρµPν − ηρνPµ) (B.12)

[Lµν ,Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ). (B.13)

Here, the metric tensor ηµν is the identity matrix δµν . Furthermore, we can use the

Hausdorff lemma,

e−ABeA = B + [B, A] +
1

2
[[B, A], A] + . . . , (B.14)

δF [φ] = 0 ωa �µ(x) Ga

translation aµ aµ Pµ = −i∂µ

rotation ωµν

ωρν

2
(ηρµxν − ηνµxρ) 1

2
Lµν(x) = i

2
(xµ∂ν − xν∂µ)

dilation b bxµ D(x) = −ixν∂ν

SCT cµ 2xνbνxµ − bµ|x| Kµ(x) = −i(2xµxν∂ν − |x|2∂µ)

Table B.1: The infinitesimal parameters, the infinitesimal coordinate variation, and the
generator for a scalar field corresponding to each of the four types of infinitesimal conformal
transformations in more than two dimensions.
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to show that each generator may be mapped from zero to some x ∈ Ω via conjugation

by the translation operator exp(ixρPρ):

Ga(x) = eix
ρPρGa(0)e−ix

ρPρ . (B.15)

To show this, we keep only terms with first derivatives in the series (B.14) and take

care to evaluate the commutators before setting the argument of Ga to zero on the

right side of (B.15).

We let the elements of S = {Pµ, Lµν , D, Kµ} respectively be, from left to right,

the generators of infinitesimal translations, rotations, dilations, and SCTs of a field

φ where δF [φ] may be nonzero except for translations, and we let Ga be a generic

label for an element of S. Because S must also generate the conformal Lie algebra,

it elements will obey the commutation relations (B.8-B.13) with Ga �→ Ga for each

generator. If we further suppose that each Ga may be translated via conjugation

(B.15), then we can use (B.14) to calculate each generator Ga(x) in terms of Ga(x)

and Ga(0). Furthermore, we can use this result to calculate the field variation, which

equals δF = −iωa(Ga − Ga) according to (B.5). The results are given in table B.2.

We can use (B.8-B.10) and the Jacobi identity to show that [D(0), Lµν(0)]= 0. If

we employ an irreducible representation of the sub-algebra generated by the collection

{Lµν(0)}, then this commutation relation and Schur’s lemma imply that D(0) must

be a multiple of the identity matrix. We take D(0) = −i∆ (supposing that ∆ is

real), and we call ∆ the scaling weight of the field φ. The commutation relation (B.9)

evaluated at zero then implies that Kµ(0) = 0.

From (B.6), we observe that an infinitesimal conformal transformation in d > 2

dimensions has a finite number of degrees of freedom. However, we find considerably

less restriction in two dimensions. Indeed, one can show that if a transformation

z �→ f(z) = z + �(z) is infinitesimal and conformal on Ω ⊂ C , then � is analytic on
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Ga(x) δF(x)

translation Pµ = Pµ 0
rotation Lµν(x) = Lµν(0) + Lµν(x) − i

2
ωµνLµν(0)

dilation D(x) = D(0) +D(x) −ibD(0)
SCT Kµ(x) = Kµ(0) + 2xµD(0) −icµ[Kµ(0) + 2xµD(0)

−xνLµν(0) +Kµ(x) −2xνLµν(0)]

Table B.2: The generator and the field variation of a non-scalar field that accompany the
four types of infinitesimal conformal transformations.

Ω. Thus �(z) has a power series expansion at each ζ ∈ Ω, so

�(z) = a + (b + iθ)(z − ζ) + c(z − ζ)2 + . . . , z, ζ ∈ Ω, (B.16)

where a, c ∈ C and b, θ ∈ R are infinitesimal. Also, the antiholomorphic version

z̄ �→ f̄(z̄) = z̄ + �̄(z̄) is

�̄(z̄) = ā + (b− iθ)(z̄ − ζ̄) + c̄(z̄ − ζ̄)2 + . . . , z̄, ζ̄ ∈ Ω̄. (B.17)

Such an infinitesimal transformation has an infinite number of degrees of freedom cap-

tured by the coefficients of the terms in the series. We note that in two dimensions,

the first three terms of (B.16, B.17) agree with (B.6) when written in space-time coor-

dinates with (ζ, ζ̄) �→ ξ with the barred coordinates equaling the complex conjugates

of the corresponding unbarred coordinates. We also note that this transformation is

infinitesimal on all of C only if all but the zeroth order term are present. This is

an example of Liouville’s theorem. (Because the holomorphic and antiholomorphic

sectors are essentially the same, we will omit explicit reference to the latter for now.)

If we further require that f is a global conformal transformation that is infinites-

imal in Ω, that is, of the form

f(z) =
(1 + b�/2)(z − ζ) + a�

−c�(z − ζ) + 1− b�/2
, z, ζ ∈ Ω (B.18)
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with a�, b�, c� ∈ C infinitesimal, then the expansion (B.16) terminates at second order,

just as it did in d > 2 dimensions for any transformation that is conformal and

infinitesimal in Ω:

�(z) = f(z)− z ≈ a� + b�(z − ζ) + c�(z − ζ)2, z, ζ ∈ Ω. (B.19)

We will focus on this special case for now. As usual, the zeroth and second order

terms capture translation and SCTs respectively, while the first order term captures

both rotation and dilation by virtue of the fact that b� is complex.

Next, we derive a useful identity for the variation of the field φ under a global

conformal transformation that is infinitesimal in Ω. (We suppose that zero is in Ω,

and we set ζ = 0.) Because Lαβ(0) is antisymmetric, we may write Lαβ(0) = −εαβS,

where S is a spin operator acting on some space of states in analogy with quantum

mechanics. We suppose that φ is an eignevector of the spin operator, with eigenvalue

s called the spin of the field φ, and εαβ is the antisymmetric tensor in complex

coordinates:

εαβ = −2i




0 1

−1 0



 , εαβ =
i

2




0 1

−1 0



 . (B.20)

By summing the contribution of each type of conformal transformation to the to-

tal variation δF(z) (the right columns of table (B.2)) and substituting Lαβ(0) =

sεαβ, D(0) = −i∆, Kα(0) = 0, we find

δF [φ](z) =

�
is

2
ωαβεαβ − b∆− 2cα(∆zα + iszβεαβ)

�
φ (B.21)

for the infinitesimal variation of the field φ in response to the global conformal trans-

formation (B.6) that is infinitesimal at z. In holomorphic coordinates and with ξ = 0,
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this transformation is

�α(z) = aα + ωα
β zβ + bzα + (2zαzβcβ − cαzβzβ), z ∈ Ω. (B.22)

By exploiting the fact that ηαβ and ωαβ are respectively symmetric and antisymmetric,

we can rewrite the transformation law (B.21) as

δF [φ] = −2hαβφ∂β�α = −hφ∂�− h̄φ∂�̄ (B.23)

(now we are showing the antiholomorphic contribution too), where hαβ is the tensor

hαβ =
1

2

�
ηαβ∆− iεαβs

�
=

1

2




0 ∆− s

∆ + s 0



 , (B.24)

and h := h10 (resp. h̄ := h01) is called the holomorphic (resp. antiholomorphic)

conformal weight of the field φ. From (B.4), we thus find the total variation in the

field under a global conformal transformation that is infinitesimal in Ω:

δφ(z, z̄) := φ�(z, z̄)− φ(z, z̄), z ∈ Ω. (B.25)

= −�∂φ(z, z̄)− �̄(z̄)∂̄φ(z, z̄)− hφ(z, z̄)∂�(z)− h̄φ(z, z̄)∂̄�̄(z̄). (B.26)

If the field has zero holomorphic and antiholomorphic weights, then F is the iden-

tity, and φ�(z�, z̄�) = φ(z, z̄). In this case, (B.26) reduces to the generic transformation

law found by expanding δφ(z) = φ(z� − �)− φ(z) to first order in �:

δφ = −�∂φ− �̄∂̄φ (B.27)

In the more general case where � (resp. �̄) has a Laurent expansion �(z) =
�

k
�k(z −
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ζ)k+1 (resp. �̄(z̄) =
�

k
�̄k(z̄ − ζ̄)k+1), we may write (B.27) as

δφ(z, z̄) =
�

n

(�n�n(ζ)φ(z, z̄) + �̄n�̄n(ζ̄)φ(z, z̄)), (B.28)

where

�n(ζ) = −(z − ζ)n+1∂, �̄n(ζ̄) = −(z̄ − ζ̄)n+1∂̄. (B.29)

The generators �n, �̄n obey the Witt algebra:

[�n, �m] = (n−m)�n+m, [�̄n, �̄m] = (n−m)�̄n+m, [�n, �̄m] = 0. (B.30)

The sub-aglebra generated by {�−1, �0, �1} (and its antiholomorphic counterpart) are

generators of infinitesimal global conformal transformations. �−1, �̄−1 and �1, �̄1 gen-

erate translations and SCTs respectively, while the combinations �0 + �̄0 and i(�0− �̄0)

generate dilations and rotations.

Now we use (B.26) to motivate a transformation rule for φ under a non-infinitesimal

global conformal map. It is easy to show that the rule

φ�(z�, z̄�) = ∂f(z)−h∂̄f̄(z̄)−h̄φ(z, z̄), (B.31)

is equivalent to (B.26) to first order in �, ∂�. If a field transforms as in (B.31),

then we say that φ is conformally covariant at z (resp.z̄) with holomorphic weight h

(resp. antiholomorphic weight h̄).

We argue heuristically that for global conformal f , (B.31) is the unique trans-

formation rule that reduces to (B.26) if f is infinitesimal. Suppose that we divide

f into a composition of M uniformly (in some sense) infinitesimal global conformal

transformations f1, . . . , fM so that f = fM ◦ . . . ◦ f1. Let zm = fm ◦ . . . ◦ f1(z) and

z� = fM(zM−1) = f(z). Then be repeatedly applying the transformation law (B.31),
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we find that to leading order

φ�(z�, z̄�) = ∂fM(zM−1)
−h . . . ∂f1(z)−h∂̄f̄M(z̄M−1)

−h̄ . . . ∂̄f̄1(z̄)−h̄φ(z, z̄) (B.32)

= ∂f(z)−h∂̄f̄(z̄)−h̄φ(z, z̄). (B.33)

By increasing M , we decrease the error in (B.32) that arises from lower order terms

until we have the exact result (B.31). A field that transforms according to (B.31)

under a global conformal transformation is called a quasi-primary field, while a field

that transforms as in (B.31) at an point z where f is just conformal is called a primary

field. By definition, a primary field is quasi-primary, but a quasi-primary field may

not be primary. The transformation rule (B.33) can be understood as a generalization

of the conventional covariant tensor transformation rule (A.35). The former reduces

to the latter in the case that φ is a spinless field with scaling weight two.
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tions, and conformal field theory. J. Phys. A, 39:12601–12656, 2006.

[34] P Ginsparg. Applied conformal field theory. In Fields, Strings and Critical
Phenomena, (Les Houches, Session XLIX). North-Holland, 1989.

[35] V G Kac and A K Raina. Bombay lectures on highest-weight representations of
infinite dimensional Lie algebras. World Scientific, 1987.

[36] D Friedan, Z Qiu, and S Shenker. Conformal invariance, unitarity, and critical
exponents in two dimensions. Phys. Rev. Lett., 52:1575–1578, 1984.

[37] V G Knizhnik, A M Polyakov, and A B Zamolodchikov. Fractal structure of 2d
quantum gravity. Mod. Phys. Lett., A3:819, 1988.

[38] D Friedan, Z Qiu, and S Shenker. Superconformal invariance in two dimensions
and the tricritical Ising model. Phys. Lett., 151B:1–15, 1984.

[39] V S Dotsenko. Critical behavior and associated conformal algebra of the Z3 Potts
model. Nucl. Phys., B235:54–74, 1984.

[40] B Nienhuis, E K Riedel, and M Schick. Magnetic exponents of the two-
dimensional Q-state Potts model. J. Phys. A: Math. Gen., 13:L189–L192, 1980.

[41] J Cardy. Critical percolation in finite geometries. J. Phys. A Math Gen.,
25:L201–L206, 1992.

[42] R Langlands, P Pouliot, and Yvan Saint-Aubin. Conformal invariance in two-
dimensional percolation. Bull. Amer. Math. Soc., 30:1–61, 1994.

[43] R P Langlands, M A Lewis, and Y Saint-Aubin. Universality and conformal
invariance for the Ising model in domains with boundary. J. Stat. Phys., 98:131–
244, 2000.

[44] S Smirnov. Conformal invariance in random cluster models. I. Holomorphic
fermions in the Ising model. Ann. Math., 172:1435–1467, 2010.

[45] J Cardy. Conformal invariance and surface critical behavior. Nucl. Phys. B,
240:514–532, 1984.

[46] J Cardy. Boundary conditions, fusion rules, and the Verlinde formula. Nucl.
Phys. B, 324:581–596, 1989.

345



[47] J J H Simmons. Applications of Conformal Field Theory to Problems in 2D
Percolation. PhD thesis, University of Maine, 2007.

[48] J J H Simmons and P Kleban. First column boundary operator product expan-
sion coefficients. preprint, arXiv:0712.3575v2, 2008.

[49] G Lawler. Conformally Invariant Processes in the Plane. American Mathemat-
ical Society, 2005.

[50] V Beffara. The dimensions of the SLE curves. Annals of Probability, 36:1421–
1452, 2008.

[51] G Lawler. A self-avoiding walk. Duke Math. J., 47:655–694, 1980.

[52] G Lawler, O Schramm, and W Werner. Conformal invariance of planar loop-
erased random walks and uniform spanning trees. Ann. Prob., 32:939–995, 2004.

[53] G Madra and G Slade. The Self-Avoiding Walk. Birkhäuser, Boston, 1996.
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