
Fungal biocontrol in coffee: a case study in agroecology

by

Douglas W. Jackson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Ecology and Evolutionary Biology)

in The University of Michigan
2012

Doctoral Committee:

Professor John H. Vandermeer, Chair
Professor Ivette Perfecto
Professor Pej Rohani
Assistant Professor Timothy Y. James

Acknowledgements

In one sense, acknowledgements are an absurdity. Every human accomplishment,
without exception, is the result of the collective efforts of innumerable actors. Singling
out a few for recognition is akin to calling five raindrops out by name to thank them for
watering one's corn: it leaves a lake of contributors unacknowledged. In another sense,
however, any occasion to acknowledge a few of the larger raindrops is an opportunity to
be treasured. I feel a tremendous amount of gratitude for the support of the following
people whose efforts made my doctoral experience possible and enjoyable.

It will come as no surprise to those who know him that the support of my doctoral
advisor, John Vandermeer, has been extraordinary. As a mentor, role model, fount of
enthusiasm, and friend, John is simply outstanding. With his exceedingly rare
combination of incisiveness, generosity of spirit, and tireless dedication to understanding
and improving the world, he embodies a standard for how to live life that is truly
inspiring.

Each of my committee members provided invaluable guidance that greatly
improved my research. Ivette Perfecto played a crucial role throughout my graduate
school career as a leader of the Finca Irlanda research group, a rich source of natural
history knowledge and intuition, and as a reliable judge of the scientific merit of
experimental ideas, results, and analyses. As with John, she is a wonderful inspiration for
how to successfully employ science for the people. Tim James has been a fantastic
collaborator, and has shown amazing patience in teaching me the basics of lab work and
population genetics analysis. But more importantly, he has been a great friend and source
of counsel. Pej Rohani helped to provide a firm technical grounding for my modeling
work, both through his direct help and via his published articles and textbook that I
continue to reference often. The rigor of my modeling work was undoubtedly enhanced
just by knowing that it would be read by such an accomplished theoretician.

Professor Bill Kovalak's faith in me when I was still an engineer tentatively
testing the waters of ecology gave me the courage to make the leap. Though she is
unaware of it, Catherine Badgley's contribution to the book "Fatal Harvest" also came at
a critical time, and gave me the necessary conviction to continue my plan of entering
graduate school when it appeared to be a hopeless dream. Beverly Rathcke and Krista
McGuire were instrumental in helping me in the very early stages of my graduate school
career; without their encouragement, I might not have made it over the first daunting
hurdles that I faced while switching careers. I wish Beverly could have been here to see
me pass this milestone, as none of this would have been possible without her. She is
missed dearly.

Early in my graduate school experience, my new lab mates – Shalene Jha, Jahi
Chappell, Krista McGuire, Zach Miller, Heidi Liere, and Javier Ruiz – were incredibly

ii

helpful and welcoming. They set a precedent of high achievement that I still rely on to
this day as a benchmark. Along with Stacy Philpott, their example serves as a model
worthy of emulation. All of the other members of the Perfectomeer lab, both official and
unofficial, have been like a family. Their support and camaraderie continue to be
indispensable. Without Senay Yitbarek's daily "new theories," Dave Allen's eagerness to
engage in stimulating conversation about any and every interesting topic – from baseball
to baking – and frequent runs/conversations about science and life with Aaron Iverson,
my time as a graduate student would have been much less fun and much less productive.
Sahar Haghighat provided a final push to help me complete the writing process. Field
work on the farm in Mexico was greatly enriched by everyone in the extended family:
Kate Ennis, Dave Gonthier, Jes Skillman, Ashley Larson, Theresa Ong, Jane Remfert,
Linda Marin, Hsunyi Hsieh, Casey Taylor, Katie Goodall, George Livingston, Kim
Williams-Guillén, the Toledo Contingent, Gustavo López-Bautista, Aldo A De la Mora
Rodríguez, Gabriel Humberto Dominguez Martinez, Braulio Estaban Chilel, and all of
the other Finca Irlanda compañer@s. I especially thank Kate Zemenick and Andy
MacDonald, aka Team Lecanii, for their hard work and friendship.

The EEB community also played a crucial role in making this work possible. I am
in awe of how hard the office staff works to ensure that all of the administrative details
are taken care of, and how composed they are despite the number of plates they have to
keep spinning. In particular, Jane Sullivan deserves a medal for her tremendous efforts
and patience in managing the sundry last-minute complications that tend to arise during a
graduate school career. My Ph.D. cohort, especially Jingchun Li, Ed Baskerville, and
Andres Baeza, have been wonderful traveling companions.

As an international collaborative effort, my work would not have been possible
without the kind assistance of our colleagues in Mexico. I thank Don Walter Peters for
permission to work on his farm and for his commitment to conservation. El Colegio de la
Frontera Sur (ECOSUR) in Tapachula, Mexico provided much-needed assistance and on-
site laboratory facilities. In particular, Graciela Huerta, a collaborator and co-author of
Chapter II, was extremely generous with her time and mycological expertise. Ricardo
Alberto Toledo Hernández and Juan Cisneros Hernández at ECOSUR provided valuable
assistance with laboratory work.

I am very grateful for the world-class intellectual community at U of M,
particularly the New World Agriculture and Ecology Group, the Complex Systems
Advanced Academic Workshop, the Tropical Biology Seminar, and the Mycology
Discussion Group. Rick Riolo and the Center for the Study of Complex Systems provided
much technical assistance and the computer resources that made all of my computer
simulation work possible.

Science could not happen without the generous support of funding providers. I am
particularly thankful for the support provided by the Graham Environmental
Sustainability Institute. Through their efforts to foster a community of leaders in
sustainability, they give me hope for the future. The International Institute, the Rackham
Graduate School, and the EEB department also provided critical funding.

iii

In addition to their aforementioned support, I thank the following people who
were co-authors of various parts of this dissertation, as reflected in the bibliography: John
Vandermeer, Ivette Perfecto, Kate Zemenick, Graciela Huerta, Jes Skillman, and Dave
Allen.

I am extremely fortunate to have had the following people standing behind me
throughout this lengthy journey: my brother Nick, who has been an inspirational model of
perseverance; my mom, who always had faith in me; my sister Sandi, who personifies the
best that family can offer; and my brother Gerry, who would be a treasured friend even
without Hamilton's rule. Finally, because words would not begin to do her unwavering
support and friendship justice, I will conclude with a simple thanks to Aley Joseph.

iv

Table of contents

Acknowledgements ii

List of Figures vii
List of Tables x

List of Appendices xi
CHAPTER I. Introduction 1

Summary of dissertation 5
CHAPTER II. Occurrence in the soil and dispersal of Lecanicillium lecanii, a fungal pathogen of

the green coffee scale, Coccus viridis, and coffee rust, Hemileia vastatrix 17
Methods 19

Results 28
Discussion 30

CHAPTER III. Spatial and temporal dynamics of a fungal pathogen promotes pattern formation
in a tropical agroecosystem 37

Methods 39
Results 44

Discussion 52
CHAPTER IV. Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the

entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem 59
Methods 63

Results 65
Discussion 76

CHAPTER V. The evolution of imperfect prudence 80
The model 83

Results 85
Discussion 95

CHAPTER VI. Self-organization of background habitat determines the nature of population
spatial structure 101

The metapopulation-source/sink continuum: theory 103
Self-organization of habitat patches and consequences for equilibrium patch occupancy 111

An empirical example 116
Conclusions 120

v

CHAPTER VII. Detection of imminent, non-catastrophic regime shifts 122
Methods 125

Results 132
Discussion 138

CHAPTER VIII. Conclusion 142

APPENDICES 145
BIBLIOGRAPHY 279

vi

List of figures

II.1. Location of A. instabilis ant nests (solid circles) in 45 ha plot 21

II.2. Locations of soil samples on transects leading away from foci of two L. lecanii epizootics 21
III.1. Graph of transformed Ripley’s K versus radius of sampling circle 44

III.2. Representation of two intensively sampled sites in the study area 46
III.3. Scales and fungus in coffee bushes surrounding two shade trees 48

III.4. Number of healthy (white) and infected (black) scales on the branches of 4 shoots on a single
coffee bush. 49

III.5. The black line represents the high-fitness region in v, t1 parameter space in which it is possible to
generate spatial patterns of ant nests that are qualitatively and quantitatively similar to the pattern

observed in the field. 50
III.6. Example snapshot of the ant and fungus CA model for v = 0.35, t0 = 0, t1 = 0.63, and a = 0.007 51

III.7. Time series for a representative run of the ant and fungus CA model for v = 0.35, t0 = 0, t1 = 0.63,
and a = 0.007 51

III.8. Data from two sites at two different times, illustrating the stages of development of the fungal
pathogen, L. lecanii and its host C. viridis 54

IV.1. The basic biology of the system 62
IV.2. Protocol for C. viridis and L. lecanii surveys, adapted from Perfecto and Vandermeer (2006) 64

IV.3. Abundance of L. lecanii and prevalence of H. vastatrix in Site A in a) 2009 and b) 2010 66
IV.4. Number of leaves per plant with H. vastatrix lesions versus the distance to the center of mass of

the L. lecanii concentration in a) 2009 [R2 = 0.148, P < 0.001] and b) 2010 [R2 = 0.133, P < 0.001] in
Site A 67

IV.5. Abundance of L. lecanii and prevalence of H. vastatrix in Site B in a) 2009 and b) 2010 68
IV.6. Number of leaves per plant with H. vastatrix lesions versus the distance to the center of mass of

the L. lecanii concentration in a) 2009 [R2 = 0.018, P = 0.004] and b) 2010 [R2 = 0, P = 0.921] in Site B 69
IV.7. Prevalence of L. lecanii in 2009 and change in prevalence of H. vastatrix from 2009 to 2010 in

Site A 70
IV.8. Change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as a

function of the distance to the center of mass of the L. lecanii concentration in 2009 in Site A
[R2 = 0.315, P < 0.001] 71

IV.9. a) Coefficients of determination (R2) and b) effect sizes (slopes) for linear regressions of the
change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as a

function of the distance to points within Site A 72

vii

IV.10. Abundance of L. lecanii in 2009 and change in prevalence of H. vastatrix from 2009 to 2010 in
Site B. Diameters of open circles are proportional to the estimated number of infected C. viridis on

coffee plants, with the largest circle corresponding to 468 infected scales 73
IV.11. Change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as a

function of the distance to the center of mass of the L. lecanii concentration in 2009 in Site B
[R2 = 0.011, P = 0.017] 74

IV.12. a) Coefficients of determination (R2) and b) effect sizes (slopes) for linear regressions of the
change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as a

function of the distance to points within Site B 75
V.1. Evolutionary dynamics of 100 representative realizations of the model initialized above and

below the ESS host reproduction probability, g, of approximately 0.20 86
V.2. Pairwise invasibility plot showing the probability that an invading strategy with a host reproduction

probability gI can beat a resident strategy gR 87
V.3. The spatial structure of the host population for various host reproduction probabilities, g (shown

in the upper righthand corner of each square) 88
V.4. Relative cumulative frequency of hosts of a given age at death for various host reproduction

probabilities (g) 89
V.5. Relative cumulative frequency of the total number of descendants per host upon death for various

host reproduction probabilities (g) 90
V.6. Representative snapshot of the model after the evolutionary equilibrium has been achieved 91

V.7. Illustrative example of the growth of clusters of rapidly-reproducing hosts (orange cells, g = 0.8)
being constrained by more slowly reproducing hosts (blue cells, g = 0.2) 91

V.8. Change in the relative cumulative frequency of hosts of a given age at death for various host
reproduction probabilities (g) attempting to invade a resident host population with g = 0.2. 92

V.9. Change in the total number of descendants per host upon death for various host reproduction
probabilities (g) attempting to invade a resident host population with g = 0.2 93

V.10. Grand means of the host population size versus the host reproduction probability (± 1 s.e.m.) 94
VI.1. Diagrammatic illustration of the two extreme forms of population organization in a fragmented

habitat 105
VI.2. Graphical composition of the three essential functions to produce the relationship between

migration rate (m) and extinction rate (e), based on the fundamental monotonic relationship between
cm and nT 106

VI.3. Average fraction of patches occupied as a function of the scaling parameter of the original “self-
organized” habitat distribution, from simulation experiments 111

VI.4. The mean fraction of habitat patches occupied for landscapes with different amounts of habitat 113
VI.5. Representative landscapes corresponding to the data shown in Figure VI.4 115

VI.6. Ripley's K for the scenarios identified in Figures VI.4-VI.5 115
VI.7. Cluster size distributions for the scenarios identified in Figures VI.4-VI.6 116

VI.8. Relationship between cluster scale and number of singletons (blue curves descending) and

viii

number of points in the largest patch (red curves ascending) 118
VI.9. Time series of 35 populations of Coccus viridis at 7 distinct locations in a 45 ha plot on an

organic coffee farm in Chiapas, Mexico 119
VI.10. Distributions of ant nests in a 45 ha plot, represented as 17 m diameter gray circles, along

with X’s marking the locations where at least one neighboring coffee bush contained green coffee
scale insects in a) 2009 and b) 2010 120

VII.1. Snapshot of the stochastic, spatially-explicit model 128
VII.2. Median fraction of sites with infected individuals, averaged over 100 realizations of the model,

as a function of the rate of translocation from the environmental reservoir to the infectious class (ν) 134
VII.3. Median number of sites with infected individuals, averaged over 100 realizations of the model,

as a function of the mortality rate of latent pathogens, ρ 135
VII.4. Translocation rate (ν), total number of infecteds, correlation length (Ψ), skewness, and variance

for two regime shift scenarios 136
VII.5. Mortality rate of latent spores (ρ), total number of infecteds, correlation length (Ψ), skewness,

and variance for a scenario in which ρ was increased across a regime shift threshold 137

ix

List of Tables

II.1. Locations of positive G. mellonella and C. viridis baiting results 29

V.1. Default parameter values 85
VII.1. Model parameters and default values 131

x

List of Appendices

A. Computer code for Chapter V: The evolution of imperfect prudence 146

B. Computer code for Chapter VI: Self-organization of background habitat determines the nature of
population spatial structure 223

C. Computer code for Chapter VII: Detection of imminent, non-catastrophic regime shifts 237

xi

CHAPTER I

Introduction

Few things are more fundamental to human health and happiness than food. Not

surprisingly, the future of agriculture, which is the primary means by which modern

humans obtain food, generates vigorous debate. Unfortunately, this debate is frequently

ineffective, often being waged in a polarized war between two camps that occupy

opposite sides of an idealogical divide. On one side of this divide are those who view

what has come to be called "conventional" agriculture as the best (the only) way to feed

the growing human population. On the other side are those who point to the tremendous

environmental and social costs of conventional agriculture and call for a return to an

approach rooted in traditional knowledge, concern for the environment, and a rejection of

the entire corporate, industrial agriculture paradigm. As is often the case with these kinds

of debates, one wonders if there might be another, better alternative that transcends the

artificial axis separating the naiveté of the technocrats and the romanticism of many who

reject their vision. The goal of my research has been to contribute to the efforts of those

who are attempting to create this alternative. Thankfully, there are hopeful signs that an

alternative is possible. For anyone with an interest in creating a world in which humans

can comfortably and happily exist in peace, this is good news.

Conventional agriculture is an approach that is fundamentally based in

reductionism. Problems are identified, disassembled into their component parts, and then

solved in a serial fashion. Your cotton is being attacked by bollworms? Plant Bt cotton.

Now mirids have emerged as a problem? Search for a pesticide or genetic modification

that will control this secondary pest. And so on. While the reductionist technique has

been responsible for numerous scientific and technological advances in fields such as

physics and engineering, the inherent complexity of ecosystems – even the drastically

simplified systems typical of conventional agriculture – leads to a rippling of unintended

1

consequences when such attitudes are applied. Although it could be argued that the Green

Revolution program of Norman Borlaug, now championed in its modern form by Bill

Gates and a bevy of agricultural input suppliers, led to massive increases in yields and

saved millions of human lives, an equally compelling argument could be made that it was

this program's singleminded focus on technical solutions (narrowly defined) that led to

the litany of environmental and health crises associated with conventional agriculture.

Cultural eutrophication, soil erosion, habitat fragmentation, farmers' toxic work

environments, the dissipation of rural communities, and a profusion of other negative

effects can be traced back to the reductionism of conventional agriculture.

Considering the incontrovertible shortcomings of conventional agricultural

practices, it is not surprising that countermovements have arisen, most prominently under

the umbrella of "organic agriculture." Unfortunately, this movement is too often defined

by what should not be, and not often enough by what should be. Many synthetic

fertilizers, pesticides, herbicides, and fungicides have been shown repeatedly to harm the

environment and human health. So, clearly, they should be avoided if possible, and this is

exactly what proponents of organic agriculture call for. However, it is not enough to

advocate for the avoidance of certain substances and techniques without addressing the

underlying issues that led to their use in the first place. Although many of the driving

forces behind the adoption of agrochemical-intensive agriculture had very little to do with

agricultural problems per se, agriculture does present various challenges that must be

addressed. Replacing a facile technophilia with an equally facile nostalgia is insufficient.

So, what would a desirable alternative entail? The general, philosophical answer

is clear. As Lewontin and Levins argue, agriculture was traditionally labor intensive, is

currently capital intensive, and urgently needs to become knowledge intensive (Lewontin

and Levins 2007). Many of the ills associated with conventional agriculture are a

consequence of the drive by corporations to inject capital – large, expensive machinery,

patented seeds, synthetic agrochemical inputs – into the agricultural system, regardless of

any negative secondary consequences – provided that these deleterious side effects can be

profitably externalized. A strategy based on profound, non-monetized agricultural

2

knowledge, in contrast, would make positive outcomes, and not positive returns, the

central focus of agriculture.

But what is really meant by "knowledge intensive"? After all, agriculture has

always been a very complex, difficult endeavor, requiring incredible skill and knowledge

to successfully cope with sundry interacting biological components and the vicissitudes

of the environment. In the words of Adam Smith (1776):

"No apprenticeship has ever been thought necessary to qualify for
husbandry, the great trade of the country. After what are called the fine
arts, and the liberal professions, however, there is perhaps no trade which
requires so great a variety of knowledge and experience. The innumerable
volumes which have been written upon it in all languages may satisfy us,
that among the wisest and most learned nations, it has never been regarded
as a matter very easily understood. And from those volumes we shall in
vain attempt to collect that knowledge of its various and complicated
operations which is commonly possessed even by the common farmer;
how contemptuously soever the very contemptible authors of some of
them may sometimes affect to speak of him."

If it is true that successful agriculture inherently requires a formidable amount of

knowledge, and I think it is true, what is meant by a transition to "knowledge-intensive

agriculture"? The answer lies in the type of knowledge that local practitioners (Smith's

"common farmer") typically possess. Whereas farmers usually have knowledge that is

specific, heuristic, phenomenological, and not generalizable to other systems and other

contexts, modern science gives us an ability to make observations and perform analyses

that are qualitatively different from what was previously possible, thereby generating a

fundamentally different type of knowledge that can, ideally, complement more traditional

types of knowledge. Modern science provides tools and techniques that allow us to detect

and analyze patterns that are too subtle to be detected by practitioners; that span multiple

systems; that unfold across large temporal and spatial scales; and that involve significant

non-linearities and emergent properties.

The alternative approach, then, involves embracing and confronting the

complexity of agricultural systems using the tools of modern science. It is a scientific

approach, but it is not a reductionist science. It entails a deep understanding of the

3

processes, interactions, and functions that characterize the components of agriculture,

from genomes to biomes, in their actual context. This approach, most commonly referred

to as agroecology, is the basis that underpins my research philosophy.

I conceive of agroecology as having three essential components. First, a thorough

knowledge of the system, grounded in natural history, is crucial. Second, all of the

appropriate tools from the science of ecology should be brought to bear on the system,

including mathematical modeling, genetics, computer simulation, evolutionary ecology,

biochemistry, etc. Finally, there should be a continuous, iterative dialog between theory

and empiricism, with experiments and observations giving rise to theory which in turn

suggests further experimentation and observation.

In my own research, I have worked to understand how Lecanicillium lecanii, a

mycoparasitic and entomopathogenic fungus, provides the ecosystem service of pest

control in an organic coffee farm in Mexico, using this system as both a focus in its own

right and as a source of inspiration for more abstract, theoretical ideas about spatial

ecology and evolution. In the chapters that follow, I will describe a portion of this

research in an arc that will hopefully give the reader a clear sense of the progress that has

been made towards understanding the role that this fungus plays in the complex coffee

agroecosystem, but also, from a more philosophical perspective, demonstrate one

example – albeit an imperfect one – of a single iteration of the dialog between empiricism

and theory.

 The arc through which my research unfolded, from basic empirical research into

the natural history and biocontrol potential of L. lecanii, to theoretical models inspired by

the L. lecanii system, and finally to a simulation model with potential implications for the

monitoring and management of L. lecanii as a conservation biological control agent,

derived partly from my philosophy of agroecological research and partly from necessity.

Given the relative paucity of information in the literature about the ecology of L. lecanii

under field conditions, there was a strong need to fill in certain gaps in our natural history

knowledge, which gave me an opportunity to develop a foundational intuition about the

study system while contributing to the basic literature about L. lecanii. Chapter II

4

(Jackson et al. In press), Chapter III (Jackson et al. 2009) and Chapter IV (Jackson et al.

2012) represent this phase. This field experience proved invaluable for sparking the

theoretical ideas that I explore in Chapter V and Chapter VI (Jackson et al. In review).

Finally, in an attempt to close the loop, I apply some of the combined empirical

knowledge and theoretical insights that I gained during this process to a simulation model

of the study system. This work is contained in Chapter VII.

Summary of dissertation

Study system

The study site upon which much of this work was focused is located on a 300

hectare organic coffee farm in Chiapas, the southernmost state of Mexico. This farm,

Finca Irlanda, is the oldest certified organic coffee farm in the world, and has been

studied intensively by researchers from the University of Michigan and the University of

Toledo since the mid 1990s. A primary goal of this research has been to reveal the

complex network of interactions present in this agroecosystem, and to understand how

this system is affected by changes in management intensity.

At the core of the agroecosystem is a keystone mutualism between an arboreally-

nesting ant, Azteca instabilis, and its hemipteran partner, the green coffee scale (Coccus

viridis). The scale insects attach themselves to the coffee plants, typically along the

midveins of the coffee leaves and on new, tender shoots. Using their piercing mouthparts,

they access the phloem and suck the sugar-rich sap of the coffee plants. Since they are

sedentary, the scale insects would be highly vulnerable to attack by predators and

parasitoids if it were not for protection provided by the ants, which tend the scale insects

in a classic ant-hemipteran mutualism. The ants build carton nests in shade trees that are

planted throughout the farm and forage on the scale insects in the coffee plants below,

providing protection from the scales' natural enemies in exchange for a carbohydrate-rich

honeydew that the scales excrete.

Much of the research in this system has been carried out in a 45 ha study plot. A

biannual census of shade trees and A. instabilis nests in this plot has been performed

5

since 2004. Of approximately 7,000 to 11,000 shade trees in the plot (depending on the

management intensity), only approximately 3-9% are inhabited by colonies of A.

instabilis. However, despite the relative rarity of this mutualism, it has been shown to

play a key role in maintaining autonomous pest control in the farm (Vandermeer et al.

2010a). Under the protection of the ants, the scale insect populations can reach very large

numbers, on the order of a few thousand individuals per coffee plant. This provides a

large resource that serves to maintain populations of various predators in the system, such

as spiders and twig-nesting ants (Vandermeer et al. 2002, Perfecto and Vandermeer

2008b, Vandermeer et al. 2010a). Azteca instabilis, through its active patrolling and

tending of the scale insects, also inadvertently protects the larvae of a predatory beetle,

the coccinellid Azya orbigera, thereby providing both abundant food (the scale insects)

and predator-free space for this important pest control agent (Liere and Perfecto 2008).

The ant-scale mutualism is also the principal determinant of the abundance and

spatial distribution of L. lecanii. Coccus viridis are the primary hosts of L. lecanii, and

they are particularly susceptible to epizootics of L. lecanii when their populations become

very large and densely packed; this typically occurs only under the vigilance of A.

instabilis. In sites subject to an L. lecanii epizootic, it is common for fungal mortality of

scale insects to exceed 90% (Jackson et al. 2009). The great abundance of scale insects,

coupled with a high prevalence of L. lecanii, results in A. instabilis nest sites being

important sources of L. lecanii inocula. Given the ability of L. lecanii to attack both C.

viridis and the coffee rust, Hemileia vastatrix, the spatial distribution of ant nests may

thus play an important role in determining the extent to which these two important coffee

pests are controlled.

Chapter II: Persistence of L. lecanii propagules in the environment and dispersal of L.

lecanii propagules

One of the most prominent features of the study system is a pronounced wet-dry

seasonality. During the wet season, which typically lasts approximately six months, from

the end of May through November, there is rain virtually every afternoon and through the

night. During the remainder of the year, rain is relatively infrequent. The activity of L.

6

lecanii is strongly influenced by this seasonality, for two reasons. First, the abundance of

its host, C. viridis, is drastically reduced during the dry season (Jackson et al. In review).

Second, the average relative humidity is below what is necessary for L. lecanii to thrive

(Reddy and Bhat 1989). As a result, L. lecanii seems to be completely inactive during the

dry season, although some remnants of infected cadavers of C. viridis from the previous

wet season do persist throughout the dry season (personal observations).

This strong dependence of L. lecanii on the window of opportunity provided by

the wet season presents two mysteries that were previously unaddressed in the literature.

First, how and where does L. lecanii persist during the dry season? Second, via what

mechanisms is L. lecanii dispersed? Knowledge of both of these is essential for

understanding how L. lecanii is maintained in the system and how it is able to reestablish

itself, spread, and successfully initiate epizootics every wet season. Dispersal is also a

fundamental process that defines the ecology of fungal pathogens (Pell et al. 2010).

The existing literature did provide some clues regarding the first question.

Previous studies had shown that propagules of various fungal entomopathogens can be

recovered from the soil bank (Meyling and Eilenberg 2006, Tuininga et al. 2009), but

information about this for L. lecanii in coffee agroecosystems was previously absent from

the literature. Therefore, testing the hypothesis that the soil may provide an important

environmental reservoir for L. lecanii was an early goal of my research program.

There were also a few obvious candidates for dispersal mechanisms. The ants, A.

instabilis, seemed a very likely candidate given the high rates of activity and interaction

with the hosts, C. viridis, inherent in their tending and foraging behavior. Rain splash also

seemed to be a probable mechanism, particularly if the soil were acting as an important

environmental reservoir. Since rain is very frequent in the wet season, rain splash could

offer ample opportunities for propagules to successfully disperse from the soil.

Additionally, high relative humidity is necessary for L. lecanii conidia to germinate

(Reddy and Bhat 1989), so rain splash dispersal could offer a favorable microclimate as

well as locomotion. Finally, wind, because it is a very common method for the dispersal

of fungal spores (Aylor 1990), was seen as a likely possibility.

7

To test for the presence of L. lecanii propagules in the soil, we collected soil

samples at the beginning of the wet season from locations both near and far from known

epizootics in the previous year. In an attempt to define the dispersal kernel, the samples

near the previous epizootics were taken along transects radiating out from the centers of

the epizootics. The remainder of the samples were collected as far as possible from A.

instabilis nests (and hence from previous L. lecanii epizootics). These soil samples were

then baited with Galleria mellonella larvae and C. viridis on coffee leaves to detect the

presence of L. lecanii propagules. The results of this assay demonstrated that viable

propagules of L. lecanii can be recovered from the soil, including from locations far

removed from recent epizootics.

Dispersal of L. lecanii via A. instabilis workers was tested using a combination of

laboratory and field ant exclusion experiments. In both the laboratory and field

experiments, coffee seedlings with populations of susceptible scale insects were assigned

to two treatment groups: ant inclusion and ant exclusion. Individuals of A. instabilis that

had been exposed to active L. lecanii infections were allowed to forage on the ant

inclusion seedlings, but blocked from the ant exclusion seedlings. In the laboratory

experiment, only scale insects on the ant inclusion seedlings became infected by L.

lecanii, which demonstrates that A. instabilis can transport propagules of L. lecanii. In the

field experiment, there was no significant difference in the prevalence of L. lecanii

between the two treatments, suggesting that there are other important transport

mechanisms besides A. instabilis in the field.

Dispersal by rain splash and wind were tested simultaneously in a laboratory

experiment. Coffee seedlings with populations of uninfected scale insects were allocated

to four treatment groups: control, wind, rain, and rain-wind. Each coffee seedling was

placed in a tray of soil that had been inoculated with L. lecanii conidia and then exposed

to a daily treatment of artificial rain splash, wind, both, or neither, depending on the

treatment group. Both the rain and rain-wind groups experienced significant infections,

whereas the wind-only and control groups were free of infected individuals.

8

Taken as a whole, the results of Chapter II suggest that L. lecanii does persist in

the soil during the dry season; that it is widely distributed throughout the study site in this

environmental reservoir; and that rain splash, A. instabilis, and potentially other dispersal

mechanisms can spread L. lecanii propagules from the soil and throughout the coffee

plants.

Chapter III: Spatial and temporal dynamics of L. lecanii and the potential for L. lecanii

to promote the self-organization of A. instabilis nests

The A. instabilis-C. viridis mutualism has been shown to exert a disproportionate

influence on the distribution and dynamics of other organisms in this coffee

agroecosystem, i.e., it is a keystone mutualism (Vandermeer et al. 2010a). Accordingly,

the spatial distribution of A. instabilis nests in the farm is of fundamental importance to

the maintenance of biological control. Despite the shade trees in which the ants nest

being distributed in a significantly uniform pattern, the ant nests are significantly

clustered, with a mean/variance ratio of approximately 0.42 (Vandermeer et al. 2008).

Explaining how this spatial distribution is generated has been a central goal of the Finca

Irlanda group's research.

The most obvious explanation for the low-density, clustered distribution of A.

instabilis nests would be some underlying environmental heterogeneity, e.g., variation in

the size or species of shade tree. However, no such relationship is detectable in any of the

census data. In the absence of an environmental explanation, the most likely explanation

is that the spatial pattern emerges endogenously via local interactions. Using a simple

cellular automata (CA) model, Vandermeer et al. (2008) demonstrated that such a self-

organization process could in fact explain the generation of the observed spatial pattern.

The CA model relied on two simple processes: satellite expansion, or budding, of ant

colonies into unoccupied shade trees in neighboring sites, and density-dependent

mortality. Satellite expansion of ant colonies is a well-known phenomenon. The density-

dependent mortality factor, however, requires some explanation. There are a number of

possible explanations, including a parasitic fly (Pseudacteon sp., Phoridae) that attacks A.

9

instabilis directly (Vandermeer et al. 2008) and a predatory beetle, Azya orbigera, that

consumes the ants' mutualistic partner, C. viridis (Liere et al. In review).

An equally likely explanation is that L. lecanii contributes to the density-

dependent mortality of A. instabilis colonies. Chapter III approaches this question using a

combination of observational data and computer simulation. In addition, this chapter

documents the spatial distribution and dynamics of L. lecanii across multiple spatial

scales.

The observational data follow the history of shade tree occupancy by A. instabilis

and the distribution of L. lecanii in two sites within the study plot. From these data, it

appears that the ant colonies are migrating, or perhaps dying, in response to L. lecanii

epizootics, which lends support to the hypothesis that L. lecanii is a significant

contributor to colony turnover. The plausibility of this hypothesis is further bolstered by

the computer simulation, which shows that the spatial distribution of ants can be

generated by replacing the general density-dependent mortality factor in the original CA

of Vandermeer et al. (2008) with an explicit model of L. lecanii. Regarding the spatial

distribution and dynamics of L. lecanii, the plot-level censuses did not reveal a clear

spatial pattern, but the finer scale surveys show distinct patterns in the spread of infection

over time.

Although there remains some uncertainty about the true cause of the density-

dependent mortality factor – and it is likely to be a combination of all of the candidates

considered to date, as well as factors that are still unknown – this chapter shows that a

plausible argument could be made in favor of L. lecanii as a principle cause. This raises

the fascinating possibility that L. lecanii is simultaneously dependent upon and a

determinant of the spatial distribution of its own hosts.

Chapter IV: Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by L.

lecanii

As a consequence of its potential to influence the spatial structure of the keystone

mutualism between A. instabilis and C. viridis, L. lecanii is likely a key player in the

maintenance of biological control in Finca Irlanda. However, there is also more direct

10

evidence of its importance: there has been shown to be a significant relationship between

L. lecanii and the prevalence of the coffee leaf rust, Hemileia vastatrix (Vandermeer et al.

2009). It is hard to overstate the importance of H. vastatrix as a disease of coffee.

McCook (2006) describes the devastation it wrought in entire coffee growing regions,

including the destruction of coffee in Sri Lanka and southern India.

Although a negative correlation between L. lecanii and H. vastatrix within a

single season was reported previously by Vandermeer et al. (2009), the natural history

discovered in the work described in Chapters II and III suggested that there might be a

one-year lag between high abundances of L. lecanii and suppression of H. vastatrix. In

this chapter, we test this hypothesis using multi-year surveys of L. lecanii and H.

vastatrix. The data support the hypothesis, and enhance our understanding of the

biological control services that L. lecanii provides in this system.

Chapter V: The evolution of imperfect prudence

In Chapter V, the first of the two most theoretical chapters in this dissertation, I

explore the hypothesis that the spatial distribution of a locally-dispersing host might serve

as an anti-pathogen phenotype, and that this group-level phenotype could arise via natural

selection despite being counter to the short-term interests of individual hosts. This work

was inspired, albeit loosely, by the observation that the low-density spatial distribution of

A. instabilis nests in the coffee agroecosystem presents a much more challenging

landscape for dispersal-limited pathogens than if the nests were much more densely

distributed, and that this distribution is a consequence of the satellite expansion rate of

the ants.

The basic concept underlying this chapter is that the spatial structure of a host will

determine the ability of a locally-transmitted pathogen to spread through the population.

For example, a host population distributed in small, isolated clusters will be resistant to

the spread of a dispersal-limited pathogen; if the pathogen infects a cluster, it will only be

able to exploit the small number of available susceptibles in that patch. At the other

extreme, if the host population consists of a single well-connected network of hosts, the

11

pathogen will spread throughout the entire host population (depending, of course, on the

details of the infection process).

This scenario presents a contradiction for the host. On the one hand, competition

for space will favor those hosts that reproduce as quickly as possible. On the other hand,

a cluster of hosts that reproduces rapidly will tend to form large clusters that expand and

coalesce with neighboring clusters, thereby forming a well-connected landscape that the

pathogen can easily percolate through. The advantage of fast reproduction is conferred to

individual hosts over the short term, while the advantage of restrained reproduction is a

longer term, group-level benefit. Basic arguments against group selection suggest that the

former will always dominate over the latter, but this balance can be reversed through the

effects of spatial structure.

In this chapter, I develop a spatially-explicit, evolutionary, probabilistic cellular

automata (CA) model to demonstrate that reproductive restraint of hosts, known in the

literature as "prudence," can evolve in a viscous, spatially-structured host-pathogen

system. This model shows that prudent hosts can indeed evolve, in theory. This

phenomenon, which is a type of evolution of cooperation, prevents the host population

from being extirpated by the pathogen. However, the degree of reproductive restraint that

the hosts evolve to – the Evolutionarily Stable Strategy (ESS) – is not ideal in terms of

maximizing the average size of the host population or decreasing the variability of the

population. Most of the previous work on the evolution of cooperation has focused on the

extent to which the performance of the cooperative behavior exceeds that of a purely

selfish strategy. This emphasis on the performance of evolved cooperation relative to pure

selfishness, while a natural choice in some ways, leads to a tendency to overstate the

power of autogenous processes to generate desirable outcomes. As the results of this

chapter show, evolution can lead to surprising levels of cooperation, but this cooperation

may be suboptimal by some measures compared to what could be achieved by a more

rational strategy that focuses on specific outcomes.

12

Chapter VI: Self-organization of background habitat determines the nature of population

spatial structure

The theory considered in this chapter was also heavily influenced by the spatial

distribution of A. instabilis nests in Finca Irlanda. By virtue of the self-organization

process that generates this spatial distribution, the size distribution of the clusters of nests

can be described by a power law. This implies that there are a large number of small

clusters and a few very large clusters, which contrasts with the normal (Gaussian)

distribution that we often expect to encounter in nature.

The implications of a power-law cluster-size distribution for organisms that use

these clusters as habitat patches is explored using the concept of a metapopulation/

source-sink continuum. Depending on the slope of the power law that defines the cluster

size distribution, the landscape will either be characterized by a large number of patches

with relatively short distances between patches (the metapopulation end of the

continuum); a small number of large patches with relatively long distances between

patches (the source-sink end); or something in between.

Using a simple patch occupancy model, I show that populations inhabiting

landscapes that fall in the intermediate range of this continuum may have the lowest rates

of patch occupancy, and may be much more likely to go globally extinct. On the

metapopulation end of the continuum, patches are in close enough proximity that

migration between patches counteracts the local extinction of the organism in individual

patches, resulting in a continuous dynamic of local extinction and subsequent rescue of

individual patches. On the source-sink extreme of the continuum, there exists at least one

patch that is large enough to sustain a population in perpetuity; this patch acts a source

that continuously rescues the smaller neighboring patches, which have much higher

extinction rates. At an intermediate power law slope, the patches are neither numerous

enough, nor close enough together, nor large enough to sustain the population as either a

metapopulation or a source-sink population.

The synthetic landscapes that were used to investigate the metapopulation/source-

sink continuum were constructed by drawing patch sizes from power law distributions

13

and then randomly placing these patches. This method captures the cluster size

distribution of self-organized landscapes, but ideal self-organized landscapes are scale

free, meaning that there is clustering at all spatial scales. The implications of this higher-

level spatial structure for the resident organism was explored by comparing the patch

occupancy rates on a randomly-constructed landscape to a truly self-organized landscape

generated by the CA model of Vandermeer et al. (2008). The habitat patches in the CA

landscapes were then randomly scattered to form a third type of landscape, termed

"dispersed CA." This third category retained the self-organized cluster size distribution

but not the higher-level clustering of patches. For a given amount of habitat, patch

occupancy was consistently higher in the self-organized CA landscapes and lowest in the

dispersed CA landscapes, suggesting that the higher-level spatial structure inherent to a

self-organized landscape could promote persistence of an organism inhabiting this

landscape.

To tie this theory back to a real system, we examined the patch occupancy

dynamics of C. viridis in clusters of A. instabilis nests. These data suggest that the self-

organizing attributes of the arboreal ants create the patch structure that in turn generates a

source/sink dynamic for the green coffee scale insect.

Chapter VII: Detection of imminent, non-catastrophic regime shifts

From a management perspective, maintaining a thriving population of L. lecanii is

almost certainly beneficial for coffee production. The monetary and health benefits of the

ecosystem services provided by the biological control of H. vastatrix and C. viridis by L.

lecanii would be difficult to quantify, but they are undoubtedly substantial. Therefore, it

would be useful to be able to detect an imminent collapse of the L. lecanii population.

The goal of predicting the onset of ecosystem collapse has gained substantial interest

recently as part of the more general ambition to develop leading indicators of regime

shifts in dynamic systems.

In this chapter, I use a spatially-explicit, continuous space, stochastic model of the

L. lecanii system to ask 1) whether regime shifts are likely to occur in this system and 2)

14

if the leading indicators proposed in the literature be used to detect imminent regime

shifts in this system.

The simulation model used to test these questions is based on the host-pathogen

reservoir model of Hochberg (1989), which includes an environmental reservoir for the

pathogen. Pathogens in this reservoir are unable to infect the host, but have a much

slower rate of mortality. Based on the field observations and laboratory experiments

detailed in Chapters II and III, it is likely that the soil is an important environmental

reservoir of L. lecanii. Therefore, the maintenance of L. lecanii is probably heavily

dependent on the survival of latent spores of L. lecanii in the soil and the rate of

translocation of propagules from the soil to susceptible scale insects on the coffee plants

above.

To test this hypothesis, I ran sweeps of the two parameters in the model that

control these rates (the latent spore survival rate and the translocation rate). Three regime

shift scenarios leading to a drastic reduction or loss of L. lecanii from the system were

observed. All of these regime shifts were of the non-catastrophic variety, in contrast to the

catastrophic regime shifts that are typically considered in the literature. Catastrophic

regime shifts are associated with fold bifurcations, which imply hysteresis and a

discontinuous jump in the state of the system in response to a small change in a forcing

parameter. Although the leading indicators in the literature were primarily developed

using systems containing fold bifurcations, it is thought that they could also be used to

predict non-catastrophic regime shifts such as the ones present in the L. lecanii model

(Scheffer et al. 2009).

Two proposed leading indicators were applied to the infection data in an attempt

to detect a signal of the impending regime shifts. The first, a method based on spatial

autocorrelation, failed to exhibit any signal of the incipient regime shifts. This was not a

complete surprise, as this method is known to perform poorly when there is only weak

coupling via dispersal between sites, as is the case in the L. lecanii simulation model.

The second approach to predicting regime shifts relies on a combination of

changes in the spatial variance and the spatial skewness. A peak in the spatial skewness

15

combined with a continued increase in variance is thought to be an unambiguous signal

of an impending regime shift. None of the regime shifts observed in the simulation model

displayed such a clear signal, although there were significant, noticeable changes in the

skewness and variance prior to the most rapid of the three regime shift scenarios.

On balance, it seems unlikely that the proposed leading indicators could be used

as-is to predict these non-catastrophic regime shifts in the actual coffee agroecosystem

using data with realistic spatial and temporal resolution. However, the relatively large

changes in the spatial variance and skewness give some hope that these statistics could be

used as general, albeit somewhat ambiguous, signals that the system is changing in a

potentially deleterious manner.

16

CHAPTER II

Occurrence in the soil and dispersal of Lecanicillium lecanii, a fungal pathogen of
the green coffee scale, Coccus viridis, and coffee rust, Hemileia vastatrix

Conservation biological control, based on management practices that promote the

survival and effectiveness of natural enemies of potential pest species, has attracted

considerable attention as an enabler of sustainable crop production (Barbosa 1998, Gurr

et al. 2000, Bale et al. 2008, Cullen et al. 2008, Fiedler et al. 2008, Jackson et al. 2009).

Fungi are promising candidates for conservation biological control programs, as they are

known to attack a variety of pest organisms (Butt et al. 2001), including arthropods (Shah

and Pell 2003, Cruz et al. 2006), plants (Hasan and Ayres 1990, Te Beest et al. 1992,

Charudattan and Dinoor 2000, Sauerborn et al. 2007), and plant pathogens (Kiss 2003,

Fravel 2005). However, effective conservation biological control using fungal pathogens

will require a thorough knowledge of their ecology (Pell et al. 2010), which is still

lacking, particularly in semi-natural habitats such as complex agroecosystems (Hesketh et

al. 2010).

The fungal entomopathogen and mycoparasite Lecanicillium lecanii

(Zimmerman) Zare and Gams is a promising candidate for use in conservation biological

control in our study system – an organic, shade coffee agroecosystem in Chiapas,

Mexico. Lecanicillium lecanii has been shown to be an important natural enemy of the

green scale, Coccus viridis Green (Hemiptera: Coccidae) in coffee (Easwaramoorthy and

Jayaraj 1978, Reddy and Bhat 1989, Uno 2007, Jackson et al. 2009). It also is known to

attack the coffee rust, Hemileia vastatrix Berkeley and Broome (Shaw 1988, Eskes 1989,

González et al. 1995, Vandermeer et al. 2009, Jackson et al. 2012), and therefore may be

crucial for suppressing this potentially devastating coffee disease (McCook 2006, Suffert

et al. 2009).

17

In addition to its direct, negative effects on potential coffee pests, L. lecanii may

have an important influence on a keystone mutualism between an arboreal-nesting ant,

Azteca instabilis F. Smith (Hymenoptera: Formicidae), and C. viridis. Azteca instabilis

tends C. viridis in a typical ant-hemipteran mutualism, wherein the ants protect the scale

insects, which are sedentary as adults, from predators and parasitoids. In exchange, the

scales excrete a carbohydrate-rich honeydew that the ants consume. Recent studies have

shown that this mutualism may play a key role in maintaining multiple natural pest

control agents in this agroecosystem (Vandermeer et al. 2010a). Because the ants also

inadvertently protect the larvae of the coccinellid scale predator Azya orbigera Mulsant

(Coleoptera: Coccinellidae), the A. instabilis-C. viridis mutualism provides enemy-free

space and high prey density for this important biological control agent (Liere and

Perfecto 2008). This mutualism also contributes to the management of the coffee berry

borer, Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) through the deterrent effect

of A. instabilis foragers (Perfecto and Vandermeer 2006).

Lecanicillium lecanii may strongly influence the location and abundance of A.

instabilis colonies, and hence may determine the extent of the aforementioned biological

control effects of the ant-hemipteran mutualism. In this system, L. lecanii often becomes

a local epizootic, killing nearly all of the C. viridis on a single coffee plant or a small

group of neighboring plants. Therefore, L. lecanii reduces the amount of carbohydrate

food available to an ant colony, which may have an indirect negative effect on colony

survival. The potential for L. lecanii to cause the ant nest density-dependent mortality of

A. instabilis colonies — one of the fundamental processes underlying the spatial self

organization that generates the low-density, clustered spatial distribution of ant nests in

this farm — has recently been demonstrated through a combination of field studies and

computer modeling (Jackson et al. 2009).

Although a substantial amount of research has been done on the systematics (Zare

et al. 2000, Gams and Zare 2001, Sung et al. 2001, Zare and Gams 2001, Zare et al. 2001,

Kouvelis et al. 2008) and production (Feng et al. 2000, Kamp and Bidochka 2002, Gao et

18

al. 2007, Gao et al. 2009, Shi et al. 2009) of L. lecanii, much less is known about its basic

ecology and natural history, including in the context of coffee agroecosystems.

In the current study, we investigated mechanisms contributing to the development

of local epizootics of L. lecanii. Epizootics in this system are strongly influenced by the

pronounced seasonality in this region, which is characterized by a wet season and a dry

season. During the dry season, scale populations, and hence the prevalence of L. lecanii,

are drastically reduced. Lecanicillium lecanii is re-established every wet season following

the resurgence of the scale populations. Therefore, the initiation and progression of

epizootics depend on one or more initial infection events following the onset of the wet

season (primary dispersal) and the subsequent spread of infection from infected C. viridis

individuals to susceptible individuals (secondary dispersal).

Three fundamental questions follow from the basic epizootiology of this system:

1) where do the propagules of L. lecanii persist during the dry season, 2) what are the

mechanisms of primary dispersal, i.e., how are propagules initially dispersed onto the

coffee plants and the scale insects during the wet season, and 3) what are the mechanisms

of secondary dispersal, i.e., how is the fungus spread within and between coffee plants

following an initial infection? In this study, we investigate a subset of the mechanisms

that may be operative in this system. We hypothesize that the soil provides an

environmental reservoir for L. lecanii, and that propagules are transmitted from the soil to

susceptible scale populations via rain splash or wind dispersal. We also explore the

possibility that A. instabilis itself is primarily responsible for the dispersal of L. lecanii

conidia within and between coffee plants, in effect sowing the seeds of its own

destruction.

Methods

The field study was performed in a 45 ha plot located at Finca Irlanda, an

approximately 300 ha, organic coffee farm in the Soconusco region of Chiapas, Mexico

(15° 11' N, 92° 20' W). The farm is a shade coffee plantation, with coffee plants growing

beneath trees that have been planted in an approximately uniform distribution. The

locations of every shade tree in the 45-hectare plot are known from biannual censuses;

19

the locations of A. instabilis colonies, which nest in the shade trees, are also recorded

during each census. All experiments were performed during the months of July and

August, during the wet season (typically early May through November), which is within

the peak season for the growth and spread of L. lecanii (unpublished data).

Soil sample baiting

Two independent soil sample baiting methods were performed to detect the

presence of viable propagules of L. lecanii in soil samples. The first employed larvae of

the wax moth Galleria mellonella L. (Lepidoptera: Pyralidae), and is a standard method

for detecting entomopathogenic fungi in soil (Zimmermann 1986). As an alternative, less

time consuming, and potentially more sensitive method for detection of L. lecanii, we

used populations of C. viridis on coffee leaves to detect the presence of L. lecanii

propagules.

We obtained soil samples from a total of 40 locations: 10 locations far from A.

instabilis nests, and therefore far from where epizootics of L. lecanii had occurred the

previous year; 15 locations near the center of a previous epizootic, site A; and 15

locations near the center of another epizootic, site B (sites and locations indicated in

Figures II.1 and II.2). The first 10 locations were chosen to determine the potential for L.

lecanii propagules to persist in the soil even without a recent influx of propagules from a

nearby epizootic. The other 30 locations were chosen to determine if the prevalence of

propagules in the soil decreases with distance from the center of recent epizootics.

20

Figure II.1. Location of A. instabilis ant nests (solid circles) in 45 ha plot. Soil sample locations far from A.
instabilis nests, and therefore far from recent epizootics of L. lecanii (circles with crosses); Site A; and Site
B.

Figure II.2. Locations of soil samples on transects leading away from foci of two L. lecanii epizootics.
Small crosses indicate locations of shade trees. Large crosses indicate shade trees occupied by A. instabilis
colonies. Light gray circles are proportional to the number of healthy C. viridis on individual coffee plants
in the previous year, and dark gray circles are proportional to the number of C. viridis infected with L.
lecanii. Circles with crosses show the locations of soil samples. Survey data are adapted from Jackson et al.
(2009)

21

Soil samples were taken to a depth of 10 cm using a 2 cm-diameter, manual core

sampler. The litter layer, when present, was included in the samples. At each location, we

took 10 samples from a 40 cm X 80 cm rectangular area. The core sampler was

thoroughly cleaned and rinsed with ethyl alcohol between samples. The 10 samples from

each location were combined in separate polyethylene bags. After collection, the soil was

spread on paper in a sterile environment and allowed to dry for 24 hours at ambient

temperature in the dark. We then homogenized the soil by rolling it and passing it through

a sieve (Niblack and Hussey 1987).

After the soil was allowed to dry, we placed 90 cc (approximately 80 g) of soil

from each sample in a plastic container and moistened the soil evenly with 20 mL of

distilled water. We prepared laboratory-reared G. mellonella larvae by placing them in 56

°C water for 7 seconds in order to reduce their activity and discourage them from

producing silk webbing in the soil. Each sample was baited with 10 larvae. The plastic

containers were then sealed with perforated lids and incubated at room temperature

(26-28 °C) for 2 weeks. The larvae were inspected daily, and dead larvae were removed

and placed in humidity chambers for later evaluation. In lieu of the usual step of inverting

the containers to ensure that the larvae penetrate the soil evenly, the soil was thoroughly

mixed during the daily inspection process. At the end of the incubation period, larvae

exhibiting fungal growth were inspected using a stereomicroscope at 400x magnification

to identify the fungi morphologically.

For the second soil sample baiting, we collected branches with uninfected C.

viridis populations from three adjacent coffee plants located within the 45 ha plot; there

were no scale insects with any visible signs of infection by L. lecanii on any of these

three plants or the adjacent coffee plants. The average number of large (greater than

approximately 0.7 mm in width) scales was 35.8 per leaf (s.d. = 14.3). We then divided

the branches into sections of three leaves, selecting one section at random for each soil

sample. We suspended 10 g of soil from each sample in 10 mL of distilled water and,

using a small paintbrush to apply the suspension, inoculated the scale insects on a leaf.

This procedure was immediately replicated for the other two leaves assigned to the soil

22

sample, i.e., a separate suspension was prepared for each leaf. As a control, 10 groups of

leaves with scale insects (30 leaves) were treated with distilled water. The leaves were

placed in humidity chambers at 100% relative humidity and incubated for 2 weeks.

Fungal infections were identified morphologically using a stereomicroscope (400x

magnification).

Rain splash and wind dispersal

The potential for rain splash and wind dispersal of conidia from the soil was

tested using coffee seedlings containing susceptible scale insect populations placed in

four treatments: rain, rain-wind, wind, and control. The average number of scale insects

per seedling was 112.6 (s.d. = 92.7). For this and all other experiments, we counted only

adult scales larger than approximately 0.7 mm in width. The seedlings used in this and all

other experiments were obtained from the farm’s nursery, where they were planted and

reared in 10 x 20 cm black polyethylene bags. Four seedlings were randomly assigned to

each treatment, for a total of 16 seedlings. The seedlings were placed in the four corners

of white 60 × 60 × 60 cm insect rearing tents (BugDorm-2, MegaView Science Co., Ltd.,

Taiwan). A plastic tray (26.5 × 17.5 × 6.0 cm) with soil that had been inoculated with an

aqueous suspension of L. lecanii conidia was placed in the center of each group of four

seedlings. Approximately 0.45 mL of suspension was added per cubic centimeter of soil

at the start of the experiment. The conidial concentration, approximately 1.9 X 105

conidia/mL, was determined using a hemacytometer.

The inoculum was an aqueous suspension of L. lecanii conidia cultured from

spores and hyphae acquired from an infected C. viridis obtained within the 45 ha plot.

The L. lecanii isolate originated in a single C. viridis individual from a population

affected by a severe epizootic, with nearly 100% prevalence of L. lecanii, and therefore

was likely of average, or possibly above average (for our study site), pathogenicity to C.

viridis. Following isolation of L. lecanii from the scale insect, conidia were mass-

produced via solid-state fermentation using cooked rice as a substrate. We then suspended

the resultant conidia in water and added Tween 80 surfactant to the suspension.

23

Seedlings in the rain and rain-wind treatments were removed from their tents once

every 24 hours during the two week experiment to be exposed to artificial rain splash.

During the rain treatment, the seedlings were placed around their respective plastic trays,

with one seedling on each edge. Two minutes of simulated rain were created using a 2.5-

gallon plastic bladder connected to a hose with a spray nozzle and filled with room-

temperature tap water. Prior to the experiment, the volume and intensity of the simulated

rain was compared and adjusted to qualitatively match rainfall typical of the study site.

The simulated rain was focused on the center of the plastic tray such that the rain

impinged primarily on the soil but also fell on the seedlings. After one minute, the plants

were moved in a clockwise manner to an adjacent edge of the tray to account for the

rectangular shape of the tray, i.e., so that each plant was exposed to equivalent rain splash

intensity. The bottoms of the plastic trays were perforated to allow the water from the

simulated rain to drain. To prevent any potential loss of conidia from the inoculated soil,

we placed the rain-wind treatment tray underneath the rain treatment tray while the

simulated rainfall was performed on the rain treatment, and vice versa. To balance the net

washout of conidia, we alternated the order of the simulated rain treatment, i.e., every

other day the same treatment was rained on first. The plants from all of the treatments

were taken out of their cages and left outside while the simulated rain was being applied

so that each plant spent the same amount of time outside of the tents. The seedlings were

always returned to the same corners of the tents in order to avoid cross contamination

between plants.

After all plants were returned to their tents, the wind and rain-wind treatments

were exposed to simulated wind that was created by small electric fans (one fan per tent).

The fans were run for 30 minutes at maximum speed, which is qualitatively similar to the

typical maximum daily wind speed at the study site. The orientation of each fan was

changed daily by rotating the fan 90 degrees clockwise; this was done to vary the

direction of the airflow impinging on the plants.

24

Seedlings were inspected daily for scale individuals exhibiting the white halo of

mycelia characteristic of infection by L. lecanii. A final count of infected and healthy C.

viridis adults was performed after two weeks, at the conclusion of the experiment.

Ant exclusion

Two ant exclusion experiments were performed: a laboratory experiment, in

which most potential conidia dispersal mechanisms were eliminated, and a field

experiment, which included the full complement of potential conidia dispersal pathways

(e.g., wind, rain splash, arthropods, and other animals).

For the laboratory ant exclusion experiment, eighteen small coffee seedlings

inhabited by populations of C. viridis were obtained from the farm’s nursery. The C.

viridis populations on six of the seedlings showed signs of being infected with L. lecanii,

with some of the scales surrounded by the white halo of mycelia indicative of L. lecanii

infection. The scales on the other 12 seedlings showed no signs of infection. The average

number of scales on these 12 seedlings was 99.8 per plant (s.d. = 38.5). The six seedlings

harboring infected scales were set aside as sources of fungal conidia, and the 12

infection-free seedlings were designated for use in the treatments.

For each replicate, three plastic flower pots were attached in a line to a wooden

board, with approximately five cm separating the pots. An infected seedling was planted

in the center pot and then covered with an enclosure of clear plastic in order to prevent

transmission of fungal conidia by air currents or flying insects. The top of the plastic

enclosure was rolled up and sealed with metal clips to allow for periodic access to the

seedling. A small opening covered with mosquito netting was included on one side at the

top of the enclosure as a vent to prevent condensation from accumulating inside. Two

fungus-free seedlings were then planted in the two adjacent pots. These seedlings were

also covered with plastic enclosures, with the vents on both of these enclosures facing in

the opposite direction from the infected seedling’s vent. To allow the passage of ants from

the center seedling to the ant inclusion treatment seedling, an approximately 2.5 cm-

diameter clear plastic tube penetrating the enclosures was routed between the two

seedlings. An identical tube was routed between the center seedling and the ant exclusion

25

treatment, with the exception that one end of the tube was covered with mosquito netting

to prevent ants from entering the tube. Hot glue was used to thoroughly seal the

enclosures to ensure that ants could not escape and that other arthropods could not enter

the enclosures. Six identical replicates were constructed.

At the beginning of the experiment, a single coffee leaf with scales heavily

infected by L. lecanii was tied to the base of each infected seedling in order to increase

the amount of conidia available for the ants to spread. The coffee leaves were collected

from the site of a severe epizootic, with nearly 100% prevalence of L. lecanii, and

therefore it is probable that the pathogenicity of the strain(s) of L. lecanii used as

inoculum were of at least average (for our study site) pathogenicity to C. viridis.

Approximately 150 A. instabilis ants were then placed in the enclosures with the

seedlings and leaves harboring infected scales. After three weeks, the scales on the

seedlings were counted and the number of scales showing signs of infection by L. lecanii

was noted.

For the field ant exclusion experiment, twenty coffee seedlings inhabited by C.

viridis populations, with a mean of 202.1 scales per plant (s.d. = 136.9), were placed in

plastic pots and arranged in a circle around a shade tree containing an active A. instabilis

colony. Since the purpose of the A. instabilis colony was simply to provide a source of

ant foragers, all of the field ant exclusion replicates were located near a single, vigorous

colony. The plants were placed two meters from the base of the shade tree, with 20 cm

separating each pot. To encourage discovery of the seedlings by the ants, bridges of

plastic twine were tied between the shade tree and the bases of the seedlings.

The seedlings were assigned in an alternating manner to either the ant exclusion

treatment or the ant inclusion treatment, i.e., 10 seedlings were assigned to each treatment

type. A piece of a coffee leaf covered with approximately 10 C. viridis that had been

infected by L. lecanii, obtained from a site subject to a severe epizootic, was tied around

the stem at the base of each coffee seedling to provide a source of conidia. All inoculum

was again sourced from the location of a severe epizootic. An approximately eight cm

wide strip of flagging tape was wrapped around the base of the seedlings, just beneath the

26

infected coffee leaf; Tanglefoot® (Tanglefoot Co., Grand Rapids, Michigan, USA) was

applied to the flagging tape on the ant exclusion seedlings. Surrounding vegetation was

cleared to ensure that no bridges were available whereby the ants could access the

seedlings from neighboring vegetation. All ants were removed from the ant exclusion

seedlings by hand, using a small paintbrush, following the application of Tanglefoot®.

The seedlings were left in the field from 15 July to 4 August. They were inspected

daily to ensure that no ants had gained access to the ant exclusion seedlings. To

encourage a more typical number of ants to discover and tend the scale insects on the ant

inclusion seedlings, small pieces of tuna were placed at the bottom of all seedlings on 18

July. The leaves with fungus that had been tied to the base of the seedlings were

beginning to show signs of decomposition by 27 July, so a single coffee berry with

approximately five fungus-infected scales from the location of a major epizootic was

attached with a wire-tie to the base of each seedling to provide a fresh source of

inoculum. Following the experiment, prevalence of L. lecanii was assessed.

Statistical analyses were performed following the resampling, or bootstrapping

with permutation, method described in Liere and Perfecto (2008). In this method,

synthetic treatment and control populations are created by resampling without

replacement from the original observations, and the difference in the relevant statistical

measure (e.g., the mean number of infections) between the two synthetic populations is

compared to the observed difference. This procedure is repeated many times, and a p-

value is calculated based on the proportion of repeats for which the difference between

synthetic populations is as extreme or more extreme than the difference between the

actual populations. Data were resampled 10,000 times. The rain splash and wind dispersal

data were resampled using a custom script in Matlab, while the ant exclusion data were

analyzed using the Resampling Stats Excel add-in version 3.2 (Resampling 2006).

27

Results

Soil sample baiting

Of the 400 larvae used in the G. mellonella larvae baiting (10 larvae/sample X 40

samples), 202 were infected by one or more entomopathogenic fungi. Of these, six were

infected with L. lecanii, based on morphological identification using the characteristic

conidia and diagnostic phialides (Zare and Gams 2001). Two of the L. lecanii-infected

larvae were from samples taken from the points nearest to the focus of the L. lecanii

epizootic at Site B (B-1a and B-2a); one was from a sample taken at one of the fourth-

furthest transect points at Site A (A-2d); and the other three larvae were from samples

taken far from A. instabilis nests (Table 1). In no case was there more than one larva per

soil sample infected by L. lecanii.

The C. viridis baiting method yielded eight positive identifications of L. lecanii

from the 40 soil samples, at the following locations: the fourth-furthest point at Site A

(A-1d); all five distances at Site B (B-2a through B-2e); and two locations far removed

from A. instabilis nests (Table 1). All of the positive samples from Site B were taken from

the middle transect. All three replicates from the third-furthest point at Site B were

positive, and two of the replicates from the fifth-furthest point were positive, meaning

that a total of 11 of the 120 assays (3 replicates per sample X 40 soil samples) were

positive. None of the scale insects on the control leaves were infected.

Of the 14 sampling locations that tested positive for the presence of L. lecanii,

only one location – a point nearest to the center of the epizootic at Site A – tested positive

using both methods. That is, a total of 13 of the 40 sampling locations tested positive for

L. lecanii using one or the other of the two methods.

28

Location G. mellonella C. viridis
A-1a
A-1b
A-1c
A-1d X
A-1e
A-2a
A-2b
A-2c
A-2d X
A-2e
A-3a
A-3b
A-3c
A-3d
A-3e
B-1a X
B-1b
B-1c
B-1d
B-1e
B-2a X X
B-2b X
B-2c X
B-2d X
B-2e X
B-3a
B-3b
B-3c
B-3d
B-3e

Far from nests 3 2

Table II.1. Locations of positive G. mellonella and C. viridis baiting results. See Figures II.1 and II.2 for
location information.

Rain splash and wind dispersal

At the conclusion of the experiment, three of the four rain treatment seedlings had

scales infected by L. lecanii; one of the rain-wind treatment seedlings had infected scales;

and none of the wind or control treatment seedlings had infected scales. The mean

percentages of scales infected with L. lecanii were 0.0%, 3.2 ± 2.6% (SE), 0.0%, and 0.3

± 0.3% for the control, rain, wind, and rain-wind treatments, respectively. The difference

in the number of scales infected in the rain treatments compared to the control, wind, and

rain-wind treatments was significantly greater than the random expectation (P < 0.0001,

P < 0.0001, and P < 0.01, respectively). The difference in the number of scales infected

29

in the rain-wind and the control treatments, however, was not greater than expected by

chance (P = 0.27). There was no significant linear relationship between the number of

scales per plant and the rate of infection (P = 0.28).

Ant exclusion

In the laboratory ant exclusion experiment, scales on five of the six ant inclusion

seedlings exhibited the white mycelial mat characteristic of L. lecanii infection, while

only one scale on the ant exclusion seedlings showed signs of possibly being infected. On

the ant inclusion seedlings with L. lecanii-infected scales, the percentage of infected

scales ranged from 1.8% to 12.5%. The mean percentage of scales killed by L. lecanii

was significantly greater for the ant inclusion seedlings than for the ant exclusion

seedlings (0.1 ± 0.2% [SE] without ants, 4.3 ± 1.8% with ants, P < 0.01).

In the field ant exclusion experiment, the percentage of infected scales on the ant

exclusion seedlings ranged from 3.0% to 46.5%, while on the ant inclusion seedlings the

range was 3.6% to 42.2%. The mean percentages of scales killed by L. lecanii with or

without ants were not significantly different (17.4 ± 4.6% [SE] without ants, 18.2 ± 4.3%

with ants, P = 0.44).

There was no significant linear relationship between the average number of scales

per plant and the rate of infection in either the lab experiment (P = 0.80) or the field

experiment (P = 0.84)

Discussion

These results suggest the following scenario for the development of epizootics in

this coffee agroecosystem. During the dry season, the populations of C. viridis are

markedly smaller than during the wet season. Therefore, individual populations of scale

insects are below the epizootic threshold density, and L. lecanii persists primarily in the

environmental reservoir provided by the soil. As the scale populations increase following

the onset of the wet season, they are exposed to L. lecanii propagules splashed up from

the soil, which provide the inocula necessary to initiate epizootics. Further development

of an epizootic almost certainly requires transmission of conidia between individuals in

30

the scale population, which can be effected by A. instabilis and other, as yet unknown,

vectors. These processes lead to a rapid increase in the prevalence of L. lecanii shortly

after the start of the wet season, which has been observed in our study site (unpublished

data) and others (Reimer and Beardsley 1992).

The baiting results demonstrate that viable propagules of L. lecanii can be found

in locations that are as far removed as possible in this system (up to approximately 50 m)

from recent L. lecanii epizootics. This suggests that either 1) L. lecanii can persist in the

soil for multiple seasons or 2) L. lecanii is not dispersal limited in this system.

The fact that the soil can act as an environmental reservoir for L. lecanii in this

system has important implications for the epizootiology of this fungus. The temporal

dynamics of diseases have been shown to be strongly influenced by the presence of a

pathogen reservoir: Hochberg (1989) showed that intermediate levels of translocation of a

pathogen from a reservoir result in damped oscillations and relative stability of an

otherwise oscillatory system. While the results of the rain splash experiment demonstrate

that translocation of L. lecanii from the soil is possible, further study will be necessary to

determine the actual level of translocation under field conditions. In particular, the

concentration of L. lecanii in the soil in the field, and how this concentration varies

spatially and temporally, are unknowns that could significantly affect the realized

translocation rate.

The spatial dynamics of this system will also be strongly affected by the apparent

ubiquity of infectious propagules in the soil. Transmission of L. lecanii upwards from

infected soil widely distributed within the farm would likely result in much more rapid

and widespread infection at the onset of the wet season compared to transmission from

multiple point sources, e.g., from isolated cadavers left over from epizootics that occurred

in the previous wet season. The potential for C. viridis to escape foci of previous

epizootics by dispersing is also likely to be greatly reduced by the widespread occurrence

of L. lecanii propagules in the soil.

The results of the two soil sample baitings are also interesting from a

methodological perspective. In none of the samples were multiple replicates of the G.

31

mellonella larvae infected by L. lecanii, which suggests that there is a large element of

chance with this method, i.e., the presence of infectious material in a sample will not

necessarily result in infection of the larvae. This may be due to the larvae failing to come

into contact with the infectious material, possibly due to a very low density of infectious

material in the sample; resistance of the larvae to infection; mortality due to other causes

that occurs before the larvae can become infected; or L. lecanii being outcompeted within

a single larva by another entomopathogenic fungus. Negative results of this method,

therefore, should be treated with caution. Results from the C. viridis baiting were

similarly subject to chance. However, the issue of other entomopathogenic fungi

outcompeting L. lecanii was not a concern with this method, as C. viridis did not become

infected by any fungi other than L. lecanii, perhaps because it is not susceptible to the

broad range of entomopathogenic fungi that infected the G. mellonella larvae.

Another consideration raised by our study is that using a bait species known to be

a target of the entomopathogen of interest may be a more powerful detection strategy

than using a non-target bait species. Although there was not a significant difference in the

total number of positive samples obtained using the two bait species employed in our

study, Klingen et al. (2002) report that using a pathogen-specific host species as a bait

yielded significantly more positives than using G. mellonella. Therefore, when

considering the apparent rarity of L. lecanii in our study system (15% and 20% positive

samples with the G. mellonella and C. viridis methods, respectively) and other

agroecosystems [e.g., 0.4-2.6% in a study by Meyling & Eilenberg (2007)], the potential

influence of the sensitivity of the bait species should be kept in mind. An understanding

of the role of the soil as an environmental reservoir for fungal entomopathogens in a

given system would likely benefit from a combination of standard baiting methods (e.g.,

the G. mellonella bait method), baiting methods that are specifically tailored to the

system (e.g., the C. viridis method used here), and molecular approaches (Enkerli and

Widmer 2010), including those that allow for quantitative assessments. A quantitative

assessment of the abundance of L. lecanii propagules may reveal a dispersal kernel

32

dependent on the distance from recent epizootics, which we were unable to detect using

our experimental methods.

In the rain splash and wind dispersal experiment, the lower infection rate in the

rain-wind treatment relative to the rain treatment suggests that there may be an important

interaction between rain splash and wind in this agroecosystem. Wind increases the rate

of evaporation of rain splash from the surface of the scale insects, and therefore may

decrease infection rates due to desiccation of conidia. Airflow may also remove rain

splash-dispersed conidia from the scale insects before they are able to germinate. This

potential interplay between rain splash and wind may have important implications for

management of shade levels in coffee agroecosystems. As shade level increases, the

intensity of rain splash and wind will both decrease, which may serve to simultaneously

decrease dispersal of conidia from the soil while increasing the probability of success of

the conidia that are dispersed. Therefore, prevalence of L. lecanii may be maximized at

an intermediate shade level. To our knowledge, although the effect of shade on

prevalence following artificial inoculation has been studied (Easwaramoorthy and Jayaraj

1977), the effects of shade level on the occurrence of natural epizootics of L. lecanii has

not been investigated.

Rain splash dispersal of fungal entomopathogens has not been studied

extensively, but has been previously noted by other researchers, including dispersal of

Beauveria bassiana from the soil onto leaves of corn plants (Bruck and Lewis 2002) and

of the mealybug pathogen Hirsutella cryptosclerotium (Fernandez-Garcia and Fitt 1993).

Fitt et al. (1989) identify characteristics of fungi that tend to be rain splash dispersed,

such as mucilaginous conidia; Heale (1988) notes that Verticillium lecanii conidia are

produced in mucilaginous heads and dispersed by water splash or insects. There is also a

substantial literature on rain splash dispersal of fungal pathogens of plants (Madden

1997, Geagea et al. 2000, Ahimera et al. 2004, Huber et al. 2006).

The results from the laboratory ant exclusion experiment suggest that A. instabilis

is capable of transporting conidia of L. lecanii, and hence may play a role in dispersing

the fungus throughout populations of C. viridis. This would seem to indicate that

33

transmission of conidia via ants between branches in a coffee plant, or perhaps between

coffee plants themselves, is possible. However, the proportion of scale insects infected by

the fungus was very low in the laboratory experiment relative to the field experiment, so

the ants appear to be relatively poor dispersal agents. It is important to consider, however,

that differences in pathogenicity of the inocula used in the two experiments could be

partially responsible for the disparity in infection rates.

Our results are consistent with a previous study that showed that the common

black ant, Lasius niger (Hymenoptera: Formicidae), is capable of retaining conidia of an

entomopathogenic fungus previously grouped in the V. lecanii species complex (Sitch and

Jackson 1997, Bird et al. 2004) and that by transporting conidia to tended aphids, it can

serve as a vector. Bird et al. (2004) demonstrated that L. niger workers artificially

inoculated with Lecanicillium longisporum (Zimmerman) Zare and Gams [Verticillium

lecanii (Zimmerman) Viégas] conidia could infect aphid populations, causing significant

mortality under laboratory, semi-field, and field conditions. Aphid mortality due to L.

longisporum was greatest under laboratory conditions and least under field conditions,

which contrasts with our results. However, relative mortality under lab and field

conditions depends heavily on the specific attributes of the methodologies and the lab and

field environments (e.g., microclimate, presence of other potential vectors, etc.), so it is

not possible to draw any general conclusions from this discrepancy.

The coffee seedlings used in the field ant exclusion experiment are most

representative of smaller coffee plants and the lowest branches of larger plants. Based on

our results, it appears that other dispersal mechanisms besides A. instabilis-vectored

dispersal from one scale insect to another dominate in these locations. There are a number

of dispersal agents that could disperse L. lecanii conidia, such as rain splash from the soil

or between C. viridis individuals, or any of the sundry flying and crawling arthropods that

visit the coffee plants.

Roditakis et al. (2000) showed that aphids are capable of transporting conidia of

L. lecanii, so it is likely that other arthropods in this system are also capable of spreading

conidia of L. lecanii. Sitch and Jackson (1997) demonstrated that resistant arthropods

34

from a variety of orders are capable of retaining Verticillium lecanii conidia, albeit at

lower rates than target aphid species. A particularly intriguing possibility is that the

predatory beetle A. orbigera, a key predator of scale insects in this system that is

positively associated with the presence of the A. instabilis-C. viridis mutualism (Liere

and Perfecto 2008), may be a primary vector of L. lecanii. Such a phenomenon would not

be unprecedented, as the coccinellid aphid predator Coccinella septempunctata

(Coleoptera: Coccinellidae) has been shown to be a potential vector of an

entomopathogenic fungus when artificially inoculated, causing significant aphid

mortality due to fungal infection (Roy et al. 2001). Whatever the dominant dispersal

agents are, previous work showing a signal of dispersal-limited spread between coffee

plants (Jackson et al. 2009) suggests that these mechanisms are primarily transmitting the

fungus between adjacent plants.

It is important to note that A. instabilis very likely plays a central role in the

dynamics of L. lecanii infection of C. viridis even if it is not primarily responsible for

dispersal of conidia. There appears to be a minimum abundance and density of C. viridis

that are necessary for an outbreak of L. lecanii to occur, i.e., an epizootic threshold

density (unpublished data). When such an outbreak occurs, the fungus kills the vast

majority of scales on entire coffee plants. Without A. instabilis tending the scales and

providing protection from predators and parasitoids, the scale population is unlikely to

reach a sufficient size for a fungal outbreak to occur (Reimer et al. 1993, Uno 2007).

Therefore, A. instabilis is likely an important factor in determining the local prevalence

of L. lecanii.

Our results suggest that a complete understanding of the epizootiology of L.

lecanii will require knowledge of multiple phases of transmission and persistence:

persistence in the soil, particularly during the dry season; translocation of propagules

from the soil via rain splash; secondary dispersal between coffee plants, branches, and C.

viridis individuals; and subsequent replenishment of the environmental reservoir in the

soil. The spatial extent, phenology, and dynamics of epizootics in this system are all

influenced by the details of these processes.

35

Understanding the development of L. lecanii epizootics in this system is crucial

because of the role L. lecanii may play in the biological control of important coffee pests:

directly, by attacking C. viridis and the coffee rust H. vastatrix, and indirectly, via its

potential to influence the spatial distribution of the A. instabilis-C. viridis keystone

mutualism. Consequently, enhanced understanding of the mechanisms controlling the

occurrence of L. lecanii epizootics in this system, and appropriate management practices

informed by this knowledge (e.g., coffee plant height and planting density, shade levels,

etc.), appear to have an enormous potential benefit in terms of improved conservation

biological control in this and other similar coffee agroecosystems.

36

CHAPTER III

Spatial and temporal dynamics of a fungal pathogen promotes pattern formation in
a tropical agroecosystem

It is familiar knowledge in ecology first, that patterns in space are both striking

and important and second, that complex interacting networks surround every population

of every organism. It is only recently that these two issues have come together in a

mutually reflective way, leading to a fundamental question of causality: does the spatial

pattern determine the details of the interacting network or does the spatial pattern result

from that network? While the existence of spatial patterns in extended landscapes has

long been appreciated, it has frequently been assumed that they emerge from underlying

habitat variables, which implicitly takes the pattern as an independent variable which

determines the nature of population interactions of the species living in the landscape. It

is only recently that a great deal of theoretical work has been devoted to demonstrating

the possibility of the opposite causality, that the pattern itself is caused by the population

interactions (Rohani et al. 1997, Bascompte and Solé 1998, Pascual et al. 2002, Rietkerk

et al. 2002, Scanlon et al. 2007). Here we contribute to this debate with the suggestion

that a fungal disease attacking the food of an ant ultimately causes the distributional

patterns of the ant nests.

Recent studies have shown that the spatial distribution of the nests of an arboreal

ant Azteca instabilis (Formica, Hymenoptera) in a coffee agroecosystem may emerge

through self-organization (Perfecto and Vandermeer 2008b, Vandermeer et al. 2008). The

ant A. instabilis builds nests in shade trees within the system and tends a species of scale

insect (Coccus viridis, Coccidae, Hemiptera), which resides in the coffee bushes, in a

classic ant/Hemipteran mutualistic association. The proposed self-organization process

has been studied with the aid of a cellular automata model which involves local effects

for both expansion and density-dependent mortality of the ant colonies (Vandermeer et al.

37

2008). The local expansion process is obvious from casual field observations, arising

when ant colonies establish satellite colonies in neighboring trees. However, the cause of

the density-dependent mortality is less evident. It has been attributed to the attack of a

dipteran parasitoid (Pseudacteon sp., Phoridae), although evidence for this mechanism is

only correlative (Vandermeer et al. 2008). Indeed there are a variety of other processes

that could be responsible for the proposed density-dependent mortality. The most evident

alternatives include a beetle (Azya orbigera, Coccinellidae, Coleoptera) that is a primary

predator of C. viridis (Liere and Perfecto 2008), and an entomopathogenic fungus,

Lecanicillium lecanii, that infects C. viridis. In this report, we discuss our investigation

into the possibility that this latter candidate, the white halo fungus L. lecanii, could be the

source of density-dependent control.

Lecanicillium lecanii, previously known as Cephalosporium lecanii, is part of

what had been identified as the Verticillium lecanii species complex (Kouvelis et al.

1999, Gams and Zare 2001). These entomopathogenic fungi are known to attack a variety

of arthropods, many of which are important agricultural pests (Hsiao et al. 1992,

Chandler et al. 1993, Helyer 1993, Gindin et al. 1996, Michaud and Browning 1999,

Gindin et al. 2000, Rodríguez Dos Santos and del Pozo Núñez 2003) including C. viridis

in coffee (Easwaramoorthy and Jayaraj 1978, Reddy and Bhat 1989, Uno 2007). It is also

marketed as a biocontrol agent (Hall 1981, Khalil et al. 1985a, Khalil et al. 1985b,

Ravensberg et al. 1990, Feng et al. 2000). In our study site, L. lecanii often creates a local

epizootic, killing nearly all of the C. viridis on a single coffee bush or a small group of

neighboring bushes (personal observations). The importance of honeydew to Hemiptera-

tending ants (Helms and Bradleigh Vinson 2008) suggests that such a decimation of a

colony’s scale populations would substantially decrease colony growth and survival.

Therefore, L. lecanii may reduce the amount of carbohydrate food available to an ant

colony, resulting in an indirect negative effect on colony survival. Analogous increases in

ant colony mortality attributable to a natural enemy attacking an ant colony’s mutualist

partner have been reported for leaf-cutting ants, whose fungal cultivars are attacked by

mycoparasites (Currie et al. 1999, Currie 2001, Reynolds and Currie 2004).

38

To better understand the role of L. lecanii in this system, we investigated the

distributions of L. lecanii at multiple spatial scales and the temporal dynamics of these

distributions. Knowledge of the spatial distribution of the fungus, in terms of incidence

and severity, is clearly important for assessing the potential for the fungus to influence

the self-organization process. How the spatial distribution changes throughout the course

of a local infection is a basic component of L. lecanii’s natural history and a clear

determinant of its impact on the spatial dynamics of the ant mutualist, A. instabilis. We

also developed a coupled cellular automata model of the ant nests and fungus to

demonstrate that it is possible to generate the observed spatial distribution of ant nests

using a very simple model that distills the hypothesized pattern formation mechanism

into a few simple functions.

Methods

The study site is located at Finca Irlanda, a 300 hectare, organic coffee farm in the

Soconusco region of Chiapas, Mexico (15° 11' N, 92° 20' W). The farm is a commercial

polyculture, with coffee bushes growing beneath trees that have been planted in an

approximately uniform distribution. The dominant shade trees are Inga spp., Alchornea

latifolia, and Trema micrantha (Martinez and Peters 1996), some of which have

extrafloral nectaries. Previous work had been done by Vandermeer et al. (2008) to map

the locations of every shade tree in a 45 hectare plot within the farm and to conduct

periodic censuses of A. instabilis nest locations. The 45 ha plot is a 600 m X 800 m

rectangle with a 100 m X 300 m rectangle excluded from one corner of the plot due to the

inaccessibility of the terrain. There are ≈11,000 shade trees in the 45 ha plot, of which

≈300 contain ant nests. The spatial distribution of the ant nests is clumped, with a mean/

variance ratio significantly different from a random distribution, and a cluster size

distribution that is thought to be characteristic of robust criticality (Vandermeer et al.

2008).

To assess the distribution of the fungus at a large scale, the 45 ha plot was divided

into 50 m X 50 m quadrats. Using the available ant nest census data, the shade tree

containing an ant nest that was closest to the center of each quadrat was identified. Since

39

the purpose of the survey was to determine the potential for the fungus to contribute to

the mortality of existing ant nests, quadrats without ant nests were excluded from the

survey. Quadrats at the edge of the plot were also excluded to avoid including areas that

might be influenced by unknown factors existing outside of the censused area. The

incidence and severity of the fungus were measured in the coffee bushes neighboring

each of 56 shade trees between July 8 and Aug 1, 2006. Due to the time required to locate

and travel to each shade tree, the order in which the trees were surveyed was determined

by their geographic location; time constraints prevented a random survey sequence.

Neighboring coffee bushes were defined as those directly adjacent to the shade

tree or within 2 m, whichever resulted in a larger number of bushes. This was necessary

because in some locations the nearest bushes were > 2 m from the shade tree, while in

others it was impractical to survey all of the coffee bushes in an area with a radius larger

than 2 m.

Every branch on every neighboring coffee bush was inspected to see if any scales

had been infected. As suggested by its name, “white halo fungus,” it is obvious when a

scale is in the later stages of infection by L. lecanii; the mycelial mat of the fungus forms

a distinctive white ring around the infected scale, which is normally a bright green color.

If a fungal infection was detected in a location, the severity was ranked as high, low, or

medium, as follows: high = one or more neighboring coffee bushes with a scale

population with very high levels of mortality due to L. lecanii, i.e., having multiple

branches with >50% scale mortality; low = one or more neighboring coffee bushes with

<10 scales killed by L. lecanii; and medium = one or more coffee bushes with fungal

mortality between the low and high levels.

The large-scale spatial distribution of the fungus was analyzed using Ripley’s K,

transformed such that the expectation for all sample sizes is zero for a random spatial

pattern and greater than zero for clustered patterns (Goreaud and Pélissier 1999). The

survey data were compared by the Monte Carlo method, using 1000 simulated Poisson

patterns of fungus presence/absence at the sample locations used in the fungus survey,

i.e., accounting for the underlying non-random distribution of the sample points.

40

To study the distribution and dynamics at an intermediate scale, we identified two

clusters of A. instabilis nests. Site A had a cluster of four trees and had been intensively

studied four years ago, including detailed surveys of scale insects on coffee bushes at

various distances from the central A. instabilis nest. Four years ago only one of the four

trees was occupied by an ant nest, three years ago two trees were occupied, and

beginning in 2007 all four trees were occupied. Site B had no ant nests at all during the

original census of 2004 and six trees occupied in the 2007 and 2008 censuses, with the

three central nests appearing to be the oldest of the six. Thus, by 2008, site A was an

“old” site, having been occupied by A. instabilis at least since our study began in 2004,

while site B was a “new” site, clearly unoccupied in 2004 but having six trees occupied

by 2007. At both sites A and B we examined coffee bushes at various distances from the

central nest, establishing spatial coordinates for each of the trees examined. For each

bush we chose the largest main stem, or for very small bushes we examined the entire

plant, and systematically assessed each branch for scale insects and fungal (L. lecanii)

attack. For making a rapid assessment, we categorized branches, with regard to scale

insects, as 1) very low (between 1 and 5 scales), 2) low (between 5 and 25 scales), 3)

medium (between 25 and 75), 4) high (between 75 and 125), and 5) very high (more than

125). These assessments were translated into numbers (very low = 2, low = 10, medium =

50, high = 100, and very high = 200), and data represented as average number of scales

per branch. In site A 149 bushes and in site B 132 bushes were examined. Assessment of

L. lecanii infection was based on a percentage, regardless of the number of scales

involved (if there was only one scale insect on a branch but it was infected with fungus,

the branch was categorized as 100% infected). Intensity of infection was then represented

as the number of infected scales per branch.

At the level of individual shade trees, we identified two shade trees with ant nests

and high levels of fungal infection, i.e., with large scale populations (>>100 scales)

exhibiting a high incidence of fungal mortality. The locations of every coffee bush within

4 m of the central shade trees were measured. The total number of branches, the number

of branches with uninfected scale populations, and the number of branches with infected

41

scale populations were counted on each bush during three censuses. Branches with one or

more individual scales infected by L. lecanii were categorized as “infected.” Shade tree

#1 was censused on July 6, July 19, and August 5, 2006. Shade tree #2 was censused on

July 8, July 25, and August 7, 2006.

To study dynamics at a smaller scale, a single coffee plant with scale populations

in the beginning stages of infection was chosen. There were 4 individual shoots on this

plant. Each branch was marked with a letter indicating the shoot (A-D) and a number

indicating the branch, starting with the lowest branches, e.g., A1. The healthy and

infected scales on each branch were counted on July 7, July 24, and August 6, 2006; only

large (> ≈2 mm) scales were counted.

To test the plausibility of the hypothesis that L. lecanii acts as the inhibitor in the

spatial self-organization process (as elaborated more completely in the discussion), we

created a cellular automata model (CA) representing the spatially explicit epizootiology

of A. instabilis and L. lecanii. The model is a version of the ant CA developed by

Vandermeer et al. (2008) modified to include the spatial distribution and dynamics of L.

lecanii. As in the original ant CA model, the 45 ha study plot is represented by a 90 X

120 lattice. Each cell in the lattice can be in one of three states: empty, occupied by an ant

nest whose scale insect populations are free of L. lecanii, or occupied by an ant nest

whose scale insects are infected by L. lecanii. As in the original formulation of the model

(Vandermeer et al. 2008), the probability of an empty cell being occupied by a new ant

nest via satellite expansion of a neighboring nest is a linear function of the number of

occupied nests in the eight-cell Moore neighborhood, N (ps = s0 + s1N for N > 0; ps = 0

for N = 0). The satellite expansion parameter values used in Vandermeer et al. (2008),

which were based on field census data, are also used in this extended version of the

model (s0 = 0.0035, s1 = 0.035). Ant nest mortality, which in the original model was a

probabilistic function of the number of neighboring ant nests, is now a function L. lecanii

infection. If infected, the probability of ant nest mortality is equal to the virulence of the

fungus, v; otherwise, the probability of nest mortality is zero. If a nest at an infected site

survives one time step, the site remains infected in subsequent time steps until the nest

42

dies, i.e., there is no recovery. Transmission of the fungus into an uninfected ant nest is

analogous to the ant nest satellite expansion function: the probability of transmission is a

linear function of the number of infected nests in the Moore neighborhood, F (pt = t0 + t1F

for F > 0). In addition, there is a very small probability, a, that an uninfected site with no

infected neighbors will become infected; this is necessary to prevent the fungus from

becoming extinct, but is also biologically reasonable given that L. lecanii has been

reported to persist in environmental reservoirs, e.g., in the soil (Eapen et al. 2005,

Meyling and Eilenberg 2006); infection of isolated sites, with F = 0, represents a low

probability transmission from an environmental reservoir.

The purpose of the model was to demonstrate that a simple model incorporating

the hypothesized biology of the system (L. lecanii-induced mortality or migration of ant

nests) could generate the observed spatial distribution. To explore the parameter space of

the model, we employed a genetic algorithm (Goldberg 1989, Whitley 1994) to search for

values of v, t1 and a that could generate a spatial pattern of ant nests qualitatively and

quantitatively similar to the pattern observed in the field. While the initial setup and

configuration of a genetic algorithm may be slightly more complicated than some other

possible optimization algorithms, e.g., hill climbing, our past experience with other

spatially explicit models has shown the potential for results to depend on parameters in

complex, non-linear, or counterintuitive ways. Since we had no a priori knowledge of the

shape of the fitness landscape, we chose to use a genetic algorithm approach because of

its ability to find solutions even when the fitness landscape is discontinuous, noisy, or

complex. The quantitative targets were a mean/variance ratio of ≈0.42 (a significantly

clumped pattern; Monte-Carlo method using 10,000 simulated Poisson patterns with the

same density as the field census data; P < 0.0001) and a density of ≈0.03 nests/shade tree,

which are values obtained from the field census data. To reduce the size of the search

space, we fixed t0 = 0 and a < 0.01 for all runs. We ran each simulation for 1000 time

steps and calculated the average density and mean/variance ratio of the final 250 time

steps. In addition, the fitness function used in the genetic algorithm included a term for

43

the stability of the density and mean/variance time series to ensure that the model had

reached steady state by the end of the run.

Results

At the large scale, of the 56 locations sampled, 32 (≈57%) exhibited signs of L.

lecanii infection. The number of locations in each of the four severity categories were:

absent, 24 (≈43%); low, 21 (≈38%); medium, 3 (≈5%); and high, 8 (≈14%). There was no

obvious pattern underlying the spatial distribution of the fungus at the scale of the 45 ha

plot. According to the Ripley’s K analysis, below a sampling circle radius of ≈160 m the

distribution of the fungus does not differ significantly from the random expectation

(given the underlying distribution of sample points); at some spatial scales above a radius

of ≈160 m, the distribution is significantly more uniform than random, but at other scales

it does not differ significantly from the random expectation (Figure III.1).

Figure III.1. Graph of transformed Ripley’s K versus radius of sampling circle. The dashed line is the
average value for 1000 random, simulated fungal distributions. The shaded area delineates 95% confidence
intervals. Simulated distributions were created by randomly allocating the observed instances of fungal
presence among the sample points, thereby accounting for the underlying spatial distribution of the sample
locations. The solid line is the transformed Ripley’s K for the field data.

At the meso scale, site A has been monitored for the past 4 years, so the sequence

of occupation of individual shade trees by A. instabilis is known precisely, as shown by

the arrows in Figure III.2. The distribution of both scale insects and the white halo fungus

disease is also shown in Figure III.2. From previous sampling we know that the

44

distribution of scale insects as a function of distance to the central tree (one of the two

occupied four years ago) is decreasing (Figure III.2a). Except for a very large

concentration of scale insects within about 5 meters from the shade tree containing A.

instabilis, the density of scales declines rapidly as the distance from the central tree

increases. At a distance of more than 10 meters, the majority of coffee bushes have only a

few scale insects, with an occasional tree containing a larger cluster, always tended by a

different ant species, although never at the level reached under the protection of A.

instabilis (Figure III.2). It is worth noting that, although we did not explicitly search for

L. lecanii four years ago, it is unlikely that it occurred very commonly since our field

notes would have reflected its presence (indeed, it is most likely that L. lecanii was not

present at all at this site four years ago).

Site B was sampled in the summer of 2008, but from previous surveys we know

that the entire area surrounding where the six ant-occupied trees are currently located was

free of A. instabilis colonies until recently (between one and three years prior to the

summer of 2008). That is, this particular cluster of ant nests is young, having been

established subsequent to 2005. The population densities of C. viridis are slightly lower

than in site A, and the distribution of the white halo fungus disease is more restricted

(Figure III.2b), both patterns of which can be explained by the young age of this cluster

of ant nests. It is obvious from the field observations that three of the six occupied shade

trees are not at all associated with large densities of the scale insects (Figure III.2b),

suggesting that they were more recently occupied than the three shade trees around which

the high densities of scale insects occur.

45

Figure III.2. Representation of two intensively sampled sites in the study area. Final sample in June/July,
2008 is shown. Site A was occupied by A. instabilis at least since 2004, while site B was newly occupied
sometime within the past three years. The size of the slightly shaded bubbles is proportional to the number
of scale insects per branch of a coffee bush located at that particular coordinate. The size of the darkly
shaded bubbles is proportional to the intensity of fungal disease (caused by L. lecanii) on that bush. Large
crosses indicate positions of shade trees occupied by A. instabilis and small crosses indicate positions of
unoccupied (and presumably occupiable) shade trees in the system. Arrows indicate presumed direction of
spread of the ant colony from historical records. Plots are both 40 X 50 meters.

At the level of individual shade trees, the initial and final distributions of scales

and fungus around the two shade trees are shown in Figure III.3. In the initial survey of

the coffee bushes surrounding shade tree #1 (Figure III.3a), the branches with the largest

scale populations were located in two bushes in the lower left quadrant. Some of the scale

populations on these bushes were already infected by L. lecanii. By the second census,

the number of branches with scale populations in the lower quadrants, i.e., next to the

bushes with the largest initial scale populations, had increased substantially, but the

fungus was still largely confined to the two original bushes. Between the second and third

censuses, scale populations had been established on multiple branches in all of the coffee

bushes, but the level of fungus outside of the original two heavily infected bushes

46

remained roughly equal to the initial level (6 bushes with 1-2 infected branches in the

initial survey, 7 bushes with 1-4 infected branches in the final survey).

A higher proportion of coffee bushes in the neighborhood of the second shade tree

(Figure III.3b) already had established scale populations infected by L. lecanii at the

beginning of the census. Throughout the censusing period, there was an increase in the

number of branches with scales, but there was not a substantial spread of fungus to

previously uninfected coffee bushes; 3 plants that were initially uninfected had 1-2

infected branches by the time of the final survey.

47

(a)

(b)

Figure III.3. Scales and fungus in coffee bushes surrounding two shade trees. Shade trees are located at (0,
0). The sizes of the white, gray, and black circles are proportional to the number of: total branches,
branches with uninfected scale populations, and branches with infected scale populations, respectively. (a)
shade tree 1, July 6 and August 5, 2006 (b) shade tree 2, July 8 and August 7, 2006

The distribution of healthy and infected scales on each of the four shoots of the

coffee bush chosen for the individual coffee plant-level census are shown in Figure III.4.

Shoots B and C, which had the largest scale insect populations, reveal pronounced

48

humped distributions of the scales across the branches. Moving from the low branches

(small branch numbers) to the high branches (large branch numbers) on the shoots, the

size of the scale insect populations generally increased until the top few branches, which

generally had much smaller populations per branch due to the relatively small physical

size of these younger leaves. Incidence was relatively low in the initial census, with the

majority of branches showing little or no evidence of infection. By the second census, L.

lecanii infection was more prevalent, but the majority of the scales on all of the branches

were still healthy. Between the second and third censuses, there was a general increase in

the size of the scale populations and infection by L. lecanii spread to all of the branches,

with the populations on many of the branches experiencing 50% or greater mortality due

to L. lecanii.

Figure III.4. Number of healthy (white) and infected (black) scales on the branches of 4 shoots on a single
coffee bush. Branches with higher numbers are higher on the shoot. Data from three censuses (July 7th,
July 24th, and August 6th, 2006) are shown.

49

Using the ant/fungus epizootiology CA model, we find it is possible to generate

qualitatively and quantitatively similar ant nest spatial distributions using a range of

values for v and t1. As for parameter estimation using the genetic algorithm, the highest

fitness parameter values were confined to a narrow band of v and t1 values (Figure III.5),

with parameter values away from this region unable to generate the target spatial pattern

regardless of the value of a. In Figure III.6 we show a representative snapshot of the

results of the model with parameters v = 0.35, t1 = 0.63, and a = 0.007. As can be clearly

seen, the qualitative nature of the nest clustering reported in Vandermeer et al. (2008) can

be reproduced with this model. The ranges of densities and mean/variance ratios

generated by this model (Figure III.7) also encompass the values for the field samples

reported in Vandermeer et al. (2008).

Figure III.5. The black line represents the high-fitness region in v, t1 parameter space in which it is
possible to generate spatial patterns of ant nests that are qualitatively and quantitatively similar to the
pattern observed in the field. Away from this region, it is not possible to generate the observed spatial
distribution for t0 = 0 and a < 0.01; in the gray shaded region, the ants go extinct for most values of a.

50

Figure III.6. Example snapshot of the ant and fungus CA model for v = 0.35, t0 = 0, t1 = 0.63, and a =
0.007. The black dots indicate the locations of ants nests. The shaded circles indicate nest sites infected by
L. lecanii. Note that the model only considers the presence of the fungus and not its intensity.

Figure III.7. Time series for a representative run of the ant and fungus CA model for v = 0.35, t0 = 0, t1 =
0.63, and a = 0.007. Dashed lines indicate the density and mean/variance ratio targets used for the genetic
algorithm search. Each model time step corresponds to a six-month interval.

51

Discussion

 Although the fungus is relatively common in the coffee bushes surrounding ant

nests in the 45 ha plot (≈57% of shade tree neighborhoods sampled showed some signs of

L. lecanii infection), it is doubtful that the local intensities most commonly encountered

are sufficient for the fungus to significantly influence the spatial distribution of ant nests.

Therefore, the frequency of high severity fungal infections, which only occurred in ≈14%

of the shade tree neighborhoods sampled, is probably the most appropriate measure to

consider when assessing the potential influence of L. lecanii on pattern formation of the

ant nests.

Furthermore, at this large scale, no clear pattern of fungal distribution could be

seen, although its presence is widespread. Casual observations prior to the formal survey

led us to believe that the fungus was absent in the majority of the area and much more

prevalent in one particular half of the plot. However, it was clear from our survey that it

is difficult to determine with any certainty whether the fungus is present in a location

without examining every single leaf and branch of every coffee bush, as there are many

locations where the fungus infects only one or a few scales. Without a thorough search,

detecting fungal infections in lightly-infected locations is unlikely. Therefore, it is

perhaps not surprising that a more systematic survey failed to support our preliminary

assessment. The fungus was not obviously more prevalent in a particular half of the plot,

and the Ripley’s K analysis indicates that the distribution of the fungus is not

significantly different from random at most spatial scales; if anything, it tends towards a

uniform distribution, which is directly opposite of what was suggested by our initial

assessment.

Because sporadic infections are common, it is possible that L. lecanii is present

everywhere in the plot, lying latent in an environmental reservoir. It has been reported

that some strains of white halo fungus can persist as saprotrophs in the soil (Eapen et al.

2005, Meyling and Eilenberg 2006). If the variety in our samples is able to live in the

soil, new infections of scale populations in a given location may be more a matter of

fungal spores being transmitted from the soil as opposed to the spores being transmitted

52

from active infections on other coffee plants (Jackson et al. In press). This explanation

would be consistent with the wide-ranging, sporadic distribution of the fungus throughout

the plot. However, it is important to keep in mind that repeated surveys at a higher spatial

resolution might reveal an underlying spatial distribution pattern that was not possible to

resolve with the method used in our study.

At the meso scale (Figure III.2) it is possible to deduce the general behavior of the

fungal disease if we consider site A four years ago as a base line case (since we did not

encounter the fungal disease at that time), site B in 2008 as an intermediate case and site

A in 2008 as a more advanced case. The pattern that exists today, coupled with the pattern

of migration of the A. instabilis nest, strongly suggests that the ant nest moves partially in

response to the fungal infection of its main food source, leaving a trace of scale

populations devastated by the disease near the locus of the original ant nest site, and scale

populations built up but not yet infected nearer to the more recently occupied shade trees.

In Figure III.8 we present the log of the intensity of fungal disease along with the log of

the scales per branch for those three stages. The progression of both the disease and the

scale insects is apparent, the scale insects slowly building up local population densities

and dispersing, the fungal disease following in an epizootiological fashion.

53

Figure III.8. Data from two sites at two different times, illustrating the stages of development of the fungal
pathogen, L. lecanii and its host C. viridis. Open circles = C. viridis (the scale insect), closed triangles = L.
lecanii (the fungus that causes white halo disease in the scale insect). In all three cases the log of the insect
and fungal abundances are plotted as a function of the distance to the main ant nest in the system. In Stage I
are the data from site A in 2004, when the fungal disease was absent and the scale populations seemed to be
on the increase both locally and in space. In Stage II are the data from site B in 2008, seemingly
representing a situation in which the fungal disease has only recently arrived in the area and is beginning its
spread throughout the general area, but has not extended much more than five or six meters beyond the
initial infective zone. In Stage III are the data from site A again, but from 2008, where we see the major
expansion of the fungal disease that seems to be following the expansion of the scale insects in space. Stage
IV (not pictured here) is represented in several cases in our plots, in which the entire system, ant-scale-
fungus, have locally disappeared entirely.

Part of the dynamics of this system, as is evident from a casual examination of

Figure III.2, is the maintenance of C. viridis in the absence of the major ant mutualist.

That is, once one moves more than approximately 10 meters from the main nest, it is very

unlikely that A. instabilis will be tending scales. Nevertheless, there are always some

bushes to be found with a relatively high concentration of scale insects, although never

on the same order of magnitude as when they are with A. instabilis. These outliers are

always tended by other species of ants (personal observations). Indeed, in a separate

study we have encountered almost 80 species of ants that are potential tenders of the

54

scale insects (Philpott et al. 2006). However, none of them has ever been observed as

being as effective as A. instabilis, and we have never encountered a coffee bush with

more than 250 scale insects that was not under the protection of this primary mutualist.

However, those other ants are critical to the system in that they maintain the scales over a

large region, albeit at a relatively low density.

Also part of the dynamics is the evident fact that the scales are always present at

very low numbers, even in the complete absence of tending ants. While it always appears

to field workers that there are zero scales in the absence of one of their ant mutualists,

careful searching invariably reveals one or two scales on almost every coffee bush in the

plantation. It is most likely that this low but consistent population density is maintained

by a continual rain of crawlers blowing around the farm, emanating mainly from the

centers established by A. instabilis.

Moving to a lower spatial scale, the maps of the fungus in the coffee bushes

neighboring a single shade tree suggest that scale populations primarily spread locally

from bush to bush, since the bushes with high numbers of branches containing scales tend

to be close to one another; this would be consistent with a propagation of scales from one

or a few initial populations in a neighborhood of coffee bushes. The censuses performed

at the shade tree-neighborhood level indicate that it would be necessary to initiate

censuses earlier in the wet season in order to capture the spatial and temporal dynamics

of the fungus spread at this spatial scale (Figure III.3).

It is important to note that A. instabilis very probably plays a central role in the

dynamics of L. lecanii infection of C. viridis. Field observations suggest that there is a

minimum abundance and density of C. viridis that are necessary for an outbreak of L.

lecanii to occur. When such an outbreak occurs, the fungus becomes locally epizootic,

killing the vast majority of scales on entire coffee bushes. Without A. instabilis tending

the scales and therefore providing protection from predators and parasitoids, the scale

population is unlikely to reach a sufficient size for a fungal outbreak to occur (Uno 2007).

Considering the results as a whole, a general picture of the overall spatial

dynamics emerges. Scale insects initially arrive at coffee plants more-or-less as propagule

55

rain, being carried by the wind. While local increase in scale abundance is clearly from

local reproduction, there is also undoubtedly a general dispersion since almost every

coffee plant in the entire coffee farm has one or two scale insects on it. The second stage

in the overall dynamics depends on ants other than A. instabilis, generally. Acquiring the

protection of one of these other ants allows the scale insects to build up a local population

density above the normal background density, such that if A. instabilis did not exist in the

system at all, the local build up of intermediate densities of scales would probably not

change, but the size of propagule rain would, since the majority of propagules probably

comes from the clusters of A. instabilis nests, as reflected in the distribution of scales as a

function of distance from ant nests (Figures III.2 and III.8). The consequence of these

fundamental scale insect spatial dynamics is an approximate general power function

distribution of scale insects (Alonso and Pascual 2006, Pueyo and Jovani 2006,

Vandermeer and Perfecto 2006a, Vandermeer and Perfecto 2006b), with a very few large

clusters of individuals on a coffee bush (never as large as they get under protection of A.

instabilis), but a huge number of coffee bushes with just a few individuals.

The dynamics of A. instabilis thus confronts the prospect of encountering these

clusters of scale insects as it searches for additional nesting sites. When an A. instabilis

nest seeks to expand its colony, it establishes a satellite colony in a nearby shade tree

(occasionally a coffee bush) and begins the search for scale insects and other sources of

carbohydrates. Other species of honeydew-producing insects are also sources (Livingston

et al. 2008), but the major source is C. viridis. Since it is not the case that all individual

shade trees harboring an A. instabilis nest are surrounded by coffee bushes with large

concentrations of scale insects, it must be the case that occupation of a shade tree is not

conditioned by the presence of this mutualist, but rather that the mutualism develops

later, probably mainly from the initial clusters of scale insects produced by mutualism

with other ants. It remains to be seen exactly what the survival probability of a nest in an

individual tree is either with the development of a large C. viridis population or not, but it

seems a reasonable speculation that a “trial” A. instabilis nest in a new tree may be

abandoned if no C. viridis population can be cultivated soon. On the other hand, other

56

honeydew-producing insects in the shade trees, as well as extrafloral nectaries in those

shade trees may serve this purpose also.

A successful new A. instabilis nest seems to almost always result, eventually, in

very large clusters of C. viridis within about 5 meters of the nest tree, resulting in a key

deviation from the underlying statistical distribution of the scale insects themselves

(Alonso and Pascual 2006, Pueyo and Jovani 2006, Vandermeer and Perfecto 2006b,

Vandermeer and Perfecto 2006a). However, the very large concentrations of C. viridis

provide a locus for the epizootic development of L. lecanii. The dispersal dynamics of the

latter are not completely understood, but it is clear that at least three dispersal phenomena

are involved: 1) individual scales become infected seemingly at random and not

necessarily associated with the local population density of scale insects, 2) epizootic

spread of the disease within a high-density population of the scale on an individual

branch of a coffee bush occurs predictably, partially as a result of ant foraging (Jackson et

al. In press), 3) local spread from a coffee bush to neighboring coffee bushes also occurs,

but in an unpredictable and relatively slow fashion. It is this third mode of dispersal that

may have the most important consequences as far as the A. instabilis is concerned, for it

seems that a local epizootic of white halo fungus spreading locally from bush to bush is

one of the causes of the ant nest searching out new shade trees for establishment of

satellite nests.

So the general picture emerges of the A. instabilis nest establishing in a new shade

tree and searching out local coffee bushes for local concentrations of C. viridis. Having

encountered local concentrations, the mutualistic effect of the ant permits the scales to

build up to extremely high population densities in bushes near to the shade tree

containing the new nest. However these extremely large populations of scale insects

become targets for the epizootic development of the white halo fungus which, once

established in an area, appears to become endemic, following the ant colony around as

new shade trees are occupied, eventually, perhaps, resulting in the death of an entire

cluster of ant nests (or a large-scale abandonment of the area and migration to some more

distant site). This basic natural history generates the rationale for the double CA model,

57

as described in the methods section. The fundamental question to be answered is whether

this natural history (as represented qualitatively in the CA model) is capable of producing

the self-organized clustering pattern of ant nests that we see in the field; as shown in

Figure III.6, the answer is affirmative.

The significance of this mechanism of self-organized spatial pattern is dual. First,

it is arguable that the dynamics and propagation of L. lecanii creates the conditions for its

own survival. Since epizootics only occur when the scale insect population reaches a

critical size, and since that critical size only occurs when ants are tending the scales, it is

clear that ants are necessary for the production of the epizootics. If the fungal pathogen

drives the shifting pattern of the ant/scale mutualism, it could be said that the fungus

creates the background conditions that are necessary for its survival because of its

potential to influence the spatial distribution of A. instabilis nests. Second, expanding our

knowledge of the spatial ecology of this fungal pathogen is important because of the role

L. lecanii may play in the biological control of important coffee pests. In addition to

attacking C. viridis, which has the potential to reach pest status if not under some natural

control, L. lecanii has also been shown to be a hyperparasite of the coffee rust, Hemileia

vastatrix (Shaw 1988, Eskes 1989, González et al. 1995). The magnitude and spatial

extent of the control of H. vastatrix by L. lecanii clearly depend on the spatial distribution

of L. lecanii (Vandermeer et al. 2009), so obtaining a better understanding of the spatial

and temporal characteristics and propagation of L. lecanii is an important component of

understanding and improving the biocontrol potential of L. lecanii, certainly in the case

of the green coffee scale and possibly in the case of the coffee rust.

58

CHAPTER IV

Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the
entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem

Agriculture has long been recognized as playing a central role in the development

and survival of modern civilizations. It is also well known that from the very beginning

of agriculture there have been organisms coexisting in close association with the primary

crops of interest, some of which have been able, under favorable conditions, to proliferate

to such an extent that they become economically important pests. Through their

devastating effects on agriculture, these pests have sometimes had profound and long-

lasting effects. Prominent among these pests are plant pathogens, such as Puccinia

striiformis, which causes stripe rust that can decimate entire fields of susceptible wheat

varieties (Chen 2005), and the oomycete Phytophthora infestans, the causative agent of

the potato blight that contributed to the Great Irish Famine and the resultant decimation

of the population of Ireland (Fry 2008), to mention just two of the more well-known

examples.

The coffee rust Hemileia vastatrix Berkeley and Broome is likewise a plant

pathogen of great historical import, and one of the most important diseases of Arabica

coffee in the world. Heavy infections cause decreased photosynthesis and increased

defoliation (Kushalappa and Eskes 1989), and producers continue to incur significant

costs due to crop losses and mitigation efforts, with yield losses of 6-13% and annual

costs worldwide due to coffee leaf rust estimated to be US$1 billion (Hein and

Gatzweiler 2006). In the late 1800’s, H. vastatrix swept through the coffee growing

regions of Sri Lanka (then Ceylon) and southern India, leading to the abandonment of

coffee as a major crop in these areas (McCook 2006). In 1970, the detection of H.

vastatrix in Brazil led to great concern that a rust epidemic in Latin America was

imminent. However, a devastating Latin American epidemic of the magnitude that was

59

experienced in South Asia has not yet materialized, although there is growing concern

that the severity of coffee rust will increase under climate change (Ghini et al. 2011).

Coffee rust is currently controlled primarily through application of copper

fungicides, the use of resistant cultivars, and cultural methods, such as reduction of shade

cover. However, there are significant drawbacks to each of these approaches. Copper

fungicides have been shown to increase the abundance of coffee leaf miners and coffee

mites (Eskes et al. 1991), and there are significant concerns about their effects on human

health (Loland and Singh 2004, Kanoun‐Boulé et al. 2008). Development of durable

genetic resistance in the face of variability in the pathogenicity of H. vastatrix continues

to be a challenge (Brito et al. 2010). Finally, reducing shade cover in coffee growing

regions has been demonstrated to have a strong, detrimental effect on biodiversity

(Perfecto et al. 2003).

In light of the aforementioned problems with conventional control approaches,

there has been continued interest in the biological control of coffee rust (Shiomi et al.

2006, Haddad et al. 2009) and other alternative control strategies (Avelino et al. 2004).

The entomopathogenic and mycoparasitic fungus Lecanicillium lecanii (Zimmerman)

Zare and Gams has been of particular interest, primarily in terms of its use as an

augmentative biological control agent (Kushalappa and Eskes 1989, Canjura-Saravia et

al. 2002), which entails the application of additional inoculum to bolster naturally-

occurring populations of the biocontrol agent. However, results of field trials have been

mixed. Alarcón and Carrión (1994) reported the successful establishment of L. lecanii on

H. vastatrix in experimental plots that had been sprayed with a fungal suspension and the

subsequent spread of L. lecanii into unsprayed control plots. In contrast, Eskes et al.

(1991) saw no development of hyperparasitic growth of L. lecanii on H. vastatrix in the

field, despite having demonstrated hyperparasitic activity on coffee rust in the laboratory.

They attributed this failure to low air humidity, other environmental factors, or

antagonists in the phylloplane.

Given the potential difficulty of employing L. lecanii as an augmentative

biological control, a strategy based on conservation biological control may prove to be

60

more effective. Conservation biological control involves management of agroecosystems

such that the persistence and efficacy of natural pest controls is enhanced (Barbosa 1998,

Pell et al. 2010).

The development of a successful conservation biological control program will

require a thorough understanding of the ecology of both pest and pest control agent,

which includes verifying that naturally-occurring L. lecanii can significantly reduce the

prevalence or severity of H. vastatrix under field conditions. Some progress has been

made towards this goal by Vandermeer et al. (2009), who showed, using field surveys of

L. lecanii and H. vastatrix prevalence in an organic coffee farm in southern Mexico, that

the presence of L. lecanii is correlated with a significant reduction in the prevalence of H.

vastatrix.

Although the Vandermeer et al. study demonstrated that there is a significant

negative correlation between the abundance of L. lecanii and the prevalence of coffee rust

within the same year, we hypothesize, based on the natural history of the two fungi, that

there may be an effect across years that could be as strong, or even stronger, than the

within-year effect. Hemileia vastatrix is generally considered to be a biotrophic,

autoecious rust, i.e., it can only survive on living host tissue, and there is no known

alternate host (Kushalappa and Eskes 1989, Moricca and Ragazzi 2008). Therefore,

antagonists must attack the rust directly on living coffee leaves when the rust is active.

This implies that a high abundance of L. lecanii at the beginning of the period of high rust

activity, as a result of proliferation of this antagonist in the previous year, may play a

powerful role in the prevention of a rust outbreak by curtailing the reproduction of the

rust before it has an opportunity to become locally epidemic.

In our study system, located at the same site as the Vandermeer et al. study, the

abundance of L. lecanii is largely determined by the abundance of its primary host, the

green coffee scale Coccus viridis Green (Hemiptera: Coccidae). Lecanicillium lecanii

forms a conspicuous white halo of mycelia and sporulates freely in its advanced stages of

infection on C. viridis. In the presence of its mutualistic partner, the arboreal nesting ant

Azteca instabilis, C. viridis typically reaches very large population sizes – on the order of

61

hundreds, or even thousands, of individuals per coffee plant. These large populations are

susceptible to epizootics of L. lecanii, and therefore serve as a major source of inoculum.

Therefore, the spatial distribution of the A. instabilis colonies determines where

populations of C. viridis will flourish, thus indirectly influencing the spatial distribution

of L. lecanii, which in turn may affect the prevalence of H. vastatrix (Figure IV.1).

Figure IV.1. The basic biology of the system. The ants (A. instabilis) are mutualistically associated with the
scale insects (C. viridis), indicated by positive arrows. The white halo fungus (L. lecanii) has a negative
effect on the scale insects, indicated by a negative circle, as well as a negative effect on the coffee rust (H.
vastatrix). The ants and scale insects occur in spatially restricted pockets on the farm, indicated by the oval
containing them. The farm as a whole, indicated by the dashed rounded rectangle, contains the white halo
fungus and the coffee rust.

It is possible that spores from active epizootics could directly attack H. vastatrix

within the same season. However, the soil has been shown to serve as an environmental

reservoir of viable propagules of L. lecanii (Meyling and Eilenberg 2006), and these

propagules can be translocated from the soil onto the coffee plant via rain splash (Jackson

et al. In press), so it is also conceivable that spores of L. lecanii accumulate in the soil

during one wet season and attack the rust when it emerges from dormancy during the

subsequent wet season (Waller 1982). This scenario would imply that the prevalence of

H. vastatrix would be affected by the abundance of L. lecanii in the previous wet season,

i.e., there would be a one-year lag in the effect of L. lecanii on rust prevalence.

62

To test this hypothesis, we compared the abundance of L. lecanii and the

prevalence of H. vastatrix across two years, in sites subject to epizootics of L. lecanii

associated with the C. viridis-A. instabilis mutualism.

Methods

Experimental location and cropping system

The study was conducted in Finca Irlanda, a certified organic, shade-grown coffee

farm in the Soconusco region of Chiapas, Mexico. Two experimental sites, Site A and

Site B, were chosen in order to encompass active A. instabilis colonies. According to

biannual censuses of the study sites, the A. instabilis nest in Site A was established in

2007, and Site B was occupied by one or more A. instabilis colonies from the first survey,

in 2001. Site A included 470 coffee plants, in an area of approximately 50×50 m, and Site

B comprised 415 plants, in an area of approximately 30×40 m.

Surveys

Surveys of L. lecanii and C. viridis were conducted in both sites in September

2009. The identity of L. lecanii as the prominent fungal antagonist of C. viridis in this

system has been confirmed based on morphological identification using the characteristic

conidia and diagnostic phialides (Zare and Gams 2001) and by DNA sequencing of

infected scales (Jackson, unpublished data). A rapid-survey protocol, adapted from

Perfecto and Vandermeer (2006), was employed to estimate the abundance of healthy and

L. lecanii-infected C. viridis on every coffee plant in the study sites. For each plant, an

individual-by-individual count of C. viridis adults (greater than approximately 7 mm in

width) was started. If more than 50 scales were encountered on the plant, the individual

count was abandoned in favor of a less time consuming branch-by-branch protocol. If

less than 20 individuals were encountered on the plant, the total number of infected

individuals on the plant was counted. If between 20 and 50 individuals were found, an

estimate of the overall prevalence of L. lecanii was used to determine a fungus multiplier

for the entire plant, and the total number of infected scales was estimated to be 50 times

the fungus multiplier (Figure IV.2).

63

Figure IV.2. Protocol for C. viridis and L. lecanii surveys, adapted from Perfecto and Vandermeer (2006).
The coffee plant is assigned to one of the three pathways depending on how many scales are found in an
initial count. If more than 50 scales are on the plant, the rightmost path is executed, which entails switching
to a branch-by-branch estimate of the number of scales and the abundance of L. lecanii. If less than 20
scales are encountered, the leftmost branch is followed, and the total number of infected scales is recorded.
Otherwise, an entire-plant estimate of L. lecanii prevalence is used to estimate the number of infected
scales, as specified by the center path.

For the branch-by-branch protocol, a scale multiplier was assigned to each branch

based on an estimate of the number of scales on the branch. At the same time, a fungus

multiplier was determined for each branch based on an estimate of the prevalence of L.

lecanii. The total number of infected scales on the plant was then calculated as the sum

over all branches of the product of the scale multiplier and the fungus multiplier (Figure

IV.2).

As an approximation of the center of the L. lecanii epizootics, we calculated the

center of mass of the L. lecanii infections using the standard equation for center of mass,

i.e., the average of the positions of the coffee plants weighted by the number of infected

scales per plant. Due to the temporal and spatial dynamics of the epizootics, the true

center of the propagule pressure of L. lecanii, which depends both on the influx of

propagules into the soil and the subsequent transmission of propagules upwards to the

coffee plants, would be very difficult to determine precisely. Therefore, we also analyzed

the change in rust abundance as a function of distance to all other points within the plots,

i.e., with no a priori assumptions about the locations of the centers of the epizootics.

Hemileia vastatrix surveys were performed in September 2009 and September

2010. Prevalence was defined as the total number of lesioned leaves per plant, and was

64

determined based on an inspection of every leaf of every coffee plant. Hemileia vastatrix

creates yellow-orange lesions on the underside of leaves that are readily detectable. To

reduce the incidence of false positives, only lesions with obvious clusters of orange

spores were counted.

Results

In Site A, both L. lecanii and H. vastatrix were concentrated in the lower half of

the plot in the September 2009 survey (Figure IV.3a). In September 2010, the center of

the H. vastatrix infection had very clearly moved to the upper region of the plot, and the

rust was largely absent from the plants that been heavily infected the previous year

(Figure IV.3b). There was a marked decrease in the total abundance of L. lecanii in Site

A, dropping from approximately 1375 infected scales in 2009 to approximately 211 in

2010.

a)

65

Figure IV.3. Abundance of L. lecanii and prevalence of H. vastatrix in Site A in a) 2009 and b) 2010.
Diameters of open circles are proportional to the estimated number of infected C. viridis on coffee plants,
with the largest circle corresponding to 308 infected scales. Crosses mark the centers of the L. lecanii
concentrations. Note that the locations of the centers of the epizootics are influenced by fungal
concentrations that are too small to see clearly at this scale. Dark gray circles are proportional to the
number of leaves per coffee plant with lesions of H. vastatrix, with the largest circles corresponding to 254
lesioned leaves in 2009 and 258 in 2010.

The within-year relationship between the prevalence of H. vastatrix and the

distance from the center of the L. lecanii epizootic in Site A was significantly negative in

2009 (Figure IV.4a, R2 = 0.148, P < 0.001), i.e., the prevalence of rust decreased with

increasing distance from the center of mass of the mycoparasite. In 2010, the inverse

relationship was observed (Figure IV.4b, R2 = 0.133, P < 0.001).

b)

66

Figure IV.4. Number of leaves per plant with H. vastatrix lesions versus the distance to the center of mass
of the L. lecanii concentration in a) 2009 [R2 = 0.148, P < 0.001] and b) 2010 [R2 = 0.133, P < 0.001] in
Site A.

In Site B, there was also a positive within-year association between the

prevalence of H. vastatrix and proximity to the L. lecanii epizootic in 2009 (Figure IV.

5a), though the amount of variance explained was much less than in Site A (Figure IV.6a,

R2 = 0.018, P = 0.004). As in Site A, there was a substantial decrease in the abundance of

L. lecanii from 2009 to 2010, from approximately 1418 infected scales to 146 (Figure IV.

5b). In contrast with Site A, there was no significant relationship between rust prevalence

in 2010 and distance from the 2010 L. lecanii epizootic (Figure IV.6b, R2 = 0, P <

0.9213).

a) b)

67

Figure IV.5. Abundance of L. lecanii and prevalence of H. vastatrix in Site B in a) 2009 and b) 2010.
Diameters of open circles are proportional to the estimated number of infected C. viridis on coffee plants,
with the largest circle corresponding to 468 infected scales. Crosses mark the centers of the L. lecanii
concentrations. Note that the locations of the centers of the epizootics are influenced by fungal
concentrations that are too small to see clearly at this scale. Dark gray circles are proportional to the
number of leaves per coffee plant with lesions of H. vastatrix, with the largest circles corresponding to 217
lesioned leaves in 2009 and 68 in 2010.

a)

b)

68

Figure IV.6. Number of leaves per plant with H. vastatrix lesions versus the distance to the center of mass
of the L. lecanii concentration in a) 2009 [R2 = 0.018, P = 0.004] and b) 2010 [R2 = 0, P = 0.921] in Site B.

Looking at the change in rust from the first year to the second, prevalence

decreased substantially in the lower region of Site A and increased markedly in the upper

region (Figure IV.7). The linear relationship between distance from the center of mass of

the L. lecanii infection in 2009 and change in H. vastatrix prevalence was significantly

positive (Figure IV.8, R2 = 0.315, P < 0.001). Performing similar linear regression

analyses, but using other points within Site A as points of reference instead of the center

of mass, reveals a peak in the R2 values that corresponds with a qualitative estimate of the

location of the 2009 L. lecanii epizootic (Figure IV.9a). Likewise, the largest effect sizes

(slopes) are obtained by regressing distances relative to points that were near the region

with the highest concentrations of L. lecanii (Figure IV.9b).

a) b)

69

Figure IV.7. Prevalence of L. lecanii in 2009 and change in prevalence of H. vastatrix from 2009 to 2010
in Site A. Diameters of open circles are proportional to the estimated number of infected C. viridis on
coffee plants, with the largest circle corresponding to 308 infected scales. Dark gray circles are proportional
to the increase in the number of leaves per coffee plant with lesions of H. vastatrix. Light gray circles are
proportional to the decrease in the number of leaves with H. vastatrix lesions. Both the dark gray and light
gray circles are scaled to a maximum change of 257 lesioned leaves. Crosses mark the centers of the L.
lecanii concentrations.

70

Figure IV.8. Change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as
a function of the distance to the center of mass of the L. lecanii concentration in 2009 in Site A [R2 = 0.315,
P < 0.001].

71

Figure IV.9. a) Coefficients of determination (R2) and b) effect sizes (slopes) for linear regressions of the
change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as a function of
the distance to points within Site A. Crosses mark the center of mass of the L. lecanii epizootic in 2009.

In Site B, there was a similar tendency for H. vastatrix prevalence to decrease in

the neighborhood of the L. lecanii epizootic, although it was less pronounced, possibly

due to the smaller spatial extent of Site B compared to Site A (Figure IV.10). There was a

a)

b)

72

significant positive relationship between distance to the L. lecanii center of mass and

change in H. vastatrix prevalence, but only a small amount of variance was explained by

distance (Figure IV.11, R2 = 0.011, P = 0.017). Choosing a point nearer to the x axis

(which is physically downslope from the calculated center of mass) as the reference point

for the regression instead of the center of mass would increase the R2 value, although the

maximum amount of variance explained is small regardless of the location chosen as the

reference point (Figure IV.12a). The maximum effect size is obtained using reference

points that are near to the center of mass and the qualitative center of the 2009 epizootic

(Figure IV.12b).

Figure IV.10. Abundance of L. lecanii in 2009 and change in prevalence of H. vastatrix from 2009 to 2010
in Site B. Diameters of open circles are proportional to the estimated number of infected C. viridis on
coffee plants, with the largest circle corresponding to 468 infected scales. Dark gray circles are proportional
to the increase in the number of leaves per coffee plant with lesions of H. vastatrix. Light gray circles are
proportional to the decrease in the number of leaves with H. vastatrix lesions. Both the dark gray and light
gray circles are scaled to a maximum change of 215 lesioned leaves. Crosses mark the centers of the L.
lecanii concentrations.

73

Figure IV.11. Change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as
a function of the distance to the center of mass of the L. lecanii concentration in 2009 in Site B [R2 = 0.011,
P = 0.017].

74

Figure IV.12. a) Coefficients of determination (R2) and b) effect sizes (slopes) for linear regressions of the
change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as a function of
the distance to points within Site B. Crosses mark the center of mass of the L. lecanii epizootic in 2009.

a)

b)

75

Discussion

These results add to the accumulating evidence that L. lecanii can have an

ecologically significant, controlling effect on H. vastatrix (Avelino et al. 2004,

Vandermeer et al. 2009). And, importantly, in combination with the findings of

Vandermeer et al. (2009), our results suggest that there is a time lag in the effect of L.

lecanii on H. vastatrix that had not been previously recognized. This time lag, in which a

large abundance of L. lecanii in one year suppresses H. vastatrix in the following year, is

consistent with the known biology of the two fungi, and is also concordant with the

observed variation in the within-year relationship between the fungi.

If the prevalence of H. vastatrix is more strongly affected by the abundance of L.

lecanii in the previous year, the within-year relationship between H. vastatrix prevalence

and L. lecanii abundance could be either negative (as in our 2010 data and the data

reported by Vandermeer et al.) or positive (as in our 2009 data) depending on whether the

location of the L. lecanii epizootic had remained relatively constant or had shifted from

one year to the next. For example, given the very low abundance of L. lecanii in Site A in

2010 (Figure IV.3b), the apparent negative relationship between H. vastatrix and L.

lecanii in 2010 (Figure IV.4b) is most likely not a result of the 2010 L. lecanii

concentration. Rather, it is likely an artifact of the suppressive effect of the 2009 L.

lecanii epizootic and the relative proximity of the center of masses of the 2009 and 2010

L. lecanii concentrations; had the center of the 2010 L. lecanii concentration shifted

further to the upper right of the plot, the apparent negative relationship would have been

positive instead.

This time-lag effect of L. lecanii was previously unrecognized because, to our

knowledge, this is the first study to focus primarily on a comparison of H. vastatrix and

L. lecanii abundances across multiple years. Although Vandermeer et al. (2009) did

follow one site for two years, censuses in subsequent years revealed that the A. instabilis

nest at the particular site that was available during their study period was in the process of

dying, resulting in a decreased abundance of C. viridis and hence fewer scales infected by

L. lecanii (Vandermeer, unpublished data). The weakened state of the ant nest, coupled

76

with the less-extensive line transect survey method used in their study, likely account for

the absence of a multi-year effect in their results.

As noted previously by Vandermeer et al. (2009), the controlling effect of L.

lecanii on H. vastatrix under field conditions appears to be subtle. Proximity to the L.

lecanii epizootic accounted for only a fraction of the variance in Site A (R2 = 0.315). In

Site B, the explanatory power of distance from the previous year’s epizootic can be

increased by assuming that the center of the epizootic was further downslope than the

center of mass would indicate, which is a reasonable assumption considering the probable

tendency for gravity to shift the dispersal of L. lecanii propagules downslope. However,

even this assumption achieves only a small absolute improvement in the amount of

variance explained, from R2 = 0.011 to R2 = 0.028.

In addition, as suggested by the large year-over-year decrease in the numbers of

infected scales in both sites, as well as the relative differences in the effects in the two

sites, the magnitude of the effect of L. lecanii on H. vastatrix will likely vary significantly

over space and time. This variation is likely driven in part by the internal dynamics of the

pathogen-host-mutualist system. The mutualist ant, A. instabilis, has been shown to

significantly reduce its tending activity in response to experimentally-induced epizootics

of L. lecanii (Andrew MacDonald, Doug Jackson, and Kate Zemenick, unpublished data).

This suggests that epizootics of L. lecanii may decrease the amount of food available to

an affected A. instabilis colony, which may weaken the colony and consequently diminish

its effectiveness as a mutualist of C. viridis. This, in turn, could lead to a decrease in the

size of the scale population the following year. Although this scenario could explain the

decreases in C. viridis (both healthy and infected) observed in our study sites, further

study would be necessary to demonstrate that this cascading effect in fact occurs.

Despite the apparent subtlety and variability of the controlling effect of L. lecanii,

its regulatory effect on H. vastatrix may be substantial. The magnitude of the role the L.

lecanii may play in preventing outbreaks of H. vastatrix depends on the details of the

population dynamics of a complex web of interactions between multiple species, and

these interactions themselves likely vary substantially over space and time. Therefore,

77

while evidence is accumulating that L. lecanii does have a negative effect on the

prevalence of H. vastatrix under field conditions, and that this effect can be detected,

quantitatively assessing this effect will require further research into the dynamical

interactions that characterize this complex system. Given its widespread distribution

throughout this coffee farm, however, there is a high potential for L. lecanii to play an

important regulatory role.

While the observations of Vandermeer et al. (2009) and the known mycoparasite-

host relationship between L. lecanii and H. vastatrix strongly suggest that L. lecanii is a

significant driver of the observed shift in H. vastatrix prevalence, the difficulty involved

with directly quantifying the infection process of natural fungal populations under field

conditions (e.g., see Eskes et al., 1991) leaves some equivocality. The development of

coffee rust epidemics is known to be affected by a number of biotic and abiotic factors,

including soil acidity, coffee yield, temperature, humidity, fertilization, and altitude

(Avelino et al. 2006). Lecanicillium lecanii epizootics are also influenced by

environmental factors, such as temperature and relative humidity (Reddy and Bhat 1989);

and shade (Easwaramoorthy and Jayaraj 1977). However, none of these known influences

seem likely to account for the observed shift in H. vastatrix prevalence relative to the

concentrations of L. lecanii. Shade cover was not differentially altered within the sites,

and there were no other known changes that would have affected the microclimate in a

way that would have resulted in such a systematic shift. Likewise, the remainder of

prominent factors are unlikely to have varied significantly on such a local scale, or to

have varied at all. It is possible that there is some unknown force that affects both L.

lecanii and H. vastatrix, thus leading to these results, but the most parsimonious

explanation at present is that the observed pattern is a consequence of the pathogen-host

relationship between the two fungi.

It is important to note that the hyperparasitic effect of L. lecanii occurs only

because of the spatial structure of the ecosystem as a whole. That is, the mutualistic effect

of the ant (A. instabilis) on the main host of L. lecanii is contained within distinct pockets

of unusually high concentrations of that host (C. viridis), and those distinct pockets are

78

so-called self-organized patches (Vandermeer et al. 2008). Thus, this conservation

biological control includes other elements in the ecosystem as a whole acting in a

spatially specific context (Liere and Perfecto 2008, Jackson et al. 2009, Vandermeer et al.

2010a). Consequently, the success of efforts to further enhance the control of H. vastatrix

in similar coffee agroecosystems could depend on an understanding of that larger

complex ecosystem, especially of what influences the spatial distribution of A. instabilis

colonies. By studying the effects of naturally occurring concentrations of L. lecanii,

maintained by virtue of a complex ecological network, we can learn to more effectively

capitalize on the ecosystem services provided by this biological control agent; begin to

predict how this autonomous biological control may respond to climate change; and

suggest management strategies to maintain control. Restricting attention to the abiotic

factors that are typically considered to affect coffee rust may thus not be wise.

79

CHAPTER V

The evolution of imperfect prudence

Survival of the fittest. The invisible hand. The wisdom of crowds. Self-organized

criticality. The observation that unexpected – and often desirable – properties at the

macro scale can arise spontaneously from endogenous interactions at smaller scales has

captured the collective imagination to a degree that few other ideas within the last 300

years have. Modern Homo sapiens, enchanted by the insights symbolized by the likes of

Charles Darwin and Adam Smith, conceive of a world filled with wonderfully complex

organisms that have been crafted by the blind forces of natural selection; economies that

propel themselves forward through the self-correcting push of market forces; and

democracies that integrate the perspectives of individual citizens into a collective wisdom

that exceeds that of any Solomon.

Inspired by the apparent power of these autogenous processes, scientists in fields

as distinct as political science and biology continue to push the boundaries of our

understanding of evolution and self regulation, demonstrating the potential of these

processes to act in ways that far exceed, in breadth, diversity, and subtlety, what their

original proponents could have possibly imagined. Prominent amongst these more recent

elaborations of the basic principles is evidence that evolution, an indifferent actor

unencumbered by human concepts of kindness or morality, can, counterintuitively, give

rise to cooperative behaviors. That is, despite competition for limited resources being the

putative force underlying evolution, evolution sometimes favors altruistic behaviors over

those that are purely selfish.

Although the fact that cooperation can evolve is readily apparent from even a

superficial acquaintance with nature, explaining how a process predicated on selfishness,

i.e., evolution by natural selection, can give rise to cooperation is far from trivial. Any

potential theory must explain how cooperators can resist invasion by cheaters: individuals

80

that would exploit the benefits that cooperators provide while failing to reciprocate,

thereby avoiding the costs of cooperation while enjoying the benefits. A number of

processes that could lead to the evolution of cooperation have been identified, with one of

the earliest being the concept of viscous populations, first proposed by Hamilton (1964b).

Highly viscous populations are characterized by limited dispersal, which increases the

frequency of repeated interactions between individuals and interactions between closely

related individuals, both of which promote cooperation. Since Hamilton, the potential for

the evolution of cooperation in viscous populations has been demonstrated by a large

number of theoretical and computational studies (Lion and Baalen 2008). However, it

was not until recently that experimental evidence in biological systems was obtained

(Kerr et al. 2006, Boots and Mealor 2007, Szilágyi et al. 2009).

These experimental systems, and the majority of theoretical work done to date on

the evolution of victim-exploiter systems, focus on the evolution of the exploiter. In the

context of host-pathogen systems, where the host is the victim and the pathogen is the

exploiter, this emphasis on the evolution of the exploiter would seem to be reasonable:

pathogens typically have much shorter generation times, and hence are likely to evolve at

much faster rates than their hosts. However, there are exceptions to this generalization.

Resistance of the host plant Lychnis alpina to the anther smut fungus Microbotryum

violaceum has been shown to be correlated with local characteristics of L. alpina spatial

distribution, which suggests that host evolution in response to local changes in host-

population connectivity is the dominant evolutionary process in this system (Carlsson-

Graner and Thrall 2002). Duffy and Sivars-Becker (2007) showed that the termination of

epidemics of the parasite Metschnikowia bicuspidata can be explained by rapid evolution

of the susceptibility of its host, Daphnia dentifera. These exceptions suggest that by

focusing exclusively on the evolution of the exploiter, we may be missing potentially

important phenomena.

As with the nearly exclusive focus on the evolution of the exploiter, the tendency

to compare the performance of evolved behaviors to purely selfish behaviors may also

limit our understanding – in this case by leading us to subconsciously overestimate the

81

effectiveness of evolution. For example, Kerr et al. (2006) showed that the evolution of

pathogens in a spatially restricted (viscous) population resulted in competitive restraint

that averted the "tragedy of the commons." When migration of bacteriophage in a

metapopulation was restricted to a local neighborhood, prudent phages outcompeted

rapacious phages, while the opposite was true when migration was unrestricted.

Rapacious phages tended to over-exploit the common resource, thereby lowering overall

productivity, whereas dominance by prudent phages resulted in higher productivity,

thereby averting the tragedy of the commons. That is, the performance of the phage

population, in terms of productivity, was improved by the evolution of cooperation. What

was not considered, however, is how well the evolved population performed compared to

the best possible performance. If we were able to prescribe a different level of prudence,

could we increase the performance of the phage population even more? Did the phages

evolve to the optimal level of prudence, or was the prudent phages' productivity good

only in comparison to the poor performance of the purely selfish, highly rapacious

phage?

The use of purely selfish behavior as the null expectation is, in some sense, a

natural choice. In general, theoretical models predict that maximum selfishness will

evolve in non-viscous populations (Hamilton 1964a). For example, the mean field

expectation for the evolution of transmissibility in host-pathogen models (in the absence

of other tradeoffs) is maximum transmissibility (Rand et al. 1995). So, it is interesting

and surprising to show that cooperation can evolve in the form of decreased

transmissibility relative to this mean field expectation. However, to properly gauge the

performance of the evolved population, we would need to compare the performance of

the evolved transmissibility to both the worst-case and best-case transmissibilities.

In the present study, I consider these two relatively unexplored aspects of the

evolution of cooperation – the evolution of the victim and the performance of the evolved

population relative to an optimal strategy – using a spatially-explicit host-pathogen

model. In this model, a locally-dispersed host is subject to attack by a locally-dispersed

pathogen. The spatial distribution of the host emerges as a consequence of reproduction

82

of the hosts into empty sites in their local environment coupled with pathogen-induced

mortality and a fixed background mortality rate. Depending on the hosts' reproduction

rates, their spatial distribution will be characterized by either a well-connected network of

large clusters (for high reproduction rates) or a poorly-connected landscape of smaller,

isolated clumps (for low reproduction rates).

A well-connected landscape of large clusters will be more susceptible to large

epidemics, as the pathogen will be able to percolate through the landscape of connected

clusters, while a landscape of smaller, isolated clusters will be more resistant to the

spread of the pathogen. This scenario creates a conflict between what is good for an

individual host in the short term – rapid reproduction – and what is good for the host

population as a whole in the long term – a poorly connected landscape generated as a

consequence of slower reproduction rates. The question, then, is whether it is possible for

cooperation, in the form of reduced host reproduction rates, to evolve. And, if this form

of prudence on the part of the hosts is able to evolve, how will the cooperating host

population perform, in terms of metrics such as population size and variability, compared

to the extremes of pure selfishness and optimal cooperation?

The model

The model is a discrete time, probabilistic cellular automata on a square lattice

with periodic boundary conditions (Appendix A). Each cell in the lattice can be in one of

three states: empty, occupied by a susceptible host, or occupied by an infected host. In

each time step, either the pathogens will execute their actions, if there are pathogens

present, or the hosts will execute their actions. This results in the pathogen life cycle

being effectively instantaneous compared to the host life cycle; the hosts reproduce and

die of natural causes as long as there are no pathogens present, but once a pathogen

infects a single host, host activity is frozen while the pathogens sweep through the host

population. Host activity resumes only after the epidemic runs its course and the last

pathogen dies.

Host activity includes reproduction, death by natural causes, and pathogen-

induced mortality. Reproduction of a susceptible (healthy) host, i, into an empty cell in its

83

von Neumann neighborhood (its four nearest neighbors) occurs with probability gi. Each

reproduction attempt is an independent event, meaning that a host surrounded by four

empty cells can produce up to four offspring in a single time step. If multiple hosts

attempt to reproduce into a single cell, the winner is chosen randomly. Infected hosts do

not reproduce. Death by natural causes occurs with a fixed probability, m. Pathogen-

induced morality is determined by the pathogen virulence, v. In the current study,

virulence is fixed at a probability of 1, meaning that hosts only live for one time step after

being infected.

Pathogen activity begins with an initial infection event that occurs with

probability l. The initial infection targets a randomly chosen host. The pathogen

subsequently spreads to neighboring hosts via reproduction, or transmission. Pathogens

transmit to susceptible hosts in their von Neumann neighborhoods with probability τ. In

the current implementation, τ is fixed at 1 for all pathogens. Collisions, in which multiple

pathogens attempt to infect a single host, are resolved by choosing a winner at random.

As with host reproduction, transmission is determined independently for all of an infected

host's susceptible neighbors, so an infected host with n susceptible neighbors can infect

between 0 and n individuals.

Evolution occurs during host reproduction. When host i reproduces, its offspring

normally inherit its reproduction probability, gi. However, mutations of ± ϵ occur with

probability µ. Therefore, the reproduction probability of offspring j of host i is defined as

follows:

 P (gj = gi) = 1− µ (1)

 P (gj = gi + �) = µ/2 (2)

 P (gj = gi − �) = µ/2 (3)

The default parameter values used for all simulations, unless otherwise noted, are

shown in Table V.1.

84

Parameter Description Default
gi reproduction probability of host i variable
m baseline (natural) mortality rate 0.2
l probability of spontaneous infection 0.0016
v virulence: mortality probability of infected host 1
τ probability of transmission to susceptible neighbor 1
µ probability of mutation of gi 0.15
ϵ magnitude of mutation of gi 0.01
X width of lattice (cells) 100
Y height of lattice (cells) 100
N0 initial host population size 500
P0 initial number of pathogens 50

Table V.1. Default parameter values.

Under this framework, the host spatial distribution emerges due to the interaction

between the hosts' reproduction probabilities, gi, the background mortality rate, m, and

the intermittent removal of hosts by epidemics. Epidemics occur at random and then

spread through the host population. If the hosts are distributed in a well-connected

landscape, the pathogen will sweep through a large portion of the host population. If the

hosts are less well connected, the epidemic will be constrained to a smaller portion of the

host population, and each epidemic will have less of an impact on the hosts' spatial

distribution. Therefore, the hosts and pathogens simultaneously drive and are driven by

the spatial structure of the system.

Results

With the parameters set to the default values shown in Table V.1 and all hosts

initialized with the same reproduction probability, the host population consistently

evolves to an intermediate average reproduction probability of approximately 0.2 (Figure

V.1). This demonstrates that hosts exhibiting reproductive restraint, i.e., prudent hosts,

can evolve. Furthermore, the system is driven to prudence whether the hosts are

initialized with reproduction probabilities above or below the equilibrium value of 0.2, as

demonstrated by the representative runs shown in Figure V.1. There is a basin of

attraction that extends from an initial host reproduction probability of 0 to approximately

0.65; above this range, the hosts have a greater than 50% probability of evolving towards

85

increasing reproduction probabilities, which causes the host population to form ever

larger and more well-connected clusters that are inevitably subject to a catastrophic

epidemic that extinguishes the entire host population, a phenomenon termed

"evolutionary suicide" (Lion and Baalen 2008).

Figure V.1. Evolutionary dynamics of 100 representative realizations of the model initialized above and
below the ESS host reproduction probability, g, of approximately 0.20. Gray lines show the average
reproduction probabilities for the host populations of 50 representative runs with all hosts initialized with g
= 0.6; the upper black line shows the average of these 50 realizations. The lower black lines show the
results of 50 realizations with all hosts initialized with g = 0.1; the white line is the average of these 50
runs. To reduce the variance in g, µ was reduced to 0.02.

A pairwise invasibility plot (PIP) of the host reproduction probabilities reveals

that g ≈ 0.2 is an evolutionarily stable strategy (ESS), meaning that this strategy cannot

be invaded by any competing strategy (Figure V.2). The PIP was generated by initializing

the model with a fixed host reproduction probability, termed the resident strategy (gR).

The model was then run for 100 time steps with evolution disabled (µ = 0), which was

previously determined to be a sufficient amount of time for the model to reach an

86

equilibrial state. At this time, 10 individual hosts with a different reproduction

probability, termed the invader strategy (gI), were placed randomly in the arena. After a

total of 100,000 time steps, the strategy comprising the majority of the host population

was designated as the winning strategy. A resident strategy of gR = 0.2 cannot be invaded

by any other strategy. Resident strategies below 0.2 are able to be invaded by some more

rapidly reproducing hosts, while resident strategies above 0.2 can be invaded by a range

of more prudent hosts.

Figure V.2. Pairwise invasibility plot showing the probability that an invading strategy with a host
reproduction probability gI can beat a resident strategy gR. For each run, all hosts were initialized with the
resident strategy. After 100 time steps, 10 individuals with the invader strategy, gI, were placed at random
locations. After 100,000 time steps, the strategy represented by the majority of individuals was deemed the
winning strategy. The white line is the 45 degree line, where the resident and invader strategies are equal.
The probability of a successful invasion is shown by the grayscale spectrum, with lighter colors indicating a
higher probability that the invading strategy will outcompete the resident strategy.

The mechanisms underlying the evolution of prudent hosts can be understood by

examining the relationship between the host reproduction probability and the spatial

structure of the host population (Figure V.3). In the presence of the pathogen, the cluster

sizes and connectedness of the host population increases with g. Consequently, host

mortality per epidemic also increases with g. Therefore, the hosts' life expectancy is

negatively correlated with reproduction probability, giving individuals with a lower

reproduction probability a longevity advantage (Figure V.4).

87

Figure V.3. The spatial structure of the host population for various host reproduction probabilities, g
(shown in the upper righthand corner of each square). Black regions are empty cells. White cells are
infected hosts. Colored cells are uninfected (susceptible) hosts, with the colors of the hosts indicating their
reproduction probabilities.

88

Figure V.4. Relative cumulative frequency of hosts of a given age at death for various host reproduction
probabilities (g). Averages of 50 realizations for each value of g are shown. The dashed line is the expected
distribution without the pathogen. As g increases, individuals tend to die younger.

Given that decreased reproduction probabilities confer a longevity advantage,

why does the host population not simply evolve to the lowest possible reproduction

probability, i.e., a reproduction probability that is simply sufficient to offset the

background mortality rate? The answer lies in the other component of life history:

fecundity. As would be expected, hosts with higher reproduction probabilities have a

fecundity advantage (Figure V.5), suggesting that the ESS host reproduction probability is

the result of a fecundity-longevity tradeoff.

89

Figure V.5. Relative cumulative frequency of the total number of descendants per host upon death for
various host reproduction probabilities (g). Averages of 50 realizations for each value of g are shown. As g
increases, the number of descendants per individual increases.

When evolution is enabled, of course, the host population will not have a single,

uniform reproduction probability, but rather the population will consist of a mosaic of

different reproduction probabilities (Figure V.6). The fecundity and longevity

characteristics calculated for the homogenous case will be modified by the interactions

between hosts with different reproduction probabilities. For example, due to space

competition, the growth of a cluster of rapidly reproducing hosts will be constrained by

more slowly reproducing hosts (Figure V.7).

90

Figure V.6. Representative snapshot of the model after the evolutionary equilibrium has been achieved.
Black regions are empty cells. White cells are infected hosts. Colored cells are uninfected (susceptible)
hosts, with the colors of the hosts indicating their reproduction probabilities (see Figure V.3 for the growth
rates that correspond to the colors).

Figure V.7. Illustrative example of the growth of clusters of rapidly-reproducing hosts (orange cells, g =
0.8) being constrained by more slowly reproducing hosts (blue cells, g = 0.2). Black regions are empty
cells. White cells are infected hosts.

91

Although a comprehensive analysis of how the baseline fecundity and longevity

relationships shown in Figures V.4 and V.5 are changed in the context of the mosaic of

different host strains is too complicated to cover here, a qualitative sense of these changes

can be obtained by looking at how these properties are changed for challengers

attempting to invade a resident population with g = 0.2 (Figures V.8 and V.9).

Figure V.8. Change in the relative cumulative frequency of hosts of a given age at death for various host
reproduction probabilities (g) attempting to invade a resident host population with g = 0.2. Changes are
relative to the distributions reported for the homogenous scenarios (Figure V.4). In the context of the
resident population, invading individuals tend to die at a younger age than they would in a population of
their own kind.

92

Figure V.9. Change in the total number of descendants per host upon death for various host reproduction
probabilities (g) attempting to invade a resident host population with g = 0.2. Changes are relative to the
distributions reported for the homogenous scenarios (Figure V.5). In the context of the resident population,
invading individuals tend to produce fewer descendants than they would in a population of their own kind.

These results demonstrate that prudent hosts can evolve. Turning to the second

question, how does this evolved population perform compared to the range of possible

strategies? Clearly, the answer to this question depends on what is meant by "perform." In

terms of resisting invasion by competing strategies, the PIP and the long-term dynamics

of the model indicate that the evolved population reaches a global optimum. By other

equally reasonable measures of performance, however, the population does not perform

optimally. For example, the average population size, or standing crop, of the host

population can be improved by decreasing the host reproduction probability below the

93

ESS (Figure V.10). The variability and minimum size of the population, which would

both affect the likelihood that the population as a whole would be wiped out by a large,

random, mortality-inducing event, are also not minimized at the ESS (Figure V.10). By

reproducing more slowly than the ESS, the spatial structure of the host population is

maintained in a patchwork of very small, isolated clusters, such that the host population is

highly resistant to the spread of the pathogen; the host population persists steadily at a

large size, perturbed neither by large epidemics nor rapid expansion of clusters.

Figure V.10. Grand means of the host population size versus the host reproduction probability (± 1 s.e.m.).
For each value of g, 50 realizations were performed. The populations were sampled every 1000 time steps
for 18000 time steps, discarding the first 1000 time steps to avoid the initial transients. Gray circles show
the average populations for the individual realizations.

0.1 0.2 0.3 0.4 0.5

0
50
0

10
00

15
00

20
00

25
00

30
00

g

gr
an

d
m

ea
n

of
 p

op
ul

at
io

n
si

ze
s

94

Discussion

The significance of these results is twofold. First, they demonstrate the potential

for an evolutionary phenomenon – reproductive restraint by victims as an anti-exploiter

strategy in a spatially-explicit exploiter-victim system – that has potential relevance well

beyond the host-pathogen system considered here. Second, they hint at the potential

importance of more comprehensively exploring the relative performance of evolved

behaviors. Although the latter point is primarily a philosophical one, and is more a matter

of emphasis rather than the discovery of a particular new phenomenon, it is an important

consideration given the ubiquity of autogenous processes in natural and human-designed

systems.

The basic processes explored here could apply to any system in which a locally-

dispersed victim that is subject to attack by a locally-dispersed exploiter is capable of

evolving. Forests of trees subject to intermittent forest fires are an example that has

received significant attention from modelers (Zinck and Grimm 2009). Spatially-explicit

predator-prey systems, provided that both predator and prey are dispersal limited, are

another biological example (Hassell et al. 1991).

Although, to my knowledge, this is the first demonstration of the evolution of

reproductive restraint as an anti-pathogen phenotype, the evolution of other host

characteristics in spatially-explicit systems has been explored. For example, Socolar et al.

(2001) used a 2D lattice model to show that the non-disease-induced (natural) mortality

rate of hosts that are subject to rare epidemics will evolve to an intermediate value.

Furthermore, the system was shown to evolve to a state of self-organized criticality in

which epidemic size distributions were characterized by a power law.

Moving from a theoretical demonstration of plausibility to detection of prudent

hosts in real biological systems, as has been done for the evolution of prudent pathogens,

will not be a trivial task. The evolution of prudent hosts demonstrated in the current study

rests on a number of assumptions that are implicit in the structure of the model. First, it is

assumed that there are no secondary factors influencing the relationship between

transmission rate and host density, i.e., transmission is assumed to increase with the

95

number of susceptible hosts in the neighborhood. Second, it is assumed that hosts are able

to control (in an evolutionary sense) their reproduction rate.

As a review by Burdon and Chilvers (1982) of the effects of host density on plant

disease ecology demonstrates, transmission does not necessarily increase with host

density. The net effect of density can be counterintuitive in cases where indirect effects

outweigh direct effects. Direct effects of increasing density include (1) an increase in the

number of host plants that the inocula, transmitted through space and time, can impinge

upon (the more plants there are per unit area, the more likely it is that inocula will land on

a host) and (2) a decrease in the distance that spatially-dispersed inocula must travel to

spread from plant to plant. These two effects are mutually reinforcing. Indirect effects can

arise from interactions between: environment and host properties, e.g., changes in host

size, shape, or nutritional status; environment and inoculum properties, e.g., changes in

microclimate; environment and vector behavior; and environment and incidence of other

plants.

Burdon and Chilvers cite a number of examples of systems in which these direct

effects appear to dominate: of 69 studies (46 different host-pathogen combinations), they

found that 39 (57%, or 62% of the host-pathogen combinations) exhibited a positive

correlation between disease incidence and host density, which is what one would expect

in cases where direct effects of density dominate. In 24 studies (35%, or 27% of host-

pathogen combinations), however, there was a negative correlation between disease

incidence and host density, which can only occur if there are one or more indirect effects

that exceed the influence of direct effects. For example, one system with an inverse

correlation was an aphid-plant system in which aphids responsible for spreading

groundnut rosette disease were attracted to yellow light wavelengths reflected from soil,

and were repelled by blue wavelengths reflected from dense crop covering. In another

example, Ergot infections increased at lower densities due to increased tillering

(formation of new shoots) of the host at lower densities, which led to the “development of

more heads and an extended flowering period over which the plants remained susceptible

to infection.” As these examples show, the positive relationship between host density and

96

disease transmission assumed in the current model may be less ubiquitous than one might

expect.

Although populations of plants are perhaps the most obvious examples of systems

characterized by relatively static spatial structures that might affect disease dynamics,

other sessile organisms are also candidates for this sort of phenomenon, e.g., fungal

infection of sponges (Galtsoff et al. 1939) and sea fan corals (Kim and Harvell 2004) and

the isolation-modulated susceptibility of prairie dog colonies to plague (Lomolino et al.

2001). The susceptibility of colonies of eusocial insects to locally transmitted diseases

would also seem likely to exhibit a dependence on host spatial distribution, but this does

not seem to have been studied. However, results indicating that slave-making ants may

evolve a “prudent predator” strategy in response to lower densities of host colonies in a

manner that is analogous to the evolution of less virulent strains of diseases (Foitzik et al.

2001) suggest that spatial distribution may play an important role in spatial disease

dynamics of eusocial insects as well.

The second assumption underlying the current model, i.e., that the spatial

distribution of hosts is determined in a large part by a heritable reproduction rate, is

particularly problematic. In nature, it is likely that there are a number of biotic and abiotic

factors that influence the spatial distribution of hosts and the effect of this distribution on

disease transmission. It seems likely that these influences will overwhelm the influence

of the host's genotype per se. In addition to the likelihood for these environmental factors

to disrupt any potential for the evolution of prudence, they would also tend to obscure

evidence of prudence, making detection under natural conditions very challenging. As

with the evolution of prudent pathogens, however, it may be possible to construct

experimental systems that are simple enough to enable the evolution and detection of

prudent hosts.

Much of the work on the emergence of cooperation has ranged from pessimistic to

Panglossian, with Garret Hardin and Adam Smith (or at least the popular conception of

Smith) representing the two competing worldviews. Adam Smith's work is commonly

distilled into the belief that a man who "intends only his own gain" is naturally "led by an

97

invisible hand to promote an end which was no part of his intention...By pursuing his

own interest, he frequently promotes that of the society more effectually than when he

really intends to promote it." (Smith 1776). Hardin, in contrast, argued that this

individualistic pursuit of self interest leads inexorably to the now-classic "tragedy of the

commons" (Hardin 1968). Hardin's rather repressive, militant conclusion was that only

through "mutual coercion, mutually agreed upon," i.e., laws enforced such that

individuals are prevented from overexploiting the commons, can this tragedy be averted.

These two extremes – autogenous processes as threats and as saviors – have bookended

the debate.

This dichotomy is manifested in the dominant narrative in the literature on the

evolution of cooperation. Yes, the story goes, the null expectation is that tragedy will

prevail. But, if at least one of multiple possible mechanisms is present, cooperation will

emerge, and tragedy is averted. Nowak (2006) identified these processes as kin selection,

direct reciprocity, indirect reciprocity, network reciprocity, and group selection. The

literature is rich with examples demonstrating these phenomena: in a well-mixed

population, an evolutionary Prisoner's Dilemma favors defectors, but repeated

interactions give cooperators an advantage (Axelrod and Hamilton 1981); without spatial

structure, rapacious bacteriophages outcompete prudent phages, leading to

overexploitation of the bacterial prey, while local migration leads to competitive restraint

and increased productivity (Kerr et al. 2006); spatial structure maintains castration

virulence at an intermediate level in a mutualism between an ant-plant and its ant

symbiont (Szilágyi et al. 2009); through alternating rounds of public goods and indirect

reciprocity games, reputation helps solve the "tragedy of the commons" (Milinski et al.

2002); and many others. The conclusion is clear: a superficial acquaintance with the

autogenous processes that pervade nature would lead one to predict a race to the bottom,

but upon closer inspection we find that cooperation emerges unexpectedly from the

melee.

What the results of the current model suggest, however, is that a certain degree of

nuance is missing from this narrative, in tone if not in the actual results. Cooperation is

98

typically framed as a binary characteristic; either a system exhibits cooperation, or it is

characterized by selfishness. While in some model formulations this either/or dichotomy

is appropriate, e.g., a Prisoner's Dilemma in which all players cooperate fully, typically

there are degrees of cooperation that are achieved. What fraction of individuals

cooperate? What percentage of the time do individuals display altruistic behavior? How

much better could pathogens do if they reduced their virulence even more? How prudent

is prudent, really? And, to what extent is performance, in terms of attributes that are

peripheral to the main foci of evolution and the researchers, maximized?

Though here I am focusing on the evolution of cooperation, the observation that

evolution is an imperfect and myopic device for optimization applies more broadly, and

has been pointed out many times before (Gould and Lewontin 1979, Arnold 1992).

Evolution is path dependent, meaning that the evolutionary outcome is contingent on

history (Jacob 1977). In biological evolution, history influences the range of what can

evolve – the "phenotype set" (Smith 1978). If this were not the case, perhaps we would

have evolved bicycles instead of having to rely on our relatively inefficient legs for

transport, and quadrupeds would not have to give up one pair of limbs in order to evolve

wings. Even with an unrestricted phenotype set, as is usually assumed in computer

models, the particular path traversed by the evolutionary process may lead to the system

being stuck at a local optimum. Evidence of this is readily available from optimization

theory. For example, genetic algorithms, an optimization technique that is modeled on the

principles of natural selection, is known to fail to find the global optimum under some

conditions (as do all optimization routines) (Schaffer et al. 1991).

The point of this discussion is not to say that the evolution of cooperation is not

an important phenomenon, but rather to advocate for a more comprehensive framing of

the possible results. First, the extremes represented by Hardin and Smith should been

seen as, respectively, one end of a continuum of possible outcomes and another point

lying at some intermediate position on this continuum, rather than as demarcating the

range of possible outcomes. The other end of the continuum of cooperation, i.e., perfect

cooperation, should also be identified as a point of reference. Second, we can obtain a

99

more nuanced understanding of the outcomes of evolutionary processes by assessing the

performance of the evolved population using multiple measures. For example, in the

prudent host model presented here, the model is defined such that it evolves towards

maximum individual fitness. However, by other measures, such as host population size

and variability, the evolved population is not optimized. Although this point may seem

obvious – the system evolves to optimize the optimization criterion, but not other criteria

– it is one that tends to be forgotten when we speak of the "evolution of cooperation."

Although this discussion may seem like an unnecessary exercise in pedantry, the

way we frame discussions of the evolution of cooperation can have important

consequences for how these concepts are viewed in the popular imagination. (And, as the

dark history of Social Darwinism makes clear, scientists have a responsibility to consider

the potential for their work to be misconstrued and misapplied in the public sphere.) For

example, when Nowak (2006), one of the leading researchers of the evolution of

cooperation, states that

"Humans are the champions of cooperation: From hunter-gatherer
societies to nation-states, cooperation is the decisive organizing principle
of human society. No other life form on Earth is engaged in the same
complex games of cooperation and defection. The question of how natural
selection can lead to cooperative behavior has fascinated evolutionary
biologists for several decades."

the implication is that human cooperation has arisen autogenously via evolutionary

processes. This raises two questions. First, what is the evidence that human cooperation

arises directly from the actions of evolution, and not through a more rational process?

Second, if human cooperation did evolve, what does that imply? What is the optimization

criterion; to what extent has evolution achieved optimization; and how do the evolved

behaviors perform in terms of other, non-optimized criteria? Without these details, we

risk seeing the evolution of cooperation in a cartoonish manner, as a magical process

from which spring forth desiderata, in much the same way as in the modern-day

caricature of Adam Smith's invisible hand.

100

Chapter VI

Self-organization of background habitat determines the nature of population spatial
structure

Understanding the distribution of organisms in space is essential to many areas of

applied ecology, such as conservation (Hanski and Thomas 1994, Bulman et al. 2007),

agroecosystem management (Thies and Tscharntke 1999, Bianchi et al. 2006, Perfecto

and Vandermeer 2010), delivery of ecosystem services (Brosi et al. 2008), and

epidemiology (Grenfell et al. 2001), among others (Kritzer and Sale 2004), and has also

become a key element in the general theory of community structure of terrestrial, aquatic,

and marine ecosystems (Tilman and Kareiva 1997, Werner et al. 2007). Key to this

understanding has been the nature of the underlying habitat structure in which the

population is embedded, islands conjuring the theory of island biogeography, isolated

habitats suggesting metapopulations, and off-coast archipelagos envisioned as source/

sink populations (Levins 1969, Pulliam 1988, Rohani et al. 1996, Hanski and Gilpin

1997, Holt 1997, Hanski 1998, Moilanen and Hanski 1998, Hanski 1999, Amarasekare

and Nisbet 2001, Vandermeer et al. 2010b). Yet a detailed analysis of the nature of that

underlying habitat structure is lacking, despite its obvious importance for the structure of

the occupying populations.

One way of examining underlying habitat structure is to examine its origin. While

some habitats have obvious structural determinants (e.g., woodlots in eastern North

America are largely a consequence of political boundaries), others derive from dynamic

processes. Here we offer an approach based on the principle of self-organization. Typical

self-organizing dynamics generally lead to a scale-free distribution of habitat patch sizes

(Rohani et al. 1997, Bascompte and Solé 1998, Klausmeier 1999, Pascual et al. 2002,

Rietkerk et al. 2002, Newman 2005, van de Koppel et al. 2005, Solé and Bascompte

2006, Alados et al. 2007, Scanlon et al. 2007, Rietkerk and van de Koppel 2008), the

101

details of which determine to a great extent the nature of the population dynamics of any

organism occupying those patches.

This framework is motivated by the concrete case of the spatial patterning of the

arboreal ant Azteca instabilis F. Smith (Hymenoptera: Formicidae) and the use of that

spatial pattern by its mutualist associate, the green coffee scale Coccus viridis Green

(Hemiptera: Coccidae), in a coffee farm in southern Mexico (Perfecto and Vandermeer

2008b). The ant, in association with one or more natural enemies, generates a scale-free

distribution of patches of nests in a uniform environment (Vandermeer et al. 2008,

Jackson et al. 2009), and several other populations (beetles, spiders, fungi, in addition to

the scale insect itself) become associated with those clusters in a complex fashion (Liere

and Perfecto 2008, Livingston et al. 2008, Vandermeer et al. 2009). Each of these other

populations uses the clusters of ant nests as basic habitat patches, and the question arises

as to what is the structure of their populations as a function of the nature of the habitat

patches, which have been constructed in an autonomous fashion through the principle of

self-organization (Vandermeer et al. 2008). It is an example of a complex situation that

evidently occurs throughout the natural world: habitat spatial distributions created by

biological interactions into which independent populations are accommodated. Whether

self-organization of habitat patches tends to promote or hinder the persistence of

populations that inhabit these patches is thus a question of fundamental and general

interest.

Although there are myriad ways of categorizing spatial population structure, two

extreme cases emerge as particularly common, the metapopulation and the source/sink

population (Figure VI.1). It is clearly possible to view these two canonical forms as

extremes on a continuum. For many practical reasons it is useful, sometimes absolutely

necessary, to know whether a population is a metapopulation or a source/sink population.

For example, in the conservation context, a source/sink population commands attention to

the location of the source population as the most important target for management

activities. In contrast, a metapopulation structure suggests that the overall landscape

would be the proper focus of management so as to maintain sufficiently high interhabitat

102

migration (Perfecto and Vandermeer 2002). Many other examples could be cited. Here

we consider the case of a population that is potentially either a metapopulation or a

source/sink population and ask how its nature is fundamentally determined by the way in

which the underlying habitat is structured through self-organization.

The metapopulation-source/sink continuum: theory

The general analytical model we propose is based on three key relations. First, the

success of a source/sink population is determined largely by the size of the largest habitat

patch (the source). The local extinction rate is a decreasing function of patch size and

thus, all else equal, the average extinction rate will decline with the average size of the

habitat patch. In turn, the average size of the habitat patch will be highly correlated with

the average size of all habitat patches, which suggests the approximation,

 e = f(cm) (1a)

where e is extinction rate and cm is the size of the largest patch.

Second, the success of a metapopulation is determined by the ratio of the

migration rate to the extinction rate. The migration rate, in turn, is determined principally

by the distance between habitat patches, which we assume is determined in part by the

number of patches. Thus,

 m = g(nT) (1b)

where m is migration rate and nT is the total number of habitat patches.

Third, although certainly the details will be more complicated, we make the

assumption that the total number of habitat patches will normally be related in some

fashion to the size of the largest patch, or,

 nT = h(cm) (1c)

For example, in a situation in which the overall biomass or population density of a

population is constant, if almost all the individuals or biomass is contained in one

103

particularly large patch, the overall number of patches will be limited to a very small

number (since almost all the individuals are members of that largest patch).

In general, we can envision the possible population structures on a simple graph

of e versus m, according to standard definitions of extinction and migration, as pictured in

Figure VI.1. Furthermore, through the process of composition, we see that,

 m = g
�
h[f−1(e)]

�
= F (e) (2)

presuming, of course, that f has an inverse. The process of composition and its resulting

stipulation of the relationship between m and e can be easily viewed graphically (Figure

VI.2). Particular patterns of habitat organization will thus produce particular patterns of

F, leading to particular population structures. Those structures will obviously change as

management decisions provoke changes in either the form of F or the parameter values it

contains.

104

Figure VI.1. Diagrammatic illustration of the two extreme forms of population organization in a
fragmented habitat. Top panel illustrates a metapopulation in which no given habitat patch can sustain a
population in perpetuity, but the interhabitat migration is sufficiently large to offset extinctions from the
small patches. Bottom panel illustrates a source/sink population in which one of the patches is large enough
to sustain a population in perpetuity, the source population, while the others cannot. The smaller patches
thus contain sinks in that any subpopulation existing in them will eventually become locally extinct. Middle
panel illustrates the dynamics of each type of population with respect to the overall migration rate and the
within-patch extinction rate. The upper triangle, in which a metapopulation is possible, is separated from
the lower triangle, in which a metapopulation is not possible, by the standard metapopulation equilibrium,
p* = 1 - (e/m) where p* is the equilibrium fraction of the habitats occupied, e is the extinction rate and m is
the migration rate. The dashed vertical line is the critical extinction rate above which the probability of
having at least one patch capable of sustaining a viable population even in the absence of significant
migration approaches 1.0. Lines a-d show the relationship between extinction and migration assuming the
underlying habitat is self-organized and thus has a scale-free distribution that follows a power law. With
increasing extinction rate (decreasing size of patch), we have an increasing migration rate (larger number of
patches), assuming the overall habitat area is held constant. a: ae=12; be=.25, am=1;pT=100. b: ae=12; be=.
25, am=1; pT=120. c: ae=12; be=.1, am=.4; pT=250; d: ae=12; be=.2, am=.3; pT=180. In scenario a, the
population goes from a metapopulation/source/sink population, to a strictly source/sink population to
population extinction to metapopulation, as extinction and migration increase. Changing the overall habitat
area, we obtain scenario b, where the population exists first as a metapopulation/source/sink combination,
but after the migration rate passes its critical point, becomes strictly a metapopulation. In scenario c the
population begins as a source/sink population, then becomes extinct, but, with yet further increase in
extinction rate, a metapopulation emerges. Scenario d illustrates the unusual case in which a source /sink
population is driven to extinction, but then emerges at a much higher extinction/migration combination as a
metapopulation.

105

Figure VI.2. Graphical composition of the three essential functions to produce the relationship between
migration rate (m) and extinction rate (e), based on the fundamental monotonic relationship between cm and
nT. The final function gives a qualitative functional form to the relationship between migration (m) and
extinction (e).

Basic rules of spatial dynamics frequently produce patterns in which clusters of

individuals form habitat patches and those patches themselves are distributed according

to a power law (Pascual et al. 2002, Newman 2005, Scanlon et al. 2007), at least in some

likely situations (Kéfi et al. 2011). Thinking of this relationship as canonical, we ask, if

patch sizes are distributed according to a power law, what will be the form of h? (and

later, of F, making some reasonable assumptions about f and g).

We begin with the fundamental power law distribution,

 v(c) = ac−b exp(−c/S) (3)

where c = patch size, v is frequency, b and a are constants, and S is the so-called cutoff

point where v(c) begins declining faster than the power law at lower values of c. Strictly

speaking, as S approaches infinity, equation 3 becomes a pure power law. This is

106

precisely what is expected if the population is at a critical state, whether driven there by

some key parameter or evolving there by a self-organizing process (Bak 1996). Also, as

discussed later, if the population in question exhibits robust scaling (Pascual et al. 2002,

Kéfi et al. 2011), the assumption that S is very large, such that exp(-c/S) = 1, may be

warranted for many systems. We proceed with that assumption.

Given that patches are made up of particles (individuals, biomass units, etc.), the

total number of particles in the system is given as,

 pT (c) =

� cm

1
cac−bdc =

� cm

1
ac1−bdc =

a

2− b
c2−b
m − a

2− b
 (4)

which we assume is constant. The total number of patches is given as,

 nT (c) =

� cm

1
ac−bdc =

a

1− b
c1−b
m − a

1− b
 (5)

From 1 we note that cm (the largest patch size) occurs when p(c) = 1, giving,

 a = cbm (6)

which, when substituted into 5, gives us,

 nT =
cm − cbm
1− b

 (7)

From equation 4, we write,

 c2−b
m = pT

2− b

a
+ 1 (8)

If we restrict our analysis to pT large, equation 8 becomes,

 c2−b
m = pT

2− b

a

which, after substituting from 6 and rearranging, becomes,

 b = 2− c2m
pT

 (9)

107

Substituting 6 and 9 into 5, we obtain,

 nT =
cm − c

�
2− c2m

pT

�

m

c2m
pT

− 1
= h(cm) (10)

If we now assume linearity for the functions f and g, such that e = ae - becm and m=amnT,

and taking the inverse of f, we have cm = (ae – e)/be. Substituting these linear terms to

compute the composed function (equation 4), we obtain,

 m = am
ψ(e)− ψ(e)

�
2−ψ(e)2

pT

�

ψ(e)2

pT
− 1

 (11)

where,

 ψ(e) =
ae − e

be

In Figure VI.1 we illustrate four scenarios of increasing extinction and migration

rates (using equation 11), assuming that the overall area of habitat is constant and the

frequency of patch sizes is distributed as a power function.

To further illustrate the dynamics, we used a discrete-time, lattice-based model

(Appendix B) to simulate patch occupancy dynamics on an artificial landscape of habitat

patches whose sizes were drawn from a power-law distribution. The landscape was

modeled using a 200 X 200 cell, two-dimensional, square lattice, with each cell being

designated as either habitat or non-habitat. Since we are interested in ecological systems,

which are of finite size, non-periodic boundaries were used. The distribution of patch

sizes was created using the method of approximating a discrete power-law distribution

from a continuous distribution detailed in Clauset et al. (2007). Using a random real r

drawn from a uniform distribution, 0 ≤ r < 1, an integer patch size c can be calculated:

 c = �(12)(1− r)−1/(α−1) + 1
2� (12)

108

where α is the power function exponent, or scaling parameter and the closing brackets are

floor symbols. Patches were drawn repeatedly in this manner until the sum of the patch

sizes was equal to or greater than 1200, i.e., the total habitat area was approximately

equal for all runs.

Following generation of the patch size distribution, each patch was placed

randomly in the lattice such that no two patches were touching using the following

process. The first particle in each patch was placed in a randomly-chosen, empty location

with no existing particles in the neighboring eight cells (the Moore neighborhood). For

patches of size c > 1, a neighboring, empty cell with no other particles in the Moore

neighborhood was then chosen for the next particle, and this process was repeated until a

total of c cells had been designated.

All patches in the metapopulation were initially occupied. At each time step, local

extinction in each patch was determined based on patch size. In each time step, the

probability of extinction was calculated for each patch:

 P (extinction) = e0 exp(−e1c) (13)

where e0 = 0.9, e1 = 0.03, and c is the patch size. These values were chosen arbitrarily,

with the goal simply being to make the probability of extinction a decreasing function of

patch size. Rescue of extinct (unoccupied) patches was determined based on their

proximity to other occupied patches. The probability of rescue was calculated as:

 P (rescue) = 1−
N�

i=1

(1−m0 exp(−m1di)) (14)

where N is the number of occupied patches, m0 = 0.9, m1 = 0.25, and di is the shortest

Euclidean distance from the focal patch to patch i. Again, these parameter values were

chosen somewhat arbitrarily to achieve an increasing rescue probability with an

increasing abundance and/or proximity of neighboring occupied patches.

The model was swept over a range of scaling parameters, from 1.5 to 2.8, with a

step size of 0.025. For each value of the scaling parameter, 100 runs were performed.

Each realization was run for 1000 time steps, and the average fraction of patches

109

occupied was calculated for the final 100 steps; trial runs had demonstrated that steady

state was reached after approximately 200 time steps, so it is reasonable to assume that

this average excludes transient behavior. For runs in which the metapopulation went

extinct, the average fraction of patches occupied was defined to be zero.

The results of the simulation of the theoretical species are displayed in Figure VI.

3. It is evident that the population lives as a metapopulation for a very low power

function scaling parameter, basically because the largest patch size is too small to form a

source population, but there are a large number of patches insuring a high overall

migration rate. As the scaling parameter increases, the population moves toward

extinction, largely due to the low number of patches resulting in a lowered migration rate

but without the concomitant emergence of at least one large patch to accommodate a

source population. At very high values of the scaling parameter, the population is

maintained as a source/sink population due to the existence of at least one large habitat

patch that houses a source population. The simulation is reminiscent of cases a and d of

Figure VI.1.

110

Figure VI.3. Average fraction of patches occupied as a function of the scaling parameter of the original
“self-organized” habitat distribution, from simulation experiments. Red points, clustered on the left, signify
a population maintained as a source/sink population. Blue points, clustered on the right, signify a
population maintained as a metapopulation. The black line is the average of 100 realizations at each scaling
parameter setpoint.

Self-organization of habitat patches and consequences for equilibrium patch

occupancy

The above results illustrate the importance of the parameter of the power law of

the underlying habitat in determining the fundamental structure of the population in

question, that is, whether it will exist as a metapopulation or a source/sink population (or,

for that matter, go extinct). However, the assertion of an underlying power law is based

on the assumption that the habitats are themselves self-organized. Thus the question

naturally arises as to what might be the difference between a population that exists in a

set of habitat patches that themselves are self-organized compared to a population

111

existing in habitat patches not so organized, especially ones in which habitat sizes

themselves have a frequency distribution that is a power function, but the patches

themselves are randomly allocated in space (as in the calculations in the previous

section).

To explore this question, we ran the patch occupancy simulation model described

previously on a landscape of patches generated by the discrete-time, lattice-based CA

model of Vandermeer et al. (2008). Recall that in this framework the habitat to be

“constructed” is a shade tree occupied by an ant nest, while the population to be affected

(i.e, the organisms that live in these patches) responds to the distribution of the patches of

those ant nests. The generation of patches in the CA model occurs as follows: each site in

the lattice can adopt one of two states, either occupied by an ant nest or empty.

Unoccupied sites are colonized through local expansion of ant nest clusters, while

occupied sites become unoccupied with some mortality rate that is an increasing linear

function of the number of occupied sites in the Moore neighborhood (the 8 sites

surrounding the cell). By varying the intercept of this linear mortality function, the

equilibrial number of ant nests (habitat points) can be varied. In this manner, self-

organized landscapes with an arbitrary number of habitat points can be generated.

Following the generation of the habitat landscape, habitat patches, defined as contiguous

clusters of points touching on an edge or corner, were identified.

The self-organized landscapes generated by the CA model were compared to two

other scenarios. First, to separate the effects of the frequency distribution of patch sizes

from the spatial distribution of patches, the locations of the habitat patches in the

landscapes generated by the CA were randomly perturbed to create landscapes with the

same cluster (habitat patch) size distributions but different spatial arrangements of the

clusters, i.e., the CA-generated patches were dispersed randomly throughout the lattice.

Second, landscapes of randomly distributed points were generated to represent the full

null expectation without self organization.

Populations inhabiting self-organized landscapes consistently achieve a higher

equilibrial fraction of habitat patches occupied than either the null model or the dispersed

112

CA model (Figure IV.1). The dispersed CA landscapes, despite having the same cluster

size distributions as the CA landscapes, was substantially worse than the self-organized

landscape.

Figure VI.4. The mean fraction of habitat patches occupied for landscapes with different amounts of
habitat. The blue line is for habitat landscapes generated by the CA model. The red line is for landscapes
generated by randomly placing habitat points in the lattice. The black line is for landscapes generated by
randomly dispersing the habitat patches generated by the CA model. Vertical lines show the standard errors
of 10 realizations of the model. The mean fraction occupied was calculated from 100 time steps taken after
the model had reached steady state (after 900 time steps). The letters correspond to the habitat distributions
shown in Figure VI.5.

The qualitative characteristics of the landscapes generated in the three scenarios

are markedly different (Figure VI.5). The self-organized habitat displays non-random

spatial structure at multiple scales, both at the patch scale and across patches; habitat

points cluster to form patches, and the patches themselves are clustered. The dispersed

CA landscapes only retain the former (clusters of points), while the latter (clusters of

clusters) is, by design, absent. The null landscapes are characterized by greater

dispersion, i.e., less clustering, at all spatial scales compared to the self-organized

113

landscapes. Quantitatively, a Ripley's K analysis, which is a measure of clustering of

point patterns (Goreaud and Pélissier 1999), corroborates the qualitative picture, with the

self-organized landscapes being significantly more clustered at all spatial scales than the

dispersed CA and null landscapes (Figure VI.6). The dispersed CA landscapes are

significantly clustered at smaller spatial scales due to the clustering of points that form

habitat patches, but become less clustered at larger spatial scales due to the random

dispersal of the habitat patches. The null landscapes are not significantly clustered at any

spatial scale. The null model landscapes are characterized by cluster size distributions

with much steeper slopes than the CA and dispersed CA landscapes (which by definition

both have the same cluster size distributions) (Figure VI.7). This indicates that the null

landscapes have many more small clusters and fewer large clusters than the CA and

dispersed CA landscapes.

114

Figure VI.5. Representative landscapes corresponding to the data shown in Figure VI.4. Black points are
habitat and white areas are uninhabitable. Row 1 shows self-organized landscapes generated by the CA
model with 500 points (a), 1000 points (d), and 2000 points (g). Row 2 shows the corresponding "dispersed
CA" landscapes that were generated by randomly dispersing the habitat patches in the CA-generated
landscapes. Landscape b was generated by randomly dispersing the patches in landscape a; e corresponds
to d, and h corresponds to g. Row three shows landscapes that were generated by randomly placing 500
points (c), 1000 points (f), and 2000 points (i).

Figure VI.6. Ripley's K, transformed such that the expectation for all sample sizes is zero for a random
spatial pattern and greater than zero for clustered patterns, for the scenarios identified in Figures VI.4-VI.5.
Blue lines are for the self-organized landscapes generated by the CA model; black lines are for the
dispersed CA landscapes; red lines are for the null landscapes; and the gray region shows the 95%
confidence intervals for the random expectation based on 200 randomly-generated landscapes. Lines above
these gray regions are significantly clustered.

115

Figure VI.7. Cluster size distributions for the scenarios identified in Figures VI.4-VI.6.

These results suggest that the self-organization of habitat patches, by promoting

clustering across a range of spatial scales, creates landscapes that promote the persistence

of populations, either as metapopulations or source/sink populations. The scale-free

structure of self-organized habitat results in clusters of clusters, thereby providing both

the large patches and the short distances between patches that, respectively, avert

extinction of occupied patches and foster rescue of unoccupied patches.

An empirical example

In general, if a particular biological system forms the habitat background, the

spatial scale of that system may not correspond to the effective spatial scale of the

population that occupies it. In our exemplary system, for example, the arboreal ant forms

clusters of nests as it responds to a variety of ecological forces (Perfecto and Vandermeer

2008b, Vandermeer et al. 2008, Jackson et al. 2009), whereas the organisms that utilize

those nest clusters as habitat patches may be responsive to some spatial scale that is

different from the spatial scale that is meaningful to the ants themselves. So, for example,

116

it may be that the dispersal stage of the green coffee scale insect is on the order of 50

meters, while the ants only forage over a distance of 10 meters. The question of spatial

scale thus becomes a relative question.

Furthermore, in all cases in which the habitat-forming organism is registered as

occupying individual particles of habitat in space, there needs to be some spatial scale

over which particles can be regarded as members of the same cluster (patch), i.e., a

"cluster scale." This implies that there are actually two parameters that inevitably

determine the final clustering of habitat particles (and, therefore, the distribution of patch

sizes): the total number of particles and the cluster scale. In theory, one may assume

discrete lattices, in which adjacent particles are considered members of the same patch. In

practice, however, a self-organizing process will frequently be conceptualized as particles

in continuous space, which means that some cluster scale has to be chosen in order to

determine patch membership.

Given a particular number of particles in space, the relationship between the

number of isolated particles (singletons) and the largest patch (the critical issues with

regard to population structure, as discussed in the theory section above) is obviously a

negative relationship: as the clustering scale increases, the number of singletons declines,

and the size of the largest patch increases. For example, we illustrate this relationship for

a random allocation of 761 particles in Figure VI.8 (bold lines). It is evident that where

these two functions cross, the slope of the power function that describes the scale-free

distribution of particles should be approximately -1.0 (the intercept on the y axis is the

total number of singletons and the intercept on the x axis is the number of particles in the

largest patch; when both are equal, the line connecting the two will have a slope of -1 on

a logarithmic scale).

117

Figure VI.8. Relationship between cluster scale and number of singletons (blue curves descending) and
number of points in the largest patch (red curves ascending). Bold lines are from a random allocation of
761 points. Fine lines are from the actual position of 761 nests in a 45 ha plot in a coffee farm in southern
Mexico.

In Figure VI.8 we also show the distribution of the numbers of singletons and

largest patch size, for the same range of cluster scales, for the actual distribution of nests

of the ant A. instabilis in our 45 ha study plot in May of 2010. We note that the two

functions cross at a cluster scale of approximately 17 (i.e., the ant nests are responding to

one another over a range of 17 meters at this point).

The population of concern, which is to say, the population that “occupies” the

habitat patches created by the process of clustering of ant nests, is the green coffee scale

insect, the hemipteran C. viridis, that forms a mutualistic association with the ants. That

is, the ant (which tends C. viridis) creates the background habitat into which the scale

insect must fit. Every dry season the hemipteran populations drop to very low levels

except in some of the ant nest clusters where residual populations persist (Figure VI.9). In

surveys of the entire 45 hectares performed from January to April of 2009 and again from

March to May of 2010, before the beginning of the rainy season, we recorded the

presence/absence of an ant nest in each of the approximately 8,000 shade trees in the 45

118

hectare plot and noted whether there were hemipterans in nearby coffee bushes. Using a

cluster scale of 17 m (choosing the point where the two functions cross in Figure VI.8)

we present the results of these surveys in Figure VI.10. Note that at this scale, the insects

are concentrated in the larger clusters of ant nests and that the concentrations of scale

insects generally persist in the same nest clusters from year to year, precisely as would be

expected for a source/sink population. Thus, it would appear that the self-organizing

attributes of the arboreal ants create the patch structure that generates a source/sink

dynamic for the green coffee scale insect.

Figure VI.9. Time series of 35 populations of Coccus viridis at 7 distinct locations in a 45 ha plot on an
organic coffee farm in Chiapas, Mexico. Note the distinct decline to almost zero during each dry season for
all populations.

119

Figure VI.10. Distributions of ant nests in a 45 ha plot, represented as 17 m diameter gray circles, along
with X’s marking the locations where at least one neighboring coffee bush contained green coffee scale
insects in a) 2009 and b) 2010. Note that the concentrations of scale insects tend to occur in the same nest
clusters (defined by gray circles that touch or overlap one another) from year to year. The distances
between the locations of scales in 2010 and the nearest scales in 2009 are significantly less than would be
expected by chance (p<0.0001 using a Monte Carlo method with 10,000 repeats wherein the 2010 scales
were randomly allocated to ant nests and the average distance to the nearest 2009 neighbor was calculated),
indicating that the clusters of scales in 2010 generally occur near 2009 clusters, which is consistent with the
persistence of the scale insects as a source/sink population.

Conclusions

Under a wide variety of scenarios, the self-organization of biological habitats may

result in a distribution of habitat patch sizes that lacks a central tendency, and may thus

be approximated by a power law, or some similar function. Given this habitat

120

construction, the resulting populations that live in those habitat patches may exist as

either a source/sink population or a metapopulation, conditioned not only on the

migration and persistence qualities of the population itself, but also on the underlying

distribution of the self-organized habitat patches. This framing of population spatial

structure redirects the typical focus from one of migration/extinction dynamics only, to

one that asks how the structure of the underlying habitats codetermines (along with the

migration/extinction characteristics) the nature of population structure (whether the

population exists as a source/sink population or a metapopulation).

Using this framework it seems to be the case that the ant, Azteca instabilis, which

nests in shade trees in coffee plantations in southern Mexico, forms the underlying habitat

structure that determines the fact that the associated green coffee scale, Coccus viridis,

exists as a source/sink population.

In addition to the obvious implications for theoretical ecology, these results

command attention from ecosystem managers of various persuasions. For example, in

conservation planning, political exigencies frequently determine the size distributions of

natural habitat preserves within a hostile matrix. Species of conservation interest living in

these habitat fragments may exist as either source/sink populations or metapopulations,

depending not only on the migration/extinction potential inherent in the species, but also

on the underlying distribution of the habitat sizes, with concomitant management

challenges for conservation planners. For instance, improving the conditions of migration

might lead to a loss of a source/sink structure and extinction of the population, before the

metapopulational structure can be realized (see curve a or d in Fig. VI.1), a

counterintuitive result that can be readily understood in the framework of habitat patch

size distributions and the metapopulation-source/sink continuum. This also casts the

classical Single Large or Several Small (SLOSS) debate in a new light, suggesting that

under some conditions intermediate states between these two extremes may maximize

risk of extinction of the population.

121

Chapter VII

Detection of imminent, non-catastrophic regime shifts

The concept of a regime shift, in which an ecosystem changes rapidly from one

state to a qualitatively different state, has gained a certain prominence in the context of

anthropogenic climate change. Climate scientists hypothesize that there exist thresholds

of atmospheric greenhouse gas levels at which very rapid changes in large-scale

environmental conditions will occur. Examples of such scenarios include the collapse of

the Atlantic thermohaline circulation and the disappearance of the Greenland Ice Sheet

(Lenton et al. 2008).

Regime shifts also occur at much smaller scales, and are of particular concern

when they involve a transition from a desirable to an undesirable state, such as the

cultural eutrophication of lakes (Carpenter 2005, Scheffer and Nes 2007), desertification

(Kéfi et al. 2007), and the collapse of fish stocks (Daskalov et al. 2007). Such shifts pose

a challenge for the management of ecosystems, as the rapidity of the transitions makes it

difficult – if not impossible – to arrest them once they have begun. Consequently, there

has been much interest recently in developing early warning signals, or leading

indicators, to detect imminent regime shifts far enough in advance to enable prevention

(Scheffer et al. 2009). The proposed leading indicators typically depend on a

phenomenon termed "critical slowing down," in which the dynamics of a system on the

verge of a transition are predicted to slow down in a characteristic way (Strogatz 1994),

leading to detectable statistical signals in the temporal and/or spatial dynamics of the

system.

Critical slowing down is typically conceptualized using the metaphor of a ball in a

cup. The cup represents a basin of attraction that tends to drive the state of the system,

represented by the ball, to a particular equilibrial condition. When the system is far from

a regime shift, the sides of the cup are very steep, and the ball will rapidly return to the

122

center of the basin of attraction following any perturbation. In contrast, during an

incipient regime shift, the system can be conceived of as a ball in a cup with very shallow

sides. When the ball is displaced by perturbations, the shallow sides only weakly draw

the ball back to the center of the cup, leading to a much slower rate of recovery – a

slowing down of the dynamics. A regime shift occurs when the sides of the cup are

shallow enough, or the perturbation is large enough, to knock the ball into a neighboring

basin of attraction.

In this scenario, the slowing down of dynamics leads to both temporal and spatial

autocorrelations. When dynamics are slow, the state of the system at any point in time is

likely to be similar to what it was a short time before (temporal autocorrelation).

Likewise, critical slowing down will tend to cause points in close spatial proximity to be

in similar states, provided that there is sufficient dispersal between sites. With coupling

via dispersal, a site that has been displaced from equilibrium by a perturbation will

influence its neighboring sites by sending (or failing to send) propagules, thereby

displacing the neighboring sites in the same direction. When there is only a weak basin of

attraction, i.e., during critical slowing down, the influence of dispersal from neighboring

sites will dominate over a site's own internal dynamics, causing neighboring sites to be

significantly more similar than distant sites (spatial autocorrelation). Both temporal and

spatial autocorrelation have been proposed as leading indicators of regime change

(Wissel 1984, Dakos et al. 2009).

A second class of proposed leading indicators relies on changes in the spatial

variance and skew of a system property of interest, e.g., in the spatial variance and skew

of the abundance of a particular organism of interest. When a system is firmly embedded

in a basin of attraction, all of the sites' states will tend to be tightly centered on the

attractor. Therefore, a histogram of the sites will exhibit low variance and low skew. As

the system moves towards a regime change, sites will tend to be less strongly drawn to

the original attractor; at the same time, the influence of the alternative basin of attraction

will begin to significantly affect some sites. Together, these two tendencies result in an

increase in both the spatial variance and skew prior to a regime shift. Specifically, a peak

123

in the skewness coupled with a continued increase in variance is proposed as a general

indicator of regime change (Guttal and Jayaprakash 2008, Guttal and Jayaprakash 2009).

These indicators have generally been developed for systems that exhibit

catastrophic thresholds, most commonly associated with fold bifurcations. However,

whether these indicators will also prove effective for non-catastrophic thresholds is an

open question (Scheffer et al. 2009). Near a catastrophic, fold-bifurcation threshold, there

exist multiple equilibria, and the equilibrium that the system resides at depends on the

path that the system took to reach the current state, i.e., there is hysteresis. This type of

bifurcation with hysteresis is exemplified by the collapse of semi-arid vegetation as a

result of a drying climate (Rietkerk et al. 2004). As dryness increases, the system crosses

a threshold at which the vegetation suddenly collapses and a barren desert is formed;

however, recovery of the vegetated state requires that dryness decrease well below the

collapse threshold. Near the collapse threshold, whether the system resides at the

vegetated equilibrium or the barren equilibrium depends on whether the system is

approaching the threshold from the direction of increasing or decreasing dryness. A non-

catastrophic threshold, in contrast, is characterized by a sudden change in the system state

in response to a small change in a forcing parameter, but without the discontinuity and

hysteresis of a fold bifurcation.

Hastings and Wysham (2010) offer a counter to the view that general leading

indicators can be developed. The ball and cup metaphor and the proposed leading

indicators that follow from this conceptualization depend on the system having a smooth

potential, without underlying complex dynamics such as period doubling cascades to

chaos. Therefore, they argue, for a large set of real ecological systems without smooth

potentials, we should not expect to observe the proposed leading indicators prior to a

regime shift. Agroecosystems, in particular, are likely to undergo regime shifts without

detectable advance warning (Vandermeer 2011).

In the present study, the potential for regime change, in the form of a collapse of

the population of a fungal biocontrol in a coffee agroecosystem, is tested using a

spatially-explicit, stochastic simulation model. The fungus, Lecanicillium lecanii

124

(Zimmerman) Zare and Gams, is an entomopathogen and mycoparasite that provides an

essential ecosystem service of pest control in coffee farms. The goals of this study are

twofold: first, to use this model, which incorporates essential components of the known

natural history of the fungus, to predict whether sudden regime change could occur in this

system in response to small changes in the primary environmental parameters of the

model; and second, to determine if the proposed leading indicators can be used to detect

imminent regime shifts in this model.

These proximate goals are motivated by the immense practical utility that reliable

detection of imminent regime shifts in agroecosystems could provide. For example, if a

regime shift involves moving from a regime in which autonomous pest control is

maintained to a regime in which that control is lost, detection of a regime shift could

mean the prevention of a catastrophic pest outbreak or development of a chronic pest

problem. More concretely, an early warning signal predicting the loss of L. lecanii from

the coffee agroecosystem could allow managers to adjust their management activities

before the population collapses, thereby maintaining C. viridis or H. vastatrix below pest

status. Because of the centrality of ecosystem services to an agroecological management

approach, the ability to predict major changes in the ecosystem far enough in advance to

take ameliorative action would be invaluable.

A second motivation is to add to the existing models that have been used to test

leading indicators. As is appropriate during the initial stages of developing a body of

theory, the models used to date have tended to be formulated to favor the detection of

regime shifts. Therefore, there is a strong need to continue accumulating a catalog of case

studies using biologically realistic models and data from real systems in order to

determine the practical potential of these indicators.

Methods

The study system

The study system upon which the model is based is comprised of L. lecanii and its

primary host, the green coffee scale Coccus viridis Green (Hemiptera: Coccidae)

125

(González et al. 1995). The study site is in Finca Irlanda, an organic coffee

agroecosystem located in the southeast of the state of Chiapas, Mexico. In addition to its

potential role as a biological control of C. viridis, L. lecanii is known to attack coffee

rust, Hemileia vastatrix, a potentially devastating disease (Moricca and Ragazzi 2008,

Vandermeer et al. 2009, Jackson et al. 2012).

The ant Azteca instabilis, which tends C. viridis in a classic ant-hemipteran

mutualism, is a keystone species that structures many of the relevant ecological

interactions in this system (Vandermeer et al. 2010a). In exchange for a carbohydrate-rich

excretion generated by the scales, A. instabilis protects C. viridis from its predators and

parasitoids. In the presence of A. instabilis, C. viridis populations can grow to hundreds

of individuals per coffee plant. These large populations of scale insects provide resources

for a number of associated organisms, including L. lecanii. Local epizootics of L. lecanii

frequently result in nearly 100% mortality of the scale insects tended by a given ant

colony (Jackson et al. 2009).

The prevalence and distribution of L. lecanii, and hence its potential to maintain

control of C. viridis and H. vastatrix within the coffee farm, may depend on a number of

factors related to management practices. First, the ants nest in trees that are planted by

farmers to shade the coffee plants below, and therefore the locations of concentrations of

scale insects – the hosts of the fungus – are determined in part by the locations of the

shade trees. The density of the shade tree canopy also influences the intensity of

ultraviolet radiation that reaches the soil, which may be a determinant of fungal spore

survival (Paul and Gwynn-Jones 2003); the shade trees are periodically pruned by the

farmers, so management practices likely have a direct effect on the mortality rate of

spores in the soil, which has been shown to be an important environmental reservoir of L.

lecanii (Jackson et al. In press).

Environmental factors may also play an important role in the epizootiology of L.

lecanii. Pronounced wet and dry seasons are a key climatic feature of the Soconusco

region of Chiapas. During the wet season, which lasts for approximately 6 months, there

is rain virtually every day that typically lasts from mid-afternoon through the night. In the

126

dry season, in contrast, rain is very infrequent, with most days being sunny, warm, and

dry. The intensity of the rainy season is potentially important because rain splash has

been shown to be a mechanism for translocation of spores from the soil onto susceptible

scale insects (Jackson et al. In press). Therefore, the dispersal of L. lecanii is heavily

dependent on rainfall.

The spatially explicit, stochastic model

The core system of equations upon which the model (Appendix C) is based is

equivalent to Hochberg’s reservoir model (Hochberg 1989), with two changes. First, the

host population dynamics are density dependent, i.e., the growth rate of the host

population decreases as it approaches a carrying capacity, K, as a result of influences

unrelated to the pathogen. Second, infected individuals do not reproduce. This latter

assumption is appropriate for the specific insect host-fungal entomopathogen system that

I consider in the present paper, and is also appropriate for a number of other insect

diseases (Fuxa and Tanada 1987).

To add explicit spatial structure to the model, multiple instantiations of the system

of differential equations shown below are embedded in a two-dimensional, continuous-

space arena (Figure VII.1). A specified number of ant nest sites are distributed randomly

within the arena, with an instance of the system of equations placed at each site.

dSi

dt
= rSi

�
1− Si

K

�
− βSi



Wi +
M�

j=1

αµWj

expδdi,j



 (1)

dIi
dt

= βSi



Wi +
M�

j=1

αµWj

expδdi,j



− σIi (2)

dWi

dt
= σθ1Ii − (µ+ λ)Wi + νQi (3)

dQi

dt
= σθ2Ii − (ρ+ ν)Qi + λWi (4)

127

where Si, Ii, Wi, and Qi are the susceptible hosts, infected hosts, infectious pathogens, and

latent pathogens at site i, respectively; r is the intrinsic growth rate of the host population;

K is the carrying capacity; and β is the transmission rate. Infected individuals, Ii, are

removed at rate σ, converted into infectious biomass at rate σθ1 and converted into latent

pathogen biomass at rate σθ2. The latent pathogen biomass, Qi, represents the

environmental reservoir.

Figure VII.1. Snapshot of the stochastic, spatially-explicit model. Circles are locations of A. instabilis
nests (sites). Green circles are proportional to the number of healthy C. viridis (Si). White circles are
proportional to the number of infected individuals (Ii).

The infectious and latent pathogens undergo two processes: translocation between

the latent and infectious classes, and mortality. Translocation from the latent class to the

infectious class and vice versa occur at rates ν and λ, respectively. Mortality (removal)

rates are µ for the infectious class and ρ for the latent class.

The individual sites are linked with the other sites by dispersal of infectious

pathogens. Infectious pathogens can disperse from any of the M other sites in the arena.

The rate of dispersing pathogens is a fraction, α, of the infectious pathogens removed at

rate µ by either death or dispersal. The rate of dispersal from site j to site i is assumed to

fall off exponentially as a function of the distance between sites, di,j, with a decay

constant δ.

Seasonality is implemented based on the following assumptions: First, there are

two distinct seasons, one in which the host is actively reproducing, and another in which

128

it is quiescent. Second, at the beginning of the active season (following the dormant

season) the host population is reset to an initial value that is independent of the size of the

host population in the previous active season. In the study system, migration of the scale

insects from areas outside of the location of an epizootic ensures that there will be an

initial, small population of scales at the beginning of the active season even if the scales

in a location were completely exterminated by an epizootic in the previous active season.

Third, a portion θ2 of infected individuals present at the end of the active season is

converted into latent pathogens at the end of the active season. Fourth, there are no

infectious individuals or infectious pathogens at the beginning of the active season, i.e., I

and W are reset to zero at the beginning of each active season. Finally, the mortality rate

of the latent pathogens, ρ, is the same during the active and dormant seasons.

Given these assumptions, it is possible to model the dormant season using a

simple discrete-time map from the end of one active season to the beginning of the next

active season. At the beginning of each active season, S = S0, I = 0, W = 0, and Q = (Qa +

θ2Ia)exp(-ρTd), where Qa and Ia are the latent pathogens and infected individuals at the

end of the previous active season, respectively; Td is the length of the dormant season;

and θ2 and ρ are the conversion and mortality rate parameters described previously.

The active-season dynamics of the model described above were implemented

using a modified version of Gillespie’s stochastic simulation algorithm known as the

optimized τ-leap method (Cao et al. 2006, Pineda-Krch 2008). In brief, the original

formulation of Gillespie’s algorithm, the direct method, involves first defining discrete

events that can occur in the model, such as an infection event or a death event. The rates

of all possible events, as defined by the model parameters and the current state of the

system, are then used to calculate a distribution of times between events. At each step, the

time to the next event is drawn from this distribution. The identity of the next event is

determined probabilistically based on the relative rates of the different events. In this

manner, the model state is advanced through time by repeatedly drawing time steps and

event identities from distributions based on the rates of the various events.

129

Gillespie’s direct method becomes very computationally expensive as population

sizes increase and the time between events consequently becomes very small. The τ-leap

method was developed to address this issue. It involves defining the time between events,

τ, a priori and then calculating the number of occurrences of all of the different events

during each time step. The number of occurrences of each event is based on the current

firing rates of the events, as determined by the parameter values and the current state of

the system. The challenge with this method is choosing a τ that is large enough to provide

significant computational savings while not causing any computational anomalies. For

example, if τ is too large, populations could fall below zero due to the number of death

events exceeding the size of the population at the beginning of the time step; a smaller

time step would allow the death rate to be adjusted as the population decreases, causing

the population to smoothly approach zero without overshooting, but this accuracy comes

at the expense of speed.

 The difficulty of choosing a time step a priori that would strike a good balance

between speed and accuracy under all conditions led to the development of the optimized

τ-leap method. This method uses a combination of Gillespie’s direct method; the explicit

τ-leap method with a variable τ that is modified in real time based on the state of the

system; and judicious execution of “critical” events, i.e., events that run the risk of

driving any state to a negative value. The particular method or combination of methods

used in a given cycle and the length of the time step (for cycles in which the τ-leap

method is employed) are determined adaptively to optimize efficiency while preventing

any processes from being driven below zero (Cao et al. 2006, Pineda-Krch 2008).

Parameter values

Default parameter values were derived using a combination of field data from the

L. lecanii-C. viridis system and biologically reasonable estimates (Table VII.1). Data on

the abundance of scale insects and the prevalence of L. lecanii on individual coffee plants

over time are available, so it was possible to calculate estimates of the initial scale insect

population size, growth rate, and carrying capacity. Data were unavailable for most of the

parameters related to the fungus, including spore dispersal, translocation, and survival.

130

Only a very rough estimate of the transmission rate was possible. However, given that the

goal of this investigation was to reveal possible qualitative outcomes, and not to provide

accurate prediction, the emphasis was on choosing parameters that could generate the

qualitative dynamics that are observed in the system, and not on precise parameter

estimation.

Parameter Description Value

S0 Initial number of susceptible scales 50*

I0 Initial number of infected scales 10†

W0 Initial biomass of infectious spores 10†

Q0 Initial biomass of latent spores 300†

r Intrinsic growth rate of scale population 0.0668*

K Carrying capacity of scale population 1100*

β Transmission rate 0.01*

σ Removal rate of infected scales 0.07†

θ1 Conversion rate of infected scales to infectious spores 0.5†

θ2 Conversion rate of infected scales to latent spores 0.05†

µ Rate of removal of infectious spores 0.1†

λ Infectious to latent translocation rate 0.05†

ν Latent to infectious translocation rate 0.01†

ρ Latent spore mortality rate 0.012†

α Fraction of removed infectious spores that disperse 0.1†

δ Dispersal kernel decay constant 0.2†

Ta Length of active season (days) 183*

Td Length of dormant season (days) 182*

X Width of arena (m) 243‡

Y Height of arena (m) 243‡

sites Number of sites 100‡

* Estimated from field data* Estimated from field data* Estimated from field data
† No field data available; based on biological plausibility and model behavior† No field data available; based on biological plausibility and model behavior† No field data available; based on biological plausibility and model behavior
‡ Chosen to match the ant nest density observed in the field and for computational tractability‡ Chosen to match the ant nest density observed in the field and for computational tractability‡ Chosen to match the ant nest density observed in the field and for computational tractability

Table VII.1. Model parameters and default values.

131

Calculation of leading indicators

Three of the leading indicators proposed in the literature were used to detect the

onset of regime change: spatial autocorrelation, skewness, and variance. All of these

indicators were calculated using the number of infected individuals, Ii, as these are the

data that would be most readily obtainable from field surveys.

Spatial autocorrelation was calculated using Moran's coefficient (Legendre and

Fortin 1989):

 C(d) =
n
�n

i=1

�n
j=1 ωi,j(Ii − I)(Ij − I)

Ω
�n

j=1(Ii,j − I)2
 (5)

where d is a distance class; ωi,j is a weight that is 1 if the distance between sites i and j

lies in distance class d and 0 otherwise; Ω is the total number of pairs of sites that fall into

distance class d; and n is the number of neighboring sites. Moran's coefficient was

calculated for all distance classes ranging from 5 to 250 m, with a bin width of 5 m. The

correlation length, Ψ, which is an estimate of the distance over which sites are correlated,

was then estimated by an exponential fit, exp(-d/Ψ) to C(d) (Solé and Bascompte 2006).

The correlation length was calculated for each day during the wet season, as well as for

the average value of C during the entire wet season, or C(d).

Spatial variance, Var(I), and skewness, Skew(I), were calculated based on the

distribution of Ii for all of the sites in the arena (Guttal and Jayaprakash 2009).

Results

Three scenarios leading to apparent regime shifts in which the population of L.

lecanii collapsed throughout the arena were identified. All of these regime shifts are non-

catastrophic, without any apparent hysteresis, i.e., they are not associated with a fold

bifurcation. The first two scenarios are triggered by changes to the translocation rate, ν

(Figure VII.2). If the translocation rate is decreased from the default value of 0.01, the

median fraction of sites with at least one infected individual increases. Beyond a

threshold value of approximately 0.0025, however, the median fraction of infected sites

rapidly falls, eventually leading to the complete extinction of the fungus from the system

132

as ν is decreased further. In the second scenario, when ν is increased above the default

value there is also a rapid decrease in the prevalence of L. lecanii in the plot, although the

decrease is not as precipitous (Figure VII.2).

The third scenario under which a sudden regime shift is observed involves an

increase in the latent spore mortality rate, ρ. As ρ is increased beyond the default value of

0.012, there is a threshold at which the site-wide prevalence of L. lecanii falls rapidly

(Figure VII.3). If ρ is increased even further above this threshold, the fungus eventually

dies out completely.

The dynamics of the system as the translocation rate is slowly decreased across

the regime shift threshold are shown in Figure VII.4a. As ν nears the threshold, the total

population of infected scales decreases noticeably. Both the variance and the skewness

also change markedly as the threshold is approached. There is no discernible trend in the

correlation length, Ψ. In response to an increasing translocation rate, there are no

apparent signals of a regime shift in any of the leading indicators (Figure VII.4b); the

only obvious change in the data is the gradual reduction in the number of infected

individuals.

For a scenario in which the mortality rate of latent spores, ρ, is increased across

the regime shift threshold, there is a general trend towards a lower number of infected

sites. There is also a decrease in the spatial skew, and an increase in the spatial variance

(Figure VII.5); however, neither of these two leading indicators exhibits a noticeable,

rapid change until after the collapse has already taken place. The correlation length also

shows no apparent signal of the imminent regime shift.

133

Figure VII.2. Median fraction of sites with infected individuals, averaged over 100 realizations of the
model, as a function of the rate of translocation from the environmental reservoir to the infectious class (ν).
The model was run for 10,000 active season days, and the final 5,000 active season days of each run were
extracted for analysis.

0.000 0.005 0.010 0.015 0.020

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

!

A
ve

ra
ge

 o
f t

he
 m

ed
ia

n
fra

ct
io

n
of

 s
ite

s
in

fe
ct

ed

134

0.000 0.005 0.010 0.015 0.020

0.
0

0.
2

0.
4

0.
6

0.
8

!

A
ve

ra
ge

 o
f t

he
 m

ed
ia

n
fra

ct
io

n
of

 s
ite

s
in

fe
ct

ed

Figure VII.3. Median number of sites with infected individuals, averaged over 100 realizations of the
model, as a function of the mortality rate of latent pathogens, ρ. Dashed line is without dispersal (α = 0) and
solid line is with dispersal (α = 0.1). The model was run for 10,000 active season days, and the final 5,000
active season days of each run were extracted for analysis.

135

Figure VII.4. Translocation rate (ν), total number of infecteds, correlation length (Ψ), skewness, and
variance for two regime shift scenarios. a) Decrease of ν across the lower regime shift threshold and b)
increase of ν across the upper regime shift threshold. Gray lines are daily values; black lines are averages
across a single wet season. Gray points are for fits to Moran's coefficients for daily snapshots of Ii; black
points are fits to Moran's coefficients averaged across a single wet season. Correlation lengths are only
shown when the exponential fit, exp(-d/Ψ), was significant at P <0 .05.

a) b)

136

Figure VII.5. Mortality rate of latent spores (ρ), total number of infecteds, correlation length (Ψ),
skewness, and variance for a scenario in which ρ was increased across a regime shift threshold. Gray lines
are daily values; black lines are averages across a single wet season. Gray points are for fits to Moran's
coefficients for daily snapshots of Ii; black points are fits to Moran's coefficients averaged across a single
wet season. Correlation lengths are only shown when the exponential fit, exp(-d/Ψ), was significant at P
<0 .05.

137

Discussion

The existence of regime shifts in this agroecosystem model underscores the

potential importance of nonlinearities in this particular agroecosystem, and in managed

systems in general. It also highlights the need to develop leading indicators that can

reliably predict the onset of a regime shift. However, the general failure of the proposed

leading indicators – spatial autocorrelation, spatial variance, and spatial skewness – to

unambiguously signal the onset of regime shifts observed in this model suggests that the

leading indicators developed to date for catastrophic regime shifts may be less effective

for non-catastrophic regime shifts, and emphasizes that much work still needs to be done

to develop signals of impending regime change that are practicable under real-world

management scenarios for systems that exhibit this class of regime shift.

In the context of the example study system, the humped relationship between

prevalence and the latent-to-infectious translocation rate illustrates how nonlinearities can

have important implications for the maintenance of biological control. In the L. lecanii-C.

viridis system, an environmental reservoir is in the soil, and latent-to-infectious

translocation occurs by rain splash (Jackson et al. In press), so the latent-to-infectious

translocation rate will be a function of rainfall intensity. Therefore, intermediate rainfall

intensity could be expected to maximize the effectiveness of biological control of the

scale insect (C. viridis) by the fungus. The possibility that intermediate rainfall intensity

could maximize biological control has not been considered in the literature related to this

system, which focuses exclusively on the positive effects that elevated relative humidity

has on germination of L. lecanii and the initiation of epizootics (Reddy and Bhat 1989).

Ignoring the effects of rainfall on the environmental reservoir could lead to qualitative

predictions that are counter to what may actually occur if rainfall were to change.

These results also point to the potential for management decisions to have

unexpected effects on biological control. Pruning shade trees in order to increase

photosynthetic activity is a common technique for increasing coffee yield (Staver et al.

2001). However, this practice is also likely to significantly increase the intensity of

138

ultraviolet radiation reaching the soil. Ultraviolet radiation is known to have a strong

negative effect on the survival of fungal conidia (Paul and Gwynn-Jones 2003), and could

therefore increase the mortality rate of spores in the environmental reservoir, i.e., ρ. This

could potentially lead to a drastic reduction in the prevalence of L. lecanii (Figure VII.3)

and a subsequent loss of the ecosystem service of pest control. Although further research

would be necessary to determine whether the real system resides in a region of parameter

space where small changes in ρ would lead to major changes in prevalence, these results

suggest that it would be prudent for managers to monitor the response of the fungus as

shade levels are manipulated.

There are a number of factors that contributed to the failure of the leading

indicators to unequivocally signal the onset of the observed regime shifts. The primary

factor may be the relative gradualness of the non-catastrophic transitions observed in this

system compared to the catastrophic transitions that the leading indicators have generally

been applied to. Intuitively, critical slowing down should be less severe for non-

catastrophic thresholds, and therefore the associated signals should be less pronounced,

making them more difficult to distinguish from noise. In comparing the tendency for the

leading indicators to change as the system approaches the three regime shifts considered

here (Figures VII.4 and VII.5), it appears that this intuition is borne out, with the change

in the indicators seemingly correlated with the rapidity of the transition (Figures VII.2

and VII.3). Although none of the scenarios exhibited the diagnostic peak in skewness

coupled with a continued increase in variance (Guttal and Jayaprakash 2009), the

scenario with the most abrupt threshold exhibited a noticeable change in these parameters

prior to the collapse (Figure VII.4a) while the scenario with the most gradual shift did not

(Figure VII.4b).

In addition to the inherent difficulty of detecting the onset of non-catastrophic

regime shifts, the lack of a signal of increased spatial autocorrelation is also likely due to

the weak coupling of sites, which is a consequence of the shape and magnitude of the

dispersal kernel as well as the relatively large and varied distances between sites. Both of

these characteristics (low rates of dispersal and large, varied distances between sites) are

139

likely to be common in real systems, which calls into question the potential utility of

spatial autocorrelation as a leading indicator. Use of spatial autocorrelation as a leading

indicator relies on dispersal becoming dominant as the internal dynamics of the sites slow

down, but this may be unlikely to occur in systems that do not have the strong spatial

coupling that is characteristic of the lattice-based models with which this leading

indicator was originally developed (Dakos et al. 2009).

An important consideration if these indicators are to be successfully applied to

real systems is how feasible it will be to collect the required data. The spatial and

temporal resolutions of the sample data available in simulation models such as the one

used in this and other theoretical studies on leading indicators far exceeds what could

reasonably be collected in the field. For example, a more realistic scenario for the L.

lecanii-C. viridis study system, given current technology and resources, would be for

plot-wide surveys to be completed once per month. Given the amount of variation in the

simulated daily values of the leading indicators (Figures VII.4 and VII.5), it is clear that

substantial development of statistical methods to cope with noisy, incomplete, and

infrequent data would be required before these leading indicators could be employed by

managers.

Despite the challenges that remain, these results provide some hope that leading

indicators could be used to augment the tools that are currently available to managers.

Although an unequivocal signal of impending regime change was not detectable for any

of the scenarios in this study, the rapid changes in variance and skewness associated with

the most severe threshold (Figure VII.4a) could conceivably be used as a warning signal

for this particular regime shift, albeit one without any precise information regarding the

proximity of the threshold. The magnitude of the changes in variance and skewness also

provide some hope that these signals would be detectable even in more realistic, data

poor scenarios.

These results also provide another example of what is coming to be seen as a

widespread and common phenomenon: rapid changes in the state of an ecosystem in

response to small changes in environmental forcers. As ecosystem managers continue to

140

confront the rapid and profound change that is the defining feature of the Anthropocene,

effective methods to detect impending regime shifts could prove to be an invaluable tool

for allocating limited management resources to the most urgent management concerns.

However, it is important to note that even if leading indicators can be developed to detect

the onset of certain regime shifts, it may be impossible to detect others (Hastings and

Wysham 2010, Vandermeer 2011). Therefore, leading indicators may be useful for

preventing some detectable regime shifts, but they cannot substitute for applying the

precautionary principle in agroecosystem management. For while not all surprises are

inevitable, surprise itself is.

141

Chapter VIII

Conclusion

The body of work represented by this dissertation should be seen as both

encouraging and sobering. Encouraging, in that there is ample reason for hope that an

agroecological approach can help to move agriculture beyond the production-versus-

health trade-offs that inhere within the industrial agriculture paradigm. Sobering, in that

moving from the preliminary, basic research contained herein to concrete, actionable

management recommendations will require many, many dissertations worth of work.

That modern agroecology is in many ways in its infancy compared to the relatively

sophisticated, if misguided, state of conventional agronomy is as much a reflection of the

immense resources that have been expended on the industrial agriculture agenda as of the

intrinsic difficulty of agroecology. But with only 0.81% of agricultural land worldwide

managed using certified organic methods (Willer and Kilcher 2010), and a smaller

fraction still qualifying as agroecological, it is clear that proponents of agroecology have

much work ahead of them to overcome the inertia of the food system (though it is

important to note that this percentage does not include non-certified organic agriculture,

which is difficult to quantify because much of it is grown, distributed, and consumed

locally without passing through monitored market systems (Scialabba and Hattam 2002)).

In truth, there have already been great strides made in agroecology. For instance, a

substantial amount of evidence showing the agricultural benefits of biodiversity has been

accumulated (Jarvis et al. 2007), and enough evidence has been collected showing the

biodiversity benefits of agroecology to make a strong case for it on conservation grounds

(Bengtsson et al. 2005, Perfecto and Vandermeer 2008a). In terms of production, even

without advancements beyond the current state of the art of sustainable farming,

indications are that it would be possible to meet the food and fiber needs of a growing

world population (Badgley et al. 2007, Badgley and Perfecto 2007). At the same time, the

142

case against conventional agriculture becomes more damning by the day. As just a

sampling of the damaging side effects associated with conventional agriculture that have

come to light in the first few months of this year alone: a potential link to colony collapse

disorder in bees (Henry et al. 2012, Whitehorn et al. 2012), long-term effects of prenatal

pesticide exposure on reproductive function in boys (Wohlfahrt-Veje et al. 2012), and

collapse of fisheries (Scholz et al. 2012). In short, with what we already know about

agroecology and the status quo, there is ample reason to shift away from conventional

agriculture.

So, what is preventing a wholesale switch to a less damaging approach to

agriculture? Part of the answer can be found in the present research. In this dissertation, I

have shown that 1) L. lecanii exerts a subtle, but statistically significant negative

influence on H. vastatrix, 2) propagules of L. lecanii appear to exist in low, but

detectable, levels throughout the coffee farm, 3) the initiation and subsequent spread of L.

lecanii epizootics is accomplished through the joint actions of rain splash, the ant A.

instabilis, and possibly other as-yet-unknown mechanisms, 4) it is likely that the L.

lecanii population could collapse rather suddenly in response to changes in management

and/or climatic conditions, and that a collapse could occur without any detectable

advance warning, and 5) there is a strong potential for a cross fertilization of ideas and

theory between agroecology and the rest of the science of ecology. Clearly, an

appreciation for these results and the body of similarly complex results that has been

generated by agroecologists over the years requires a level of tolerance for uncertainty,

contingency, and complexity that a farmer accustomed to a "spray this to kill that"

approach will be unlikely to possess. As stated in the National Research Council in their

1989 report on alternative agriculture, "Alternative farming practices typically require

more information, trained labor, time, and management skills per unit of production than

conventional farming" (1989). With farmers the world over facing an onslaught of

economic challenges, this is not an easy program to sell, regardless of the potential

advantages.

143

Although the challenges are daunting, it is heartening to remember that history is

full of examples of seemingly insurmountable inertia being overcome. After all, at

various times and places in human history, it was inconceivable that people with dark

skin would cease to be treated like beasts of burden; that God would no longer personally

appoint a despot to subjugate the people; that women would be considered to be full

citizens; that love between two men or two women would be valued as much as love

between a man and a woman; that the East would dominate the West, or the West the

East; and that innumerable other apparently immutable conditions might change. With

luck, and much hard work, an agriculture based on prudent cooperation with nature

instead of physical and chemical violence against it will become the norm.

144

APPENDICES

145

Appendix A

Computer code for Chapter V: The evolution of imperfect prudence

Software specifications

Recursive Porous Agent Simulation Toolkit (Repast) 3.0

Class list
HostPathogen.java 146

Host.java 172
Pathogen.java 182

StatsDisplayObject.java 187
GUIModel.java 188

BatchModel.java 194
ModelParameters.java 197

Class details

HostPathogen.java

package hostPathogen_v7;

// A host-pathogen, probabilistic cellular automata model to investigate
// the evolution of prudence in hosts
import hostPathogen_v7.Host;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Vector;
import java.util.Collections;

import uchicago.src.sim.analysis.Plot;
import uchicago.src.sim.engine.Schedule;
import uchicago.src.sim.space.Object2DTorus;

public class HostPathogen extends ModelParameters
{

 // class variables

146

 public static Plot transmissibilityGraph;
 public static Plot virulenceGraph;
 public static Plot growthGraph;
 public static Plot numHostsGraph;
 public static Plot numPathogensGraph;

 // control variables
 public boolean newMethod = true; // true = disable infectionTries method of pathogen spread

 // instance variables
 public ArrayList<Host> hostList = new ArrayList<Host>();
 public ArrayList<Pathogen> pathogenList = new ArrayList<Pathogen>();
 public ArrayList<Host> hostBirthList = new ArrayList<Host>();
 public ArrayList<Pathogen> pathogenBirthList = new ArrayList<Pathogen>();
 public ArrayList<Host> hostDeathList = new ArrayList<Host>();
 public ArrayList<Pathogen> pathogenDeathList = new ArrayList<Pathogen>();
 public int[][] occupancyMatrix;
 public int[] numHGP;
 public int[] numDescendents;
 public int[] ageDist;
 public int[] numDescendents2;
 public int[] ageDist2;

 public Schedule schedule;

 public int sizeX;
 public int sizeY;
 public int startNumHosts;
 public int numHosts;
 public int startNumPathogens;
 public int changeNumPathogens;
 public int numPathogens;
 public int graphUpdatePeriod;
 public int hostExecutionPeriod;
 public double probLongDistance;

 // PIP parameters
 public double challengerGrowthProb;
 public int challengerStartNum;
 public int challengeStartTime;
 public int challengeFreq;

 // defaults for the hosts and pathogens
 public double defaultGrowthProb;
 public double probGrowthMutate;
 public double growthMutation;
 public double defaultNaturalDeathZero;
 public double defaultNaturalDeathSlope;
 public double defaultTransmissibility;
 public double defaultVirulence;
 public double probTransMutate;
 public double transMutation;
 public double probVirulenceMutate;
 public double virulenceMutation;

 // stats
 public double minTransmissibility;
 public double avgTransmissibility;

147

 public double maxTransmissibility;
 public double minVirulence;
 public double avgVirulence;
 public double maxVirulence;
 public double minGrowthProb;
 public double avgGrowthProb;
 public double maxGrowthProb;

 public int numNaturalDeaths;
 public int numDiseaseDeaths;
 public int hostTime;

 public int writeTime;
 public int enableStepReport;

 // environs densities
 public double P_pp;
 public double P_mm;
 public double P_pm;
 public double P_mp;
 public double P_p0;
 public double P_0p;
 public double P_m0;
 public double P_0m;
 public double P_00;
 public int sum_P;

 public Object2DTorus world; // 2D class from Repast
 public Object2DTorus offspringWorld;
 public Object2DTorus descendentsWorld;

 // ///
 // addModelSpecificParameters
 // add alias and long name for Model parameters you want to set at run time
 // the long name should be same as instance variable
 //
 // Note: the generic parameters from ModelParameters are already available.

 @Override
 public void addModelSpecificParameters()
 {
 parametersMap.put("X", "sizeX");
 parametersMap.put("Y", "sizeY");
 parametersMap.put("sNH", "startNumHosts");
 parametersMap.put("sNP", "startNumPathogens");
 parametersMap.put("gUP", "graphUpdatePeriod");
 parametersMap.put("pLD", "probLongDistance");
 parametersMap.put("hEP", "hostExecutionPeriod");
 parametersMap.put("dGP", "defaultGrowthProb");
 parametersMap.put("dNDZ", "defaultNaturalDeathZero");
 parametersMap.put("dNDS", "defaultNaturalDeathSlope");
 parametersMap.put("dTau", "defaultTransmissibility");
 parametersMap.put("dV", "defaultVirulence");
 parametersMap.put("pGM", "probGrowthMutate");
 parametersMap.put("gM", "growthMutation");
 parametersMap.put("pTM", "probTransMutate");
 parametersMap.put("tM", "transMutation");
 parametersMap.put("pVM", "probVirulenceMutate");

148

 parametersMap.put("vM", "virulenceMutation");
 parametersMap.put("cGP", "challengerGrowthProb");
 parametersMap.put("cSN", "challengerStartNum");
 parametersMap.put("cST", "challengeStartTime");
 parametersMap.put("cFR", "challengeFreq");
 parametersMap.put("wT", "writeTime");
 parametersMap.put("eSR", "enableStepReport");
 }

 // control what appears in the repast parameter panel
 @Override
 public String[] getInitParam()
 {
 String[] params =
 { "sizeX","sizeY", "startNumHosts", "startNumPathogens", "graphUpdatePeriod",
 "probLongDistance", "hostExecutionPeriod", "defaultGrowthProb", defaultNaturalDeathZero",
 "defaultNaturalDeathSlope", "defaultTransmissibility", "defaultVirulence",
 "probGrowthMutate", "growthMutation", "probTransMutate",
 "transMutation", "probVirulenceMutate", "virulenceMutation", "challengerGrowthProb",
 "challengerStartNum", "challengeStartTime", "challengeFreq", "writeTime",
 "enableStepReport"};
 return params;
 }

 // //
 // constructor, if needed.
 public HostPathogen()
 {

 }

 // ///
 // setup
 // set defaults after a run start or restart

 @Override
 public void setup()
 {
 if (rDebug > 0)
 System.out.printf("==> setup...\n");
 schedule = null;
 System.gc();

 hostList = new ArrayList<Host>();
 pathogenList = new ArrayList<Pathogen>();

 sizeX = 100;
 sizeY = 100;

 occupancyMatrix = new int[sizeX][sizeY];
 numHGP = new int[101];
 numDescendents = new int[100];
 ageDist = new int[100];
 numDescendents2 = new int[100];
 ageDist2 = new int[100];

 startNumHosts = 500;
 startNumPathogens = 50;

149

 numPathogens = startNumPathogens;
 changeNumPathogens = 0;

 graphUpdatePeriod = 100000;

 hostExecutionPeriod = -999;

 probLongDistance = 0.0016;

 // PIP parameter defaults
 challengerGrowthProb = 0.2;
 challengerStartNum = 0;
 challengeStartTime = 100;
 challengeFreq = -999;

 // defaults for hosts and pathogens
 defaultGrowthProb = 0.6;
 probGrowthMutate = 0.15;
 defaultNaturalDeathZero= 0.2;
 defaultNaturalDeathSlope = 0;
 growthMutation = 0.01;
 defaultTransmissibility = 1;
 defaultVirulence = 1;
 probTransMutate = 0;
 transMutation = 0.005;
 probVirulenceMutate = 0;
 virulenceMutation = 0.01;

 numNaturalDeaths = 0;
 numDiseaseDeaths = 0;
 hostTime = 0;

 writeTime = 1000;
 enableStepReport = 0;

 super.setup(); // THIS SHOULD BE CALLED after setting defaults in
 // setup().
 schedule = new Schedule(1); // create AFTER calling super.setup()

 if (rDebug > 0)
 System.out.printf("\n<=== setup() done.\n");

 }

 // ///
 // buildModel
 // We build the "conceptual" parts of the model.
 // (vs the display parts, and the schedule)
 //
 // Create a 2D world, tell the organisms about it.
 // Create organisms and add them to the lists.

 public void buildModel()
 {
 if (rDebug > 0)
 System.out.printf("==> buildModel...\n");

 // CALL FIRST -- defined in super class -- it starts RNG, etc

150

 buildModelStart();

 // tell the hosts and pathogens about "this"
 Host.setModel(this);
 Pathogen.setModel(this);

 // create the 2D world, tell the Host and Pathogen classes about it.
 world = new Object2DTorus(sizeX, sizeY);
 Host.setHostsWorld(world);
 Pathogen.setPathogensWorld(world);

 offspringWorld = new Object2DTorus(sizeX, sizeY);
 Host.setOffspringWorld(offspringWorld);

 descendentsWorld = new Object2DTorus(sizeX, sizeY);
 Host.setDescendentsWorld(descendentsWorld);

 // set the default parameters of the hosts and pathogens
 Host.setDefaultGrowthProb(defaultGrowthProb);
 Host.setDefaultNaturalDeathZero(defaultNaturalDeathZero);
 Host.setDefaultNaturalDeathSlope(defaultNaturalDeathSlope);
 Host.setProbGrowthMutate(probGrowthMutate);
 Host.setGrowthMutation(growthMutation);
 Pathogen.setDefaultTransmissibility(defaultTransmissibility);
 Pathogen.setDefaultVirulence(defaultVirulence);
 Pathogen.setProbTransMutate(probTransMutate);
 Pathogen.setTransMutation(transMutation);
 Pathogen.setProbVirulenceMutate(probVirulenceMutate);
 Pathogen.setVirulenceMutation(virulenceMutation);

 // create and scatter the initial hosts
 scatterRandomHosts();

 // create and scatter the initial pathogens
 infectHostsRandomly(startNumPathogens);

 // some post-load finishing touches
 startReportFile();

 // for the initial state, calculate these numbers, store in instance
 // variables
 // record some stats every step
 calcStatistics();

 // calls to process parameter changes and write the
 // initial state to the report file.
 applyAnyStoredChanges();
 stepReport();
 getReportFile().flush();
 getPlaintextReportFile().flush();

 if (rDebug > 0)
 System.out.printf("<== buildModel done.\n");
 }

 // Create a new Host with growthProb=gP and put it at x, y
 public void createNewHost(int x, int y, double gP)
 {

151

 Host aHost = new Host(x, y, gP);
 world.putObjectAt(x, y, aHost);
 setOccupancyMatrix(x,y,1);
 hostList.add(aHost);
 }

 // Create a new Pathogen and put it at x, y
 public Pathogen createNewPathogen(int x, int y)
 {
 Pathogen aPathogen = new Pathogen(x, y);
 pathogenList.add(aPathogen);
 return aPathogen;
 }

 // Add random hosts
 public void scatterRandomHosts()
 {

 int randomX, randomY;

 if (rDebug > 0)
 System.out.printf("==> scattering hosts...\n");

 // Check to see if there are too many hosts to fit on the grid
 if (startNumHosts>(sizeX*sizeY))
 {
 // fill entire grid with hosts and output warning message
 startNumHosts = sizeX*sizeY;
 System.out.println("Warning: startNumHosts is too big; I'll put a host in every cell");
 }

 for (int i = 0; i<startNumHosts; i++)
 {

 // lets find a random place that is unoccupied
 // This method of selecting random cells will get really slow
 // as the number of hosts approaches the number of cells in the arena
 do
 {
 randomX = getUniformIntFromTo(0, world.getSizeX()-1);
 randomY = getUniformIntFromTo(0, world.getSizeY()-1);
 } while (((Host)world.getObjectAt(randomX, randomY)) != null);

 createNewHost(randomX, randomY, defaultGrowthProb);

 }

 if (rDebug > 0)
 System.out.printf("==> ...done scattering hosts\n");
 }

 // Add random challengers
 public void scatterChallengers()
 {

 int randomX, randomY;
 int tempChallengerStartNum = challengerStartNum;

152

 if (rDebug > 0)
 System.out.printf("==> scattering challengers...\n");

 // Check to see if there are too many hosts to fit on the grid
 if (challengerStartNum>((sizeX-1)*(sizeY-1)-numHosts))
 {
 // fill entire grid with hosts and output warning message
 challengerStartNum = (sizeX-1)*(sizeY-1)-numHosts;
 System.out.println("Warning: challengerStartNum is too big; I'll put a host in every empty cell");
 }

 for (int i = 0; i<challengerStartNum; i++)
 {

 // let's find a random place that is unoccupied
 // This method of selecting random cells will get really slow
 // as the number of hosts approaches the number of free cells in the arena
 do
 {
 randomX = getUniformIntFromTo(1, world.getSizeX() - 1);
 randomY = getUniformIntFromTo(1, world.getSizeY() - 1);
 } while (((Host)world.getObjectAt(randomX, randomY)) != null);

 createNewHost(randomX, randomY, challengerGrowthProb);

 }

 // restore the specified challengerStartNum
 challengerStartNum = tempChallengerStartNum;

 if (rDebug > 0)
 System.out.printf("==> ...done scattering challengers\n");
 }

 // Randomly infect the hosts
 public void infectHostsRandomly(int numPathogens)
 {

 // Shuffle the list of hosts
 Collections.shuffle(hostList);

 // check to see if there are too many pathogens
 if (numPathogens > hostList.size())
 {
 System.out.println("Warning: number of new pathogens is too big; every host will be infected");
 numPathogens = hostList.size();
 }

 // infect the first numPathogens hosts in hostList
 for (int i = 0; i<numPathogens; i++)
 {
 hostList.get(i).setInfected(true);
 hostList.get(i).setPathogen(createNewPathogen(hostList.get(i).getX(), hostList.get(i).getY()));
 }
 }

 // ///
 // step

153

 // The top of the "conceptual" model's main dynamics
 public void step()
 {
 Vector<Host> neighbors;

 if (rDebug > 0)
 System.out.printf("==> CML step %.0f:\n", getTickCount());

 if((hostTime % writeTime) == 0)
 {
 writeState();
 }
 if(executeHost())
 {
 incrementHostTime();
 // loop through all the hosts to see if they get randomly infected. For now,
 // the new pathogens will have parameter values equal to those of existing pathagens
 // chosen at random
 for (Host aHost : hostList)
 {
 if (getUniformDoubleFromTo(0, 1) < probLongDistance)
 {
 if(!pathogenList.isEmpty())
 {
 // Shuffle the list of pathogens; the new pathogen will have parameter values
 // from the first pathogen in this randomly ordered list
 Collections.shuffle(pathogenList);

 // add a new pathogen here with parameter values from the randomly-chosen pathogen
 Pathogen aPathogen = new Pathogen(aHost.getX(), aHost.getY(),
 pathogenList.get(0).getTransmissibility(), pathogenList.get(0).getVirulence());
 addPathogenBirth(aPathogen);
 }
 else
 {
 // add a new pathogen with the default parameter values
 Pathogen aPathogen = new Pathogen(aHost.getX(), aHost.getY(),
 defaultTransmissibility, defaultVirulence);
 addPathogenBirth(aPathogen);
 }

 }
 }
 }

 // loop through all of the cells to see if organisms reproduce into them
 for (int i=0; i<sizeX; i++)
 {
 for (int j=0; j<sizeY; j++)
 {
 // get the neighbors
 neighbors = world.getVonNeumannNeighbors(i, j, false);
 for (Host aHost : neighbors)
 {
 aHost.reproduce(i, j);
 }
 }
 }

154

 // perform the organisms' steps
 for (Host aHost : hostList)
 {
 aHost.step();
 }

 for (Pathogen aPathogen : pathogenList)
 {
 aPathogen.step();
 }

 // process birth and death lists
 processHostBirthList();
 processPathogenBirthList();
 processHostDeathList();
 processPathogenDeathList();

 // inject invading/challenging hosts if hostTime>challengeStartTime
 if(executeHost() && challengerStartNum > 0 && hostTime>=challengeStartTime)
 {
 if(hostTime==challengeStartTime || (challengeFreq>0 && ((hostTime-challengeStartTime) %
 challengeFreq)==0))
 {
 scatterChallengers();
 }
 }

 // call method to update graphs
 updateGraphs();

 if (rDebug > 0)
 {
 System.out.printf("<== main step done.\n");
 }

 }

 // ///
 // stepReport
 // each step write out:
 // Note: update the writeHeaderCommentsToReportFile() to print
 // lines of text describing the data written to the report file.
 public void stepReport()
 {

 if(enableStepReport == 1)
 {
 //if(executeHost())
 //{
 // set up a string with the values to write
 String s = String.format("%5.0f", getTickCount());
 s += String.format(" %d", numHosts);
 s += String.format(" %d", numPathogens);
 s += String.format(" %6.3f", minTransmissibility);
 s += String.format(" %6.3f", avgTransmissibility);
 s += String.format(" %6.3f", maxTransmissibility);
 s += String.format(" %6.3f", minVirulence);

155

 s += String.format(" %6.3f", avgVirulence);
 s += String.format(" %6.3f", maxVirulence);
 s += String.format(" %6.3f", minGrowthProb);
 s += String.format(" %6.3f", avgGrowthProb);
 s += String.format(" %6.3f", maxGrowthProb);
 s += String.format(" %d", numNaturalDeaths);
 s += String.format(" %d", numDiseaseDeaths);
 s += String.format(" %d", hostTime);
 s += String.format(" %6.3f", P_pp);
 s += String.format(" %6.3f", P_mm);
 s += String.format(" %6.3f", P_pm);
 s += String.format(" %6.3f", P_mp);
 s += String.format(" %6.3f", P_p0);
 s += String.format(" %6.3f", P_0p);
 s += String.format(" %6.3f", P_m0);
 s += String.format(" %6.3f", P_0m);
 s += String.format(" %6.3f", P_00);
 s += String.format(" %d", sum_P);

 for(int i=0; i<101; i++)
 {
 s += String.format(" %d", numHGP[i]);
 }

 // write it to the xml and plain text report files
 //writeLineToReportFile("<stepreport>" + s + "</stepreport>");
 writeLineToPlaintextReportFile(s);

 // flush the buffers so the data is not lost in a "crash"
 getReportFile().flush();
 getPlaintextReportFile().flush();
 //}
 }

 }

 public void writeState()
 {
 try
 {
 BufferedWriter out = new BufferedWriter(new FileWriter("state_" + Double.toString(hostTime) +
 ".csv"));

 out.write("x, y, infected");
 out.newLine();
 // loop through all of the hosts and write their info
 for (Host aHost : hostList)
 {
 out.write(Integer.toString(aHost.getX()));
 out.write(",");
 out.write(Integer.toString(aHost.getY()));
 if(aHost.getInfected())
 {
 out.write(", 1");
 }
 else
 {
 out.write(", 0");

156

 }
 out.newLine();
 }
 out.close();
 } catch (IOException e)
 {

 }

 // write the frequency of descendents to a file
 try
 {
 BufferedWriter out = new BufferedWriter(new FileWriter("descendents_" + Double.toString
 hostTime) + ".csv"));

 out.write("descendents, frequency, frequency2");
 out.newLine();
 // loop through all of the hosts and write their info
 for (int i = 0; i<numDescendents.length; i++)
 {
 out.write(Integer.toString(i));
 out.write(",");
 out.write(Integer.toString(numDescendents[i]));
 out.write(",");
 out.write(Integer.toString(numDescendents2[i]));
 out.newLine();
 }
 out.close();
 } catch (IOException e)
 {

 }

 // write the frequency of ages to a file
 try
 {
 BufferedWriter out = new BufferedWriter(new FileWriter("ages_" + Double.toString(hostTime) +
 ".csv"));

 out.write("ages, frequency, frequency2");
 out.newLine();
 // loop through all of the hosts and write their info
 for (int i = 0; i<ageDist.length; i++)
 {
 out.write(Integer.toString(i));
 out.write(",");
 out.write(Integer.toString(ageDist[i]));
 out.write(",");
 out.write(Integer.toString(ageDist2[i]));
 out.newLine();
 }
 out.close();
 } catch (IOException e)
 {

 }

157

 }
 // ///

 // writeHeaderCommentsToReportFile
 // customize to match what you are writing to the report files in
 // stepReport.

 @Override
 public void writeHeaderCommentsToReportFile()
 {
 writeLineToReportFile("<comment>");
 writeLineToReportFile(" ");
 writeLineToReportFile(" time numHosts numPathogens minTrans avgTrans maxTrans minVirul
 avgVirul maxVirul minGrwth avgGrwth maxGrwth natDth disDth hostTime P_pp P_mm P_pm
 P_mp P_p0 P_0p P_m0 P_0m P_00 sum_P hGP=0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28
 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48
 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68
 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1");
 writeLineToReportFile("</comment>");

 writeLineToPlaintextReportFile("# ");
 writeLineToPlaintextReportFile("# time numHosts numPathogens minTrans avgTrans maxTrans
 minVirul avgVirul maxVirul minGrwth avgGrwth maxGrwth natDth disDth hostTime P_pp P_mm
 P_pm P_mp P_p0 P_0p P_m0 P_0m P_00 sum_P hGP=0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27
 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47
 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67
 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87
 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1");
 }

 // //
 // printProjectHelp
 // this could be filled in with some help to get from running with -help
 // parameter
 @Override
 public void printProjectHelp()
 {
 // print project help

 System.out.printf("\n%s -- \n", getName());

 System.out.printf("\n **** Add more info here!! **** \n");

 System.out.printf("\nactivationOrder value\n");
 System.out.printf("\nfixed 0\n");
 System.out.printf("\nrandomWithReplacement 1\n");
 System.out.printf("\nrandomWithoutReplacement 2\n");

 System.out.printf("\n");

 printParametersMap();

 System.exit(0);

 }

158

 void processHostBirthList()
 {
 // shuffle the list so a host is chosen at random when more than one tries to
 // reproduce into the same cell
 Collections.shuffle(hostBirthList);

 // loop through the hostBirthList, adding hosts to empty spots
 for (Host aHost : hostBirthList)
 {
 // check to see if the spot is empty
 if (getOccupancyMatrix(aHost.getX(), aHost.getY()) == 0)
 {
 aHost.getParent().incrementOffspring();
 world.putObjectAt(aHost.getX(), aHost.getY(), aHost);
 setOccupancyMatrix(aHost.getX(), aHost.getY(), 1);
 hostList.add(aHost);
 }

 }

 // note that the next line will abort hosts if the spot they were allocated
 // to wasn't empty
 hostBirthList.clear();

 }

 void processPathogenBirthList()
 {
 // shuffle the list so one of the pathogens at a given location is chosen at random
 Collections.shuffle(pathogenBirthList);

 // loop through the pathogenBirthList, infecting susceptible hosts
 for (Pathogen aPathogen : pathogenBirthList)
 {
 // check to see if the host is already infected or marked for death
 // If not, infect the host with the pathogen and add the pathogen to pathogenList
 if (!((Host)world.getObjectAt(aPathogen.getX(), aPathogen.getY())).getInfected() &&
 !((Host)world.getObjectAt(aPathogen.getX(), aPathogen.getY())).getDoomed())
 {
 ((Host)world.getObjectAt(aPathogen.getX(), aPathogen.getY())).setInfected(true);
 ((Host)world.getObjectAt(aPathogen.getX(), aPathogen.getY())).setPathogen(aPathogen);
 pathogenList.add(aPathogen);
 }

 }

 // note that the next line will abort pathogens whose host was already infected
 pathogenBirthList.clear();
 }

 public void processHostDeathList()
 {
 numNaturalDeaths = 0;
 numDiseaseDeaths = 0;

 for (Host aHost : hostDeathList)
 {

159

 if(aHost.getNaturalDeath() == true)
 {
 numNaturalDeaths++;
 }
 else
 {
 numDiseaseDeaths++;
 }
 world.putObjectAt(aHost.getX(), aHost.getY(), null);
 offspringWorld.putObjectAt(aHost.getX(), aHost.getY(), null);
 descendentsWorld.putObjectAt(aHost.getX(), aHost.getY(), null);
 setOccupancyMatrix(aHost.getX(), aHost.getY(), 0);

 // record the number of descendents the host had when it died
 if(challengerStartNum>0 & aHost.getGrowthProb()==challengerGrowthProb)
 {
 if(aHost.getDescendents()<numDescendents2.length)
 {
 numDescendents2[aHost.getDescendents()]++;
 }
 if(aHost.getAge()<ageDist2.length)
 {
 ageDist2[aHost.getAge()]++;
 }
 }
 else
 {
 if(aHost.getDescendents()<numDescendents.length)
 {
 numDescendents[aHost.getDescendents()]++;
 }
 if(aHost.getAge()<ageDist.length)
 {
 ageDist[aHost.getAge()]++;
 }
 }
 hostList.remove(aHost);
 }
 hostDeathList.clear();

 }

 public void processPathogenDeathList()
 {
 // All it should take to kill the pathogens is to remove them
 // from pathogenList -- simply destroying their host
 // (which will remove all links to the pathogens and let Java's garbage collection
 // take care of them) should be enough
 for (Pathogen aPathogen : pathogenDeathList)
 {
 pathogenList.remove(aPathogen);
 }
 pathogenDeathList.clear();
 }

 public void updateGraphs()
 {

160

 //check one of the graphs to see if we are in GUI mode
 if (transmissibilityGraph != null)
 {
 transmissibilityGraph.plotPoint(this.getTickCount(), minTransmissibility, 1);
 transmissibilityGraph.plotPoint(this.getTickCount(), avgTransmissibility, 2);
 transmissibilityGraph.plotPoint(this.getTickCount(), maxTransmissibility, 3);

 virulenceGraph.plotPoint(this.getTickCount(), minVirulence, 1);
 virulenceGraph.plotPoint(this.getTickCount(), avgVirulence, 2);
 virulenceGraph.plotPoint(this.getTickCount(), maxVirulence, 3);

 growthGraph.plotPoint(this.getTickCount(), minGrowthProb, 1);
 growthGraph.plotPoint(this.getTickCount(), avgGrowthProb, 2);
 growthGraph.plotPoint(this.getTickCount(), maxGrowthProb, 3);

 numHostsGraph.plotPoint(this.getTickCount(), numHosts, 1);

 numPathogensGraph.plotPoint(this.getTickCount(), numPathogens, 1);

 }
 }

 // calculate the average transmissibility of all pathogens
 public void calcStatistics()
 {
 double cumulTransmissibility = 0;
 double cumulVirulence = 0;
 double cumulGrowthProb = 0;
 int oldNumPathogens = numPathogens;

 // environs density variables
 boolean occupied=false;
 boolean infected=false;
 Vector<Host> neighbors;
 Host thisHost;
 int sum_P_pp = 0;
 int sum_P_mm = 0;
 int sum_P_pm = 0;
 int sum_P_mp = 0;
 int sum_P_p0 = 0;
 int sum_P_0p = 0;
 int sum_P_m0 = 0;
 int sum_P_0m = 0;
 int sum_P_00 = 0;

 numHosts = hostList.size();
 numPathogens = pathogenList.size();
 changeNumPathogens = numPathogens - oldNumPathogens;

 if(enableStepReport==1)
 {
 // reset max and min transmissibilities
 minTransmissibility = 1;
 maxTransmissibility = 0;

 // reset max and min virulences
 minVirulence = 1;
 maxVirulence = 0;

161

 // Calculate average values for pathogens
 if(pathogenList.size()==0)
 {
 minTransmissibility = defaultTransmissibility;
 avgTransmissibility = defaultTransmissibility;
 maxTransmissibility = defaultTransmissibility;

 minVirulence = defaultVirulence;
 avgVirulence = defaultVirulence;
 maxVirulence = defaultVirulence;
 }
 else
 {
 for (Pathogen aPathogen : pathogenList)
 {
 cumulTransmissibility += aPathogen.getTransmissibility();

 if(aPathogen.getTransmissibility() > maxTransmissibility)
 {
 maxTransmissibility = aPathogen.getTransmissibility();
 }

 if(aPathogen.getTransmissibility() < minTransmissibility)
 {
 minTransmissibility = aPathogen.getTransmissibility();
 }

 cumulVirulence += aPathogen.getVirulence();

 if(aPathogen.getVirulence() > maxVirulence)
 {
 maxVirulence = aPathogen.getVirulence();
 }

 if(aPathogen.getVirulence() < minVirulence)
 {
 minVirulence = aPathogen.getVirulence();
 }

 }

 avgTransmissibility = cumulTransmissibility/pathogenList.size();
 avgVirulence = cumulVirulence/pathogenList.size();
 }

 // reset max and min growth probabilities
 maxGrowthProb = 0;
 minGrowthProb = 1;

 if(hostList.size()==0)
 {
 minGrowthProb = defaultGrowthProb;
 avgGrowthProb = defaultGrowthProb;
 maxGrowthProb = defaultGrowthProb;
 }
 else
 {

162

 for(int i=0; i<101; i++)
 {
 numHGP[i]=0;
 }
 for (Host aHost : hostList)
 {
 cumulGrowthProb += aHost.getGrowthProb();

 if(aHost.getGrowthProb() > maxGrowthProb)
 {
 maxGrowthProb = aHost.getGrowthProb();
 }

 if(aHost.getGrowthProb() < minGrowthProb)
 {
 minGrowthProb = aHost.getGrowthProb();
 }

 numHGP[(int) Math.floor((float)(aHost.getGrowthProb()*100))]++;

 }
 avgGrowthProb = cumulGrowthProb/hostList.size();
 }

 // Calculate the environs densities
 sum_P = 0;
 for (int i=0; i<sizeX; i++)
 {
 for (int j=0; j<sizeY; j++)
 {

 // see if there's a host at this location, then see if it's infected
 occupied = false;
 infected = false;
 if(world.getObjectAt(i, j) != null)
 {
 occupied = true;
 if(((Host) world.getObjectAt(i, j)).getInfected())
 {
 infected = true;
 }
 else
 {
 infected = false;
 }
 }

 neighbors = world.getVonNeumannNeighbors(i, j, true);
 for (Host anotherHost : neighbors)
 {
 sum_P++;

 if(anotherHost != null)
 {
 boolean test = anotherHost.getInfected();
 if(occupied & !infected & !anotherHost.getInfected())
 {
 sum_P_pp++;

163

 }
 else if(occupied & infected & anotherHost.getInfected())
 {
 sum_P_mm++;
 }
 else if(occupied & !infected & anotherHost.getInfected())
 {
 sum_P_pm++;
 }
 else if(occupied & infected & !anotherHost.getInfected())
 {
 sum_P_mp++;
 }
 else if(!occupied & !anotherHost.getInfected())
 {
 sum_P_0p++;
 }
 else if(!occupied & anotherHost.getInfected())
 {
 sum_P_0m++;
 }
 }
 else
 {
 if(occupied & !infected)
 {
 sum_P_p0++;
 }
 if(occupied & infected)
 {
 sum_P_m0++;
 }
 else if(!occupied)
 {
 sum_P_00++;
 }
 }

 }
 }
 }
 P_pp = (double)sum_P_pp/sum_P;
 P_mm = (double)sum_P_mm/sum_P;
 P_pm = (double)sum_P_pm/sum_P;
 P_mp = (double)sum_P_mp/sum_P;
 P_p0 = (double)sum_P_p0/sum_P;
 P_0p = (double)sum_P_0p/sum_P;
 P_m0 = (double)sum_P_m0/sum_P;
 P_0m = (double)sum_P_0m/sum_P;
 P_00 = (double)sum_P_00/sum_P;
 }

 }

 public Boolean executeHost()
 {
 if(getHostExecutionPeriod()==-999)
 {

164

 if(newMethod)
 {
 if(numPathogens==0)
 {
 return Boolean.TRUE;
 }
 else
 {
 return Boolean.FALSE;
 }
 }
 else
 {
 if(changeNumPathogens==0)
 {
 return Boolean.TRUE;
 }
 else
 {
 return Boolean.FALSE;
 }
 }

 }
 else
 {
 if(getTickCount() % getHostExecutionPeriod() == 0)
 {
 return Boolean.TRUE;
 }
 else
 {
 return Boolean.FALSE;
 }
 }
 }

 public void incrementHostTime()
 {
 hostTime++;
 }
 @Override
 public Schedule getSchedule()
 {
 return schedule;
 }

 @Override
 public String getName()
 {
 return "HostPathogen";
 }

 // setters and getters
 // notes:
 // - we use the schedule != null to indicated model has been initialized
 // - some things can't be changed after model initialization
 // (which things just depends on how the model is implemented)

165

 // - if we set something after model initialization,
 // we need to write an change entry to the report file.
 // - some things need to send messages to update class variables.
 //
 // NOTE: if you want changes a user makes to parameter like numBugs
 // to be used after a restart (vs going back to defaults),
 // you probably have to change setup() to not reinitialize IVs.

 public static void setTransmissibilityGraph (Plot graph) { transmissibilityGraph = graph; };
 public static void setVirulenceGraph (Plot graph) { virulenceGraph = graph; };
 public static void setGrowthGraph (Plot graph) { growthGraph = graph; };
 public static void setNumHostsGraph (Plot graph) { numHostsGraph = graph; };
 public static void setNumPathogensGraph (Plot graph) { numPathogensGraph = graph; };

 public boolean getNewMethod()
 {
 return newMethod;
 }

 public int getSizeX()
 {
 return sizeX;
 }

 public void setSizeX(int sizeX)
 {
 this.sizeX = sizeX;
 }

 public int getSizeY()
 {
 return sizeY;
 }

 public void setSizeY(int sizeY)
 {
 this.sizeY = sizeY;
 }

 public void setOccupancyMatrix(int x, int y, int occupied)
 {
 this.occupancyMatrix[x][y] = occupied;
 }

 public int getOccupancyMatrix(int x, int y)
 {
 return occupancyMatrix[x][y];
 }

 public int getStartNumHosts()
 {
 return startNumHosts;
 }

 public int getNumHosts()
 {
 return numHosts;
 }

166

 public void setStartNumHosts(int startNumHosts)
 {
 this.startNumHosts = startNumHosts;
 }

 public int getStartNumPathogens()
 {
 return startNumPathogens;
 }

 public int getNumPathogens()
 {
 return numPathogens;
 }

 public void setStartNumPathogens(int startNumPathogens)
 {
 this.startNumPathogens = startNumPathogens;
 }

 public int getGraphUpdatePeriod()
 {
 return graphUpdatePeriod;
 }
 public void setGraphUpdatePeriod(int gUP)
 {
 graphUpdatePeriod = gUP;
 }

 public int getHostExecutionPeriod()
 {
 return hostExecutionPeriod;
 }
 public void setHostExecutionPeriod(int hEP)
 {
 hostExecutionPeriod = hEP;
 }

 public double getProbLongDistance()
 {
 return probLongDistance;
 }
 public void setProbLongDistance(double pLD)
 {
 probLongDistance = pLD;
 }

 public double getDefaultGrowthProb()
 {
 return defaultGrowthProb;
 }
 public void setDefaultGrowthProb(double dGP)
 {
 defaultGrowthProb = dGP;
 }

 public double getDefaultNaturalDeathZero()

167

 {
 return defaultNaturalDeathZero;
 }
 public void setDefaultNaturalDeathZero(double dNDZ)
 {
 defaultNaturalDeathZero = dNDZ;
 }

 public double getDefaultNaturalDeathSlope()
 {
 return defaultNaturalDeathSlope;
 }
 public void setDefaultNaturalDeathSlope(double dNDS)
 {
 defaultNaturalDeathSlope = dNDS;
 }

 public double getProbGrowthMutate()
 {
 return probGrowthMutate;
 }
 public void setProbGrowthMutate(double pGM)
 {
 probGrowthMutate = pGM;
 }

 public double getGrowthMutation()
 {
 return growthMutation;
 }
 public void setGrowthMutation(double gM)
 {
 growthMutation = gM;
 }

 public double getDefaultTransmissibility()
 {
 return defaultTransmissibility;
 }
 public void setDefaultTransmissibility(double tau)
 {
 defaultTransmissibility = tau;
 }

 public double getDefaultVirulence()
 {
 return defaultVirulence;
 }
 public void setDefaultVirulence(double v)
 {
 defaultVirulence = v;
 }

 public double getProbTransMutate()
 {
 return probTransMutate;
 }
 public void setProbTransMutate(double pTM)

168

 {
 probTransMutate = pTM;
 }

 public double getTransMutation()
 {
 return transMutation;
 }
 public void setTransMutation(double tM)
 {
 transMutation = tM;
 }

 public double getProbVirulenceMutate()
 {
 return probVirulenceMutate;
 }
 public void setProbVirulenceMutate(double pVM)
 {
 probVirulenceMutate = pVM;
 }

 public double getVirulenceMutation()
 {
 return virulenceMutation;
 }
 public void setVirulenceMutation(double vM)
 {
 virulenceMutation = vM;
 }

 public double getChallengerGrowthProb()
 {
 return challengerGrowthProb;
 }
 public void setChallengerGrowthProb(double cGP)
 {
 challengerGrowthProb = cGP;
 }

 public int getChallengerStartNum()
 {
 return challengerStartNum;
 }
 public void setChallengerStartNum(int cSN)
 {
 challengerStartNum = cSN;
 }

 public int getChallengeStartTime()
 {
 return challengeStartTime;
 }
 public void setChallengeStartTime(int cST)
 {
 challengeStartTime = cST;
 }

169

 public int getChallengeFreq()
 {
 return challengeFreq;
 }
 public void setChallengeFreq(int cFR)
 {
 challengeFreq = cFR;
 }

 public int getWriteTime()
 {
 return writeTime;
 }
 public void setWriteTime(int wT)
 {
 writeTime = wT;
 }

 public int getEnableStepReport()
 {
 return enableStepReport;
 }
 public void setEnableStepReport(int eSR)
 {
 enableStepReport = eSR;
 }

 public void addHostBirth (Host h)
 {
 hostBirthList.add(h);
 }

 public void addPathogenBirth (Pathogen p)
 {
 pathogenBirthList.add(p);
 }

 public void addHostDeath (Host h)
 {
 hostDeathList.add(h);
 }

 public void addPathogenDeath (Pathogen p)
 {
 pathogenDeathList.add(p);
 }

 // ///
 // processEndOfRun
 // called once, at end of run.
 // writes some final info, closes report files, etc.
 public void processEndOfRun()
 {
 if (rDebug > 0)
 System.out.printf("\n\n===== processEndOfRun =====\n\n");
 applyAnyStoredChanges();
 endReportFile();
 this.fireStopSim();

170

 }

}

171

Host.java

/**
 * Host.java
 */

package hostPathogen_v7;

import hostPathogen_v7.GUIModel;

import java.awt.BasicStroke;
import java.lang.Boolean;
import java.util.Vector;

import uchicago.src.sim.gui.*;
import uchicago.src.sim.space.Object2DTorus;
import uchicago.src.sim.gui.ColorMap;
import java.awt.Color;

public class Host implements Drawable
{
 // class variables
 public static int nextID = 0; // to give each an ID
 public static Object2DTorus hostsWorld; // where the hosts live
 public static Object2DTorus offspringWorld;
 public static Object2DTorus descendentsWorld;
 public static HostPathogen model; // the model "in charge"
 public static GUIModel guiModel = null; // the gui model "in charge"
 public static ColorMap colorMap;
 public static double maxOffspring = 10;
 public static double maxDescendents = 20;

 public static double defaultGrowthProb;
 public static double defaultNaturalDeathZero;
 public static double defaultNaturalDeathSlope;
 public static double probGrowthMutate;
 public static double growthMutation;

 // instance variables
 public int ID;
 public boolean infected;
 public int x, y;
 public Color myColor;
 public Pathogen myPathogen;
 public double growthProb;
 public double naturalDeathZero;
 public double naturalDeathSlope;
 public boolean naturalDeath;
 public boolean doomed;
 public int age;
 public Host myParent;
 public int offspring;
 public int descendents;
 public StatsDisplayObject offspringDisplayObject;
 public StatsDisplayObject descendentsDisplayObject;

 // the Host constructors
 public Host(int X, int Y)

172

 {
 ID = nextID++;
 x = X;
 y = Y;
 infected = false;
 doomed = false;
 growthProb = defaultGrowthProb;
 setColorMap();
 myColor = colorMap.getColor(Math.round((float)(63*growthProb)));
 naturalDeathZero= defaultNaturalDeathZero;
 naturalDeathSlope = defaultNaturalDeathSlope;
 age = 0;
 myParent = null;
 offspring = 0;
 descendents = 0;
 offspringDisplayObject = new StatsDisplayObject(Color.WHITE);
 offspringWorld.putObjectAt(getX(), getY(), offspringDisplayObject);
 descendentsDisplayObject = new StatsDisplayObject(Color.WHITE);
 descendentsWorld.putObjectAt(getX(), getY(), descendentsDisplayObject);
 }

 public Host(int X, int Y, double g)
 {
 ID = nextID++;
 x = X;
 y = Y;
 infected = false;
 doomed = false;
 growthProb = g;
 setColorMap();
 myColor = colorMap.getColor(Math.round((float)(63*growthProb)));
 naturalDeathZero= defaultNaturalDeathZero;
 naturalDeathSlope = defaultNaturalDeathSlope;
 age = 0;
 myParent = null;
 offspring = 0;
 descendents = 0;
 offspringDisplayObject = new StatsDisplayObject(Color.WHITE);
 offspringWorld.putObjectAt(getX(), getY(), offspringDisplayObject);
 descendentsDisplayObject = new StatsDisplayObject(Color.WHITE);
 descendentsWorld.putObjectAt(getX(), getY(), descendentsDisplayObject);
 }

 public Host(int X, int Y, double g, Host mP)
 {
 ID = nextID++;
 x = X;
 y = Y;
 infected = false;
 doomed = false;
 growthProb = g;
 setColorMap();
 myColor = colorMap.getColor(Math.round((float)(63*growthProb)));
 naturalDeathZero= defaultNaturalDeathZero;
 naturalDeathSlope = defaultNaturalDeathSlope;
 age = 0;
 myParent = mP;
 offspring = 0;

173

 descendents = 0;
 offspringDisplayObject = new StatsDisplayObject(Color.WHITE);
 offspringWorld.putObjectAt(getX(), getY(), offspringDisplayObject);
 descendentsDisplayObject = new StatsDisplayObject(Color.WHITE);
 descendentsWorld.putObjectAt(getX(), getY(), descendentsDisplayObject);
 }

 // setupHostDrawing
 // set the guiModel address, which we can test to see if in GUI mode
 public static void setupHostDrawing (GUIModel m)
 {
 guiModel = m;
 }
 // //
 // step
 // apply the CA rules

 // The static block is essentially a constructor for the class
 static
 {
 colorMap = new ColorMap();
 setColorMap();
 }
 public void step()
 {
 double randNum;
 int numNeighbors;
 Vector<Host> neighbors;

 // check to see if the hosts should execute this time step
 if(model.executeHost())
 {
 age ++;

 // See if myParent has died. If so, forget about them.
 if(myParent != null)
 {
 if(myParent.getDoomed()==true)
 {
 myParent = null;
 }
 }

 // calculate the probability of death based on the number of hosts in the von Neumann
 neighborhood
 neighbors = hostsWorld.getVonNeumannNeighbors(x, y, false);
 numNeighbors = neighbors.size();

 // see if the host will die a natural death
 randNum = ModelParameters.getUniformDoubleFromTo(0, 1);
 if(randNum < (naturalDeathZero+naturalDeathSlope*numNeighbors))
 {
 setNaturalDeath(true);
 model.addHostDeath(this);
 doomed = true;
 if(infected)
 {
 model.addPathogenDeath(this.myPathogen);

174

 }

 }
 }

 if((model.executeHost() && !model.getNewMethod()) | model.getNewMethod())
 {
 // see if the Host is infected, and, if so, if it will die
 if (infected)
 {
 // die with probability = virulence
 randNum = ModelParameters.getUniformDoubleFromTo(0, 1);

 if (randNum < myPathogen.getVirulence())
 {
 setNaturalDeath(false);
 model.addHostDeath(this);
 doomed = true;
 model.addPathogenDeath(this.myPathogen);
 }

 }
 }
 if(offspring != 0)
 {
 offspringDisplayObject.setMyColor(colorMap.getColor(Math.round((float)(63*(offspring/
 maxOffspring)))));
 }
 if(descendents != 0)
 {
 descendentsDisplayObject.setMyColor(colorMap.getColor(Math.round((float)(63*(descendents/
 maxDescendents)))));
 }
 }

 public void reproduce(int tempX, int tempY)
 {
 double randNum;
 double newGrowthProb; // the growthProb that the offspring will have

 // check to see if the hosts should execute this time step
 if(model.executeHost())
 {
 // reset the infectionTries count of the pathogen
 if(infected)
 {
 myPathogen.resetInfectionTries();
 }

 // see if the cell is unoccupied
 // IMPORTANT: INFECTED HOSTS CANNOT REPRODUCE

 // getObject is expensive, so check infected==false first
 // I've replaced getObject with getOccupancyMatrix, but I think the previous
 // structure is still OK
 if(infected==false)
 {
 if (model.getOccupancyMatrix(tempX, tempY) == 0)

175

 {
 // reproduce with probability = growthProb
 randNum = ModelParameters.getUniformDoubleFromTo(0, 1);

 if (randNum < growthProb)
 {
 // mutate with probability probGrowthMutate
 randNum = ModelParameters.getUniformDoubleFromTo(0, 1);

 // subtract growthMutation w/ a probability of probGrowthMutate/2;
 // add growthMutation w/ a probability of probGrowthMutate/2
 if (randNum < probGrowthMutate/2)
 {
 newGrowthProb = Math.max(0, growthProb - growthMutation);
 }
 else if (randNum < probGrowthMutate)
 {
 newGrowthProb = Math.min(1, growthProb + growthMutation);
 }
 else
 {
 newGrowthProb = growthProb;
 }

 Host aHost = new Host(tempX, tempY, newGrowthProb, this);
 model.addHostBirth(aHost);
 }
 }
 }

 }
 // the host's pathogen also gets a chance to reproduce
 if(infected)
 {
 myPathogen.reproduce(tempX, tempY);
 }

 }

 // //
 // setters and getters
 public void setID(int i)
 {
 ID = i;
 }

 public int getID()
 {
 return ID;
 }

 // note these are class methods, to set class variables
 public static void setHostsWorld(Object2DTorus world)
 {
 hostsWorld = world;
 }

 public static void setOffspringWorld(Object2DTorus world)

176

 {
 offspringWorld = world;
 }

 public static void setDescendentsWorld(Object2DTorus world)
 {
 descendentsWorld = world;
 }

 public static void setModel(HostPathogen m)
 {
 model = m;
 }

 public static void setGUIModel(GUIModel m)
 {
 guiModel = m;
 }

 public static void setDefaultGrowthProb(double dGP)
 {
 defaultGrowthProb = dGP;
 }

 public static void setDefaultNaturalDeathZero(double dNDZ)
 {
 defaultNaturalDeathZero = dNDZ;
 }

 public static void setDefaultNaturalDeathSlope(double dNDS)
 {
 defaultNaturalDeathSlope = dNDS;
 }

 public static double getProbGrowthMutate()
 {
 return probGrowthMutate;
 }
 public static void setProbGrowthMutate(double pGM)
 {
 probGrowthMutate = pGM;
 }

 public static double getGrowthMutation()
 {
 return growthMutation;
 }
 public static void setGrowthMutation(double gM)
 {
 growthMutation = gM;
 }

 public static void setColorMap()
 {
 colorMap.mapColor(0, 0, 0, 0.5625);
 colorMap.mapColor(1, 0, 0, 0.625);
 colorMap.mapColor(2, 0, 0, 0.6875);
 colorMap.mapColor(3, 0, 0, 0.75);

177

 colorMap.mapColor(4, 0, 0, 0.8125);
 colorMap.mapColor(5, 0, 0, 0.875);
 colorMap.mapColor(6, 0, 0, 0.9375);
 colorMap.mapColor(7, 0, 0, 1);
 colorMap.mapColor(8, 0, 0.0625, 1);
 colorMap.mapColor(9, 0, 0.125, 1);
 colorMap.mapColor(10, 0, 0.1875, 1);
 colorMap.mapColor(11, 0, 0.25, 1);
 colorMap.mapColor(12, 0, 0.3125, 1);
 colorMap.mapColor(13, 0, 0.375, 1);
 colorMap.mapColor(14, 0, 0.4375, 1);
 colorMap.mapColor(15, 0, 0.5, 1);
 colorMap.mapColor(16, 0, 0.5625, 1);
 colorMap.mapColor(17, 0, 0.625, 1);
 colorMap.mapColor(18, 0, 0.6875, 1);
 colorMap.mapColor(19, 0, 0.75, 1);
 colorMap.mapColor(20, 0, 0.8125, 1);
 colorMap.mapColor(21, 0, 0.875, 1);
 colorMap.mapColor(22, 0, 0.9375, 1);
 colorMap.mapColor(23, 0, 1, 1);
 colorMap.mapColor(24, 0.0625, 1, 0.9375);
 colorMap.mapColor(25, 0.125, 1, 0.875);
 colorMap.mapColor(26, 0.1875, 1, 0.8125);
 colorMap.mapColor(27, 0.25, 1, 0.75);
 colorMap.mapColor(28, 0.3125, 1, 0.6875);
 colorMap.mapColor(29, 0.375, 1, 0.625);
 colorMap.mapColor(30, 0.4375, 1, 0.5625);
 colorMap.mapColor(31, 0.5, 1, 0.5);
 colorMap.mapColor(32, 0.5625, 1, 0.4375);
 colorMap.mapColor(33, 0.625, 1, 0.375);
 colorMap.mapColor(34, 0.6875, 1, 0.3125);
 colorMap.mapColor(35, 0.75, 1, 0.25);
 colorMap.mapColor(36, 0.8125, 1, 0.1875);
 colorMap.mapColor(37, 0.875, 1, 0.125);
 colorMap.mapColor(38, 0.9375, 1, 0.0625);
 colorMap.mapColor(39, 1, 1, 0);
 colorMap.mapColor(40, 1, 0.9375, 0);
 colorMap.mapColor(41, 1, 0.875, 0);
 colorMap.mapColor(42, 1, 0.8125, 0);
 colorMap.mapColor(43, 1, 0.75, 0);
 colorMap.mapColor(44, 1, 0.6875, 0);
 colorMap.mapColor(45, 1, 0.625, 0);
 colorMap.mapColor(46, 1, 0.5625, 0);
 colorMap.mapColor(47, 1, 0.5, 0);
 colorMap.mapColor(48, 1, 0.4375, 0);
 colorMap.mapColor(49, 1, 0.375, 0);
 colorMap.mapColor(50, 1, 0.3125, 0);
 colorMap.mapColor(51, 1, 0.25, 0);
 colorMap.mapColor(52, 1, 0.1875, 0);
 colorMap.mapColor(53, 1, 0.125, 0);
 colorMap.mapColor(54, 1, 0.0625, 0);
 colorMap.mapColor(55, 1, 0, 0);
 colorMap.mapColor(56, 0.9375, 0, 0);
 colorMap.mapColor(57, 0.875, 0, 0);
 colorMap.mapColor(58, 0.8125, 0, 0);
 colorMap.mapColor(59, 0.75, 0, 0);
 colorMap.mapColor(60, 0.6875, 0, 0);
 colorMap.mapColor(61, 0.625, 0, 0);

178

 colorMap.mapColor(62, 0.5625, 0, 0);
 colorMap.mapColor(63, 0.5, 0, 0);
 }

 public int getX()
 {
 return x;
 }

 public void setX(int i)
 {
 x = i;
 }

 public int getY()
 {
 return y;
 }

 public void setY(int i)
 {
 y = i;
 }

 public boolean getInfected()
 {
 return infected;
 }

 public void setInfected(boolean i)
 {
 infected = i;

 if(i)
 {
 myColor = Color.white;
 }
 else
 {
 myColor = myColor = colorMap.getColor(Math.round((float)(63*growthProb)));
 }

 }

 public boolean getDoomed()
 {
 return doomed;
 }

 public Pathogen getPathogen()
 {
 return myPathogen;
 }

 public void setPathogen(Pathogen p)
 {
 myPathogen = p;
 }

179

 public double getGrowthProb()
 {
 return growthProb;
 }

 public void setGrowthProb(double gP)
 {
 growthProb = gP;

 }

 public double getNaturalDeathZero()
 {
 return naturalDeathZero;
 }

 public void setNaturalDeathZero(double nDZ)
 {
 naturalDeathZero = nDZ;

 }

 public double getNaturalDeathSlope()
 {
 return naturalDeathSlope;
 }

 public void setNaturalDeathSlope(double nDS)
 {
 naturalDeathSlope = nDS;

 }

 public String getName()
 {
 return "Host";
 }

 public void setNaturalDeath(boolean nD)
 {
 naturalDeath = nD;
 }

 public boolean getNaturalDeath()
 {
 return naturalDeath;
 }

 public Host getParent()
 {
 return myParent;
 }

 public int getOffspring()
 {
 return offspring;
 }

180

 public int getDescendents()
 {
 return descendents;
 }

 public int getAge()
 {
 return age;
 }

 public void incrementOffspring()
 {
 offspring++;
 incrementDescendents();
 }

 public void incrementDescendents()
 {
 descendents++;
 if(myParent != null)
 {
 myParent.incrementDescendents();
 }
 }
 // we implement Drawable interface, so we need this method
 // so that the Host can draw itself when requested
 // (by the GUI display).

 public void draw(SimGraphics g)
 {
 g.drawFastRoundRect(myColor);
 }

}

181

Pathogen.java

/**
 * Pathogen.java
 */

package hostPathogen_v7;

import hostPathogen_v7.GUIModel;

import java.awt.BasicStroke;
import java.lang.Math;

import uchicago.src.sim.gui.*;
import uchicago.src.sim.space.Object2DTorus;
import java.awt.Color;

public class Pathogen implements Drawable
{
 // class variables
 public static int nextID = 0; // to give each an ID
 public static HostPathogen model; // the model "in charge"
 public static Object2DTorus pathogensWorld; // where the hosts live
 public static GUIModel guiModel = null; // the gui model "in charge"
 // we'll use this to draw a border around the pathogens' cells (the f means
 // float)
 public static BasicStroke pathogenEdgeStroke = new BasicStroke(1.0f);

 public static double defaultTransmissibility;
 public static double defaultVirulence;
 public static double probTransMutate;
 public static double transMutation;
 public static double probVirulenceMutate;
 public static double virulenceMutation;

 // instance variables
 public int ID;
 public int x, y;
 public Color myColor;
 public int infectionTries;

 public double transmissibility;
 public double virulence;

 // the Pathogen constructor
 public Pathogen(int X, int Y)
 {
 ID = nextID++;
 x = X;
 y = Y;
 myColor = Color.white;
 transmissibility = defaultTransmissibility;
 virulence = defaultVirulence;
 infectionTries = 0;
 }

 public Pathogen(int X, int Y, double tau, double v)
 {

182

 ID = nextID++;
 x = X;
 y = Y;
 myColor = Color.white;
 transmissibility = tau;
 virulence = v;
 infectionTries = 0;
 }

 // setupPathogenDrawing
 // set the guiModel address, which we can test to see if in GUI mode
 public static void setupPathogenDrawing (GUIModel m)
 {
 guiModel = m;
 }
 // //
 // step
 // apply the CA rules
 public void step()
 {
 // do nothing for now
 }

 public void reproduce(int tempX, int tempY)
 {
 double randNum;
 double newTransmissibility;
 double newVirulence;

 // each pathogen only gets four tries to infect, i.e., one try
 // for each cell in the von Neumann neighborhood
 infectionTries++;

 // only try to infect if infectionTries<4 (von Neumann neighborhood)
 if(infectionTries<=4 | model.getNewMethod())
 {
 // see if the cell has a host in it
 if (pathogensWorld.getObjectAt(tempX, tempY) != null)
 {

 // see if the host is not already infected
 if (((Host)pathogensWorld.getObjectAt(tempX, tempY)).getInfected() == false)
 {
 // reproduce with probability = transmissibility
 randNum = ModelParameters.getUniformDoubleFromTo(0, 1);

 if (randNum < transmissibility)
 {
 // mutate with probabilities probTransMutate and probVirulenceMutate
 randNum = ModelParameters.getUniformDoubleFromTo(0, 1);

 // subtract transMutation w/ a probability of probTransMutate/2;
 // add transMutation w/ a probability of probTransMutate/2
 if (randNum < probTransMutate/2)
 {
 newTransmissibility = Math.max(0, transmissibility - transMutation);
 }
 else if (randNum < probTransMutate)

183

 {
 newTransmissibility = Math.min(1, transmissibility + transMutation);
 }
 else
 {
 newTransmissibility = transmissibility;
 }

 randNum = ModelParameters.getUniformDoubleFromTo(0, 1);

 // subtract virulenceMutation w/ a probability of probVirulenceMutate/2;
 // add virulenceMutation w/ a probability of probVirulenceMutate/2
 if (randNum < probVirulenceMutate/2)
 {
 newVirulence = Math.max(0, virulence - virulenceMutation);
 }
 else if (randNum < probVirulenceMutate)
 {
 newVirulence = Math.min(1, virulence + virulenceMutation);
 }
 else
 {
 newVirulence = virulence;
 }

 Pathogen aPathogen = new Pathogen(tempX, tempY, newTransmissibility,
 newVirulence);
 model.addPathogenBirth(aPathogen);
 }
 }
 }
 }
 }

 public void resetInfectionTries()
 {
 infectionTries = 0;
 }
 // //
 // setters and getters
 public void setID(int i)
 {
 ID = i;
 }

 public int getID()
 {
 return ID;
 }

 // note these are class methods, to set class variables
 public static void setPathogensWorld(Object2DTorus world)
 {
 pathogensWorld = world;
 }
 public static void setModel(HostPathogen m)
 {
 model = m;

184

 }

 public static void setGUIModel(GUIModel m)
 {
 guiModel = m;
 }

 public static void setDefaultTransmissibility(double tau)
 {
 defaultTransmissibility = tau;
 }

 public static void setDefaultVirulence(double v)
 {
 defaultVirulence = v;
 }

 public static double getProbTransMutate()
 {
 return probTransMutate;
 }
 public static void setProbTransMutate(double pTM)
 {
 probTransMutate = pTM;
 }

 public static double getTransMutation()
 {
 return transMutation;
 }
 public static void setTransMutation(double tM)
 {
 transMutation = tM;
 }

 public static double getProbVirulenceMutate()
 {
 return probVirulenceMutate;
 }
 public static void setProbVirulenceMutate(double pVM)
 {
 probVirulenceMutate = pVM;
 }

 public static double getVirulenceMutation()
 {
 return virulenceMutation;
 }
 public static void setVirulenceMutation(double vM)
 {
 virulenceMutation = vM;
 }

 public int getX()
 {
 return x;
 }

185

 public void setX(int i)
 {
 x = i;
 }

 public int getY()
 {
 return y;
 }

 public void setY(int i)
 {
 y = i;
 }

 public double getVirulence()
 {
 return virulence;
 }

 public double getTransmissibility()
 {
 return transmissibility;
 }

 public String getName()
 {
 return "Pathogen";
 }

 // we implement Drawable interface, so we need this method
 // so that the pathogen can draw itself when requested
 // (by the GUI display).

 public void draw(SimGraphics g)
 {
 g.drawFastRoundRect(myColor);
 g.drawRectBorder(pathogenEdgeStroke, Color.cyan);
 }

}

186

StatsDisplayObject.java

package hostPathogen_v7;

import java.awt.Color;

import uchicago.src.sim.gui.Drawable;
import uchicago.src.sim.gui.SimGraphics;

public class StatsDisplayObject implements Drawable
{
 public Color myColor;
 public int x, y;

 public StatsDisplayObject(Color mC)
 {
 myColor = mC;
 }

 @Override
 public void draw(SimGraphics g)
 {
 g.drawFastRoundRect(myColor);
 }

 @Override
 public int getX() {
 // TODO Auto-generated method stub
 return 0;
 }

 @Override
 public int getY() {
 // TODO Auto-generated method stub
 return 0;
 }

 public void setMyColor(Color mC)
 {
 myColor = mC;
 }

}

187

GUIModel.java

package hostPathogen_v7;

// A model of an evolutionary, spatially explicit host-pathogen system.
// Doug Jackson, Summer 2008

import uchicago.src.sim.gui.DisplaySurface;
import uchicago.src.sim.gui.Object2DDisplay;
import uchicago.src.sim.engine.AbstractGUIController;
import uchicago.src.sim.engine.Schedule;
import uchicago.src.sim.analysis.*;

public class GUIModel extends HostPathogen
{

 // (Repast)
 private Object2DDisplay worldDisplay; // 2D Object lattice -> display
 private DisplaySurface dsurf; // display surface

 // display and surface for # of offspring
 private Object2DDisplay offspringDisplay;
 private DisplaySurface offspringSurf;

 // display and surface for # of descendents
 private Object2DDisplay descendentsDisplay;
 private DisplaySurface descendentsSurf;

 private Plot transmissibilityGraph; // Graph 1
 private Plot virulenceGraph; // Graph 2
 private Plot growthGraph; // Graph 3
 private Plot numHostsGraph; // Graph 4
 private Plot numPathogensGraph; // Graph 5

 // ///
 // setup
 //
 // this runs automatically when the model starts
 // and when you click the reload button, to "tear down" any
 // existing display objects, and get ready to initialize
 // them at the start of the next 'run'.
 //
 @Override
 public void setup()
 {
 super.setup(); // the super class does conceptual-model setup

 AbstractGUIController.CONSOLE_ERR = false;
 AbstractGUIController.CONSOLE_OUT = false;
 AbstractGUIController.UPDATE_PROBES = true;

 // dispose of any leftover display surfaces
 if (dsurf != null)
 dsurf.dispose();
 if (offspringSurf != null) offspringSurf.dispose();
 if (descendentsSurf != null) descendentsSurf.dispose();

 // create the new display surfaces

188

 dsurf = null;
 dsurf = new DisplaySurface(this, "Display");
 registerDisplaySurface("Main display", dsurf);
 offspringSurf = null;
 offspringSurf = new DisplaySurface(this, "Offspring display");
 registerDisplaySurface("Offspring display", offspringSurf);

 descendentsSurf = null;
 descendentsSurf = new DisplaySurface(this, "Descendents display");
 registerDisplaySurface("Descendents display", descendentsSurf);

 // clear any residual graphs
 if (transmissibilityGraph != null) transmissibilityGraph.dispose();
 transmissibilityGraph = null;
 if (virulenceGraph != null) virulenceGraph.dispose();
 virulenceGraph = null;
 if (growthGraph != null) growthGraph.dispose();
 growthGraph = null;
 if (numHostsGraph != null) numHostsGraph.dispose();
 numHostsGraph = null;
 if (numPathogensGraph != null) numPathogensGraph.dispose();
 numPathogensGraph = null;

 // tell the Host class we are in GUI mode.
 Host.setupHostDrawing(this);

 // init, setup and turn on the modelMinipulator stuff (in custom
 // actions)
 modelManipulator.init();

 if (rDebug > 0)
 System.out.printf("<== GUIModel setup() done.\n");
 }

 // ///
 // begin
 //
 // this runs when you click the "initialize" button
 // (the button with the single arrow that goes around in a circle)
 //
 @Override
 public void begin()
 {
 DMSG(1, "==> enter GUIModel-begin()");
 buildModel(); // the base model does this
 buildDisplay();
 buildSchedule();
 dsurf.display();
 offspringSurf.display();
 descendentsSurf.display();
 DMSG(1, "<== leave GUIModel-begin() done.");
 }

 // ///
 // buildDisplay
 //
 // builds the display and display related things
 //

189

 public void buildDisplay()
 {
 if (rDebug > 0)
 System.out.printf("==> GUIModel buildDisplay...\n");

 // create the link between the display surfaces and the Object2DTorus worlds,
 // and tell parts about each other as needed.

 worldDisplay = new Object2DDisplay(world);
 worldDisplay.setObjectList(hostList);

 offspringDisplay = new Object2DDisplay(offspringWorld);
 descendentsDisplay = new Object2DDisplay(descendentsWorld);

 // note we will be able to probe the objects with MB3 (right)
 dsurf.addDisplayableProbeable(worldDisplay, "Shade trees");

 offspringSurf.addDisplayable(offspringDisplay, "Number of offspring");
 descendentsSurf.addDisplayable(descendentsDisplay, "Number of descendents");

 addSimEventListener(dsurf); // link to the other parts of the repast gui
 addSimEventListener(offspringSurf);
 addSimEventListener(descendentsSurf);

 // enable the custom action(s)
 modelManipulator.setEnabled(true);

 if (rDebug > 0)
 System.out.printf("<== GUIModel buildDisplay done.\n");

 // Graphs

 //Graph 1 - a graph showing the average transmissibility vs. time
 transmissibilityGraph = new Plot("Transmissibility", this);
 transmissibilityGraph.setXRange(0, 200);
 transmissibilityGraph.setYRange(0, 1);
 transmissibilityGraph.setAxisTitles("Time", "Transmissibility");

 transmissibilityGraph.addLegend(1, "min. transmissibility");
 transmissibilityGraph.addLegend(2, "avg. transmissibility");
 transmissibilityGraph.addLegend(3, "max. transmissibility");

 //tell the model about it.
 HostPathogen.setTransmissibilityGraph(transmissibilityGraph);

 // now actually display the graph on the screen.
 transmissibilityGraph.display();

 // end Graph 1

 //Graph 2 - a graph showing the average transmissibility vs. time
 virulenceGraph = new Plot("Virulence", this);
 virulenceGraph.setXRange(0, 200);
 virulenceGraph.setYRange(0, 1);
 virulenceGraph.setAxisTitles("Time", "Virulence");

 virulenceGraph.addLegend(1, "min. virulence");
 virulenceGraph.addLegend(2, "avg. virulence");

190

 virulenceGraph.addLegend(3, "max. virulence");

 //tell the model about it.
 HostPathogen.setVirulenceGraph(virulenceGraph);

 // now actually display the graph on the screen.
 virulenceGraph.display();

 // end Graph 2

 //Graph 3 - a graph showing the average transmissibility vs. time
 growthGraph = new Plot("Host growth probability", this);
 growthGraph.setXRange(0, 200);
 growthGraph.setYRange(0, 1);
 growthGraph.setAxisTitles("Time", "Growth Probability");

 growthGraph.addLegend(1, "min. growth probability");
 growthGraph.addLegend(2, "avg. growth probability");
 growthGraph.addLegend(3, "max. growth probability");

 //tell the model about it.
 HostPathogen.setGrowthGraph(growthGraph);

 // now actually display the graph on the screen.
 growthGraph.display();

 // end Graph 3

 //Graph 4 - a graph showing the number of hosts vs. time
 numHostsGraph = new Plot("Number of hosts", this);
 numHostsGraph.setXRange(0, 200);
 numHostsGraph.setYRange(0, 1);
 numHostsGraph.setAxisTitles("Time", "Number of hosts");

 numHostsGraph.addLegend(1, "Number of hosts");

 //tell the model about it.
 HostPathogen.setNumHostsGraph(numHostsGraph);

 // now actually display the graph on the screen.
 numHostsGraph.display();

 // end Graph 4

 //Graph 5 - a graph showing the number of pathogens vs. time
 numPathogensGraph = new Plot("Number of pathogens", this);
 numPathogensGraph.setXRange(0, 200);
 numPathogensGraph.setYRange(0, 1);
 numPathogensGraph.setAxisTitles("Time", "Number of pathogens");

 numPathogensGraph.addLegend(1, "Number of pathogens");

 //tell the model about it.
 HostPathogen.setNumPathogensGraph(numPathogensGraph);

 // now actually display the graph on the screen.
 numPathogensGraph.display();

191

 // end Graph 5

 }

 // //
 // buildSchedule
 //
 // This builds the entire schedule, i.e.,
 // - the base model step
 // - report step
 // - display steps.

 @Override
 public void buildSchedule()
 {

 if (rDebug > 0)
 System.out.printf("==> GUIModel buildSchedule...\n");

 // schedule the current GUIModel's step() function
 // to execute every time step starting with time step 0
 schedule.scheduleActionBeginning(0, this, "step");
 // start report at 1
 schedule.scheduleActionAtInterval(1, this, "stepReport", Schedule.LAST);

 // schedule the current GUIModel's processEndOfRun()
 // function to execute at the end of the run
 schedule.scheduleActionAtEnd(this, "processEndOfRun");
 }

 // ///
 // step
 //
 // executed each step of the model.
 // Ask the super class to do its step() method,
 // and then this does display related activities.
 //
 @Override
 public void step()
 {

 super.step(); // the model does whatever it does

 // add things after this for all displays (graphs, etc)
 dsurf.updateDisplay();
 offspringSurf.updateDisplay();
 descendentsSurf.updateDisplay();

 // update the graph every graphUpdatePeriod steps
 // note that getTickCount() and getGraphUpdatePeriod() are inherited
 if ((getTickCount() % getGraphUpdatePeriod())==0.0)
 {
 // automatically adjust the axes (this will automatically update the graph)
 transmissibilityGraph.fillPlot();
 virulenceGraph.fillPlot();
 growthGraph.fillPlot();
 numHostsGraph.fillPlot();
 numPathogensGraph.fillPlot();

192

 }

 }

 // processEndOfRun
 // called once, at end of run.
 @Override
 public void processEndOfRun()
 {
 if (rDebug > 0)
 System.out.printf("\n\n===== GUIModel processEndOfRun =====\n\n");
 applyAnyStoredChanges();
 endReportFile();
 this.fireStopSim();
 }

 // updateDisplay
 // if someone wants the dsurf redrawn...

 public void updateDisplay()
 {
 dsurf.updateDisplay();
 offspringSurf.updateDisplay();
 descendentsSurf.updateDisplay();
 }

 // //
 // main entry point
 public static void main(String[] args)
 {

 uchicago.src.sim.engine.SimInit init = new uchicago.src.sim.engine.SimInit();
 GUIModel model = new GUIModel();

 // System.out.printf("==> GUIMOdel main...\n");

 // set the type of model class, this is necessary
 // so the parameters object knows whether or not
 // to do GUI related updates of panels,etc when a
 // parameter is changed
 model.setModelType("GUIModel");

 // Do this to set the Update Probes option to true in the
 // Repast Actions panel
 AbstractGUIController.UPDATE_PROBES = true;

 model.setCommandLineArgs(args);
 init.loadModel(model, null, false); // does setup()

 // this new function calls ProbeUtilities.updateProbePanels() and
 // ProbeUtilities.updateModelProbePanel()
 model.updateAllProbePanels();

 }

}

193

BatchModel.java

package hostPathogen_v7;
import uchicago.src.sim.engine.*;

public class BatchModel extends HostPathogen
{

 // //
 // main entry point
 public static void main(String[] args)
 {

 BatchModel model = new BatchModel();

 // set the type of model class, this is necessary
 // so the parameters object knows whether or not
 // to do GUI related updates of panels, etc when a
 // parameter is changed
 model.setModelType("BatchModel");

 model.setCommandLineArgs(args);

 PlainController control = new PlainController();
 model.setController(control);
 control.setExitOnExit(true);
 control.setModel(model);
 model.addSimEventListener(control);
 if (model.getRDebug() > 0)
 System.out.printf("\n==> BatchModel main...about to startSimulation...\n");
 control.startSimulation();
 }

 // setup() -- BatchModel just does what the super class does.
 @Override
 public void setup()
 {
 super.setup();
 }

 // begin()
 // ask the super class to do its building, then build a schedule.
 @Override
 public void begin()
 {
 // set schedule to null so buildModel knows not to
 // record changes (changes are recorded if
 // schedule != null). in buildSchedule() the
 // schedule is allocated before the actual schedule is created.
 schedule = null;
 buildModel(); // the base Model class does this
 buildSchedule();
 }

 // //
 // buildSchedule
 //
 // This may need to be changed, depending on what you want to

194

 // happen in a batch run (vs a GUI run).

 @Override
 public void buildSchedule()
 {

 schedule = new Schedule(1);

 // schedule the current BatchModel's step() function
 // to execute every time step starting with time step 0
 schedule.scheduleActionBeginning(0, this, "step");
 schedule.scheduleActionAtInterval(1, this, "stepReport", Schedule.LAST);

 // schedule the current BatchModel's processEndOfRun()
 // function to execute at the end of the Batch Run.
 // You need to specify the time to schedule it (instead
 // of doing scheduleActionAtEnd() or it will just run forever
 schedule.scheduleActionAt(getStopT(), this, "processEndOfRun");
 }

 // processEndOfRun
 // we need this to tell it to stop running!
 @Override
 public void processEndOfRun()
 {
 super.processEndOfRun();
 this.fireEndSim();
 }
}

// ///
// //
// Why this class below?
//
// the reason we did that is because the repast "BatchController" had methods
// in it that started GUI stuff. this caused problems when we ssh'd into
// another machine and run a job--when we tried to disconnect, the ssh
// session would stay hung until the job was finished because the job needed
// the X11-forwarding to be open to run.
class PlainController extends BaseController
{
 private boolean exitonexit;

 public PlainController()
 {
 super();
 exitonexit = false;
 }

 public void startSimulation()
 {
 startSim();
 }

 public void stopSimulation()
 {
 stopSim();
 }

195

 public void exitSim()
 {
 exitSim();
 }

 public void pauseSimulation()
 {
 pauseSim();
 }

 @Override
 public boolean isBatch()
 {
 return true;
 }

 @Override
 protected void onTickCountUpdate()
 {
 }

 // this might not be necessary
 @Override
 public void setExitOnExit(boolean in_Exitonexit)
 {
 exitonexit = in_Exitonexit;
 }

 public void simEventPerformed(SimEvent evt)
 {
 if (evt.getId() == SimEvent.STOP_EVENT)
 {
 stopSimulation();
 } else if (evt.getId() == SimEvent.END_EVENT)
 {
 if (exitonexit)
 {
 System.exit(0);
 }
 } else if (evt.getId() == SimEvent.PAUSE_EVENT)
 {
 pauseSimulation();
 }
 }

 // function added because it is required for repast 2.2
 public long getRunCount()
 {
 return 0;
 }

 // function added because it is required for repast 2.2
 public boolean isGUI()
 {
 return false;
 }
}

196

ModelParameters.java

package hostPathogen_v7;

import java.io.*;
import java.util.*;
import java.util.Scanner;
import java.util.regex.*; // for MatchResult
import java.lang.reflect.*;

import uchicago.src.sim.engine.*;
import uchicago.src.sim.util.Random;
import uchicago.src.sim.util.*;

//for the xml parsing of input files
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Element;

import java.util.TreeMap;

public class ModelParameters extends SimModelImpl
{

 // setup
 // this should be called *last* in the Model setup() that
 // extends this class.
 public void setup()
 {
 changesVector = new Vector();
 setupParametersMap();
 // only process command line arguments if it is the first run
 // if it is the first run then schedule is null,
 // if not then schedule is initialized (and is set to null
 // on the next line)
 if (schedule == null)
 processCommandLinePars(commandLineArgs);
 schedule = null;

 if (rDebug > 0)
 System.out.printf("<--- ModelParameters setup() done.\n");
 }

 public void begin()
 {
 // this must be declared in the class that 'extends' this one
 }

 // buildModelStart
 // this should be called first by the buildModel in the extending class.
 public void buildModelStart()
 {
 if (getSeed() == 1234567 || getSeed() == 0)
 {

197

 long s = System.currentTimeMillis();
 setSeed(s);
 if (rDebug > 1)
 System.out.printf("\nseed was 1234567 or 0, now ==> s=%d\n", s);
 }
 if (rDebug > 1)
 System.out.printf("\nabout to setSeed(%d)\n", getSeed());
 resetRNGenerators();
 }

 // buildSchedule
 // the extending classes must fill this in
 public void buildSchedule()
 {
 schedule = new Schedule();
 }

 public String[] getInitParam()
 {
 // this must be declared in the class that 'extends' this one
 return null;
 }

 // Generic parameters
 protected String initialParametersFileName = "";
 protected String initialAgentsFileName = "";
 protected String reportFileName = "report";
 protected String outputDirName = "./";
 protected int reportFrequency = 1;
 protected int runNumber = 0;
 protected int stopT = 100;
 protected int rDebug = 0;
 protected int saveRunEndState = 0;
 protected long seed = 1234567;
 protected PrintWriter reportFile, plaintextReportFile;
 protected PrintWriter changesFile;

 // other utilities
 protected String[] commandLineArgs;
 protected String modelType = "Model";

 // for input file
 protected boolean STRICT_FILE_FORMAT = true;
 protected Vector changesVector;

 // variables for processing run-time changes that are
 // read in from the input file
 protected int numberOfChanges = 0;
 protected int nextChangeToDo = 0;
 protected int[] changeSteps = new int[64];
 protected int[] changeIDs = new int[64];
 protected ArrayList changeSpecs = new ArrayList(16);

 // required by SimModelImpl
 protected BasicAction stepMethods;
 protected Schedule schedule = null;

 // setupParametersMap

198

 // this implements the mapping from aliases to long names,
 // for the 'base' parameters common to all models.
 // For parameters for a particular model, add lines
 // to addToParametersMap().
 protected TreeMap parametersMap;

 public void setupParametersMap()
 {
 DMSG(1, "setupParametersMap()");

 parametersMap = null;
 parametersMap = new TreeMap();
 // generic model parameters
 parametersMap.put("D", "rDebug");
 parametersMap.put("S", "seed");
 parametersMap.put("iPFN", "initialParametersFileName");
 parametersMap.put("iAFN", "initialAgentsFileName");
 parametersMap.put("rFN", "reportFileName");
 parametersMap.put("T", "stopT");
 parametersMap.put("sRES", "saveRunEndState");
 parametersMap.put("oDN", "outputDirName");
 parametersMap.put("rF", "reportFrequency");
 parametersMap.put("rN", "runNumber");

 addModelSpecificParameters();
 }

 // addModelSpecificParameters
 // a subclass should override this.
 public void addModelSpecificParameters()
 {
 }

 public void printParametersMap()
 {

 ArrayList parameterNames = new ArrayList(parametersMap.values());
 ArrayList parameterAliases = new ArrayList(parametersMap.keySet());

 for (int i = 0; i < parameterAliases.size(); i++)
 {
 Method getmethod = null;
 String parAlias = (String) parameterAliases.get(i);
 String parName = (String) parametersMap.get(parAlias);

 getmethod = findGetMethodFor(parName);

 if (getmethod != null)
 {
 try
 {
 Object returnVal = getmethod.invoke(this, new Object[]
 {});
 String s = parName + " (" + parAlias + ") = " + returnVal;
 System.out.printf("%s\n", s);
 } catch (Exception e)
 {
 e.printStackTrace();

199

 }
 } else
 {
 System.err.printf("COULD NOT FIND SET METHOD FOR: %s\n", parameterNames.get(i));
 System.err.printf("Is the entry in the parametersMap for this correct?");
 }
 }

 }

 // //
 // generic setters/getters

 public String[] getCommandLineArgs()
 {
 return commandLineArgs;
 }

 public void setCommandLineArgs(String[] arguments)
 {
 commandLineArgs = arguments;
 }

 public String getModelType()
 {
 return modelType;
 }

 public void setModelType(String s)
 {
 modelType = s;
 }

 public String getInitialParametersFileName()
 {
 return initialParametersFileName;
 }

 public void setInitialParametersFileName(String s)
 {
 initialParametersFileName = s;
 }

 public String getInitialAgentsFileName()
 {
 return initialAgentsFileName;
 }

 public void setInitialAgentsFileName(String s)
 {
 initialAgentsFileName = s;
 }

 public String getReportFileName()
 {
 return reportFileName;
 }

200

 public void setReportFileName(String s)
 {
 reportFileName = s;
 }

 public String getOutputDirName()
 {
 return outputDirName;
 }

 public void setOutputDirName(String s)
 {
 outputDirName = s;
 }

 public int getReportFrequency()
 {
 return reportFrequency;
 }

 public void setReportFrequency(int i)
 {
 reportFrequency = i;
 }

 public int getRunNumber()
 {
 return runNumber;
 }

 public void setRunNumber(int i)
 {
 runNumber = i;
 }

 public int getStopT()
 {
 return stopT;
 }

 public void setStopT(int i)
 {
 stopT = i;
 }

 public int getSaveRunEndState()
 {
 return saveRunEndState;
 }

 public void setSaveRunEndState(int i)
 {
 saveRunEndState = i;
 }

 public int getRDebug()
 {
 return rDebug;

201

 }

 public void setRDebug(int i)
 {
 if (rDebug == i)
 {
 return;
 }
 rDebug = i;
 if (modelType.equals("GUIModel"))
 {
 updateAllProbePanels();
 }
 if (modelType.equals("GUIModel") && schedule != null)
 writeChangeToReportFile("rDebug", String.valueOf(i));
 }

 public long getSeed()
 {
 return seed;
 }

 public void setSeed(long i)
 {
 if (rDebug > 0)
 System.out.println("setSeed (" + i + ") called");
 seed = i;

 resetRNGenerators();

 if (modelType.equals("GUIModel"))
 {
 updateAllProbePanels();
 }
 if (modelType.equals("GUIModel") && schedule != null)
 writeChangeToReportFile("seed", String.valueOf(i));
 }

 public void resetRNGenerators()
 {
 if (rDebug > 0)
 System.out.printf("\nresetRNGenerators with %d\n", getSeed());

 // this is required because once you change the seed you invalidate
 // any previously created distributions
 uchicago.src.sim.util.Random.setSeed(seed);
 uchicago.src.sim.util.Random.createUniform();
 uchicago.src.sim.util.Random.createNormal(0.0, 1.0);
 }

 // NOTE: these are class methods!
 static public int getUniformIntFromTo(int low, int high)
 {
 int randNum = Random.uniform.nextIntFromTo(low, high);
 return randNum;
 }

 static public double getNormalDouble(double mean, double var)

202

 {
 double randNum = Random.normal.nextDouble(mean, var);
 return randNum;
 }

 static public double getUniformDoubleFromTo(double low, double high)
 {
 double randNum = Random.uniform.nextDoubleFromTo(low, high);
 return randNum;
 }

 // loop until a number between 0 and 1 is generated,
 // if mean and var are set correctly the loop will rarely happen
 static public double getNormalDoubleProb(double mean, double var)
 {
 if (mean < 0 || mean > 1)
 {
 System.out.println("Invalid value set for normal distribution mean");
 return -1;
 }
 double d = Random.normal.nextDouble(mean, var);
 while (d < 0 || d > 1)
 d = Random.normal.nextDouble(mean, var);
 return d;
 }

 public void setRngSeed(long i)
 {
 System.out.println("setRngSeed (" + i + ") called");
 setSeed(i);
 }

 public PrintWriter getReportFile()
 {
 return reportFile;
 }

 public PrintWriter getPlaintextReportFile()
 {
 return plaintextReportFile;
 }

 public Schedule getSchedule()
 {
 return schedule;
 }

 public String getName()
 {
 return "ModelParameters";
 }

 // some generic utilities
 public void updateAllProbePanels()
 {
 DMSG(2, "updateAllProbePanels()");
 ProbeUtilities.updateProbePanels();

203

 // need this in case updateAllProbePanels gets called
 // before the probe panel is created (if it is called
 // before, then a RuntimeException occurs)
 // did have if(schedule != null), but that means panels
 // do not update at all during time=0, so people get confused.
 try
 {
 ProbeUtilities.updateModelProbePanel();
 } catch (RuntimeException e)
 {
 // ignore exception
 DMSG(3, "RuntimeException when updating model probe panel, ignoring ...");
 }
 }

 // captialize first character of s
 protected String capitalize(String s)
 {
 char c = s.charAt(0);
 char upper = Character.toUpperCase(c);
 return upper + s.substring(1, s.length());
 }

 // REPORT FILE PROCESSING ------------------------------
 //
 // startReportFile
 // opens two report files
 // one XML report file and one plaintext report file
 // call writeLineToReportFile to write to XML report file
 // and writeLineToPlaintextReportFile to write to plaintext file

 public PrintWriter startReportFile()
 {
 if (rDebug > 0)
 System.out.println("startReportFile called!");
 reportFile = null;
 plaintextReportFile = null;
 String fullFileName = reportFileName + String.format(".%02d", runNumber);
 String xmlFullFileName = reportFileName + ".xml" + String.format(".%02d", runNumber);

 // BufferedReader inFile =
 // IOUtils.openFileToRead(initialParametersFileName);

 reportFile = IOUtils.openFileToWrite(outputDirName, xmlFullFileName, "r");
 plaintextReportFile = IOUtils.openFileToWrite(outputDirName, fullFileName, "r");

 // the first line you have to write is the XML version line
 // DO NOT WRITE THIS LINE USING writeLineToReportFile()!
 reportFile.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");

 writeLineToReportFile("<reportfile>");
 writeLineToPlaintextReportFile("# begin reportfile");

 // write the initial parameters to the report file
 writeParametersToReportFile();

 writeHeaderCommentsToReportFile(); // the user must define this!

204

 return reportFile;
 }

 public void writeLineToReportFile(String line)
 {
 if (reportFile == null)
 {
 DMSG(3, "report file not opened yet");
 // click the initialize button to open it!
 // returning w/o writing to report file ...");
 return;
 } else
 {
 reportFile.println(line);
 }
 }

 public void writeLineToPlaintextReportFile(String line)
 {
 if (plaintextReportFile == null)
 {
 DMSG(3, "report file not opened yet");
 // click the initialize button to open it!
 // returning w/o writing to report file ...");
 return;
 } else
 {
 plaintextReportFile.println(line);
 }
 }

 public void writeChangeToReportFile(String varname, String value)
 {
 DMSG(1, "writeChangeToReportFile(): write change to report file: " + varname + " changed to " +
value);

 writeLineToReportFile("<change>");
 writeLineToReportFile("\t<" + varname + ">" + value + "</" + varname + ">");
 String s = String.format("\t<time>%.0f</time>", getTickCount());
 writeLineToReportFile(s);
 writeLineToReportFile("</change>");

 writeLineToPlaintextReportFile("# change: " + varname + "=" + value);
 }

 public void endReportFile()
 {
 writeLineToReportFile("</reportfile>");
 writeLineToPlaintextReportFile("# end report file");
 IOUtils.closePWFile(reportFile);
 IOUtils.closePWFile(plaintextReportFile);
 }

 // this iterates through the values stored in the parametersMap,
 // calls the getter on each parameter, and outputs the
 // parameter and its value to the report file.
 // this is called right before the model run starts (after all
 // initial parameters are changed!) so

205

 // the initial parameters are in the report file.
 public void writeParametersToReportFile()
 {
 DMSG(1, "writeParametersToReportFile()");

 writeLineToReportFile("<parameters>");
 writeLineToPlaintextReportFile("# begin parameters");

 ArrayList parameterNames = new ArrayList(parametersMap.values());
 for (int i = 0; i < parameterNames.size(); i++)
 {
 Method getmethod = null;
 getmethod = findGetMethodFor((String) parameterNames.get(i));

 if (getmethod != null)
 {
 try
 {
 Object returnVal = getmethod.invoke(this, new Object[]
 {});

 writeLineToReportFile("\t<" + parameterNames.get(i) + ">" + returnVal + "</" +
 parameterNames.get(i) + ">");

 writeLineToPlaintextReportFile(parameterNames.get(i) + "=" + returnVal);

 } catch (Exception e)
 {
 e.printStackTrace();
 }
 } else
 {
 System.err.printf("COULD NOT FIND SET METHOD FOR: %s\n", parameterNames.get(i));
 System.err.printf("Is the entry in the parametersMap for this correct?");
 }
 }
 writeLineToReportFile("</parameters>");
 writeLineToPlaintextReportFile("# end parameters");
 }

 // ///
 //
 // Generic report file processing ------------------------------
 //
 // These are similar to those above, but these require the user
 // to specify a particular "basename" for the files, and they
 // require/allow the user to separately open/writeTo/close the xml and plain
 // text files.
 //
 // PrintWriter startReportFile (String baseName) -- an xml formated report
 // file
 // PrintWriter startPlainTextReportFile (String baseName) -- plain text
 // report file
 //
 // void writeParametersToReportFile(PrintWriter rfile)
 // void writeParametersToPlainTextReportFile(PrintWriter rfile)
 //
 // void writeLineToReportFile (String line, PrintWriter rfile)

206

 //
 // void endReportFile (PrintWriter rfile)
 // void endPlainTextReportFile (PrintWriter rfile)
 //

 public PrintWriter startReportFile(String baseName)
 {
 if (rDebug > 0)
 System.err.printf("startReportFile called for baseName='%s'\n", baseName);
 PrintWriter rFile = null;
 String xmlFullFileName = baseName + ".xml" + String.format(".%02d", runNumber);

 rFile = IOUtils.openFileToWrite(outputDirName, xmlFullFileName, "r");

 // the first line you have to write is the XML version line
 // DO NOT WRITE THIS LINE USING writeLineToReportFile(...)!
 rFile.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");

 writeLineToReportFile("<reportfile>", rFile);
 // write the initial parameters to the report file
 writeParametersToReportFile(rFile);

 return rFile;
 }

 public PrintWriter startPlainTextReportFile(String baseName)
 {
 if (rDebug > 0)
 System.err.printf("startPlainTextReportFile called for baseName='%s'\n", baseName);
 PrintWriter rFile = null;
 String fullFileName = baseName + String.format(".%02d", runNumber);

 rFile = IOUtils.openFileToWrite(outputDirName, fullFileName, "r");

 writeLineToReportFile("# begin reportfile", rFile);

 // write the initial parameters to the report file
 writeParametersToPlainTextReportFile(rFile);

 return rFile;
 }

 // this just writes whatever is sent to it, and then a newline!
 public void writeLineToReportFile(String line, PrintWriter rFile)
 {
 if (rFile == null)
 {
 System.err.printf("\nERROR - A user-defined report file not opened yet!\n");
 return;
 } else
 {
 rFile.println(line);
 }
 }

 // the following does NOT write a newline!
 public void writeBufferToReportFile(String line, PrintWriter rFile)
 {

207

 if (rFile == null)
 {
 System.err.printf("\nERROR - A user-defined report file not opened yet!\n");
 return;
 } else
 {
 rFile.printf(line);
 }
 }

 public void endReportFile(PrintWriter rFile)
 {
 writeLineToReportFile("</reportfile>", rFile);
 IOUtils.closePWFile(rFile);
 }

 public void endPlainTextReportFile(PrintWriter rFile)
 {
 writeLineToReportFile("# end report file", rFile);
 IOUtils.closePWFile(rFile);
 }

 // these iterate through the values stored in the parametersMap,
 // calls the getter on each parameter, and outputs the
 // parameter and its value to the report file.
 // this is called right before the model run starts (after all
 // initial parameters are changed!) so
 // the initial parameters are in the report file.
 public void writeParametersToReportFile(PrintWriter rFile)
 {
 DMSG(1, "writeParametersToReportFile(rFile)");
 writeLineToReportFile("<parameters>", rFile);
 ArrayList parameterNames = new ArrayList(parametersMap.values());
 for (int i = 0; i < parameterNames.size(); i++)
 {
 Method getmethod = null;
 getmethod = findGetMethodFor((String) parameterNames.get(i));
 if (getmethod != null)
 {
 try
 {
 Object returnVal = getmethod.invoke(this, new Object[]
 {});
 writeLineToReportFile("\t<" + parameterNames.get(i) + ">" + returnVal + "</" +
 parameterNames.get(i) + ">", rFile);
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 } else
 {
 System.err.printf("COULD NOT FIND SET METHOD FOR: %s\n", parameterNames.get(i));
 System.err.printf("Is the entry in the parametersMap for this correct?");
 }
 }
 writeLineToReportFile("</parameters>", rFile);
 }

208

 public void writeParametersToPlainTextReportFile(PrintWriter rFile)
 {
 DMSG(1, "writeParametersToPlainTextReportFile(rFile)");
 writeLineToReportFile("# begin parameters", rFile);
 ArrayList parameterNames = new ArrayList(parametersMap.values());
 for (int i = 0; i < parameterNames.size(); i++)
 {
 Method getmethod = null;
 getmethod = findGetMethodFor((String) parameterNames.get(i));
 if (getmethod != null)
 {
 try
 {
 Object returnVal = getmethod.invoke(this, new Object[]
 {});
 writeLineToReportFile(parameterNames.get(i) + "=" + returnVal, rFile);
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 } else
 {
 System.err.printf("COULD NOT FIND SET METHOD FOR: %s\n", parameterNames.get(i));
 System.err.printf("Is the entry in the parametersMap for this correct?");
 }
 }
 writeLineToReportFile("# end parameters", rFile);
 }

 // ------> End of Report File Processing <------------------------------

 // //
 //
 // ------> Input Parameter Processing <------------------------------
 //
 // //
 // parseParametersFile
 //
 public void parseParametersFile()
 {
 // a klunky way to see if the parameters file exists
 try
 {
 BufferedReader inFile = IOUtils.openFileToRead(initialParametersFileName);
 IOUtils.closeBRFile(inFile);
 } catch (Exception e)
 { // not an error, just not there!
 if (rDebug > 0)
 System.err.printf(" -- no initialParametersFileName '%s' to parse.\n",
 initialParametersFileName);
 return;
 }

 try
 {
 // setup the input file
 DocumentBuilderFactory myDBF = DocumentBuilderFactory.newInstance();
 DocumentBuilder myDB = myDBF.newDocumentBuilder();

209

 Document myDocument = myDB.parse(initialParametersFileName);

 if (rDebug > 0)
 System.out.println("Parsing parameter file: " + initialParametersFileName);

 NodeList tmpList = myDocument.getElementsByTagName("parameters");
 Element tmpElement = (Element) tmpList.item(0);
 NodeList parameterList = tmpElement.getElementsByTagName("*");

 for (int i = 0; i < parameterList.getLength(); i++)
 {
 if (parameterList.item(i).getChildNodes().item(0) == null)
 continue;
 DMSG(1, "name: " + parameterList.item(i).getNodeName() + " value: " +
 parameterList.item(i).getChildNodes().item(0).getNodeValue());
 set(parameterList.item(i).getNodeName(), parameterList.item(i).getChildNodes().item
 (0).getNodeValue());
 }

 // process changes
 NodeList parameterChangeList = myDocument.getElementsByTagName("change");
 processChangeList(parameterChangeList);

 DMSG(1, "Done parsing file: " + initialParametersFileName);
 } catch (Exception e)
 {
 System.out.println("Exception when parsing parameters file: " + initialParametersFileName);
 System.out.println("Is the file in the correct format?");
 e.printStackTrace();
 }
 }

 // ///
 // processCommandLinePars
 // storeParameter
 //
 public void processCommandLinePars(String[] args)
 {
 int r;
 if (args.length > 0 && (args[0].equals("--help") || args[0].equals("-h")))
 {
 printProjectHelp();
 }

 for (int i = 0; i < args.length; ++i)
 {
 r = storeParameter(args[i]);
 if (r != 0)
 {
 System.out.println("Error processing cmdLine par: " + args[i]);
 }
 }
 }

 // storeParameter
 // format: parname=value
 // parse out parname, and find method for setParname
 // if not found, return -1

210

 // otherwise set the value and return 0.
 // to set the value, we have to get the setMethod, and its par type.
 // then convert the string value to the appropriate object, and
 // use invoke to do the setting!

 public int storeParameter(String line)
 {
 int r = 0;
 String pname, pvalue;
 StringTokenizer st = new StringTokenizer(line, "=;,");
 Method setm = null;

 if ((pname = st.nextToken()) == null)
 {
 System.err.printf("\n** storeParameter -- couldn't find pname on '%s'.\n", line);
 return -1;
 }
 if ((pvalue = st.nextToken()) == null)
 {
 System.err.printf("\n** storeParameter -- couldn't find value on '%s'.\n", line);
 return -1;
 }
 pname = pname.trim();
 pvalue = pvalue.trim();

 pname = aliasToParameterName(pname);

 // if this is a scheduledChange, create the change
 // and insert it into the changesVector
 if (pname.equals("sC"))
 {
 String changetime = pvalue;
 String changepname, changepvalue;

 if ((changepname = st.nextToken()) == null)
 {
 System.out.println("\n** storeParameter -- couldn't find " + "scheduleChange pname on: " +
 line);
 return -1;
 }

 if ((changepvalue = st.nextToken()) == null)
 {
 System.out.println("\n** storeParameter -- couldn't find " + "scheduleChange pvalue on: " +
 line);
 return -1;
 }

 changepname = changepname.trim();
 changepvalue = changepvalue.trim();

 changepname = aliasToParameterName(changepname);

 ChangeObj newChange = new ChangeObj(Integer.parseInt(changetime), changepname,
 changepvalue);

 DMSG(1, "scheduledChange from command line created: " + " Time: " + changetime + "
 pname: " + changepname + " pvalue: " + changepvalue);

211

 changesVector.add(newChange);

 return 0;
 }

 setm = findSetMethodFor(pname);
 String ptype = getParTypeOfSetMethod(setm);

 try
 {
 setm.invoke(this, new Object[]
 { valToObject(ptype, pvalue) });
 } catch (Exception e)
 {
 System.err.printf("\n storeParameter: '%s'='%s' invoke exception!\n", pname, pvalue);

 System.err.printf(" --> %s\n", e.toString());
 e.printStackTrace();
 return -1;
 }

 if (pname.equals("initialParametersFileName"))
 {
 DMSG(1, "Processing initial parameters file: " + pvalue);
 parseParametersFile();
 }

 return r;
 }

 // returns the long parameter name if the parameter passed in is
 // an alias. if it is not an alias, the name sent to it is returned.
 public String aliasToParameterName(String alias)
 {
 // check to see if "alias" is an alias in the parametersMap
 // if it is then "alias" is a valid alias, so set "alias" to the
 // actual parameter name that is in the map
 if (parametersMap.containsKey(alias))
 {
 DMSG(1, "Converting alias " + alias + " to " + parametersMap.get(alias));
 alias = (String) parametersMap.get(alias);
 }

 return alias;
 }

 // getParTypeOfSetMethod
 // get type of setPar method parameter
 public String getParTypeOfSetMethod(Method m)
 {
 Class[] parTypes = m.getParameterTypes();
 String s = parTypes[0].getName();
 return s;
 }

 // findGetMethodFor
 // find get<ParName> method for specified parameter name
 protected Method findGetMethodFor(String varname)

212

 {
 String methodname = new String("get" + capitalize(varname));
 Class c = getClass();
 Method[] methods = c.getMethods();
 Method getmethod = null;

 for (int j = 0; j < methods.length; j++)
 {
 if (methods[j].getName().equals(methodname))
 {
 getmethod = methods[j];
 break;
 }
 }
 if (getmethod == null)
 {
 System.err.printf("\n** findGetMethodFor -- couldn't find '%s'\n", methodname);
 return getmethod;
 }

 return getmethod;
 }

 // findSetMethodFor
 // find set<ParName> method for specified parameter name
 public Method findSetMethodFor(String pname)
 {
 Class c = this.getClass();
 Method[] methods = c.getMethods();
 int nf = methods.length;
 String setmethodname = "set" + capitalize(pname);
 String mname;
 Method method = null;
 for (int i = 0; i < nf; ++i)
 {
 mname = methods[i].getName();
 if (mname.equals(setmethodname))
 {
 method = methods[i];
 break;
 }
 }
 if (method == null)
 {
 System.err.printf("\n** findSetMethodFor -- couldn't fine '%s'\n", setmethodname);
 return method;
 }
 return method;
 }

 // valToObject
 // return value stored in object of appropriate type
 private Object valToObject(String type, String val)
 {
 if (type.equals("int"))
 {
 return Integer.valueOf(val);
 } else if (type.equals("double"))

213

 {
 return Double.valueOf(val);
 } else if (type.equals("float"))
 {
 return Float.valueOf(val);
 } else if (type.equals("long"))
 {
 return Long.valueOf(val);
 } else if (type.equals("boolean"))
 {
 return Boolean.valueOf(val);
 } else if (type.equals("java.lang.String"))
 {
 return val;
 } else
 {
 throw new IllegalArgumentException("illegal type");
 }
 }

 public String skipCommentLines(BufferedReader inFile)
 {
 String line;
 while ((line = IOUtils.readBRLine(inFile)) != null)
 {
 if (line.charAt(0) != '#')
 break;
 }
 return line;
 }

 // ///
 // applyAnyStoredChanges
 // look through all of the changes, if any have time of this time
 // step execute the change
 public void applyAnyStoredChanges()
 {
 if (rDebug > 0)
 {
 System.out.println("applyAnyStoredChanges called at time step: " + getTickCount());
 }

 for (int i = 0; i < changesVector.size(); i++)
 {
 ChangeObj tmpObj = (ChangeObj) changesVector.get(i);
 if (tmpObj.time == getTickCount())
 {
 if (rDebug > 0)
 {
 System.out.println("applyAnyStoredChanges(): Changing " + tmpObj.varname + " to " +
 tmpObj.value);
 }
 set(tmpObj.varname, tmpObj.value);
 }
 }
 }

 // ///

214

 // utility methods for accessing parts of model

 private void setObjectParameter(Object inObject, String varname, String value)
 {
 String methodname = new String("set" + capitalize(varname));
 Class c = inObject.getClass();
 Method[] methods = c.getMethods();
 Method setmethod = null;

 for (int j = 0; j < methods.length; j++)
 {
 if (methods[j].getName().equals(methodname))
 {
 setmethod = methods[j];
 break;
 }
 }

 if (setmethod != null)
 {
 try
 {
 Class[] parameterTypes = setmethod.getParameterTypes();
 if (parameterTypes[0].getName().equals("int"))
 {
 DMSG(3, "int parameter type");
 setmethod.invoke(inObject, new Object[]
 { Integer.valueOf(value) });
 } else if (parameterTypes[0].getName().equals("long"))
 {
 DMSG(3, "long parameter type");
 setmethod.invoke(inObject, new Object[]
 { Long.valueOf(value) });
 } else if (parameterTypes[0].getName().equals("double"))
 {
 DMSG(3, "double parameter type");
 setmethod.invoke(inObject, new Object[]
 { Double.valueOf(value) });
 } else if (parameterTypes[0].getName().equals("float"))
 {
 DMSG(3, "float parameter type");
 setmethod.invoke(inObject, new Object[]
 { Float.valueOf(value) });
 } else if (parameterTypes[0].getName().equals("java.lang.String"))
 {
 DMSG(3, "String parameter type");
 setmethod.invoke(inObject, new Object[]
 { value });
 } else
 {
 System.out.println("COULD NOT DETERMINE PARAMETER TYPE");
 }
 DMSG(1, "setObjectParameter(): " + varname + " changed to " + value);
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 } else

215

 {
 System.out.println("COULD NOT FIND SET METHOD FOR: " + varname);
 }
 }

 private void processChange(Element c)
 {

 DMSG(3, "Processing A Change");

 NodeList tmpList = c.getElementsByTagName("*");

 ChangeObj newChange = new ChangeObj(0, "", "");

 for (int i = 0; i < tmpList.getLength(); i++)
 {
 Element tmpElement = (Element) tmpList.item(i);
 // System.out.println("tmpElement.getTagName(): " +
 // tmpElement.getTagName());
 if (tmpElement.getTagName().equals("time"))
 {
 newChange.time = Integer.parseInt(tmpElement.getChildNodes().item(0).getNodeValue());
 } else
 {
 newChange.varname = tmpElement.getTagName();
 newChange.value = tmpElement.getChildNodes().item(0).getNodeValue();
 }
 }

 changesVector.add(newChange);

 DMSG(3, "Done processing a Change");
 }

 private void processChangeList(NodeList c)
 {

 DMSG(3, "Processing " + c.getLength() + " changes ...");
 for (int i = 0; i < c.getLength(); i++)
 processChange((Element) c.item(i));

 for (int i = 0; i < changesVector.size(); i++)
 {
 ChangeObj tmpObj = (ChangeObj) changesVector.get(i);
 DMSG(3, "Time: " + tmpObj.time + " VarName: " + tmpObj.varname + " Value: " +
 tmpObj.value);
 }
 }

 private void set(String varname, String value)
 {

 // first convert varname to the alias, if it is an alias
 varname = aliasToParameterName(varname);

 Method setmethod = findSetMethodFor(varname);

 if (setmethod != null)

216

 {
 try
 {
 Class[] parameterTypes = setmethod.getParameterTypes();
 if (parameterTypes[0].getName().equals("int"))
 {
 DMSG(3, "int parameter type");
 setmethod.invoke(this, new Object[]
 { Integer.valueOf(value) });
 } else if (parameterTypes[0].getName().equals("long"))
 {
 DMSG(3, "long parameter type");
 setmethod.invoke(this, new Object[]
 { Long.valueOf(value) });
 } else if (parameterTypes[0].getName().equals("float"))
 {
 DMSG(3, "float parameter type");
 setmethod.invoke(this, new Object[]
 { Float.valueOf(value) });
 } else if (parameterTypes[0].getName().equals("double"))
 {
 DMSG(3, "double parameter type");
 setmethod.invoke(this, new Object[]
 { Double.valueOf(value) });
 } else if (parameterTypes[0].getName().equals("java.lang.String"))
 {
 DMSG(3, "String parameter type");
 setmethod.invoke(this, new Object[]
 { value });
 } else
 {
 System.out.println("COULD NOT DETERMINE PARAMETER TYPE");
 }
 DMSG(1, "set(): " + varname + " changed to " + value);
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 } else
 {
 System.out.println("COULD NOT FIND SET METHOD FOR: " + varname);
 System.out.println("Is the parameter name correct?");
 }
 }

 // loadChangeParameters
 // we expect to see
 // @changeParameters
 // step=<timeStep>
 // parName=parValue
 // ...
 // @endChangeParameters
 // <timeStep> is time step changes are to occur.
 // store in changeSteps[numberOfChanges]
 // store number of parameters to change in changeIDs[numberOfChanges]
 // increment numberOfChanges
 // Return 0 if ok, 1 if not. next line will be after @endChangeParameters
 public int loadChangeParameters(BufferedReader inFile)

217

 {
 ArrayList lines = new ArrayList(16);
 String line, ends = "@endChangeParameters";
 int r, step = 0, numPars = 0, done = 0;
 if (rDebug > 0)
 System.out.printf("\n\n*** loadChangeParameters \n\n");

 // first get the step= line, and the time and ID values
 line = skipCommentLines(inFile);
 if (rDebug > 0)
 System.out.printf("0: %s\n", line);

 /*
 * was r = Format.sscanf(line, "step=%i", p.add(iV)); step =
 * iV.intValue();
 */
 Scanner scanner = new Scanner(line);
 scanner.findInLine("step=(\\d+)");
 MatchResult result = scanner.match();
 try
 {
 step = Integer.parseInt(result.group());
 } catch (NumberFormatException e)
 {
 }

 // get lines into a bunch of strings, add to list of these sets of
 // lines.
 while (done == 0)
 {
 line = skipCommentLines(inFile);
 if (line.equals(ends))
 done = 1;
 else
 {
 // *** It would be nice to check these here...
 lines.add(line);
 ++numPars;
 }
 }
 changeSpecs.add(lines);

 if (numPars == 0)
 {
 System.err.printf("\n*** loadChangeParameters found 0 changes! Last line='%s'\n", line);
 return -1;
 }

 // store time and id in next place in arrays.
 changeSteps[numberOfChanges] = step;
 changeIDs[numberOfChanges] = 0 - numPars;
 ++numberOfChanges;

 for (int c = 0; c < numberOfChanges; ++c)
 {
 if (changeIDs[c] >= 0)
 continue;
 lines = (ArrayList) changeSpecs.get(c);

218

 System.out.printf("Change %d at t=%d, ID=%d:\n", c, changeSteps[c], changeIDs[c]);
 for (int i = 0; i < numPars; ++i)
 {
 System.out.printf("%d: %s\n", i + 1, (String) lines.get(i));
 }
 }

 return 0;
 }

 public void DMSG(int debugLevel, String debugStr)
 {
 if (rDebug >= debugLevel)
 {
 System.out.println("debug:\t" + debugStr);
 }
 }

 // //
 // printProjectHelp
 // this could be filled in with some help to get from running with -help
 // parameter
 //
 public void printProjectHelp()
 {
 // this is declared in the class that 'extends' this one
 }

 // //
 // writeHeaderCommentsToReportFile
 // include comments to be written just after the list of parameter
 // values and just before the step-by-step data lines.

 public void writeHeaderCommentsToReportFile()
 {
 // this is declared in the class that 'extends' this one
 }

}

// //
// ///
// auxilliary classes for processing changes
//
//
class ChangeObj
{
 public ChangeObj()
 {
 }

 public ChangeObj(int in_time, String in_varname, String in_value)
 {
 time = in_time;
 varname = in_varname;
 value = in_value;
 }

219

 public int time;
 public String varname;
 public String value;
}

class ACChangeObj
{
 public ACChangeObj()
 {
 }

 public ACChangeObj(int in_time, int in_id, String in_varname, String in_value)
 {
 time = in_time;
 id = in_id;
 varname = in_varname;
 value = in_value;
 }

 public int time;
 public int id;
 public String varname;
 public String value;
}

// //
// //
// auxilliary class for file opening/closing
// and string processing
//
class IOUtils
{

 public static String readBRLine(BufferedReader file)
 {
 String s;
 try
 {
 s = file.readLine();
 } catch (IOException e)
 {
 // System.out.println("closeBRFile error!");
 s = null;
 }
 return s;
 }

 public static BufferedReader openFileToRead(String filename)
 {
 BufferedReader in;
 try
 {
 in = new BufferedReader(new FileReader(filename));
 } catch (IOException e)
 {
 // no file, etc
 // System.out.println("openFileToRead error on filename="+filename
 //);

220

 in = null;
 }
 // System.err.printf("openFileToRead: '%s'\n", filename);
 return in;
 }

 public static PrintWriter openFileToWrite(String dir, String filename, String how)
 {
 PrintWriter out;
 try
 {
 File f = new File(dir, filename);
 out = new PrintWriter(new FileWriter(f));
 } catch (IOException e)
 {
 // no file, etc
 // System.out.println("openFileToWrite error on dir/filename="
 // + dir + "/" + filename);
 out = null;
 }
 // System.err.printf("openFileToWrite: '%s'\n", filename);
 return out;
 }

 public static int closeBRFile(BufferedReader file)
 {
 int r = 0;
 try
 {
 file.close();
 } catch (IOException e)
 {
 // System.out.println("closeBRFile error!");
 r = -1;
 }
 return r;
 }

 public static int closePWFile(PrintWriter file)
 {
 int r = 0;
 file.close();
 return r;
 }

 // //

 public static int tokenToInt(String token)
 {
 int i;
 token = token.trim();
 try
 {
 i = Integer.parseInt(token);
 } catch (NumberFormatException ex)
 {
 throw new IllegalArgumentException(" tokenToInt error, token=" + token);
 }

221

 return i;
 }

 public static double tokenToDouble(String token)
 {
 double d;
 token = token.trim();
 try
 {
 d = Double.parseDouble(token);
 } catch (NumberFormatException ex)
 {
 throw new IllegalArgumentException(" tokenToDouble error, token=" + token);
 }
 return d;
 }

}

222

Appendix B

Computer code for Chapter VI: Self-organization of background habitat determines
the nature of population spatial structure

Software specifications

MATLAB R2008bSV

Script list
run_metapopulation.m 223

create_metapopulation.m 228
count_clumps_continuous.m 229

synth_clump_dist.m 232
disperse_clumps.m 235

Script details

run_metapopulation.m

% a function to run the metapopulation created by create_metapopulation.m
function [clumps] = run_metapopulation(in_mat, plot_each_step, e_0, e_1, m_0, m_1, equation_type)

RandStream.setDefaultStream (RandStream('mt19937ar','seed',sum(100*clock)));

[x y] = convert_matrix_to_x_y(in_mat);

[rows cols] = size(in_mat);

clump_radius = 1.5;
min_x = 1;
max_x = cols;
plot_clumps = 0;
[clump_size frequency clumps perc_LR] = count_clumps_continuous(x, y, clump_radius, min_x, max_x,
 plot_clumps);

[clumps] = create_metapopulation(clumps);

% only run the metapopulation if there are more than 1 clumps
if length(clumps)>1

 % 0 = only the nearest occupied neighbor can rescue an extinct clump
 % 1 = all other clumps can rescue an extinct clump

223

 all_neighbor = 0;

 end_time = 1000;

 for i = 1:length(clumps)
 clumps(i).occupied = zeros(end_time, 1);
 clumps(i).occupied(1) = 1;
 end

 if plot_each_step
 plot_handle = figure();
 set(gca, 'FontSize', 14);
 frac_handle = figure();
 set(gca, 'FontSize', 14);
 end

 num_occupied = zeros(end_time, 1);
 fraction_occupied = zeros(end_time, 1);
 for time = 2:end_time

 % loop through every clump
 for i = 1:length(clumps)

 clumps(i).migration_prob = 0;
 clumps(i).extinction_prob = 0;
 clumps(i).died = 0;
 clumps(i).rescued = 0;

 if(clumps(i).occupied(time-1))

 % determine if the clump goes extinct
 switch equation_type
 case 0
 % linear
 clumps(i).extinction_prob = min(1,max(0,e_0 + e_1*clumps(i).clump_size));
 case 1
 % negative exponential
 clumps(i).extinction_prob = min(1,max(0,e_0*exp(-e_1*clumps(i).clump_size)));
 end

 if (rand() < clumps(i).extinction_prob)
 clumps(i).died = 1;
 end
 else
 % determine if the clump becomes occupied
 switch all_neighbor
 case 0
 % first, find the nearest occupied neighbor
 for j = 1:length(clumps(i).neighbor)
 if clumps(clumps(i).neighbor(j)).occupied(time-1) == 1
 dist_nearest_neighbor = clumps(i).neighbor_distance(j);
 break;
 end
 end

 switch equation_type
 case 0
 % linear

224

 migration_prob = m_0 + m_1*dist_nearest_neighbor;
 case 1
 % negative exponential
 migration_prob = m_0*exp(-m_1*dist_nearest_neighbor);
 end

 case 1
 no_migration_prob = 1;
 for j = 1:length(clumps(i).neighbor)
 if clumps(clumps(i).neighbor(j)).occupied(time-1) == 1

 switch equation_type
 case 0
 % linear
 temp_migration_prob = min(max(0,m_0 + m_1*clumps
 (i).neighbor_distance(j)),1);
 case 1
 % negative exponential
 temp_migration_prob = min(1, max(0,m_0*exp(-m_1*clumps
 (i).neighbor_distance(j))));
 end
 no_migration_prob = no_migration_prob*(1-temp_migration_prob);
 end
 end
 migration_prob = 1 - no_migration_prob;
 otherwise
 disp('Invalid value of all_neighbors');
 end
 clumps(i).migration_prob = migration_prob;
 if (rand() < migration_prob)
 clumps(i).rescued = 1;
 end
 end
 end

 % update the state of each clump
 for i = 1:length(clumps)
 if clumps(i).died
 clumps(i).occupied(time) = 0;
 elseif clumps(i).rescued
 clumps(i).occupied(time) = 1;
 else
 clumps(i).occupied(time) = clumps(i).occupied(time - 1);
 end
 end

 % calculate stats and plot metapopulation
 num_occupied(time) = 0;
 occupied_index = 0;
 empty_index = 0;
 occupied_x = [];
 occupied_y = [];
 empty_x = [];
 empty_y = [];
 for i=1:length(clumps)

 if clumps(i).occupied(time) == 1;
 num_occupied(time) = num_occupied(time) + 1;

225

 for j = 1:length(clumps(i).x)
 occupied_index = occupied_index + 1;
 occupied_x(occupied_index) = clumps(i).x(j);
 occupied_y(occupied_index) = clumps(i).y(j);
 end
 else
 for j = 1:length(clumps(i).x)
 empty_index = empty_index + 1;
 empty_x(empty_index) = clumps(i).x(j);
 empty_y(empty_index) = clumps(i).y(j);
 end
 end
 end

 fraction_occupied(time) = num_occupied(time)./length(clumps);

 if plot_each_step
 figure(plot_handle);
 scatter(occupied_x, occupied_y, 15, 'r','filled');
 hold on;
 scatter(empty_x, empty_y, 15, 'b', 'filled');
 axis([0 cols 0 rows]);
 title(['e0=' num2str(e_0) ', e1=' num2str(e_1) ', m0=' num2str(m_0) ', m1=' num2str(m_1)...
 ', red = occupied, blue = empty']);
 hold off;

 figure(frac_handle);
 plot(fraction_occupied);
 title(['Fraction of clumps occupied, e0=' num2str(e_0) ', e1=' num2str(e_1)...
 ', m0=' num2str(m_0) ', m1=' num2str(m_1)], 'FontSize', 14);
 xlabel('Time', 'FontSize', 14);
 ylabel('Fraction of clumps occupied', 'FontSize', 14);
 end

 end

 if plot_each_step
 scatter(occupied_x, occupied_y, 15, 'r','filled');
 hold on;
 scatter(empty_x, empty_y, 15, 'b', 'filled');
 axis([0 cols 0 rows]);
 title(['e0=' num2str(e_0) ', e1=' num2str(e_1) ', m0=' num2str(m_0) ', m1=' num2str(m_1)...
 ', red = occupied, blue = empty']);
 hold off;

 figure(frac_handle);
 plot(fraction_occupied);
 title(['Fraction of clumps occupied, e0=' num2str(e_0) ', e1=' num2str(e_1)...
 ', m0=' num2str(m_0) ', m1=' num2str(m_1)], 'FontSize', 14);
 xlabel('Time', 'FontSize', 14);
 ylabel('Fraction of clumps occupied', 'FontSize', 14);
 end

 clumps(1).fraction_occupied = fraction_occupied;
else
 % put in some placeholders
 clumps(1).occupied = [];

226

 clumps(1).neighbor = [];
 clumps(1).neighbor_distance = [];
 clumps(1).migration_prob = [];
 clumps(1).extinction_prob = [];
 clumps(1).died = [];
 clumps(1).rescued = [];
 clumps(1).fraction_occupied = [];
end

227

create_metapopulation.m

% a script to determine the sizes of clusters and the minimum distance between clusters
% for an ant occupancy matrix
function [clumps] = create_metapopulation(clumps)

if length(clumps)>1

 for i = 1:length(clumps)

 neighbor_index = 0;
 for j = 1:length(clumps)

 if j ~= i

 neighbor_index = neighbor_index + 1;

 % calculate the distance from this clump to the next one
 clumps(i).neighbor(neighbor_index) = j;
 clumps(i).neighbor_distance(neighbor_index) = 1E99;

 % loop through every point in both clumps
 for k = 1:length(clumps(i).x)
 for m = 1:length(clumps(j).x)

 % calculate the distance between the points
 distance = ((clumps(i).x(k) - clumps(j).x(m))^2 + (clumps(i).y(k) - clumps(j).y(m))^2)
 ^0.5;

 if distance < clumps(i).neighbor_distance(neighbor_index)
 clumps(i).neighbor_distance(neighbor_index) = distance;
 end
 end
 end
 end
 end

 % sort the distances
 [clumps(i).neighbor_distance sort_indices] = sort(clumps(i).neighbor_distance);
 clumps(i).neighbor = clumps(i).neighbor(sort_indices);

 end

end

228

count_clumps_continuous.m

% a script to count clumps in a continuous-space plot
% This script takes as inputs:
% x = vector of x-coordinates
% y = vector of y-coordinates
% clump_radius = maximum distance between points for them to be considered part of the same clump
function [clump_size frequency clumps perc_LR] = count_clumps_continuous(x, y, clump_radius, min_x,
max_x, plot_clumps)

clump_index = 0;

perc_LR = 0;
if length(x) > 11000
 pre_calc_distance = 0;
else
 pre_calc_distance = 1;

end

if pre_calc_distance
 % calculate the distance between all points
 distance = zeros(length(x), length(x));
 for first_point = 1:length(x)
 for second_point = 1:length(x)

 distance(first_point, second_point) = ...
 ((x(first_point) - x(second_point))^2+(y(first_point) - y(second_point))^2)^0.5;

 end

 end
end

% state: 1 = in main list, 2 = in temp list, 3 = already processed
% all points start out in the main list
state = ones(length(x),1);

% remove the points from the main list one by one
main_list = find(state == 1);
while ~isempty(main_list)

 % start the temporary list with this point
 state(main_list(1)) = 2;
 clump_index = clump_index + 1;
 clump_sizes(clump_index) = 0;
 point_index = 0;

 % search around the points in the temporary list one by one
 temp_list = find(state == 2);
 touches_L = 0;
 touches_R = 0;
 while ~isempty(temp_list)

 % detect whether the point is within clump_radius of either the left or right edge
 if x(temp_list(1)) < min_x + clump_radius;
 touches_L = 1;
 end

229

 if x(temp_list(1)) > max_x - clump_radius;
 touches_R = 1;
 end

 point_index = point_index + 1;

 clump_sizes(clump_index) = clump_sizes(clump_index) + 1;

 % mark this point as processed
 state(temp_list(1)) = 3;

 clumps(clump_index).x(point_index) = x(temp_list(1));
 clumps(clump_index).y(point_index) = y(temp_list(1));

 if pre_calc_distance
 % find and mark all the points within clump_radius of this point that haven't already been processed
 state(find(distance(temp_list(1), :)' < clump_radius & state == 1)) = 2;
 else
 distance_vector = zeros(length(x), 1);
 for i = 1:length(x)
 distance_vector(i) = ((x(temp_list(1)) - x(i))^2+(y(temp_list(1)) - y(i))^2)^0.5;
 end
 state(distance_vector < clump_radius & state == 1) = 2;
 end

 temp_list = find(state == 2);

 end

 if touches_L && touches_R
 perc_LR = 1;
 end

 clumps(clump_index).clump_size = clump_sizes(clump_index);

 main_list = find(state == 1);

end

% count the number of clumps of each size
clump_size = sort(unique(clump_sizes));
frequency = zeros(length(clump_size), 1);
for i = 1:length(clump_size)
 frequency(i) = length(find(clump_sizes == clump_size(i)));
end

if plot_clumps

 % define a larger ColorOrder for plotting clumps
 num_colors = 100;
 colors = zeros(num_colors, 3);
 for i = 1:num_colors
 colors(i, :) = [rand() rand() rand()];
 end

 figure();
 set(gcf,'DefaultAxesColorOrder',colors);
 plot(x, y, '.', 'MarkerSize', 20);

230

 set(gcf, 'Position', [10 116 795 568]);
 hold all;
 for i = 1:length(clumps)
 pause(0.05);
 plot(clumps(i).x, clumps(i).y, '.', 'MarkerSize', 20);
 text(clumps(i).x, clumps(i).y, num2str(i), 'FontSize', 8);
 end

end

231

synth_clump_dist.m

% a function to create a synthetic clump distribution
function [out_mat clump_size frequency succeeded] = synth_clump_dist(num_points, alpha, x_cells,
y_cells)

enable_disp = 1;

% minimum power law x (see Clauset et al. 2007)
x_min = 1;

max_tries = 1000;
max_fails = 1000;

% assume that the function succeeds unless it fails too many times
succeeded = 1;

% repeatedly choose clumps until the number of points = num_points
temp_num_points = 0;
index = 0;
while temp_num_points < num_points

 index = index + 1;
 r = rand();
 clumps(index) = round((x_min - 0.5)*(1-r)^(-1/(alpha - 1))+0.5);

 temp_num_points = temp_num_points + clumps(index);

end

% count the number of clumps of each size
clump_size = sort(unique(clumps));
frequency = zeros(length(clump_size), 1);
for i = 1:length(clump_size)

 frequency(i) = length(find(clumps == clump_size(i)));

end

out_mat = zeros(y_cells, x_cells);
% place the clumps
i = 0;
num_failed = 0;
while i < length(clumps)

 i = i + 1;

 if mod(i, 100) == 0 && enable_disp
 disp(['Placing clump # ' num2str(i)]);
 end

 failed = 0;

 temp_out_mat = zeros(y_cells, x_cells);

 tried = 0;
 % choose the first point of the clump at random
 spot_free = 0;

232

 while ~spot_free

 x = randi(x_cells);
 y = randi(y_cells);

 spot_free = 1;
 for x_offset = -1:1
 for y_offset = -1:1

 test_x = min(x_cells, max(1, x+x_offset));
 test_y = min(y_cells, max(1, y+y_offset));

 if out_mat(test_y, test_x) ~= 0
 spot_free = 0;
 end

 end

 end

 tried = tried + 1;
 if tried > max_tries
 failed = 1;
 break;
 end
 end

 temp_out_mat(y, x) = 1;

 % place the other points at random
 placed = 1;
 while placed < clumps(i)

 last_x = x;
 last_y = y;

 x = min(x_cells, max(1, last_x + (randi(3) - 2)));
 y = min(y_cells, max(1, last_y + (randi(3) - 2)));

 spot_free = 1;
 for x_offset = -1:1
 for y_offset = -1:1

 test_x = min(x_cells, max(1, x+x_offset));
 test_y = min(y_cells, max(1, y+y_offset));

 if out_mat(test_y, test_x) ~= 0
 spot_free = 0;
 end

 end

 end

 if spot_free
 if temp_out_mat(y, x) == 0
 temp_out_mat(y,x) = 1;
 placed = placed + 1;

233

 end
 else
 x = last_x;
 y = last_y;
 end

 tried = tried + 1;
 if tried > max_tries
 failed = 1;
 break;
 end

 end

 if failed
 num_failed = num_failed + 1;
 if enable_disp
 disp(['Failed placing clump # ' num2str(i)...
 ', x = ' num2str(x) ', y = ' num2str(y) ', clump size = ' num2str(clumps(i))...
 ', num_failed = ' num2str(num_failed)]);
 end
 i = i-1;
 else
 out_mat = out_mat + temp_out_mat;
 end

 if num_failed > max_fails

 succeeded = 0;
 break;

 end

end

234

disperse_clumps.m

% A script to take an existing clump_mat and randomly disperse the clusters
function [out_mat success] = disperse_clumps(in_mat)

% Moore neighborhood
clump_radius = 1.5;
plot_clumps = 0;

[rows cols] = size(in_mat);

min_x = 1;
max_x = cols;
min_y = 1;
max_y = rows;

[x y] = convert_matrix_to_x_y(in_mat);

% count the clumps
[clump_size frequency clumps perc_LR] = count_clumps_continuous(x, y, clump_radius, min_x, max_x,
 plot_clumps);

% scatter the clumps
mat_tries = 0;
mat_fail = 1;
while mat_fail && mat_tries < 100

 mat_tries = mat_tries + 1;

 out_mat = zeros(rows, cols);

 for i=1:length(clumps)

 clump_tries = 0;
 clump_fail = 1;
 while clump_fail && clump_tries < 100000

 clump_tries = clump_tries + 1;

 % randomly displace the clump
 range_x = max(clumps(i).x) - min(clumps(i).x);
 range_y = max(clumps(i).y) - min(clumps(i).y);

 min_clump_x = randi(max_x-range_x);
 min_clump_y = randi(max_y-range_y);

 % define the proposed new coordinates of the clump
 proposed_x = clumps(i).x + (min_clump_x - min(clumps(i).x));
 proposed_y = clumps(i).y + (min_clump_y - min(clumps(i).y));

 % create a matrix containing the proposed clump
 proposed_clump_mat = zeros(rows, cols);
 buffer_mat = zeros(rows, cols);
 for j=1:length(proposed_x)
 proposed_clump_mat(proposed_y(j), proposed_x(j)) = 1;

 % mark the clump including a buffer in the Moore neighborhood
 for k = -1:1

235

 for m = -1:1
 buffer_mat(max(min(max_y, proposed_y(j)+m), min_y), ...
 max(min(max_x, proposed_x(j)+k), min_x)) = 1;
 end
 end

 end

 % see if the proposed clump overlaps another existing clump
 if max(max(out_mat + buffer_mat))>1
 clump_fail = 1;
 else
 out_mat = out_mat + proposed_clump_mat;
 clump_fail = 0;
 end

 end

 if clump_fail
 mat_fail = 1;
 else
 mat_fail = 0;
 end

 end

end

if mat_fail
 success = 0;
else
 success = 1;
end

236

Appendix C

Computer code for Chapter VII: Detection of imminent, non-catastrophic regime
shifts

Software specifications

Recursive Porous Agent Simulation Toolkit (Repast) 3.0
Processing 1.2.1

Class list

LecLecMain.java 237
Site.java 254

PoissonMean.java 265
Controller.java 268

BubblePlot.java 269
Circle.java 270

GUIModel.java 272
BatchModel.java 275

ModelParameters.java 278

Class details

LecLecMain.java
package lecLecABM_v3;
import processing.core.*;
import java.applet.Applet;

// A host-pathogen, agent-based model of Lecanicillium lecanii epizootiology.
// This model is:
// continuous-space
// stochastic
// based on the Gillespie tau-leap algorithm
// comprised of individual epidemiological models adapted from the Hochberg reservoir model
// Doug Jackson, Winter 2011

import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;

237

import java.util.Vector;
import java.util.Collections;
import java.util.Scanner;

import lecLecABM_v3.Site;

import uchicago.src.sim.analysis.Plot;
import uchicago.src.sim.engine.Schedule;

public class LecLecMain extends ModelParameters
{

 // class variables
 public static Plot numSusceptibleGraph;
 public static Plot numInfectedGraph;
 public static Plot infectiousGraph;
 public static Plot latentGraph;
 public static boolean gui = false;

 public Controller testController;

 // instance variables
 public BubblePlot plot;
 public PApplet bubble;

 public double time;
 public ArrayList<Site> siteList = new ArrayList<Site>();
 public ArrayList<Circle> circleList = new ArrayList<Circle>();
 public double[][] distanceMatrix;

 public Schedule schedule;

 public int width;
 public int height;
 public double sizeX;
 public double sizeY;
 public int numSites;
 public int graphUpdatePeriod;

 // default parameter values
 public double defaultS0;
 public double defaultI0;
 public double defaultW0;
 public double defaultQ0;
 public double defaultQDecayConstant;
 public double defaultB;
 public double defaultD;
 public double defaultK;
 public double defaultBeta;
 public double defaultSigma;
 public double defaultTheta1;
 public double defaultTheta2;
 public double defaultMu;
 public double defaultEpsilon;
 public double defaultLambda;
 public double defaultNu;
 public double defaultPhi;
 public double defaultRho;

238

 public double defaultAlpha;
 public double defaultDelta;
 public double defaultTimeWet;
 public double defaultTimeDry;
 public double defaultTau;
 public double radiusCoef;

 // stats
 public double totalS;
 public double totalI;
 public double totalW;
 public double totalQ;
 public int infectedSites;
 public int uninfectedSites;

 // flags
 public boolean wetSeasonDynamics;

 // ///
 // addModelSpecificParameters
 // add alias and long name for Model parameters you want to set at run time
 // the long name should be same as instance variable
 //
 // Note: the generic parameters from ModelParameters are already available.

 @Override
 public void addModelSpecificParameters()
 {
 parametersMap.put("X", "sizeX");
 parametersMap.put("Y", "sizeY");
 parametersMap.put("nSi", "numSites");
 parametersMap.put("gUP", "graphUpdatePeriod");
 parametersMap.put("dS0", "defaultS0");
 parametersMap.put("dI0", "defaultI0");
 parametersMap.put("dW0", "defaultW0");
 parametersMap.put("dQ0", "defaultQ0");
 parametersMap.put("dQd", "defaultQDecayConstant");
 parametersMap.put("dB", "defaultB");
 parametersMap.put("dD", "defaultD");
 parametersMap.put("dK", "defaultK");
 parametersMap.put("dBe", "defaultBeta");
 parametersMap.put("dSi", "defaultSigma");
 parametersMap.put("dT1", "defaultTheta1");
 parametersMap.put("dT2", "defaultTheta2");
 parametersMap.put("dMu", "defaultMu");
 parametersMap.put("dE", "defaultEpsilon");
 parametersMap.put("dLa", "defaultLambda");
 parametersMap.put("dNu", "defaultNu");
 parametersMap.put("dPh", "defaultPhi");
 parametersMap.put("dRh", "defaultRho");
 parametersMap.put("dAl", "defaultAlpha");
 parametersMap.put("dDe", "defaultDelta");
 parametersMap.put("dTw", "defaultTimeWet");
 parametersMap.put("dTd", "defaultTimeDry");
 parametersMap.put("dTa", "defaultTau");
 parametersMap.put("rC", "radiusCoef");
 }

239

 // control what appears in the repast parameter panel
 @Override
 public String[] getInitParam()
 {
 String[] params =
 { "sizeX","sizeY", "numSites","defaultS0",
 "defaultI0", "defaultW0", "defaultQ0", "defaultQDecayConstant",
 "defaultB", "defaultD", "defaultK", "defaultBeta", "defaultSigma",
 "defaultTheta1", "defaultTheta2", "defaultMu", "defaultEpsilon",
 "defaultLambda", "defaultNu", "defaultPhi", "defaultRho",
 "defaultAlpha", "defaultDelta", "defaultTimeWet", "defaultTimeDry",
 "defaultTau", "radiusCoef"};
 return params;
 }

 // //
 // constructor, if needed.
 public LecLecMain()
 {

 }

 // ///
 // setup
 // set defaults after a run start or restart

 @Override
 public void setup()
 {
 if (rDebug > 0)
 System.out.printf("==> setup...\n");
 schedule = null;
 System.gc();

 time = 0;

 siteList = new ArrayList<Site>();

 // size of the arena
 sizeX = 243;
 sizeY = 243;

 // number of ant nests
 numSites = 100;

 graphUpdatePeriod = 1000000000;
 radiusCoef = 0.008;

 defaultS0 = 50;
 defaultI0 = 10;
 defaultW0 = 10;
 defaultQ0 = 300;
 defaultQDecayConstant = 0.012;
 defaultB = 0.0668;
 defaultD = 0.0;
 defaultK = 1100;
 defaultBeta = 0.01;
 defaultSigma = 0.07;

240

 defaultTheta1 = 0.5;
 defaultTheta2 = 0.05;
 defaultLambda = 0.05;
 defaultMu = 0.1;
 defaultEpsilon = 0.000005;
 defaultNu = 0.01;
 defaultPhi = 0;
 defaultRho = defaultQDecayConstant;
 defaultAlpha = 0.1;
 defaultDelta = 0.3;
 defaultTimeWet = 183;
 defaultTimeDry = 365-defaultTimeWet;
 defaultTau = 1;

 wetSeasonDynamics=true;

 super.setup(); // THIS SHOULD BE CALLED after setting defaults in
 // setup().
 schedule = new Schedule(1); // create AFTER calling super.setup()

 if (rDebug > 0)
 System.out.printf("\n<=== setup() done.\n");

 }

 // ///
 // buildModel
 // We build the "conceptual" parts of the model.
 // (vs the display parts, and the schedule)
 //
 // Create a 2D world, tell the organisms about it.
 // Create organisms and add them to the lists.

 public void buildModel()
 {
 if (rDebug > 0)
 System.out.printf("==> buildModel...\n");

 // CALL FIRST -- defined in super class -- it starts RNG, etc
 buildModelStart();

 // tell the hosts and pathogens about "this"
 Site.setModel(this);

 defaultTimeDry = 365-defaultTimeWet;

 // width and height of the bubble plot
 width = (int) Math.ceil(sizeX);
 height = (int) Math.ceil(sizeY+22);

 // Instantiate Applet object if we're in GUI mode
 if(!this.modelType.equals("BatchModel"))
 {
 //Applet p55 = new EmbeddedP55(w, h);
 bubble = new BubblePlot(circleList, width, height);

 testController = new Controller(bubble, width, height);
 testController.setVisible(true);

241

 }

 // create and scatter the sites
 //scatterRandomSites();
 readSites();

 // enable drawing
 if(!this.modelType.equals("BatchModel"))
 {
 BubblePlot.lockDraw = false;
 }

 // generate the distance matrix
 distanceMatrix = new double[numSites][numSites];

 calcDistances();

 // some post-load finishing touches
 startReportFile();

 // for the initial state, calculate these numbers, store in instance
 // variables
 // record some stats every step
 calcStatistics();

 // calls to process parameter changes and write the
 // initial state to the report file.
 // NB -> you might remove/add more agentChange processing
 applyAnyStoredChanges();
 stepReport();
 getReportFile().flush();
 getPlaintextReportFile().flush();

 if (rDebug > 0)
 System.out.printf("<== buildModel done.\n");
 }

 // Create a new Site and put it at x, y
 public Site createNewSite(double x, double y)
 {
 // Create the bubbles for the different system variables. The order that these are added to the
 // list determines which bubble is displayed on top, i.e., the plot order.
 Circle circleQ = new Circle(bubble, (float) x, (float) y, (float) (radiusCoef*defaultQ0));
 circleQ.setRGBAlpha(139, 69, 19, 160);
 circleList.add(circleQ);

 Circle circleW = new Circle(bubble, (float) x, (float) y, (float) (radiusCoef*defaultW0));
 circleW.setRGBAlpha(255, 0, 0, 160);
 circleList.add(circleW);

 Circle circleS = new Circle(bubble, (float) x, (float) y, (float) (radiusCoef*(defaultS0+defaultI0)));
 circleS.setRGBAlpha(0, 255, 0, 160);
 circleList.add(circleS);

 Circle circleI = new Circle(bubble, (float) x, (float) y, (float) (radiusCoef*defaultI0));
 circleI.setRGBAlpha(255, 255, 255, 160);
 circleList.add(circleI);

242

 Site aSite = new Site(x, y, circleS, circleI, circleW, circleQ);
 siteList.add(aSite);
 return aSite;

 }

 // Add random sites
 public void scatterRandomSites()
 {

 double randomX, randomY;

 if (rDebug > 0)
 System.out.printf("==> scattering sites...\n");

 for (int i = 0; i<numSites; i++)
 {
 // let's find a random place to put a nest
 randomX = getUniformDoubleFromTo(0, sizeX);
 randomY = getUniformDoubleFromTo(0, sizeY);
 createNewSite(randomX, randomY);
 }

 if (rDebug > 0)
 System.out.printf("==> ...done scattering sites\n");
 }

 // read sites from a file
 public void readSites()
 {
 File file = new File("/Users/djackson/Documents/Graduate_school/L_lecanii_modeling/sites.csv");
 try
 {
 Scanner scanner = new Scanner(file);
 while(scanner.hasNextLine())
 {
 String line = scanner.nextLine();
 String[] coords = new String[2];
 coords = line.split(",");
 createNewSite(Double.parseDouble(coords[0]),Double.parseDouble(coords[1]));
 }
 }
 catch (FileNotFoundException e)
 {
 e.printStackTrace();
 }
 }
 // ///
 // step
 // The top of the "conceptual" model's main dynamics
 public void step()
 {
 double tau;

 if (rDebug > 0)
 System.out.printf("==> CML step %.0f:\n", getTickCount());

243

 // calculate the time increment, tau
 tau = getTau();

 // increment time
 time = time + tau;

 // loop through all of the sites to execute their local dynamics
 if(wetSeasonDynamics)
 {
 // run the wet season dynamics at each site
 // They will run until their individual times are >= time.
 for (Site aSite : siteList)
 {
 aSite.dynamicsWet();
 }
 }
 else
 {
 // run the dry season dynamics at each site
 for (Site aSite : siteList)
 {
 aSite.dynamicsDry();
 }
 }

 // calculate statistics
 calcStatistics();

 // call method to update graphs
 updateGraphs();

 if (rDebug > 0)
 {
 System.out.printf("<== main step done.\n");
 }

 }

 // ///
 // stepReport
 // each step write out:
 // Note: update the writeHeaderCommentsToReportFile() to print
 // lines of text describing the data written to the report file.

 public void stepReport()
 {

 // set up a string with the values to write
 String s = String.format("%5.0f", getTickCount());
 s += String.format(" %10.3f", time);
 s += String.format(" %10.3f", totalS);
 s += String.format(" %10.3f", totalI);
 s += String.format(" %10.3f", totalW);
 s += String.format(" %10.3f", totalQ);
 s += String.format(" %10d", infectedSites);
 s += String.format(" %10d", uninfectedSites);

 // write it to the xml and plain text report files

244

 writeLineToReportFile("<stepreport>" + s + "</stepreport>");
 writeLineToPlaintextReportFile(s);

 // flush the buffers so the data is not lost in a "crash"
 getReportFile().flush();
 getPlaintextReportFile().flush();
 }

 // ///
 // writeHeaderCommentsToReportFile
 // customize to match what you are writing to the report files in
 // stepReport.

 @Override
 public void writeHeaderCommentsToReportFile()
 {
 writeLineToReportFile("<comment>");
 writeLineToReportFile(" ");
 writeLineToReportFile(" tick time totalS totalI totalW totalQ infectedSites
 uninfectedSites");
 writeLineToReportFile("</comment>");

 writeLineToPlaintextReportFile("# ");
 writeLineToPlaintextReportFile("# tick time totalS totalI totalW totalQ infectedSites
 uninfectedSites");
 }

 // //
 // printProjectHelp
 // this could be filled in with some help to get from running with -help
 // parameter

 @Override
 public void printProjectHelp()
 {
 // print project help
 System.out.printf("\n%s -- \n", getName());

 System.out.printf("\n **** Add more info here!! **** \n");

 System.out.printf("\nactivationOrder value\n");
 System.out.printf("\nfixed 0\n");
 System.out.printf("\nrandomWithReplacement 1\n");
 System.out.printf("\nrandomWithoutReplacement 2\n");

 System.out.printf("\n");

 printParametersMap();

 System.exit(0);

 }

 public void updateGraphs()
 {

 //check one of the graphs to see if we are in GUI mode
 if (numSusceptibleGraph != null)

245

 {
 numSusceptibleGraph.plotPoint(time, totalS, 1);
 numInfectedGraph.plotPoint(time, totalI, 1);
 infectiousGraph.plotPoint(time, totalW, 1);
 latentGraph.plotPoint(time, totalQ, 1);

 }

 }

 public void calcStatistics()
 {
 totalS = 0;
 totalI = 0;
 totalW = 0;
 totalQ = 0;
 infectedSites = 0;
 uninfectedSites = 0;

 for(Site aSite : siteList)
 {
 totalS = totalS + aSite.getS();
 totalI = totalI + aSite.getI();
 totalW = totalW + aSite.getW();
 totalQ = totalQ + aSite.getQ();
 if(aSite.getI()>0)
 {
 infectedSites ++;
 }
 else
 {
 uninfectedSites ++;
 }
 }
 }

 @Override
 public Schedule getSchedule()
 {
 return schedule;
 }

 @Override
 public String getName()
 {
 return "HostPathogen";
 }

 // setters and getters
 // notes:
 // - we use the schedule != null to indicated model has been initialized
 // - some things can't be changed after model initialization
 // (which things just depends on how the model is implemented)
 // - if we set something after model initialization,
 // we need to write an change entry to the report file.
 // - some things need to send messages to update class variables.
 //
 // NOTE: if you want changes a user makes to parameter like numBugs

246

 // to be used after a restart (vs going back to defaults),
 // you probably have to change setup() to not reinitialize IVs.

 public static void setNumSusceptibleGraph (Plot graph) {numSusceptibleGraph = graph; };
 public static void setNumInfectedGraph (Plot graph) {numInfectedGraph = graph; };
 public static void setInfectiousGraph (Plot graph) {infectiousGraph = graph; };
 public static void setLatentGraph (Plot graph) {latentGraph = graph; };

 public static void setGUI(boolean b)
 {
 gui = b;
 }

 public double getSizeX()
 {
 return sizeX;
 }

 public void setSizeX(double sizeX)
 {
 this.sizeX = sizeX;
 }

 public double getSizeY()
 {
 return sizeY;
 }

 public void setSizeY(double sizeY)
 {
 this.sizeY = sizeY;
 }

 public void setDistanceMatrix(int site1, int site2, double distance)
 {
 this.distanceMatrix[site1][site2] = distance;
 }

 public double getDistanceMatrix(int site1, int site2)
 {
 return distanceMatrix[site1][site2];
 }

 public int getNumSites()
 {
 return numSites;
 }

 public void setNumSites(int numSites)
 {
 this.numSites = numSites;
 }

 /////////////////////////////////
 public int getGraphUpdatePeriod()
 {
 return graphUpdatePeriod;
 }

247

 public void setGraphUpdatePeriod(int gUP)
 {
 graphUpdatePeriod = gUP;
 }

 ////////////////////////////////
 public double getDefaultS0()
 {
 return defaultS0;
 }
 public void setDefaultS0(double dS0)
 {
 defaultS0 = dS0;
 }

 ////////////////////////////////
 public double getDefaultI0()
 {
 return defaultI0;
 }
 public void setDefaultI0(double dI0)
 {
 defaultS0 = dI0;
 }

 ////////////////////////////////
 public double getDefaultW0()
 {
 return defaultW0;
 }
 public void setDefaultW0(double dW0)
 {
 defaultW0 = dW0;
 }

 ////////////////////////////////
 public double getDefaultQ0()
 {
 return defaultQ0;
 }
 public void setDefaultQ0(double dQ0)
 {
 defaultQ0 = dQ0;
 }

 ////////////////////////////////
 public double getDefaultQDecayConstant()
 {
 return defaultQDecayConstant;
 }
 public void setDefaultQDecayConstant(double dQd)
 {
 defaultQDecayConstant = dQd;
 }

 ////////////////////////////////
 public double getDefaultB()
 {

248

 return defaultB;
 }
 public void setDefaultB(double dB)
 {
 defaultB = dB;
 }

 ////////////////////////////////
 public double getDefaultD()
 {
 return defaultD;
 }
 public void setDefaultD(double dD)
 {
 defaultD = dD;
 }

 ////////////////////////////////
 public double getDefaultK()
 {
 return defaultK;
 }
 public void setDefaultK(double dK)
 {
 defaultK = dK;
 }

 ////////////////////////////////
 public double getDefaultBeta()
 {
 return defaultBeta;
 }
 public void setDefaultBeta(double dBe)
 {
 defaultBeta = dBe;
 }

 ////////////////////////////////
 public double getDefaultSigma()
 {
 return defaultSigma;
 }
 public void setDefaultSigma(double dSi)
 {
 defaultSigma = dSi;
 }

 ////////////////////////////////
 public double getDefaultTheta1()
 {
 return defaultTheta1;
 }
 public void setDefaultTheta1(double dT1)
 {
 defaultTheta1 = dT1;
 }

 ////////////////////////////////

249

 public double getDefaultTheta2()
 {
 return defaultTheta2;
 }
 public void setDefaultTheta2(double dT2)
 {
 defaultTheta2 = dT2;
 }

 ////////////////////////////////
 public double getDefaultMu()
 {
 return defaultMu;
 }
 public void setDefaultMu(double dMu)
 {
 defaultMu = dMu;
 }

 ////////////////////////////////
 public double getDefaultEpsilon()
 {
 return defaultEpsilon;
 }
 public void setDefaultEpsilon(double dE)
 {
 defaultEpsilon = dE;
 }

 ////////////////////////////////
 public double getDefaultLambda()
 {
 return defaultLambda;
 }
 public void setDefaultLambda(double dLa)
 {
 defaultLambda = dLa;
 }

 ////////////////////////////////
 public double getDefaultNu()
 {
 return defaultNu;
 }
 public void setDefaultNu(double dNu)
 {
 defaultNu = dNu;
 }

 ////////////////////////////////
 public double getDefaultPhi()
 {
 return defaultPhi;
 }
 public void setDefaultPhi(double dPh)
 {
 defaultPhi = dPh;
 }

250

 ////////////////////////////////
 public double getDefaultRho()
 {
 return defaultRho;
 }
 public void setDefaultRho(double dRh)
 {
 defaultRho = dRh;
 }

 public ArrayList<Site> getSiteList()
 {
 return siteList;
 }
 ////////////////////////////////
 public double getDefaultAlpha()
 {
 return defaultAlpha;
 }
 public void setDefaultAlpha(double dAl)
 {
 defaultAlpha = dAl;
 }

 ////////////////////////////////
 public double getDefaultDelta()
 {
 return defaultDelta;
 }
 public void setDefaultDelta(double dDe)
 {
 defaultDelta = dDe;
 }

 ////////////////////////////////
 public double getDefaultTimeWet()
 {
 return defaultTimeWet;
 }
 public void setDefaultTimeWet(double dTw)
 {
 defaultTimeWet = dTw;
 }

 ////////////////////////////////
 public double getDefaultTimeDry()
 {
 return defaultTimeDry;
 }
 public void setDefaultTimeDry(double dTd)
 {
 defaultTimeDry = dTd;
 }

 ////////////////////////////////
 public double getDefaultTau()
 {

251

 return defaultTau;
 }
 public void setDefaultTau(double dTa)
 {
 defaultTau = dTa;
 }

 ////////////////////////////////
 public double getRadiusCoef()
 {
 return radiusCoef;
 }
 public void setRadiusCoef(double rC)
 {
 radiusCoef = rC;
 }

 public double getTau()
 {
 // if it's the wet season, time will advance by tau;
 // otherwise, time will advance by the length of the dry season
 if(wetSeason())
 {
 return defaultTau;
 }
 else
 {
 return defaultTimeDry;
 }

 }

 public double getTime()
 {
 return time;
 }

 public boolean wetSeason()
 {
 if(time%(defaultTimeWet+defaultTimeDry)<defaultTimeWet)
 {
 wetSeasonDynamics=true;
 return true;
 }
 else
 {
 wetSeasonDynamics=false;
 return false;
 }
 }

 private void calcDistances()
 {
 int i = 0;
 int j = 0;

 for(Site aSite: siteList)
 {

252

 j = 0;

 for(Site bSite: siteList)
 {
 distanceMatrix[i][j] = Math.sqrt(
 Math.pow((aSite.getX()-bSite.getX()), 2)+Math.pow((aSite.getY()-bSite.getY()),2));
 j++;
 }
 i++;
 }
 }

 public double getDistance(Site siteA, Site siteB)
 {
 return distanceMatrix[siteA.getID()][siteB.getID()];
 }

 // ///
 // processEndOfRun
 // called once, at end of run.
 // writes some final info, closes report files, etc.
 public void processEndOfRun()
 {
 if (rDebug > 0)
 System.out.printf("\n\n===== processEndOfRun =====\n\n");
 applyAnyStoredChanges();
 endReportFile();
 this.fireStopSim();
 }

 public void closeSiteReports()
 {
 for(Site aSite : siteList)
 {
 aSite.closeOutputFile();
 }
 }
}

253

Site.java

// Simulate Hochberg reservoir disease dynamics in a site
// Doug Jackson
// Fall 2011

package lecLecABM_v3;

import java.awt.BasicStroke;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.lang.Boolean;
import java.util.Vector;

import uchicago.src.sim.gui.*;
import java.awt.Color;

import java.util.Random;
import org.uncommons.maths.random.MersenneTwisterRNG;
import org.uncommons.maths.random.PoissonGenerator;

import lecLecABM_v3.GUIModel;

public class Site
{
 // class variables
 public static int nextID = 0; // to give each an ID
 public static LecLecMain model; // the model "in charge"
 public static GUIModel guiModel = null; // the gui model "in charge"
 static final int criticalThr = 10;
 static final double eps = 0.03;
 static final int g = 2;
 static final int directThr = 10;
 static final int numDirect = 100;
 static final boolean doChangeParameters = false;

 // instance variables
 public int ID;
 public double x, y;
 public double S;
 public double I;
 public double W;
 public double Q;
 public double QDecayConstant;
 public double b;
 public double d;
 public double K;
 public double beta;
 public double sigma;
 public double theta1;
 public double theta2;
 public double mu;
 public double epsilon;
 public double lambda;
 public double nu;
 public double phi;
 public double rho;

254

 public double alpha;
 public double delta;
 public double radiusCoef;
 public Circle circleS;
 public Circle circleI;
 public Circle circleQ;
 public Circle circleW;

 // Each site has its own unique time
 public double time;

 // variables for generating Poisson random variables using
 // org.uncommons.maths.random
 public Random rng;
 public PoissonGenerator gen;
 public PoissonMean meanSeed;

 // variables for the OTL
 public double[][] nuMat;
 public double[] a;
 public boolean[] critical;
 public double tau;
 public double tau1;
 public double tau2;

 // BufferedWriter for output file
 public BufferedWriter out;

 // changeParameters schedule (currently changes rho and QDecayConstant)
 // To change a different parameter, modify the methods changeParameters, writeState, and
 // setupOutputFile

 // first nu hysteresis sweep
 public double[] changeParametersTimes = {0, 3650, 7300, 10950, 14600, 18250, 21900, 25550, 29200,
 32850, 36500, 40150, 43800, 47450, 51100, 54750, 58400, 62050, 65700, 69350, 73000, 76650,
 80300, 83950, 87600, 91250, 94900, 98550, 102200, 105850, 109500, 113150, 116800, 120450,
 124100, 127750, 131400, 135050, 138700, 142350, 146000, 149650, 153300, 156950, 160600,
 164250, 167900, 171550, 175200, 178850, 182500, 186150, 189800, 193450, 197100, 200750,
 204400, 208050, 211700, 215350, 219000, 222650};
 public double[] changeParametersValues = {0.01, 0.0095, 0.009, 0.0085, 0.008, 0.0075, 0.007, 0.0065,
 0.006, 0.0055, 0.005, 0.0045, 0.004, 0.0035, 0.003, 0.0025, 0.002, 0.0015, 0.001, 0.0005,
 0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 7.8125E-06, 3.9062E-06, 1.9531E-06,
 9.766E-07, 4.883E-07, 2.441E-07, 2.441E-07, 4.883E-07, 9.766E-07, 1.9531E-06, 3.9062E-06,
 7.8125E-06, 0.000015625, 0.00003125, 0.0000625, 0.000125, 0.00025, 0.0005, 0.001, 0.0015,
 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005, 0.0055, 0.006, 0.0065, 0.007, 0.0075, 0.008,
 0.0085, 0.009, 0.0095, 0.01};

 // the Host constructors
 public Site(double X, double Y, Circle circleS, Circle circleI, Circle circleW, Circle circleQ)
 {
 ID = nextID++;
 x = X;
 y = Y;
 S = model.getDefaultS0();
 I = model.getDefaultI0();
 W = model.getDefaultW0();
 Q = model.getDefaultQ0();
 QDecayConstant = model.getDefaultQDecayConstant();

255

 b = model.getDefaultB();
 d = model.getDefaultD();
 K = model.getDefaultK();
 beta = model.getDefaultBeta();
 sigma = model.getDefaultSigma();
 theta1 = model.getDefaultTheta1();
 theta2 = model.getDefaultTheta2();
 mu = model.getDefaultMu();
 epsilon = model.getDefaultEpsilon();
 lambda = model.getDefaultLambda();
 nu = model.getDefaultNu();
 phi = model.getDefaultPhi();
 rho = model.getDefaultRho();
 alpha = model.getDefaultAlpha();
 delta = model.getDefaultDelta();

 // circle setup
 radiusCoef = model.getRadiusCoef();
 this.circleS = circleS;
 this.circleI = circleI;
 this.circleW = circleW;
 this.circleQ = circleQ;

 // set up PoissonGenerator
 rng = new MersenneTwisterRNG();
 meanSeed = new PoissonMean(0);
 gen = new PoissonGenerator(meanSeed, rng);

 // state change matrix
 nuMat = new double[4][8];

 // propensity functions
 a = new double[8];

 // critical reaction flag vector
 critical = new boolean[8];

 // set up OTL (optimized tau-leap) method
 // This is based on:
 // Efficient step size selection for the tau-leaping simulation method
 // Cao, Gillespie, Petzold
 setupOTL();

 // initialize the time
 time = 0;

 // Set up the output file
 setupOutputFile();

 }

 public void dynamicsWet()
 {
 boolean calcTaus;
 double oldS;
 double oldI;
 double oldW;
 double oldQ;

256

 // check to see if there's anything to do at this site
 if(S==0 & I==0 & W==0 & Q==0)
 {
 time = model.getTime();
 }
 // keep running the dynamics until the local time catches
 // up to the model time
 while(time < model.getTime())
 {
 if(doChangeParameters)
 {
 // change the parameters based on a predifined schedule
 changeParameters();
 }

 calcTaus = true;
 oldS = S;
 oldI = I;
 oldW = W;
 oldQ = Q;

 // OTL method
 calcCritical();
 calcTau1();

 // keep trying until you get non-negative results
 while(calcTaus)
 {
 // choose which method to execute based on the values of tau1 and tau2
 if(tau1 < directThr/calcSumA())
 {
 directMethod();
 calcTaus = false;
 }
 else
 {
 calcTau2();
 if(tau1<tau2)
 {
 tau = tau1;
 nonCritETL();
 }
 else
 {
 tau = tau2;
 oneCrit();
 nonCritETL();
 }

 // Check to see if any of the species are negative.
 // If so, return to step 3
 if(S<0 | I<0 | W<0 | Q<0)
 {
 // cut tau1 in half and try again
 tau1 = tau1/2;

 // revert to the previous state

257

 S = oldS;
 I = oldI;
 W = oldW;
 Q = oldQ;

 calcTaus = true;
 }
 else
 {

 // update time
 time = time + tau;

 calcTaus = false;
 }

 }

 // get rid of fractional remainders
 if(S<1) S=0;
 if(I<1) I=0;
 if(W<1) W=0;
 if(Q<1) Q=0;
 if(S==0 & I==0 & W==0 & Q==0)
 {
 time = model.getTime();
 }

 }
 }

 writeState();
 plotResults();

 }

 public void dynamicsDry()
 {
 if(doChangeParameters)
 {
 // change the parameters based on a predifined schedule
 changeParameters();
 }

 S = model.getDefaultS0();
 Q = (theta2*I+Q)*Math.exp(-QDecayConstant*model.getDefaultTimeDry());
 I = 0;
 W = 0;

 // update individual time to match overall time
 time = model.getTime();

 writeState();
 plotResults();
 }

 // //

258

 // note these are class methods, to set class variables
 public static void setModel(LecLecMain m)
 {
 model = m;
 }

 public static void setGUIModel(GUIModel m)
 {
 guiModel = m;
 }

 // setters and getters
 public void setID(int i)
 {
 ID = i;
 }
 public int getID()
 {
 return ID;
 }

 public double getX()
 {
 return x;
 }
 public void setX(double x)
 {
 this.x = x;
 }

 public double getY()
 {
 return y;
 }
 public void setY(double y)
 {
 this.y = y;
 }

 public double getS()
 {
 return S;
 }

 public double getI()
 {
 return I;
 }

 public double getW()
 {
 return W;
 }

 public double getQ()
 {
 return Q;
 }

259

 // methods
 public void setupOTL()
 {
 double[][] newNuMat =
 {
 {1, -1, -1, 0, 0, 0, 0, 0},
 {0, 0, 1, -1, 0, 0, 0, 0},
 {0, 0, 0, theta1, -1, -1, 1, 0},
 {0, 0, 0, theta2, 0, 1, -1, -1}
 };
 // set up state change matrix
 // rows = S, I, W, Q
 // col = births, deaths, infections, removedInfecteds, removedInfectious, infectiousToLatent,
 // latentToInfectious, removedLatent
 nuMat = newNuMat;

 }

 // Calculate the propensity vector
 public void calcA()
 {
 double birthRate;
 double deathRate;
 double selfInfectionRate;
 double externalInfectionRate;
 double infectionRate;
 double removedInfectedsRate;
 double removedInfectiousRate;
 double infectiousToLatentRate;
 double latentToInfectiousRate;
 double removedLatentRate;
 double distance;

 // set up the propensity equations
 // births and deaths from the logistic growth component
 // See GillespieSSA: Implementing the Stochastic Simulation Algorithm in R
 birthRate = b*S;
 deathRate = S*(d+(b-d)*S/K);

 // infections from local infectious spores
 selfInfectionRate = beta*S*W;

 // infections from infectious spores in other sites
 externalInfectionRate = 0;
 for (Site aSite : model.getSiteList())
 {
 if(aSite.getID() != this.ID)
 {
 distance = model.getDistance(this, aSite);
 externalInfectionRate = externalInfectionRate +
 alpha*mu*aSite.getW()/Math.exp(delta*distance);
 }
 }
 externalInfectionRate = (externalInfectionRate+epsilon)*beta*S;

 // removal of infected scales
 removedInfectedsRate = sigma*I;

260

 // removal of infectious spores
 removedInfectiousRate = mu*W;

 // translocation of infectious spores to latent class
 infectiousToLatentRate = lambda*W;

 // translocation of latent spores to infectious class
 latentToInfectiousRate = nu*Q;

 // removal of latent spores
 removedLatentRate = rho*Q;

 // col = births, deaths, infections, removedInfecteds, removedInfectious, infectiousToLatent,
 // latentToInfectious, removedLatent
 double[] newA =
 {
 birthRate,
 deathRate,
 selfInfectionRate+externalInfectionRate,
 removedInfectedsRate,
 removedInfectiousRate,
 infectiousToLatentRate,
 latentToInfectiousRate,
 removedLatentRate
 };
 a = newA;

 }

 public void calcCritical()
 {
 boolean[] newCritical =
 {
 false,
 S<criticalThr,
 S<criticalThr,
 I<criticalThr,
 W<criticalThr,
 W<criticalThr,
 Q<criticalThr,
 Q<criticalThr
 };
 critical = newCritical;
 }

 // Calculate the first candidate tau
 public void calcTau1()
 {
 double mu;
 double sigmaSquared;
 double leftTerm;
 double rightTerm;

 // recalculate the propensity function
 calcA();

 if(!critical[0] | !critical[1] | !critical[2] | !critical[3] | !critical[4] |

261

 !critical[5] | !critical[6] | !critical[7])
 {
 mu = 0;
 sigmaSquared = 0;
 for(int j=0; j<8; j++)
 {
 if(!critical[j])
 {
 for(int i=0; i<4; i++)
 {
 // equation 32a
 mu = mu + nuMat[i][j]*a[j];
 // equation 32b
 sigmaSquared = sigmaSquared + Math.pow(nuMat[i][j],2)*a[j];
 }
 }
 }

 // equation 33
 leftTerm = Math.max(eps*S/g,
 Math.max(eps*I/g,
 Math.max(eps*W/g,
 Math.max(eps*Q/g, 1))))/Math.abs(mu);
 rightTerm = Math.pow(Math.max(eps*S/g,
 Math.max(eps*I/g,
 Math.max(eps*W/g,
 Math.max(eps*Q/g, 1)))),2)/sigmaSquared;
 tau1 = Math.min(leftTerm, rightTerm);

 }
 else
 {
 tau1 = Double.POSITIVE_INFINITY;
 }

 }

 // Calculate the second candidate tau
 public void calcTau2()
 {
 double sumCritA = 0;

 // recalculate the propensity function
 calcA();

 if(critical[0] | critical[1] | critical[2] | critical[3] | critical[4] |
 critical[5] | critical[6] | critical[7])
 {
 for(int i=0; i<8; i++)
 {
 if(critical[i])
 {
 sumCritA = sumCritA + a[i];

 }
 }
 tau2 = -Math.log(Math.random())/sumCritA;
 }

262

 else
 {
 tau2 = Double.POSITIVE_INFINITY;
 }
 }

 // Execute the non-critical reactions using the explicit tau-leap
 // method
 public void nonCritETL()
 {
 int numReactions;

 // recalculate the propensity function
 calcA();

 for(int j=0; j<8; j++)
 {
 // only fire non-critical reactions
 if(!critical[j])
 {
 // calculate the number of times the reaction occurs
 meanSeed.setMean(tau*a[j]);
 numReactions = gen.nextValue();

 S = Math.max(0, S + numReactions*nuMat[0][j]);
 I = Math.max(0, I + numReactions*nuMat[1][j]);
 W = Math.max(0, W + numReactions*nuMat[2][j]);
 Q = Math.max(0, Q + numReactions*nuMat[3][j]);
 }
 }
 }

 // Execute one of the critical reactions at random
 public void oneCrit()
 {
 double sumCritA = 0;
 double[] probCrit = new double[8];
 double cumulProb=0;
 double randNum;

 // recalculate the propensity function
 calcA();

 // Calculate the sum of the critical propensity functions
 for(int j=0; j<8; j++)
 {
 if(critical[j])
 {
 sumCritA = sumCritA + a[j];

 }
 }

 // Calculate the probability of each critical reaction occurring
 for(int j=0; j<8; j++)
 {
 if(critical[j])
 {

263

 probCrit[j] = a[j]/sumCritA;
 }
 else
 {
 // not a critical reaction
 probCrit[j] = 0;
 }
 }

 // Choose the next reaction randomly
 randNum = Math.random();
 for(int j=0; j<8; j++)
 {
 cumulProb += probCrit[j];
 if(randNum<cumulProb)
 {
 // execute the reaction once
 S = Math.max(0, S + nuMat[0][j]);
 I = Math.max(0, I + nuMat[1][j]);
 W = Math.max(0, W + nuMat[2][j]);
 Q = Math.max(0, Q + nuMat[3][j]);
 break;
 }
 }
 }

 // Calculate the sum of the propensity vector
 public double calcSumA()
 {
 double sumA = 0;

 for(int i=0; i< 8; i++)
 {
 sumA = sumA + a[i];
 }

 return sumA;

 }
 // Execute the direct method
 public void directMethod()
 {
 double randNum;
 double sumA;
 double tempTime;
 double[] cumulProb = new double[8];

 for(int i=0; i<numDirect; i++)
 {
 // recalculate the propensity function
 calcA();
 sumA = calcSumA();

 // Calculate the cumulative probability of each critical reaction occurring
 cumulProb[0] = a[0]/sumA;
 for(int j=1; j<8; j++)
 {
 cumulProb[j] = cumulProb[j-1]+a[j]/sumA;

264

 }

 // calculate the time step
 randNum = Math.random();
 tempTime = time + -Math.log(randNum)/sumA;

 // Check to see if the next event would occur in the future.
 // If so, don't do it, and abort the direct method.
 if(tempTime > model.getTime())
 {
 time = model.getTime();
 break;
 }
 else
 {
 time = tempTime;
 }

 // determine which reaction occurs
 randNum = Math.random();
 for(int j=0; j<8; j++)
 {
 if(randNum<cumulProb[j])
 {
 // execute the reaction once
 S = Math.max(0, S + nuMat[0][j]);
 I = Math.max(0, I + nuMat[1][j]);
 W = Math.max(0, W + nuMat[2][j]);
 Q = Math.max(0, Q + nuMat[3][j]);
 break;
 }
 }

 }

 }

 public void plotResults()
 {
 // plot results
 circleS.setRadius((float) (radiusCoef*(S+I)));
 circleI.setRadius((float) (radiusCoef*I));
 circleW.setRadius((float) (radiusCoef*W));
 circleQ.setRadius((float) (radiusCoef*Q));
 }

 public void setupOutputFile()
 {
 try
 {
 out = new BufferedWriter(new FileWriter("site_" + Integer.toString(ID) + ".csv"));
 out.write("x, y");
 out.newLine();
 out.write(Double.toString(x));
 out.write(",");
 out.write(Double.toString(y));
 out.newLine();
 out.write("time, S, I, Q, W, nu");

265

 out.newLine();
 } catch (IOException e)
 {

 }
 }
 public void changeParameters()
 {
 // There's definitely a more efficient way to do this...
 for(int i=0; i<changeParametersTimes.length; i++)
 {
 if(time>changeParametersTimes[i])
 {
 //QDecayConstant = changeParametersValues[i];
 //rho = changeParametersValues[i];
 nu = changeParametersValues[i];
 }
 }

 }
 public void writeState()
 {
 // write this Site's state to its own file
 try
 {
 out.write(Double.toString(model.getTime()));
 out.write(",");
 out.write(Double.toString(S));
 out.write(",");
 out.write(Double.toString(I));
 out.write(",");
 out.write(Double.toString(Q));
 out.write(",");
 out.write(Double.toString(W));
 out.write(",");
 out.write(Double.toString(nu));
 out.newLine();
 } catch (IOException e)
 {

 }
 }

 public void closeOutputFile()
 {
 try
 {
 out.close();
 } catch (IOException e)
 {
 }
 }
}

266

PoissonMean.java

package lecLecABM_v3;

import org.uncommons.maths.number.NumberGenerator;

public class PoissonMean implements NumberGenerator<Double>
{

 public double mean;

 public PoissonMean(double mean)
 {
 this.mean = mean;
 }

 //@Override
 public Double nextValue()
 {
 // TODO Auto-generated method stub
 return mean;
 }

 public void setMean(double mean)
 {
 this.mean = mean;
 }

}

267

Controller.java

package lecLecABM_v3;

import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class Controller extends Frame
{
 // constructor
 public Controller(Applet bubble, int width, int height)
 {

 // call to superclass needs to come first in constructor
 super("green=healthy, white=infected, red=infectious, brown=reservoir");

 // set up frame (which will hold applet)
 setSize(width, height);
 setLayout(new FlowLayout(FlowLayout.LEFT, 0, 0));

 // add Applet component to frame
 add(bubble);

 // won't allow frame to be resized
 setResizable(false);

 // allow window and application to be closed
 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });

 // Next comment taken directly from PApplet class:
 /* "...ensures that the animation thread is started and that other internal variables are properly set."*/
 bubble.init();
 }

}

268

BubblePlot.java

package lecLecABM_v3;

import java.util.ArrayList;

import processing.core.*;

public class BubblePlot extends PApplet
{
 // the lockDraw variable is necessary to keep the draw function from trying to
 // access the circleList ArrayList while I'm adding elements to it (which
 // throws a ConcurrentModification exception)
 public static boolean lockDraw = true;

 // instance variables
 private int width;
 private int height;
 public ArrayList<Circle> circleList;

 // constructor
 public BubblePlot(ArrayList<Circle> circleList, int width, int height)
 {
 this.circleList = circleList;
 this.width = width;
 this.height = height;
 }

 public void setup()
 {
 size(width, height);

 smooth();
 noStroke();

 }

 public void draw()
 {
 background(100);
 if(!lockDraw)
 {
 for (Circle aCircle : circleList)
 {
 fill(aCircle.getFillR(), aCircle.getFillG(), aCircle.getFillB(), aCircle.getFillAlpha());
 aCircle.display();
 }
 }
 }
}

269

Circle.java

package lecLecABM_v3;
import processing.core.PApplet;

public class Circle
{
 float x;
 float y;
 float radius;
 public float fillR;
 public float fillG;
 public float fillB;
 public float fillAlpha;

 PApplet parent; // The parent PApplet that we will render ourselves onto

 Circle(PApplet p, float x, float y, float radius)
 {
 parent = p;

 // store the values of the parameters into the matching object
 // variables
 this.x = x;
 this.y = y;
 this.radius = radius;

 // default color
 setRGBAlpha(255, 0, 0, 160);

 }

 // Draw circle
 void display()
 {
 // draw the circle
 parent.ellipse(this.x, this.y, this.radius*2, this.radius*2);
 }

 void setRadius(float radius)
 {
 this.radius = radius;
 }

 void setRGBAlpha(float r, float g, float b, float alpha)
 {
 fillR = r;
 fillG = g;
 fillB = b;
 fillAlpha = alpha;
 }

 float getFillR()
 {
 return fillR;
 }

 float getFillG()

270

 {
 return fillG;
 }

 float getFillB()
 {
 return fillB;
 }

 float getFillAlpha()
 {
 return fillAlpha;
 }
}

271

GUIModel.java

package lecLecABM_v3;

import uchicago.src.sim.gui.DisplaySurface;
import uchicago.src.sim.gui.Object2DDisplay;
import uchicago.src.sim.engine.AbstractGUIController;
import uchicago.src.sim.engine.Schedule;
import uchicago.src.sim.analysis.*;

public class GUIModel extends LecLecMain
{

 // ///
 // setup
 //
 // this runs automatically when the model starts
 // and when you click the reload button, to "tear down" any
 // existing display objects, and get ready to initialize
 // them at the start of the next 'run'.
 //
 @Override
 public void setup()
 {
 super.setup(); // the super class does conceptual-model setup

 AbstractGUIController.CONSOLE_ERR = false;
 AbstractGUIController.CONSOLE_OUT = false;
 AbstractGUIController.UPDATE_PROBES = true;

 // tell the Host class we are in GUI mode.
 LecLecMain.setGUI(true);

 // init, setup and turn on the modelMinipulator stuff (in custom
 // actions)
 modelManipulator.init();

 if (rDebug > 0)
 System.out.printf("<== GUIModel setup() done.\n");
 }

 // ///
 // begin
 //
 // this runs when you click the "initialize" button
 // (the button with the single arrow that goes around in a circle)
 //
 @Override
 public void begin()
 {
 DMSG(1, "==> enter GUIModel-begin()");
 buildModel(); // the base model does this
 buildDisplay();
 buildSchedule();
 DMSG(1, "<== leave GUIModel-begin() done.");
 }

 // ///

272

 // buildDisplay
 //
 // builds the display and display related things
 //
 public void buildDisplay()
 {
 // Graphs
 // Graphs in Repast are too slow, so I'll just graph everything in R

 }

 // //
 // buildSchedule
 //
 // This builds the entire schedule, i.e.,
 // - the base model step
 // - report step
 // - display steps.

 @Override
 public void buildSchedule()
 {

 if (rDebug > 0)
 System.out.printf("==> GUIModel buildSchedule...\n");

 // schedule the current GUIModel's step() function
 // to execute every time step starting with time step 0
 schedule.scheduleActionBeginning(0, this, "step");
 // start report at 1
 schedule.scheduleActionAtInterval(1, this, "stepReport", Schedule.LAST);

 // schedule the current GUIModel's processEndOfRun()
 // function to execute at the end of the run
 schedule.scheduleActionAtEnd(this, "processEndOfRun");
 }

 // ///
 // step
 //
 // executed each step of the model.
 // Ask the super class to do its step() method,
 // and then this does display related activities.
 //
 @Override
 public void step()
 {

 super.step(); // the model does whatever it does

 }

 // processEndOfRun
 // called once, at end of run.
 @Override
 public void processEndOfRun()
 {
 if (rDebug > 0)

273

 System.out.printf("\n\n===== GUIModel processEndOfRun =====\n\n");
 applyAnyStoredChanges();
 endReportFile();
 closeSiteReports();
 this.fireStopSim();
 }

 // //
 // main entry point
 public static void main(String[] args)
 {

 uchicago.src.sim.engine.SimInit init = new uchicago.src.sim.engine.SimInit();
 GUIModel model = new GUIModel();

 // set the type of model class, this is necessary
 // so the parameters object knows whether or not
 // to do GUI related updates of panels,etc when a
 // parameter is changed
 model.setModelType("GUIModel");

 // Do this to set the Update Probes option to true in the
 // Repast Actions panel
 AbstractGUIController.UPDATE_PROBES = true;

 model.setCommandLineArgs(args);
 init.loadModel(model, null, false); // does setup()

 // this new function calls ProbeUtilities.updateProbePanels() and
 // ProbeUtilities.updateModelProbePanel()
 model.updateAllProbePanels();

 }

}

274

BatchModel.java

package lecLecABM_v3;

import uchicago.src.sim.engine.*;
import processing.core.*;
import java.applet.Applet;

public class BatchModel extends LecLecMain
{

 // //
 // main entry point
 public static void main(String[] args)
 {

 BatchModel model = new BatchModel();

 // set the type of model class, this is necessary
 // so the parameters object knows whether or not
 // to do GUI related updates of panels, etc when a
 // parameter is changed
 model.setModelType("BatchModel");

 model.setCommandLineArgs(args);

 PlainController control = new PlainController();
 model.setController(control);
 control.setExitOnExit(true);
 control.setModel(model);
 model.addSimEventListener(control);
 if (model.getRDebug() > 0)
 System.out.printf("\n==> BatchModel main...about to startSimulation...\n");
 control.startSimulation();
 }

 // setup() -- BatchModel just does what the super class does.
 @Override
 public void setup()
 {
 super.setup();
 }

 // begin()
 // ask the super class to do its building, then build a schedule.
 @Override
 public void begin()
 {
 // set schedule to null so buildModel knows not to
 // record changes (changes are recorded if
 // schedule != null). in buildSchedule() the
 // schedule is allocated before the actual schedule is created.
 schedule = null;
 buildModel(); // the base Model class does this
 buildSchedule();
 }

 // //

275

 // buildSchedule
 @Override
 public void buildSchedule()
 {

 schedule = new Schedule(1);

 // schedule the current BatchModel's step() function
 // to execute every time step starting with time step 0
 schedule.scheduleActionBeginning(0, this, "step");
 schedule.scheduleActionAtInterval(1, this, "stepReport", Schedule.LAST);

 // schedule the current BatchModel's processEndOfRun()
 // function to execute at the end of the Batch Run.
 // You need to specify the time to schedule it (instead
 // of doing scheduleActionAtEnd() or it will just run forever
 schedule.scheduleActionAt(getStopT(), this, "processEndOfRun");
 }

 // processEndOfRun
 // we need this to tell it to stop running!
 @Override
 public void processEndOfRun()
 {
 super.processEndOfRun();
 this.fireEndSim();
 }
}

// ///
// //
// Why this class below?
//
// the reason we did that is because the repast "BatchController" had methods
// in it that started GUI stuff. this caused problems when we ssh'd into
// another machine and run a job--when we tried to disconnect, the ssh
// session would stay hung until the job was finished because the job needed
// the X11-forwarding to be open to run.

class PlainController extends BaseController
{
 private boolean exitonexit;

 public PlainController()
 {
 super();
 exitonexit = false;
 }

 public void startSimulation()
 {
 startSim();
 }

 public void stopSimulation()
 {
 stopSim();
 }

276

 public void exitSim()
 {
 exitSim();
 }

 public void pauseSimulation()
 {
 pauseSim();
 }

 @Override
 public boolean isBatch()
 {
 return true;
 }

 @Override
 protected void onTickCountUpdate()
 {
 }

 @Override
 public void setExitOnExit(boolean in_Exitonexit)
 {
 exitonexit = in_Exitonexit;
 }

 public void simEventPerformed(SimEvent evt)
 {
 if (evt.getId() == SimEvent.STOP_EVENT)
 {
 stopSimulation();
 } else if (evt.getId() == SimEvent.END_EVENT)
 {
 if (exitonexit)
 {
 System.exit(0);
 }
 } else if (evt.getId() == SimEvent.PAUSE_EVENT)
 {
 pauseSimulation();
 }
 }

 // function added because it is required for repast 2.2
 public long getRunCount()
 {
 return 0;
 }

 // function added because it is required for repast 2.2
 public boolean isGUI()
 {
 return false;
 }
}

277

ModelParameters.java

See ModelParameters.java in Appendix A. This class is identical except the package name, which reads:

package lecLecABM_v3;

278

Bibliography

Ahimera, N., S. Gisler, D. Morgan, and T. Michailides. 2004. Effects of single-drop

impactions and natural and simulated rains on the dispersal of Botryosphaeria

dothidea conidia. Phytopathology 94:1189-1197.

Alados, C., A. Aich, B. Komac, and Y. Pueyo. 2007. Self-organized spatial patterns of

vegetation in alpine grasslands. Ecological Modelling 201:233-242.

Alarcón, R. and G. Carrión. 1994. Uso de Verticillium lecanii en cafetales como control

biológico de la roya del cafeto. Fitopatología (Perú) 29:82-85.

Alonso, D. and M. Pascual. 2006. Comment on "A keystone mutualism drives pattern in a

power function". Science 313:1739b.

Amarasekare, P. and R. Nisbet. 2001. Spatial heterogeneity, source‐sink dynamics, and

the local coexistence of competing species. The American Naturalist 158:572-584.

Arnold, S. J. 1992. Constraints on phenotypic evolution. The American Naturalist 140

Suppl 1:S85-107.

Avelino, J., L. Willocquet, and S. Savary. 2004. Effects of crop management patterns on

coffee rust epidemics. Plant Pathology 53:541-547.

Avelino, J., H. Zelaya, A. Merlo, A. Pineda, M. Ordoñez, and S. Savary. 2006. The

intensity of a coffee rust epidemic is dependent on production situations.

Ecological Modelling 197:431-447.

Axelrod, R. and W. D. Hamilton. 1981. The evolution of cooperation. Science 211:1390.

Aylor, D. E. 1990. The role of intermittent wind in the dispersal of fungal pathogens.

Annual Review of Phytopathology 28:73-92.

Badgley, C., J. Moghtader, E. Quintero, E. Zakem, M. Chappell, K. Avilés-Vázquez, A.

Samulon, and I. Perfecto. 2007. Organic agriculture and the global food supply.

Renewable Agriculture and Food Systems 22:86-108.

279

Badgley, C. and I. Perfecto. 2007. Can organic agriculture feed the world? Renewable

Agriculture and Food Systems 22:80-86.

Bak, P. 1996. How nature works. Springer, New York.

Bale, J., J. Van Lenteren, and F. Bigler. 2008. Biological control and sustainable food

production. Philosophical Transactions B 363:761-776.

Barbosa, P. 1998. Conservation biological control. Academic Press, San Diego,

California.

Bascompte, J. and R. Solé. 1998. Spatiotemporal patterns in nature. Trends in Ecology &

Evolution 13:173-174.

Bengtsson, J., J. Ahnström, and A. Weibull. 2005. The effects of organic agriculture on

biodiversity and abundance: a meta-analysis. Journal of Applied Ecology

42:261-269.

Bianchi, F., C. Booij, and T. Tscharntke. 2006. Sustainable pest regulation in agricultural

landscapes: a review on landscape composition, biodiversity and natural pest

control. Proceedings of the Royal Society B: Biological Sciences 273:1715-1727.

Bird, A. E., H. Hesketh, J. V. Cross, and M. Copland. 2004. The common black ant,

Lasius niger (Hymenoptera : Formicidae), as a vector of the entomopathogen

Lecanicillium longisporum to rosy apple aphid, Dysaphis plantaginea

(Homoptera : Aphididae). Biocontrol Science and Technology 14:757-767.

Boots, M. and M. Mealor. 2007. Local interactions select for lower pathogen infectivity.

Science 315:1284-1286.

Brito, G. G., E. T. Caixeta, A. P. Gallina, E. M. Zambolim, L. Zambolim, V. Diola, and

M. E. Loureiro. 2010. Inheritance of coffee leaf rust resistance and identification

of AFLP markers linked to the resistance gene. Euphytica 173:255-264.

Brosi, B., P. Armsworth, and G. Daily. 2008. Optimal design of agricultural landscapes

for pollination services. Conservation Letters 1:27-36.

Bruck, D. and L. Lewis. 2002. Rainfall and crop residue effects on soil dispersion and

Beauveria bassiana spread to corn. Applied Soil Ecology 20:183-190.

280

Bulman, C., R. Wilson, A. Holt, L. Bravo, R. Early, M. Warren, and C. Thomas. 2007.

Minimum viable metapopulation size, extinction debt, and the conservation of a

declining species. Ecological Applications 17:1460-1473.

Burdon, J. J. and G. A. Chilvers. 1982. Host density as a factor in plant-disease ecology.

Annual Review of Phytopathology 20:143-166.

Butt, T. M., C. Jackson, and N. Magan. 2001. Fungi as biocontrol agents: progress,

problems, and potential. CABI Publishing, Wallingford.

Canjura-Saravia, E. M., V. Sánchez-Garita, U. Krauss, and E. Somarriba. 2002.

Reproducción masiva de Verticillium sp., hiperparásita de la roya del café,

Hemileia vastatrix. Manejo Integrado de Plagas y Agroecología 66:13-19.

Cao, Y., D. T. Gillespie, and L. R. Petzold. 2006. Efficient step size selection for the tau-

leaping simulation method. J. Chem. Phys. 124:044109.

Carlsson-Graner, U. and P. Thrall. 2002. The spatial distribution of plant populations,

disease dynamics and evolution of resistance. Oikos 97:97-110.

Carpenter, S. R. 2005. Eutrophication of aquatic ecosystems: bistability and soil

phosphorus. Proceedings of the National Academy of Sciences of the United

States of America 102:10002-10005.

Chandler, D., J. B. Heale, and A. T. Gillespie. 1993. Germination of the

entomopathogenic fungus Verticillium lecanii on scales of the glasshouse whitefly

Trialeurodes vaporariorum. Biocontrol Science and Technology 3:161-164.

Charudattan, R. and A. Dinoor. 2000. Biological control of weeds using plant pathogens:

accomplishments and limitations. Crop Protection 19:691-695.

Chen, X. 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici]

on wheat. Canadian Journal of Plant Pathology 27:314-337.

Clauset, A., C. Shalizi, and M. Newman. 2007. Power-law distributions in empirical data.

Physics:0706.1062 E-print.

Council, N. R. 1989. Alternative agriculture. The National Academies Press, Washington

DC.

281

Cruz, L., A. Gaitan, and C. Gongora. 2006. Exploiting the genetic diversity of Beauveria

bassiana for improving the biological control of the coffee berry borer through

the use of strain mixtures. Applied Microbiology and Biotechnology 71:918-926.

Cullen, R., K. Warner, M. Jonsson, and S. Wratten. 2008. Economics and adoption of

conservation biological control. Biological Control 45:272-280.

Currie, C. R. 2001. Prevalence and impact of a virulent parasite on a tripartite mutualism.

Oecologia 128:99-106.

Currie, C. R., G. M. Ulrich, and D. Malloch. 1999. The agricultural pathology of ant

fungus gardens. Proceedings of the National Academy of Science 96:7998-8002.

Dakos, V., E. H. Nes, R. Donangelo, H. Fort, and M. Scheffer. 2009. Spatial correlation

as leading indicator of catastrophic shifts. Theoretical Ecology 3:163-174.

Daskalov, G. M., A. N. Grishin, S. Rodionov, and V. Mihneva. 2007. Trophic cascades

triggered by overfishing reveal possible mechanisms of ecosystem regime shifts.

Proceedings of the National Academy of Sciences of the United States of America

104:10518-10523.

Duffy, M. A. and L. Sivars-Becker. 2007. Rapid evolution and ecological host-parasite

dynamics. Ecology Letters 10:44-53.

Eapen, S. J., B. Beena, and K. V. Ramana. 2005. Tropical soil microflora of spice-based

cropping systems as potential antagonists of root-knot nematodes. Journal of

Invertebrate Pathology 88:218-225.

Easwaramoorthy, S. and S. Jayaraj. 1977. The effect of shade on the coffee green bug,

Coccus viridis (Green) and its entomopathogenic fungus, Cephalosporium lecanii

Zimm. Journal of Coffee Research 7:111-113.

Easwaramoorthy, S. and S. Jayaraj. 1978. Effectiveness of the white halo fungus,

Cephalosporium lecanii, against field populations of coffee green bug, Coccus

viridis. Journal of Invertebrate Pathology 32:88-96.

Enkerli, J. and F. Widmer. 2010. Molecular ecology of fungal entomopathogens:

molecular genetic tools and their applications in population and fate studies.

Biocontrol 55:17-37.

282

Eskes, A., M. Mendes, and C. Robbs. 1991. Laboratory and field studies on parasitism of

Hemileia vastatrix with Verticillium lecanii and V. leptobactrum. Café Cacao Thé

35:275-282.

Eskes, A. B. 1989. Natural enemies and biological control. Pages 162-168 in A. C.

Kushalappa and A. B. Eskes, editors. Coffee Rust: Epidemiology, Resistance, and

Management. CRC Press, Boca Raton, FL.

Feng, K., B. Liu, and Y. Tzeng. 2000. Verticillium lecanii spore production in solid-state

and liquid-state fermentations. Bioprocess and Biosystems Engineering 23:25-29.

Fernandez-Garcia, E. and B. Fitt. 1993. Dispersal of the entomopathogen Hirsutella

cryptosclerotium by simulated rain. Journal of Invertebrate Pathology 61:39-43.

Fiedler, A., D. Landis, and S. Wratten. 2008. Maximizing ecosystem services from

conservation biological control: the role of habitat management. Biological

Control 45:254-271.

Fitt, B., H. McCartney, and P. Walklate. 1989. The role of rain in dispersal of pathogen

inoculum. Annual Review Phytopathology 27:241-270.

Foitzik, S., C. DeHeer, D. Hunjan, and J. Herbers. 2001. Coevolution in host-parasite

systems: behavioural strategies of slave-making ants and their hosts. Proceedings

of the Royal Society of London Series B-Biological Sciences 268:1139-1146.

Fravel, D. 2005. Commercialization and implementation of biocontrol 1. Annual Review

Phytopathology 43:337-359.

Fry, W. 2008. Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant

Pathology 9:385-402.

Fuxa, J. R. and Y. Tanada. 1987. Epizootiology of insect disease. John Wiley and Sons,

New York, NY.

Galtsoff, P. S., H. H. Brown, C. L. Smith, and F. G. W. Smith. 1939. Sponge mortality in

the Bahamas. Nature 143:807-808.

Gams, W. and R. Zare. 2001. A revision of Verticillium sect. Prostrata. III. Generic

classification. Nova Hedwigia 72:329-337.

283

Gao, L., X. Liu, M. Sun, S. Li, and J. Wang. 2009. Use of a novel two-stage cultivation

method to determine the effects of environmental factors on the growth and

sporulation of several biocontrol fungi. Mycoscience 50:317-321.

Gao, L., M. Sun, X. Liu, and Y. Che. 2007. Effects of carbon concentration and carbon to

nitrogen ratio on the growth and sporulation of several biocontrol fungi.

Mycological Research 111:87-92.

Geagea, L., L. Huber, I. Sache, D. Flura, H. McCartney, and B. Fitt. 2000. Influence of

simulated rain on dispersal of rust spores from infected wheat seedlings.

Agricultural and Forest Meteorology 101:53-66.

Ghini, R., W. Bettiol, and E. Hamada. 2011. Diseases in tropical and plantation crops as

affected by climate changes: current knowledge and perspectives. Plant Pathology

60:122-132.

Gindin, G., I. Barash, B. Raccah, S. Singer, I. Ben-Ze’ev, and M. Klein. 1996. The

potential of some entomopathogenic fungi as biocontrol agents against the onion

thrips, Thrips tabaci and the western flower thrips, Frankliniella occidentalis.

Folia Entomologica Hungarica 57:37-42.

Gindin, G., N. Geschtovt, B. Raccah, and I. Barash. 2000. Pathogenicity of Verticillium

lecanii to different developmental stages of the silverleaf whitefly, Bemisia

argentifolii. Phytoparasitica 28:229-239.

Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Reading, Mass.

González, E., N. Bravo, and M. Carone. 1995. Caracterización de Verticillium lecanii

(Zimm.) Viegas hiperparasitando Hemileia vastatrix Berk y Br y Coccus viridis

Green. Revista de Protección Vegetal 10:169-171.

Goreaud, F. and R. Pélissier. 1999. On explicit formulas of edge effect correction for

Ripley's K-function. Journal of Vegetation Science 10:433-438.

Gould, S. J. and R. C. Lewontin. 1979. The spandrels of San Marco and the Panglossian

paradigm: a critique of the adaptationist programme. Proceedings of the Royal

284

Society of London. Series B, Containing papers of a Biological character. Royal

Society (Great Britain) 205:581-598.

Grenfell, B., O. Bjørnstad, and J. Kappey. 2001. Travelling waves and spatial hierarchies

in measles epidemics. Nature 414:716-723.

Gurr, G. M., S. D. Wratten, and P. Barbosa. 2000. Success in conservation biological

control of arthropods. Pages 105-132 in G. M. Gurr and S. D. Wratten, editors.

Biological control: measures of success. Kluwer Academic Publishers, London,

UK.

Guttal, V. and C. Jayaprakash. 2008. Changing skewness: an early warning signal of

regime shifts in ecosystems. Ecology Letters 11:450-460.

Guttal, V. and C. Jayaprakash. 2009. Spatial variance and spatial skewness: leading

indicators of regime shifts in spatial ecological systems. Theoretical Ecology

2:3-12.

Haddad, F., L. A. Maffia, E. S. G. Mizubuti, and H. Teixeira. 2009. Biological control of

coffee rust by antagonistic bacteria under field conditions in Brazil. Biological

Control 49:114-119.

Hall, R. A. 1981. The fungus Verticillium lecanii as a microbial insecticide against aphids

and scales. Pages 483-498 in H. D. Burges, editor. Microbial Control of Pests and

Plant Diseases. Academic Press, New York, NY.

Hamilton, W. D. 1964a. The genetical evolution of social behavior. I. Journal of

Theoretical Biology 7:1-16.

Hamilton, W. D. 1964b. The genetical evolution of social behaviour. II. Journal of

Theoretical Biology 7:17-52.

Hanski, I. 1998. Metapopulation dynamics. Nature 396:41-49.

Hanski, I. 1999. Metapopulation ecology. Oxford University Press, Oxford, New York.

Hanski, I. and M. Gilpin. 1997. Metapopulation biology: ecology, genetics and evolution.

Academic Press, London, UK.

Hanski, I. and C. Thomas. 1994. Metapopulation dynamics and conservation: a spatially

explicit model applied to butterflies. Biological Conservation 68:167-180.

285

Hardin, G. 1968. The tragedy of the commons. Science 162:1243-1248.

Hasan, S. and P. Ayres. 1990. The control of weeds through fungi: principles and

prospects. New Phytologist 115:201-222.

Hassell, M., H. Comins, and R. May. 1991. Spatial structure and chaos in insect

population dynamics. Nature 353:255-258.

Hastings, A. and D. B. Wysham. 2010. Regime shifts in ecological systems can occur

with no warning. Ecology Letters 13:464-472.

Heale, J. B. 1988. The potential impact of fungal genetics and molecular biology on

biological control, with particular reference to entomopathogens. Pages 211-234

in M. N. Burge, editor. Fungi in biological control systems. Manchester

University Press, Manchester, U.K.

Hein, L. and F. Gatzweiler. 2006. The economic value of coffee (Coffea arabica) genetic

resources. Ecological Economics 60:176-185.

Helms, K. R. and S. Bradleigh Vinson. 2008. Plant resources and colony growth in an

invasive ant: the importance of honeydew-producing hemiptera in carbohydrate

transfer across trophic levels. Environmental Entomology 37:487-493.

Helyer, N. 1993. Verticillium lecanii for control of aphids and thrips on cucumber. IOBC/

WPRS Bulletin 16:63-66.

Henry, M., M. Beguin, F. Requier, O. Rollin, J. F. Odoux, P. Aupinel, J. Aptel, S.

Tchamitchian, and A. Decourtye. 2012. A common pesticide decreases foraging

success and survival in honey bees. Science.

Hesketh, H., H. E. Roy, J. Eilenberg, J. K. Pell, and R. S. Hails. 2010. Challenges in

modelling complexity of fungal entomopathogens in semi-natural populations of

insects. Biocontrol 55:55-73.

Hochberg, M. 1989. The potential role of pathogens in biological control. Nature

337:262-265.

Holt, R. 1997. On the evolutionary stability of sink populations. Evolutionary Ecology

11:723-731.

286

Hsiao, W. F., M. J. Bidochka, and G. G. Khachatourians. 1992. Effect of temperature and

relative-humidity on the virulence of the entomopathogenic fungus, Verticillium

lecanii, toward the oat-bird berry aphid, Rhopalosiphum padi (Hom, Aphididae).

Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie

114:484-490.

Huber, L., L. V. Madden, and B. D. L. Fitt. 2006. Environmental biophysics applied to

the dispersal of fungal spores by rain-splash. Pages 417-444 in B. M. Cooke, D.

G. Jones, and B. Kaye, editors. The Epidemiology of Plant Diseases. Springer

Netherlands.

Jackson, D., J. Skillman, and J. Vandermeer. 2012. Indirect biological control of the

coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium

lecanii in a complex coffee agroecosystem. Biological Control 61:89-97.

Jackson, D., J. Vandermeer, D. Allen, and I. Perfecto. In review. Self-organization of

background habitat determines the nature of population spatial structure. Ecology.

Jackson, D., J. Vandermeer, and I. Perfecto. 2009. Spatial and temporal dynamics of a

fungal pathogen promote pattern formation in a tropical agroecosystem. The Open

Ecology Journal 2:62-73.

Jackson, D., K. Zemenick, and G. Huerta. In press. Occurrence in the soil and dispersal

of Lecanicillium lecanii, a fungal pathogen of the green coffee scale, Coccus

viridis. Tropical and Subtropical Agroecosystems.

Jacob, F. 1977. Evolution and tinkering. Science 196:1161-1166.

Jarvis, D. I., C. Padoch, and H. D. Cooper, editors. 2007. Managing biodiversity in

agricultural ecosystems. Columbia University Press, New York.

Kamp, A. and M. Bidochka. 2002. Conidium production by insect pathogenic fungi on

commercially available agars. Letters in Applied Microbiology 35:74-77.

Kanoun‐Boulé, M., M. B. De Albuquerque, C. Nabais, and H. Freitas. 2008. Copper as an

environmental contaminant: phytotoxicity and human health implications. Pages

653-678 in M. Prasad, editor. Trace Elements as Contaminants and Nutrients.

John Wiley and Sons Inc., New York.

287

Kéfi, S., M. Rietkerk, C. L. Alados, Y. Pueyo, V. P. Papanastasis, A. Elaich, and P. C. De

Ruiter. 2007. Spatial vegetation patterns and imminent desertification in

Mediterranean arid ecosystems. Nature 449:213-217.

Kéfi, S., M. Rietkerk, M. Roy, A. Franc, P. C. De Ruiter, and M. Pascual. 2011. Robust

scaling in ecosystems and the meltdown of patch size distributions before

extinction. Ecology Letters 14:29-35.

Kerr, B., C. Neuhauser, B. J. M. Bohannan, and A. M. Dean. 2006. Local migration

promotes competitive restraint in a host–pathogen 'tragedy of the commons'.

Nature 442:75-78.

Khalil, S., J. Bartos, and Z. Landa. 1985a. Effectiveness of Verticillium lecanii to reduce

populations of aphids under glasshouse and field conditions. Agriculture,

Ecosystems and Environment 12:151-156.

Khalil, S., M. Shah, and M. Naeem. 1985b. Laboratory studies on the compatibility of the

entomopathogenic fungus Verticillium lecanii with certain pesticides. Agriculture,

Ecosystems and Environment 13:329-334.

Kim, K. and C. Harvell. 2004. The rise and fall of a six-year coral-fungal epizootic. The

American Naturalist 164:52-63.

Kiss, L. 2003. A review of fungal antagonists of powdery mildews and their potential as

biocontrol agents. Pest Management Science 59:475-483.

Klausmeier, C. 1999. Regular and irregular patterns in semiarid vegetation. Science

284:1826-1828.

Klingen, I., J. Eilenberg, and R. Meadow. 2002. Effects of farming system, field margins

and bait insect on the occurrence of insect pathogenic fungi in soils. Agriculture,

Ecosystems & Environment 91:191-198.

Kouvelis, V., A. Sialakouma, and M. Typas. 2008. Mitochondrial gene sequences alone or

combined with ITS region sequences provide firm molecular criteria for the

classification of Lecanicillium species. Mycological Research 112:829-844.

288

Kouvelis, V., R. Zare, P. Bridge, and M. Typas. 1999. Differentiation of mitochondrial

subgroups in the Verticillium lecanii species complex. Letters in Applied

Microbiology 28:263-268.

Kritzer, J. P. and P. F. Sale. 2004. Metapopulation ecology in the sea: from Levins' model

to marine ecology and fisheries science. Fish and Fisheries 5:131-140.

Kushalappa, A. C. and A. B. Eskes. 1989. Advances in coffee rust research. Annual

Review of Phytopathology 27:503-531.

Legendre, P. and M. Fortin. 1989. Spatial pattern and ecological analysis. Plant Ecology

80:107-138.

Lenton, T. M., H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J.

Schellnhuber. 2008. Tipping elements in the Earth's climate system. Proceedings

of the National Academy of Sciences 105:1786-1793.

Levins, R. 1969. Some demographic and genetic consequences of environmental

heterogeneity for biological control. Bulletin of the Entomological Society of

America 15:237-240.

Lewontin, R. C. and R. Levins. 2007. Biology under the influence: Dialectical essays on

ecology, agriculture, and health. Monthly Review Press, New York.

Liere, H., D. Jackson, and J. Vandermeer. In review. Population regulation in a coffee

agroecosystem: an example of how ecological complexity promotes spatial

heterogeneity. PLoS ONE.

Liere, H. and I. Perfecto. 2008. Cheating on a mutualism: indirect benefits of ant

attendance to a coccidophagous coccinellid. Environmental Entomology

37:143-149.

Lion, S. and M. V. Baalen. 2008. Self-structuring in spatial evolutionary ecology.

Ecology Letters 11:277-295.

Livingston, G., A. White, and C. Kratz. 2008. Indirect interactions between ant-tended

hemipterans, a dominant ant Azteca instabilis (Hymenoptera: Formicidae), and

shade trees in a tropical agroecosystem. Environmental Entomology 37:734-740.

289

Loland, J. and B. Singh. 2004. Copper contamination of soil and vegetation in coffee

orchards after long-term use of Cu fungicides. Nutrient Cycling in

Agroecosystems 69:203-211.

Lomolino, M., G. Smith, and M. Willig. 2001. Dynamic biogeography of prairie dog

(Cynomys ludovicianus) towns near the edge of their range. Journal of

Mammalogy 82:937-945.

Madden, L. 1997. Effects of rain on splash dispersal of fungal pathogens. Canadian

Journal of Plant Pathology 19:225-230.

Martinez, E. and W. Peters. 1996. La cafeticultura biológica: la finca Irlanda como

estudio de caso de un deseño agricoecológico. Pages 159-183 in J. T. Arriaga, F.

L. González, R. C. Arózqueta, and P. T. Lima, editors. Ecología aplicada a la

agricultura: Temas selectos de México. Universidad Autonomo Metropolitana,

Unidad Xochimilco, DF, Mexico.

McCook, S. 2006. Global rust belt: Hemileia vastatrix and the ecological integration of

world coffee production since 1850. Journal of Global History 1:177-195.

Meyling, N. and J. Eilenberg. 2006. Occurrence and distribution of soil borne

entomopathogenic fungi within a single organic agroecosystem. Agriculture,

Ecosystems & Environment 113:336-341.

Meyling, N. and J. Eilenberg. 2007. Ecology of the entomopathogenic fungi Beauveria

bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for

conservation biological control. Biological Control 43:145-155.

Michaud, J. and H. Browning. 1999. Seasonal abundance of the brown citrus aphid,

Toxoptera citricida (Homoptera: Aphididae) and its natural enemies in Puerto

Rico. The Florida Entomologist 82:424-447.

Milinski, M., D. Semmann, and H.-J. Krambeck. 2002. Reputation helps solve the

'tragedy of the commons'. Nature 415:424-426.

Moilanen, A. and I. Hanski. 1998. Metapopulation dynamics: Effects of habitat quality

and landscape structure. Ecology 79:2503-2515.

290

Moricca, S. and A. Ragazzi. 2008. Biological and integrated means to control rust

diseases. Pages 303-329 in A. Ciancio and K. G. Mukerji, editors. Integrated

Management of Diseases Caused by Fungi, Phytoplasma and Bacteria. Springer,

Netherlands.

Newman, M. 2005. Power laws, Pareto distributions and Zipfʼs law. Contemporary Phys.

46:323-351.

Niblack, L. T. and S. R. Hussey. 1987. Extracción de nematodes del suelo y de tejidos

vegetales. Pages 235-242 in B. M. Zuckerman, W. F. Mai, and M. B. Harrison,

editors. Fitonematologia: manual de laboratorio. Centro Agronómico Tropical de

Investigación y Enseñanza, Turrialba, Costa Rica.

Nowak, M. A. 2006. Five rules for the evolution of cooperation. Science 314:1560-1563.

Pascual, M., M. Roy, F. Guichard, and G. Flierl. 2002. Cluster size distributions:

signatures of self-organization in spatial ecologies. Philosophical Transactions of

the Royal Society B: Biological Sciences 357:657-666.

Paul, N. D. and D. Gwynn-Jones. 2003. Ecological roles of solar UV radiation: towards

an integrated approach. Trends in Ecology & Evolution 18:48-55.

Pell, J., J. Hannam, and D. Steinkraus. 2010. Conservation biological control using fungal

entomopathogens. Biocontrol 55:187-198.

Perfecto, I., A. Mas, T. Dietsch, and J. Vandermeer. 2003. Conservation of biodiversity in

coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodiversity

Conservation 12:1239-1252.

Perfecto, I. and J. Vandermeer. 2002. Quality of agroecological matrix in a tropical

montane landscape: ants in coffee plantations in southern Mexico. Conservation

Biology 16:174-182.

Perfecto, I. and J. Vandermeer. 2006. The effect of an ant-hemipteran mutualism on the

coffee berry borer (Hypothenemus hampei) in southern Mexico. Agriculture

Ecosystems & Environment 117:218-221.

Perfecto, I. and J. Vandermeer. 2008a. Biodiversity conservation in tropical

agroecosystems. Annals of the New York Academy of Sciences 1134:173-200.

291

Perfecto, I. and J. Vandermeer. 2008b. Spatial pattern and ecological process in the coffee

agroforestry system. Ecology 89:915-920.

Perfecto, I. and J. Vandermeer. 2010. The agroecological matrix as alternative to the land-

sparing/agriculture intensification model. Proceedings of the National Academy

of Sciences 107:5786-5791.

Philpott, S. M., I. Perfecto, and J. Vandermeer. 2006. Effects of management intensity

and season on arboreal ant diversity and abundance in coffee agroecosystems.

Biodiversity and Conservation 15:139-155.

Pineda-Krch, M. 2008. GillespieSSA: Implementing the stochastic simulation algorithm

in R. J Stat Softw 25:1-18.

Pueyo, S. and R. Jovani. 2006. Comment on "A keystone mutualism drives pattern in a

power function. Science 313:1739c.

Pulliam, H. R. 1988. Sources, sinks, and population regulation. The American Naturalist

132:652-661.

Rand, D. A., M. Keeling, and H. B. Wilson. 1995. Invasion, stability, and evolution to

criticality in spatially extended, artificial host-pathogen ecologies. Proceedings of

the Royal Society London B 259:55-63.

Ravensberg, W. J., M. Malais, and D. A. Vanderschaaf. 1990. Verticillium lecanii as a

microbial insecticide against glasshouse whitefly. Brighton Crop Protection

Conference - Pests and Diseases, 1990 : Proceedings, Vols 1-3:265-268.

Reddy, K. B. and P. K. Bhat. 1989. Effect of relative humidity and temperature on the

biotic agents of green scale Coccus viridis (Green). Journal of Coffee Research

19:82-87.

Reimer, N. J. and J. W. Beardsley. 1992. Epizootic of white halo fungus, Verticillium

lecanii (Zimmerman), and effectiveness of insecticides on Coccus viridis (Green)

(Homoptera: Coccidae) on coffee at Kona, Hawaii. Proceedings, Hawaiian

Entomological Society 31:73-81.

292

Reimer, N. J., M. Cope, and G. Yasuda. 1993. Interference of Pheidole megacephala

(Hymenoptera: Formicidae) with biological control of Coccus viridis (Homoptera:

Coccidae) in coffee. Environmental Entomology 22:483-488.

Resampling. 2006. Resampling stats for Excel user’s guide version 3. Resampling Stats.

Reynolds, H. T. and C. R. Currie. 2004. Pathogenicity of Escovopsis weberi: the parasite

of attine ant-microbe symbiosis directly consumes the ant-cultivated fungus.

Mycologia 96:955-959.

Rietkerk, M., M. Boerlijst, F. van Langevelde, R. HilleRisLambers, J. de Koppel, L.

Kumar, H. Prins, and A. de Roos. 2002. Self-organization of vegetation in arid

ecosystems. The American Naturalist 160:524-530.

Rietkerk, M., S. Dekker, P. de Ruiter, and J. van de Koppel. 2004. Self-organized

patchiness and catastrophic shifts in ecosystems. Science 305:1926-1929.

Rietkerk, M. and J. van de Koppel. 2008. Regular pattern formation in real ecosystems.

Trends in Ecology & Evolution 23:169-175.

Roditakis, E., I. Couzin, K. Balrow, and N. Franks. 2000. Improving secondary pick up of

insect fungal pathogen conidia by manipulating host behaviour. Annals of Applied

Biology 137:329-335.

Rodríguez Dos Santos, A. and E. del Pozo Núñez. 2003. Aislamiento de hongos

entomopatógenos en Uruguay y su virulencia sobre Trialeurodes vaporariorum

West. Agrociencia 7:71-78.

Rohani, P., T. Lewis, D. Grünbaum, and G. Ruxton. 1997. Spatial self-organization in

ecology: pretty patterns or robust reality? Trends in Ecology & Evolution

12:70-74.

Rohani, P., R. M. May, and M. P. Hassell. 1996. Metapopulations and equilibrium

stability: The effects of spatial structure. Journal of Theoretical Biology

181:97-109.

Roy, H. E., J. K. Pell, and P. G. Alderson. 2001. Targeted dispersal of the aphid

pathogenic fungus Erynia neoaphidis by the aphid predator Coccinella

septempunctata. Biocontrol Science and Technology 11:99-110.

293

Sauerborn, J., D. Müller-Stöver, and J. Hershenhorn. 2007. The role of biological control

in managing parasitic weeds. Crop Protection 26:246-254.

Scanlon, T. M., K. K. Caylor, S. A. Levin, and I. Rodriguez-Iturbe. 2007. Positive

feedbacks promote power-law clustering of Kalahari vegetation. Nature

449:209-212.

Schaffer, J. D., L. J. Eshelman, and D. Offutt. 1991. Spurious correlations and premature

convergence in genetic algorithms. Pages 102-112 in G. Rawlins, editor.

Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

Scheffer, M., J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held,

E. H. v. Nes, M. Rietkerk, and G. Sugihara. 2009. Early-warning signals for

critical transitions. Nature 461:53-59.

Scheffer, M. and E. H. Nes. 2007. Shallow lakes theory revisited: various alternative

regimes driven by climate, nutrients, depth and lake size. Hydrobiologia

584:455-466.

Scholz, N. L., E. Fleishman, L. Brown, I. Werner, M. L. Johnson, M. L. Brooks, C. L.

Mitchelmore, and D. Schlenk. 2012. A perspective on modern pesticides, pelagic

fish declines, and unknown ecological resilience in highly managed ecosystems.

BioScience 62:428-434.

Scialabba, N. E.-H. and C. Hattam, editors. 2002. Organic agriculture, environment, and

food security. Food and Agriculture Organization of the United Nations, Rome,

Italy.

Shah, P. and J. Pell. 2003. Entomopathogenic fungi as biological control agents. Applied

microbiology and biotechnology 61:413-423.

Shaw, D. E. 1988. Verticillium lecanii a hyperparasite on the coffee rust pathogen in

Papua New Guinea. Australasian Plant Pathology 17:2-3.

Shi, Y., X. Xu, and Y. Zhu. 2009. Optimization of Verticillium lecanii spore production in

solid-state fermentation on sugarcane bagasse. Applied microbiology and

biotechnology 82:921-927.

294

Shiomi, H. F., H. S. A. Silva, I. S. Melo, F. V. Nunes, and W. Bettiol. 2006.

Bioprospecting endophytic bacteria for biological control of coffee leaf rust.

Scientia Agricola 63:32-39.

Sitch, J. C. and C. W. Jackson. 1997. Pre-penetration events affecting host specificity of

Verticillium lecanii. Mycological Research 101:535-541.

Smith, A. 1776. An inquiry into the nature and causes of the wealth of nations. Project

Gutenberg.

Smith, J. M. 1978. Optimization theory in evolution. Annual Review of Ecology and

Systematics 9:31-56.

Socolar, J. E. S. and W. G. Wilson. 2001. Evolution in a spatially structured population

subject to rare epidemics. Physical Review E 63:8.

Solé, R. V. and J. Bascompte. 2006. Self-organization in complex ecosystems. Princeton

University Press, Princeton, N.J.

Staver, C., F. Guharay, D. Monterroso, and R. Muschler. 2001. Designing pest-

suppressive multistrata perennial crop systems: shade-grown coffee in Central

America. Agroforestry Systems 53:151-170.

Strogatz, S. H. 1994. Nonlinear dynamics and chaos with applications to physics,

biology, chemisty and engineering. Perseus, New York.

Suffert, F., É. Latxague, and I. Sache. 2009. Plant pathogens as agroterrorist weapons:

assessment of the threat for European agriculture and forestry. Food Security

1:221-232.

Sung, G. H., J. W. Spatafora, R. Zare, K. T. Hodge, and W. Gams. 2001. A revision of

Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear

rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova

Hedwigia 72:311-328.

Szilágyi, A., I. Scheuring, D. P. Edwards, J. Orivel, and D. W. Yu. 2009. The evolution of

intermediate castration virulence and ant coexistence in a spatially structured

environment. Ecology Letters:1-11.

295

Te Beest, D., X. Yang, and C. Cisar. 1992. The status of biological control of weeds with

fungal pathogens. Annual Review Phytopathology 30:637-657.

Thies, C. and T. Tscharntke. 1999. Landscape structure and biological control in

agroecosystems. Science 285:893-895.

Tilman, D. and P. Kareiva. 1997. Spatial ecology: the role of space in population

dynamics and interspecific interactions. Princeton University Press, Princeton,

N.J.

Tuininga, A., J. Miller, S. Morath, and T. Daniels. 2009. Isolation of entomopathogenic

fungi from soils and Ixodes scapularis (Acari: Ixodidae) ticks: prevalence and

methods. Journal of Medical Entomology 46:557-565.

Uno, S. 2007. Effects of management intensification on coccids and parasitic

hymenopterans in coffee agroecosystems in Mexico. University of Michigan, Ann

Arbor, MI.

van de Koppel, J., M. Rietkerk, N. Dankers, and P. Herman. 2005. Scale‐dependent

feedback and regular spatial patterns in young mussel beds. The American

Naturalist 165:E66-E77.

Vandermeer, J. 2011. The inevitability of surprise in agroecosystems. Ecological

Complexity 8:377-382.

Vandermeer, J. and I. Perfecto. 2006a. A keystone mutualism drives pattern in a power

function. Science 311:1000-1002.

Vandermeer, J. and I. Perfecto. 2006b. Response to Comments on "A keystone mutualism

drives pattern in a power function". Science 313:1739.

Vandermeer, J., I. Perfecto, G. Ibarra Nuñez, S. Phillpott, and A. Garcia Ballinas. 2002.

Ants (Azteca sp.) as potential biological control agents in shade coffee production

in Chiapas, Mexico. Agroforestry Systems 56:271-276.

Vandermeer, J., I. Perfecto, and H. Liere. 2009. Evidence for hyperparasitism of coffee

rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii,

through a complex ecological web. Plant Pathology 58:636-641.

296

Vandermeer, J., I. Perfecto, and S. Philpott. 2008. Clusters of ant colonies and robust

criticality in a tropical agroecosystem. Nature 451:457-459.

Vandermeer, J., I. Perfecto, and S. Philpott. 2010a. Ecological complexity and pest

control in organic coffee production: uncovering an autonomous ecosystem

service. BioScience 60:527-537.

Vandermeer, J., I. Perfecto, and N. Schellhorn. 2010b. Propagating sinks, ephemeral

sources and percolating mosaics: conservation in landscapes. Landscape Ecology

25:509-518.

Waller, J. 1982. Coffee rust--epidemiology and control. Crop Protection 1:385-404.

Werner, E., K. Yurewicz, D. Skelly, and R. Relyea. 2007. Turnover in an amphibian

metacommunity: the role of local and regional factors. Oikos 116:1713-1725.

Whitehorn, P. R., S. O'Connor, F. L. Wackers, and D. Goulson. 2012. Neonicotinoid

pesticide reduces bumble bee colony growth and queen production. Science.

Whitley, D. 1994. A genetic algorithm tutorial. Statistics and Computing 4:65-85.

Willer, H. and L. Kilcher, editors. 2010. The world of organic agriculture: statistics and

emerging trends 2010. IFOAM, Bonn and FiBL, Frick.

Wissel, C. 1984. A universal law of the characteristic return time near thresholds.

Oecologia 65:101-107.

Wohlfahrt-Veje, C., H. R. Andersen, T. K. Jensen, P. Grandjean, N. E. Skakkebaek, and

K. M. Main. 2012. Smaller genitals at school age in boys whose mothers were

exposed to non-persistent pesticides in early pregnancy. International Journal of

Andrology:1-8.

Zare, R. and W. Gams. 2001. A revision of Verticillium section Prostrata. IV. The genera

Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1-50.

Zare, R., W. Gams, and A. Culham. 2000. A revision of Verticillium sect. Prostrata - I.

Phylogenetic studies using ITS sequences. Nova Hedwigia 71:465-480.

Zare, R., W. Gams, and H. C. Evans. 2001. A revision of Verticillium section Prostrata. V.

The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73:51-86.

297

Zimmermann, G. 1986. The Galleria bait method for detection of entomopathogenic

fungi in soil. Journal of Applied Entomology 102:213-215.

Zinck, R. D. and V. Grimm. 2009. Unifying wildfire models from ecology and statistical

physics. The American Naturalist 174:E170-E185.

298

