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CHAPTER I

Introduction

Few things are more fundamental to human health and happiness than food. Not 

surprisingly, the future of agriculture, which is the primary means by which modern 

humans obtain food, generates vigorous debate. Unfortunately, this debate is frequently 

ineffective, often being waged in a polarized war between two camps that occupy 

opposite sides of an idealogical divide. On one side of this divide are those who view 

what has come to be called "conventional" agriculture as the best (the only) way to feed 

the growing human population. On the other side are those who point to the tremendous 

environmental and social costs of conventional agriculture and call for a return to an 

approach rooted in traditional knowledge, concern for the environment, and a rejection of 

the entire corporate, industrial agriculture paradigm. As is often the case with these kinds 

of debates, one wonders if there might be another, better alternative that transcends the 

artificial axis separating the naiveté of the technocrats and the romanticism of many who 

reject their vision. The goal of my research has been to contribute to the efforts of those 

who are attempting to create this alternative. Thankfully, there are hopeful signs that an 

alternative is possible. For anyone with an interest in creating a world in which humans 

can comfortably and happily exist in peace, this is good news.

Conventional agriculture is an approach that is fundamentally based in 

reductionism. Problems are identified, disassembled into their component parts, and then 

solved in a serial fashion. Your cotton is being attacked by bollworms? Plant Bt cotton. 

Now mirids have emerged as a problem? Search for a pesticide or genetic modification 

that will control this secondary pest. And so on. While the reductionist technique has 

been responsible for numerous scientific and technological advances in fields such as 

physics and engineering, the inherent complexity of ecosystems – even the drastically 

simplified systems typical of conventional agriculture – leads to a rippling of unintended 
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consequences when such attitudes are applied. Although it could be argued that the Green 

Revolution program of Norman Borlaug, now championed in its modern form by Bill 

Gates and a bevy of agricultural input suppliers, led to massive increases in yields and 

saved millions of human lives, an equally compelling argument could be made that it was 

this program's singleminded focus on technical solutions (narrowly defined) that led to 

the litany of environmental and health crises associated with conventional agriculture. 

Cultural eutrophication, soil erosion, habitat fragmentation, farmers' toxic work 

environments, the dissipation of rural communities, and a profusion of other negative 

effects can be traced back to the reductionism of conventional agriculture.

Considering the incontrovertible shortcomings of conventional agricultural 

practices, it is not surprising that countermovements have arisen, most prominently under 

the umbrella of "organic agriculture." Unfortunately, this movement is too often defined 

by what should not be, and not often enough by what should be. Many synthetic 

fertilizers, pesticides, herbicides, and fungicides have been shown repeatedly to harm the 

environment and human health. So, clearly, they should be avoided if possible, and this is 

exactly what proponents of organic agriculture call for. However, it is not enough to 

advocate for the avoidance of certain substances and techniques without addressing the 

underlying issues that led to their use in the first place. Although many of the driving 

forces behind the adoption of agrochemical-intensive agriculture had very little to do with 

agricultural problems per se, agriculture does present various challenges that must be 

addressed. Replacing a facile technophilia with an equally facile nostalgia is insufficient.

So, what would a desirable alternative entail? The general, philosophical answer 

is clear. As Lewontin and Levins argue, agriculture was traditionally labor intensive, is 

currently capital intensive, and urgently needs to become knowledge intensive (Lewontin 

and Levins 2007). Many of the ills associated with conventional agriculture are a 

consequence of the drive by corporations to inject capital – large, expensive machinery, 

patented seeds, synthetic agrochemical inputs – into the agricultural system, regardless of 

any negative secondary consequences – provided that these deleterious side effects can be 

profitably externalized. A strategy based on profound, non-monetized agricultural 
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knowledge, in contrast, would make positive outcomes, and not positive returns, the 

central focus of agriculture.

But what is really meant by "knowledge intensive"? After all, agriculture has 

always been a very complex, difficult endeavor, requiring incredible skill and knowledge 

to successfully cope with sundry interacting biological components and the vicissitudes 

of the environment. In the words of Adam Smith (1776):

"No apprenticeship has ever been thought necessary to qualify for 
husbandry, the great trade of the country. After what are called the fine 
arts, and the liberal professions, however, there is perhaps no trade which 
requires so great a variety of knowledge and experience. The innumerable 
volumes which have been written upon it in all languages may satisfy us, 
that among the wisest and most learned nations, it has never been regarded 
as a matter very easily understood. And from those volumes we shall in 
vain attempt to collect that knowledge of its various and complicated 
operations which is commonly possessed even by the common farmer; 
how contemptuously soever the very contemptible authors of some of 
them may sometimes affect to speak of him."

If it is true that successful agriculture inherently requires a formidable amount of 

knowledge, and I think it is true, what is meant by a transition to "knowledge-intensive 

agriculture"? The answer lies in the type of knowledge that local practitioners (Smith's 

"common farmer") typically possess. Whereas farmers usually have knowledge that is 

specific, heuristic, phenomenological, and not generalizable to other systems and other 

contexts, modern science gives us an ability to make observations and perform analyses 

that are qualitatively different from what was previously possible, thereby generating a 

fundamentally different type of knowledge that can, ideally, complement more traditional 

types of knowledge. Modern science provides tools and techniques that allow us to detect  

and analyze patterns that are too subtle to be detected by practitioners; that span multiple 

systems; that unfold across large temporal and spatial scales; and that involve significant 

non-linearities and emergent properties.

The alternative approach, then, involves embracing and confronting the 

complexity of agricultural systems using the tools of modern science. It is a scientific 

approach, but it is not a reductionist science. It entails a deep understanding of the 
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processes, interactions, and functions that characterize the components of agriculture, 

from genomes to biomes, in their actual context. This approach, most commonly referred 

to as agroecology, is the basis that underpins my research philosophy.

I conceive of agroecology as having three essential components. First, a thorough 

knowledge of the system, grounded in natural history, is crucial. Second, all of the 

appropriate tools from the science of ecology should be brought to bear on the system, 

including mathematical modeling, genetics, computer simulation, evolutionary ecology, 

biochemistry, etc. Finally, there should be a continuous, iterative dialog between theory 

and empiricism, with experiments and observations giving rise to theory which in turn 

suggests further experimentation and observation.

In my own research, I have worked to understand how Lecanicillium lecanii, a 

mycoparasitic and entomopathogenic fungus, provides the ecosystem service of pest 

control in an organic coffee farm in Mexico, using this system as both a focus in its own 

right and as a source of inspiration for more abstract, theoretical ideas about spatial 

ecology and evolution. In the chapters that follow, I will describe a portion of this 

research in an arc that will hopefully give the reader a clear sense of the progress that has 

been made towards understanding the role that this fungus plays in the complex coffee 

agroecosystem, but also, from a more philosophical perspective, demonstrate one 

example – albeit an imperfect one – of a single iteration of the dialog between empiricism 

and theory.

 The arc through which my research unfolded, from basic empirical research into 

the natural history and biocontrol potential of L. lecanii, to theoretical models inspired by  

the L. lecanii system, and finally to a simulation model with potential implications for the 

monitoring and management of L. lecanii as a conservation biological control agent, 

derived partly from my philosophy of agroecological research and partly from necessity. 

Given the relative paucity of information in the literature about the ecology of L. lecanii 

under field conditions, there was a strong need to fill in certain gaps in our natural history 

knowledge, which gave me an opportunity to develop a foundational intuition about the 

study system while contributing to the basic literature about L. lecanii. Chapter II 
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(Jackson et al. In press), Chapter III (Jackson et al. 2009) and Chapter IV (Jackson et al. 

2012) represent this phase. This field experience proved invaluable for sparking the 

theoretical ideas that I explore in Chapter V and Chapter VI (Jackson et al. In review). 

Finally, in an attempt to close the loop, I apply some of the combined empirical 

knowledge and theoretical insights that I gained during this process to a simulation model 

of the study system. This work is contained in Chapter VII. 

Summary of dissertation

Study system

The study site upon which much of this work was focused is located on a 300 

hectare organic coffee farm in Chiapas, the southernmost state of Mexico. This farm, 

Finca Irlanda, is the oldest certified organic coffee farm in the world, and has been 

studied intensively by researchers from the University of Michigan and the University of 

Toledo since the mid 1990s. A primary goal of this research has been to reveal the 

complex network of interactions present in this agroecosystem, and to understand how 

this system is affected by changes in management intensity.

At the core of the agroecosystem is a keystone mutualism between an arboreally-

nesting ant, Azteca instabilis, and its hemipteran partner, the green coffee scale (Coccus 

viridis). The scale insects attach themselves to the coffee plants, typically along the 

midveins of the coffee leaves and on new, tender shoots. Using their piercing mouthparts, 

they access the phloem and suck the sugar-rich sap of the coffee plants. Since they are 

sedentary, the scale insects would be highly vulnerable to attack by predators and 

parasitoids if it were not for protection provided by the ants, which tend the scale insects 

in a classic ant-hemipteran mutualism. The ants build carton nests in shade trees that are 

planted throughout the farm and forage on the scale insects in the coffee plants below, 

providing protection from the scales' natural enemies in exchange for a carbohydrate-rich 

honeydew that the scales excrete.

Much of the research in this system has been carried out in a 45 ha study plot. A 

biannual census of shade trees and A. instabilis nests in this plot has been performed 
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since 2004. Of approximately 7,000 to 11,000 shade trees in the plot (depending on the 

management intensity), only approximately 3-9% are inhabited by colonies of A. 

instabilis. However, despite the relative rarity of this mutualism, it has been shown to 

play a key role in maintaining autonomous pest control in the farm (Vandermeer et al. 

2010a). Under the protection of the ants, the scale insect populations can reach very large 

numbers, on the order of a few thousand individuals per coffee plant. This provides a 

large resource that serves to maintain populations of various predators in the system, such 

as spiders and twig-nesting ants (Vandermeer et al. 2002, Perfecto and Vandermeer 

2008b, Vandermeer et al. 2010a). Azteca instabilis, through its active patrolling and 

tending of the scale insects, also inadvertently protects the larvae of a predatory beetle, 

the coccinellid Azya orbigera, thereby providing both abundant food (the scale insects) 

and predator-free space for this important pest control agent (Liere and Perfecto 2008).

The ant-scale mutualism is also the principal determinant of the abundance and 

spatial distribution of L. lecanii. Coccus viridis are the primary hosts of L. lecanii, and 

they are particularly susceptible to epizootics of L. lecanii when their populations become 

very large and densely packed; this typically occurs only under the vigilance of A. 

instabilis. In sites subject to an L. lecanii epizootic, it is common for fungal mortality of 

scale insects to exceed 90% (Jackson et al. 2009). The great abundance of scale insects, 

coupled with a high prevalence of L. lecanii, results in A. instabilis nest sites being 

important sources of L. lecanii inocula. Given the ability of L. lecanii to attack both C. 

viridis and the coffee rust, Hemileia vastatrix, the spatial distribution of ant nests may 

thus play an important role in determining the extent to which these two important coffee 

pests are controlled.

Chapter II: Persistence of L. lecanii propagules in the environment and dispersal of L. 

lecanii propagules

One of the most prominent features of the study system is a pronounced wet-dry 

seasonality. During the wet season, which typically lasts approximately six months, from 

the end of May through November, there is rain virtually every afternoon and through the 

night. During the remainder of the year, rain is relatively infrequent. The activity of L. 
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lecanii is strongly influenced by this seasonality, for two reasons. First, the abundance of 

its host, C. viridis, is drastically reduced during the dry season (Jackson et al. In review). 

Second, the average relative humidity is below what is necessary for L. lecanii to thrive 

(Reddy and Bhat 1989). As a result, L. lecanii seems to be completely inactive during the 

dry season, although some remnants of infected cadavers of C. viridis from the previous 

wet season do persist throughout the dry season (personal observations). 

This strong dependence of L. lecanii on the window of opportunity provided by 

the wet season presents two mysteries that were previously unaddressed in the literature. 

First, how and where does L. lecanii persist during the dry season? Second, via what 

mechanisms is L. lecanii dispersed? Knowledge of both of these is essential for 

understanding how L. lecanii is maintained in the system and how it is able to reestablish 

itself, spread, and successfully initiate epizootics every wet season. Dispersal is also a 

fundamental process that defines the ecology of fungal pathogens (Pell et al. 2010).

The existing literature did provide some clues regarding the first question. 

Previous studies had shown that propagules of various fungal entomopathogens can be 

recovered from the soil bank (Meyling and Eilenberg 2006, Tuininga et al. 2009), but 

information about this for L. lecanii in coffee agroecosystems was previously absent from 

the literature. Therefore, testing the hypothesis that the soil may provide an important 

environmental reservoir for L. lecanii was an early goal of my research program.

There were also a few obvious candidates for dispersal mechanisms. The ants, A. 

instabilis, seemed a very likely candidate given the high rates of activity and interaction 

with the hosts, C. viridis, inherent in their tending and foraging behavior. Rain splash also 

seemed to be a probable mechanism, particularly if the soil were acting as an important 

environmental reservoir. Since rain is very frequent in the wet season, rain splash could 

offer ample opportunities for propagules to successfully disperse from the soil. 

Additionally, high relative humidity is necessary for L. lecanii conidia to germinate 

(Reddy and Bhat 1989), so rain splash dispersal could offer a favorable microclimate as 

well as locomotion. Finally, wind, because it is a very common method for the dispersal 

of fungal spores (Aylor 1990), was seen as a likely possibility.
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To test for the presence of L. lecanii propagules in the soil, we collected soil 

samples at the beginning of the wet season from locations both near and far from known 

epizootics in the previous year. In an attempt to define the dispersal kernel, the samples 

near the previous epizootics were taken along transects radiating out from the centers of 

the epizootics. The remainder of the samples were collected as far as possible from A. 

instabilis nests (and hence from previous L. lecanii epizootics). These soil samples were 

then baited with Galleria mellonella larvae and C. viridis on coffee leaves to detect the 

presence of L. lecanii propagules. The results of this assay demonstrated that viable 

propagules of L. lecanii can be recovered from the soil, including from locations far 

removed from recent epizootics.

Dispersal of L. lecanii via A. instabilis workers was tested using a combination of 

laboratory and field ant exclusion experiments. In both the laboratory and field 

experiments, coffee seedlings with populations of susceptible scale insects were assigned 

to two treatment groups: ant inclusion and ant exclusion. Individuals of A. instabilis that 

had been exposed to active L. lecanii infections were allowed to forage on the ant 

inclusion seedlings, but blocked from the ant exclusion seedlings. In the laboratory 

experiment, only scale insects on the ant inclusion seedlings became infected by L. 

lecanii, which demonstrates that A. instabilis can transport propagules of L. lecanii. In the 

field experiment, there was no significant difference in the prevalence of L. lecanii 

between the two treatments, suggesting that there are other important transport 

mechanisms besides A. instabilis in the field.

Dispersal by rain splash and wind were tested simultaneously in a laboratory 

experiment. Coffee seedlings with populations of uninfected scale insects were allocated 

to four treatment groups: control, wind, rain, and rain-wind. Each coffee seedling was 

placed in a tray of soil that had been inoculated with L. lecanii conidia and then exposed 

to a daily treatment of artificial rain splash, wind, both, or neither, depending on the 

treatment group. Both the rain and rain-wind groups experienced significant infections, 

whereas the wind-only and control groups were free of infected individuals.
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Taken as a whole, the results of Chapter II suggest that L. lecanii does persist in 

the soil during the dry season; that it is widely distributed throughout the study site in this 

environmental reservoir; and that rain splash, A. instabilis, and potentially other dispersal 

mechanisms can spread L. lecanii propagules from the soil and throughout the coffee 

plants.

Chapter III: Spatial and temporal dynamics of L. lecanii and the potential for L. lecanii 

to promote the self-organization of A. instabilis nests

The A. instabilis-C. viridis mutualism has been shown to exert a disproportionate 

influence on the distribution and dynamics of other organisms in this coffee 

agroecosystem, i.e., it is a keystone mutualism (Vandermeer et al. 2010a). Accordingly, 

the spatial distribution of A. instabilis nests in the farm is of fundamental importance to 

the maintenance of biological control. Despite the shade trees in which the ants nest 

being distributed in a significantly uniform pattern, the ant nests are significantly 

clustered, with a mean/variance ratio of approximately 0.42 (Vandermeer et al. 2008). 

Explaining how this spatial distribution is generated has been a central goal of the Finca 

Irlanda group's research.

The most obvious explanation for the low-density, clustered distribution of A. 

instabilis nests would be some underlying environmental heterogeneity, e.g., variation in 

the size or species of shade tree. However, no such relationship is detectable in any of the 

census data. In the absence of an environmental explanation, the most likely explanation 

is that the spatial pattern emerges endogenously via local interactions. Using a simple 

cellular automata (CA) model, Vandermeer et al. (2008) demonstrated that such a self-

organization process could in fact explain the generation of the observed spatial pattern. 

The CA model relied on two simple processes: satellite expansion, or budding, of ant 

colonies into unoccupied shade trees in neighboring sites, and density-dependent 

mortality. Satellite expansion of ant colonies is a well-known phenomenon. The density-

dependent mortality factor, however, requires some explanation. There are a number of 

possible explanations, including a parasitic fly (Pseudacteon sp., Phoridae) that attacks A. 
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instabilis directly (Vandermeer et al. 2008) and a predatory beetle, Azya orbigera, that 

consumes the ants' mutualistic partner, C. viridis (Liere et al. In review). 

An equally likely explanation is that L. lecanii contributes to the density-

dependent mortality of A. instabilis colonies. Chapter III approaches this question using a 

combination of observational data and computer simulation. In addition, this chapter 

documents the spatial distribution and dynamics of L. lecanii across multiple spatial 

scales.

The observational data follow the history of shade tree occupancy by A. instabilis 

and the distribution of L. lecanii in two sites within the study plot. From these data, it 

appears that the ant colonies are migrating, or perhaps dying, in response to L. lecanii 

epizootics, which lends support to the hypothesis that L. lecanii is a significant 

contributor to colony turnover. The plausibility of this hypothesis is further bolstered by 

the computer simulation, which shows that the spatial distribution of ants can be 

generated by replacing the general density-dependent mortality factor in the original CA 

of Vandermeer et al. (2008) with an explicit model of L. lecanii. Regarding the spatial 

distribution and dynamics of L. lecanii, the plot-level censuses did not reveal a clear 

spatial pattern, but the finer scale surveys show distinct patterns in the spread of infection 

over time.

Although there remains some uncertainty about the true cause of the density-

dependent mortality factor – and it is likely to be a combination of all of the candidates 

considered to date, as well as factors that are still unknown – this chapter shows that a 

plausible argument could be made in favor of L. lecanii as a principle cause. This raises 

the fascinating possibility that L. lecanii is simultaneously dependent upon and a 

determinant of the spatial distribution of its own hosts.

Chapter IV: Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by L. 

lecanii

As a consequence of its potential to influence the spatial structure of the keystone 

mutualism between A. instabilis and C. viridis, L. lecanii is likely a key player in the 

maintenance of biological control in Finca Irlanda. However, there is also more direct 
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evidence of its importance: there has been shown to be a significant relationship between 

L. lecanii and the prevalence of the coffee leaf rust, Hemileia vastatrix (Vandermeer et al. 

2009). It is hard to overstate the importance of H. vastatrix as a disease of coffee. 

McCook (2006) describes the devastation it wrought in entire coffee growing regions, 

including the destruction of coffee in Sri Lanka and southern India.

Although a negative correlation between L. lecanii and H. vastatrix within a 

single season was reported previously by Vandermeer et al. (2009), the natural history 

discovered in the work described in Chapters II and III suggested that there might be a 

one-year lag between high abundances of L. lecanii and suppression of H. vastatrix. In 

this chapter, we test this hypothesis using multi-year surveys of L. lecanii and H. 

vastatrix. The data support the hypothesis, and enhance our understanding of the 

biological control services that L. lecanii provides in this system.

Chapter V: The evolution of imperfect prudence

In Chapter V, the first of the two most theoretical chapters in this dissertation, I 

explore the hypothesis that the spatial distribution of a locally-dispersing host might serve 

as an anti-pathogen phenotype, and that this group-level phenotype could arise via natural 

selection despite being counter to the short-term interests of individual hosts. This work 

was inspired, albeit loosely, by the observation that the low-density spatial distribution of 

A. instabilis nests in the coffee agroecosystem presents a much more challenging 

landscape for dispersal-limited pathogens than if the nests were much more densely 

distributed, and that this distribution is a consequence of the satellite expansion rate of 

the ants.

The basic concept underlying this chapter is that the spatial structure of a host will 

determine the ability of a locally-transmitted pathogen to spread through the population. 

For example, a host population distributed in small, isolated clusters will be resistant to 

the spread of a dispersal-limited pathogen; if the pathogen infects a cluster, it will only be 

able to exploit the small number of available susceptibles in that patch. At the other 

extreme, if the host population consists of a single well-connected network of hosts, the 
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pathogen will spread throughout the entire host population (depending, of course, on the 

details of the infection process).

This scenario presents a contradiction for the host. On the one hand, competition 

for space will favor those hosts that reproduce as quickly as possible. On the other hand, 

a cluster of hosts that reproduces rapidly will tend to form large clusters that expand and 

coalesce with neighboring clusters, thereby forming a well-connected landscape that the 

pathogen can easily percolate through. The advantage of fast reproduction is conferred to 

individual hosts over the short term, while the advantage of restrained reproduction is a 

longer term, group-level benefit. Basic arguments against group selection suggest that the 

former will always dominate over the latter, but this balance can be reversed through the 

effects of spatial structure.

In this chapter, I develop a spatially-explicit, evolutionary, probabilistic cellular 

automata (CA) model to demonstrate that reproductive restraint of hosts, known in the 

literature as "prudence," can evolve in a viscous, spatially-structured host-pathogen 

system. This model shows that prudent hosts can indeed evolve, in theory. This 

phenomenon, which is a type of evolution of cooperation, prevents the host population 

from being extirpated by the pathogen. However, the degree of reproductive restraint that 

the hosts evolve to – the Evolutionarily Stable Strategy (ESS) – is not ideal in terms of 

maximizing the average size of the host population or decreasing the variability of the 

population. Most of the previous work on the evolution of cooperation has focused on the 

extent to which the performance of the cooperative behavior exceeds that of a purely 

selfish strategy. This emphasis on the performance of evolved cooperation relative to pure 

selfishness, while a natural choice in some ways, leads to a tendency to overstate the 

power of autogenous processes to generate desirable outcomes. As the results of this 

chapter show, evolution can lead to surprising levels of cooperation, but this cooperation 

may be suboptimal by some measures compared to what could be achieved by a more 

rational strategy that focuses on specific outcomes.
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Chapter VI: Self-organization of background habitat determines the nature of population 

spatial structure

The theory considered in this chapter was also heavily influenced by the spatial 

distribution of A. instabilis nests in Finca Irlanda. By virtue of the self-organization 

process that generates this spatial distribution, the size distribution of the clusters of nests 

can be described by a power law. This implies that there are a large number of small 

clusters and a few very large clusters, which contrasts with the normal (Gaussian) 

distribution that we often expect to encounter in nature. 

The implications of a power-law cluster-size distribution for organisms that use 

these clusters as habitat patches is explored using the concept of a metapopulation/

source-sink continuum. Depending on the slope of the power law that defines the cluster 

size distribution, the landscape will either be characterized by a large number of patches 

with relatively short distances between patches (the metapopulation end of the 

continuum); a small number of large patches with relatively long distances between 

patches (the source-sink end); or something in between. 

Using a simple patch occupancy model, I show that populations inhabiting 

landscapes that fall in the intermediate range of this continuum may have the lowest rates 

of patch occupancy, and may be much more likely to go globally extinct. On the 

metapopulation end of the continuum, patches are in close enough proximity that 

migration between patches counteracts the local extinction of the organism in individual 

patches, resulting in a continuous dynamic of local extinction and subsequent rescue of 

individual patches. On the source-sink extreme of the continuum, there exists at least one 

patch that is large enough to sustain a population in perpetuity; this patch acts a source 

that continuously rescues the smaller neighboring patches, which have much higher 

extinction rates. At an intermediate power law slope, the patches are neither numerous 

enough, nor close enough together, nor large enough to sustain the population as either a 

metapopulation or a source-sink population.

The synthetic landscapes that were used to investigate the metapopulation/source-

sink continuum were constructed by drawing patch sizes from power law distributions 

13



and then randomly placing these patches. This method captures the cluster size 

distribution of self-organized landscapes, but ideal self-organized landscapes are scale 

free, meaning that there is clustering at all spatial scales. The implications of this higher-

level spatial structure for the resident organism was explored by comparing the patch 

occupancy rates on a randomly-constructed landscape to a truly self-organized landscape 

generated by the CA model of Vandermeer et al. (2008). The habitat patches in the CA 

landscapes were then randomly scattered to form a third type of landscape, termed 

"dispersed CA." This third category retained the self-organized cluster size distribution 

but not the higher-level clustering of patches. For a given amount of habitat, patch 

occupancy was consistently higher in the self-organized CA landscapes and lowest in the 

dispersed CA landscapes, suggesting that the higher-level spatial structure inherent to a 

self-organized landscape could promote persistence of an organism inhabiting this 

landscape.

To tie this theory back to a real system, we examined the patch occupancy 

dynamics of C. viridis in clusters of A. instabilis nests. These data suggest that the self-

organizing attributes of the arboreal ants create the patch structure that in turn generates a 

source/sink dynamic for the green coffee scale insect.

Chapter VII: Detection of imminent, non-catastrophic regime shifts

From a management perspective, maintaining a thriving population of L. lecanii is 

almost certainly beneficial for coffee production. The monetary and health benefits of the 

ecosystem services provided by the biological control of H. vastatrix and C. viridis by L. 

lecanii would be difficult to quantify, but they are undoubtedly substantial. Therefore, it 

would be useful to be able to detect an imminent collapse of the L. lecanii population. 

The goal of predicting the onset of ecosystem collapse has gained substantial interest 

recently as part of the more general ambition to develop leading indicators of regime 

shifts in dynamic systems. 

In this chapter, I use a spatially-explicit, continuous space, stochastic model of the 

L. lecanii system to ask 1) whether regime shifts are likely to occur in this system and 2) 
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if the leading indicators proposed in the literature be used to detect imminent regime 

shifts in this system.

The simulation model used to test these questions is based on the host-pathogen 

reservoir model of Hochberg (1989), which includes an environmental reservoir for the 

pathogen. Pathogens in this reservoir are unable to infect the host, but have a much 

slower rate of mortality. Based on the field observations and laboratory experiments 

detailed in Chapters II and III, it is likely that the soil is an important environmental 

reservoir of L. lecanii. Therefore, the maintenance of L. lecanii is probably heavily 

dependent on the survival of latent spores of L. lecanii in the soil and the rate of 

translocation of propagules from the soil to susceptible scale insects on the coffee plants 

above. 

To test this hypothesis, I ran sweeps of the two parameters in the model that 

control these rates (the latent spore survival rate and the translocation rate). Three regime 

shift scenarios leading to a drastic reduction or loss of L. lecanii from the system were 

observed. All of these regime shifts were of the non-catastrophic variety, in contrast to the 

catastrophic regime shifts that are typically considered in the literature. Catastrophic 

regime shifts are associated with fold bifurcations, which imply hysteresis and a 

discontinuous jump in the state of the system in response to a small change in a forcing 

parameter. Although the leading indicators in the literature were primarily developed 

using systems containing fold bifurcations, it is thought that they could also be used to 

predict non-catastrophic regime shifts such as the ones present in the L. lecanii model 

(Scheffer et al. 2009).

Two proposed leading indicators were applied to the infection data in an attempt 

to detect a signal of the impending regime shifts. The first, a method based on spatial 

autocorrelation, failed to exhibit any signal of the incipient regime shifts. This was not a 

complete surprise, as this method is known to perform poorly when there is only weak 

coupling via dispersal between sites, as is the case in the L. lecanii simulation model.

The second approach to predicting regime shifts relies on a combination of 

changes in the spatial variance and the spatial skewness. A peak in the spatial skewness 
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combined with a continued increase in variance is thought to be an unambiguous signal 

of an impending regime shift. None of the regime shifts observed in the simulation model 

displayed such a clear signal, although there were significant, noticeable changes in the 

skewness and variance prior to the most rapid of the three regime shift scenarios. 

On balance, it seems unlikely that the proposed leading indicators could be used 

as-is to predict these non-catastrophic regime shifts in the actual coffee agroecosystem 

using data with realistic spatial and temporal resolution. However, the relatively large 

changes in the spatial variance and skewness give some hope that these statistics could be 

used as general, albeit somewhat ambiguous, signals that the system is changing in a 

potentially deleterious manner.
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CHAPTER II

Occurrence in the soil and dispersal of Lecanicillium lecanii, a fungal pathogen of 
the green coffee scale, Coccus viridis, and coffee rust, Hemileia vastatrix 

Conservation biological control, based on management practices that promote the 

survival and effectiveness of natural enemies of potential pest species, has attracted 

considerable attention as an enabler of sustainable crop production (Barbosa 1998, Gurr 

et al. 2000, Bale et al. 2008, Cullen et al. 2008, Fiedler et al. 2008, Jackson et al. 2009). 

Fungi are promising candidates for conservation biological control programs, as they are 

known to attack a variety of pest organisms (Butt et al. 2001), including arthropods (Shah 

and Pell 2003, Cruz et al. 2006), plants (Hasan and Ayres 1990, Te Beest et al. 1992, 

Charudattan and Dinoor 2000, Sauerborn et al. 2007), and plant pathogens (Kiss 2003, 

Fravel 2005). However, effective conservation biological control using fungal pathogens 

will require a thorough knowledge of their ecology (Pell et al. 2010), which is still 

lacking, particularly in semi-natural habitats such as complex agroecosystems (Hesketh et 

al. 2010). 

The fungal entomopathogen and mycoparasite Lecanicillium lecanii 

(Zimmerman) Zare and Gams is a promising candidate for use in conservation biological 

control in our study system – an organic, shade coffee agroecosystem in Chiapas, 

Mexico. Lecanicillium lecanii has been shown to be an important natural enemy of the 

green scale, Coccus viridis Green (Hemiptera: Coccidae) in coffee (Easwaramoorthy and 

Jayaraj 1978, Reddy and Bhat 1989, Uno 2007, Jackson et al. 2009). It also is known to 

attack the coffee rust, Hemileia vastatrix Berkeley and Broome (Shaw 1988, Eskes 1989, 

González et al. 1995, Vandermeer et al. 2009, Jackson et al. 2012), and therefore may be 

crucial for suppressing this potentially devastating coffee disease (McCook 2006, Suffert 

et al. 2009). 
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In addition to its direct, negative effects on potential coffee pests, L. lecanii may 

have an important influence on a keystone mutualism between an arboreal-nesting ant, 

Azteca instabilis F. Smith (Hymenoptera: Formicidae), and C. viridis. Azteca instabilis 

tends C. viridis in a typical ant-hemipteran mutualism, wherein the ants protect the scale 

insects, which are sedentary as adults, from predators and parasitoids. In exchange, the 

scales excrete a carbohydrate-rich honeydew that the ants consume. Recent studies have 

shown that this mutualism may play a key role in maintaining multiple natural pest 

control agents in this agroecosystem (Vandermeer et al. 2010a). Because the ants also 

inadvertently protect the larvae of the coccinellid scale predator Azya orbigera Mulsant 

(Coleoptera: Coccinellidae), the A. instabilis-C. viridis mutualism provides enemy-free 

space and high prey density for this important biological control agent (Liere and 

Perfecto 2008). This mutualism also contributes to the management of the coffee berry 

borer, Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) through the deterrent effect 

of A. instabilis foragers (Perfecto and Vandermeer 2006).

Lecanicillium lecanii may strongly influence the location and abundance of A. 

instabilis colonies, and hence may determine the extent of the aforementioned biological 

control effects of the ant-hemipteran mutualism. In this system, L. lecanii often becomes 

a local epizootic, killing nearly all of the C. viridis on a single coffee plant or a small 

group of neighboring plants. Therefore, L. lecanii reduces the amount of carbohydrate 

food available to an ant colony, which may have an indirect negative effect on colony 

survival. The potential for L. lecanii to cause the ant nest density-dependent mortality of 

A. instabilis colonies — one of the fundamental processes underlying the spatial self 

organization that generates the low-density, clustered spatial distribution of ant nests in 

this farm — has recently been demonstrated through a combination of field studies and 

computer modeling (Jackson et al. 2009).

Although a substantial amount of research has been done on the systematics (Zare 

et al. 2000, Gams and Zare 2001, Sung et al. 2001, Zare and Gams 2001, Zare et al. 2001, 

Kouvelis et al. 2008) and production (Feng et al. 2000, Kamp and Bidochka 2002, Gao et 
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al. 2007, Gao et al. 2009, Shi et al. 2009) of L. lecanii, much less is known about its basic 

ecology and natural history, including in the context of coffee agroecosystems. 

In the current study, we investigated mechanisms contributing to the development 

of local epizootics of L. lecanii. Epizootics in this system are strongly influenced by the 

pronounced seasonality in this region, which is characterized by a wet season and a dry 

season. During the dry season, scale populations, and hence the prevalence of L. lecanii, 

are drastically reduced. Lecanicillium lecanii is re-established every wet season following 

the resurgence of the scale populations. Therefore, the initiation and progression of 

epizootics depend on one or more initial infection events following the onset of the wet 

season (primary dispersal) and the subsequent spread of infection from infected C. viridis 

individuals to susceptible individuals (secondary dispersal). 

Three fundamental questions follow from the basic epizootiology of this system: 

1) where do the propagules of L. lecanii persist during the dry season, 2) what are the 

mechanisms of primary dispersal, i.e., how are propagules initially dispersed onto the 

coffee plants and the scale insects during the wet season, and 3) what are the mechanisms 

of secondary dispersal, i.e., how is the fungus spread within and between coffee plants 

following an initial infection? In this study, we investigate a subset of the mechanisms 

that may be operative in this system. We hypothesize that the soil provides an 

environmental reservoir for L. lecanii, and that propagules are transmitted from the soil to 

susceptible scale populations via rain splash or wind dispersal. We also explore the 

possibility that A. instabilis itself is primarily responsible for the dispersal of L. lecanii 

conidia within and between coffee plants, in effect sowing the seeds of its own 

destruction.

Methods

The field study was performed in a 45 ha plot located at Finca Irlanda, an 

approximately 300 ha, organic coffee farm in the Soconusco region of Chiapas, Mexico 

(15° 11' N, 92° 20' W). The farm is a shade coffee plantation, with coffee plants growing 

beneath trees that have been planted in an approximately uniform distribution. The 

locations of every shade tree in the 45-hectare plot are known from biannual censuses; 
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the locations of A. instabilis colonies, which nest in the shade trees, are also recorded 

during each census. All experiments were performed during the months of July and 

August, during the wet season (typically early May through November), which is within 

the peak season for the growth and spread of L. lecanii (unpublished data).

Soil sample baiting

Two independent soil sample baiting methods were performed to detect the 

presence of viable propagules of L. lecanii in soil samples. The first employed larvae of 

the wax moth Galleria mellonella L. (Lepidoptera: Pyralidae), and is a standard method 

for detecting entomopathogenic fungi in soil (Zimmermann 1986). As an alternative, less 

time consuming, and potentially more sensitive method for detection of L. lecanii, we 

used populations of C. viridis on coffee leaves to detect the presence of L. lecanii 

propagules.

We obtained soil samples from a total of 40 locations: 10 locations far from A. 

instabilis nests, and therefore far from where epizootics of L. lecanii had occurred the 

previous year; 15 locations near the center of a previous epizootic, site A; and 15 

locations near the center of another epizootic, site B (sites and locations indicated in 

Figures II.1 and II.2). The first 10 locations were chosen to determine the potential for L. 

lecanii propagules to persist in the soil even without a recent influx of propagules from a 

nearby epizootic. The other 30 locations were chosen to determine if the prevalence of 

propagules in the soil decreases with distance from the center of recent epizootics.
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Figure II.1. Location of A. instabilis ant nests (solid circles) in 45 ha plot. Soil sample locations far from A. 
instabilis nests, and therefore far from recent epizootics of L. lecanii (circles with crosses); Site A; and Site 
B.

Figure II.2. Locations of soil samples on transects leading away from foci of two L. lecanii epizootics. 
Small crosses indicate locations of shade trees. Large crosses indicate shade trees occupied by A. instabilis 
colonies. Light gray circles are proportional to the number of healthy C. viridis on individual coffee plants 
in the previous year, and dark gray circles are proportional to the number of C. viridis infected with L. 
lecanii. Circles with crosses show the locations of soil samples. Survey data are adapted from Jackson et al. 
(2009)
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Soil samples were taken to a depth of 10 cm using a 2 cm-diameter, manual core 

sampler. The litter layer, when present, was included in the samples. At each location, we 

took 10 samples from a 40 cm X 80 cm rectangular area. The core sampler was 

thoroughly cleaned and rinsed with ethyl alcohol between samples. The 10 samples from 

each location were combined in separate polyethylene bags. After collection, the soil was 

spread on paper in a sterile environment and allowed to dry for 24 hours at ambient 

temperature in the dark. We then homogenized the soil by rolling it and passing it through 

a sieve (Niblack and Hussey 1987).

After the soil was allowed to dry, we placed 90 cc (approximately 80 g) of soil 

from each sample in a plastic container and moistened the soil evenly with 20 mL of 

distilled water. We prepared laboratory-reared G. mellonella larvae by placing them in 56 

°C water for 7 seconds in order to reduce their activity and discourage them from 

producing silk webbing in the soil. Each sample was baited with 10 larvae. The plastic 

containers were then sealed with perforated lids and incubated at room temperature 

(26-28 °C) for 2 weeks. The larvae were inspected daily, and dead larvae were removed 

and placed in humidity chambers for later evaluation. In lieu of the usual step of inverting 

the containers to ensure that the larvae penetrate the soil evenly, the soil was thoroughly 

mixed during the daily inspection process. At the end of the incubation period, larvae 

exhibiting fungal growth were inspected using a stereomicroscope at 400x magnification 

to identify the fungi morphologically.

For the second soil sample baiting, we collected branches with uninfected C. 

viridis populations from three adjacent coffee plants located within the 45 ha plot; there 

were no scale insects with any visible signs of infection by L. lecanii on any of these 

three plants or the adjacent coffee plants. The average number of large (greater than 

approximately 0.7 mm in width) scales was 35.8 per leaf (s.d. = 14.3). We then divided 

the branches into sections of three leaves, selecting one section at random for each soil 

sample. We suspended 10 g of soil from each sample in 10 mL of distilled water and, 

using a small paintbrush to apply the suspension, inoculated the scale insects on a leaf. 

This procedure was immediately replicated for the other two leaves assigned to the soil 
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sample, i.e., a separate suspension was prepared for each leaf. As a control, 10 groups of 

leaves with scale insects (30 leaves) were treated with distilled water. The leaves were 

placed in humidity chambers at 100% relative humidity and incubated for 2 weeks. 

Fungal infections were identified morphologically using a stereomicroscope (400x 

magnification).

Rain splash and wind dispersal

The potential for rain splash and wind dispersal of conidia from the soil was 

tested using coffee seedlings containing susceptible scale insect populations placed in 

four treatments: rain, rain-wind, wind, and control. The average number of scale insects 

per seedling was 112.6 (s.d. = 92.7). For this and all other experiments, we counted only 

adult scales larger than approximately 0.7 mm in width. The seedlings used in this and all 

other experiments were obtained from the farm’s nursery, where they were planted and 

reared in 10 x 20 cm black polyethylene bags. Four seedlings were randomly assigned to 

each treatment, for a total of 16 seedlings. The seedlings were placed in the four corners 

of white 60 × 60 × 60 cm insect rearing tents (BugDorm-2, MegaView Science Co., Ltd., 

Taiwan). A plastic tray (26.5 × 17.5 × 6.0 cm) with soil that had been inoculated with an 

aqueous suspension of L. lecanii conidia was placed in the center of each group of four 

seedlings. Approximately 0.45 mL of suspension was added per cubic centimeter of soil 

at the start of the experiment. The conidial concentration, approximately 1.9 X 105 

conidia/mL, was determined using a hemacytometer. 

The inoculum was an aqueous suspension of L. lecanii conidia cultured from 

spores and hyphae acquired from an infected C. viridis obtained within the 45 ha plot. 

The L. lecanii isolate originated in a single C. viridis individual from a population 

affected by a severe epizootic, with nearly 100% prevalence of L. lecanii, and therefore 

was likely of average, or possibly above average (for our study site), pathogenicity to C. 

viridis. Following isolation of L. lecanii from the scale insect, conidia were mass-

produced via solid-state fermentation using cooked rice as a substrate. We then suspended 

the resultant conidia in water and added Tween 80 surfactant to the suspension. 
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Seedlings in the rain and rain-wind treatments were removed from their tents once 

every 24 hours during the two week experiment to be exposed to artificial rain splash. 

During the rain treatment, the seedlings were placed around their respective plastic trays, 

with one seedling on each edge. Two minutes of simulated rain were created using a 2.5-

gallon plastic bladder connected to a hose with a spray nozzle and filled with room-

temperature tap water. Prior to the experiment, the volume and intensity of the simulated 

rain was compared and adjusted to qualitatively match rainfall typical of the study site. 

The simulated rain was focused on the center of the plastic tray such that the rain 

impinged primarily on the soil but also fell on the seedlings. After one minute, the plants 

were moved in a clockwise manner to an adjacent edge of the tray to account for the 

rectangular shape of the tray, i.e., so that each plant was exposed to equivalent rain splash 

intensity. The bottoms of the plastic trays were perforated to allow the water from the 

simulated rain to drain. To prevent any potential loss of conidia from the inoculated soil, 

we placed the rain-wind treatment tray underneath the rain treatment tray while the 

simulated rainfall was performed on the rain treatment, and vice versa. To balance the net 

washout of conidia, we alternated the order of the simulated rain treatment, i.e., every 

other day the same treatment was rained on first. The plants from all of the treatments 

were taken out of their cages and left outside while the simulated rain was being applied 

so that each plant spent the same amount of time outside of the tents. The seedlings were 

always returned to the same corners of the tents in order to avoid cross contamination 

between plants. 

After all plants were returned to their tents, the wind and rain-wind treatments 

were exposed to simulated wind that was created by small electric fans (one fan per tent). 

The fans were run for 30 minutes at maximum speed, which is qualitatively similar to the 

typical maximum daily wind speed at the study site. The orientation of each fan was 

changed daily by rotating the fan 90 degrees clockwise; this was done to vary the 

direction of the airflow impinging on the plants.
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Seedlings were inspected daily for scale individuals exhibiting the white halo of 

mycelia characteristic of infection by L. lecanii. A final count of infected and healthy C. 

viridis adults was performed after two weeks, at the conclusion of the experiment.

Ant exclusion

Two ant exclusion experiments were performed: a laboratory experiment, in 

which most potential conidia dispersal mechanisms were eliminated, and a field 

experiment, which included the full complement of potential conidia dispersal pathways 

(e.g., wind, rain splash, arthropods, and other animals).

For the laboratory ant exclusion experiment, eighteen small coffee seedlings 

inhabited by populations of C. viridis were obtained from the farm’s nursery. The C. 

viridis populations on six of the seedlings showed signs of being infected with L. lecanii, 

with some of the scales surrounded by the white halo of mycelia indicative of L. lecanii 

infection. The scales on the other 12 seedlings showed no signs of infection. The average 

number of scales on these 12 seedlings was 99.8 per plant (s.d. = 38.5). The six seedlings 

harboring infected scales were set aside as sources of fungal conidia, and the 12 

infection-free seedlings were designated for use in the treatments.

For each replicate, three plastic flower pots were attached in a line to a wooden 

board, with approximately five cm separating the pots. An infected seedling was planted 

in the center pot and then covered with an enclosure of clear plastic in order to prevent 

transmission of fungal conidia by air currents or flying insects. The top of the plastic 

enclosure was rolled up and sealed with metal clips to allow for periodic access to the 

seedling. A small opening covered with mosquito netting was included on one side at the 

top of the enclosure as a vent to prevent condensation from accumulating inside. Two 

fungus-free seedlings were then planted in the two adjacent pots. These seedlings were 

also covered with plastic enclosures, with the vents on both of these enclosures facing in 

the opposite direction from the infected seedling’s vent. To allow the passage of ants from 

the center seedling to the ant inclusion treatment seedling, an approximately 2.5 cm-

diameter clear plastic tube penetrating the enclosures was routed between the two 

seedlings. An identical tube was routed between the center seedling and the ant exclusion 
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treatment, with the exception that one end of the tube was covered with mosquito netting 

to prevent ants from entering the tube. Hot glue was used to thoroughly seal the 

enclosures to ensure that ants could not escape and that other arthropods could not enter 

the enclosures. Six identical replicates were constructed.

At the beginning of the experiment, a single coffee leaf with scales heavily 

infected by L. lecanii was tied to the base of each infected seedling in order to increase 

the amount of conidia available for the ants to spread. The coffee leaves were collected 

from the site of a severe epizootic, with nearly 100% prevalence of L. lecanii, and 

therefore it is probable that the pathogenicity of the strain(s) of L. lecanii used as 

inoculum were of at least average (for our study site) pathogenicity to C. viridis. 

Approximately 150 A. instabilis ants were then placed in the enclosures with the 

seedlings and leaves harboring infected scales. After three weeks, the scales on the 

seedlings were counted and the number of scales showing signs of infection by L. lecanii 

was noted.

For the field ant exclusion experiment, twenty coffee seedlings inhabited by C. 

viridis populations, with a mean of 202.1 scales per plant (s.d. = 136.9), were placed in 

plastic pots and arranged in a circle around a shade tree containing an active A. instabilis 

colony. Since the purpose of the A. instabilis colony was simply to provide a source of 

ant foragers, all of the field ant exclusion replicates were located near a single, vigorous 

colony. The plants were placed two meters from the base of the shade tree, with 20 cm 

separating each pot. To encourage discovery of the seedlings by the ants, bridges of 

plastic twine were tied between the shade tree and the bases of the seedlings. 

The seedlings were assigned in an alternating manner to either the ant exclusion 

treatment or the ant inclusion treatment, i.e., 10 seedlings were assigned to each treatment 

type. A piece of a coffee leaf covered with approximately 10 C. viridis that had been 

infected by L. lecanii, obtained from a site subject to a severe epizootic, was tied around 

the stem at the base of each coffee seedling to provide a source of conidia. All inoculum 

was again sourced from the location of a severe epizootic. An approximately eight cm 

wide strip of flagging tape was wrapped around the base of the seedlings, just beneath the 

26



infected coffee leaf; Tanglefoot® (Tanglefoot Co., Grand Rapids, Michigan, USA) was 

applied to the flagging tape on the ant exclusion seedlings. Surrounding vegetation was 

cleared to ensure that no bridges were available whereby the ants could access the 

seedlings from neighboring vegetation. All ants were removed from the ant exclusion 

seedlings by hand, using a small paintbrush, following the application of Tanglefoot®.

The seedlings were left in the field from 15 July to 4 August. They were inspected 

daily to ensure that no ants had gained access to the ant exclusion seedlings. To 

encourage a more typical number of ants to discover and tend the scale insects on the ant 

inclusion seedlings, small pieces of tuna were placed at the bottom of all seedlings on 18 

July. The leaves with fungus that had been tied to the base of the seedlings were 

beginning to show signs of decomposition by 27 July, so a single coffee berry with 

approximately five fungus-infected scales from the location of a major epizootic was 

attached with a wire-tie to the base of each seedling to provide a fresh source of 

inoculum. Following the experiment, prevalence of L. lecanii was assessed.

Statistical analyses were performed following the resampling, or bootstrapping 

with permutation, method described in Liere and Perfecto (2008). In this method, 

synthetic treatment and control populations are created by resampling without 

replacement from the original observations, and the difference in the relevant statistical 

measure (e.g., the mean number of infections) between the two synthetic populations is 

compared to the observed difference. This procedure is repeated many times, and a p-

value is calculated based on the proportion of repeats for which the difference between 

synthetic populations is as extreme or more extreme than the difference between the 

actual populations. Data were resampled 10,000 times. The rain splash and wind dispersal 

data were resampled using a custom script in Matlab, while the ant exclusion data were 

analyzed using the Resampling Stats Excel add-in version 3.2 (Resampling 2006).
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Results

Soil sample baiting

Of the 400 larvae used in the G. mellonella larvae baiting (10 larvae/sample X 40 

samples), 202 were infected by one or more entomopathogenic fungi. Of these, six were 

infected with L. lecanii, based on morphological identification using the characteristic 

conidia and diagnostic phialides (Zare and Gams 2001). Two of the L. lecanii-infected 

larvae were from samples taken from the points nearest to the focus of the L. lecanii 

epizootic at Site B (B-1a and B-2a); one was from a sample taken at one of the fourth-

furthest transect points at Site A (A-2d); and the other three larvae were from samples 

taken far from A. instabilis nests (Table 1). In no case was there more than one larva per 

soil sample infected by L. lecanii.

The C. viridis baiting method yielded eight positive identifications of L. lecanii 

from the 40 soil samples, at the following locations: the fourth-furthest point at Site A 

(A-1d); all five distances at Site B (B-2a through B-2e); and two locations far removed 

from A. instabilis nests (Table 1). All of the positive samples from Site B were taken from 

the middle transect. All three replicates from the third-furthest point at Site B were 

positive, and two of the replicates from the fifth-furthest point were positive, meaning 

that a total of 11 of the 120 assays (3 replicates per sample X 40 soil samples) were 

positive. None of the scale insects on the control leaves were infected. 

Of the 14 sampling locations that tested positive for the presence of L. lecanii, 

only one location – a point nearest to the center of the epizootic at Site A – tested positive 

using both methods. That is, a total of 13 of the 40 sampling locations tested positive for 

L. lecanii using one or the other of the two methods.
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Location G. mellonella C. viridis
A-1a
A-1b
A-1c
A-1d X
A-1e
A-2a
A-2b
A-2c
A-2d X
A-2e
A-3a
A-3b
A-3c
A-3d
A-3e
B-1a X
B-1b
B-1c
B-1d
B-1e
B-2a X X
B-2b X
B-2c X
B-2d X
B-2e X
B-3a
B-3b
B-3c
B-3d
B-3e

Far from nests 3 2

Table II.1. Locations of positive G. mellonella and C. viridis baiting results. See Figures II.1 and II.2 for 
location information.

Rain splash and wind dispersal

At the conclusion of the experiment, three of the four rain treatment seedlings had 

scales infected by L. lecanii; one of the rain-wind treatment seedlings had infected scales; 

and none of the wind or control treatment seedlings had infected scales. The mean 

percentages of scales infected with L. lecanii were 0.0%, 3.2 ± 2.6% (SE), 0.0%, and 0.3 

± 0.3% for the control, rain, wind, and rain-wind treatments, respectively. The difference 

in the number of scales infected in the rain treatments compared to the control, wind, and 

rain-wind treatments was significantly greater than the random expectation (P < 0.0001, 

P < 0.0001, and P < 0.01, respectively). The difference in the number of scales infected 

29



in the rain-wind and the control treatments, however, was not greater than expected by 

chance (P = 0.27). There was no significant linear relationship between the number of 

scales per plant and the rate of infection (P = 0.28).

Ant exclusion

In the laboratory ant exclusion experiment, scales on five of the six ant inclusion 

seedlings exhibited the white mycelial mat characteristic of L. lecanii infection, while 

only one scale on the ant exclusion seedlings showed signs of possibly being infected. On 

the ant inclusion seedlings with L. lecanii-infected scales, the percentage of infected 

scales ranged from 1.8% to 12.5%. The mean percentage of scales killed by L. lecanii 

was significantly greater for the ant inclusion seedlings than for the ant exclusion 

seedlings (0.1 ± 0.2% [SE] without ants, 4.3 ± 1.8% with ants, P < 0.01).

In the field ant exclusion experiment, the percentage of infected scales on the ant 

exclusion seedlings ranged from 3.0% to 46.5%, while on the ant inclusion seedlings the 

range was 3.6% to 42.2%. The mean percentages of scales killed by L. lecanii with or 

without ants were not significantly different (17.4 ± 4.6% [SE] without ants, 18.2 ± 4.3% 

with ants, P = 0.44).

There was no significant linear relationship between the average number of scales 

per plant and the rate of infection in either the lab experiment (P = 0.80) or the field 

experiment (P = 0.84)

Discussion

These results suggest the following scenario for the development of epizootics in 

this coffee agroecosystem. During the dry season, the populations of C. viridis are 

markedly smaller than during the wet season. Therefore, individual populations of scale 

insects are below the epizootic threshold density, and L. lecanii persists primarily in the 

environmental reservoir provided by the soil. As the scale populations increase following 

the onset of the wet season, they are exposed to L. lecanii propagules splashed up from 

the soil, which provide the inocula necessary to initiate epizootics. Further development 

of an epizootic almost certainly requires transmission of conidia between individuals in 

30



the scale population, which can be effected by A. instabilis and other, as yet unknown, 

vectors. These processes lead to a rapid increase in the prevalence of L. lecanii shortly 

after the start of the wet season, which has been observed in our study site (unpublished 

data) and others (Reimer and Beardsley 1992).

The baiting results demonstrate that viable propagules of L. lecanii can be found 

in locations that are as far removed as possible in this system (up to approximately 50 m) 

from recent L. lecanii epizootics. This suggests that either 1) L. lecanii can persist in the 

soil for multiple seasons or 2) L. lecanii is not dispersal limited in this system.

The fact that the soil can act as an environmental reservoir for L. lecanii in this 

system has important implications for the epizootiology of this fungus. The temporal 

dynamics of diseases have been shown to be strongly influenced by the presence of a 

pathogen reservoir: Hochberg (1989) showed that intermediate levels of translocation of a 

pathogen from a reservoir result in damped oscillations and relative stability of an 

otherwise oscillatory system. While the results of the rain splash experiment demonstrate 

that translocation of L. lecanii from the soil is possible, further study will be necessary to 

determine the actual level of translocation under field conditions. In particular, the 

concentration of L. lecanii in the soil in the field, and how this concentration varies 

spatially and temporally, are unknowns that could significantly affect the realized 

translocation rate.

The spatial dynamics of this system will also be strongly affected by the apparent 

ubiquity of infectious propagules in the soil. Transmission of L. lecanii upwards from 

infected soil widely distributed within the farm would likely result in much more rapid 

and widespread infection at the onset of the wet season compared to transmission from 

multiple point sources, e.g., from isolated cadavers left over from epizootics that occurred 

in the previous wet season. The potential for C. viridis to escape foci of previous 

epizootics by dispersing is also likely to be greatly reduced by the widespread occurrence 

of L. lecanii propagules in the soil.

The results of the two soil sample baitings are also interesting from a 

methodological perspective. In none of the samples were multiple replicates of the G. 
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mellonella larvae infected by L. lecanii, which suggests that there is a large element of 

chance with this method, i.e., the presence of infectious material in a sample will not 

necessarily result in infection of the larvae. This may be due to the larvae failing to come 

into contact with the infectious material, possibly due to a very low density of infectious 

material in the sample; resistance of the larvae to infection; mortality due to other causes 

that occurs before the larvae can become infected; or L. lecanii being outcompeted within 

a single larva by another entomopathogenic fungus. Negative results of this method, 

therefore, should be treated with caution. Results from the C. viridis baiting were 

similarly subject to chance. However, the issue of other entomopathogenic fungi 

outcompeting L. lecanii was not a concern with this method, as C. viridis did not become 

infected by any fungi other than L. lecanii, perhaps because it is not susceptible to the 

broad range of entomopathogenic fungi that infected the G. mellonella larvae. 

Another consideration raised by our study is that using a bait species known to be 

a target of the entomopathogen of interest may be a more powerful detection strategy 

than using a non-target bait species. Although there was not a significant difference in the 

total number of positive samples obtained using the two bait species employed in our 

study, Klingen et al. (2002) report that using a pathogen-specific host species as a bait 

yielded significantly more positives than using G. mellonella. Therefore, when 

considering the apparent rarity of L. lecanii in our study system (15% and 20% positive 

samples with the G. mellonella and C. viridis methods, respectively) and other 

agroecosystems [e.g., 0.4-2.6% in a study by Meyling & Eilenberg (2007)], the potential 

influence of the sensitivity of the bait species should be kept in mind. An understanding 

of the role of the soil as an environmental reservoir for fungal entomopathogens in a 

given system would likely benefit from a combination of standard baiting methods (e.g., 

the G. mellonella bait method), baiting methods that are specifically tailored to the 

system (e.g., the C. viridis method used here), and molecular approaches (Enkerli and 

Widmer 2010), including those that allow for quantitative assessments. A quantitative 

assessment of the abundance of L. lecanii propagules may reveal a dispersal kernel 
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dependent on the distance from recent epizootics, which we were unable to detect using 

our experimental methods.

In the rain splash and wind dispersal experiment, the lower infection rate in the 

rain-wind treatment relative to the rain treatment suggests that there may be an important 

interaction between rain splash and wind in this agroecosystem. Wind increases the rate 

of evaporation of rain splash from the surface of the scale insects, and therefore may 

decrease infection rates due to desiccation of conidia. Airflow may also remove rain 

splash-dispersed conidia from the scale insects before they are able to germinate. This 

potential interplay between rain splash and wind may have important implications for 

management of shade levels in coffee agroecosystems. As shade level increases, the 

intensity of rain splash and wind will both decrease, which may serve to simultaneously 

decrease dispersal of conidia from the soil while increasing the probability of success of 

the conidia that are dispersed. Therefore, prevalence of L. lecanii may be maximized at 

an intermediate shade level. To our knowledge, although the effect of shade on 

prevalence following artificial inoculation has been studied (Easwaramoorthy and Jayaraj 

1977), the effects of shade level on the occurrence of natural epizootics of L. lecanii has 

not been investigated.

Rain splash dispersal of fungal entomopathogens has not been studied 

extensively, but has been previously noted by other researchers, including dispersal of 

Beauveria bassiana from the soil onto leaves of corn plants (Bruck and Lewis 2002) and 

of the mealybug pathogen Hirsutella cryptosclerotium (Fernandez-Garcia and Fitt 1993). 

Fitt et al. (1989) identify characteristics of fungi that tend to be rain splash dispersed, 

such as mucilaginous conidia; Heale (1988) notes that Verticillium lecanii conidia are 

produced in mucilaginous heads and dispersed by water splash or insects. There is also a 

substantial literature on rain splash dispersal of fungal pathogens of plants (Madden 

1997, Geagea et al. 2000, Ahimera et al. 2004, Huber et al. 2006).

The results from the laboratory ant exclusion experiment suggest that A. instabilis 

is capable of transporting conidia of L. lecanii, and hence may play a role in dispersing 

the fungus throughout populations of C. viridis. This would seem to indicate that 
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transmission of conidia via ants between branches in a coffee plant, or perhaps between 

coffee plants themselves, is possible. However, the proportion of scale insects infected by 

the fungus was very low in the laboratory experiment relative to the field experiment, so 

the ants appear to be relatively poor dispersal agents. It is important to consider, however, 

that differences in pathogenicity of the inocula used in the two experiments could be 

partially responsible for the disparity in infection rates.

Our results are consistent with a previous study that showed that the common 

black ant, Lasius niger (Hymenoptera: Formicidae), is capable of retaining conidia of an 

entomopathogenic fungus previously grouped in the V. lecanii species complex (Sitch and 

Jackson 1997, Bird et al. 2004) and that by transporting conidia to tended aphids, it can 

serve as a vector. Bird et al. (2004) demonstrated that L. niger workers artificially 

inoculated with Lecanicillium longisporum (Zimmerman) Zare and Gams [Verticillium 

lecanii (Zimmerman) Viégas] conidia could infect aphid populations, causing significant 

mortality under laboratory, semi-field, and field conditions. Aphid mortality due to L. 

longisporum was greatest under laboratory conditions and least under field conditions, 

which contrasts with our results. However, relative mortality under lab and field 

conditions depends heavily on the specific attributes of the methodologies and the lab and 

field environments (e.g., microclimate, presence of other potential vectors, etc.), so it is 

not possible to draw any general conclusions from this discrepancy. 

The coffee seedlings used in the field ant exclusion experiment are most 

representative of smaller coffee plants and the lowest branches of larger plants. Based on 

our results, it appears that other dispersal mechanisms besides A. instabilis-vectored 

dispersal from one scale insect to another dominate in these locations. There are a number 

of dispersal agents that could disperse L. lecanii conidia, such as rain splash from the soil 

or between C. viridis individuals, or any of the sundry flying and crawling arthropods that  

visit the coffee plants. 

Roditakis et al. (2000) showed that aphids are capable of transporting conidia of 

L. lecanii, so it is likely that other arthropods in this system are also capable of spreading 

conidia of L. lecanii. Sitch and Jackson (1997) demonstrated that resistant arthropods 
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from a variety of orders are capable of retaining Verticillium lecanii conidia, albeit at 

lower rates than target aphid species. A particularly intriguing possibility is that the 

predatory beetle A. orbigera, a key predator of scale insects in this system that is 

positively associated with the presence of the A. instabilis-C. viridis mutualism (Liere 

and Perfecto 2008), may be a primary vector of L. lecanii. Such a phenomenon would not 

be unprecedented, as the coccinellid aphid predator Coccinella septempunctata 

(Coleoptera: Coccinellidae) has been shown to be a potential vector of an 

entomopathogenic fungus when artificially inoculated, causing significant aphid 

mortality due to fungal infection (Roy et al. 2001). Whatever the dominant dispersal 

agents are, previous work showing a signal of dispersal-limited spread between coffee 

plants (Jackson et al. 2009) suggests that these mechanisms are primarily transmitting the 

fungus between adjacent plants.

It is important to note that A. instabilis very likely plays a central role in the 

dynamics of L. lecanii infection of C. viridis even if it is not primarily responsible for 

dispersal of conidia. There appears to be a minimum abundance and density of C. viridis 

that are necessary for an outbreak of L. lecanii to occur, i.e., an epizootic threshold 

density (unpublished data). When such an outbreak occurs, the fungus kills the vast 

majority of scales on entire coffee plants. Without A. instabilis tending the scales and 

providing protection from predators and parasitoids, the scale population is unlikely to 

reach a sufficient size for a fungal outbreak to occur (Reimer et al. 1993, Uno 2007). 

Therefore, A. instabilis is likely an important factor in determining the local prevalence 

of L. lecanii.

Our results suggest that a complete understanding of the epizootiology of L. 

lecanii will require knowledge of multiple phases of transmission and persistence: 

persistence in the soil, particularly during the dry season; translocation of propagules 

from the soil via rain splash; secondary dispersal between coffee plants, branches, and C. 

viridis individuals; and subsequent replenishment of the environmental reservoir in the 

soil. The spatial extent, phenology, and dynamics of epizootics in this system are all 

influenced by the details of these processes.
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Understanding the development of L. lecanii epizootics in this system is crucial 

because of the role L. lecanii may play in the biological control of important coffee pests: 

directly, by attacking C. viridis and the coffee rust H. vastatrix, and indirectly, via its 

potential to influence the spatial distribution of the A. instabilis-C. viridis keystone 

mutualism. Consequently, enhanced understanding of the mechanisms controlling the 

occurrence of L. lecanii epizootics in this system, and appropriate management practices 

informed by this knowledge (e.g., coffee plant height and planting density, shade levels, 

etc.), appear to have an enormous potential benefit in terms of improved conservation 

biological control in this and other similar coffee agroecosystems.
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CHAPTER III

Spatial and temporal dynamics of a fungal pathogen promotes pattern formation in 
a tropical agroecosystem

It is familiar knowledge in ecology first, that patterns in space are both striking 

and important and second, that complex interacting networks surround every population 

of every organism. It is only recently that these two issues have come together in a 

mutually reflective way, leading to a fundamental question of causality: does the spatial 

pattern determine the details of the interacting network or does the spatial pattern result 

from that network? While the existence of spatial patterns in extended landscapes has 

long been appreciated, it has frequently been assumed that they emerge from underlying 

habitat variables, which implicitly takes the pattern as an independent variable which 

determines the nature of population interactions of the species living in the landscape. It 

is only recently that a great deal of theoretical work has been devoted to demonstrating 

the possibility of the opposite causality, that the pattern itself is caused by the population 

interactions (Rohani et al. 1997, Bascompte and Solé 1998, Pascual et al. 2002, Rietkerk 

et al. 2002, Scanlon et al. 2007). Here we contribute to this debate with the suggestion 

that a fungal disease attacking the food of an ant ultimately causes the distributional 

patterns of the ant nests.

Recent studies have shown that the spatial distribution of the nests of an arboreal 

ant Azteca instabilis (Formica, Hymenoptera) in a coffee agroecosystem may emerge 

through self-organization (Perfecto and Vandermeer 2008b, Vandermeer et al. 2008). The 

ant A. instabilis builds nests in shade trees within the system and tends a species of scale 

insect (Coccus viridis, Coccidae, Hemiptera), which resides in the coffee bushes, in a 

classic ant/Hemipteran mutualistic association. The proposed self-organization process 

has been studied with the aid of a cellular automata model which involves local effects 

for both expansion and density-dependent mortality of the ant colonies (Vandermeer et al. 
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2008). The local expansion process is obvious from casual field observations, arising 

when ant colonies establish satellite colonies in neighboring trees. However, the cause of 

the density-dependent mortality is less evident. It has been attributed to the attack of a 

dipteran parasitoid (Pseudacteon sp., Phoridae), although evidence for this mechanism is 

only correlative (Vandermeer et al. 2008). Indeed there are a variety of other processes 

that could be responsible for the proposed density-dependent mortality. The most evident 

alternatives include a beetle (Azya orbigera, Coccinellidae, Coleoptera) that is a primary 

predator of C. viridis (Liere and Perfecto 2008), and an entomopathogenic fungus, 

Lecanicillium lecanii, that infects C. viridis. In this report, we discuss our investigation 

into the possibility that this latter candidate, the white halo fungus L. lecanii, could be the 

source of density-dependent control.

Lecanicillium lecanii, previously known as Cephalosporium lecanii, is part of 

what had been identified as the Verticillium lecanii species complex (Kouvelis et al. 

1999, Gams and Zare 2001). These entomopathogenic fungi are known to attack a variety  

of arthropods, many of which are important agricultural pests (Hsiao et al. 1992, 

Chandler et al. 1993, Helyer 1993, Gindin et al. 1996, Michaud and Browning 1999, 

Gindin et al. 2000, Rodríguez Dos Santos and del Pozo Núñez 2003) including C. viridis 

in coffee (Easwaramoorthy and Jayaraj 1978, Reddy and Bhat 1989, Uno 2007). It is also 

marketed as a biocontrol agent (Hall 1981, Khalil et al. 1985a, Khalil et al. 1985b, 

Ravensberg et al. 1990, Feng et al. 2000). In our study site, L. lecanii often creates a local 

epizootic, killing nearly all of the C. viridis on a single coffee bush or a small group of 

neighboring bushes (personal observations). The importance of honeydew to Hemiptera-

tending ants (Helms and Bradleigh Vinson 2008) suggests that such a decimation of a 

colony’s scale populations would substantially decrease colony growth and survival. 

Therefore, L. lecanii may reduce the amount of carbohydrate food available to an ant 

colony, resulting in an indirect negative effect on colony survival. Analogous increases in 

ant colony mortality attributable to a natural enemy attacking an ant colony’s mutualist 

partner have been reported for leaf-cutting ants, whose fungal cultivars are attacked by 

mycoparasites (Currie et al. 1999, Currie 2001, Reynolds and Currie 2004).
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To better understand the role of L. lecanii in this system, we investigated the 

distributions of L. lecanii at multiple spatial scales and the temporal dynamics of these 

distributions. Knowledge of the spatial distribution of the fungus, in terms of incidence 

and severity, is clearly important for assessing the potential for the fungus to influence 

the self-organization process. How the spatial distribution changes throughout the course 

of a local infection is a basic component of L. lecanii’s natural history and a clear 

determinant of its impact on the spatial dynamics of the ant mutualist, A. instabilis. We 

also developed a coupled cellular automata model of the ant nests and fungus to 

demonstrate that it is possible to generate the observed spatial distribution of ant nests 

using a very simple model that distills the hypothesized pattern formation mechanism 

into a few simple functions.

Methods

The study site is located at Finca Irlanda, a 300 hectare, organic coffee farm in the 

Soconusco region of Chiapas, Mexico (15° 11' N, 92° 20' W). The farm is a commercial 

polyculture, with coffee bushes growing beneath trees that have been planted in an 

approximately uniform distribution. The dominant shade trees are Inga spp., Alchornea 

latifolia, and Trema micrantha (Martinez and Peters 1996), some of which have 

extrafloral nectaries. Previous work had been done by Vandermeer et al. (2008) to map 

the locations of every shade tree in a 45 hectare plot within the farm and to conduct 

periodic censuses of A. instabilis nest locations. The 45 ha plot is a 600 m X 800 m 

rectangle with a 100 m X 300 m rectangle excluded from one corner of the plot due to the 

inaccessibility of the terrain. There are ≈11,000 shade trees in the 45 ha plot, of which 

≈300 contain ant nests. The spatial distribution of the ant nests is clumped, with a mean/

variance ratio significantly different from a random distribution, and a cluster size 

distribution that is thought to be characteristic of robust criticality (Vandermeer et al. 

2008).

To assess the distribution of the fungus at a large scale, the 45 ha plot was divided 

into 50 m X 50 m quadrats. Using the available ant nest census data, the shade tree 

containing an ant nest that was closest to the center of each quadrat was identified. Since 
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the purpose of the survey was to determine the potential for the fungus to contribute to 

the mortality of existing ant nests, quadrats without ant nests were excluded from the 

survey. Quadrats at the edge of the plot were also excluded to avoid including areas that 

might be influenced by unknown factors existing outside of the censused area. The 

incidence and severity of the fungus were measured in the coffee bushes neighboring 

each of 56 shade trees between July 8 and Aug 1, 2006. Due to the time required to locate 

and travel to each shade tree, the order in which the trees were surveyed was determined 

by their geographic location; time constraints prevented a random survey sequence.

Neighboring coffee bushes were defined as those directly adjacent to the shade 

tree or within 2 m, whichever resulted in a larger number of bushes. This was necessary 

because in some locations the nearest bushes were > 2 m from the shade tree, while in 

others it was impractical to survey all of the coffee bushes in an area with a radius larger 

than 2 m.

Every branch on every neighboring coffee bush was inspected to see if any scales 

had been infected. As suggested by its name, “white halo fungus,” it is obvious when a 

scale is in the later stages of infection by L. lecanii; the mycelial mat of the fungus forms 

a distinctive white ring around the infected scale, which is normally a bright green color. 

If a fungal infection was detected in a location, the severity was ranked as high, low, or 

medium, as follows: high = one or more neighboring coffee bushes with a scale 

population with very high levels of mortality due to L. lecanii, i.e., having multiple 

branches with >50% scale mortality; low = one or more neighboring coffee bushes with 

<10 scales killed by L. lecanii; and medium = one or more coffee bushes with fungal 

mortality between the low and high levels.

The large-scale spatial distribution of the fungus was analyzed using Ripley’s K, 

transformed such that the expectation for all sample sizes is zero for a random spatial 

pattern and greater than zero for clustered patterns (Goreaud and Pélissier 1999). The 

survey data were compared by the Monte Carlo method, using 1000 simulated Poisson 

patterns of fungus presence/absence at the sample locations used in the fungus survey, 

i.e., accounting for the underlying non-random distribution of the sample points.
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To study the distribution and dynamics at an intermediate scale, we identified two 

clusters of A. instabilis nests. Site A had a cluster of four trees and had been intensively 

studied four years ago, including detailed surveys of scale insects on coffee bushes at 

various distances from the central A. instabilis nest. Four years ago only one of the four 

trees was occupied by an ant nest, three years ago two trees were occupied, and 

beginning in 2007 all four trees were occupied. Site B had no ant nests at all during the 

original census of 2004 and six trees occupied in the 2007 and 2008 censuses, with the 

three central nests appearing to be the oldest of the six. Thus, by 2008, site A was an 

“old” site, having been occupied by A. instabilis at least since our study began in 2004, 

while site B was a “new” site, clearly unoccupied in 2004 but having six trees occupied 

by 2007. At both sites A and B we examined coffee bushes at various distances from the 

central nest, establishing spatial coordinates for each of the trees examined. For each 

bush we chose the largest main stem, or for very small bushes we examined the entire 

plant, and systematically assessed each branch for scale insects and fungal (L. lecanii) 

attack. For making a rapid assessment, we categorized branches, with regard to scale 

insects, as 1) very low (between 1 and 5 scales), 2) low (between 5 and 25 scales), 3) 

medium (between 25 and 75), 4) high (between 75 and 125), and 5) very high (more than 

125). These assessments were translated into numbers (very low = 2, low = 10, medium = 

50, high = 100, and very high = 200), and data represented as average number of scales 

per branch. In site A 149 bushes and in site B 132 bushes were examined. Assessment of 

L. lecanii infection was based on a percentage, regardless of the number of scales 

involved (if there was only one scale insect on a branch but it was infected with fungus, 

the branch was categorized as 100% infected). Intensity of infection was then represented 

as the number of infected scales per branch. 

At the level of individual shade trees, we identified two shade trees with ant nests 

and high levels of fungal infection, i.e., with large scale populations (>>100 scales) 

exhibiting a high incidence of fungal mortality. The locations of every coffee bush within 

4 m of the central shade trees were measured. The total number of branches, the number 

of branches with uninfected scale populations, and the number of branches with infected 
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scale populations were counted on each bush during three censuses. Branches with one or 

more individual scales infected by L. lecanii were categorized as “infected.” Shade tree 

#1 was censused on July 6, July 19, and August 5, 2006. Shade tree #2 was censused on 

July 8, July 25, and August 7, 2006.

To study dynamics at a smaller scale, a single coffee plant with scale populations 

in the beginning stages of infection was chosen. There were 4 individual shoots on this 

plant. Each branch was marked with a letter indicating the shoot (A-D) and a number 

indicating the branch, starting with the lowest branches, e.g., A1. The healthy and 

infected scales on each branch were counted on July 7, July 24, and August 6, 2006; only 

large (> ≈2 mm) scales were counted.

To test the plausibility of the hypothesis that L. lecanii acts as the inhibitor in the 

spatial self-organization process (as elaborated more completely in the discussion), we 

created a cellular automata model (CA) representing the spatially explicit epizootiology 

of A. instabilis and L. lecanii. The model is a version of the ant CA developed by 

Vandermeer et al. (2008) modified to include the spatial distribution and dynamics of L. 

lecanii. As in the original ant CA model, the 45 ha study plot is represented by a 90 X 

120 lattice. Each cell in the lattice can be in one of three states: empty, occupied by an ant 

nest whose scale insect populations are free of L. lecanii, or occupied by an ant nest 

whose scale insects are infected by L. lecanii. As in the original formulation of the model 

(Vandermeer et al. 2008), the probability of an empty cell being occupied by a new ant 

nest via satellite expansion of a neighboring nest is a linear function of the number of 

occupied nests in the eight-cell Moore neighborhood, N (ps = s0 + s1N for N > 0; ps = 0 

for N = 0). The satellite expansion parameter values used in Vandermeer et al. (2008), 

which were based on field census data, are also used in this extended version of the 

model (s0 = 0.0035, s1 = 0.035). Ant nest mortality, which in the original model was a 

probabilistic function of the number of neighboring ant nests, is now a function L. lecanii 

infection. If infected, the probability of ant nest mortality is equal to the virulence of the 

fungus, v; otherwise, the probability of nest mortality is zero. If a nest at an infected site 

survives one time step, the site remains infected in subsequent time steps until the nest 
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dies, i.e., there is no recovery. Transmission of the fungus into an uninfected ant nest is 

analogous to the ant nest satellite expansion function: the probability of transmission is a 

linear function of the number of infected nests in the Moore neighborhood, F (pt = t0 + t1F 

for F > 0). In addition, there is a very small probability, a, that an uninfected site with no 

infected neighbors will become infected; this is necessary to prevent the fungus from 

becoming extinct, but is also biologically reasonable given that L. lecanii has been 

reported to persist in environmental reservoirs, e.g., in the soil (Eapen et al. 2005, 

Meyling and Eilenberg 2006); infection of isolated sites, with F = 0, represents a low 

probability transmission from an environmental reservoir. 

The purpose of the model was to demonstrate that a simple model incorporating 

the hypothesized biology of the system (L. lecanii-induced mortality or migration of ant 

nests) could generate the observed spatial distribution. To explore the parameter space of 

the model, we employed a genetic algorithm (Goldberg 1989, Whitley 1994) to search for 

values of v, t1 and a that could generate a spatial pattern of ant nests qualitatively and 

quantitatively similar to the pattern observed in the field. While the initial setup and 

configuration of a genetic algorithm may be slightly more complicated than some other 

possible optimization algorithms, e.g., hill climbing, our past experience with other 

spatially explicit models has shown the potential for results to depend on parameters in 

complex, non-linear, or counterintuitive ways. Since we had no a priori knowledge of the 

shape of the fitness landscape, we chose to use a genetic algorithm approach because of 

its ability to find solutions even when the fitness landscape is discontinuous, noisy, or 

complex. The quantitative targets were a mean/variance ratio of ≈0.42 (a significantly 

clumped pattern; Monte-Carlo method using 10,000 simulated Poisson patterns with the 

same density as the field census data; P < 0.0001) and a density of ≈0.03 nests/shade tree, 

which are values obtained from the field census data. To reduce the size of the search 

space, we fixed t0 = 0 and a < 0.01 for all runs. We ran each simulation for 1000 time 

steps and calculated the average density and mean/variance ratio of the final 250 time 

steps. In addition, the fitness function used in the genetic algorithm included a term for 
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the stability of the density and mean/variance time series to ensure that the model had 

reached steady state by the end of the run.

Results

At the large scale, of the 56 locations sampled, 32 (≈57%) exhibited signs of L. 

lecanii infection. The number of locations in each of the four severity categories were: 

absent, 24 (≈43%); low, 21 (≈38%); medium, 3 (≈5%); and high, 8 (≈14%). There was no 

obvious pattern underlying the spatial distribution of the fungus at the scale of the 45 ha 

plot. According to the Ripley’s K analysis, below a sampling circle radius of ≈160 m the 

distribution of the fungus does not differ significantly from the random expectation 

(given the underlying distribution of sample points); at some spatial scales above a radius 

of ≈160 m, the distribution is significantly more uniform than random, but at other scales 

it does not differ significantly from the random expectation (Figure III.1).

Figure III.1. Graph of transformed Ripley’s K versus radius of sampling circle. The dashed line is the 
average value for 1000 random, simulated fungal distributions. The shaded area delineates 95% confidence 
intervals. Simulated distributions were created by randomly allocating the observed instances of fungal 
presence among the sample points, thereby accounting for the underlying spatial distribution of the sample 
locations. The solid line is the transformed Ripley’s K for the field data.

At the meso scale, site A has been monitored for the past 4 years, so the sequence 

of occupation of individual shade trees by A. instabilis is known precisely, as shown by 

the arrows in Figure III.2. The distribution of both scale insects and the white halo fungus 

disease is also shown in Figure III.2. From previous sampling we know that the 
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distribution of scale insects as a function of distance to the central tree (one of the two 

occupied four years ago) is decreasing (Figure III.2a). Except for a very large 

concentration of scale insects within about 5 meters from the shade tree containing A. 

instabilis, the density of scales declines rapidly as the distance from the central tree 

increases. At a distance of more than 10 meters, the majority of coffee bushes have only a 

few scale insects, with an occasional tree containing a larger cluster, always tended by a 

different ant species, although never at the level reached under the protection of A. 

instabilis (Figure III.2). It is worth noting that, although we did not explicitly search for 

L. lecanii four years ago, it is unlikely that it occurred very commonly since our field 

notes would have reflected its presence (indeed, it is most likely that L. lecanii was not 

present at all at this site four years ago).

Site B was sampled in the summer of 2008, but from previous surveys we know 

that the entire area surrounding where the six ant-occupied trees are currently located was 

free of A. instabilis colonies until recently (between one and three years prior to the 

summer of 2008). That is, this particular cluster of ant nests is young, having been 

established subsequent to 2005. The population densities of C. viridis are slightly lower 

than in site A, and the distribution of the white halo fungus disease is more restricted 

(Figure III.2b), both patterns of which can be explained by the young age of this cluster 

of ant nests. It is obvious from the field observations that three of the six occupied shade 

trees are not at all associated with large densities of the scale insects (Figure III.2b), 

suggesting that they were more recently occupied than the three shade trees around which 

the high densities of scale insects occur.
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Figure III.2. Representation of two intensively sampled sites in the study area. Final sample in June/July, 
2008 is shown. Site A was occupied by A. instabilis at least since 2004, while site B was newly occupied 
sometime within the past three years. The size of the slightly shaded bubbles is proportional to the number 
of scale insects per branch of a coffee bush located at that particular coordinate. The size of the darkly 
shaded bubbles is proportional to the intensity of fungal disease (caused by L. lecanii) on that bush. Large 
crosses indicate positions of shade trees occupied by A. instabilis and small crosses indicate positions of 
unoccupied (and presumably occupiable) shade trees in the system. Arrows indicate presumed direction of 
spread of the ant colony from historical records. Plots are both 40 X 50 meters.

At the level of individual shade trees, the initial and final distributions of scales 

and fungus around the two shade trees are shown in Figure III.3. In the initial survey of 

the coffee bushes surrounding shade tree #1 (Figure III.3a), the branches with the largest 

scale populations were located in two bushes in the lower left quadrant. Some of the scale 

populations on these bushes were already infected by L. lecanii. By the second census, 

the number of branches with scale populations in the lower quadrants, i.e., next to the 

bushes with the largest initial scale populations, had increased substantially, but the 

fungus was still largely confined to the two original bushes. Between the second and third 

censuses, scale populations had been established on multiple branches in all of the coffee 

bushes, but the level of fungus outside of the original two heavily infected bushes 
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remained roughly equal to the initial level (6 bushes with 1-2 infected branches in the 

initial survey, 7 bushes with 1-4 infected branches in the final survey). 

A higher proportion of coffee bushes in the neighborhood of the second shade tree 

(Figure III.3b) already had established scale populations infected by L. lecanii at the 

beginning of the census. Throughout the censusing period, there was an increase in the 

number of branches with scales, but there was not a substantial spread of fungus to 

previously uninfected coffee bushes; 3 plants that were initially uninfected had 1-2 

infected branches by the time of the final survey.

47



(a)

(b)

Figure III.3. Scales and fungus in coffee bushes surrounding two shade trees. Shade trees are located at (0, 
0). The sizes of the white, gray, and black circles are proportional to the number of: total branches, 
branches with uninfected scale populations, and branches with infected scale populations, respectively. (a) 
shade tree 1, July 6 and August 5, 2006 (b) shade tree 2, July 8 and August 7, 2006

The distribution of healthy and infected scales on each of the four shoots of the 

coffee bush chosen for the individual coffee plant-level census are shown in Figure III.4. 

Shoots B and C, which had the largest scale insect populations, reveal pronounced 
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humped distributions of the scales across the branches. Moving from the low branches 

(small branch numbers) to the high branches (large branch numbers) on the shoots, the 

size of the scale insect populations generally increased until the top few branches, which 

generally had much smaller populations per branch due to the relatively small physical 

size of these younger leaves. Incidence was relatively low in the initial census, with the 

majority of branches showing little or no evidence of infection. By the second census, L. 

lecanii infection was more prevalent, but the majority of the scales on all of the branches 

were still healthy. Between the second and third censuses, there was a general increase in 

the size of the scale populations and infection by L. lecanii spread to all of the branches, 

with the populations on many of the branches experiencing 50% or greater mortality due 

to L. lecanii. 

Figure III.4. Number of healthy (white) and infected (black) scales on the branches of 4 shoots on a single 
coffee bush. Branches with higher numbers are higher on the shoot. Data from three censuses (July 7th, 
July 24th, and August 6th, 2006) are shown.
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Using the ant/fungus epizootiology CA model, we find it is possible to generate 

qualitatively and quantitatively similar ant nest spatial distributions using a range of 

values for v and t1. As for parameter estimation using the genetic algorithm, the highest 

fitness parameter values were confined to a narrow band of v and t1 values (Figure III.5), 

with parameter values away from this region unable to generate the target spatial pattern 

regardless of the value of a. In Figure III.6 we show a representative snapshot of the 

results of the model with parameters v = 0.35, t1 = 0.63, and a = 0.007. As can be clearly 

seen, the qualitative nature of the nest clustering reported in Vandermeer et al. (2008) can 

be reproduced with this model. The ranges of densities and mean/variance ratios 

generated by this model (Figure III.7) also encompass the values for the field samples 

reported in Vandermeer et al. (2008).

Figure III.5. The black line represents the high-fitness region in v, t1 parameter space in which it is 
possible to generate spatial patterns of ant nests that are qualitatively and quantitatively similar to the 
pattern observed in the field. Away from this region, it is not possible to generate the observed spatial 
distribution for t0 = 0 and a < 0.01; in the gray shaded region, the ants go extinct for most values of a.
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Figure III.6. Example snapshot of the ant and fungus CA model for v = 0.35, t0 = 0, t1 = 0.63, and a = 
0.007. The black dots indicate the locations of ants nests. The shaded circles indicate nest sites infected by 
L. lecanii. Note that the model only considers the presence of the fungus and not its intensity.

Figure III.7. Time series for a representative run of the ant and fungus CA model for v = 0.35, t0 = 0, t1 = 
0.63, and a = 0.007. Dashed lines indicate the density and mean/variance ratio targets used for the genetic 
algorithm search. Each model time step corresponds to a six-month interval.
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Discussion

 Although the fungus is relatively common in the coffee bushes surrounding ant 

nests in the 45 ha plot (≈57% of shade tree neighborhoods sampled showed some signs of 

L. lecanii infection), it is doubtful that the local intensities most commonly encountered 

are sufficient for the fungus to significantly influence the spatial distribution of ant nests. 

Therefore, the frequency of high severity fungal infections, which only occurred in ≈14% 

of the shade tree neighborhoods sampled, is probably the most appropriate measure to 

consider when assessing the potential influence of L. lecanii on pattern formation of the 

ant nests. 

Furthermore, at this large scale, no clear pattern of fungal distribution could be 

seen, although its presence is widespread. Casual observations prior to the formal survey 

led us to believe that the fungus was absent in the majority of the area and much more 

prevalent in one particular half of the plot. However, it was clear from our survey that it 

is difficult to determine with any certainty whether the fungus is present in a location 

without examining every single leaf and branch of every coffee bush, as there are many 

locations where the fungus infects only one or a few scales. Without a thorough search, 

detecting fungal infections in lightly-infected locations is unlikely. Therefore, it is 

perhaps not surprising that a more systematic survey failed to support our preliminary 

assessment. The fungus was not obviously more prevalent in a particular half of the plot, 

and the Ripley’s K analysis indicates that the distribution of the fungus is not 

significantly different from random at most spatial scales; if anything, it tends towards a 

uniform distribution, which is directly opposite of what was suggested by our initial 

assessment.

Because sporadic infections are common, it is possible that L. lecanii is present 

everywhere in the plot, lying latent in an environmental reservoir. It has been reported 

that some strains of white halo fungus can persist as saprotrophs in the soil (Eapen et al. 

2005, Meyling and Eilenberg 2006). If the variety in our samples is able to live in the 

soil, new infections of scale populations in a given location may be more a matter of 

fungal spores being transmitted from the soil as opposed to the spores being transmitted 
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from active infections on other coffee plants (Jackson et al. In press). This explanation 

would be consistent with the wide-ranging, sporadic distribution of the fungus throughout 

the plot. However, it is important to keep in mind that repeated surveys at a higher spatial 

resolution might reveal an underlying spatial distribution pattern that was not possible to 

resolve with the method used in our study.

At the meso scale (Figure III.2) it is possible to deduce the general behavior of the 

fungal disease if we consider site A four years ago as a base line case (since we did not 

encounter the fungal disease at that time), site B in 2008 as an intermediate case and site 

A in 2008 as a more advanced case. The pattern that exists today, coupled with the pattern 

of migration of the A. instabilis nest, strongly suggests that the ant nest moves partially in 

response to the fungal infection of its main food source, leaving a trace of scale 

populations devastated by the disease near the locus of the original ant nest site, and scale 

populations built up but not yet infected nearer to the more recently occupied shade trees. 

In Figure III.8 we present the log of the intensity of fungal disease along with the log of 

the scales per branch for those three stages. The progression of both the disease and the 

scale insects is apparent, the scale insects slowly building up local population densities 

and dispersing, the fungal disease following in an epizootiological fashion.
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Figure III.8. Data from two sites at two different times, illustrating the stages of development of the fungal 
pathogen, L. lecanii and its host C. viridis. Open circles = C. viridis (the scale insect), closed triangles = L. 
lecanii (the fungus that causes white halo disease in the scale insect). In all three cases the log of the insect 
and fungal abundances are plotted as a function of the distance to the main ant nest in the system. In Stage I 
are the data from site A in 2004, when the fungal disease was absent and the scale populations seemed to be 
on the increase both locally and in space. In Stage II are the data from site B in 2008, seemingly 
representing a situation in which the fungal disease has only recently arrived in the area and is beginning its 
spread throughout the general area, but has not extended much more than five or six meters beyond the 
initial infective zone. In Stage III are the data from site A again, but from 2008, where we see the major 
expansion of the fungal disease that seems to be following the expansion of the scale insects in space. Stage 
IV (not pictured here) is represented in several cases in our plots, in which the entire system, ant-scale-
fungus, have locally disappeared entirely.

Part of the dynamics of this system, as is evident from a casual examination of 

Figure III.2, is the maintenance of C. viridis in the absence of the major ant mutualist. 

That is, once one moves more than approximately 10 meters from the main nest, it is very 

unlikely that A. instabilis will be tending scales. Nevertheless, there are always some 

bushes to be found with a relatively high concentration of scale insects, although never 

on the same order of magnitude as when they are with A. instabilis. These outliers are 

always tended by other species of ants (personal observations). Indeed, in a separate 

study we have encountered almost 80 species of ants that are potential tenders of the 
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scale insects (Philpott et al. 2006). However, none of them has ever been observed as 

being as effective as A. instabilis, and we have never encountered a coffee bush with 

more than 250 scale insects that was not under the protection of this primary mutualist. 

However, those other ants are critical to the system in that they maintain the scales over a 

large region, albeit at a relatively low density. 

Also part of the dynamics is the evident fact that the scales are always present at 

very low numbers, even in the complete absence of tending ants. While it always appears 

to field workers that there are zero scales in the absence of one of their ant mutualists, 

careful searching invariably reveals one or two scales on almost every coffee bush in the 

plantation. It is most likely that this low but consistent population density is maintained 

by a continual rain of crawlers blowing around the farm, emanating mainly from the 

centers established by A. instabilis.

Moving to a lower spatial scale, the maps of the fungus in the coffee bushes 

neighboring a single shade tree suggest that scale populations primarily spread locally 

from bush to bush, since the bushes with high numbers of branches containing scales tend 

to be close to one another; this would be consistent with a propagation of scales from one 

or a few initial populations in a neighborhood of coffee bushes. The censuses performed 

at the shade tree-neighborhood level indicate that it would be necessary to initiate 

censuses earlier in the wet season in order to capture the spatial and temporal dynamics 

of the fungus spread at this spatial scale (Figure III.3).

It is important to note that A. instabilis very probably plays a central role in the 

dynamics of L. lecanii infection of C. viridis. Field observations suggest that there is a 

minimum abundance and density of C. viridis that are necessary for an outbreak of L. 

lecanii to occur. When such an outbreak occurs, the fungus becomes locally epizootic, 

killing the vast majority of scales on entire coffee bushes. Without A. instabilis tending 

the scales and therefore providing protection from predators and parasitoids, the scale 

population is unlikely to reach a sufficient size for a fungal outbreak to occur (Uno 2007). 

Considering the results as a whole, a general picture of the overall spatial 

dynamics emerges. Scale insects initially arrive at coffee plants more-or-less as propagule 
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rain, being carried by the wind. While local increase in scale abundance is clearly from 

local reproduction, there is also undoubtedly a general dispersion since almost every 

coffee plant in the entire coffee farm has one or two scale insects on it. The second stage 

in the overall dynamics depends on ants other than A. instabilis, generally. Acquiring the 

protection of one of these other ants allows the scale insects to build up a local population 

density above the normal background density, such that if A. instabilis did not exist in the 

system at all, the local build up of intermediate densities of scales would probably not 

change, but the size of propagule rain would, since the majority of propagules probably 

comes from the clusters of A. instabilis nests, as reflected in the distribution of scales as a 

function of distance from ant nests (Figures III.2 and III.8). The consequence of these 

fundamental scale insect spatial dynamics is an approximate general power function 

distribution of scale insects (Alonso and Pascual 2006, Pueyo and Jovani 2006, 

Vandermeer and Perfecto 2006a, Vandermeer and Perfecto 2006b), with a very few large 

clusters of individuals on a coffee bush (never as large as they get under protection of A. 

instabilis), but a huge number of coffee bushes with just a few individuals.

The dynamics of A. instabilis thus confronts the prospect of encountering these 

clusters of scale insects as it searches for additional nesting sites. When an A. instabilis 

nest seeks to expand its colony, it establishes a satellite colony in a nearby shade tree 

(occasionally a coffee bush) and begins the search for scale insects and other sources of 

carbohydrates. Other species of honeydew-producing insects are also sources (Livingston 

et al. 2008), but the major source is C. viridis. Since it is not the case that all individual 

shade trees harboring an A. instabilis nest are surrounded by coffee bushes with large 

concentrations of scale insects, it must be the case that occupation of a shade tree is not 

conditioned by the presence of this mutualist, but rather that the mutualism develops 

later, probably mainly from the initial clusters of scale insects produced by mutualism 

with other ants. It remains to be seen exactly what the survival probability of a nest in an 

individual tree is either with the development of a large C. viridis population or not, but it 

seems a reasonable speculation that a “trial” A. instabilis nest in a new tree may be 

abandoned if no C. viridis population can be cultivated soon. On the other hand, other 
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honeydew-producing insects in the shade trees, as well as extrafloral nectaries in those 

shade trees may serve this purpose also. 

A successful new A. instabilis nest seems to almost always result, eventually, in 

very large clusters of C. viridis within about 5 meters of the nest tree, resulting in a key 

deviation from the underlying statistical distribution of the scale insects themselves 

(Alonso and Pascual 2006, Pueyo and Jovani 2006, Vandermeer and Perfecto 2006b, 

Vandermeer and Perfecto 2006a). However, the very large concentrations of C. viridis 

provide a locus for the epizootic development of L. lecanii. The dispersal dynamics of the 

latter are not completely understood, but it is clear that at least three dispersal phenomena 

are involved: 1) individual scales become infected seemingly at random and not 

necessarily associated with the local population density of scale insects, 2) epizootic 

spread of the disease within a high-density population of the scale on an individual 

branch of a coffee bush occurs predictably, partially as a result of ant foraging (Jackson et  

al. In press), 3) local spread from a coffee bush to neighboring coffee bushes also occurs, 

but in an unpredictable and relatively slow fashion. It is this third mode of dispersal that 

may have the most important consequences as far as the A. instabilis is concerned, for it 

seems that a local epizootic of white halo fungus spreading locally from bush to bush is 

one of the causes of the ant nest searching out new shade trees for establishment of 

satellite nests.

So the general picture emerges of the A. instabilis nest establishing in a new shade 

tree and searching out local coffee bushes for local concentrations of C. viridis. Having 

encountered local concentrations, the mutualistic effect of the ant permits the scales to 

build up to extremely high population densities in bushes near to the shade tree 

containing the new nest. However these extremely large populations of scale insects 

become targets for the epizootic development of the white halo fungus which, once 

established in an area, appears to become endemic, following the ant colony around as 

new shade trees are occupied, eventually, perhaps, resulting in the death of an entire 

cluster of ant nests (or a large-scale abandonment of the area and migration to some more 

distant site). This basic natural history generates the rationale for the double CA model, 
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as described in the methods section. The fundamental question to be answered is whether 

this natural history (as represented qualitatively in the CA model) is capable of producing 

the self-organized clustering pattern of ant nests that we see in the field; as shown in 

Figure III.6, the answer is affirmative.

The significance of this mechanism of self-organized spatial pattern is dual. First, 

it is arguable that the dynamics and propagation of L. lecanii creates the conditions for its 

own survival. Since epizootics only occur when the scale insect population reaches a 

critical size, and since that critical size only occurs when ants are tending the scales, it is 

clear that ants are necessary for the production of the epizootics. If the fungal pathogen 

drives the shifting pattern of the ant/scale mutualism, it could be said that the fungus 

creates the background conditions that are necessary for its survival because of its 

potential to influence the spatial distribution of A. instabilis nests. Second, expanding our 

knowledge of the spatial ecology of this fungal pathogen is important because of the role 

L. lecanii may play in the biological control of important coffee pests. In addition to 

attacking C. viridis, which has the potential to reach pest status if not under some natural 

control, L. lecanii has also been shown to be a hyperparasite of the coffee rust, Hemileia 

vastatrix (Shaw 1988, Eskes 1989, González et al. 1995). The magnitude and spatial 

extent of the control of H. vastatrix by L. lecanii clearly depend on the spatial distribution 

of L. lecanii (Vandermeer et al. 2009), so obtaining a better understanding of the spatial 

and temporal characteristics and propagation of L. lecanii is an important component of 

understanding and improving the biocontrol potential of L. lecanii, certainly in the case 

of the green coffee scale and possibly in the case of the coffee rust. 
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CHAPTER IV

Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the 
entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem

Agriculture has long been recognized as playing a central role in the development 

and survival of modern civilizations. It is also well known that from the very beginning 

of agriculture there have been organisms coexisting in close association with the primary 

crops of interest, some of which have been able, under favorable conditions, to proliferate 

to such an extent that they become economically important pests. Through their 

devastating effects on agriculture, these pests have sometimes had profound and long-

lasting effects. Prominent among these pests are plant pathogens, such as Puccinia 

striiformis, which causes stripe rust that can decimate entire fields of susceptible wheat 

varieties (Chen 2005), and the oomycete Phytophthora infestans, the causative agent of 

the potato blight that contributed to the Great Irish Famine and the resultant decimation 

of the population of Ireland (Fry 2008), to mention just two of the more well-known 

examples.

The coffee rust Hemileia vastatrix Berkeley and Broome is likewise a plant 

pathogen of great historical import, and one of the most important diseases of Arabica 

coffee in the world. Heavy infections cause decreased photosynthesis and increased 

defoliation (Kushalappa and Eskes 1989), and producers continue to incur significant 

costs due to crop losses and mitigation efforts, with yield losses of 6-13% and annual 

costs worldwide due to coffee leaf rust estimated to be US$1 billion (Hein and 

Gatzweiler 2006). In the late 1800’s, H. vastatrix swept through the coffee growing 

regions of Sri Lanka (then Ceylon) and southern India, leading to the abandonment of 

coffee as a major crop in these areas (McCook 2006). In 1970, the detection of H. 

vastatrix in Brazil led to great concern that a rust epidemic in Latin America was 

imminent. However, a devastating Latin American epidemic of the magnitude that was 
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experienced in South Asia has not yet materialized, although there is growing concern 

that the severity of coffee rust will increase under climate change (Ghini et al. 2011). 

Coffee rust is currently controlled primarily through application of copper 

fungicides, the use of resistant cultivars, and cultural methods, such as reduction of shade 

cover. However, there are significant drawbacks to each of these approaches. Copper 

fungicides have been shown to increase the abundance of coffee leaf miners and coffee 

mites (Eskes et al. 1991), and there are significant concerns about their effects on human 

health (Loland and Singh 2004, Kanoun‐Boulé et al. 2008). Development of durable 

genetic resistance in the face of variability in the pathogenicity of H. vastatrix continues 

to be a challenge (Brito et al. 2010). Finally, reducing shade cover in coffee growing 

regions has been demonstrated to have a strong, detrimental effect on biodiversity 

(Perfecto et al. 2003).

In light of the aforementioned problems with conventional control approaches, 

there has been continued interest in the biological control of coffee rust (Shiomi et al. 

2006, Haddad et al. 2009) and other alternative control strategies (Avelino et al. 2004). 

The entomopathogenic and mycoparasitic fungus Lecanicillium lecanii (Zimmerman) 

Zare and Gams has been of particular interest, primarily in terms of its use as an 

augmentative biological control agent (Kushalappa and Eskes 1989, Canjura-Saravia et 

al. 2002), which entails the application of additional inoculum to bolster naturally-

occurring populations of the biocontrol agent. However, results of field trials have been 

mixed. Alarcón and Carrión (1994) reported the successful establishment of L. lecanii on 

H. vastatrix in experimental plots that had been sprayed with a fungal suspension and the 

subsequent spread of L. lecanii into unsprayed control plots. In contrast, Eskes et al. 

(1991) saw no development of hyperparasitic growth of L. lecanii on H. vastatrix in the 

field, despite having demonstrated hyperparasitic activity on coffee rust in the laboratory. 

They attributed this failure to low air humidity, other environmental factors, or 

antagonists in the phylloplane.

Given the potential difficulty of employing L. lecanii as an augmentative 

biological control, a strategy based on conservation biological control may prove to be 
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more effective. Conservation biological control involves management of agroecosystems 

such that the persistence and efficacy of natural pest controls is enhanced (Barbosa 1998, 

Pell et al. 2010). 

The development of a successful conservation biological control program will 

require a thorough understanding of the ecology of both pest and pest control agent, 

which includes verifying that naturally-occurring L. lecanii can significantly reduce the 

prevalence or severity of H. vastatrix under field conditions. Some progress has been 

made towards this goal by Vandermeer et al. (2009), who showed, using field surveys of 

L. lecanii and H. vastatrix prevalence in an organic coffee farm in southern Mexico, that 

the presence of L. lecanii is correlated with a significant reduction in the prevalence of H. 

vastatrix.

Although the Vandermeer et al. study demonstrated that there is a significant 

negative correlation between the abundance of L. lecanii and the prevalence of coffee rust 

within the same year, we hypothesize, based on the natural history of the two fungi, that 

there may be an effect across years that could be as strong, or even stronger, than the 

within-year effect. Hemileia vastatrix is generally considered to be a biotrophic, 

autoecious rust, i.e., it can only survive on living host tissue, and there is no known 

alternate host (Kushalappa and Eskes 1989, Moricca and Ragazzi 2008). Therefore, 

antagonists must attack the rust directly on living coffee leaves when the rust is active. 

This implies that a high abundance of L. lecanii at the beginning of the period of high rust  

activity, as a result of proliferation of this antagonist in the previous year, may play a 

powerful role in the prevention of a rust outbreak by curtailing the reproduction of the 

rust before it has an opportunity to become locally epidemic.

In our study system, located at the same site as the Vandermeer et al. study, the 

abundance of L. lecanii is largely determined by the abundance of its primary host, the 

green coffee scale Coccus viridis Green (Hemiptera: Coccidae). Lecanicillium lecanii 

forms a conspicuous white halo of mycelia and sporulates freely in its advanced stages of 

infection on C. viridis. In the presence of its mutualistic partner, the arboreal nesting ant 

Azteca instabilis, C. viridis typically reaches very large population sizes – on the order of 
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hundreds, or even thousands, of individuals per coffee plant. These large populations are 

susceptible to epizootics of L. lecanii, and therefore serve as a major source of inoculum. 

Therefore, the spatial distribution of the A. instabilis colonies determines where 

populations of C. viridis will flourish, thus indirectly influencing the spatial distribution 

of L. lecanii, which in turn may affect the prevalence of H. vastatrix (Figure IV.1).

Figure IV.1. The basic biology of the system. The ants (A. instabilis) are mutualistically associated with the 
scale insects (C. viridis), indicated by positive arrows. The white halo fungus (L. lecanii) has a negative 
effect on the scale insects, indicated by a negative circle, as well as a negative effect on the coffee rust (H. 
vastatrix). The ants and scale insects occur in spatially restricted pockets on the farm, indicated by the oval 
containing them. The farm as a whole, indicated by the dashed rounded rectangle, contains the white halo 
fungus and the coffee rust.

It is possible that spores from active epizootics could directly attack H. vastatrix 

within the same season. However, the soil has been shown to serve as an environmental 

reservoir of viable propagules of L. lecanii (Meyling and Eilenberg 2006), and these 

propagules can be translocated from the soil onto the coffee plant via rain splash (Jackson 

et al. In press), so it is also conceivable that spores of L. lecanii accumulate in the soil 

during one wet season and attack the rust when it emerges from dormancy during the 

subsequent wet season (Waller 1982). This scenario would imply that the prevalence of 

H. vastatrix would be affected by the abundance of L. lecanii in the previous wet season, 

i.e., there would be a one-year lag in the effect of L. lecanii on rust prevalence.
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To test this hypothesis, we compared the abundance of L. lecanii and the 

prevalence of H. vastatrix across two years, in sites subject to epizootics of L. lecanii 

associated with the C. viridis-A. instabilis mutualism.

Methods

Experimental location and cropping system

The study was conducted in Finca Irlanda, a certified organic, shade-grown coffee 

farm in the Soconusco region of Chiapas, Mexico. Two experimental sites, Site A and 

Site B, were chosen in order to encompass active A. instabilis colonies. According to 

biannual censuses of the study sites, the A. instabilis nest in Site A was established in 

2007, and Site B was occupied by one or more A. instabilis colonies from the first survey, 

in 2001. Site A included 470 coffee plants, in an area of approximately 50×50 m, and Site 

B comprised 415 plants, in an area of approximately 30×40 m.

Surveys

Surveys of L. lecanii and C. viridis were conducted in both sites in September 

2009. The identity of L. lecanii as the prominent fungal antagonist of C. viridis in this 

system has been confirmed based on morphological identification using the characteristic 

conidia and diagnostic phialides (Zare and Gams 2001) and by DNA sequencing of 

infected scales (Jackson, unpublished data). A rapid-survey protocol, adapted from 

Perfecto and Vandermeer (2006), was employed to estimate the abundance of healthy and 

L. lecanii-infected C. viridis on every coffee plant in the study sites. For each plant, an 

individual-by-individual count of C. viridis adults (greater than approximately 7 mm in 

width) was started. If more than 50 scales were encountered on the plant, the individual 

count was abandoned in favor of a less time consuming branch-by-branch protocol. If 

less than 20 individuals were encountered on the plant, the total number of infected 

individuals on the plant was counted. If between 20 and 50 individuals were found, an 

estimate of the overall prevalence of L. lecanii was used to determine a fungus multiplier 

for the entire plant, and the total number of infected scales was estimated to be 50 times 

the fungus multiplier (Figure IV.2).
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Figure IV.2. Protocol for C. viridis and L. lecanii surveys, adapted from Perfecto and Vandermeer (2006). 
The coffee plant is assigned to one of the three pathways depending on how many scales are found in an 
initial count. If more than 50 scales are on the plant, the rightmost path is executed, which entails switching 
to a branch-by-branch estimate of the number of scales and the abundance of L. lecanii. If less than 20 
scales are encountered, the leftmost branch is followed, and the total number of infected scales is recorded. 
Otherwise, an entire-plant estimate of L. lecanii prevalence is used to estimate the number of infected 
scales, as specified by the center path.

For the branch-by-branch protocol, a scale multiplier was assigned to each branch 

based on an estimate of the number of scales on the branch. At the same time, a fungus 

multiplier was determined for each branch based on an estimate of the prevalence of L. 

lecanii. The total number of infected scales on the plant was then calculated as the sum 

over all branches of the product of the scale multiplier and the fungus multiplier (Figure 

IV.2).

As an approximation of the center of the L. lecanii epizootics, we calculated the 

center of mass of the L. lecanii infections using the standard equation for center of mass, 

i.e., the average of the positions of the coffee plants weighted by the number of infected 

scales per plant. Due to the temporal and spatial dynamics of the epizootics, the true 

center of the propagule pressure of L. lecanii, which depends both on the influx of 

propagules into the soil and the subsequent transmission of propagules upwards to the 

coffee plants, would be very difficult to determine precisely. Therefore, we also analyzed 

the change in rust abundance as a function of distance to all other points within the plots, 

i.e., with no a priori assumptions about the locations of the centers of the epizootics.

Hemileia vastatrix surveys were performed in September 2009 and September 

2010. Prevalence was defined as the total number of lesioned leaves per plant, and was 
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determined based on an inspection of every leaf of every coffee plant. Hemileia vastatrix 

creates yellow-orange lesions on the underside of leaves that are readily detectable. To 

reduce the incidence of false positives, only lesions with obvious clusters of orange 

spores were counted.

Results

In Site A, both L. lecanii and H. vastatrix were concentrated in the lower half of 

the plot in the September 2009 survey (Figure IV.3a). In September 2010, the center of 

the H. vastatrix infection had very clearly moved to the upper region of the plot, and the 

rust was largely absent from the plants that been heavily infected the previous year 

(Figure IV.3b). There was a marked decrease in the total abundance of L. lecanii in Site 

A, dropping from approximately 1375 infected scales in 2009 to approximately 211 in 

2010.

a)
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Figure IV.3. Abundance of L. lecanii and prevalence of H. vastatrix in Site A in a) 2009 and b) 2010. 
Diameters of open circles are proportional to the estimated number of infected C. viridis on coffee plants, 
with the largest circle corresponding to 308 infected scales. Crosses mark the centers of the L. lecanii 
concentrations. Note that the locations of the centers of the epizootics are influenced by fungal 
concentrations that are too small to see clearly at this scale. Dark gray circles are proportional to the 
number of leaves per coffee plant with lesions of H. vastatrix, with the largest circles corresponding to 254 
lesioned leaves in 2009 and 258 in 2010.

The within-year relationship between the prevalence of H. vastatrix and the 

distance from the center of the L. lecanii epizootic in Site A was significantly negative in 

2009 (Figure IV.4a, R2 = 0.148, P < 0.001), i.e., the prevalence of rust decreased with 

increasing distance from the center of mass of the mycoparasite. In 2010, the inverse 

relationship was observed (Figure IV.4b, R2 = 0.133, P < 0.001). 

b)
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Figure IV.4. Number of leaves per plant with H. vastatrix lesions versus the distance to the center of mass 
of the L. lecanii concentration in a) 2009 [R2 = 0.148, P < 0.001] and b) 2010 [R2 = 0.133, P < 0.001] in 
Site A.

In Site B, there was also a positive within-year association between the 

prevalence of H. vastatrix and proximity to the L. lecanii epizootic in 2009 (Figure IV.

5a), though the amount of variance explained was much less than in Site A (Figure IV.6a, 

R2 = 0.018, P = 0.004). As in Site A, there was a substantial decrease in the abundance of 

L. lecanii from 2009 to 2010, from approximately 1418 infected scales to 146 (Figure IV.

5b). In contrast with Site A, there was no significant relationship between rust prevalence 

in 2010 and distance from the 2010 L. lecanii epizootic (Figure IV.6b, R2 = 0, P < 

0.9213).

a) b)
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Figure IV.5. Abundance of L. lecanii and prevalence of H. vastatrix in Site B in a) 2009 and b) 2010. 
Diameters of open circles are proportional to the estimated number of infected C. viridis on coffee plants, 
with the largest circle corresponding to 468 infected scales. Crosses mark the centers of the L. lecanii 
concentrations. Note that the locations of the centers of the epizootics are influenced by fungal 
concentrations that are too small to see clearly at this scale. Dark gray circles are proportional to the 
number of leaves per coffee plant with lesions of H. vastatrix, with the largest circles corresponding to 217 
lesioned leaves in 2009 and 68 in 2010.

a)

b)
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Figure IV.6. Number of leaves per plant with H. vastatrix lesions versus the distance to the center of mass 
of the L. lecanii concentration in a) 2009 [R2 = 0.018, P = 0.004] and b) 2010 [R2 = 0, P = 0.921] in Site B.

Looking at the change in rust from the first year to the second, prevalence 

decreased substantially in the lower region of Site A and increased markedly in the upper 

region (Figure IV.7). The linear relationship between distance from the center of mass of 

the L. lecanii infection in 2009 and change in H. vastatrix prevalence was significantly 

positive (Figure IV.8, R2 = 0.315, P < 0.001). Performing similar linear regression 

analyses, but using other points within Site A as points of reference instead of the center 

of mass, reveals a peak in the R2 values that corresponds with a qualitative estimate of the 

location of the 2009 L. lecanii epizootic (Figure IV.9a). Likewise, the largest effect sizes 

(slopes) are obtained by regressing distances relative to points that were near the region 

with the highest concentrations of L. lecanii (Figure IV.9b).

a) b)
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Figure IV.7. Prevalence of L. lecanii in 2009 and change in prevalence of H. vastatrix from 2009 to 2010 
in Site A. Diameters of open circles are proportional to the estimated number of infected C. viridis on 
coffee plants, with the largest circle corresponding to 308 infected scales. Dark gray circles are proportional 
to the increase in the number of leaves per coffee plant with lesions of H. vastatrix. Light gray circles are 
proportional to the decrease in the number of leaves with H. vastatrix lesions. Both the dark gray and light 
gray circles are scaled to a maximum change of 257 lesioned leaves. Crosses mark the centers of the L. 
lecanii concentrations.
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Figure IV.8. Change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as 
a function of the distance to the center of mass of the L. lecanii concentration in 2009 in Site A [R2 = 0.315, 
P < 0.001].
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Figure IV.9. a) Coefficients of determination (R2) and b) effect sizes (slopes) for linear regressions of the 
change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as a function of 
the distance to points within Site A. Crosses mark the center of mass of the L. lecanii epizootic in 2009.

In Site B, there was a similar tendency for H. vastatrix prevalence to decrease in 

the neighborhood of the L. lecanii epizootic, although it was less pronounced, possibly 

due to the smaller spatial extent of Site B compared to Site A (Figure IV.10). There was a 

a)

b)
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significant positive relationship between distance to the L. lecanii center of mass and 

change in H. vastatrix prevalence, but only a small amount of variance was explained by 

distance (Figure IV.11, R2 = 0.011, P = 0.017). Choosing a point nearer to the x axis 

(which is physically downslope from the calculated center of mass) as the reference point 

for the regression instead of the center of mass would increase the R2 value, although the 

maximum amount of variance explained is small regardless of the location chosen as the 

reference point (Figure IV.12a). The maximum effect size is obtained using reference 

points that are near to the center of mass and the qualitative center of the 2009 epizootic 

(Figure IV.12b).

Figure IV.10. Abundance of L. lecanii in 2009 and change in prevalence of H. vastatrix from 2009 to 2010 
in Site B. Diameters of open circles are proportional to the estimated number of infected C. viridis on 
coffee plants, with the largest circle corresponding to 468 infected scales. Dark gray circles are proportional 
to the increase in the number of leaves per coffee plant with lesions of H. vastatrix. Light gray circles are 
proportional to the decrease in the number of leaves with H. vastatrix lesions. Both the dark gray and light 
gray circles are scaled to a maximum change of 215 lesioned leaves. Crosses mark the centers of the L. 
lecanii concentrations.
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Figure IV.11. Change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as 
a function of the distance to the center of mass of the L. lecanii concentration in 2009 in Site B [R2 = 0.011, 
P = 0.017].
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Figure IV.12. a) Coefficients of determination (R2) and b) effect sizes (slopes) for linear regressions of the 
change in the number of leaves per plant with H. vastatrix lesions between 2009 and 2010 as a function of 
the distance to points within Site B. Crosses mark the center of mass of the L. lecanii epizootic in 2009.

a)

b)
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Discussion

These results add to the accumulating evidence that L. lecanii can have an 

ecologically significant, controlling effect on H. vastatrix (Avelino et al. 2004, 

Vandermeer et al. 2009). And, importantly, in combination with the findings of 

Vandermeer et al. (2009), our results suggest that there is a time lag in the effect of L. 

lecanii on H. vastatrix that had not been previously recognized. This time lag, in which a 

large abundance of L. lecanii in one year suppresses H. vastatrix in the following year, is 

consistent with the known biology of the two fungi, and is also concordant with the 

observed variation in the within-year relationship between the fungi. 

If the prevalence of H. vastatrix is more strongly affected by the abundance of L. 

lecanii in the previous year, the within-year relationship between H. vastatrix prevalence 

and L. lecanii abundance could be either negative (as in our 2010 data and the data 

reported by Vandermeer et al.) or positive (as in our 2009 data) depending on whether the 

location of the L. lecanii epizootic had remained relatively constant or had shifted from 

one year to the next. For example, given the very low abundance of L. lecanii in Site A in 

2010 (Figure IV.3b), the apparent negative relationship between H. vastatrix and L. 

lecanii in 2010 (Figure IV.4b) is most likely not a result of the 2010 L. lecanii 

concentration. Rather, it is likely an artifact of the suppressive effect of the 2009 L. 

lecanii epizootic and the relative proximity of the center of masses of the 2009 and 2010 

L. lecanii concentrations; had the center of the 2010 L. lecanii concentration shifted 

further to the upper right of the plot, the apparent negative relationship would have been 

positive instead.

This time-lag effect of L. lecanii was previously unrecognized because, to our 

knowledge, this is the first study to focus primarily on a comparison of H. vastatrix and 

L. lecanii abundances across multiple years. Although Vandermeer et al. (2009) did 

follow one site for two years, censuses in subsequent years revealed that the A. instabilis 

nest at the particular site that was available during their study period was in the process of 

dying, resulting in a decreased abundance of C. viridis and hence fewer scales infected by 

L. lecanii (Vandermeer, unpublished data). The weakened state of the ant nest, coupled 
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with the less-extensive line transect survey method used in their study, likely account for 

the absence of a multi-year effect in their results.

As noted previously by Vandermeer et al. (2009), the controlling effect of L. 

lecanii on H. vastatrix under field conditions appears to be subtle. Proximity to the L. 

lecanii epizootic accounted for only a fraction of the variance in Site A (R2 = 0.315). In 

Site B, the explanatory power of distance from the previous year’s epizootic can be 

increased by assuming that the center of the epizootic was further downslope than the 

center of mass would indicate, which is a reasonable assumption considering the probable 

tendency for gravity to shift the dispersal of L. lecanii propagules downslope. However, 

even this assumption achieves only a small absolute improvement in the amount of 

variance explained, from R2 = 0.011 to R2 = 0.028. 

In addition, as suggested by the large year-over-year decrease in the numbers of 

infected scales in both sites, as well as the relative differences in the effects in the two 

sites, the magnitude of the effect of L. lecanii on H. vastatrix will likely vary significantly  

over space and time. This variation is likely driven in part by the internal dynamics of the 

pathogen-host-mutualist system. The mutualist ant, A. instabilis, has been shown to 

significantly reduce its tending activity in response to experimentally-induced epizootics 

of L. lecanii (Andrew MacDonald, Doug Jackson, and Kate Zemenick, unpublished data). 

This suggests that epizootics of L. lecanii may decrease the amount of food available to 

an affected A. instabilis colony, which may weaken the colony and consequently diminish 

its effectiveness as a mutualist of C. viridis. This, in turn, could lead to a decrease in the 

size of the scale population the following year. Although this scenario could explain the 

decreases in C. viridis (both healthy and infected) observed in our study sites, further 

study would be necessary to demonstrate that this cascading effect in fact occurs.

Despite the apparent subtlety and variability of the controlling effect of L. lecanii, 

its regulatory effect on H. vastatrix may be substantial. The magnitude of the role the L. 

lecanii may play in preventing outbreaks of H. vastatrix depends on the details of the 

population dynamics of a complex web of interactions between multiple species, and 

these interactions themselves likely vary substantially over space and time. Therefore, 
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while evidence is accumulating that L. lecanii does have a negative effect on the 

prevalence of H. vastatrix under field conditions, and that this effect can be detected, 

quantitatively assessing this effect will require further research into the dynamical 

interactions that characterize this complex system. Given its widespread distribution 

throughout this coffee farm, however, there is a high potential for L. lecanii to play an 

important regulatory role.

While the observations of Vandermeer et al. (2009) and the known mycoparasite-

host relationship between L. lecanii and H. vastatrix strongly suggest that L. lecanii is a 

significant driver of the observed shift in H. vastatrix prevalence, the difficulty involved 

with directly quantifying the infection process of natural fungal populations under field 

conditions (e.g., see Eskes et al., 1991) leaves some equivocality. The development of 

coffee rust epidemics is known to be affected by a number of biotic and abiotic factors, 

including soil acidity, coffee yield, temperature, humidity, fertilization, and altitude 

(Avelino et al. 2006). Lecanicillium lecanii epizootics are also influenced by 

environmental factors, such as temperature and relative humidity (Reddy and Bhat 1989); 

and shade (Easwaramoorthy and Jayaraj 1977). However, none of these known influences 

seem likely to account for the observed shift in H. vastatrix prevalence relative to the 

concentrations of L. lecanii. Shade cover was not differentially altered within the sites, 

and there were no other known changes that would have affected the microclimate in a 

way that would have resulted in such a systematic shift. Likewise, the remainder of 

prominent factors are unlikely to have varied significantly on such a local scale, or to 

have varied at all. It is possible that there is some unknown force that affects both L. 

lecanii and H. vastatrix, thus leading to these results, but the most parsimonious 

explanation at present is that the observed pattern is a consequence of the pathogen-host 

relationship between the two fungi.

It is important to note that the hyperparasitic effect of L. lecanii occurs only 

because of the spatial structure of the ecosystem as a whole. That is, the mutualistic effect 

of the ant (A. instabilis) on the main host of L. lecanii is contained within distinct pockets 

of unusually high concentrations of that host (C. viridis), and those distinct pockets are 
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so-called self-organized patches (Vandermeer et al. 2008). Thus, this conservation 

biological control includes other elements in the ecosystem as a whole acting in a 

spatially specific context (Liere and Perfecto 2008, Jackson et al. 2009, Vandermeer et al. 

2010a). Consequently, the success of efforts to further enhance the control of H. vastatrix 

in similar coffee agroecosystems could depend on an understanding of that larger 

complex ecosystem, especially of what influences the spatial distribution of A. instabilis 

colonies. By studying the effects of naturally occurring concentrations of L. lecanii, 

maintained by virtue of a complex ecological network, we can learn to more effectively 

capitalize on the ecosystem services provided by this biological control agent; begin to 

predict how this autonomous biological control may respond to climate change; and 

suggest management strategies to maintain control. Restricting attention to the abiotic 

factors that are typically considered to affect coffee rust may thus not be wise.
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CHAPTER V

The evolution of imperfect prudence

Survival of the fittest. The invisible hand. The wisdom of crowds. Self-organized 

criticality. The observation that unexpected – and often desirable – properties at the 

macro scale can arise spontaneously from endogenous interactions at smaller scales has 

captured the collective imagination to a degree that few other ideas within the last 300 

years have. Modern Homo sapiens, enchanted by the insights symbolized by the likes of 

Charles Darwin and Adam Smith, conceive of a world filled with wonderfully complex 

organisms that have been crafted by the blind forces of natural selection; economies that 

propel themselves forward through the self-correcting push of market forces; and 

democracies that integrate the perspectives of individual citizens into a collective wisdom 

that exceeds that of any Solomon.

Inspired by the apparent power of these autogenous processes, scientists in fields 

as distinct as political science and biology continue to push the boundaries of our 

understanding of evolution and self regulation, demonstrating the potential of these 

processes to act in ways that far exceed, in breadth, diversity, and subtlety, what their 

original proponents could have possibly imagined. Prominent amongst these more recent 

elaborations of the basic principles is evidence that evolution, an indifferent actor 

unencumbered by human concepts of kindness or morality, can, counterintuitively, give 

rise to cooperative behaviors. That is, despite competition for limited resources being the 

putative force underlying evolution, evolution sometimes favors altruistic behaviors over 

those that are purely selfish.

Although the fact that cooperation can evolve is readily apparent from even a 

superficial acquaintance with nature, explaining how a process predicated on selfishness, 

i.e., evolution by natural selection, can give rise to cooperation is far from trivial. Any 

potential theory must explain how cooperators can resist invasion by cheaters: individuals 
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that would exploit the benefits that cooperators provide while failing to reciprocate, 

thereby avoiding the costs of cooperation while enjoying the benefits. A number of 

processes that could lead to the evolution of cooperation have been identified, with one of 

the earliest being the concept of viscous populations, first proposed by Hamilton (1964b). 

Highly viscous populations are characterized by limited dispersal, which increases the 

frequency of repeated interactions between individuals and interactions between closely 

related individuals, both of which promote cooperation. Since Hamilton, the potential for 

the evolution of cooperation in viscous populations has been demonstrated by a large 

number of theoretical and computational studies (Lion and Baalen 2008). However, it 

was not until recently that experimental evidence in biological systems was obtained 

(Kerr et al. 2006, Boots and Mealor 2007, Szilágyi et al. 2009).

These experimental systems, and the majority of theoretical work done to date on 

the evolution of victim-exploiter systems, focus on the evolution of the exploiter. In the 

context of host-pathogen systems, where the host is the victim and the pathogen is the 

exploiter, this emphasis on the evolution of the exploiter would seem to be reasonable: 

pathogens typically have much shorter generation times, and hence are likely to evolve at 

much faster rates than their hosts. However, there are exceptions to this generalization. 

Resistance of the host plant Lychnis alpina to the anther smut fungus Microbotryum 

violaceum has been shown to be correlated with local characteristics of L. alpina spatial 

distribution, which suggests that host evolution in response to local changes in host-

population connectivity is the dominant evolutionary process in this system (Carlsson-

Graner and Thrall 2002). Duffy and Sivars-Becker (2007) showed that the termination of 

epidemics of the parasite Metschnikowia bicuspidata can be explained by rapid evolution 

of the susceptibility of its host, Daphnia dentifera. These exceptions suggest that by 

focusing exclusively on the evolution of the exploiter, we may be missing potentially 

important phenomena.

As with the nearly exclusive focus on the evolution of the exploiter, the tendency 

to compare the performance of evolved behaviors to purely selfish behaviors may also 

limit our understanding – in this case by leading us to subconsciously overestimate the 
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effectiveness of evolution. For example, Kerr et al. (2006) showed that the evolution of 

pathogens in a spatially restricted (viscous) population resulted in competitive restraint 

that averted the "tragedy of the commons." When migration of bacteriophage in a 

metapopulation was restricted to a local neighborhood, prudent phages outcompeted 

rapacious phages, while the opposite was true when migration was unrestricted. 

Rapacious phages tended to over-exploit the common resource, thereby lowering overall 

productivity, whereas dominance by prudent phages resulted in higher productivity, 

thereby averting the tragedy of the commons. That is, the performance of the phage 

population, in terms of productivity, was improved by the evolution of cooperation. What 

was not considered, however, is how well the evolved population performed compared to 

the best possible performance. If we were able to prescribe a different level of prudence, 

could we increase the performance of the phage population even more? Did the phages 

evolve to the optimal level of prudence, or was the prudent phages' productivity good 

only in comparison to the poor performance of the purely selfish, highly rapacious 

phage?

The use of purely selfish behavior as the null expectation is, in some sense, a 

natural choice. In general, theoretical models predict that maximum selfishness will 

evolve in non-viscous populations (Hamilton 1964a). For example, the mean field 

expectation for the evolution of transmissibility in host-pathogen models (in the absence 

of other tradeoffs) is maximum transmissibility (Rand et al. 1995). So, it is interesting 

and surprising to show that cooperation can evolve in the form of decreased 

transmissibility relative to this mean field expectation. However, to properly gauge the 

performance of the evolved population, we would need to compare the performance of 

the evolved transmissibility to both the worst-case and best-case transmissibilities.

In the present study, I consider these two relatively unexplored aspects of the 

evolution of cooperation – the evolution of the victim and the performance of the evolved 

population relative to an optimal strategy – using a spatially-explicit host-pathogen 

model. In this model, a locally-dispersed host is subject to attack by a locally-dispersed 

pathogen. The spatial distribution of the host emerges as a consequence of reproduction 

82



of the hosts into empty sites in their local environment coupled with pathogen-induced 

mortality and a fixed background mortality rate. Depending on the hosts' reproduction 

rates, their spatial distribution will be characterized by either a well-connected network of 

large clusters (for high reproduction rates) or a poorly-connected landscape of smaller, 

isolated clumps (for low reproduction rates). 

A well-connected landscape of large clusters will be more susceptible to large 

epidemics, as the pathogen will be able to percolate through the landscape of connected 

clusters, while a landscape of smaller, isolated clusters will be more resistant to the 

spread of the pathogen. This scenario creates a conflict between what is good for an 

individual host in the short term – rapid reproduction – and what is good for the host 

population as a whole in the long term – a poorly connected landscape generated as a 

consequence of slower reproduction rates. The question, then, is whether it is possible for 

cooperation, in the form of reduced host reproduction rates, to evolve. And, if this form 

of prudence on the part of the hosts is able to evolve, how will the cooperating host 

population perform, in terms of metrics such as population size and variability, compared 

to the extremes of pure selfishness and optimal cooperation?

The model

The model is a discrete time, probabilistic cellular automata on a square lattice 

with periodic boundary conditions (Appendix A). Each cell in the lattice can be in one of 

three states: empty, occupied by a susceptible host, or occupied by an infected host. In 

each time step, either the pathogens will execute their actions, if there are pathogens 

present, or the hosts will execute their actions. This results in the pathogen life cycle 

being effectively instantaneous compared to the host life cycle; the hosts reproduce and 

die of natural causes as long as there are no pathogens present, but once a pathogen 

infects a single host, host activity is frozen while the pathogens sweep through the host 

population. Host activity resumes only after the epidemic runs its course and the last 

pathogen dies.

Host activity includes reproduction, death by natural causes, and pathogen-

induced mortality. Reproduction of a susceptible (healthy) host, i, into an empty cell in its 
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von Neumann neighborhood (its four nearest neighbors) occurs with probability gi. Each 

reproduction attempt is an independent event, meaning that a host surrounded by four 

empty cells can produce up to four offspring in a single time step. If multiple hosts 

attempt to reproduce into a single cell, the winner is chosen randomly. Infected hosts do 

not reproduce. Death by natural causes occurs with a fixed probability, m. Pathogen-

induced morality is determined by the pathogen virulence, v. In the current study, 

virulence is fixed at a probability of 1, meaning that hosts only live for one time step after 

being infected.

Pathogen activity begins with an initial infection event that occurs with 

probability l. The initial infection targets a randomly chosen host. The pathogen 

subsequently spreads to neighboring hosts via reproduction, or transmission. Pathogens 

transmit to susceptible hosts in their von Neumann neighborhoods with probability τ. In 

the current implementation, τ is fixed at 1 for all pathogens. Collisions, in which multiple 

pathogens attempt to infect a single host, are resolved by choosing a winner at random. 

As with host reproduction, transmission is determined independently for all of an infected 

host's susceptible neighbors, so an infected host with n susceptible neighbors can infect 

between 0 and n individuals.

Evolution occurs during host reproduction. When host i reproduces, its offspring 

normally inherit its reproduction probability, gi. However, mutations of ± ϵ occur with 

probability µ. Therefore, the reproduction probability of offspring j of host i is defined as 

follows:

 P (gj = gi) = 1− µ (1)

 P (gj = gi + �) = µ/2 (2)

 P (gj = gi − �) = µ/2 (3)

The default parameter values used for all simulations, unless otherwise noted, are 

shown in Table V.1.
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Parameter Description Default
gi reproduction probability of host i variable
m baseline (natural) mortality rate 0.2
l probability of spontaneous infection 0.0016
v virulence: mortality probability of infected host 1
τ probability of transmission to susceptible neighbor 1
µ probability of mutation of gi 0.15
ϵ magnitude of mutation of gi 0.01
X width of lattice (cells) 100
Y height of lattice (cells) 100
N0 initial host population size 500
P0 initial number of pathogens 50

Table V.1. Default parameter values.

Under this framework, the host spatial distribution emerges due to the interaction 

between the hosts' reproduction probabilities, gi, the background mortality rate, m, and 

the intermittent removal of hosts by epidemics. Epidemics occur at random and then 

spread through the host population. If the hosts are distributed in a well-connected 

landscape, the pathogen will sweep through a large portion of the host population. If the 

hosts are less well connected, the epidemic will be constrained to a smaller portion of the 

host population, and each epidemic will have less of an impact on the hosts' spatial 

distribution. Therefore, the hosts and pathogens simultaneously drive and are driven by 

the spatial structure of the system.

Results

With the parameters set to the default values shown in Table V.1 and all hosts 

initialized with the same reproduction probability, the host population consistently 

evolves to an intermediate average reproduction probability of approximately 0.2 (Figure 

V.1). This demonstrates that hosts exhibiting reproductive restraint, i.e., prudent hosts, 

can evolve. Furthermore, the system is driven to prudence whether the hosts are 

initialized with reproduction probabilities above or below the equilibrium value of 0.2, as 

demonstrated by the representative runs shown in Figure V.1. There is a basin of 

attraction that extends from an initial host reproduction probability of 0 to approximately 

0.65; above this range, the hosts have a greater than 50% probability of evolving towards 
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increasing reproduction probabilities, which causes the host population to form ever 

larger and more well-connected clusters that are inevitably subject to a catastrophic 

epidemic that extinguishes the entire host population, a phenomenon termed 

"evolutionary suicide" (Lion and Baalen 2008).

Figure V.1. Evolutionary dynamics of 100 representative realizations of the model initialized above and 
below the ESS host reproduction probability, g, of approximately 0.20. Gray lines show the average 
reproduction probabilities for the host populations of 50 representative runs with all hosts initialized with g 
= 0.6; the upper black line shows the average of these 50 realizations. The lower black lines show the 
results of 50 realizations with all hosts initialized with g = 0.1; the white line is the average of these 50 
runs. To reduce the variance in g, µ was reduced to 0.02.

A pairwise invasibility plot (PIP) of the host reproduction probabilities reveals 

that g ≈ 0.2 is an evolutionarily stable strategy (ESS), meaning that this strategy cannot 

be invaded by any competing strategy (Figure V.2). The PIP was generated by initializing 

the model with a fixed host reproduction probability, termed the resident strategy (gR). 

The model was then run for 100 time steps with evolution disabled (µ = 0), which was 

previously determined to be a sufficient amount of time for the model to reach an 
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equilibrial state. At this time, 10 individual hosts with a different reproduction 

probability, termed the invader strategy (gI), were placed randomly in the arena. After a 

total of 100,000 time steps, the strategy comprising the majority of the host population 

was designated as the winning strategy. A resident strategy of gR = 0.2 cannot be invaded 

by any other strategy. Resident strategies below 0.2 are able to be invaded by some more 

rapidly reproducing hosts, while resident strategies above 0.2 can be invaded by a range 

of more prudent hosts.

Figure V.2. Pairwise invasibility plot showing the probability that an invading strategy with a host 
reproduction probability gI can beat a resident strategy gR. For each run, all hosts were initialized with the 
resident strategy. After 100 time steps, 10 individuals with the invader strategy, gI, were placed at random 
locations. After 100,000 time steps, the strategy represented by the majority of individuals was deemed the 
winning strategy. The white line is the 45 degree line, where the resident and invader strategies are equal. 
The probability of a successful invasion is shown by the grayscale spectrum, with lighter colors indicating a 
higher probability that the invading strategy will outcompete the resident strategy.

The mechanisms underlying the evolution of prudent hosts can be understood by 

examining the relationship between the host reproduction probability and the spatial 

structure of the host population (Figure V.3). In the presence of the pathogen, the cluster 

sizes and connectedness of the host population increases with g. Consequently, host 

mortality per epidemic also increases with g. Therefore, the hosts' life expectancy is 

negatively correlated with reproduction probability, giving individuals with a lower 

reproduction probability a longevity advantage (Figure V.4).
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Figure V.3. The spatial structure of the host population for various host reproduction probabilities, g 
(shown in the upper righthand corner of each square). Black regions are empty cells. White cells are 
infected hosts. Colored cells are uninfected (susceptible) hosts, with the colors of the hosts indicating their 
reproduction probabilities.
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Figure V.4. Relative cumulative frequency of hosts of a given age at death for various host reproduction 
probabilities (g). Averages of 50 realizations for each value of g are shown. The dashed line is the expected 
distribution without the pathogen. As g increases, individuals tend to die younger.

Given that decreased reproduction probabilities confer a longevity advantage, 

why does the host population not simply evolve to the lowest possible reproduction 

probability, i.e., a reproduction probability that is simply sufficient to offset the 

background mortality rate? The answer lies in the other component of life history: 

fecundity. As would be expected, hosts with higher reproduction probabilities have a 

fecundity advantage (Figure V.5), suggesting that the ESS host reproduction probability is 

the result of a fecundity-longevity tradeoff.

89



Figure V.5. Relative cumulative frequency of the total number of descendants per host upon death for 
various host reproduction probabilities (g). Averages of 50 realizations for each value of g are shown. As g 
increases, the number of descendants per individual increases.

When evolution is enabled, of course, the host population will not have a single, 

uniform reproduction probability, but rather the population will consist of a mosaic of 

different reproduction probabilities (Figure V.6). The fecundity and longevity 

characteristics calculated for the homogenous case will be modified by the interactions 

between hosts with different reproduction probabilities. For example, due to space 

competition, the growth of a cluster of rapidly reproducing hosts will be constrained by 

more slowly reproducing hosts (Figure V.7).
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Figure V.6. Representative snapshot of the model after the evolutionary equilibrium has been achieved. 
Black regions are empty cells. White cells are infected hosts. Colored cells are uninfected (susceptible) 
hosts, with the colors of the hosts indicating their reproduction probabilities (see Figure V.3 for the growth 
rates that correspond to the colors).

Figure V.7. Illustrative example of the growth of clusters of rapidly-reproducing hosts (orange cells, g = 
0.8) being constrained by more slowly reproducing hosts (blue cells, g = 0.2). Black regions are empty 
cells. White cells are infected hosts.
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Although a comprehensive analysis of how the baseline fecundity and longevity 

relationships shown in Figures V.4 and V.5 are changed in the context of the mosaic of 

different host strains is too complicated to cover here, a qualitative sense of these changes 

can be obtained by looking at how these properties are changed for challengers 

attempting to invade a resident population with g = 0.2 (Figures V.8 and V.9).

Figure V.8. Change in the relative cumulative frequency of hosts of a given age at death for various host 
reproduction probabilities (g) attempting to invade a resident host population with g = 0.2. Changes are 
relative to the distributions reported for the homogenous scenarios (Figure V.4). In the context of the 
resident population, invading individuals tend to die at a younger age than they would in a population of 
their own kind.
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Figure V.9. Change in the total number of descendants per host upon death for various host reproduction 
probabilities (g) attempting to invade a resident host population with g = 0.2. Changes are relative to the 
distributions reported for the homogenous scenarios (Figure V.5). In the context of the resident population, 
invading individuals tend to produce fewer descendants than they would in a population of their own kind. 

These results demonstrate that prudent hosts can evolve. Turning to the second 

question, how does this evolved population perform compared to the range of possible 

strategies? Clearly, the answer to this question depends on what is meant by "perform." In 

terms of resisting invasion by competing strategies, the PIP and the long-term dynamics 

of the model indicate that the evolved population reaches a global optimum. By other 

equally reasonable measures of performance, however, the population does not perform 

optimally. For example, the average population size, or standing crop, of the host 

population can be improved by decreasing the host reproduction probability below the 
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ESS (Figure V.10). The variability and minimum size of the population, which would 

both affect the likelihood that the population as a whole would be wiped out by a large, 

random, mortality-inducing event, are also not minimized at the ESS (Figure V.10). By 

reproducing more slowly than the ESS, the spatial structure of the host population is 

maintained in a patchwork of very small, isolated clusters, such that the host population is 

highly resistant to the spread of the pathogen; the host population persists steadily at a 

large size, perturbed neither by large epidemics nor rapid expansion of clusters.

Figure V.10. Grand means of the host population size versus the host reproduction probability (± 1 s.e.m.). 
For each value of g, 50 realizations were performed. The populations were sampled every 1000 time steps 
for 18000 time steps, discarding the first 1000 time steps to avoid the initial transients. Gray circles show 
the average populations for the individual realizations.
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Discussion

The significance of these results is twofold. First, they demonstrate the potential 

for an evolutionary phenomenon – reproductive restraint by victims as an anti-exploiter 

strategy in a spatially-explicit exploiter-victim system – that has potential relevance well 

beyond the host-pathogen system considered here. Second, they hint at the potential 

importance of more comprehensively exploring the relative performance of evolved 

behaviors. Although the latter point is primarily a philosophical one, and is more a matter 

of emphasis rather than the discovery of a particular new phenomenon, it is an important 

consideration given the ubiquity of autogenous processes in natural and human-designed 

systems.

The basic processes explored here could apply to any system in which a locally-

dispersed victim that is subject to attack by a locally-dispersed exploiter is capable of 

evolving. Forests of trees subject to intermittent forest fires are an example that has 

received significant attention from modelers (Zinck and Grimm 2009). Spatially-explicit 

predator-prey systems, provided that both predator and prey are dispersal limited, are 

another biological example (Hassell et al. 1991). 

Although, to my knowledge, this is the first demonstration of the evolution of 

reproductive restraint as an anti-pathogen phenotype, the evolution of other host 

characteristics in spatially-explicit systems has been explored. For example, Socolar et al. 

(2001) used a 2D lattice model to show that the non-disease-induced (natural) mortality 

rate of hosts that are subject to rare epidemics will evolve to an intermediate value. 

Furthermore, the system was shown to evolve to a state of self-organized criticality in 

which epidemic size distributions were characterized by a power law. 

Moving from a theoretical demonstration of plausibility to detection of prudent 

hosts in real biological systems, as has been done for the evolution of prudent pathogens, 

will not be a trivial task. The evolution of prudent hosts demonstrated in the current study 

rests on a number of assumptions that are implicit in the structure of the model. First, it is 

assumed that there are no secondary factors influencing the relationship between 

transmission rate and host density, i.e., transmission is assumed to increase with the 
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number of susceptible hosts in the neighborhood. Second, it is assumed that hosts are able 

to control (in an evolutionary sense) their reproduction rate.

As a review by Burdon and Chilvers (1982) of the effects of host density on plant 

disease ecology demonstrates, transmission does not necessarily increase with host 

density. The net effect of density can be counterintuitive in cases where indirect effects 

outweigh direct effects. Direct effects of increasing density include (1) an increase in the 

number of host plants that the inocula, transmitted through space and time, can impinge 

upon (the more plants there are per unit area, the more likely it is that inocula will land on 

a host) and (2) a decrease in the distance that spatially-dispersed inocula must travel to 

spread from plant to plant. These two effects are mutually reinforcing. Indirect effects can 

arise from interactions between: environment and host properties, e.g., changes in host 

size, shape, or nutritional status; environment and inoculum properties, e.g., changes in 

microclimate; environment and vector behavior; and environment and incidence of other 

plants. 

Burdon and Chilvers cite a number of examples of systems in which these direct 

effects appear to dominate: of 69 studies (46 different host-pathogen combinations), they 

found that 39 (57%, or 62% of the host-pathogen combinations) exhibited a positive 

correlation between disease incidence and host density, which is what one would expect 

in cases where direct effects of density dominate. In 24 studies (35%, or 27% of host-

pathogen combinations), however, there was a negative correlation between disease 

incidence and host density, which can only occur if there are one or more indirect effects 

that exceed the influence of direct effects. For example, one system with an inverse 

correlation was an aphid-plant system in which aphids responsible for spreading 

groundnut rosette disease were attracted to yellow light wavelengths reflected from soil, 

and were repelled by blue wavelengths reflected from dense crop covering. In another 

example, Ergot infections increased at lower densities due to increased tillering 

(formation of new shoots) of the host at lower densities, which led to the “development of 

more heads and an extended flowering period over which the plants remained susceptible 

to infection.” As these examples show, the positive relationship between host density and 
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disease transmission assumed in the current model may be less ubiquitous than one might 

expect.

Although populations of plants are perhaps the most obvious examples of systems 

characterized by relatively static spatial structures that might affect disease dynamics, 

other sessile organisms are also candidates for this sort of phenomenon, e.g., fungal 

infection of sponges (Galtsoff et al. 1939) and sea fan corals (Kim and Harvell 2004) and 

the isolation-modulated susceptibility of prairie dog colonies to plague (Lomolino et al. 

2001). The susceptibility of colonies of eusocial insects to locally transmitted diseases 

would also seem likely to exhibit a dependence on host spatial distribution, but this does 

not seem to have been studied. However, results indicating that slave-making ants may 

evolve a “prudent predator” strategy in response to lower densities of host colonies in a 

manner that is analogous to the evolution of less virulent strains of diseases (Foitzik et al. 

2001) suggest that spatial distribution may play an important role in spatial disease 

dynamics of eusocial insects as well.

The second assumption underlying the current model, i.e., that the spatial 

distribution of hosts is determined in a large part by a heritable reproduction rate, is 

particularly problematic. In nature, it is likely that there are a number of biotic and abiotic 

factors that influence the spatial distribution of hosts and the effect of this distribution on 

disease transmission. It seems likely that these influences will overwhelm the influence 

of the host's genotype per se. In addition to the likelihood for these environmental factors 

to disrupt any potential for the evolution of prudence, they would also tend to obscure 

evidence of prudence, making detection under natural conditions very challenging. As 

with the evolution of prudent pathogens, however, it may be possible to construct 

experimental systems that are simple enough to enable the evolution and detection of 

prudent hosts.

Much of the work on the emergence of cooperation has ranged from pessimistic to 

Panglossian, with Garret Hardin and Adam Smith (or at least the popular conception of 

Smith) representing the two competing worldviews. Adam Smith's work is commonly 

distilled into the belief that a man who "intends only his own gain" is naturally "led by an 
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invisible hand to promote an end which was no part of his intention...By pursuing his 

own interest, he frequently promotes that of the society more effectually than when he 

really intends to promote it." (Smith 1776). Hardin, in contrast, argued that this 

individualistic pursuit of self interest leads inexorably to the now-classic "tragedy of the 

commons" (Hardin 1968). Hardin's rather repressive, militant conclusion was that only 

through "mutual coercion, mutually agreed upon," i.e., laws enforced such that 

individuals are prevented from overexploiting the commons, can this tragedy be averted. 

These two extremes – autogenous processes as threats and as saviors – have bookended 

the debate.

This dichotomy is manifested in the dominant narrative in the literature on the 

evolution of cooperation. Yes, the story goes, the null expectation is that tragedy will 

prevail. But, if at least one of multiple possible mechanisms is present, cooperation will 

emerge, and tragedy is averted. Nowak (2006) identified these processes as kin selection, 

direct reciprocity, indirect reciprocity, network reciprocity, and group selection. The 

literature is rich with examples demonstrating these phenomena: in a well-mixed 

population, an evolutionary Prisoner's Dilemma favors defectors, but repeated 

interactions give cooperators an advantage (Axelrod and Hamilton 1981); without spatial 

structure, rapacious bacteriophages outcompete prudent phages, leading to 

overexploitation of the bacterial prey, while local migration leads to competitive restraint 

and increased productivity (Kerr et al. 2006); spatial structure maintains castration 

virulence at an intermediate level in a mutualism between an ant-plant and its ant 

symbiont (Szilágyi et al. 2009); through alternating rounds of public goods and indirect 

reciprocity games, reputation helps solve the "tragedy of the commons" (Milinski et al. 

2002); and many others. The conclusion is clear: a superficial acquaintance with the 

autogenous processes that pervade nature would lead one to predict a race to the bottom, 

but upon closer inspection we find that cooperation emerges unexpectedly from the 

melee.

What the results of the current model suggest, however, is that a certain degree of 

nuance is missing from this narrative, in tone if not in the actual results. Cooperation is 
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typically framed as a binary characteristic; either a system exhibits cooperation, or it is 

characterized by selfishness. While in some model formulations this either/or dichotomy 

is appropriate, e.g., a Prisoner's Dilemma in which all players cooperate fully, typically 

there are degrees of cooperation that are achieved. What fraction of individuals 

cooperate? What percentage of the time do individuals display altruistic behavior? How 

much better could pathogens do if they reduced their virulence even more? How prudent 

is prudent, really? And, to what extent is performance, in terms of attributes that are 

peripheral to the main foci of evolution and the researchers, maximized?

Though here I am focusing on the evolution of cooperation, the observation that 

evolution is an imperfect and myopic device for optimization applies more broadly, and 

has been pointed out many times before (Gould and Lewontin 1979, Arnold 1992). 

Evolution is path dependent, meaning that the evolutionary outcome is contingent on 

history (Jacob 1977). In biological evolution, history influences the range of what can 

evolve – the "phenotype set" (Smith 1978). If this were not the case, perhaps we would 

have evolved bicycles instead of having to rely on our relatively inefficient legs for 

transport, and quadrupeds would not have to give up one pair of limbs in order to evolve 

wings. Even with an unrestricted phenotype set, as is usually assumed in computer 

models, the particular path traversed by the evolutionary process may lead to the system 

being stuck at a local optimum. Evidence of this is readily available from optimization 

theory. For example, genetic algorithms, an optimization technique that is modeled on the 

principles of natural selection, is known to fail to find the global optimum under some 

conditions (as do all optimization routines) (Schaffer et al. 1991). 

The point of this discussion is not to say that the evolution of cooperation is not 

an important phenomenon, but rather to advocate for a more comprehensive framing of 

the possible results. First, the extremes represented by Hardin and Smith should been 

seen as, respectively, one end of a continuum of possible outcomes and another point 

lying at some intermediate position on this continuum, rather than as demarcating the 

range of possible outcomes. The other end of the continuum of cooperation, i.e., perfect 

cooperation, should also be identified as a point of reference. Second, we can obtain a 
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more nuanced understanding of the outcomes of evolutionary processes by assessing the 

performance of the evolved population using multiple measures. For example, in the 

prudent host model presented here, the model is defined such that it evolves towards 

maximum individual fitness. However, by other measures, such as host population size 

and variability, the evolved population is not optimized. Although this point may seem 

obvious – the system evolves to optimize the optimization criterion, but not other criteria 

– it is one that tends to be forgotten when we speak of the "evolution of cooperation."

Although this discussion may seem like an unnecessary exercise in pedantry, the 

way we frame discussions of the evolution of cooperation can have important 

consequences for how these concepts are viewed in the popular imagination. (And, as the 

dark history of Social Darwinism makes clear, scientists have a responsibility to consider 

the potential for their work to be misconstrued and misapplied in the public sphere.) For 

example, when Nowak (2006), one of the leading researchers of the evolution of 

cooperation, states that 

"Humans are the champions of cooperation: From hunter-gatherer 
societies to nation-states, cooperation is the decisive organizing principle 
of human society. No other life form on Earth is engaged in the same 
complex games of cooperation and defection. The question of how natural 
selection can lead to cooperative behavior has fascinated evolutionary 
biologists for several decades."

the implication is that human cooperation has arisen autogenously via evolutionary 

processes. This raises two questions. First, what is the evidence that human cooperation 

arises directly from the actions of evolution, and not through a more rational process? 

Second, if human cooperation did evolve, what does that imply? What is the optimization 

criterion; to what extent has evolution achieved optimization; and how do the evolved 

behaviors perform in terms of other, non-optimized criteria? Without these details, we 

risk seeing the evolution of cooperation in a cartoonish manner, as a magical process 

from which spring forth desiderata, in much the same way as in the modern-day 

caricature of Adam Smith's invisible hand. 
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Chapter VI

Self-organization of background habitat determines the nature of population spatial 
structure

Understanding the distribution of organisms in space is essential to many areas of 

applied ecology, such as conservation (Hanski and Thomas 1994, Bulman et al. 2007), 

agroecosystem management (Thies and Tscharntke 1999, Bianchi et al. 2006, Perfecto 

and Vandermeer 2010), delivery of ecosystem services (Brosi et al. 2008), and 

epidemiology (Grenfell et al. 2001), among others (Kritzer and Sale 2004), and has also 

become a key element in the general theory of community structure of terrestrial, aquatic, 

and marine ecosystems (Tilman and Kareiva 1997, Werner et al. 2007). Key to this 

understanding has been the nature of the underlying habitat structure in which the 

population is embedded, islands conjuring the theory of island biogeography, isolated 

habitats suggesting metapopulations, and off-coast archipelagos envisioned as source/

sink populations (Levins 1969, Pulliam 1988, Rohani et al. 1996, Hanski and Gilpin 

1997, Holt 1997, Hanski 1998, Moilanen and Hanski 1998, Hanski 1999, Amarasekare 

and Nisbet 2001, Vandermeer et al. 2010b). Yet a detailed analysis of the nature of that 

underlying habitat structure is lacking, despite its obvious importance for the structure of 

the occupying populations. 

One way of examining underlying habitat structure is to examine its origin. While 

some habitats have obvious structural determinants (e.g., woodlots in eastern North 

America are largely a consequence of political boundaries), others derive from dynamic 

processes. Here we offer an approach based on the principle of self-organization. Typical 

self-organizing dynamics generally lead to a scale-free distribution of habitat patch sizes 

(Rohani et al. 1997, Bascompte and Solé 1998, Klausmeier 1999, Pascual et al. 2002, 

Rietkerk et al. 2002, Newman 2005, van de Koppel et al. 2005, Solé and Bascompte 

2006, Alados et al. 2007, Scanlon et al. 2007, Rietkerk and van de Koppel 2008), the 
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details of which determine to a great extent the nature of the population dynamics of any 

organism occupying those patches.

This framework is motivated by the concrete case of the spatial patterning of the 

arboreal ant Azteca instabilis F. Smith (Hymenoptera: Formicidae) and the use of that 

spatial pattern by its mutualist associate, the green coffee scale Coccus viridis Green 

(Hemiptera: Coccidae), in a coffee farm in southern Mexico (Perfecto and Vandermeer 

2008b). The ant, in association with one or more natural enemies, generates a scale-free 

distribution of patches of nests in a uniform environment (Vandermeer et al. 2008, 

Jackson et al. 2009), and several other populations (beetles, spiders, fungi, in addition to 

the scale insect itself) become associated with those clusters in a complex fashion (Liere 

and Perfecto 2008, Livingston et al. 2008, Vandermeer et al. 2009). Each of these other 

populations uses the clusters of ant nests as basic habitat patches, and the question arises 

as to what is the structure of their populations as a function of the nature of the habitat 

patches, which have been constructed in an autonomous fashion through the principle of 

self-organization (Vandermeer et al. 2008). It is an example of a complex situation that 

evidently occurs throughout the natural world: habitat spatial distributions created by 

biological interactions into which independent populations are accommodated. Whether 

self-organization of habitat patches tends to promote or hinder the persistence of 

populations that inhabit these patches is thus a question of fundamental and general 

interest.

Although there are myriad ways of categorizing spatial population structure, two 

extreme cases emerge as particularly common, the metapopulation and the source/sink 

population (Figure VI.1). It is clearly possible to view these two canonical forms as 

extremes on a continuum. For many practical reasons it is useful, sometimes absolutely 

necessary, to know whether a population is a metapopulation or a source/sink population. 

For example, in the conservation context, a source/sink population commands attention to 

the location of the source population as the most important target for management 

activities. In contrast, a metapopulation structure suggests that the overall landscape 

would be the proper focus of management so as to maintain sufficiently high interhabitat 
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migration (Perfecto and Vandermeer 2002). Many other examples could be cited. Here 

we consider the case of a population that is potentially either a metapopulation or a 

source/sink population and ask how its nature is fundamentally determined by the way in 

which the underlying habitat is structured through self-organization.

The metapopulation-source/sink continuum: theory

The general analytical model we propose is based on three key relations. First, the 

success of a source/sink population is determined largely by the size of the largest habitat 

patch (the source). The local extinction rate is a decreasing function of patch size and 

thus, all else equal, the average extinction rate will decline with the average size of the 

habitat patch. In turn, the average size of the habitat patch will be highly correlated with 

the average size of all habitat patches, which suggests the approximation, 

 e = f(cm) (1a)

where e is extinction rate and cm is the size of the largest patch.

Second, the success of a metapopulation is determined by the ratio of the 

migration rate to the extinction rate. The migration rate, in turn, is determined principally 

by the distance between habitat patches, which we assume is determined in part by the 

number of patches. Thus,

 m = g(nT ) (1b)

where m is migration rate and nT is the total number of habitat patches.

Third, although certainly the details will be more complicated, we make the 

assumption that the total number of habitat patches will normally be related in some 

fashion to the size of the largest patch, or,

 nT = h(cm) (1c)

For example, in a situation in which the overall biomass or population density of a 

population is constant, if almost all the individuals or biomass is contained in one 
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particularly large patch, the overall number of patches will be limited to a very small 

number (since almost all the individuals are members of that largest patch).

In general, we can envision the possible population structures on a simple graph 

of e versus m, according to standard definitions of extinction and migration, as pictured in 

Figure VI.1. Furthermore, through the process of composition, we see that,

 m = g
�
h[f−1(e)]

�
= F (e) (2)

presuming, of course, that f has an inverse. The process of composition and its resulting 

stipulation of the relationship between m and e can be easily viewed graphically (Figure 

VI.2). Particular patterns of habitat organization will thus produce particular patterns of 

F, leading to particular population structures. Those structures will obviously change as 

management decisions provoke changes in either the form of F or the parameter values it 

contains.
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Figure VI.1. Diagrammatic illustration of the two extreme forms of population organization in a 
fragmented habitat. Top panel illustrates a metapopulation in which no given habitat patch can sustain a 
population in perpetuity, but the interhabitat migration is sufficiently large to offset extinctions from the 
small patches. Bottom panel illustrates a source/sink population in which one of the patches is large enough 
to sustain a population in perpetuity, the source population, while the others cannot. The smaller patches 
thus contain sinks in that any subpopulation existing in them will eventually become locally extinct. Middle 
panel illustrates the dynamics of each type of population with respect to the overall migration rate and the 
within-patch extinction rate. The upper triangle, in which a metapopulation is possible, is separated from 
the lower triangle, in which a metapopulation is not possible, by the standard metapopulation equilibrium, 
p* = 1 - (e/m) where p* is the equilibrium fraction of the habitats occupied, e is the extinction rate and m is 
the migration rate. The dashed vertical line is the critical extinction rate above which the probability of 
having at least one patch capable of sustaining a viable population even in the absence of significant 
migration approaches 1.0. Lines a-d show the relationship between extinction and migration assuming the 
underlying habitat is self-organized and thus has a scale-free distribution that follows a power law. With 
increasing extinction rate (decreasing size of patch), we have an increasing migration rate (larger number of 
patches), assuming the overall habitat area is held constant. a: ae=12; be=.25, am=1;pT=100. b: ae=12; be=.
25, am=1; pT=120. c: ae=12; be=.1, am=.4; pT=250; d: ae=12; be=.2, am=.3; pT=180. In scenario a, the 
population goes from a metapopulation/source/sink population, to a strictly source/sink population to 
population extinction to metapopulation, as extinction and migration increase. Changing the overall habitat 
area, we obtain scenario b, where the population exists first as a metapopulation/source/sink combination, 
but after the migration rate passes its critical point, becomes strictly a metapopulation. In scenario c the 
population begins as a source/sink population, then becomes extinct, but, with yet further increase in 
extinction rate, a metapopulation emerges. Scenario d illustrates the unusual case in which a source /sink 
population is driven to extinction, but then emerges at a much higher extinction/migration combination as a 
metapopulation.
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Figure VI.2. Graphical composition of the three essential functions to produce the relationship between 
migration rate (m) and extinction rate (e), based on the fundamental monotonic relationship between cm and 
nT. The final function gives a qualitative functional form to the relationship between migration (m) and 
extinction (e).

Basic rules of spatial dynamics frequently produce patterns in which clusters of 

individuals form habitat patches and those patches themselves are distributed according 

to a power law (Pascual et al. 2002, Newman 2005, Scanlon et al. 2007), at least in some 

likely situations (Kéfi et al. 2011). Thinking of this relationship as canonical, we ask, if 

patch sizes are distributed according to a power law, what will be the form of h? (and 

later, of F, making some reasonable assumptions about f and g).

We begin with the fundamental power law distribution,

 v(c) = ac−b exp(−c/S) (3)

where c = patch size, v is frequency, b and a are constants, and S is the so-called cutoff 

point where v(c) begins declining faster than the power law at lower values of c. Strictly 

speaking, as S approaches infinity, equation 3 becomes a pure power law. This is 
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precisely what is expected if the population is at a critical state, whether driven there by 

some key parameter or evolving there by a self-organizing process (Bak 1996). Also, as 

discussed later, if the population in question exhibits robust scaling (Pascual et al. 2002, 

Kéfi et al. 2011), the assumption that S is very large, such that exp(-c/S) = 1, may be 

warranted for many systems. We proceed with that assumption.

Given that patches are made up of particles (individuals, biomass units, etc.), the 

total number of particles in the system is given as,

 pT (c) =

� cm

1
cac−bdc =

� cm

1
ac1−bdc =

a

2− b
c2−b
m − a

2− b
 (4)

which we assume is constant. The total number of patches is given as,

 nT (c) =

� cm

1
ac−bdc =

a

1− b
c1−b
m − a

1− b
 (5)

From 1 we note that cm (the largest patch size) occurs when p(c) = 1, giving,

 a = cbm (6)

which, when substituted into 5, gives us,

 nT =
cm − cbm
1− b

 (7)

From equation 4, we write,

 c2−b
m = pT

2− b

a
+ 1 (8)

If we restrict our analysis to pT large, equation 8 becomes,

 c2−b
m = pT

2− b

a
 

which, after substituting from 6 and rearranging, becomes,

 b = 2− c2m
pT

 (9)
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Substituting 6 and 9 into 5, we obtain,

 nT =
cm − c

�
2− c2m

pT

�

m

c2m
pT

− 1
= h(cm) (10)

If we now assume linearity for the functions f and g, such that e = ae - becm and m=amnT, 

and taking the inverse of f, we have cm = (ae – e)/be. Substituting these linear terms to 

compute the composed function (equation 4), we obtain,

 m = am
ψ(e)− ψ(e)

�
2−ψ(e)2

pT

�

ψ(e)2

pT
− 1

 (11)

where, 

 ψ(e) =
ae − e

be
 

In Figure VI.1 we illustrate four scenarios of increasing extinction and migration 

rates (using equation 11), assuming that the overall area of habitat is constant and the 

frequency of patch sizes is distributed as a power function.

To further illustrate the dynamics, we used a discrete-time, lattice-based model 

(Appendix B) to simulate patch occupancy dynamics on an artificial landscape of habitat 

patches whose sizes were drawn from a power-law distribution. The landscape was 

modeled using a 200 X 200 cell, two-dimensional, square lattice, with each cell being 

designated as either habitat or non-habitat. Since we are interested in ecological systems, 

which are of finite size, non-periodic boundaries were used. The distribution of patch 

sizes was created using the method of approximating a discrete power-law distribution 

from a continuous distribution detailed in Clauset et al. (2007). Using a random real r 

drawn from a uniform distribution, 0 ≤ r < 1, an integer patch size c can be calculated:

 c = �( 12 )(1− r)−1/(α−1) + 1
2� (12)
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where α is the power function exponent, or scaling parameter and the closing brackets are 

floor symbols. Patches were drawn repeatedly in this manner until the sum of the patch 

sizes was equal to or greater than 1200, i.e., the total habitat area was approximately 

equal for all runs.

Following generation of the patch size distribution, each patch was placed 

randomly in the lattice such that no two patches were touching using the following 

process. The first particle in each patch was placed in a randomly-chosen, empty location 

with no existing particles in the neighboring eight cells (the Moore neighborhood). For 

patches of size c > 1, a neighboring, empty cell with no other particles in the Moore 

neighborhood was then chosen for the next particle, and this process was repeated until a 

total of c cells had been designated.

All patches in the metapopulation were initially occupied. At each time step, local 

extinction in each patch was determined based on patch size. In each time step, the 

probability of extinction was calculated for each patch:

 P (extinction) = e0 exp(−e1c) (13)

where e0 = 0.9, e1 = 0.03, and c is the patch size. These values were chosen arbitrarily, 

with the goal simply being to make the probability of extinction a decreasing function of 

patch size. Rescue of extinct (unoccupied) patches was determined based on their 

proximity to other occupied patches. The probability of rescue was calculated as:

 P (rescue) = 1−
N�

i=1

(1−m0 exp(−m1di)) (14)

where N is the number of occupied patches, m0 = 0.9, m1 = 0.25, and di is the shortest 

Euclidean distance from the focal patch to patch i. Again, these parameter values were 

chosen somewhat arbitrarily to achieve an increasing rescue probability with an 

increasing abundance and/or proximity of neighboring occupied patches.

The model was swept over a range of scaling parameters, from 1.5 to 2.8, with a 

step size of 0.025. For each value of the scaling parameter, 100 runs were performed. 

Each realization was run for 1000 time steps, and the average fraction of patches 
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occupied was calculated for the final 100 steps; trial runs had demonstrated that steady 

state was reached after approximately 200 time steps, so it is reasonable to assume that 

this average excludes transient behavior. For runs in which the metapopulation went 

extinct, the average fraction of patches occupied was defined to be zero.

The results of the simulation of the theoretical species are displayed in Figure VI.

3. It is evident that the population lives as a metapopulation for a very low power 

function scaling parameter, basically because the largest patch size is too small to form a 

source population, but there are a large number of patches insuring a high overall 

migration rate. As the scaling parameter increases, the population moves toward 

extinction, largely due to the low number of patches resulting in a lowered migration rate 

but without the concomitant emergence of at least one large patch to accommodate a 

source population. At very high values of the scaling parameter, the population is 

maintained as a source/sink population due to the existence of at least one large habitat 

patch that houses a source population. The simulation is reminiscent of cases a and d of 

Figure VI.1.
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Figure VI.3. Average fraction of patches occupied as a function of the scaling parameter of the original 
“self-organized” habitat distribution, from simulation experiments. Red points, clustered on the left, signify 
a population maintained as a source/sink population. Blue points, clustered on the right, signify a 
population maintained as a metapopulation. The black line is the average of 100 realizations at each scaling 
parameter setpoint.

Self-organization of habitat patches and consequences for equilibrium patch 

occupancy

The above results illustrate the importance of the parameter of the power law of 

the underlying habitat in determining the fundamental structure of the population in 

question, that is, whether it will exist as a metapopulation or a source/sink population (or, 

for that matter, go extinct). However, the assertion of an underlying power law is based 

on the assumption that the habitats are themselves self-organized. Thus the question 

naturally arises as to what might be the difference between a population that exists in a 

set of habitat patches that themselves are self-organized compared to a population 
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existing in habitat patches not so organized, especially ones in which habitat sizes 

themselves have a frequency distribution that is a power function, but the patches 

themselves are randomly allocated in space (as in the calculations in the previous 

section). 

To explore this question, we ran the patch occupancy simulation model described 

previously on a landscape of patches generated by the discrete-time, lattice-based CA 

model of Vandermeer et al. (2008). Recall that in this framework the habitat to be 

“constructed” is a shade tree occupied by an ant nest, while the population to be affected 

(i.e, the organisms that live in these patches) responds to the distribution of the patches of 

those ant nests. The generation of patches in the CA model occurs as follows: each site in 

the lattice can adopt one of two states, either occupied by an ant nest or empty. 

Unoccupied sites are colonized through local expansion of ant nest clusters, while 

occupied sites become unoccupied with some mortality rate that is an increasing linear 

function of the number of occupied sites in the Moore neighborhood (the 8 sites 

surrounding the cell). By varying the intercept of this linear mortality function, the 

equilibrial number of ant nests (habitat points) can be varied. In this manner, self-

organized landscapes with an arbitrary number of habitat points can be generated. 

Following the generation of the habitat landscape, habitat patches, defined as contiguous 

clusters of points touching on an edge or corner, were identified.

The self-organized landscapes generated by the CA model were compared to two 

other scenarios. First, to separate the effects of the frequency distribution of patch sizes 

from the spatial distribution of patches, the locations of the habitat patches in the 

landscapes generated by the CA were randomly perturbed to create landscapes with the 

same cluster (habitat patch) size distributions but different spatial arrangements of the 

clusters, i.e., the CA-generated patches were dispersed randomly throughout the lattice. 

Second, landscapes of randomly distributed points were generated to represent the full 

null expectation without self organization. 

Populations inhabiting self-organized landscapes consistently achieve a higher 

equilibrial fraction of habitat patches occupied than either the null model or the dispersed 
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CA model (Figure IV.1). The dispersed CA landscapes, despite having the same cluster 

size distributions as the CA landscapes, was substantially worse than the self-organized 

landscape.

Figure VI.4. The mean fraction of habitat patches occupied for landscapes with different amounts of 
habitat. The blue line is for habitat landscapes generated by the CA model. The red line is for landscapes 
generated by randomly placing habitat points in the lattice. The black line is for landscapes generated by 
randomly dispersing the habitat patches generated by the CA model. Vertical lines show the standard errors 
of 10 realizations of the model. The mean fraction occupied was calculated from 100 time steps taken after 
the model had reached steady state (after 900 time steps). The letters correspond to the habitat distributions 
shown in Figure VI.5.

The qualitative characteristics of the landscapes generated in the three scenarios 

are markedly different (Figure VI.5). The self-organized habitat displays non-random 

spatial structure at multiple scales, both at the patch scale and across patches; habitat 

points cluster to form patches, and the patches themselves are clustered. The dispersed 

CA landscapes only retain the former (clusters of points), while the latter (clusters of 

clusters) is, by design, absent. The null landscapes are characterized by greater 

dispersion, i.e., less clustering, at all spatial scales compared to the self-organized 
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landscapes. Quantitatively, a Ripley's K analysis, which is a measure of clustering of 

point patterns (Goreaud and Pélissier 1999), corroborates the qualitative picture, with the 

self-organized landscapes being significantly more clustered at all spatial scales than the 

dispersed CA and null landscapes (Figure VI.6). The dispersed CA landscapes are 

significantly clustered at smaller spatial scales due to the clustering of points that form 

habitat patches, but become less clustered at larger spatial scales due to the random 

dispersal of the habitat patches. The null landscapes are not significantly clustered at any 

spatial scale. The null model landscapes are characterized by cluster size distributions 

with much steeper slopes than the CA and dispersed CA landscapes (which by definition 

both have the same cluster size distributions) (Figure VI.7). This indicates that the null 

landscapes have many more small clusters and fewer large clusters than the CA and 

dispersed CA landscapes. 
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Figure VI.5. Representative landscapes corresponding to the data shown in Figure VI.4. Black points are 
habitat and white areas are uninhabitable. Row 1 shows self-organized landscapes generated by the CA 
model with 500 points (a), 1000 points (d), and 2000 points (g). Row 2 shows the corresponding "dispersed 
CA" landscapes that were generated by randomly dispersing the habitat patches in the CA-generated 
landscapes. Landscape b was generated by randomly dispersing the patches in landscape a; e corresponds 
to d, and h corresponds to g. Row three shows landscapes that were generated by randomly placing 500 
points (c), 1000 points (f), and 2000 points (i).

Figure VI.6. Ripley's K, transformed such that the expectation for all sample sizes is zero for a random 
spatial pattern and greater than zero for clustered patterns, for the scenarios identified in Figures VI.4-VI.5. 
Blue lines are for the self-organized landscapes generated by the CA model; black lines are for the 
dispersed CA landscapes; red lines are for the null landscapes; and the gray region shows the 95% 
confidence intervals for the random expectation based on 200 randomly-generated landscapes. Lines above 
these gray regions are significantly clustered.
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Figure VI.7. Cluster size distributions for the scenarios identified in Figures VI.4-VI.6.

These results suggest that the self-organization of habitat patches, by promoting 

clustering across a range of spatial scales, creates landscapes that promote the persistence 

of populations, either as metapopulations or source/sink populations. The scale-free 

structure of self-organized habitat results in clusters of clusters, thereby providing both 

the large patches and the short distances between patches that, respectively, avert 

extinction of occupied patches and foster rescue of unoccupied patches.

An empirical example

In general, if a particular biological system forms the habitat background, the 

spatial scale of that system may not correspond to the effective spatial scale of the 

population that occupies it. In our exemplary system, for example, the arboreal ant forms 

clusters of nests as it responds to a variety of ecological forces (Perfecto and Vandermeer 

2008b, Vandermeer et al. 2008, Jackson et al. 2009), whereas the organisms that utilize 

those nest clusters as habitat patches may be responsive to some spatial scale that is 

different from the spatial scale that is meaningful to the ants themselves. So, for example, 
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it may be that the dispersal stage of the green coffee scale insect is on the order of 50 

meters, while the ants only forage over a distance of 10 meters. The question of spatial 

scale thus becomes a relative question.

Furthermore, in all cases in which the habitat-forming organism is registered as 

occupying individual particles of habitat in space, there needs to be some spatial scale 

over which particles can be regarded as members of the same cluster (patch), i.e., a 

"cluster scale." This implies that there are actually two parameters that inevitably 

determine the final clustering of habitat particles (and, therefore, the distribution of patch 

sizes): the total number of particles and the cluster scale. In theory, one may assume 

discrete lattices, in which adjacent particles are considered members of the same patch. In 

practice, however, a self-organizing process will frequently be conceptualized as particles 

in continuous space, which means that some cluster scale has to be chosen in order to 

determine patch membership. 

Given a particular number of particles in space, the relationship between the 

number of isolated particles (singletons) and the largest patch (the critical issues with 

regard to population structure, as discussed in the theory section above) is obviously a 

negative relationship: as the clustering scale increases, the number of singletons declines, 

and the size of the largest patch increases. For example, we illustrate this relationship for 

a random allocation of 761 particles in Figure VI.8 (bold lines). It is evident that where 

these two functions cross, the slope of the power function that describes the scale-free 

distribution of particles should be approximately -1.0 (the intercept on the y axis is the 

total number of singletons and the intercept on the x axis is the number of particles in the 

largest patch; when both are equal, the line connecting the two will have a slope of -1 on 

a logarithmic scale). 
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Figure VI.8. Relationship between cluster scale and number of singletons (blue curves descending) and 
number of points in the largest patch (red curves ascending). Bold lines are from a random allocation of 
761 points. Fine lines are from the actual position of 761 nests in a 45 ha plot in a coffee farm in southern 
Mexico.

In Figure VI.8 we also show the distribution of the numbers of singletons and 

largest patch size, for the same range of cluster scales, for the actual distribution of nests 

of the ant A. instabilis in our 45 ha study plot in May of 2010. We note that the two 

functions cross at a cluster scale of approximately 17 (i.e., the ant nests are responding to 

one another over a range of 17 meters at this point). 

The population of concern, which is to say, the population that “occupies” the 

habitat patches created by the process of clustering of ant nests, is the green coffee scale 

insect, the hemipteran C. viridis, that forms a mutualistic association with the ants. That 

is, the ant (which tends C. viridis) creates the background habitat into which the scale 

insect must fit. Every dry season the hemipteran populations drop to very low levels 

except in some of the ant nest clusters where residual populations persist (Figure VI.9). In 

surveys of the entire 45 hectares performed from January to April of 2009 and again from 

March to May of 2010, before the beginning of the rainy season, we recorded the 

presence/absence of an ant nest in each of the approximately 8,000 shade trees in the 45 
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hectare plot and noted whether there were hemipterans in nearby coffee bushes. Using a 

cluster scale of 17 m (choosing the point where the two functions cross in Figure VI.8) 

we present the results of these surveys in Figure VI.10. Note that at this scale, the insects 

are concentrated in the larger clusters of ant nests and that the concentrations of scale 

insects generally persist in the same nest clusters from year to year, precisely as would be 

expected for a source/sink population. Thus, it would appear that the self-organizing 

attributes of the arboreal ants create the patch structure that generates a source/sink 

dynamic for the green coffee scale insect.

Figure VI.9. Time series of 35 populations of Coccus viridis at 7 distinct locations in a 45 ha plot on an 
organic coffee farm in Chiapas, Mexico. Note the distinct decline to almost zero during each dry season for 
all populations.
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Figure VI.10. Distributions of ant nests in a 45 ha plot, represented as 17 m diameter gray circles, along 
with X’s marking the locations where at least one neighboring coffee bush contained green coffee scale 
insects in a) 2009 and b) 2010. Note that the concentrations of scale insects tend to occur in the same nest 
clusters (defined by gray circles that touch or overlap one another) from year to year. The distances 
between the locations of scales in 2010 and the nearest scales in 2009 are significantly less than would be 
expected by chance (p<0.0001 using a Monte Carlo method with 10,000 repeats wherein the 2010 scales 
were randomly allocated to ant nests and the average distance to the nearest 2009 neighbor was calculated),  
indicating that the clusters of scales in 2010 generally occur near 2009 clusters, which is consistent with the 
persistence of the scale insects as a source/sink population. 

Conclusions

Under a wide variety of scenarios, the self-organization of biological habitats may 

result in a distribution of habitat patch sizes that lacks a central tendency, and may thus 

be approximated by a power law, or some similar function. Given this habitat 
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construction, the resulting populations that live in those habitat patches may exist as 

either a source/sink population or a metapopulation, conditioned not only on the 

migration and persistence qualities of the population itself, but also on the underlying 

distribution of the self-organized habitat patches. This framing of population spatial 

structure redirects the typical focus from one of migration/extinction dynamics only, to 

one that asks how the structure of the underlying habitats codetermines (along with the 

migration/extinction characteristics) the nature of population structure (whether the 

population exists as a source/sink population or a metapopulation).

Using this framework it seems to be the case that the ant, Azteca instabilis, which 

nests in shade trees in coffee plantations in southern Mexico, forms the underlying habitat 

structure that determines the fact that the associated green coffee scale, Coccus viridis, 

exists as a source/sink population.

In addition to the obvious implications for theoretical ecology, these results 

command attention from ecosystem managers of various persuasions. For example, in 

conservation planning, political exigencies frequently determine the size distributions of 

natural habitat preserves within a hostile matrix. Species of conservation interest living in 

these habitat fragments may exist as either source/sink populations or metapopulations, 

depending not only on the migration/extinction potential inherent in the species, but also 

on the underlying distribution of the habitat sizes, with concomitant management 

challenges for conservation planners. For instance, improving the conditions of migration 

might lead to a loss of a source/sink structure and extinction of the population, before the 

metapopulational structure can be realized (see curve a or d in Fig. VI.1), a 

counterintuitive result that can be readily understood in the framework of habitat patch 

size distributions and the metapopulation-source/sink continuum. This also casts the 

classical Single Large or Several Small (SLOSS) debate in a new light, suggesting that 

under some conditions intermediate states between these two extremes may maximize 

risk of extinction of the population.
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Chapter VII

Detection of imminent, non-catastrophic regime shifts

The concept of a regime shift, in which an ecosystem changes rapidly from one 

state to a qualitatively different state, has gained a certain prominence in the context of 

anthropogenic climate change. Climate scientists hypothesize that there exist thresholds 

of atmospheric greenhouse gas levels at which very rapid changes in large-scale 

environmental conditions will occur. Examples of such scenarios include the collapse of 

the Atlantic thermohaline circulation and the disappearance of the Greenland Ice Sheet 

(Lenton et al. 2008).

Regime shifts also occur at much smaller scales, and are of particular concern 

when they involve a transition from a desirable to an undesirable state, such as the 

cultural eutrophication of lakes (Carpenter 2005, Scheffer and Nes 2007), desertification 

(Kéfi et al. 2007), and the collapse of fish stocks (Daskalov et al. 2007). Such shifts pose 

a challenge for the management of ecosystems, as the rapidity of the transitions makes it 

difficult – if not impossible – to arrest them once they have begun. Consequently, there 

has been much interest recently in developing early warning signals, or leading 

indicators, to detect imminent regime shifts far enough in advance to enable prevention 

(Scheffer et al. 2009). The proposed leading indicators typically depend on a 

phenomenon termed "critical slowing down," in which the dynamics of a system on the 

verge of a transition are predicted to slow down in a characteristic way (Strogatz 1994), 

leading to detectable statistical signals in the temporal and/or spatial dynamics of the 

system.

Critical slowing down is typically conceptualized using the metaphor of a ball in a 

cup. The cup represents a basin of attraction that tends to drive the state of the system, 

represented by the ball, to a particular equilibrial condition. When the system is far from 

a regime shift, the sides of the cup are very steep, and the ball will rapidly return to the 
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center of the basin of attraction following any perturbation. In contrast, during an 

incipient regime shift, the system can be conceived of as a ball in a cup with very shallow 

sides. When the ball is displaced by perturbations, the shallow sides only weakly draw 

the ball back to the center of the cup, leading to a much slower rate of recovery – a 

slowing down of the dynamics. A regime shift occurs when the sides of the cup are 

shallow enough, or the perturbation is large enough, to knock the ball into a neighboring 

basin of attraction.

In this scenario, the slowing down of dynamics leads to both temporal and spatial 

autocorrelations. When dynamics are slow, the state of the system at any point in time is 

likely to be similar to what it was a short time before (temporal autocorrelation). 

Likewise, critical slowing down will tend to cause points in close spatial proximity to be 

in similar states, provided that there is sufficient dispersal between sites. With coupling 

via dispersal, a site that has been displaced from equilibrium by a perturbation will 

influence its neighboring sites by sending (or failing to send) propagules, thereby 

displacing the neighboring sites in the same direction. When there is only a weak basin of 

attraction, i.e., during critical slowing down, the influence of dispersal from neighboring 

sites will dominate over a site's own internal dynamics, causing neighboring sites to be 

significantly more similar than distant sites (spatial autocorrelation). Both temporal and 

spatial autocorrelation have been proposed as leading indicators of regime change 

(Wissel 1984, Dakos et al. 2009).

A second class of proposed leading indicators relies on changes in the spatial 

variance and skew of a system property of interest, e.g., in the spatial variance and skew 

of the abundance of a particular organism of interest. When a system is firmly embedded 

in a basin of attraction, all of the sites' states will tend to be tightly centered on the 

attractor. Therefore, a histogram of the sites will exhibit low variance and low skew. As 

the system moves towards a regime change, sites will tend to be less strongly drawn to 

the original attractor; at the same time, the influence of the alternative basin of attraction 

will begin to significantly affect some sites. Together, these two tendencies result in an 

increase in both the spatial variance and skew prior to a regime shift. Specifically, a peak 
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in the skewness coupled with a continued increase in variance is proposed as a general 

indicator of regime change (Guttal and Jayaprakash 2008, Guttal and Jayaprakash 2009).

These indicators have generally been developed for systems that exhibit 

catastrophic thresholds, most commonly associated with fold bifurcations. However, 

whether these indicators will also prove effective for non-catastrophic thresholds is an 

open question (Scheffer et al. 2009). Near a catastrophic, fold-bifurcation threshold, there 

exist multiple equilibria, and the equilibrium that the system resides at depends on the 

path that the system took to reach the current state, i.e., there is hysteresis. This type of 

bifurcation with hysteresis is exemplified by the collapse of semi-arid vegetation as a 

result of a drying climate (Rietkerk et al. 2004). As dryness increases, the system crosses 

a threshold at which the vegetation suddenly collapses and a barren desert is formed; 

however, recovery of the vegetated state requires that dryness decrease well below the 

collapse threshold. Near the collapse threshold, whether the system resides at the 

vegetated equilibrium or the barren equilibrium depends on whether the system is 

approaching the threshold from the direction of increasing or decreasing dryness. A non-

catastrophic threshold, in contrast, is characterized by a sudden change in the system state 

in response to a small change in a forcing parameter, but without the discontinuity and 

hysteresis of a fold bifurcation.

Hastings and Wysham (2010) offer a counter to the view that general leading 

indicators can be developed. The ball and cup metaphor and the proposed leading 

indicators that follow from this conceptualization depend on the system having a smooth 

potential, without underlying complex dynamics such as period doubling cascades to 

chaos. Therefore, they argue, for a large set of real ecological systems without smooth 

potentials, we should not expect to observe the proposed leading indicators prior to a 

regime shift. Agroecosystems, in particular, are likely to undergo regime shifts without 

detectable advance warning (Vandermeer 2011).

In the present study, the potential for regime change, in the form of a collapse of 

the population of a fungal biocontrol in a coffee agroecosystem, is tested using a 

spatially-explicit, stochastic simulation model. The fungus, Lecanicillium lecanii 
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(Zimmerman) Zare and Gams, is an entomopathogen and mycoparasite that provides an 

essential ecosystem service of pest control in coffee farms. The goals of this study are 

twofold: first, to use this model, which incorporates essential components of the known 

natural history of the fungus, to predict whether sudden regime change could occur in this 

system in response to small changes in the primary environmental parameters of the 

model; and second, to determine if the proposed leading indicators can be used to detect 

imminent regime shifts in this model. 

These proximate goals are motivated by the immense practical utility that reliable 

detection of imminent regime shifts in agroecosystems could provide. For example, if a 

regime shift involves moving from a regime in which autonomous pest control is 

maintained to a regime in which that control is lost, detection of a regime shift could 

mean the prevention of a catastrophic pest outbreak or development of a chronic pest 

problem. More concretely, an early warning signal predicting the loss of L. lecanii from 

the coffee agroecosystem could allow managers to adjust their management activities 

before the population collapses, thereby maintaining C. viridis or H. vastatrix below pest 

status. Because of the centrality of ecosystem services to an agroecological management 

approach, the ability to predict major changes in the ecosystem far enough in advance to 

take ameliorative action would be invaluable.

A second motivation is to add to the existing models that have been used to test 

leading indicators. As is appropriate during the initial stages of developing a body of 

theory, the models used to date have tended to be formulated to favor the detection of 

regime shifts. Therefore, there is a strong need to continue accumulating a catalog of case 

studies using biologically realistic models and data from real systems in order to 

determine the practical potential of these indicators.

Methods

The study system

The study system upon which the model is based is comprised of L. lecanii and its 

primary host, the green coffee scale Coccus viridis Green (Hemiptera: Coccidae) 
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(González et al. 1995). The study site is in Finca Irlanda, an organic coffee 

agroecosystem located in the southeast of the state of Chiapas, Mexico. In addition to its 

potential role as a biological control of C. viridis, L. lecanii is known to attack coffee 

rust, Hemileia vastatrix, a potentially devastating disease (Moricca and Ragazzi 2008, 

Vandermeer et al. 2009, Jackson et al. 2012). 

The ant Azteca instabilis, which tends C. viridis in a classic ant-hemipteran 

mutualism, is a keystone species that structures many of the relevant ecological 

interactions in this system (Vandermeer et al. 2010a). In exchange for a carbohydrate-rich 

excretion generated by the scales, A. instabilis protects C. viridis from its predators and 

parasitoids. In the presence of A. instabilis, C. viridis populations can grow to hundreds 

of individuals per coffee plant. These large populations of scale insects provide resources 

for a number of associated organisms, including L. lecanii. Local epizootics of L. lecanii 

frequently result in nearly 100% mortality of the scale insects tended by a given ant 

colony (Jackson et al. 2009).

The prevalence and distribution of L. lecanii, and hence its potential to maintain 

control of C. viridis and H. vastatrix within the coffee farm, may depend on a number of 

factors related to management practices. First, the ants nest in trees that are planted by 

farmers to shade the coffee plants below, and therefore the locations of concentrations of 

scale insects – the hosts of the fungus – are determined in part by the locations of the 

shade trees. The density of the shade tree canopy also influences the intensity of 

ultraviolet radiation that reaches the soil, which may be a determinant of fungal spore 

survival (Paul and Gwynn-Jones 2003); the shade trees are periodically pruned by the 

farmers, so management practices likely have a direct effect on the mortality rate of 

spores in the soil, which has been shown to be an important environmental reservoir of L. 

lecanii (Jackson et al. In press).

Environmental factors may also play an important role in the epizootiology of L. 

lecanii. Pronounced wet and dry seasons are a key climatic feature of the Soconusco 

region of Chiapas. During the wet season, which lasts for approximately 6 months, there 

is rain virtually every day that typically lasts from mid-afternoon through the night. In the 
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dry season, in contrast, rain is very infrequent, with most days being sunny, warm, and 

dry. The intensity of the rainy season is potentially important because rain splash has 

been shown to be a mechanism for translocation of spores from the soil onto susceptible 

scale insects (Jackson et al. In press). Therefore, the dispersal of L. lecanii is heavily 

dependent on rainfall.

The spatially explicit, stochastic model

The core system of equations upon which the model (Appendix C) is based is 

equivalent to Hochberg’s reservoir model (Hochberg 1989), with two changes. First, the 

host population dynamics are density dependent, i.e., the growth rate of the host 

population decreases as it approaches a carrying capacity, K, as a result of influences 

unrelated to the pathogen. Second, infected individuals do not reproduce. This latter 

assumption is appropriate for the specific insect host-fungal entomopathogen system that 

I consider in the present paper, and is also appropriate for a number of other insect 

diseases (Fuxa and Tanada 1987).

To add explicit spatial structure to the model, multiple instantiations of the system 

of differential equations shown below are embedded in a two-dimensional, continuous-

space arena (Figure VII.1). A specified number of ant nest sites are distributed randomly 

within the arena, with an instance of the system of equations placed at each site. 
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dt
= σθ2Ii − (ρ+ ν)Qi + λWi (4)
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where Si, Ii, Wi, and Qi are the susceptible hosts, infected hosts, infectious pathogens, and 

latent pathogens at site i, respectively; r is the intrinsic growth rate of the host population; 

K is the carrying capacity; and β is the transmission rate. Infected individuals, Ii, are 

removed at rate σ, converted into infectious biomass at rate σθ1 and converted into latent 

pathogen biomass at rate σθ2. The latent pathogen biomass, Qi, represents the 

environmental reservoir. 

Figure VII.1. Snapshot of the stochastic, spatially-explicit model. Circles are locations of A. instabilis 
nests (sites). Green circles are proportional to the number of healthy C. viridis (Si). White circles are 
proportional to the number of infected individuals (Ii). 

The infectious and latent pathogens undergo two processes: translocation between 

the latent and infectious classes, and mortality. Translocation from the latent class to the 

infectious class and vice versa occur at rates ν and λ, respectively. Mortality (removal) 

rates are µ for the infectious class and ρ for the latent class.

The individual sites are linked with the other sites by dispersal of infectious 

pathogens. Infectious pathogens can disperse from any of the M other sites in the arena. 

The rate of dispersing pathogens is a fraction, α, of the infectious pathogens removed at 

rate µ by either death or dispersal. The rate of dispersal from site j to site i is assumed to 

fall off exponentially as a function of the distance between sites, di,j, with a decay 

constant δ.

Seasonality is implemented based on the following assumptions: First, there are 

two distinct seasons, one in which the host is actively reproducing, and another in which 
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it is quiescent. Second, at the beginning of the active season (following the dormant 

season) the host population is reset to an initial value that is independent of the size of the 

host population in the previous active season. In the study system, migration of the scale 

insects from areas outside of the location of an epizootic ensures that there will be an 

initial, small population of scales at the beginning of the active season even if the scales 

in a location were completely exterminated by an epizootic in the previous active season. 

Third, a portion θ2 of infected individuals present at the end of the active season is 

converted into latent pathogens at the end of the active season. Fourth, there are no 

infectious individuals or infectious pathogens at the beginning of the active season, i.e., I 

and W are reset to zero at the beginning of each active season. Finally, the mortality rate 

of the latent pathogens, ρ, is the same during the active and dormant seasons.

Given these assumptions, it is possible to model the dormant season using a 

simple discrete-time map from the end of one active season to the beginning of the next 

active season. At the beginning of each active season, S = S0, I = 0, W = 0, and Q = (Qa + 

θ2Ia)exp(-ρTd), where Qa and Ia are the latent pathogens and infected individuals at the 

end of the previous active season, respectively; Td is the length of the dormant season; 

and θ2 and ρ are the conversion and mortality rate parameters described previously.

The active-season dynamics of the model described above were implemented 

using a modified version of Gillespie’s stochastic simulation algorithm known as the 

optimized τ-leap method (Cao et al. 2006, Pineda-Krch 2008). In brief, the original 

formulation of Gillespie’s algorithm, the direct method, involves first defining discrete 

events that can occur in the model, such as an infection event or a death event. The rates 

of all possible events, as defined by the model parameters and the current state of the 

system, are then used to calculate a distribution of times between events. At each step, the 

time to the next event is drawn from this distribution. The identity of the next event is 

determined probabilistically based on the relative rates of the different events. In this 

manner, the model state is advanced through time by repeatedly drawing time steps and 

event identities from distributions based on the rates of the various events.
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Gillespie’s direct method becomes very computationally expensive as population 

sizes increase and the time between events consequently becomes very small. The τ-leap 

method was developed to address this issue. It involves defining the time between events, 

τ, a priori and then calculating the number of occurrences of all of the different events 

during each time step. The number of occurrences of each event is based on the current 

firing rates of the events, as determined by the parameter values and the current state of 

the system. The challenge with this method is choosing a τ that is large enough to provide 

significant computational savings while not causing any computational anomalies. For 

example, if τ is too large, populations could fall below zero due to the number of death 

events exceeding the size of the population at the beginning of the time step; a smaller 

time step would allow the death rate to be adjusted as the population decreases, causing 

the population to smoothly approach zero without overshooting, but this accuracy comes 

at the expense of speed. 

 The difficulty of choosing a time step a priori that would strike a good balance 

between speed and accuracy under all conditions led to the development of the optimized 

τ-leap method. This method uses a combination of Gillespie’s direct method; the explicit 

τ-leap method with a variable τ that is modified in real time based on the state of the 

system; and judicious execution of “critical” events, i.e., events that run the risk of 

driving any state to a negative value. The particular method or combination of methods 

used in a given cycle and the length of the time step (for cycles in which the τ-leap 

method is employed) are determined adaptively to optimize efficiency while preventing 

any processes from being driven below zero (Cao et al. 2006, Pineda-Krch 2008).

Parameter values

Default parameter values were derived using a combination of field data from the 

L. lecanii-C. viridis system and biologically reasonable estimates (Table VII.1). Data on 

the abundance of scale insects and the prevalence of L. lecanii on individual coffee plants 

over time are available, so it was possible to calculate estimates of the initial scale insect 

population size, growth rate, and carrying capacity. Data were unavailable for most of the 

parameters related to the fungus, including spore dispersal, translocation, and survival. 
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Only a very rough estimate of the transmission rate was possible. However, given that the 

goal of this investigation was to reveal possible qualitative outcomes, and not to provide 

accurate prediction, the emphasis was on choosing parameters that could generate the 

qualitative dynamics that are observed in the system, and not on precise parameter 

estimation.

Parameter Description Value

S0 Initial number of susceptible scales 50*

I0 Initial number of infected scales 10†

W0 Initial biomass of infectious spores 10†

Q0 Initial biomass of latent spores 300†

r Intrinsic growth rate of scale population 0.0668*

K Carrying capacity of scale population 1100*

β Transmission rate 0.01*

σ Removal rate of infected scales 0.07†

θ1 Conversion rate of infected scales to infectious spores 0.5†

θ2 Conversion rate of infected scales to latent spores 0.05†

µ Rate of removal of infectious spores 0.1†

λ Infectious to latent translocation rate 0.05†

ν Latent to infectious translocation rate 0.01†

ρ Latent spore mortality rate 0.012†

α Fraction of removed infectious spores that disperse 0.1†

δ Dispersal kernel decay constant 0.2†

Ta Length of active season (days) 183*

Td Length of dormant season (days) 182*

X Width of arena (m) 243‡

Y Height of arena (m) 243‡

sites Number of sites 100‡

* Estimated from field data* Estimated from field data* Estimated from field data
† No field data available; based on biological plausibility and model behavior† No field data available; based on biological plausibility and model behavior† No field data available; based on biological plausibility and model behavior
‡ Chosen to match the ant nest density observed in the field and for computational tractability‡ Chosen to match the ant nest density observed in the field and for computational tractability‡ Chosen to match the ant nest density observed in the field and for computational tractability

Table VII.1. Model parameters and default values.
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Calculation of leading indicators

Three of the leading indicators proposed in the literature were used to detect the 

onset of regime change: spatial autocorrelation, skewness, and variance. All of these 

indicators were calculated using the number of infected individuals, Ii, as these are the 

data that would be most readily obtainable from field surveys.

Spatial autocorrelation was calculated using Moran's coefficient (Legendre and 

Fortin 1989):

 C(d) =
n
�n

i=1

�n
j=1 ωi,j(Ii − I)(Ij − I)

Ω
�n

j=1(Ii,j − I)2
 (5)

where d is a distance class; ωi,j is a weight that is 1 if the distance between sites i and j 

lies in distance class d and 0 otherwise; Ω is the total number of pairs of sites that fall into 

distance class d; and n is the number of neighboring sites. Moran's coefficient was 

calculated for all distance classes ranging from 5 to 250 m, with a bin width of 5 m. The 

correlation length, Ψ, which is an estimate of the distance over which sites are correlated, 

was then estimated by an exponential fit, exp(-d/Ψ) to C(d) (Solé and Bascompte 2006). 

The correlation length was calculated for each day during the wet season, as well as for 

the average value of C during the entire wet season, or C(d).

Spatial variance, Var(I), and skewness, Skew(I), were calculated based on the 

distribution of Ii for all of the sites in the arena (Guttal and Jayaprakash 2009).

Results

Three scenarios leading to apparent regime shifts in which the population of L. 

lecanii collapsed throughout the arena were identified. All of these regime shifts are non-

catastrophic, without any apparent hysteresis, i.e., they are not associated with a fold 

bifurcation. The first two scenarios are triggered by changes to the translocation rate, ν 

(Figure VII.2). If the translocation rate is decreased from the default value of 0.01, the 

median fraction of sites with at least one infected individual increases. Beyond a 

threshold value of approximately 0.0025, however, the median fraction of infected sites 

rapidly falls, eventually leading to the complete extinction of the fungus from the system 
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as ν is decreased further. In the second scenario, when ν is increased above the default 

value there is also a rapid decrease in the prevalence of L. lecanii in the plot, although the 

decrease is not as precipitous (Figure VII.2).

The third scenario under which a sudden regime shift is observed involves an 

increase in the latent spore mortality rate, ρ. As ρ is increased beyond the default value of 

0.012, there is a threshold at which the site-wide prevalence of L. lecanii falls rapidly 

(Figure VII.3). If ρ is increased even further above this threshold, the fungus eventually 

dies out completely.

The dynamics of the system as the translocation rate is slowly decreased across 

the regime shift threshold are shown in Figure VII.4a. As ν nears the threshold, the total 

population of infected scales decreases noticeably. Both the variance and the skewness 

also change markedly as the threshold is approached. There is no discernible trend in the 

correlation length, Ψ. In response to an increasing translocation rate, there are no 

apparent signals of a regime shift in any of the leading indicators (Figure VII.4b); the 

only obvious change in the data is the gradual reduction in the number of infected 

individuals.

For a scenario in which the mortality rate of latent spores, ρ, is increased across 

the regime shift threshold, there is a general trend towards a lower number of infected 

sites. There is also a decrease in the spatial skew, and an increase in the spatial variance 

(Figure VII.5); however, neither of these two leading indicators exhibits a noticeable, 

rapid change until after the collapse has already taken place. The correlation length also 

shows no apparent signal of the imminent regime shift.
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Figure VII.2. Median fraction of sites with infected individuals, averaged over 100 realizations of the 
model, as a function of the rate of translocation from the environmental reservoir to the infectious class (ν). 
The model was run for 10,000 active season days, and the final 5,000 active season days of each run were 
extracted for analysis.
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Figure VII.3. Median number of sites with infected individuals, averaged over 100 realizations of the 
model, as a function of the mortality rate of latent pathogens, ρ. Dashed line is without dispersal (α = 0) and 
solid line is with dispersal (α = 0.1). The model was run for 10,000 active season days, and the final 5,000 
active season days of each run were extracted for analysis.
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Figure VII.4. Translocation rate (ν), total number of infecteds, correlation length (Ψ), skewness, and 
variance for two regime shift scenarios. a) Decrease of ν across the lower regime shift threshold and b) 
increase of ν across the upper regime shift threshold. Gray lines are daily values; black lines are averages 
across a single wet season. Gray points are for fits to Moran's coefficients for daily snapshots of Ii; black 
points are fits to Moran's coefficients averaged across a single wet season. Correlation lengths are only 
shown when the exponential fit, exp(-d/Ψ), was significant at P <0 .05.

a) b)
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Figure VII.5. Mortality rate of latent spores (ρ), total number of infecteds, correlation length (Ψ), 
skewness, and variance for a scenario in which ρ was increased across a regime shift threshold. Gray lines 
are daily values; black lines are averages across a single wet season. Gray points are for fits to Moran's 
coefficients for daily snapshots of Ii; black points are fits to Moran's coefficients averaged across a single 
wet season. Correlation lengths are only shown when the exponential fit, exp(-d/Ψ), was significant at P 
<0 .05.
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Discussion

The existence of regime shifts in this agroecosystem model underscores the 

potential importance of nonlinearities in this particular agroecosystem, and in managed 

systems in general. It also highlights the need to develop leading indicators that can 

reliably predict the onset of a regime shift. However, the general failure of the proposed 

leading indicators – spatial autocorrelation, spatial variance, and spatial skewness – to 

unambiguously signal the onset of regime shifts observed in this model suggests that the 

leading indicators developed to date for catastrophic regime shifts may be less effective 

for non-catastrophic regime shifts, and emphasizes that much work still needs to be done 

to develop signals of impending regime change that are practicable under real-world 

management scenarios for systems that exhibit this class of regime shift.

In the context of the example study system, the humped relationship between 

prevalence and the latent-to-infectious translocation rate illustrates how nonlinearities can 

have important implications for the maintenance of biological control. In the L. lecanii-C. 

viridis system, an environmental reservoir is in the soil, and latent-to-infectious 

translocation occurs by rain splash (Jackson et al. In press), so the latent-to-infectious 

translocation rate will be a function of rainfall intensity. Therefore, intermediate rainfall 

intensity could be expected to maximize the effectiveness of biological control of the 

scale insect (C. viridis) by the fungus. The possibility that intermediate rainfall intensity 

could maximize biological control has not been considered in the literature related to this 

system, which focuses exclusively on the positive effects that elevated relative humidity 

has on germination of L. lecanii and the initiation of epizootics (Reddy and Bhat 1989). 

Ignoring the effects of rainfall on the environmental reservoir could lead to qualitative 

predictions that are counter to what may actually occur if rainfall were to change.

These results also point to the potential for management decisions to have 

unexpected effects on biological control. Pruning shade trees in order to increase 

photosynthetic activity is a common technique for increasing coffee yield (Staver et al. 

2001). However, this practice is also likely to significantly increase the intensity of 
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ultraviolet radiation reaching the soil. Ultraviolet radiation is known to have a strong 

negative effect on the survival of fungal conidia (Paul and Gwynn-Jones 2003), and could 

therefore increase the mortality rate of spores in the environmental reservoir, i.e., ρ. This 

could potentially lead to a drastic reduction in the prevalence of L. lecanii (Figure VII.3) 

and a subsequent loss of the ecosystem service of pest control. Although further research 

would be necessary to determine whether the real system resides in a region of parameter 

space where small changes in ρ would lead to major changes in prevalence, these results 

suggest that it would be prudent for managers to monitor the response of the fungus as 

shade levels are manipulated.

There are a number of factors that contributed to the failure of the leading 

indicators to unequivocally signal the onset of the observed regime shifts. The primary 

factor may be the relative gradualness of the non-catastrophic transitions observed in this 

system compared to the catastrophic transitions that the leading indicators have generally 

been applied to. Intuitively, critical slowing down should be less severe for non-

catastrophic thresholds, and therefore the associated signals should be less pronounced, 

making them more difficult to distinguish from noise. In comparing the tendency for the 

leading indicators to change as the system approaches the three regime shifts considered 

here (Figures VII.4 and VII.5), it appears that this intuition is borne out, with the change 

in the indicators seemingly correlated with the rapidity of the transition (Figures VII.2 

and VII.3). Although none of the scenarios exhibited the diagnostic peak in skewness 

coupled with a continued increase in variance (Guttal and Jayaprakash 2009), the 

scenario with the most abrupt threshold exhibited a noticeable change in these parameters 

prior to the collapse (Figure VII.4a) while the scenario with the most gradual shift did not 

(Figure VII.4b).

In addition to the inherent difficulty of detecting the onset of non-catastrophic 

regime shifts, the lack of a signal of increased spatial autocorrelation is also likely due to 

the weak coupling of sites, which is a consequence of the shape and magnitude of the 

dispersal kernel as well as the relatively large and varied distances between sites. Both of 

these characteristics (low rates of dispersal and large, varied distances between sites) are 
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likely to be common in real systems, which calls into question the potential utility of 

spatial autocorrelation as a leading indicator. Use of spatial autocorrelation as a leading 

indicator relies on dispersal becoming dominant as the internal dynamics of the sites slow 

down, but this may be unlikely to occur in systems that do not have the strong spatial 

coupling that is characteristic of the lattice-based models with which this leading 

indicator was originally developed (Dakos et al. 2009).

An important consideration if these indicators are to be successfully applied to 

real systems is how feasible it will be to collect the required data. The spatial and 

temporal resolutions of the sample data available in simulation models such as the one 

used in this and other theoretical studies on leading indicators far exceeds what could 

reasonably be collected in the field. For example, a more realistic scenario for the L. 

lecanii-C. viridis study system, given current technology and resources, would be for 

plot-wide surveys to be completed once per month. Given the amount of variation in the 

simulated daily values of the leading indicators (Figures VII.4 and VII.5), it is clear that 

substantial development of statistical methods to cope with noisy, incomplete, and 

infrequent data would be required before these leading indicators could be employed by 

managers.

Despite the challenges that remain, these results provide some hope that leading 

indicators could be used to augment the tools that are currently available to managers. 

Although an unequivocal signal of impending regime change was not detectable for any 

of the scenarios in this study, the rapid changes in variance and skewness associated with 

the most severe threshold (Figure VII.4a) could conceivably be used as a warning signal 

for this particular regime shift, albeit one without any precise information regarding the 

proximity of the threshold. The magnitude of the changes in variance and skewness also 

provide some hope that these signals would be detectable even in more realistic, data 

poor scenarios.

These results also provide another example of what is coming to be seen as a 

widespread and common phenomenon: rapid changes in the state of an ecosystem in 

response to small changes in environmental forcers. As ecosystem managers continue to 
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confront the rapid and profound change that is the defining feature of the Anthropocene, 

effective methods to detect impending regime shifts could prove to be an invaluable tool 

for allocating limited management resources to the most urgent management concerns. 

However, it is important to note that even if leading indicators can be developed to detect 

the onset of certain regime shifts, it may be impossible to detect others (Hastings and 

Wysham 2010, Vandermeer 2011). Therefore, leading indicators may be useful for 

preventing some detectable regime shifts, but they cannot substitute for applying the 

precautionary principle in agroecosystem management. For while not all surprises are 

inevitable, surprise itself is.
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Chapter VIII

Conclusion

The body of work represented by this dissertation should be seen as both 

encouraging and sobering. Encouraging, in that there is ample reason for hope that an 

agroecological approach can help to move agriculture beyond the production-versus-

health trade-offs that inhere within the industrial agriculture paradigm. Sobering, in that 

moving from the preliminary, basic research contained herein to concrete, actionable 

management recommendations will require many, many dissertations worth of work. 

That modern agroecology is in many ways in its infancy compared to the relatively 

sophisticated, if misguided, state of conventional agronomy is as much a reflection of the 

immense resources that have been expended on the industrial agriculture agenda as of the 

intrinsic difficulty of agroecology. But with only 0.81% of agricultural land worldwide 

managed using certified organic methods (Willer and Kilcher 2010), and a smaller 

fraction still qualifying as agroecological, it is clear that proponents of agroecology have 

much work ahead of them to overcome the inertia of the food system (though it is 

important to note that this percentage does not include non-certified organic agriculture, 

which is difficult to quantify because much of it is grown, distributed, and consumed 

locally without passing through monitored market systems (Scialabba and Hattam 2002)).

In truth, there have already been great strides made in agroecology. For instance, a 

substantial amount of evidence showing the agricultural benefits of biodiversity has been 

accumulated (Jarvis et al. 2007), and enough evidence has been collected showing the 

biodiversity benefits of agroecology to make a strong case for it on conservation grounds 

(Bengtsson et al. 2005, Perfecto and Vandermeer 2008a). In terms of production, even 

without advancements beyond the current state of the art of sustainable farming, 

indications are that it would be possible to meet the food and fiber needs of a growing 

world population (Badgley et al. 2007, Badgley and Perfecto 2007). At the same time, the 
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case against conventional agriculture becomes more damning by the day. As just a 

sampling of the damaging side effects associated with conventional agriculture that have 

come to light in the first few months of this year alone: a potential link to colony collapse 

disorder in bees (Henry et al. 2012, Whitehorn et al. 2012), long-term effects of prenatal 

pesticide exposure on reproductive function in boys (Wohlfahrt-Veje et al. 2012), and 

collapse of fisheries (Scholz et al. 2012). In short, with what we already know about 

agroecology and the status quo, there is ample reason to shift away from conventional 

agriculture.

So, what is preventing a wholesale switch to a less damaging approach to 

agriculture? Part of the answer can be found in the present research. In this dissertation, I 

have shown that 1) L. lecanii exerts a subtle, but statistically significant negative 

influence on H. vastatrix, 2) propagules of L. lecanii appear to exist in low, but 

detectable, levels throughout the coffee farm, 3) the initiation and subsequent spread of L. 

lecanii epizootics is accomplished through the joint actions of rain splash, the ant A. 

instabilis, and possibly other as-yet-unknown mechanisms, 4) it is likely that the L. 

lecanii population could collapse rather suddenly in response to changes in management 

and/or climatic conditions, and that a collapse could occur without any detectable 

advance warning, and 5) there is a strong potential for a cross fertilization of ideas and 

theory between agroecology and the rest of the science of ecology. Clearly, an 

appreciation for these results and the body of similarly complex results that has been 

generated by agroecologists over the years requires a level of tolerance for uncertainty, 

contingency, and complexity that a farmer accustomed to a "spray this to kill that" 

approach will be unlikely to possess. As stated in the National Research Council in their 

1989 report on alternative agriculture, "Alternative farming practices typically require 

more information, trained labor, time, and management skills per unit of production than 

conventional farming" (1989). With farmers the world over facing an onslaught of 

economic challenges, this is not an easy program to sell, regardless of the potential 

advantages. 
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Although the challenges are daunting, it is heartening to remember that history is 

full of examples of seemingly insurmountable inertia being overcome. After all, at 

various times and places in human history, it was inconceivable that people with dark 

skin would cease to be treated like beasts of burden; that God would no longer personally  

appoint a despot to subjugate the people; that women would be considered to be full 

citizens; that love between two men or two women would be valued as much as love 

between a man and a woman; that the East would dominate the West, or the West the 

East; and that innumerable other apparently immutable conditions might change. With 

luck, and much hard work, an agriculture based on prudent cooperation with nature 

instead of physical and chemical violence against it will become the norm.
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Appendix A

Computer code for Chapter V: The evolution of imperfect prudence

Software specifications

Recursive Porous Agent Simulation Toolkit (Repast) 3.0

Class list
HostPathogen.java 146

Host.java 172
Pathogen.java 182

StatsDisplayObject.java 187
GUIModel.java 188

BatchModel.java 194
ModelParameters.java 197

Class details

HostPathogen.java

package hostPathogen_v7;

// A host-pathogen, probabilistic cellular automata model to investigate
// the evolution of prudence in hosts
import hostPathogen_v7.Host;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Vector;
import java.util.Collections;

import uchicago.src.sim.analysis.Plot;
import uchicago.src.sim.engine.Schedule;
import uchicago.src.sim.space.Object2DTorus;

public class HostPathogen extends ModelParameters
{

     // class variables
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    public static Plot transmissibilityGraph;
    public static Plot virulenceGraph;
    public static Plot growthGraph;
    public static Plot numHostsGraph;
    public static Plot numPathogensGraph;
    
    // control variables
    public boolean newMethod = true; // true = disable infectionTries method of pathogen spread
    
     // instance variables
     public ArrayList<Host> hostList = new ArrayList<Host>();
     public ArrayList<Pathogen> pathogenList = new ArrayList<Pathogen>();
     public ArrayList<Host> hostBirthList = new ArrayList<Host>();
     public ArrayList<Pathogen> pathogenBirthList = new ArrayList<Pathogen>();
     public ArrayList<Host> hostDeathList = new ArrayList<Host>();
     public ArrayList<Pathogen> pathogenDeathList = new ArrayList<Pathogen>();
     public int[][] occupancyMatrix;
     public int[] numHGP;
     public int[] numDescendents;
     public int[] ageDist;
     public int[] numDescendents2;
     public int[] ageDist2;
     
     public Schedule schedule;

     public int sizeX;
     public int sizeY;
     public int startNumHosts;
     public int numHosts;
     public int startNumPathogens;
     public int changeNumPathogens;
     public int numPathogens;
     public int graphUpdatePeriod;
     public int hostExecutionPeriod;
     public double probLongDistance;
     
     // PIP parameters
     public double challengerGrowthProb;
     public int challengerStartNum;
     public int challengeStartTime;
     public int challengeFreq;
     
     // defaults for the hosts and pathogens
     public double defaultGrowthProb;
     public double probGrowthMutate;
     public double growthMutation;
     public double defaultNaturalDeathZero;
     public double defaultNaturalDeathSlope;
     public double defaultTransmissibility;
     public double defaultVirulence;
     public double probTransMutate;
     public double transMutation;
     public double probVirulenceMutate;
     public double virulenceMutation;
     
     // stats
     public double minTransmissibility;
     public double avgTransmissibility;
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     public double maxTransmissibility;
     public double minVirulence;
     public double avgVirulence;
     public double maxVirulence;   
     public double minGrowthProb;
     public double avgGrowthProb;
     public double maxGrowthProb;
     
     public int numNaturalDeaths;
     public int numDiseaseDeaths;  
     public int hostTime;
     
     public int writeTime;
     public int enableStepReport;
     
     // environs densities
     public double P_pp;
     public double P_mm;
     public double P_pm;
     public double P_mp;
     public double P_p0;
     public double P_0p;
     public double P_m0;
     public double P_0m;
     public double P_00;
     public int sum_P;

     public Object2DTorus world; // 2D class from Repast
     public Object2DTorus offspringWorld; 
     public Object2DTorus descendentsWorld;

     // ///////////////////////////////////////////////////////////////////////////
     // addModelSpecificParameters
     // add alias and long name for Model parameters you want to set at run time
     // the long name should be same as instance variable
     //
     // Note: the generic parameters from ModelParameters are already available.

     @Override
     public void addModelSpecificParameters()
     {
          parametersMap.put("X", "sizeX");
          parametersMap.put("Y", "sizeY");
          parametersMap.put("sNH", "startNumHosts");
          parametersMap.put("sNP", "startNumPathogens");
          parametersMap.put("gUP", "graphUpdatePeriod");
          parametersMap.put("pLD", "probLongDistance");
          parametersMap.put("hEP", "hostExecutionPeriod");
          parametersMap.put("dGP", "defaultGrowthProb");
          parametersMap.put("dNDZ", "defaultNaturalDeathZero");
          parametersMap.put("dNDS", "defaultNaturalDeathSlope");
          parametersMap.put("dTau", "defaultTransmissibility");
          parametersMap.put("dV", "defaultVirulence");
          parametersMap.put("pGM", "probGrowthMutate");
          parametersMap.put("gM", "growthMutation");
          parametersMap.put("pTM", "probTransMutate");
          parametersMap.put("tM", "transMutation");
          parametersMap.put("pVM", "probVirulenceMutate");
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          parametersMap.put("vM", "virulenceMutation");
          parametersMap.put("cGP", "challengerGrowthProb");
          parametersMap.put("cSN", "challengerStartNum");
          parametersMap.put("cST", "challengeStartTime");
          parametersMap.put("cFR", "challengeFreq");
          parametersMap.put("wT", "writeTime");
          parametersMap.put("eSR", "enableStepReport");
     }

     // control what appears in the repast parameter panel
     @Override
     public String[] getInitParam()
     {
          String[] params =
          { "sizeX","sizeY", "startNumHosts", "startNumPathogens", "graphUpdatePeriod",  
                    "probLongDistance", "hostExecutionPeriod", "defaultGrowthProb", defaultNaturalDeathZero",
                    "defaultNaturalDeathSlope", "defaultTransmissibility", "defaultVirulence",
                    "probGrowthMutate", "growthMutation", "probTransMutate",
                    "transMutation", "probVirulenceMutate", "virulenceMutation", "challengerGrowthProb",
                    "challengerStartNum", "challengeStartTime", "challengeFreq", "writeTime", 
                    "enableStepReport"};
          return params;
     }

     // //////////////////////////////////////////////////////////////////////////
     // constructor, if needed.
     public HostPathogen()
     {

     }

     // /////////////////////////////////////////////////////////////////////////
     // setup
     // set defaults after a run start or restart

     @Override
     public void setup()
     {
          if (rDebug > 0)
               System.out.printf("==> setup...\n");
          schedule = null;
          System.gc();

          hostList = new ArrayList<Host>();
          pathogenList = new ArrayList<Pathogen>();
          
          sizeX = 100;
          sizeY = 100;
          
          occupancyMatrix = new int[sizeX][sizeY];
          numHGP = new int[101];
          numDescendents = new int[100];
          ageDist = new int[100];
          numDescendents2 = new int[100];
          ageDist2 = new int[100];

          startNumHosts = 500;
          startNumPathogens = 50;
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          numPathogens = startNumPathogens;
          changeNumPathogens = 0;
          
          graphUpdatePeriod = 100000;
          
          hostExecutionPeriod = -999;
          
          probLongDistance = 0.0016;
          
          // PIP parameter defaults
          challengerGrowthProb = 0.2;
          challengerStartNum = 0;
          challengeStartTime = 100;
          challengeFreq = -999;
          
          // defaults for hosts and pathogens
          defaultGrowthProb = 0.6;
          probGrowthMutate = 0.15;
          defaultNaturalDeathZero= 0.2;
          defaultNaturalDeathSlope = 0;
          growthMutation = 0.01;
          defaultTransmissibility = 1;
          defaultVirulence = 1;
          probTransMutate = 0;
          transMutation = 0.005;
          probVirulenceMutate = 0;
          virulenceMutation = 0.01;
          
          numNaturalDeaths = 0;
          numDiseaseDeaths = 0;
          hostTime = 0;
          
          writeTime = 1000;
          enableStepReport = 0;

          super.setup(); // THIS SHOULD BE CALLED after setting defaults in
          // setup().
          schedule = new Schedule(1); // create AFTER calling super.setup()

          if (rDebug > 0)
               System.out.printf("\n<=== setup() done.\n");

     }

     // /////////////////////////////////////////////////////////////////////////
     // buildModel
     // We build the "conceptual" parts of the model.
     // (vs the display parts, and the schedule)
     //
     // Create a 2D world, tell the organisms about it.
     // Create organisms and add them to the lists.

     public void buildModel()
     {
          if (rDebug > 0)
               System.out.printf("==> buildModel...\n");

          // CALL FIRST -- defined in super class -- it starts RNG, etc
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          buildModelStart();

          // tell the hosts and pathogens about "this"
          Host.setModel(this);
          Pathogen.setModel(this);

          // create the 2D world, tell the Host and Pathogen classes about it.
          world = new Object2DTorus(sizeX, sizeY);
          Host.setHostsWorld(world);
          Pathogen.setPathogensWorld(world);
          
          offspringWorld = new Object2DTorus(sizeX, sizeY);
          Host.setOffspringWorld(offspringWorld);
          
          descendentsWorld = new Object2DTorus(sizeX, sizeY);
          Host.setDescendentsWorld(descendentsWorld);
          
          // set the default parameters of the hosts and pathogens
          Host.setDefaultGrowthProb(defaultGrowthProb);
          Host.setDefaultNaturalDeathZero(defaultNaturalDeathZero);
          Host.setDefaultNaturalDeathSlope(defaultNaturalDeathSlope);
          Host.setProbGrowthMutate(probGrowthMutate);
          Host.setGrowthMutation(growthMutation);
          Pathogen.setDefaultTransmissibility(defaultTransmissibility);
          Pathogen.setDefaultVirulence(defaultVirulence);        
          Pathogen.setProbTransMutate(probTransMutate);
          Pathogen.setTransMutation(transMutation);
          Pathogen.setProbVirulenceMutate(probVirulenceMutate);
          Pathogen.setVirulenceMutation(virulenceMutation);

          // create and scatter the initial hosts
          scatterRandomHosts();
          
          // create and scatter the initial pathogens
          infectHostsRandomly(startNumPathogens);
                    
          // some post-load finishing touches
          startReportFile();
          
          // for the initial state, calculate these numbers, store in instance
          // variables
          // record some stats every step
          calcStatistics();

          // calls to process parameter changes and write the
          // initial state to the report file.
          applyAnyStoredChanges();
          stepReport();
          getReportFile().flush();
          getPlaintextReportFile().flush();

          if (rDebug > 0)
               System.out.printf("<== buildModel done.\n");
     }

     // Create a new Host with growthProb=gP and put it at x, y
     public void createNewHost(int x, int y, double gP)
     {
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          Host aHost = new Host(x, y, gP);
          world.putObjectAt(x, y, aHost);
          setOccupancyMatrix(x,y,1);
          hostList.add(aHost);
     }
     
     // Create a new Pathogen and put it at x, y
     public Pathogen createNewPathogen(int x, int y)
     {
          Pathogen aPathogen = new Pathogen(x, y);
          pathogenList.add(aPathogen);
          return aPathogen;
     }

     // Add random hosts
     public void scatterRandomHosts()
     {

          int randomX, randomY;
          
          if (rDebug > 0)
               System.out.printf("==> scattering hosts...\n");
          
          // Check to see if there are too many hosts to fit on the grid
          if (startNumHosts>(sizeX*sizeY))
          {
               // fill entire grid with hosts and output warning message
               startNumHosts = sizeX*sizeY;
               System.out.println("Warning: startNumHosts is too big; I'll put a host in every cell");
          }
          
          for (int i = 0; i<startNumHosts; i++)
          {
               
               // lets find a random place that is unoccupied
               // This method of selecting random cells will get really slow
               // as the number of hosts approaches the number of cells in the arena
               do
               {
                    randomX = getUniformIntFromTo(0, world.getSizeX()-1);
                    randomY = getUniformIntFromTo(0, world.getSizeY()-1);
               } while (((Host)world.getObjectAt(randomX, randomY)) != null);
     
               createNewHost(randomX, randomY, defaultGrowthProb);
               
          }
          
          if (rDebug > 0)
               System.out.printf("==> ...done scattering hosts\n");
     }
     
     // Add random challengers
     public void scatterChallengers()
     {

          int randomX, randomY;
          int tempChallengerStartNum = challengerStartNum;
          

152



          if (rDebug > 0)
               System.out.printf("==> scattering challengers...\n");
          
          // Check to see if there are too many hosts to fit on the grid
          if (challengerStartNum>((sizeX-1)*(sizeY-1)-numHosts))
          {
               // fill entire grid with hosts and output warning message
               challengerStartNum = (sizeX-1)*(sizeY-1)-numHosts;
               System.out.println("Warning: challengerStartNum is too big; I'll put a host in every empty cell");
          }
          
          for (int i = 0; i<challengerStartNum; i++)
          {
               
               // let's find a random place that is unoccupied
               // This method of selecting random cells will get really slow
               // as the number of hosts approaches the number of free cells in the arena
               do
               {
                    randomX = getUniformIntFromTo(1, world.getSizeX() - 1);
                    randomY = getUniformIntFromTo(1, world.getSizeY() - 1);
               } while (((Host)world.getObjectAt(randomX, randomY)) != null);
               
               createNewHost(randomX, randomY, challengerGrowthProb);
               
          }
          
          // restore the specified challengerStartNum 
          challengerStartNum = tempChallengerStartNum;
          
          if (rDebug > 0)
               System.out.printf("==> ...done scattering challengers\n");
     }

     // Randomly infect the hosts
     public void infectHostsRandomly(int numPathogens)
     {
          
          // Shuffle the list of hosts
          Collections.shuffle(hostList);
          
          // check to see if there are too many pathogens
          if (numPathogens > hostList.size())
          {
               System.out.println("Warning: number of new pathogens is too big; every host will be infected");
               numPathogens = hostList.size();
          }
          
          // infect the first numPathogens hosts in hostList
          for (int i = 0; i<numPathogens; i++)
          {
               hostList.get(i).setInfected(true); 
               hostList.get(i).setPathogen(createNewPathogen(hostList.get(i).getX(), hostList.get(i).getY()));
          }
     }
               
     // /////////////////////////////////////////////////////////////////////////
     // step
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     // The top of the "conceptual" model's main dynamics
     public void step()
     {
          Vector<Host> neighbors;
          
          if (rDebug > 0)
               System.out.printf("==> CML step %.0f:\n", getTickCount());

          if((hostTime % writeTime) == 0)
          {
               writeState();
          }
          if(executeHost())
          {
               incrementHostTime();
               // loop through all the hosts to see if they get randomly infected.  For now, 
               // the new pathogens will have parameter values equal to those of existing pathagens
               // chosen at random
               for (Host aHost : hostList)
               {
                    if (getUniformDoubleFromTo(0, 1) < probLongDistance)
                    {
                         if(!pathogenList.isEmpty())
                         {
                              // Shuffle the list of pathogens; the new pathogen will have parameter values
                              // from the first pathogen in this randomly ordered list
                              Collections.shuffle(pathogenList);
                         
                              // add a new pathogen here with parameter values from the randomly-chosen pathogen
                              Pathogen aPathogen = new Pathogen(aHost.getX(), aHost.getY(),
                                        pathogenList.get(0).getTransmissibility(), pathogenList.get(0).getVirulence());
                              addPathogenBirth(aPathogen);
                         }
                         else
                         {
                              // add a new pathogen with the default parameter values
                              Pathogen aPathogen = new Pathogen(aHost.getX(), aHost.getY(),
                                        defaultTransmissibility, defaultVirulence);
                              addPathogenBirth(aPathogen);
                         }
                              
                    }
               }
          }
          
          // loop through all of the cells to see if organisms reproduce into them
          for (int i=0; i<sizeX; i++)
          {
               for (int j=0; j<sizeY; j++)
               {
                    // get the neighbors
                    neighbors = world.getVonNeumannNeighbors(i, j, false);
                    for (Host aHost : neighbors)
                    {
                         aHost.reproduce(i, j);
                    }
               }
          }
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          // perform the organisms' steps
          for (Host aHost : hostList )
          {
               aHost.step();
          }
          
          for (Pathogen aPathogen : pathogenList)
          {
               aPathogen.step();
          }

          // process birth and death lists
          processHostBirthList();
          processPathogenBirthList();
          processHostDeathList();
          processPathogenDeathList();
          
          // inject invading/challenging hosts if hostTime>challengeStartTime
          if(executeHost() && challengerStartNum > 0 && hostTime>=challengeStartTime)
          {
               if(hostTime==challengeStartTime || (challengeFreq>0 && ((hostTime-challengeStartTime) % 
      challengeFreq)==0))
               {
                    scatterChallengers();
               }
          }
          
          // call method to update graphs
          updateGraphs();
                    
          if (rDebug > 0)
          {
               System.out.printf("<== main step done.\n");
          }

     }

     // ///////////////////////////////////////////////////////////////////////////////
     // stepReport
     // each step write out:
     // Note: update the writeHeaderCommentsToReportFile() to print
     // lines of text describing the data written to the report file.
     public void stepReport()
     {

          if(enableStepReport == 1)
          {
               //if(executeHost())
               //{
                    // set up a string with the values to write
                    String s = String.format( "%5.0f", getTickCount() );
       s += String.format("  %d", numHosts);
                    s += String.format("  %d", numPathogens);
                    s += String.format("  %6.3f", minTransmissibility);
                    s += String.format("  %6.3f", avgTransmissibility);
                    s += String.format("  %6.3f", maxTransmissibility);
                    s += String.format("  %6.3f", minVirulence);
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                    s += String.format("  %6.3f", avgVirulence);
                    s += String.format("  %6.3f", maxVirulence);
                    s += String.format("  %6.3f", minGrowthProb);
                    s += String.format("  %6.3f", avgGrowthProb);
                    s += String.format("  %6.3f", maxGrowthProb);
                    s += String.format(" %d", numNaturalDeaths);
                    s += String.format(" %d", numDiseaseDeaths);
                    s += String.format("  %d", hostTime);
                    s += String.format("  %6.3f", P_pp);
                    s += String.format("  %6.3f", P_mm);
                    s += String.format("  %6.3f", P_pm);
                    s += String.format("  %6.3f", P_mp);
                    s += String.format("  %6.3f", P_p0);
                    s += String.format("  %6.3f", P_0p);
                    s += String.format("  %6.3f", P_m0);
                    s += String.format("  %6.3f", P_0m);
                    s += String.format("  %6.3f", P_00);
                    s += String.format("  %d", sum_P); 
                    
                    for(int i=0; i<101; i++)
                    {
                         s += String.format("  %d", numHGP[i]);
                    }
          
                    // write it to the xml and plain text report files
                    //writeLineToReportFile("<stepreport>" + s + "</stepreport>");
                    writeLineToPlaintextReportFile(s);
          
                    // flush the buffers so the data is not lost in a "crash"
                    getReportFile().flush();
                    getPlaintextReportFile().flush();
               //}
          }
          
     }

     public void writeState()
     {
          try
          {
               BufferedWriter out = new BufferedWriter(new FileWriter("state_" + Double.toString(hostTime) + 
       ".csv"));
               
               out.write("x, y, infected");
               out.newLine();
               // loop through all of the hosts and write their info
               for (Host aHost : hostList)
               {
                    out.write(Integer.toString(aHost.getX()));
                    out.write(",");
                    out.write(Integer.toString(aHost.getY()));
                    if(aHost.getInfected())
                    {
                         out.write(", 1");
                    }
                    else
                    {
                         out.write(", 0");
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                    }
                    out.newLine();
               }    
               out.close();
          } catch (IOException e)
          {
               
          }
          
          // write the frequency of descendents to a file
          try
          {
               BufferedWriter out = new BufferedWriter(new FileWriter("descendents_" + Double.toString
       hostTime) + ".csv"));
               
               out.write("descendents, frequency, frequency2");
               out.newLine();
               // loop through all of the hosts and write their info
               for (int i = 0; i<numDescendents.length; i++)
               {
                    out.write(Integer.toString(i));
                    out.write(",");
                    out.write(Integer.toString(numDescendents[i]));
                    out.write(",");
                    out.write(Integer.toString(numDescendents2[i]));
                    out.newLine();
               }    
               out.close();
          } catch (IOException e)
          {
               
          }
          
          // write the frequency of ages to a file
          try
          {
               BufferedWriter out = new BufferedWriter(new FileWriter("ages_" + Double.toString(hostTime) + 
       ".csv"));
               
               out.write("ages, frequency, frequency2");
               out.newLine();
               // loop through all of the hosts and write their info
               for (int i = 0; i<ageDist.length; i++)
               {
                    out.write(Integer.toString(i));
                    out.write(",");
                    out.write(Integer.toString(ageDist[i]));
                    out.write(",");
                    out.write(Integer.toString(ageDist2[i]));
                    out.newLine();
               }    
               out.close();
          } catch (IOException e)
          {
               
          }
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     }
     // ///////////////////////////////////////////////////////////////////////////////
     
     // writeHeaderCommentsToReportFile
     // customize to match what you are writing to the report files in
     // stepReport.

     @Override
     public void writeHeaderCommentsToReportFile()
     {
          writeLineToReportFile("<comment>");
          writeLineToReportFile("      ");
          writeLineToReportFile("  time numHosts  numPathogens  minTrans avgTrans maxTrans minVirul 
 avgVirul maxVirul minGrwth avgGrwth maxGrwth natDth disDth hostTime P_pp P_mm P_pm 
 P_mp P_p0 P_0p P_m0 P_0m P_00 sum_P hGP=0.0 0.01    0.02 0.03 0.04 0.05 0.06 0.07 0.08 
 0.09 0.1  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2  0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 
 0.29 0.3  0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4  0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 
 0.49 0.5  0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6  0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 
 0.69 0.7  0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8  0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 
 0.89 0.9  0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1");
          writeLineToReportFile("</comment>");

          writeLineToPlaintextReportFile("#      ");
          writeLineToPlaintextReportFile("# time  numHosts  numPathogens  minTrans avgTrans maxTrans 
 minVirul avgVirul maxVirul minGrwth avgGrwth maxGrwth natDth disDth hostTime P_pp P_mm 
 P_pm P_mp P_p0 P_0p P_m0 P_0m P_00 sum_P hGP=0.0 0.01    0.02 0.03 0.04 0.05 0.06 0.07 
 0.08 0.09 0.1  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2  0.21 0.22 0.23 0.24 0.25 0.26 0.27 
 0.28 0.29 0.3  0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4  0.41 0.42 0.43 0.44 0.45 0.46 0.47 
 0.48 0.49 0.5  0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6  0.61 0.62 0.63 0.64 0.65 0.66 0.67 
 0.68 0.69 0.7  0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8  0.81 0.82 0.83 0.84 0.85 0.86 0.87 
 0.88 0.89 0.9  0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1");
     }

     // ////////////////////////////////////////////////////////////////////////////////
     // printProjectHelp
     // this could be filled in with some help to get from running with -help
     // parameter
     @Override
     public void printProjectHelp()
     {
          // print project help

          System.out.printf("\n%s -- \n", getName());

          System.out.printf("\n **** Add more info here!! **** \n");

          System.out.printf("\nactivationOrder            value\n");
          System.out.printf("\nfixed                        0\n");
          System.out.printf("\nrandomWithReplacement        1\n");
          System.out.printf("\nrandomWithoutReplacement     2\n");

          System.out.printf("\n");

          printParametersMap();

          System.exit(0);

     }
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     void processHostBirthList()
     {
          // shuffle the list so a host is chosen at random when more than one tries to 
          // reproduce into the same cell
          Collections.shuffle(hostBirthList);
          
          // loop through the hostBirthList, adding hosts to empty spots
          for (Host aHost : hostBirthList)
          {
               // check to see if the spot is empty
               if (getOccupancyMatrix(aHost.getX(), aHost.getY()) == 0)
               {
                    aHost.getParent().incrementOffspring();
                    world.putObjectAt(aHost.getX(), aHost.getY(), aHost);
                    setOccupancyMatrix(aHost.getX(), aHost.getY(), 1);
                    hostList.add(aHost);
               }
               
          }
          
          // note that the next line will abort hosts if the spot they were allocated
          // to wasn't empty
          hostBirthList.clear();
          
     }
     
     void processPathogenBirthList()
     {
          // shuffle the list so one of the pathogens at a given location is chosen at random
          Collections.shuffle(pathogenBirthList);
          
          // loop through the pathogenBirthList, infecting susceptible hosts
          for (Pathogen aPathogen : pathogenBirthList)
          {
               // check to see if the host is already infected or marked for death
               // If not, infect the host with the pathogen and add the pathogen to pathogenList
               if (!((Host)world.getObjectAt(aPathogen.getX(), aPathogen.getY())).getInfected() &&
                         !((Host)world.getObjectAt(aPathogen.getX(), aPathogen.getY())).getDoomed())
               {
                    ((Host)world.getObjectAt(aPathogen.getX(), aPathogen.getY())).setInfected(true);
                    ((Host)world.getObjectAt(aPathogen.getX(), aPathogen.getY())).setPathogen(aPathogen);
                    pathogenList.add(aPathogen);
               }
               
          }
          
          // note that the next line will abort pathogens whose host was already infected
          pathogenBirthList.clear();
     }
     
     public void processHostDeathList()
     {
          numNaturalDeaths = 0;
          numDiseaseDeaths = 0;
          
          for (Host aHost : hostDeathList)
          {
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               if(aHost.getNaturalDeath() == true)
               {
                    numNaturalDeaths++;
               }
               else
               {
                    numDiseaseDeaths++;
               }
               world.putObjectAt(aHost.getX(), aHost.getY(), null);
               offspringWorld.putObjectAt(aHost.getX(), aHost.getY(), null);
               descendentsWorld.putObjectAt(aHost.getX(), aHost.getY(), null);
               setOccupancyMatrix(aHost.getX(), aHost.getY(), 0);
               
               // record the number of descendents the host had when it died
               if(challengerStartNum>0 & aHost.getGrowthProb()==challengerGrowthProb)
               {
                    if(aHost.getDescendents()<numDescendents2.length)
                    {
                         numDescendents2[aHost.getDescendents()]++;
                    }
                    if(aHost.getAge()<ageDist2.length)
                    {
                         ageDist2[aHost.getAge()]++;
                    }
               }
               else 
               {
                    if(aHost.getDescendents()<numDescendents.length)
                    {
                         numDescendents[aHost.getDescendents()]++;
                    }
                    if(aHost.getAge()<ageDist.length)
                    {
                         ageDist[aHost.getAge()]++;
                    }              
               }                   
               hostList.remove(aHost);
          }
          hostDeathList.clear();
          
     }
     
     public void processPathogenDeathList()
     {
          // All it should take to kill the pathogens is to remove them
          // from pathogenList -- simply destroying their host 
          // (which will remove all links to the pathogens and let Java's garbage collection
          // take care of them) should be enough
          for (Pathogen aPathogen : pathogenDeathList)
          {
               pathogenList.remove(aPathogen);
          }
          pathogenDeathList.clear();
     }
          
     public void updateGraphs()
     {
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          //check one of the graphs to see if we are in GUI mode
          if ( transmissibilityGraph != null ) 
          {
               transmissibilityGraph.plotPoint(this.getTickCount(), minTransmissibility, 1);
               transmissibilityGraph.plotPoint(this.getTickCount(), avgTransmissibility, 2);
               transmissibilityGraph.plotPoint(this.getTickCount(), maxTransmissibility, 3);
               
               virulenceGraph.plotPoint(this.getTickCount(), minVirulence, 1);
               virulenceGraph.plotPoint(this.getTickCount(), avgVirulence, 2);
               virulenceGraph.plotPoint(this.getTickCount(), maxVirulence, 3);
               
               growthGraph.plotPoint(this.getTickCount(), minGrowthProb, 1);
               growthGraph.plotPoint(this.getTickCount(), avgGrowthProb, 2);
               growthGraph.plotPoint(this.getTickCount(), maxGrowthProb, 3);
               
               numHostsGraph.plotPoint(this.getTickCount(), numHosts, 1);
               
               numPathogensGraph.plotPoint(this.getTickCount(), numPathogens, 1);
               
          }
     }
     
     // calculate the average transmissibility of all pathogens
     public void calcStatistics()
     {
          double cumulTransmissibility = 0;
          double cumulVirulence = 0;
          double cumulGrowthProb = 0;
          int oldNumPathogens = numPathogens;
          
          // environs density variables
          boolean occupied=false;
          boolean infected=false;
          Vector<Host> neighbors;
          Host thisHost;
          int sum_P_pp = 0;
          int sum_P_mm = 0;
          int sum_P_pm = 0;
          int sum_P_mp = 0;
          int sum_P_p0 = 0;
          int sum_P_0p = 0;
          int sum_P_m0 = 0;
          int sum_P_0m = 0;
          int sum_P_00 = 0;
          
          numHosts = hostList.size();
          numPathogens = pathogenList.size();
          changeNumPathogens = numPathogens - oldNumPathogens;
          
          if(enableStepReport==1)
          {
               // reset max and min transmissibilities
               minTransmissibility = 1;
               maxTransmissibility = 0;
               
               // reset max and min virulences
               minVirulence = 1;
               maxVirulence = 0;
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               // Calculate average values for pathogens
               if(pathogenList.size()==0)
               {
                    minTransmissibility = defaultTransmissibility;
                    avgTransmissibility = defaultTransmissibility;
                    maxTransmissibility = defaultTransmissibility;
                    
                    minVirulence = defaultVirulence;
                    avgVirulence = defaultVirulence;
                    maxVirulence = defaultVirulence;
               }
               else
               {
                    for (Pathogen aPathogen : pathogenList)
                    {
                         cumulTransmissibility += aPathogen.getTransmissibility();
                         
                         if(aPathogen.getTransmissibility() > maxTransmissibility)
                         {
                              maxTransmissibility = aPathogen.getTransmissibility();
                         }
                         
                         if(aPathogen.getTransmissibility() < minTransmissibility)
                         {
                              minTransmissibility = aPathogen.getTransmissibility();
                         }
                         
                         cumulVirulence += aPathogen.getVirulence();
                         
                         if(aPathogen.getVirulence() > maxVirulence)
                         {
                              maxVirulence = aPathogen.getVirulence();
                         }
                         
                         if(aPathogen.getVirulence() < minVirulence)
                         {
                              minVirulence = aPathogen.getVirulence();
                         }
                         
                    }
                    
                    avgTransmissibility = cumulTransmissibility/pathogenList.size();
                    avgVirulence = cumulVirulence/pathogenList.size();
               }
               
               // reset max and min growth probabilities
               maxGrowthProb = 0;
               minGrowthProb = 1;
                    
               if(hostList.size()==0)
               {
                    minGrowthProb = defaultGrowthProb;
                    avgGrowthProb = defaultGrowthProb;
                    maxGrowthProb = defaultGrowthProb;
               }
               else
               {

162



                    for(int i=0; i<101; i++)
                    {
                         numHGP[i]=0;
                    }
                    for (Host aHost : hostList)
                    {
                         cumulGrowthProb += aHost.getGrowthProb();
                         
                         if(aHost.getGrowthProb() > maxGrowthProb)
                         {
                              maxGrowthProb = aHost.getGrowthProb();
                         }
                         
                         if(aHost.getGrowthProb() < minGrowthProb)
                         {
                              minGrowthProb = aHost.getGrowthProb();
                         }
                         
                         numHGP[(int) Math.floor((float)(aHost.getGrowthProb()*100))]++;
                         
                    }
                    avgGrowthProb = cumulGrowthProb/hostList.size();
               }
               
               // Calculate the environs densities
               sum_P = 0;
               for (int i=0; i<sizeX; i++)
               {
                    for (int j=0; j<sizeY; j++)
                    {
                         
                         // see if there's a host at this location, then see if it's infected
                         occupied = false;
                         infected = false;
                         if(world.getObjectAt(i, j) != null)
                         {
                              occupied = true;
                              if(((Host) world.getObjectAt(i, j)).getInfected())
                              {
                                   infected = true;
                              }
                              else
                              {
                                   infected = false;
                              }
                         }

                         neighbors = world.getVonNeumannNeighbors(i, j, true);
                         for (Host anotherHost : neighbors)
                         {
                              sum_P++;
                              
                              if(anotherHost != null)
                              {
                                   boolean test = anotherHost.getInfected();
                                   if(occupied & !infected & !anotherHost.getInfected())
                                   {
                                        sum_P_pp++;
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                                   }
                                   else if(occupied & infected & anotherHost.getInfected())
                                   {
                                        sum_P_mm++;
                                   }
                                   else if(occupied & !infected & anotherHost.getInfected())
                                   {
                                        sum_P_pm++;
                                   }
                                   else if(occupied & infected & !anotherHost.getInfected())
                                   {
                                        sum_P_mp++;
                                   }
                                   else if(!occupied & !anotherHost.getInfected())
                                   {
                                        sum_P_0p++;
                                   }
                                   else if(!occupied & anotherHost.getInfected())
                                   {
                                        sum_P_0m++;
                                   }
                              }
                              else
                              {
                                   if(occupied & !infected)
                                   {
                                        sum_P_p0++;
                                   }
                                   if(occupied & infected)
                                   {
                                        sum_P_m0++;
                                   }
                                   else if(!occupied)
                                   {
                                        sum_P_00++;
                                   }
                              }
                              
                         }         
                    }
               }
               P_pp = (double)sum_P_pp/sum_P;
               P_mm = (double)sum_P_mm/sum_P;
               P_pm = (double)sum_P_pm/sum_P;
               P_mp = (double)sum_P_mp/sum_P;
               P_p0 = (double)sum_P_p0/sum_P;
               P_0p = (double)sum_P_0p/sum_P;
               P_m0 = (double)sum_P_m0/sum_P;
               P_0m = (double)sum_P_0m/sum_P;
               P_00 = (double)sum_P_00/sum_P;
          }
          
     }
     
     public Boolean executeHost()
     {
          if(getHostExecutionPeriod()==-999)
          {
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               if(newMethod)
               {
                    if(numPathogens==0)
                    {
                         return Boolean.TRUE;
                    }
                    else
                    {
                         return Boolean.FALSE;
                    }
               }
               else
               {
                    if(changeNumPathogens==0)
                    {
                         return Boolean.TRUE;
                    }
                    else
                    {
                         return Boolean.FALSE;
                    }
               }
               
          }
          else
          {
               if(getTickCount() % getHostExecutionPeriod() == 0)
               {
                    return Boolean.TRUE;
               }
               else
               {
                    return Boolean.FALSE;
               }
          }
     }
     
     public void incrementHostTime()
     {
          hostTime++;
     }
     @Override
     public Schedule getSchedule()
     {
          return schedule;
     }

     @Override
     public String getName()
     {
          return "HostPathogen";
     }

     // setters and getters
     // notes:
     // - we use the schedule != null to indicated model has been initialized
     // - some things can't be changed after model initialization
     // (which things just depends on how the model is implemented)
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     // - if we set something after model initialization,
     // we need to write an change entry to the report file.
     // - some things need to send messages to update class variables.
     // 
     // NOTE: if you want changes a user makes to parameter like numBugs
     // to be used after a restart (vs going back to defaults),
     // you probably have to change setup() to not reinitialize IVs.
     
     public static void setTransmissibilityGraph (Plot graph) { transmissibilityGraph = graph; };
     public static void setVirulenceGraph (Plot graph) { virulenceGraph = graph; };
     public static void setGrowthGraph (Plot graph) { growthGraph = graph; };
     public static void setNumHostsGraph (Plot graph) { numHostsGraph = graph; };
     public static void setNumPathogensGraph (Plot graph) { numPathogensGraph = graph; };

     public boolean getNewMethod()
     {
          return newMethod;
     }
     
     public int getSizeX()
     {
          return sizeX;
     }

     public void setSizeX(int sizeX)
     {
          this.sizeX = sizeX;
     }

     public int getSizeY()
     {
          return sizeY;
     }

     public void setSizeY(int sizeY)
     {
          this.sizeY = sizeY;
     }
     
     public void setOccupancyMatrix(int x, int y, int occupied)
     {
          this.occupancyMatrix[x][y] = occupied;
     }
     
     public int getOccupancyMatrix(int x, int y)
     {
          return occupancyMatrix[x][y];
     }
     
     public int getStartNumHosts()
     {
          return startNumHosts;
     }

     public int getNumHosts()
     {
          return numHosts;
     }
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     public void setStartNumHosts(int startNumHosts)
     {
          this.startNumHosts = startNumHosts;
     }
     
     public int getStartNumPathogens()
     {
          return startNumPathogens;
     }
     
     public int getNumPathogens()
     {
          return numPathogens;
     }

     public void setStartNumPathogens(int startNumPathogens)
     {
          this.startNumPathogens = startNumPathogens;
     }
     
     public int getGraphUpdatePeriod()
     {
          return graphUpdatePeriod;
     }
     public void setGraphUpdatePeriod(int gUP)
     {
          graphUpdatePeriod = gUP;
     }
     
     public int getHostExecutionPeriod()
     {
          return hostExecutionPeriod;
     }
     public void setHostExecutionPeriod(int hEP)
     {
          hostExecutionPeriod = hEP;
     }
     
     public double getProbLongDistance()
     {
          return probLongDistance;
     }
     public void setProbLongDistance(double pLD)
     {
          probLongDistance = pLD;
     }
     
     public double getDefaultGrowthProb()
     {
          return defaultGrowthProb;
     }
     public void setDefaultGrowthProb(double dGP)
     {
          defaultGrowthProb = dGP;
     }
     
     public double getDefaultNaturalDeathZero()
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     {
          return defaultNaturalDeathZero;
     }
     public void setDefaultNaturalDeathZero(double dNDZ)
     {
          defaultNaturalDeathZero = dNDZ;
     }
     
     public double getDefaultNaturalDeathSlope()
     {
          return defaultNaturalDeathSlope;
     }
     public void setDefaultNaturalDeathSlope(double dNDS)
     {
          defaultNaturalDeathSlope = dNDS;
     }
     
     public double getProbGrowthMutate()
     {
          return probGrowthMutate;
     }
     public void setProbGrowthMutate(double pGM)
     {
          probGrowthMutate = pGM;
     }
     
     public double getGrowthMutation()
     {
          return growthMutation;
     }
     public void setGrowthMutation(double gM)
     {
          growthMutation = gM;
     }
     
     public double getDefaultTransmissibility()
     {
          return defaultTransmissibility;
     }
     public void setDefaultTransmissibility(double tau)
     {
          defaultTransmissibility = tau;
     }
     
     public double getDefaultVirulence()
     {
          return defaultVirulence;
     }
     public void setDefaultVirulence(double v)
     {
          defaultVirulence = v;
     }
     
     public double getProbTransMutate()
     {
          return probTransMutate;
     }
     public void setProbTransMutate(double pTM)
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     {
          probTransMutate = pTM;
     }
     
     public double getTransMutation()
     {
          return transMutation;
     }
     public void setTransMutation(double tM)
     {
          transMutation = tM;
     }
     
     public double getProbVirulenceMutate()
     {
          return probVirulenceMutate;
     }
     public void setProbVirulenceMutate(double pVM)
     {
          probVirulenceMutate = pVM;
     }
     
     public double getVirulenceMutation()
     {
          return virulenceMutation;
     }
     public void setVirulenceMutation(double vM)
     {
          virulenceMutation = vM;
     }
     
     public double getChallengerGrowthProb()
     {
          return challengerGrowthProb;
     }
     public void setChallengerGrowthProb(double cGP)
     {
          challengerGrowthProb = cGP;
     }
     
     public int getChallengerStartNum()
     {
          return challengerStartNum;
     }
     public void setChallengerStartNum(int cSN)
     {
          challengerStartNum = cSN;
     }
     
     public int getChallengeStartTime()
     {
          return challengeStartTime;
     }
     public void setChallengeStartTime(int cST)
     {
          challengeStartTime = cST;
     }
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     public int getChallengeFreq()
     {
          return challengeFreq;
     }
     public void setChallengeFreq(int cFR)
     {
          challengeFreq = cFR;
     }
     
     public int getWriteTime()
     {
          return writeTime;
     }
     public void setWriteTime(int wT)
     {
          writeTime = wT;
     }
     
     public int getEnableStepReport()
     {
          return enableStepReport;
     }
     public void setEnableStepReport(int eSR)
     {
          enableStepReport = eSR;
     }
     
     public void addHostBirth (Host h)
     {
          hostBirthList.add(h);
     }
     
     public void addPathogenBirth (Pathogen p)
     {
          pathogenBirthList.add(p);
     }
     
     public void addHostDeath (Host h)
     {
          hostDeathList.add(h);
     }
     
     public void addPathogenDeath (Pathogen p)
     {
          pathogenDeathList.add(p);
     }
     
     // ///////////////////////////////////////////////////////////////////////////
     // processEndOfRun
     // called once, at end of run.
     // writes some final info, closes report files, etc.
     public void processEndOfRun()
     {
          if (rDebug > 0)
               System.out.printf("\n\n===== processEndOfRun =====\n\n");
          applyAnyStoredChanges();
          endReportFile();
          this.fireStopSim();
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     }

}
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Host.java

/**
 * Host.java 
 */

package hostPathogen_v7;

import hostPathogen_v7.GUIModel;

import java.awt.BasicStroke;
import java.lang.Boolean;
import java.util.Vector;

import uchicago.src.sim.gui.*;
import uchicago.src.sim.space.Object2DTorus;
import uchicago.src.sim.gui.ColorMap;
import java.awt.Color;

public class Host implements Drawable
{
     // class variables
     public static int nextID = 0; // to give each an ID
     public static Object2DTorus hostsWorld; // where the hosts live
     public static Object2DTorus offspringWorld; 
     public static Object2DTorus descendentsWorld;
     public static HostPathogen model; // the model "in charge"
     public static GUIModel guiModel = null; // the gui model "in charge"
     public static ColorMap colorMap;
     public static double maxOffspring = 10;
     public static double maxDescendents = 20;
     
     public static double defaultGrowthProb;
     public static double defaultNaturalDeathZero;
     public static double defaultNaturalDeathSlope;
     public static double probGrowthMutate;
     public static double growthMutation;

     // instance variables
     public  int              ID;
     public boolean infected;
     public int x, y;
     public Color myColor;
     public Pathogen myPathogen;
     public double growthProb;
     public double naturalDeathZero;
     public double naturalDeathSlope;
     public boolean naturalDeath;
     public boolean doomed;
     public int age;
     public Host myParent;
     public int offspring;
     public int descendents;
     public StatsDisplayObject offspringDisplayObject;
     public StatsDisplayObject descendentsDisplayObject;

     // the Host constructors
     public Host(int X, int Y)
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     {
          ID = nextID++;
          x = X;
          y = Y;
          infected = false;
          doomed = false;
          growthProb = defaultGrowthProb;
          setColorMap();
          myColor = colorMap.getColor(Math.round((float)(63*growthProb)));
          naturalDeathZero= defaultNaturalDeathZero;
          naturalDeathSlope = defaultNaturalDeathSlope;
          age = 0;
          myParent = null;
          offspring = 0;
          descendents = 0;
          offspringDisplayObject = new StatsDisplayObject(Color.WHITE);
          offspringWorld.putObjectAt(getX(), getY(), offspringDisplayObject);
          descendentsDisplayObject = new StatsDisplayObject(Color.WHITE);
          descendentsWorld.putObjectAt(getX(), getY(), descendentsDisplayObject);
     }
     
     public Host(int X, int Y, double g)
     {
          ID = nextID++;
          x = X;
          y = Y;
          infected = false;
          doomed = false;
          growthProb = g;
          setColorMap();
          myColor = colorMap.getColor(Math.round((float)(63*growthProb)));
          naturalDeathZero= defaultNaturalDeathZero;
          naturalDeathSlope = defaultNaturalDeathSlope;
          age = 0;
          myParent = null;
          offspring = 0;
          descendents = 0;
          offspringDisplayObject = new StatsDisplayObject(Color.WHITE);
          offspringWorld.putObjectAt(getX(), getY(), offspringDisplayObject);
          descendentsDisplayObject = new StatsDisplayObject(Color.WHITE);
          descendentsWorld.putObjectAt(getX(), getY(), descendentsDisplayObject);
     }
     
     public Host(int X, int Y, double g, Host mP)
     {
          ID = nextID++;
          x = X;
          y = Y;
          infected = false;
          doomed = false;
          growthProb = g;
          setColorMap();
          myColor = colorMap.getColor(Math.round((float)(63*growthProb)));
          naturalDeathZero= defaultNaturalDeathZero;
          naturalDeathSlope = defaultNaturalDeathSlope;
          age = 0;
          myParent = mP;
          offspring = 0;
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          descendents = 0;
          offspringDisplayObject = new StatsDisplayObject(Color.WHITE);
          offspringWorld.putObjectAt(getX(), getY(), offspringDisplayObject);
          descendentsDisplayObject = new StatsDisplayObject(Color.WHITE);
          descendentsWorld.putObjectAt(getX(), getY(), descendentsDisplayObject);
     }
     
     // setupHostDrawing
     // set the guiModel address, which we can test to see if in GUI mode
     public static void setupHostDrawing ( GUIModel m ) 
     {
          guiModel = m;
     }
     // //////////////////////////////////////////////////////////////////////////
     // step
     // apply the CA rules

     // The static block is essentially a constructor for the class
     static
     {
          colorMap = new ColorMap();
          setColorMap();
     }
     public void step()
     {
          double randNum;
          int numNeighbors;
          Vector<Host> neighbors;
               
          // check to see if the hosts should execute this time step
          if(model.executeHost())
          {
               age ++;
               
               // See if myParent has died. If so, forget about them.
               if(myParent != null)
               {
                    if(myParent.getDoomed()==true)
                    {
                         myParent = null;
                    }
               }
               
               // calculate the probability of death based on the number of hosts in the von Neumann 
                   neighborhood
               neighbors = hostsWorld.getVonNeumannNeighbors(x, y, false);
               numNeighbors = neighbors.size();             
               
               // see if the host will die a natural death
               randNum = ModelParameters.getUniformDoubleFromTo(0, 1);
               if(randNum < (naturalDeathZero+naturalDeathSlope*numNeighbors))
               {
                    setNaturalDeath(true);
                    model.addHostDeath(this);     
                    doomed = true;
                    if(infected)
                    {
                         model.addPathogenDeath(this.myPathogen);
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                    }
                    
               }
          }
          
          if((model.executeHost() && !model.getNewMethod()) | model.getNewMethod())
          {
               // see if the Host is infected, and, if so, if it will die
               if (infected)
               {
                    // die with probability = virulence
                    randNum = ModelParameters.getUniformDoubleFromTo(0, 1);
                    
                    if (randNum < myPathogen.getVirulence())
                    {
                         setNaturalDeath(false);
                         model.addHostDeath(this);
                         doomed = true;
                         model.addPathogenDeath(this.myPathogen);
                    }
                    
               }
          }    
          if(offspring != 0)
          {
               offspringDisplayObject.setMyColor(colorMap.getColor(Math.round((float)(63*(offspring/
                    maxOffspring)))));
          }
          if(descendents != 0)
          {
               descendentsDisplayObject.setMyColor(colorMap.getColor(Math.round((float)(63*(descendents/
                    maxDescendents)))));
          }
     }
               
     public void reproduce(int tempX, int tempY)
     {
          double randNum;
          double newGrowthProb; // the growthProb that the offspring will have
          
          // check to see if the hosts should execute this time step
          if(model.executeHost())
          {
               // reset the infectionTries count of the pathogen
               if(infected)
               {
                    myPathogen.resetInfectionTries();
               }
               
               // see if the cell is unoccupied
               // IMPORTANT: INFECTED HOSTS CANNOT REPRODUCE
               
               // getObject is expensive, so check infected==false first
               // I've replaced getObject with getOccupancyMatrix, but I think the previous
               // structure is still OK
               if(infected==false)
               {
                    if (model.getOccupancyMatrix(tempX, tempY) == 0)
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                    {
                         // reproduce with probability = growthProb
                         randNum = ModelParameters.getUniformDoubleFromTo(0, 1);
                         
                         if (randNum < growthProb)
                         {
                              // mutate with probability probGrowthMutate
                              randNum = ModelParameters.getUniformDoubleFromTo(0, 1);
                              
                              // subtract growthMutation w/ a probability of probGrowthMutate/2; 
                              // add growthMutation w/ a probability of probGrowthMutate/2
                              if (randNum < probGrowthMutate/2)
                              {
                                   newGrowthProb = Math.max(0, growthProb - growthMutation);                       
                              }
                              else if (randNum < probGrowthMutate)
                              {
                                   newGrowthProb = Math.min(1, growthProb + growthMutation);
                              }
                              else
                              {
                                   newGrowthProb = growthProb;
                              }
                              
                              Host aHost = new Host(tempX, tempY, newGrowthProb, this);
                              model.addHostBirth(aHost);
                         }
                    }
               }
               
          }
          // the host's pathogen also gets a chance to reproduce
          if(infected)
          {
               myPathogen.reproduce(tempX, tempY);
          }
          
     }
     
     // //////////////////////////////////////////////////////////////////////////
     // setters and getters
     public void setID(int i)
     {
          ID = i;
     }

     public int getID()
     {
          return ID;
     }

     // note these are class methods, to set class variables     
     public static void setHostsWorld(Object2DTorus world)
     {
          hostsWorld = world;
     }

     public static void setOffspringWorld(Object2DTorus world)
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     {
          offspringWorld = world;
     }
     
     public static void setDescendentsWorld(Object2DTorus world)
     {
          descendentsWorld = world;
     }
     
     public static void setModel(HostPathogen m)
     {
          model = m;
     }

     public static void setGUIModel(GUIModel m)
     {
          guiModel = m;
     }
     
     public static void setDefaultGrowthProb(double dGP)
     {
          defaultGrowthProb = dGP;
     }

     public static void setDefaultNaturalDeathZero(double dNDZ)
     {
          defaultNaturalDeathZero = dNDZ;
     }
     
     public static void setDefaultNaturalDeathSlope(double dNDS)
     {
          defaultNaturalDeathSlope = dNDS;
     }
     
     public static double getProbGrowthMutate()
     {
          return probGrowthMutate;
     }
     public static void setProbGrowthMutate(double pGM)
     {
          probGrowthMutate = pGM;
     }
     
     public static double getGrowthMutation()
     {
          return growthMutation;
     }
     public static void setGrowthMutation(double gM)
     {
          growthMutation = gM;
     }
     
     public static void setColorMap()
     {
          colorMap.mapColor(0, 0, 0, 0.5625);
          colorMap.mapColor(1, 0, 0, 0.625);
          colorMap.mapColor(2, 0, 0, 0.6875);
          colorMap.mapColor(3, 0, 0, 0.75);
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          colorMap.mapColor(4, 0, 0, 0.8125);
          colorMap.mapColor(5, 0, 0, 0.875);
          colorMap.mapColor(6, 0, 0, 0.9375);
          colorMap.mapColor(7, 0, 0, 1);
          colorMap.mapColor(8, 0, 0.0625, 1);
          colorMap.mapColor(9, 0, 0.125, 1);
          colorMap.mapColor(10, 0, 0.1875, 1);
          colorMap.mapColor(11, 0, 0.25, 1);
          colorMap.mapColor(12, 0, 0.3125, 1);
          colorMap.mapColor(13, 0, 0.375, 1);
          colorMap.mapColor(14, 0, 0.4375, 1);
          colorMap.mapColor(15, 0, 0.5, 1);
          colorMap.mapColor(16, 0, 0.5625, 1);
          colorMap.mapColor(17, 0, 0.625, 1);
          colorMap.mapColor(18, 0, 0.6875, 1);
          colorMap.mapColor(19, 0, 0.75, 1);
          colorMap.mapColor(20, 0, 0.8125, 1);
          colorMap.mapColor(21, 0, 0.875, 1);
          colorMap.mapColor(22, 0, 0.9375, 1);
          colorMap.mapColor(23, 0, 1, 1);
          colorMap.mapColor(24, 0.0625, 1, 0.9375);
          colorMap.mapColor(25, 0.125, 1, 0.875);
          colorMap.mapColor(26, 0.1875, 1, 0.8125);
          colorMap.mapColor(27, 0.25, 1, 0.75);
          colorMap.mapColor(28, 0.3125, 1, 0.6875);
          colorMap.mapColor(29, 0.375, 1, 0.625);
          colorMap.mapColor(30, 0.4375, 1, 0.5625);
          colorMap.mapColor(31, 0.5, 1, 0.5);
          colorMap.mapColor(32, 0.5625, 1, 0.4375);
          colorMap.mapColor(33, 0.625, 1, 0.375);
          colorMap.mapColor(34, 0.6875, 1, 0.3125);
          colorMap.mapColor(35, 0.75, 1, 0.25);
          colorMap.mapColor(36, 0.8125, 1, 0.1875);
          colorMap.mapColor(37, 0.875, 1, 0.125);
          colorMap.mapColor(38, 0.9375, 1, 0.0625);
          colorMap.mapColor(39, 1, 1, 0);
          colorMap.mapColor(40, 1, 0.9375, 0);
          colorMap.mapColor(41, 1, 0.875, 0);
          colorMap.mapColor(42, 1, 0.8125, 0);
          colorMap.mapColor(43, 1, 0.75, 0);
          colorMap.mapColor(44, 1, 0.6875, 0);
          colorMap.mapColor(45, 1, 0.625, 0);
          colorMap.mapColor(46, 1, 0.5625, 0);
          colorMap.mapColor(47, 1, 0.5, 0);
          colorMap.mapColor(48, 1, 0.4375, 0);
          colorMap.mapColor(49, 1, 0.375, 0);
          colorMap.mapColor(50, 1, 0.3125, 0);
          colorMap.mapColor(51, 1, 0.25, 0);
          colorMap.mapColor(52, 1, 0.1875, 0);
          colorMap.mapColor(53, 1, 0.125, 0);
          colorMap.mapColor(54, 1, 0.0625, 0);
          colorMap.mapColor(55, 1, 0, 0);
          colorMap.mapColor(56, 0.9375, 0, 0);
          colorMap.mapColor(57, 0.875, 0, 0);
          colorMap.mapColor(58, 0.8125, 0, 0);
          colorMap.mapColor(59, 0.75, 0, 0);
          colorMap.mapColor(60, 0.6875, 0, 0);
          colorMap.mapColor(61, 0.625, 0, 0);
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          colorMap.mapColor(62, 0.5625, 0, 0);
          colorMap.mapColor(63, 0.5, 0, 0);
     }
     
     public int getX()
     {
          return x;
     }

     public void setX(int i)
     {
          x = i;
     }

     public int getY()
     {
          return y;
     }

     public void setY(int i)
     {
          y = i;
     }
     
     public boolean getInfected()
     {
          return infected;
     }
     
     public void setInfected(boolean i)
     {
          infected = i;
          
          if(i)
          {
               myColor = Color.white;
          }
          else
          {
               myColor = myColor = colorMap.getColor(Math.round((float)(63*growthProb)));
          }
          
     }
     
     public boolean getDoomed()
     {
          return doomed;
     }
     
     public Pathogen getPathogen()
     {
          return myPathogen;
     }
     
     public void setPathogen(Pathogen p)
     {
          myPathogen = p;
     }
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     public double getGrowthProb()
     {
          return growthProb;
     }
     
     public void setGrowthProb(double gP)
     {
          growthProb = gP;
          
     }
     
     public double getNaturalDeathZero()
     {
          return naturalDeathZero;
     }
     
     public void setNaturalDeathZero(double nDZ)
     {
          naturalDeathZero = nDZ;
          
     }
     
     public double getNaturalDeathSlope()
     {
          return naturalDeathSlope;
     }
     
     public void setNaturalDeathSlope(double nDS)
     {
          naturalDeathSlope = nDS;
          
     }
     
     public String getName()
     {
          return "Host";
     }
     
     public void setNaturalDeath(boolean nD)
     {
          naturalDeath = nD;
     }
     
     public boolean getNaturalDeath()
     {
          return naturalDeath;
     }
     
     public Host getParent()
     {
          return myParent;
     }
     
     public int getOffspring()
     {
          return offspring;
     }
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     public int getDescendents()
     {
          return descendents;
     }
     
     public int getAge()
     {
          return age;
     }
     
     public void incrementOffspring()
     {
          offspring++;
          incrementDescendents();
     }
     
     public void incrementDescendents()
     {
          descendents++;
          if(myParent != null)
          {
               myParent.incrementDescendents();
          }
     }
     // we implement Drawable interface, so we need this method
     // so that the Host can draw itself when requested
     // (by the GUI display).

     public void draw(SimGraphics g)
     {
          g.drawFastRoundRect(myColor);
     }

}
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Pathogen.java

/**
 * Pathogen.java 
 */

package hostPathogen_v7;

import hostPathogen_v7.GUIModel;

import java.awt.BasicStroke;
import java.lang.Math;

import uchicago.src.sim.gui.*;
import uchicago.src.sim.space.Object2DTorus;
import java.awt.Color;

public class Pathogen implements Drawable
{
     // class variables
     public static int nextID = 0; // to give each an ID
     public static HostPathogen model; // the model "in charge"
     public static Object2DTorus pathogensWorld; // where the hosts live
     public static GUIModel guiModel = null; // the gui model "in charge"
     // we'll use this to draw a border around the pathogens' cells (the f means
     // float)
     public static BasicStroke pathogenEdgeStroke = new BasicStroke(1.0f);
     
     public static double defaultTransmissibility;
     public static double defaultVirulence;
     public static double probTransMutate;
     public static double transMutation;
     public static double probVirulenceMutate;
     public static double virulenceMutation; 

     // instance variables
     public  int              ID;
     public int x, y;
     public Color myColor;
     public int infectionTries;

     public double transmissibility;
     public double virulence;
     
     // the Pathogen constructor
     public Pathogen(int X, int Y)
     {
          ID = nextID++;
          x = X;
          y = Y;
          myColor = Color.white;
          transmissibility = defaultTransmissibility;
          virulence = defaultVirulence;
          infectionTries = 0;
     }
     
     public Pathogen(int X, int Y, double tau, double v)
     {
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          ID = nextID++;
          x = X;
          y = Y;
          myColor = Color.white;
          transmissibility = tau;
          virulence = v;
          infectionTries = 0;
     }

     // setupPathogenDrawing
     // set the guiModel address, which we can test to see if in GUI mode
     public static void setupPathogenDrawing ( GUIModel m ) 
     {
          guiModel = m;
     }
     // //////////////////////////////////////////////////////////////////////////
     // step
     // apply the CA rules
     public void step()
     {
          // do nothing for now
     }

     public void reproduce(int tempX, int tempY)
     {
          double randNum;
          double newTransmissibility;
          double newVirulence;
          
          // each pathogen only gets four tries to infect, i.e., one try
          // for each cell in the von Neumann neighborhood
          infectionTries++;
          
          // only try to infect if infectionTries<4 (von Neumann neighborhood)
          if(infectionTries<=4 | model.getNewMethod())
          {
               // see if the cell has a host in it
               if (pathogensWorld.getObjectAt(tempX, tempY) != null)
               {
                    
                    // see if the host is not already infected
                    if (((Host)pathogensWorld.getObjectAt(tempX, tempY)).getInfected() == false)
                    {
                         // reproduce with probability = transmissibility
                         randNum = ModelParameters.getUniformDoubleFromTo(0, 1);
                    
                         if (randNum < transmissibility)
                         {
                              // mutate with probabilities probTransMutate and probVirulenceMutate
                              randNum = ModelParameters.getUniformDoubleFromTo(0, 1);
                              
                              // subtract transMutation w/ a probability of probTransMutate/2; 
                              // add transMutation w/ a probability of probTransMutate/2
                              if (randNum < probTransMutate/2)
                              {
                                   newTransmissibility = Math.max(0, transmissibility - transMutation);
                              }
                              else if (randNum < probTransMutate)
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                              {
                                   newTransmissibility = Math.min(1, transmissibility + transMutation);
                              }
                              else
                              {
                                   newTransmissibility = transmissibility;
                              }
                              
                              randNum = ModelParameters.getUniformDoubleFromTo(0, 1);
                              
                              // subtract virulenceMutation w/ a probability of probVirulenceMutate/2; 
                              // add virulenceMutation w/ a probability of probVirulenceMutate/2
                              if (randNum < probVirulenceMutate/2)
                              {
                                   newVirulence = Math.max(0, virulence - virulenceMutation);       
                              }
                              else if (randNum < probVirulenceMutate)
                              {
                                   newVirulence = Math.min(1, virulence + virulenceMutation);
                              }
                              else
                              {
                                   newVirulence = virulence;
                              }
               
                              Pathogen aPathogen = new Pathogen(tempX, tempY, newTransmissibility,
    newVirulence);
                              model.addPathogenBirth(aPathogen);
                         }                   
                    }
               }
          }         
     }
     
     public void resetInfectionTries()
     {
          infectionTries = 0;
     }
     // //////////////////////////////////////////////////////////////////////////
     // setters and getters
     public void setID(int i)
     {
          ID = i;
     }

     public int getID()
     {
          return ID;
     }

     // note these are class methods, to set class variables
     public static void setPathogensWorld(Object2DTorus world)
     {
          pathogensWorld = world;
     }
     public static void setModel(HostPathogen m)
     {
          model = m;

184



     }

     public static void setGUIModel(GUIModel m)
     {
          guiModel = m;
     }
     
     public static void setDefaultTransmissibility(double tau)
     {
          defaultTransmissibility = tau;
     }
     
     public static void setDefaultVirulence(double v)
     {
          defaultVirulence = v;
     }
     
     public static double getProbTransMutate()
     {
          return probTransMutate;
     }
     public static void setProbTransMutate(double pTM)
     {
          probTransMutate = pTM;
     }
     
     public static double getTransMutation()
     {
          return transMutation;
     }
     public static void setTransMutation(double tM)
     {
          transMutation = tM;
     }
     
     public static double getProbVirulenceMutate()
     {
          return probVirulenceMutate;
     }
     public static void setProbVirulenceMutate(double pVM)
     {
          probVirulenceMutate = pVM;
     }
     
     public static double getVirulenceMutation()
     {
          return virulenceMutation;
     }
     public static void setVirulenceMutation(double vM)
     {
          virulenceMutation = vM;
     }
     
     public int getX()
     {
          return x;
     }
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     public void setX(int i)
     {
          x = i;
     }

     public int getY()
     {
          return y;
     }

     public void setY(int i)
     {
          y = i;
     }
          
     public double getVirulence()
     {
          return virulence;
     }
     
     public double getTransmissibility()
     {
          return transmissibility;
     }
     
     public String getName()
     {
          return "Pathogen";
     }
     
     // we implement Drawable interface, so we need this method
     // so that the pathogen can draw itself when requested
     // (by the GUI display).

     public void draw(SimGraphics g)
     {
          g.drawFastRoundRect(myColor);
          g.drawRectBorder(pathogenEdgeStroke, Color.cyan);
     }

}
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StatsDisplayObject.java

package hostPathogen_v7;

import java.awt.Color;

import uchicago.src.sim.gui.Drawable;
import uchicago.src.sim.gui.SimGraphics;

public class StatsDisplayObject implements Drawable 
{
     public Color myColor;
     public int x, y;
     
     public StatsDisplayObject(Color mC)
     {
          myColor = mC;
     }
     
     @Override
     public void draw(SimGraphics g) 
     {
          g.drawFastRoundRect(myColor);
     }

     @Override
     public int getX() {
          // TODO Auto-generated method stub
          return 0;
     }

     @Override
     public int getY() {
          // TODO Auto-generated method stub
          return 0;
     }
     
     public void setMyColor(Color mC)
     {
          myColor = mC;
     }

}
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GUIModel.java

package hostPathogen_v7;

// A model of an evolutionary, spatially explicit host-pathogen system.
// Doug Jackson, Summer 2008

import uchicago.src.sim.gui.DisplaySurface;
import uchicago.src.sim.gui.Object2DDisplay;
import uchicago.src.sim.engine.AbstractGUIController;
import uchicago.src.sim.engine.Schedule;
import uchicago.src.sim.analysis.*;

public class GUIModel extends HostPathogen
{

     // (Repast)
     private Object2DDisplay worldDisplay; // 2D Object lattice -> display
     private DisplaySurface dsurf; // display surface
     
     // display and surface for # of offspring
     private Object2DDisplay offspringDisplay;
     private DisplaySurface offspringSurf;
     
     // display and surface for # of descendents
     private Object2DDisplay descendentsDisplay;
     private DisplaySurface descendentsSurf;
     
     private Plot transmissibilityGraph; // Graph 1
     private Plot virulenceGraph; // Graph 2
     private Plot growthGraph; // Graph 3
     private Plot numHostsGraph; // Graph 4
     private Plot numPathogensGraph; // Graph 5

     // ///////////////////////////////////////////////////////////////////
     // setup
     //
     // this runs automatically when the model starts
     // and when you click the reload button, to "tear down" any
     // existing display objects, and get ready to initialize
     // them at the start of the next 'run'.
     //
     @Override
     public void setup()
     {
          super.setup(); // the super class does conceptual-model setup

          AbstractGUIController.CONSOLE_ERR = false;
          AbstractGUIController.CONSOLE_OUT = false;
          AbstractGUIController.UPDATE_PROBES = true;

          // dispose of any leftover display surfaces
          if (dsurf != null)
               dsurf.dispose();
          if (offspringSurf != null) offspringSurf.dispose();
          if (descendentsSurf != null) descendentsSurf.dispose();

          // create the new display surfaces
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          dsurf = null;
          dsurf = new DisplaySurface(this, "Display");
          registerDisplaySurface("Main display", dsurf);  
          offspringSurf = null;
          offspringSurf = new DisplaySurface(this, "Offspring display");
          registerDisplaySurface("Offspring display", offspringSurf);

          descendentsSurf = null;
          descendentsSurf = new DisplaySurface(this, "Descendents display");
          registerDisplaySurface("Descendents display", descendentsSurf);
          
          // clear any residual graphs
          if ( transmissibilityGraph != null ) transmissibilityGraph.dispose();
          transmissibilityGraph = null;
          if ( virulenceGraph != null ) virulenceGraph.dispose();
          virulenceGraph = null;
          if ( growthGraph != null ) growthGraph.dispose();
          growthGraph = null;
          if ( numHostsGraph != null ) numHostsGraph.dispose();
          numHostsGraph = null;
          if ( numPathogensGraph != null ) numPathogensGraph.dispose();
          numPathogensGraph = null;
          
          // tell the Host class we are in GUI mode.
          Host.setupHostDrawing(this);

          // init, setup and turn on the modelMinipulator stuff (in custom
          // actions)
          modelManipulator.init();

          if (rDebug > 0)
               System.out.printf("<== GUIModel setup() done.\n");
     }

     // ///////////////////////////////////////////////////////////////////
     // begin
     //
     // this runs when you click the "initialize" button
     // (the button with the single arrow that goes around in a circle)
     //
     @Override
     public void begin()
     {
          DMSG(1, "==> enter GUIModel-begin()");
          buildModel(); // the base model does this
          buildDisplay();
          buildSchedule();
          dsurf.display();
          offspringSurf.display();
          descendentsSurf.display();
          DMSG(1, "<== leave GUIModel-begin() done.");
     }

     // ///////////////////////////////////////////////////////////////////
     // buildDisplay
     //
     // builds the display and display related things
     //
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     public void buildDisplay()
     {
          if (rDebug > 0)
               System.out.printf("==> GUIModel buildDisplay...\n");

          // create the link between the display surfaces and the Object2DTorus worlds,
          // and tell parts about each other as needed.

          worldDisplay = new Object2DDisplay(world);
          worldDisplay.setObjectList(hostList);
          
          offspringDisplay = new Object2DDisplay(offspringWorld);
          descendentsDisplay = new Object2DDisplay(descendentsWorld);

          // note we will be able to probe the objects with MB3 (right)
          dsurf.addDisplayableProbeable(worldDisplay, "Shade trees");
          
          offspringSurf.addDisplayable(offspringDisplay, "Number of offspring");
          descendentsSurf.addDisplayable(descendentsDisplay, "Number of descendents");

          addSimEventListener(dsurf); // link to the other parts of the repast gui
          addSimEventListener(offspringSurf);
          addSimEventListener(descendentsSurf);

          // enable the custom action(s)
          modelManipulator.setEnabled(true);

          if (rDebug > 0)
               System.out.printf("<== GUIModel buildDisplay done.\n");
          
          // Graphs
          
          //Graph 1 - a graph showing the average transmissibility vs. time
          transmissibilityGraph = new Plot("Transmissibility", this);
          transmissibilityGraph.setXRange( 0, 200 );
          transmissibilityGraph.setYRange( 0, 1 );
          transmissibilityGraph.setAxisTitles("Time", "Transmissibility");
          
          transmissibilityGraph.addLegend(1, "min. transmissibility");
          transmissibilityGraph.addLegend(2, "avg. transmissibility");
          transmissibilityGraph.addLegend(3, "max. transmissibility");
          
          //tell the model about it.
          HostPathogen.setTransmissibilityGraph(transmissibilityGraph);
          
          // now actually display the graph on the screen.
          transmissibilityGraph.display();
          
          // end Graph 1
          
          //Graph 2 - a graph showing the average transmissibility vs. time
          virulenceGraph = new Plot("Virulence", this);
          virulenceGraph.setXRange( 0, 200 );
          virulenceGraph.setYRange( 0, 1 );
          virulenceGraph.setAxisTitles("Time", "Virulence");
          
          virulenceGraph.addLegend(1, "min. virulence");
          virulenceGraph.addLegend(2, "avg. virulence");
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          virulenceGraph.addLegend(3, "max. virulence");
          
          //tell the model about it.
          HostPathogen.setVirulenceGraph(virulenceGraph);
          
          // now actually display the graph on the screen.
          virulenceGraph.display();
          
          // end Graph 2
          
          //Graph 3 - a graph showing the average transmissibility vs. time
          growthGraph = new Plot("Host growth probability", this);
          growthGraph.setXRange( 0, 200 );
          growthGraph.setYRange( 0, 1 );
          growthGraph.setAxisTitles("Time", "Growth Probability");
          
          growthGraph.addLegend(1, "min. growth probability");
          growthGraph.addLegend(2, "avg. growth probability");
          growthGraph.addLegend(3, "max. growth probability");
          
          //tell the model about it.
          HostPathogen.setGrowthGraph(growthGraph);
          
          // now actually display the graph on the screen.
          growthGraph.display();
          
          // end Graph 3
          
          //Graph 4 - a graph showing the number of hosts vs. time
          numHostsGraph = new Plot("Number of hosts", this);
          numHostsGraph.setXRange( 0, 200 );
          numHostsGraph.setYRange( 0, 1 );
          numHostsGraph.setAxisTitles("Time", "Number of hosts");
          
          numHostsGraph.addLegend(1, "Number of hosts");
          
          //tell the model about it.
          HostPathogen.setNumHostsGraph(numHostsGraph);
          
          // now actually display the graph on the screen.
          numHostsGraph.display();
          
          // end Graph 4
          
          //Graph 5 - a graph showing the number of pathogens vs. time
          numPathogensGraph = new Plot("Number of pathogens", this);
          numPathogensGraph.setXRange( 0, 200 );
          numPathogensGraph.setYRange( 0, 1 );
          numPathogensGraph.setAxisTitles("Time", "Number of pathogens");
          
          numPathogensGraph.addLegend(1, "Number of pathogens");
          
          //tell the model about it.
          HostPathogen.setNumPathogensGraph(numPathogensGraph);
          
          // now actually display the graph on the screen.
          numPathogensGraph.display();
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          // end Graph 5
          
     }

     // //////////////////////////////////////////////////////////////
     // buildSchedule
     //
     // This builds the entire schedule, i.e.,
     // - the base model step
     // - report step
     // - display steps.

     @Override
     public void buildSchedule()
     {

          if (rDebug > 0)
               System.out.printf("==> GUIModel buildSchedule...\n");

          // schedule the current GUIModel's step() function
          // to execute every time step starting with time step 0
          schedule.scheduleActionBeginning(0, this, "step");
          // start report at 1
          schedule.scheduleActionAtInterval(1, this, "stepReport", Schedule.LAST);

          // schedule the current GUIModel's processEndOfRun()
          // function to execute at the end of the run
          schedule.scheduleActionAtEnd(this, "processEndOfRun");
     }

     // /////////////////////////////////////////////////////////////////////////////
     // step
     //
     // executed each step of the model.
     // Ask the super class to do its step() method,
     // and then this does display related activities.
     //
     @Override
     public void step()
     {

          super.step(); // the model does whatever it does

          // add things after this for all displays (graphs, etc)
          dsurf.updateDisplay();
          offspringSurf.updateDisplay();
          descendentsSurf.updateDisplay();
          
          // update the graph every graphUpdatePeriod steps
          // note that getTickCount() and getGraphUpdatePeriod() are inherited          
          if ((getTickCount() % getGraphUpdatePeriod())==0.0)
          {
               // automatically adjust the axes (this will automatically update the graph)
               transmissibilityGraph.fillPlot();
               virulenceGraph.fillPlot();
               growthGraph.fillPlot();
               numHostsGraph.fillPlot();
               numPathogensGraph.fillPlot();
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          }

     }

     // processEndOfRun
     // called once, at end of run.
     @Override
     public void processEndOfRun()
     {
          if (rDebug > 0)
               System.out.printf("\n\n===== GUIModel processEndOfRun =====\n\n");
          applyAnyStoredChanges();
          endReportFile();
          this.fireStopSim();
     }

     // updateDisplay
     // if someone wants the dsurf redrawn...

     public void updateDisplay()
     {
          dsurf.updateDisplay();
          offspringSurf.updateDisplay();
          descendentsSurf.updateDisplay();
     }

     // //////////////////////////////////////////////////////////////////
     // main entry point
     public static void main(String[] args)
     {

          uchicago.src.sim.engine.SimInit init = new uchicago.src.sim.engine.SimInit();
          GUIModel model = new GUIModel();

          // System.out.printf("==> GUIMOdel main...\n" );

          // set the type of model class, this is necessary
          // so the parameters object knows whether or not
          // to do GUI related updates of panels,etc when a
          // parameter is changed
          model.setModelType("GUIModel");

          // Do this to set the Update Probes option to true in the
          // Repast Actions panel
          AbstractGUIController.UPDATE_PROBES = true;

          model.setCommandLineArgs(args);
          init.loadModel(model, null, false); // does setup()

          // this new function calls ProbeUtilities.updateProbePanels() and
          // ProbeUtilities.updateModelProbePanel()
          model.updateAllProbePanels();

     }

}

193



BatchModel.java

package hostPathogen_v7;
import uchicago.src.sim.engine.*;

public class BatchModel extends HostPathogen
{

     // //////////////////////////////////////////////////////////////////
     // main entry point
     public static void main(String[] args)
     {

          BatchModel model = new BatchModel();

          // set the type of model class, this is necessary
          // so the parameters object knows whether or not
          // to do GUI related updates of panels, etc when a
          // parameter is changed
          model.setModelType("BatchModel");

          model.setCommandLineArgs(args);

          PlainController control = new PlainController();
          model.setController(control);
          control.setExitOnExit(true);
          control.setModel(model);
          model.addSimEventListener(control);
          if (model.getRDebug() > 0)
               System.out.printf("\n==> BatchModel main...about to startSimulation...\n");
          control.startSimulation();
     }

     // setup() -- BatchModel just does what the super class does.
     @Override
     public void setup()
     {
          super.setup();
     }

     // begin()
     // ask the super class to do its building, then build a schedule.
     @Override
     public void begin()
     {
          // set schedule to null so buildModel knows not to
          // record changes ( changes are recorded if
          // schedule != null ). in buildSchedule() the
          // schedule is allocated before the actual schedule is created.
          schedule = null;
          buildModel(); // the base Model class does this
          buildSchedule();
     }

     // //////////////////////////////////////////////////////////////
     // buildSchedule
     // 
     // This may need to be changed, depending on what you want to
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     // happen in a batch run (vs a GUI run).

     @Override
     public void buildSchedule()
     {

          schedule = new Schedule(1);

          // schedule the current BatchModel's step() function
          // to execute every time step starting with time step 0
          schedule.scheduleActionBeginning(0, this, "step");
          schedule.scheduleActionAtInterval(1, this, "stepReport", Schedule.LAST);

          // schedule the current BatchModel's processEndOfRun()
          // function to execute at the end of the Batch Run.
          // You need to specify the time to schedule it (instead
          // of doing scheduleActionAtEnd() or it will just run forever
          schedule.scheduleActionAt(getStopT(), this, "processEndOfRun");
     }

     // processEndOfRun
     // we need this to tell it to stop running!
     @Override
     public void processEndOfRun()
     {
          super.processEndOfRun();
          this.fireEndSim();
     }
}

// ///////////////////////////////////////////////////////////////////////////
// //////////////////////////////////////////////////////////////////////////
// Why this class below?
//
// the reason we did that is because the repast "BatchController" had methods
// in it that started GUI stuff. this caused problems when we ssh'd into
// another machine and run a job--when we tried to disconnect, the ssh
// session would stay hung until the job was finished because the job needed
// the X11-forwarding to be open to run.
class PlainController extends BaseController
{
     private boolean exitonexit;

     public PlainController()
     {
          super();
          exitonexit = false;
     }

     public void startSimulation()
     {
          startSim();
     }

     public void stopSimulation()
     {
          stopSim();
     }
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     public void exitSim()
     {
          exitSim();
     }

     public void pauseSimulation()
     {
          pauseSim();
     }

     @Override
     public boolean isBatch()
     {
          return true;
     }

     @Override
     protected void onTickCountUpdate()
     {
     }

     // this might not be necessary
     @Override
     public void setExitOnExit(boolean in_Exitonexit)
     {
          exitonexit = in_Exitonexit;
     }

     public void simEventPerformed(SimEvent evt)
     {
          if (evt.getId() == SimEvent.STOP_EVENT)
          {
               stopSimulation();
          } else if (evt.getId() == SimEvent.END_EVENT)
          {
               if (exitonexit)
               {
                    System.exit(0);
               }
          } else if (evt.getId() == SimEvent.PAUSE_EVENT)
          {
               pauseSimulation();
          }
     }

     // function added because it is required for repast 2.2
     public long getRunCount()
     {
          return 0;
     }

     // function added because it is required for repast 2.2
     public boolean isGUI()
     {
          return false;
     }
}
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ModelParameters.java

package hostPathogen_v7;

import java.io.*;
import java.util.*;
import java.util.Scanner;
import java.util.regex.*; // for MatchResult
import java.lang.reflect.*;

import uchicago.src.sim.engine.*;
import uchicago.src.sim.util.Random;
import uchicago.src.sim.util.*;

//for the xml parsing of input files
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Element;

import java.util.TreeMap;

public class ModelParameters extends SimModelImpl
{

     // setup
     // this should be called *last* in the Model setup() that
     // extends this class.
     public void setup()
     {
          changesVector = new Vector();
          setupParametersMap();
          // only process command line arguments if it is the first run
          // if it is the first run then schedule is null,
          // if not then schedule is initialized (and is set to null
          // on the next line)
          if (schedule == null)
               processCommandLinePars(commandLineArgs);
          schedule = null;

          if (rDebug > 0)
               System.out.printf("<--- ModelParameters setup() done.\n");
     }

     public void begin()
     {
          // this must be declared in the class that 'extends' this one
     }

     // buildModelStart
     // this should be called first by the buildModel in the extending class.
     public void buildModelStart()
     {
          if (getSeed() == 1234567 || getSeed() == 0)
          {
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               long s = System.currentTimeMillis();
               setSeed(s);
               if (rDebug > 1)
                    System.out.printf("\nseed was 1234567 or 0, now ==> s=%d\n", s);
          }
          if (rDebug > 1)
               System.out.printf("\nabout to setSeed(%d)\n", getSeed());
          resetRNGenerators();
     }

     // buildSchedule
     // the extending classes must fill this in
     public void buildSchedule()
     {
          schedule = new Schedule();
     }

     public String[] getInitParam()
     {
          // this must be declared in the class that 'extends' this one
          return null;
     }

     // Generic parameters
     protected String initialParametersFileName = "";
     protected String initialAgentsFileName = "";
     protected String reportFileName = "report";
     protected String outputDirName = "./";
     protected int reportFrequency = 1;
     protected int runNumber = 0;
     protected int stopT = 100;
     protected int rDebug = 0;
     protected int saveRunEndState = 0;
     protected long seed = 1234567;
     protected PrintWriter reportFile, plaintextReportFile;
     protected PrintWriter changesFile;

     // other utilities
     protected String[] commandLineArgs;
     protected String modelType = "Model";

     // for input file
     protected boolean STRICT_FILE_FORMAT = true;
     protected Vector changesVector;

     // variables for processing run-time changes that are
     // read in from the input file
     protected int numberOfChanges = 0;
     protected int nextChangeToDo = 0;
     protected int[] changeSteps = new int[64];
     protected int[] changeIDs = new int[64];
     protected ArrayList changeSpecs = new ArrayList(16);

     // required by SimModelImpl
     protected BasicAction stepMethods;
     protected Schedule schedule = null;

     // setupParametersMap
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     // this implements the mapping from aliases to long names,
     // for the 'base' parameters common to all models.
     // For parameters for a particular model, add lines
     // to addToParametersMap().
     protected TreeMap parametersMap;

     public void setupParametersMap()
     {
          DMSG(1, "setupParametersMap()");

          parametersMap = null;
          parametersMap = new TreeMap();
          // generic model parameters
          parametersMap.put("D", "rDebug");
          parametersMap.put("S", "seed");
          parametersMap.put("iPFN", "initialParametersFileName");
          parametersMap.put("iAFN", "initialAgentsFileName");
          parametersMap.put("rFN", "reportFileName");
          parametersMap.put("T", "stopT");
          parametersMap.put("sRES", "saveRunEndState");
          parametersMap.put("oDN", "outputDirName");
          parametersMap.put("rF", "reportFrequency");
          parametersMap.put("rN", "runNumber");

          addModelSpecificParameters();
     }

     // addModelSpecificParameters
     // a subclass should override this.
     public void addModelSpecificParameters()
     {
     }

     public void printParametersMap()
     {

          ArrayList parameterNames = new ArrayList(parametersMap.values());
          ArrayList parameterAliases = new ArrayList(parametersMap.keySet());

          for (int i = 0; i < parameterAliases.size(); i++)
          {
               Method getmethod = null;
               String parAlias = (String) parameterAliases.get(i);
               String parName = (String) parametersMap.get(parAlias);

               getmethod = findGetMethodFor(parName);

               if (getmethod != null)
               {
                    try
                    {
                         Object returnVal = getmethod.invoke(this, new Object[]
                         {});
                         String s = parName + " (" + parAlias + ") = " + returnVal;
                         System.out.printf("%s\n", s);
                    } catch (Exception e)
                    {
                         e.printStackTrace();
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                    }
               } else
               {
                    System.err.printf("COULD NOT FIND SET METHOD FOR:  %s\n", parameterNames.get(i));
                    System.err.printf("Is the entry in the parametersMap for this correct?");
               }
          }

     }

     // //////////////////////////////////////////////////////////////
     // generic setters/getters

     public String[] getCommandLineArgs()
     {
          return commandLineArgs;
     }

     public void setCommandLineArgs(String[] arguments)
     {
          commandLineArgs = arguments;
     }

     public String getModelType()
     {
          return modelType;
     }

     public void setModelType(String s)
     {
          modelType = s;
     }

     public String getInitialParametersFileName()
     {
          return initialParametersFileName;
     }

     public void setInitialParametersFileName(String s)
     {
          initialParametersFileName = s;
     }

     public String getInitialAgentsFileName()
     {
          return initialAgentsFileName;
     }

     public void setInitialAgentsFileName(String s)
     {
          initialAgentsFileName = s;
     }

     public String getReportFileName()
     {
          return reportFileName;
     }
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     public void setReportFileName(String s)
     {
          reportFileName = s;
     }

     public String getOutputDirName()
     {
          return outputDirName;
     }

     public void setOutputDirName(String s)
     {
          outputDirName = s;
     }

     public int getReportFrequency()
     {
          return reportFrequency;
     }

     public void setReportFrequency(int i)
     {
          reportFrequency = i;
     }

     public int getRunNumber()
     {
          return runNumber;
     }

     public void setRunNumber(int i)
     {
          runNumber = i;
     }

     public int getStopT()
     {
          return stopT;
     }

     public void setStopT(int i)
     {
          stopT = i;
     }

     public int getSaveRunEndState()
     {
          return saveRunEndState;
     }

     public void setSaveRunEndState(int i)
     {
          saveRunEndState = i;
     }

     public int getRDebug()
     {
          return rDebug;
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     }

     public void setRDebug(int i)
     {
          if (rDebug == i)
          {
               return;
          }
          rDebug = i;
          if (modelType.equals("GUIModel"))
          {
               updateAllProbePanels();
          }
          if (modelType.equals("GUIModel") && schedule != null)
               writeChangeToReportFile("rDebug", String.valueOf(i));
     }

     public long getSeed()
     {
          return seed;
     }

     public void setSeed(long i)
     {
          if (rDebug > 0)
               System.out.println("setSeed ( " + i + " ) called");
          seed = i;

          resetRNGenerators();

          if (modelType.equals("GUIModel"))
          {
               updateAllProbePanels();
          }
          if (modelType.equals("GUIModel") && schedule != null)
               writeChangeToReportFile("seed", String.valueOf(i));
     }

     public void resetRNGenerators()
     {
          if (rDebug > 0)
               System.out.printf("\nresetRNGenerators with %d\n", getSeed());

          // this is required because once you change the seed you invalidate
          // any previously created distributions
          uchicago.src.sim.util.Random.setSeed(seed);
          uchicago.src.sim.util.Random.createUniform();
          uchicago.src.sim.util.Random.createNormal(0.0, 1.0);
     }

     // NOTE: these are class methods!
     static public int getUniformIntFromTo(int low, int high)
     {
          int randNum = Random.uniform.nextIntFromTo(low, high);
          return randNum;
     }

     static public double getNormalDouble(double mean, double var)
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     {
          double randNum = Random.normal.nextDouble(mean, var);
          return randNum;
     }

     static public double getUniformDoubleFromTo(double low, double high)
     {
          double randNum = Random.uniform.nextDoubleFromTo(low, high);
          return randNum;
     }

     // loop until a number between 0 and 1 is generated,
     // if mean and var are set correctly the loop will rarely happen
     static public double getNormalDoubleProb(double mean, double var)
     {
          if (mean < 0 || mean > 1)
          {
               System.out.println("Invalid value set for normal distribution mean");
               return -1;
          }
          double d = Random.normal.nextDouble(mean, var);
          while (d < 0 || d > 1)
               d = Random.normal.nextDouble(mean, var);
          return d;
     }

     public void setRngSeed(long i)
     {
          System.out.println("setRngSeed ( " + i + " ) called");
          setSeed(i);
     }

     public PrintWriter getReportFile()
     {
          return reportFile;
     }

     public PrintWriter getPlaintextReportFile()
     {
          return plaintextReportFile;
     }

     public Schedule getSchedule()
     {
          return schedule;
     }

     public String getName()
     {
          return "ModelParameters";
     }

     // some generic utilities
     public void updateAllProbePanels()
     {
          DMSG(2, "updateAllProbePanels()");
          ProbeUtilities.updateProbePanels();
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          // need this in case updateAllProbePanels gets called
          // before the probe panel is created (if it is called
          // before, then a RuntimeException occurs)
          // did have if(schedule != null), but that means panels
          // do not update at all during time=0, so people get confused.
          try
          {
               ProbeUtilities.updateModelProbePanel();
          } catch (RuntimeException e)
          {
               // ignore exception
               DMSG(3, "RuntimeException when updating model probe panel, ignoring ...");
          }
     }

     // captialize first character of s
     protected String capitalize(String s)
     {
          char c = s.charAt(0);
          char upper = Character.toUpperCase(c);
          return upper + s.substring(1, s.length());
     }

     // REPORT FILE PROCESSING ------------------------------
     //
     // startReportFile
     // opens two report files
     // one XML report file and one plaintext report file
     // call writeLineToReportFile to write to XML report file
     // and writeLineToPlaintextReportFile to write to plaintext file

     public PrintWriter startReportFile()
     {
          if (rDebug > 0)
               System.out.println("startReportFile called!");
          reportFile = null;
          plaintextReportFile = null;
          String fullFileName = reportFileName + String.format(".%02d", runNumber);
          String xmlFullFileName = reportFileName + ".xml" + String.format(".%02d", runNumber);

          // BufferedReader inFile =
          // IOUtils.openFileToRead(initialParametersFileName);

          reportFile = IOUtils.openFileToWrite(outputDirName, xmlFullFileName, "r");
          plaintextReportFile = IOUtils.openFileToWrite(outputDirName, fullFileName, "r");

          // the first line you have to write is the XML version line
          // DO NOT WRITE THIS LINE USING writeLineToReportFile()!
          reportFile.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");

          writeLineToReportFile("<reportfile>");
          writeLineToPlaintextReportFile("# begin reportfile");

          // write the initial parameters to the report file
          writeParametersToReportFile();

          writeHeaderCommentsToReportFile(); // the user must define this!
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          return reportFile;
     }

     public void writeLineToReportFile(String line)
     {
          if (reportFile == null)
          {
               DMSG(3, "report file not opened yet");
               // click the initialize button to open it!
               // returning w/o writing to report file ...");
               return;
          } else
          {
               reportFile.println(line);
          }
     }

     public void writeLineToPlaintextReportFile(String line)
     {
          if (plaintextReportFile == null)
          {
               DMSG(3, "report file not opened yet");
               // click the initialize button to open it!
               // returning w/o writing to report file ...");
               return;
          } else
          {
               plaintextReportFile.println(line);
          }
     }

     public void writeChangeToReportFile(String varname, String value)
     {
          DMSG(1, "writeChangeToReportFile(): write change to report file: " + varname + " changed to " + 
value);

          writeLineToReportFile("<change>");
          writeLineToReportFile("\t<" + varname + ">" + value + "</" + varname + ">");
          String s = String.format("\t<time>%.0f</time>", getTickCount());
          writeLineToReportFile(s);
          writeLineToReportFile("</change>");

          writeLineToPlaintextReportFile("# change:  " + varname + "=" + value);
     }

     public void endReportFile()
     {
          writeLineToReportFile("</reportfile>");
          writeLineToPlaintextReportFile("# end report file");
          IOUtils.closePWFile(reportFile);
          IOUtils.closePWFile(plaintextReportFile);
     }

     // this iterates through the values stored in the parametersMap,
     // calls the getter on each parameter, and outputs the
     // parameter and its value to the report file.
     // this is called right before the model run starts (after all
     // initial parameters are changed!) so
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     // the initial parameters are in the report file.
     public void writeParametersToReportFile()
     {
          DMSG(1, "writeParametersToReportFile()");

          writeLineToReportFile("<parameters>");
          writeLineToPlaintextReportFile("# begin parameters");

          ArrayList parameterNames = new ArrayList(parametersMap.values());
          for (int i = 0; i < parameterNames.size(); i++)
          {
               Method getmethod = null;
               getmethod = findGetMethodFor((String) parameterNames.get(i));

               if (getmethod != null)
               {
                    try
                    {
                         Object returnVal = getmethod.invoke(this, new Object[]
                         {});

                         writeLineToReportFile("\t<" + parameterNames.get(i) + ">" + returnVal + "</" + 
  parameterNames.get(i) + ">");

                         writeLineToPlaintextReportFile(parameterNames.get(i) + "=" + returnVal);

                    } catch (Exception e)
                    {
                         e.printStackTrace();
                    }
               } else
               {
                    System.err.printf("COULD NOT FIND SET METHOD FOR:  %s\n", parameterNames.get(i));
                    System.err.printf("Is the entry in the parametersMap for this correct?");
               }
          }
          writeLineToReportFile("</parameters>");
          writeLineToPlaintextReportFile("# end parameters");
     }

     // /////////////////////////////////////////////////////////////////////////////////////
     //
     // Generic report file processing ------------------------------
     //
     // These are similar to those above, but these require the user
     // to specify a particular "basename" for the files, and they
     // require/allow the user to separately open/writeTo/close the xml and plain
     // text files.
     //
     // PrintWriter startReportFile ( String baseName ) -- an xml formated report
     // file
     // PrintWriter startPlainTextReportFile ( String baseName ) -- plain text
     // report file
     //
     // void writeParametersToReportFile( PrintWriter rfile )
     // void writeParametersToPlainTextReportFile( PrintWriter rfile )
     //
     // void writeLineToReportFile ( String line, PrintWriter rfile )
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     //
     // void endReportFile ( PrintWriter rfile )
     // void endPlainTextReportFile ( PrintWriter rfile )
     //

     public PrintWriter startReportFile(String baseName)
     {
          if (rDebug > 0)
               System.err.printf("startReportFile called for baseName='%s'\n", baseName);
          PrintWriter rFile = null;
          String xmlFullFileName = baseName + ".xml" + String.format(".%02d", runNumber);

          rFile = IOUtils.openFileToWrite(outputDirName, xmlFullFileName, "r");

          // the first line you have to write is the XML version line
          // DO NOT WRITE THIS LINE USING writeLineToReportFile(...)!
          rFile.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");

          writeLineToReportFile("<reportfile>", rFile);
          // write the initial parameters to the report file
          writeParametersToReportFile(rFile);

          return rFile;
     }

     public PrintWriter startPlainTextReportFile(String baseName)
     {
          if (rDebug > 0)
               System.err.printf("startPlainTextReportFile called for baseName='%s'\n", baseName);
          PrintWriter rFile = null;
          String fullFileName = baseName + String.format(".%02d", runNumber);

          rFile = IOUtils.openFileToWrite(outputDirName, fullFileName, "r");

          writeLineToReportFile("# begin reportfile", rFile);

          // write the initial parameters to the report file
          writeParametersToPlainTextReportFile(rFile);

          return rFile;
     }

     // this just writes whatever is sent to it, and then a newline!
     public void writeLineToReportFile(String line, PrintWriter rFile)
     {
          if (rFile == null)
          {
               System.err.printf("\nERROR - A user-defined report file not opened yet!\n");
               return;
          } else
          {
               rFile.println(line);
          }
     }

     // the following does NOT write a newline!
     public void writeBufferToReportFile(String line, PrintWriter rFile)
     {
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          if (rFile == null)
          {
               System.err.printf("\nERROR - A user-defined report file not opened yet!\n");
               return;
          } else
          {
               rFile.printf(line);
          }
     }

     public void endReportFile(PrintWriter rFile)
     {
          writeLineToReportFile("</reportfile>", rFile);
          IOUtils.closePWFile(rFile);
     }

     public void endPlainTextReportFile(PrintWriter rFile)
     {
          writeLineToReportFile("# end report file", rFile);
          IOUtils.closePWFile(rFile);
     }

     // these iterate through the values stored in the parametersMap,
     // calls the getter on each parameter, and outputs the
     // parameter and its value to the report file.
     // this is called right before the model run starts (after all
     // initial parameters are changed!) so
     // the initial parameters are in the report file.
     public void writeParametersToReportFile(PrintWriter rFile)
     {
          DMSG(1, "writeParametersToReportFile( rFile )");
          writeLineToReportFile("<parameters>", rFile);
          ArrayList parameterNames = new ArrayList(parametersMap.values());
          for (int i = 0; i < parameterNames.size(); i++)
          {
               Method getmethod = null;
               getmethod = findGetMethodFor((String) parameterNames.get(i));
               if (getmethod != null)
               {
                    try
                    {
                         Object returnVal = getmethod.invoke(this, new Object[]
                         {});
                         writeLineToReportFile("\t<" + parameterNames.get(i) + ">" + returnVal + "</" + 
  parameterNames.get(i) + ">", rFile);
                    } catch (Exception e)
                    {
                         e.printStackTrace();
                    }
               } else
               {
                    System.err.printf("COULD NOT FIND SET METHOD FOR:  %s\n", parameterNames.get(i));
                    System.err.printf("Is the entry in the parametersMap for this correct?");
               }
          }
          writeLineToReportFile("</parameters>", rFile);
     }
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     public void writeParametersToPlainTextReportFile(PrintWriter rFile)
     {
          DMSG(1, "writeParametersToPlainTextReportFile( rFile )");
          writeLineToReportFile("# begin parameters", rFile);
          ArrayList parameterNames = new ArrayList(parametersMap.values());
          for (int i = 0; i < parameterNames.size(); i++)
          {
               Method getmethod = null;
               getmethod = findGetMethodFor((String) parameterNames.get(i));
               if (getmethod != null)
               {
                    try
                    {
                         Object returnVal = getmethod.invoke(this, new Object[]
                         {});
                         writeLineToReportFile(parameterNames.get(i) + "=" + returnVal, rFile);
                    } catch (Exception e)
                    {
                         e.printStackTrace();
                    }
               } else
               {
                    System.err.printf("COULD NOT FIND SET METHOD FOR:  %s\n", parameterNames.get(i));
                    System.err.printf("Is the entry in the parametersMap for this correct?");
               }
          }
          writeLineToReportFile("# end parameters", rFile);
     }

     // ------> End of Report File Processing <------------------------------

     // ////////////////////////////////////////////////////////////////////////
     //
     // ------> Input Parameter Processing <------------------------------
     //
     // ////////////////////////////////////////////////////////////////////////
     // parseParametersFile
     //
     public void parseParametersFile()
     {
          // a klunky way to see if the parameters file exists
          try
          {
               BufferedReader inFile = IOUtils.openFileToRead(initialParametersFileName);
               IOUtils.closeBRFile(inFile);
          } catch (Exception e)
          { // not an error, just not there!
               if (rDebug > 0)
                    System.err.printf("  -- no initialParametersFileName '%s' to parse.\n", 
  initialParametersFileName);
               return;
          }

          try
          {
               // setup the input file
               DocumentBuilderFactory myDBF = DocumentBuilderFactory.newInstance();
               DocumentBuilder myDB = myDBF.newDocumentBuilder();
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               Document myDocument = myDB.parse(initialParametersFileName);

               if (rDebug > 0)
                    System.out.println("Parsing parameter file: " + initialParametersFileName);

               NodeList tmpList = myDocument.getElementsByTagName("parameters");
               Element tmpElement = (Element) tmpList.item(0);
               NodeList parameterList = tmpElement.getElementsByTagName("*");

               for (int i = 0; i < parameterList.getLength(); i++)
               {
                    if (parameterList.item(i).getChildNodes().item(0) == null)
                         continue;
                    DMSG(1, "name:  " + parameterList.item(i).getNodeName() + "  value:  " + 
  parameterList.item(i).getChildNodes().item(0).getNodeValue());
                    set(parameterList.item(i).getNodeName(), parameterList.item(i).getChildNodes().item
  (0).getNodeValue());
               }

               // process changes
               NodeList parameterChangeList = myDocument.getElementsByTagName("change");
               processChangeList(parameterChangeList);

               DMSG(1, "Done parsing file:  " + initialParametersFileName);
          } catch (Exception e)
          {
               System.out.println("Exception when parsing parameters file:  " + initialParametersFileName);
               System.out.println("Is the file in the correct format?");
               e.printStackTrace();
          }
     }

     // ///////////////////////////////////////////////////////////////////////
     // processCommandLinePars
     // storeParameter
     //
     public void processCommandLinePars(String[] args)
     {
          int r;
          if (args.length > 0 && (args[0].equals("--help") || args[0].equals("-h")))
          {
               printProjectHelp();
          }

          for (int i = 0; i < args.length; ++i)
          {
               r = storeParameter(args[i]);
               if (r != 0)
               {
                    System.out.println("Error processing cmdLine par:  " + args[i]);
               }
          }
     }

     // storeParameter
     // format: parname=value
     // parse out parname, and find method for setParname
     // if not found, return -1
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     // otherwise set the value and return 0.
     // to set the value, we have to get the setMethod, and its par type.
     // then convert the string value to the appropriate object, and
     // use invoke to do the setting!

     public int storeParameter(String line)
     {
          int r = 0;
          String pname, pvalue;
          StringTokenizer st = new StringTokenizer(line, "=;,");
          Method setm = null;

          if ((pname = st.nextToken()) == null)
          {
               System.err.printf("\n** storeParameter -- couldn't find pname on '%s'.\n", line);
               return -1;
          }
          if ((pvalue = st.nextToken()) == null)
          {
               System.err.printf("\n** storeParameter -- couldn't find value on '%s'.\n", line);
               return -1;
          }
          pname = pname.trim();
          pvalue = pvalue.trim();

          pname = aliasToParameterName(pname);

          // if this is a scheduledChange, create the change
          // and insert it into the changesVector
          if (pname.equals("sC"))
          {
               String changetime = pvalue;
               String changepname, changepvalue;

               if ((changepname = st.nextToken()) == null)
               {
                    System.out.println("\n** storeParameter -- couldn't find " + "scheduleChange pname on:  " + 
  line);
                    return -1;
               }

               if ((changepvalue = st.nextToken()) == null)
               {
                    System.out.println("\n** storeParameter -- couldn't find " + "scheduleChange pvalue on:  " + 
  line);
                    return -1;
               }

               changepname = changepname.trim();
               changepvalue = changepvalue.trim();

               changepname = aliasToParameterName(changepname);

               ChangeObj newChange = new ChangeObj(Integer.parseInt(changetime), changepname, 
  changepvalue);

               DMSG(1, "scheduledChange from command line created:  " + "  Time:  " + changetime + " 
   pname:  " + changepname + "  pvalue:  " + changepvalue);
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               changesVector.add(newChange);

               return 0;
          }

          setm = findSetMethodFor(pname);
          String ptype = getParTypeOfSetMethod(setm);

          try
          {
               setm.invoke(this, new Object[]
               { valToObject(ptype, pvalue) });
          } catch (Exception e)
          {
               System.err.printf("\n storeParameter: '%s'='%s' invoke exception!\n", pname, pvalue);

               System.err.printf("  --> %s\n", e.toString());
               e.printStackTrace();
               return -1;
          }

          if (pname.equals("initialParametersFileName"))
          {
               DMSG(1, "Processing initial parameters file:  " + pvalue);
               parseParametersFile();
          }

          return r;
     }

     // returns the long parameter name if the parameter passed in is
     // an alias. if it is not an alias, the name sent to it is returned.
     public String aliasToParameterName(String alias)
     {
          // check to see if "alias" is an alias in the parametersMap
          // if it is then "alias" is a valid alias, so set "alias" to the
          // actual parameter name that is in the map
          if (parametersMap.containsKey(alias))
          {
               DMSG(1, "Converting alias " + alias + " to " + parametersMap.get(alias));
               alias = (String) parametersMap.get(alias);
          }

          return alias;
     }

     // getParTypeOfSetMethod
     // get type of setPar method parameter
     public String getParTypeOfSetMethod(Method m)
     {
          Class[] parTypes = m.getParameterTypes();
          String s = parTypes[0].getName();
          return s;
     }

     // findGetMethodFor
     // find get<ParName> method for specified parameter name
     protected Method findGetMethodFor(String varname)
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     {
          String methodname = new String("get" + capitalize(varname));
          Class c = getClass();
          Method[] methods = c.getMethods();
          Method getmethod = null;

          for (int j = 0; j < methods.length; j++)
          {
               if (methods[j].getName().equals(methodname))
               {
                    getmethod = methods[j];
                    break;
               }
          }
          if (getmethod == null)
          {
               System.err.printf("\n** findGetMethodFor -- couldn't find '%s'\n", methodname);
               return getmethod;
          }

          return getmethod;
     }

     // findSetMethodFor
     // find set<ParName> method for specified parameter name
     public Method findSetMethodFor(String pname)
     {
          Class c = this.getClass();
          Method[] methods = c.getMethods();
          int nf = methods.length;
          String setmethodname = "set" + capitalize(pname);
          String mname;
          Method method = null;
          for (int i = 0; i < nf; ++i)
          {
               mname = methods[i].getName();
               if (mname.equals(setmethodname))
               {
                    method = methods[i];
                    break;
               }
          }
          if (method == null)
          {
               System.err.printf("\n** findSetMethodFor -- couldn't fine '%s'\n", setmethodname);
               return method;
          }
          return method;
     }

     // valToObject
     // return value stored in object of appropriate type
     private Object valToObject(String type, String val)
     {
          if (type.equals("int"))
          {
               return Integer.valueOf(val);
          } else if (type.equals("double"))
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          {
               return Double.valueOf(val);
          } else if (type.equals("float"))
          {
               return Float.valueOf(val);
          } else if (type.equals("long"))
          {
               return Long.valueOf(val);
          } else if (type.equals("boolean"))
          {
               return Boolean.valueOf(val);
          } else if (type.equals("java.lang.String"))
          {
               return val;
          } else
          {
               throw new IllegalArgumentException("illegal type");
          }
     }

     public String skipCommentLines(BufferedReader inFile)
     {
          String line;
          while ((line = IOUtils.readBRLine(inFile)) != null)
          {
               if (line.charAt(0) != '#')
                    break;
          }
          return line;
     }

     // ///////////////////////////////////////////////////////////////////////////
     // applyAnyStoredChanges
     // look through all of the changes, if any have time of this time
     // step execute the change
     public void applyAnyStoredChanges()
     {
          if (rDebug > 0)
          {
               System.out.println("applyAnyStoredChanges called at time step: " + getTickCount());
          }

          for (int i = 0; i < changesVector.size(); i++)
          {
               ChangeObj tmpObj = (ChangeObj) changesVector.get(i);
               if (tmpObj.time == getTickCount())
               {
                    if (rDebug > 0)
                    {
                         System.out.println("applyAnyStoredChanges():  Changing " + tmpObj.varname + " to " + 
  tmpObj.value);
                    }
                    set(tmpObj.varname, tmpObj.value);
               }
          }
     }

     // /////////////////////////////////////////////////////////////////////
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     // utility methods for accessing parts of model

     private void setObjectParameter(Object inObject, String varname, String value)
     {
          String methodname = new String("set" + capitalize(varname));
          Class c = inObject.getClass();
          Method[] methods = c.getMethods();
          Method setmethod = null;

          for (int j = 0; j < methods.length; j++)
          {
               if (methods[j].getName().equals(methodname))
               {
                    setmethod = methods[j];
                    break;
               }
          }

          if (setmethod != null)
          {
               try
               {
                    Class[] parameterTypes = setmethod.getParameterTypes();
                    if (parameterTypes[0].getName().equals("int"))
                    {
                         DMSG(3, "int parameter type");
                         setmethod.invoke(inObject, new Object[]
                         { Integer.valueOf(value) });
                    } else if (parameterTypes[0].getName().equals("long"))
                    {
                         DMSG(3, "long parameter type");
                         setmethod.invoke(inObject, new Object[]
                         { Long.valueOf(value) });
                    } else if (parameterTypes[0].getName().equals("double"))
                    {
                         DMSG(3, "double parameter type");
                         setmethod.invoke(inObject, new Object[]
                         { Double.valueOf(value) });
                    } else if (parameterTypes[0].getName().equals("float"))
                    {
                         DMSG(3, "float parameter type");
                         setmethod.invoke(inObject, new Object[]
                         { Float.valueOf(value) });
                    } else if (parameterTypes[0].getName().equals("java.lang.String"))
                    {
                         DMSG(3, "String parameter type");
                         setmethod.invoke(inObject, new Object[]
                         { value });
                    } else
                    {
                         System.out.println("COULD NOT DETERMINE PARAMETER TYPE");
                    }
                    DMSG(1, "setObjectParameter():  " + varname + " changed to " + value);
               } catch (Exception e)
               {
                    e.printStackTrace();
               }
          } else
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          {
               System.out.println("COULD NOT FIND SET METHOD FOR:  " + varname);
          }
     }

     private void processChange(Element c)
     {

          DMSG(3, "Processing A Change");

          NodeList tmpList = c.getElementsByTagName("*");

          ChangeObj newChange = new ChangeObj(0, "", "");

          for (int i = 0; i < tmpList.getLength(); i++)
          {
               Element tmpElement = (Element) tmpList.item(i);
               // System.out.println("tmpElement.getTagName(): " +
               // tmpElement.getTagName());
               if (tmpElement.getTagName().equals("time"))
               {
                    newChange.time = Integer.parseInt(tmpElement.getChildNodes().item(0).getNodeValue());
               } else
               {
                    newChange.varname = tmpElement.getTagName();
                    newChange.value = tmpElement.getChildNodes().item(0).getNodeValue();
               }
          }

          changesVector.add(newChange);

          DMSG(3, "Done processing a Change");
     }

     private void processChangeList(NodeList c)
     {

          DMSG(3, "Processing " + c.getLength() + " changes ...");
          for (int i = 0; i < c.getLength(); i++)
               processChange((Element) c.item(i));

          for (int i = 0; i < changesVector.size(); i++)
          {
               ChangeObj tmpObj = (ChangeObj) changesVector.get(i);
               DMSG(3, "Time:  " + tmpObj.time + "  VarName:  " + tmpObj.varname + "  Value:  " + 
  tmpObj.value);
          }
     }

     private void set(String varname, String value)
     {

          // first convert varname to the alias, if it is an alias
          varname = aliasToParameterName(varname);

          Method setmethod = findSetMethodFor(varname);

          if (setmethod != null)
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          {
               try
               {
                    Class[] parameterTypes = setmethod.getParameterTypes();
                    if (parameterTypes[0].getName().equals("int"))
                    {
                         DMSG(3, "int parameter type");
                         setmethod.invoke(this, new Object[]
                         { Integer.valueOf(value) });
                    } else if (parameterTypes[0].getName().equals("long"))
                    {
                         DMSG(3, "long parameter type");
                         setmethod.invoke(this, new Object[]
                         { Long.valueOf(value) });
                    } else if (parameterTypes[0].getName().equals("float"))
                    {
                         DMSG(3, "float parameter type");
                         setmethod.invoke(this, new Object[]
                         { Float.valueOf(value) });
                    } else if (parameterTypes[0].getName().equals("double"))
                    {
                         DMSG(3, "double parameter type");
                         setmethod.invoke(this, new Object[]
                         { Double.valueOf(value) });
                    } else if (parameterTypes[0].getName().equals("java.lang.String"))
                    {
                         DMSG(3, "String parameter type");
                         setmethod.invoke(this, new Object[]
                         { value });
                    } else
                    {
                         System.out.println("COULD NOT DETERMINE PARAMETER TYPE");
                    }
                    DMSG(1, "set():  " + varname + " changed to " + value);
               } catch (Exception e)
               {
                    e.printStackTrace();
               }
          } else
          {
               System.out.println("COULD NOT FIND SET METHOD FOR:  " + varname);
               System.out.println("Is the parameter name correct?");
          }
     }

     // loadChangeParameters
     // we expect to see
     // @changeParameters
     // step=<timeStep>
     // parName=parValue
     // ...
     // @endChangeParameters
     // <timeStep> is time step changes are to occur.
     // store in changeSteps[numberOfChanges]
     // store number of parameters to change in changeIDs[numberOfChanges]
     // increment numberOfChanges
     // Return 0 if ok, 1 if not. next line will be after @endChangeParameters
     public int loadChangeParameters(BufferedReader inFile)
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     {
          ArrayList lines = new ArrayList(16);
          String line, ends = "@endChangeParameters";
          int r, step = 0, numPars = 0, done = 0;
          if (rDebug > 0)
               System.out.printf("\n\n*** loadChangeParameters \n\n");

          // first get the step= line, and the time and ID values
          line = skipCommentLines(inFile);
          if (rDebug > 0)
               System.out.printf("0: %s\n", line);

          /*
           * was r = Format.sscanf( line, "step=%i", p.add(iV) ); step =
           * iV.intValue();
           */
          Scanner scanner = new Scanner(line);
          scanner.findInLine("step=(\\d+)");
          MatchResult result = scanner.match();
          try
          {
               step = Integer.parseInt(result.group());
          } catch (NumberFormatException e)
          {
          }

          // get lines into a bunch of strings, add to list of these sets of
          // lines.
          while (done == 0)
          {
               line = skipCommentLines(inFile);
               if (line.equals(ends))
                    done = 1;
               else
               {
                    // *** It would be nice to check these here...
                    lines.add(line);
                    ++numPars;
               }
          }
          changeSpecs.add(lines);

          if (numPars == 0)
          { 
               System.err.printf("\n*** loadChangeParameters found 0 changes! Last line='%s'\n", line);
               return -1;
          }

          // store time and id in next place in arrays.
          changeSteps[numberOfChanges] = step;
          changeIDs[numberOfChanges] = 0 - numPars;
          ++numberOfChanges;

          for (int c = 0; c < numberOfChanges; ++c)
          {
               if (changeIDs[c] >= 0)
                    continue;
               lines = (ArrayList) changeSpecs.get(c);
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               System.out.printf("Change %d at t=%d, ID=%d:\n", c, changeSteps[c], changeIDs[c]);
               for (int i = 0; i < numPars; ++i)
               {
                    System.out.printf("%d: %s\n", i + 1, (String) lines.get(i));
               }
          }

          return 0;
     }

     public void DMSG(int debugLevel, String debugStr)
     {
          if (rDebug >= debugLevel)
          {
               System.out.println("debug:\t" + debugStr);
          }
     }

     // //////////////////////////////////////////////////////////////////
     // printProjectHelp
     // this could be filled in with some help to get from running with -help
     // parameter
     //
     public void printProjectHelp()
     {
          // this is declared in the class that 'extends' this one
     }

     // //////////////////////////////////////////////////////////////////
     // writeHeaderCommentsToReportFile
     // include comments to be written just after the list of parameter
     // values and just before the step-by-step data lines.

     public void writeHeaderCommentsToReportFile()
     {
          // this is declared in the class that 'extends' this one
     }

}

// //////////////////////////////////////////////////////////////////////////
// /////////////////////////////////////////////////////////////////////////
// auxilliary classes for processing changes
//
//
class ChangeObj
{
     public ChangeObj()
     {
     }

     public ChangeObj(int in_time, String in_varname, String in_value)
     {
          time = in_time;
          varname = in_varname;
          value = in_value;
     }
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     public int time;
     public String varname;
     public String value;
}

class ACChangeObj
{
     public ACChangeObj()
     {
     }

     public ACChangeObj(int in_time, int in_id, String in_varname, String in_value)
     {
          time = in_time;
          id = in_id;
          varname = in_varname;
          value = in_value;
     }

     public int time;
     public int id;
     public String varname;
     public String value;
}

// //////////////////////////////////////////////////////////////////////////////////
// //////////////////////////////////////////////////////////////////////////////////
// auxilliary class for file opening/closing
// and string processing
//
class IOUtils
{

     public static String readBRLine(BufferedReader file)
     {
          String s;
          try
          {
               s = file.readLine();
          } catch (IOException e)
          {
               // System.out.println( "closeBRFile error!" );
               s = null;
          }
          return s;
     }

     public static BufferedReader openFileToRead(String filename)
     {
          BufferedReader in;
          try
          {
               in = new BufferedReader(new FileReader(filename));
          } catch (IOException e)
          {
               // no file, etc
               // System.out.println( "openFileToRead error on filename="+filename
               // );
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               in = null;
          }
          // System.err.printf("openFileToRead: '%s'\n", filename );
          return in;
     }

     public static PrintWriter openFileToWrite(String dir, String filename, String how)
     {
          PrintWriter out;
          try
          {
               File f = new File(dir, filename);
               out = new PrintWriter(new FileWriter(f));
          } catch (IOException e)
          {
               // no file, etc
               // System.out.println( "openFileToWrite error on dir/filename="
               // + dir + "/" + filename );
               out = null;
          }
          // System.err.printf("openFileToWrite: '%s'\n", filename );
          return out;
     }

     public static int closeBRFile(BufferedReader file)
     {
          int r = 0;
          try
          {
               file.close();
          } catch (IOException e)
          {
               // System.out.println( "closeBRFile error!" );
               r = -1;
          }
          return r;
     }

     public static int closePWFile(PrintWriter file)
     {
          int r = 0;
          file.close();
          return r;
     }

     // ////////////////////////////////////////////////////////////

     public static int tokenToInt(String token)
     {
          int i;
          token = token.trim();
          try
          {
               i = Integer.parseInt(token);
          } catch (NumberFormatException ex)
          {
               throw new IllegalArgumentException(" tokenToInt error, token=" + token);
          }
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          return i;
     }

     public static double tokenToDouble(String token)
     {
          double d;
          token = token.trim();
          try
          {
               d = Double.parseDouble(token);
          } catch (NumberFormatException ex)
          {
               throw new IllegalArgumentException(" tokenToDouble error, token=" + token);
          }
          return d;
     }

}
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Appendix B

Computer code for Chapter VI: Self-organization of background habitat determines 
the nature of population spatial structure

Software specifications

MATLAB R2008bSV

Script list
run_metapopulation.m 223

create_metapopulation.m 228
count_clumps_continuous.m 229

synth_clump_dist.m 232
disperse_clumps.m 235

Script details

run_metapopulation.m

% a function to run the metapopulation created by create_metapopulation.m
function [clumps] = run_metapopulation(in_mat, plot_each_step, e_0, e_1, m_0, m_1, equation_type)

RandStream.setDefaultStream (RandStream('mt19937ar','seed',sum(100*clock)));

[x y] = convert_matrix_to_x_y(in_mat);

[rows cols] = size(in_mat);

clump_radius = 1.5;
min_x = 1;
max_x = cols;
plot_clumps = 0;
[clump_size frequency clumps perc_LR] = count_clumps_continuous(x, y, clump_radius, min_x, max_x,
     plot_clumps);

[clumps] = create_metapopulation(clumps);

% only run the metapopulation if there are more than 1 clumps
if length(clumps)>1
     
     % 0 = only the nearest occupied neighbor can rescue an extinct clump
     % 1 = all other clumps can rescue an extinct clump
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     all_neighbor = 0;
     
     end_time = 1000;
     
     for i = 1:length(clumps)
          clumps(i).occupied = zeros(end_time, 1);
          clumps(i).occupied(1) = 1;
     end
     
     if plot_each_step
       plot_handle = figure();
       set(gca, 'FontSize', 14);
       frac_handle = figure();
       set(gca, 'FontSize', 14);
     end
     
     num_occupied = zeros(end_time, 1);
     fraction_occupied = zeros(end_time, 1);
     for time = 2:end_time
          
          % loop through every clump
          for i = 1:length(clumps)
          
               clumps(i).migration_prob = 0;
               clumps(i).extinction_prob = 0;
               clumps(i).died = 0;
               clumps(i).rescued = 0;
               
               if(clumps(i).occupied(time-1))
                    
                    % determine if the clump goes extinct
                    switch equation_type
                         case 0
                              % linear
                              clumps(i).extinction_prob = min(1,max(0,e_0 + e_1*clumps(i).clump_size));
                         case 1
                              % negative exponential
                              clumps(i).extinction_prob = min(1,max(0,e_0*exp(-e_1*clumps(i).clump_size)));
                    end
                              
                    if (rand() < clumps(i).extinction_prob)
                         clumps(i).died = 1;
                    end
               else
                    % determine if the clump becomes occupied
                    switch all_neighbor
                         case 0
                              % first, find the nearest occupied neighbor       
                              for j = 1:length(clumps(i).neighbor)
                                   if clumps(clumps(i).neighbor(j)).occupied(time-1) == 1
                                        dist_nearest_neighbor = clumps(i).neighbor_distance(j);
                                        break;
                                   end
                              end
                              
                              switch equation_type
                                   case 0
                                        % linear                           
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                                        migration_prob = m_0 + m_1*dist_nearest_neighbor;
                                   case 1
                                        % negative exponential
                                        migration_prob = m_0*exp(-m_1*dist_nearest_neighbor);
                              end
                              
                         case 1
                              no_migration_prob = 1;
                              for j = 1:length(clumps(i).neighbor)
                                   if clumps(clumps(i).neighbor(j)).occupied(time-1) == 1
                                        
                                        switch equation_type
                                             case 0
                                                  % linear
                                                  temp_migration_prob = min(max(0,m_0 + m_1*clumps  
    (i).neighbor_distance(j)),1);
                                             case 1
                                                  % negative exponential
                                                  temp_migration_prob = min(1, max(0,m_0*exp(-m_1*clumps
    (i).neighbor_distance(j))));
                                        end
                                        no_migration_prob = no_migration_prob*(1-temp_migration_prob);
                                   end
                              end
                              migration_prob = 1 - no_migration_prob;
                         otherwise
                              disp('Invalid value of all_neighbors');
                    end
                    clumps(i).migration_prob = migration_prob;
                    if (rand() < migration_prob)
                         clumps(i).rescued = 1;
                    end
               end
          end
          
          % update the state of each clump
          for i = 1:length(clumps)
               if clumps(i).died
                    clumps(i).occupied(time) = 0;
               elseif clumps(i).rescued
                    clumps(i).occupied(time) = 1;
               else
                    clumps(i).occupied(time) = clumps(i).occupied(time - 1);            
               end
          end
          
          % calculate stats and plot metapopulation
          num_occupied(time) = 0;
          occupied_index = 0;
          empty_index = 0;
          occupied_x = [];
          occupied_y = [];
          empty_x = [];
          empty_y = [];
          for i=1:length(clumps)
               
               if clumps(i).occupied(time) == 1;
                    num_occupied(time) = num_occupied(time) + 1;
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                    for j = 1:length(clumps(i).x)
                         occupied_index = occupied_index + 1;
                         occupied_x(occupied_index) = clumps(i).x(j);
                         occupied_y(occupied_index) = clumps(i).y(j);
                    end
               else
                    for j = 1:length(clumps(i).x)
                         empty_index = empty_index + 1;
                         empty_x(empty_index) = clumps(i).x(j);
                         empty_y(empty_index) = clumps(i).y(j);
                    end
               end
          end
          
          fraction_occupied(time) = num_occupied(time)./length(clumps);
          
          if plot_each_step
               figure(plot_handle);
               scatter(occupied_x, occupied_y, 15, 'r','filled');
               hold on;
               scatter(empty_x, empty_y, 15, 'b', 'filled');
               axis([0 cols 0 rows]);
               title(['e0=' num2str(e_0) ', e1=' num2str(e_1) ', m0=' num2str(m_0) ', m1=' num2str(m_1)...
                    ', red = occupied, blue = empty']);
               hold off;
     
               figure(frac_handle);
               plot(fraction_occupied);
               title(['Fraction of clumps occupied, e0=' num2str(e_0) ', e1=' num2str(e_1)...
                    ', m0=' num2str(m_0) ', m1=' num2str(m_1)],  'FontSize', 14);
               xlabel('Time', 'FontSize', 14);
               ylabel('Fraction of clumps occupied', 'FontSize', 14);
          end
                    
     end
     
     if plot_each_step
       scatter(occupied_x, occupied_y, 15, 'r','filled');
       hold on;
       scatter(empty_x, empty_y, 15, 'b', 'filled');
       axis([0 cols 0 rows]);
       title(['e0=' num2str(e_0) ', e1=' num2str(e_1) ', m0=' num2str(m_0) ', m1=' num2str(m_1)...
            ', red = occupied, blue = empty']);
       hold off;
     
       figure(frac_handle);
       plot(fraction_occupied);
       title(['Fraction of clumps occupied, e0=' num2str(e_0) ', e1=' num2str(e_1)...
            ', m0=' num2str(m_0) ', m1=' num2str(m_1)],  'FontSize', 14);
       xlabel('Time', 'FontSize', 14);
       ylabel('Fraction of clumps occupied', 'FontSize', 14);
     end
     
     clumps(1).fraction_occupied = fraction_occupied;
else
     % put in some placeholders
     clumps(1).occupied = [];
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     clumps(1).neighbor = [];
     clumps(1).neighbor_distance = [];
     clumps(1).migration_prob = [];
     clumps(1).extinction_prob = [];
     clumps(1).died = [];
     clumps(1).rescued = [];
     clumps(1).fraction_occupied = [];
end
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create_metapopulation.m

% a script to determine the sizes of clusters and the minimum distance between clusters
% for an ant occupancy matrix 
function [clumps] = create_metapopulation(clumps)

if length(clumps)>1
     
     for i = 1:length(clumps)
     
          neighbor_index = 0;
          for j = 1:length(clumps)
               
               if j ~= i
               
                    neighbor_index = neighbor_index + 1;
                    
                    % calculate the distance from this clump to the next one
                    clumps(i).neighbor(neighbor_index) = j;
                    clumps(i).neighbor_distance(neighbor_index) = 1E99;
               
                    % loop through every point in both clumps
                    for k = 1:length(clumps(i).x)
                         for m = 1:length(clumps(j).x)
                         
                              % calculate the distance between the points
                              distance = ((clumps(i).x(k) - clumps(j).x(m))^2 + (clumps(i).y(k) - clumps(j).y(m))^2)
   ^0.5;
                         
                              if distance < clumps(i).neighbor_distance(neighbor_index)
                                   clumps(i).neighbor_distance(neighbor_index) = distance;
                              end  
                         end
                    end  
               end
          end  
          
          % sort the distances
          [clumps(i).neighbor_distance sort_indices] = sort(clumps(i).neighbor_distance);
          clumps(i).neighbor = clumps(i).neighbor(sort_indices);
          
     end
     
end
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count_clumps_continuous.m

% a script to count clumps in a continuous-space plot
% This script takes as inputs:
% x = vector of x-coordinates
% y = vector of y-coordinates
% clump_radius = maximum distance between points for them to be considered part of the same clump
function [clump_size frequency clumps perc_LR] = count_clumps_continuous(x, y, clump_radius, min_x, 
max_x, plot_clumps)

clump_index = 0;

perc_LR = 0;
if length(x) > 11000
    pre_calc_distance = 0;
else
    pre_calc_distance = 1;
    
end

if pre_calc_distance
    % calculate the distance between all points
    distance = zeros(length(x), length(x));
    for first_point = 1:length(x)
        for second_point = 1:length(x)

            distance(first_point, second_point) = ...
                ((x(first_point) - x(second_point))^2+(y(first_point) - y(second_point))^2)^0.5;

        end

    end
end

% state: 1 = in main list, 2 = in temp list, 3 = already processed
% all points start out in the main list
state = ones(length(x),1);

% remove the points from the main list one by one
main_list = find(state == 1);
while ~isempty(main_list)
    
    % start the temporary list with this point
    state(main_list(1)) = 2;
    clump_index = clump_index + 1;
    clump_sizes(clump_index) = 0;
    point_index = 0;
    
    % search around the points in the temporary list one by one
    temp_list = find(state == 2);
    touches_L = 0;
    touches_R = 0;
    while ~isempty(temp_list)
        
     % detect whether the point is within clump_radius of either the left or right edge
     if x(temp_list(1)) < min_x + clump_radius;
          touches_L = 1;
     end
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     if x(temp_list(1)) > max_x - clump_radius;
          touches_R = 1;
     end
        
        point_index = point_index + 1;
        
        clump_sizes(clump_index) = clump_sizes(clump_index) + 1;
        
        % mark this point as processed
        state(temp_list(1)) = 3;
        
        clumps(clump_index).x(point_index) = x(temp_list(1));
        clumps(clump_index).y(point_index) = y(temp_list(1));
        
        if pre_calc_distance
            % find and mark all the points within clump_radius of this point that haven't already been processed
            state(find(distance(temp_list(1), :)' < clump_radius & state == 1)) = 2;
        else
            distance_vector = zeros(length(x), 1);
            for i = 1:length(x)
                distance_vector(i) = ((x(temp_list(1)) - x(i))^2+(y(temp_list(1)) - y(i))^2)^0.5;
            end
            state(distance_vector < clump_radius & state == 1) = 2;
        end
        
        temp_list = find(state == 2);
        
    end
    
    if touches_L && touches_R
     perc_LR = 1;
    end
    
    clumps(clump_index).clump_size = clump_sizes(clump_index);
    
    main_list = find(state == 1);
    
end

% count the number of clumps of each size
clump_size = sort(unique(clump_sizes));
frequency = zeros(length(clump_size), 1);
for i = 1:length(clump_size)
    frequency(i) = length(find(clump_sizes == clump_size(i)));
end

if plot_clumps

    % define a larger ColorOrder for plotting clumps
    num_colors = 100;
    colors = zeros(num_colors, 3);
    for i = 1:num_colors
        colors(i, :) = [rand() rand() rand()];
    end

    figure();
    set(gcf,'DefaultAxesColorOrder',colors);
    plot(x, y, '.', 'MarkerSize', 20);
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    set(gcf, 'Position', [10   116   795   568]);
    hold all;
    for i = 1:length(clumps)
        pause(0.05);
        plot(clumps(i).x, clumps(i).y, '.', 'MarkerSize', 20);
          text(clumps(i).x, clumps(i).y, num2str(i), 'FontSize', 8);
    end
    
end
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synth_clump_dist.m

% a function to create a synthetic clump distribution
function [out_mat clump_size frequency succeeded] = synth_clump_dist(num_points, alpha, x_cells, 
y_cells)

enable_disp = 1;

% minimum power law x (see Clauset et al. 2007)
x_min = 1;

max_tries = 1000;
max_fails = 1000;

% assume that the function succeeds unless it fails too many times
succeeded = 1;

% repeatedly choose clumps until the number of points = num_points
temp_num_points = 0;
index = 0;
while temp_num_points < num_points
    
    index = index + 1;
    r = rand();
    clumps(index) = round((x_min - 0.5)*(1-r)^(-1/(alpha - 1))+0.5);

    temp_num_points = temp_num_points + clumps(index);
    
end

% count the number of clumps of each size
clump_size = sort(unique(clumps));
frequency = zeros(length(clump_size), 1);
for i = 1:length(clump_size)
    
    frequency(i) = length(find(clumps == clump_size(i)));
    
end

out_mat = zeros(y_cells, x_cells);
% place the clumps
i = 0;
num_failed = 0;
while i < length(clumps)
    
    i = i + 1;
    
    if mod(i, 100) == 0 && enable_disp
        disp(['Placing clump # ' num2str(i)]);
    end
    
    failed = 0;
    
    temp_out_mat = zeros(y_cells, x_cells);
    
    tried = 0;
    % choose the first point of the clump at random
    spot_free = 0;
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    while ~spot_free
        
        x = randi(x_cells);
        y = randi(y_cells);
        
        spot_free = 1;
        for x_offset = -1:1
            for y_offset = -1:1
                
                test_x = min(x_cells, max(1, x+x_offset));
                test_y = min(y_cells, max(1, y+y_offset));
                
                if out_mat(test_y, test_x) ~= 0
                    spot_free = 0;
                end
                
            end
            
        end
        
        tried = tried + 1;
        if tried > max_tries
            failed = 1;
            break;
        end
    end
    
    temp_out_mat(y, x) = 1;
       
    % place the other points at random
    placed = 1;
    while placed < clumps(i)    
        
        last_x = x;
        last_y = y;
    
        x = min(x_cells, max(1, last_x + (randi(3) - 2)));
        y = min(y_cells, max(1, last_y + (randi(3) - 2)));
       
        spot_free = 1;
        for x_offset = -1:1
            for y_offset = -1:1
                
                test_x = min(x_cells, max(1, x+x_offset));
                test_y = min(y_cells, max(1, y+y_offset));
                
                if out_mat(test_y, test_x) ~= 0
                    spot_free = 0;
                end
                
            end
            
        end
        
        if spot_free
            if temp_out_mat(y, x) == 0
                temp_out_mat(y,x) = 1;
                placed = placed + 1;
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            end
        else
            x = last_x;
            y = last_y;
        end
        
        tried = tried + 1;
        if tried > max_tries
            failed = 1;
            break;
        end
        
    end
    
    if failed
        num_failed = num_failed + 1;
        if enable_disp
            disp(['Failed placing clump # ' num2str(i)...
                ', x = ' num2str(x) ', y = ' num2str(y) ', clump size = ' num2str(clumps(i))...
                ', num_failed = ' num2str(num_failed)]);
        end
        i = i-1;
    else
        out_mat = out_mat + temp_out_mat;
    end
    
    if num_failed > max_fails
        
        succeeded = 0;
        break;
        
    end
               
end
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disperse_clumps.m

% A script to take an existing clump_mat and randomly disperse the clusters
function [out_mat success] = disperse_clumps(in_mat)

% Moore neighborhood
clump_radius = 1.5;
plot_clumps = 0;

[rows cols] = size(in_mat);

min_x = 1;
max_x = cols;
min_y = 1;
max_y = rows;

[x y] = convert_matrix_to_x_y(in_mat);

% count the clumps
[clump_size frequency clumps perc_LR] = count_clumps_continuous(x, y, clump_radius, min_x, max_x,
     plot_clumps);

% scatter the clumps
mat_tries = 0;
mat_fail = 1;
while mat_fail && mat_tries < 100
    
    mat_tries = mat_tries + 1;
    
    out_mat = zeros(rows, cols);
    
    for i=1:length(clumps)
        
        clump_tries = 0;
        clump_fail = 1;
        while clump_fail && clump_tries < 100000
            
            clump_tries = clump_tries + 1;
            
            % randomly displace the clump
            range_x = max(clumps(i).x) - min(clumps(i).x);
            range_y = max(clumps(i).y) - min(clumps(i).y);
            
            min_clump_x = randi(max_x-range_x);
            min_clump_y = randi(max_y-range_y);
            
            % define the proposed new coordinates of the clump
            proposed_x = clumps(i).x + (min_clump_x - min(clumps(i).x));
            proposed_y = clumps(i).y + (min_clump_y - min(clumps(i).y));
            
            % create a matrix containing the proposed clump
            proposed_clump_mat = zeros(rows, cols);
            buffer_mat = zeros(rows, cols);
            for j=1:length(proposed_x)
                proposed_clump_mat(proposed_y(j), proposed_x(j)) = 1;
                
                % mark the clump including a buffer in the Moore neighborhood
                for k = -1:1
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                    for m = -1:1
                        buffer_mat(max(min(max_y, proposed_y(j)+m), min_y), ...
                            max(min(max_x, proposed_x(j)+k), min_x)) = 1;
                    end
                end
                
            end
            
            % see if the proposed clump overlaps another existing clump
            if max(max(out_mat + buffer_mat))>1
                clump_fail = 1;                
            else
                out_mat = out_mat + proposed_clump_mat;
                clump_fail = 0;
            end
            
        end
        
        if clump_fail
            mat_fail = 1;
        else
            mat_fail = 0;
        end
        
    end
    
end

if mat_fail
    success = 0;
else
    success = 1;
end      
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Appendix C

Computer code for Chapter VII: Detection of imminent, non-catastrophic regime 
shifts

Software specifications

Recursive Porous Agent Simulation Toolkit (Repast) 3.0
Processing 1.2.1

Class list

LecLecMain.java 237
Site.java 254

PoissonMean.java 265
Controller.java 268

BubblePlot.java 269
Circle.java 270

GUIModel.java 272
BatchModel.java 275

ModelParameters.java 278

Class details

LecLecMain.java
package lecLecABM_v3;
import processing.core.*;
import java.applet.Applet;

// A host-pathogen, agent-based model of Lecanicillium lecanii epizootiology.
// This model is:
// continuous-space
// stochastic
// based on the Gillespie tau-leap algorithm
// comprised of individual epidemiological models adapted from the Hochberg reservoir model
// Doug Jackson, Winter 2011          

import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
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import java.util.Vector;
import java.util.Collections;
import java.util.Scanner;

import lecLecABM_v3.Site;

import uchicago.src.sim.analysis.Plot;
import uchicago.src.sim.engine.Schedule;

public class LecLecMain extends ModelParameters
{

     // class variables
    public static Plot numSusceptibleGraph;
    public static Plot numInfectedGraph;
    public static Plot infectiousGraph;
    public static Plot latentGraph;
    public static boolean gui = false;
    
    public Controller testController;
    
     // instance variables
    public BubblePlot plot;
    public PApplet bubble;
    
    public double time;
     public ArrayList<Site> siteList = new ArrayList<Site>();
     public ArrayList<Circle> circleList = new ArrayList<Circle>();
     public double[][] distanceMatrix;
     
     public Schedule schedule;

     public int width;
     public int height; 
     public double sizeX;
     public double sizeY;
     public int numSites;
     public int graphUpdatePeriod;
     
     // default parameter values
     public double defaultS0;
     public double defaultI0;
     public double defaultW0;
     public double defaultQ0;
     public double defaultQDecayConstant;
     public double defaultB;
     public double defaultD;
     public double defaultK;
     public double defaultBeta;
     public double defaultSigma;
     public double defaultTheta1;
     public double defaultTheta2;
     public double defaultMu;
     public double defaultEpsilon;
     public double defaultLambda;
     public double defaultNu;
     public double defaultPhi;
     public double defaultRho;
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     public double defaultAlpha;
     public double defaultDelta;
     public double defaultTimeWet;
     public double defaultTimeDry;
     public double defaultTau;
     public double radiusCoef;
     
     // stats
     public double totalS;
     public double totalI;
     public double totalW;
     public double totalQ;
     public int infectedSites;
     public int uninfectedSites;   
     
     // flags
     public boolean wetSeasonDynamics;

     // ///////////////////////////////////////////////////////////////////////////
     // addModelSpecificParameters
     // add alias and long name for Model parameters you want to set at run time
     // the long name should be same as instance variable
     //
     // Note: the generic parameters from ModelParameters are already available.

     @Override
     public void addModelSpecificParameters()
     {
          parametersMap.put("X", "sizeX");
          parametersMap.put("Y", "sizeY");
          parametersMap.put("nSi", "numSites");
          parametersMap.put("gUP", "graphUpdatePeriod");
          parametersMap.put("dS0", "defaultS0");
          parametersMap.put("dI0", "defaultI0");
          parametersMap.put("dW0", "defaultW0");
          parametersMap.put("dQ0", "defaultQ0");
          parametersMap.put("dQd", "defaultQDecayConstant");
          parametersMap.put("dB", "defaultB");
          parametersMap.put("dD", "defaultD");
          parametersMap.put("dK", "defaultK");
          parametersMap.put("dBe", "defaultBeta");
          parametersMap.put("dSi", "defaultSigma");
          parametersMap.put("dT1", "defaultTheta1");
          parametersMap.put("dT2", "defaultTheta2");
          parametersMap.put("dMu", "defaultMu");
          parametersMap.put("dE", "defaultEpsilon");
          parametersMap.put("dLa", "defaultLambda");
          parametersMap.put("dNu", "defaultNu");
          parametersMap.put("dPh", "defaultPhi");
          parametersMap.put("dRh", "defaultRho");
          parametersMap.put("dAl", "defaultAlpha");
          parametersMap.put("dDe", "defaultDelta");
          parametersMap.put("dTw", "defaultTimeWet");
          parametersMap.put("dTd", "defaultTimeDry");
          parametersMap.put("dTa", "defaultTau");
          parametersMap.put("rC", "radiusCoef");
     }
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     // control what appears in the repast parameter panel
     @Override
     public String[] getInitParam()
     {
          String[] params =
          { "sizeX","sizeY", "numSites","defaultS0",  
                    "defaultI0", "defaultW0", "defaultQ0", "defaultQDecayConstant",
                    "defaultB", "defaultD",  "defaultK", "defaultBeta", "defaultSigma",
                    "defaultTheta1", "defaultTheta2", "defaultMu", "defaultEpsilon",
                    "defaultLambda", "defaultNu", "defaultPhi", "defaultRho",
                    "defaultAlpha", "defaultDelta", "defaultTimeWet", "defaultTimeDry",
                    "defaultTau", "radiusCoef"};
          return params;
     }

     // //////////////////////////////////////////////////////////////////////////
     // constructor, if needed.
     public LecLecMain()
     {

     }

     // /////////////////////////////////////////////////////////////////////////
     // setup
     // set defaults after a run start or restart

     @Override
     public void setup()
     {
          if (rDebug > 0)
               System.out.printf("==> setup...\n");
          schedule = null;
          System.gc();

          time = 0;
          
          siteList = new ArrayList<Site>();
          
          // size of the arena
          sizeX = 243;
          sizeY = 243;
          
          // number of ant nests
          numSites = 100;
          
          graphUpdatePeriod = 1000000000;
          radiusCoef = 0.008;
          
          defaultS0 = 50;
          defaultI0 = 10;
          defaultW0 = 10;
          defaultQ0 = 300;
          defaultQDecayConstant = 0.012;
          defaultB = 0.0668;
          defaultD = 0.0;
          defaultK = 1100;
          defaultBeta = 0.01;
          defaultSigma = 0.07;
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          defaultTheta1 = 0.5;
          defaultTheta2 = 0.05;
          defaultLambda = 0.05;
          defaultMu = 0.1;
          defaultEpsilon = 0.000005;
          defaultNu = 0.01;
          defaultPhi = 0;
          defaultRho = defaultQDecayConstant;
          defaultAlpha = 0.1;
          defaultDelta = 0.3;
          defaultTimeWet = 183;
          defaultTimeDry = 365-defaultTimeWet;
          defaultTau = 1;
          
          wetSeasonDynamics=true;
                    
          super.setup(); // THIS SHOULD BE CALLED after setting defaults in
          // setup().
          schedule = new Schedule(1); // create AFTER calling super.setup()

          if (rDebug > 0)
               System.out.printf("\n<=== setup() done.\n");

     }

     // /////////////////////////////////////////////////////////////////////////
     // buildModel
     // We build the "conceptual" parts of the model.
     // (vs the display parts, and the schedule)
     //
     // Create a 2D world, tell the organisms about it.
     // Create organisms and add them to the lists.

     public void buildModel()
     {
          if (rDebug > 0)
               System.out.printf("==> buildModel...\n");

          // CALL FIRST -- defined in super class -- it starts RNG, etc
          buildModelStart();

          // tell the hosts and pathogens about "this"
          Site.setModel(this);
          
          defaultTimeDry = 365-defaultTimeWet;
          
          // width and height of the bubble plot
          width = (int) Math.ceil(sizeX);
          height = (int) Math.ceil(sizeY+22);
          
          // Instantiate Applet object if we're in GUI mode
          if(!this.modelType.equals("BatchModel"))
          {
               //Applet p55 = new EmbeddedP55(w, h);
               bubble = new BubblePlot(circleList, width, height);
               
               testController = new Controller(bubble, width, height);
               testController.setVisible(true);   
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          }
          
          
          // create and scatter the sites
          //scatterRandomSites();
          readSites();
          
          // enable drawing
          if(!this.modelType.equals("BatchModel"))
          {
               BubblePlot.lockDraw = false;
          }
          
          // generate the distance matrix
          distanceMatrix = new double[numSites][numSites];
          
          calcDistances();
          
          // some post-load finishing touches
          startReportFile();
          
          // for the initial state, calculate these numbers, store in instance
          // variables
          // record some stats every step
          calcStatistics();

          // calls to process parameter changes and write the
          // initial state to the report file.
          // NB -> you might remove/add more agentChange processing
          applyAnyStoredChanges();
          stepReport();
          getReportFile().flush();
          getPlaintextReportFile().flush();

          if (rDebug > 0)
               System.out.printf("<== buildModel done.\n");
     }

     // Create a new Site and put it at x, y
     public Site createNewSite(double x, double y)
     {
          // Create the bubbles for the different system variables. The order that these are added to the 
          // list determines which bubble is displayed on top, i.e., the plot order.
          Circle circleQ = new Circle(bubble, (float) x, (float) y, (float) (radiusCoef*defaultQ0));
          circleQ.setRGBAlpha(139, 69, 19, 160);
          circleList.add(circleQ);
          
          Circle circleW = new Circle(bubble, (float) x, (float) y, (float) (radiusCoef*defaultW0));
          circleW.setRGBAlpha(255, 0, 0, 160);
          circleList.add(circleW);
          
          Circle circleS = new Circle(bubble, (float) x, (float) y, (float) (radiusCoef*(defaultS0+defaultI0)));
          circleS.setRGBAlpha(0, 255, 0, 160);
          circleList.add(circleS);
          
          Circle circleI = new Circle(bubble, (float) x, (float) y, (float) (radiusCoef*defaultI0));
          circleI.setRGBAlpha(255, 255, 255, 160);
          circleList.add(circleI); 
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          Site aSite = new Site(x, y, circleS, circleI, circleW, circleQ);
          siteList.add(aSite);
          return aSite;
          
     }

     // Add random sites
     public void scatterRandomSites()
     {

          double randomX, randomY;
     
          if (rDebug > 0)
               System.out.printf("==> scattering sites...\n");

          for (int i = 0; i<numSites; i++)
          {
               // let's find a random place to put a nest
               randomX = getUniformDoubleFromTo(0, sizeX);
               randomY = getUniformDoubleFromTo(0, sizeY);  
               createNewSite(randomX, randomY);   
          }
          
          if (rDebug > 0)
               System.out.printf("==> ...done scattering sites\n");
     }    
     
     // read sites from a file
     public void readSites()
     {
          File file = new File("/Users/djackson/Documents/Graduate_school/L_lecanii_modeling/sites.csv");
          try
          {
               Scanner scanner = new Scanner(file);
               while(scanner.hasNextLine())
               {
                    String line = scanner.nextLine();
                    String[] coords = new String[2];
                    coords = line.split(",");
                    createNewSite(Double.parseDouble(coords[0]),Double.parseDouble(coords[1]));
               }
          }
          catch (FileNotFoundException e)
          {
               e.printStackTrace();
          }
     }
     // /////////////////////////////////////////////////////////////////////////
     // step
     // The top of the "conceptual" model's main dynamics
     public void step()
     {
          double tau;
          
          if (rDebug > 0)
               System.out.printf("==> CML step %.0f:\n", getTickCount());
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          // calculate the time increment, tau
          tau = getTau();
          
          // increment time
          time = time + tau;
          
          // loop through all of the sites to execute their local dynamics
          if(wetSeasonDynamics)
          {
               // run the wet season dynamics at each site 
               // They will run until their individual times are >= time.
               for (Site aSite : siteList)
               {
                    aSite.dynamicsWet();
               }
          }
          else
          {
               // run the dry season dynamics at each site 
               for (Site aSite : siteList)
               {
                    aSite.dynamicsDry();
               }
          }
                    
          // calculate statistics
          calcStatistics();
          
          // call method to update graphs
          updateGraphs();
                    
          if (rDebug > 0)
          {
               System.out.printf("<== main step done.\n");
          }

     }

     // ///////////////////////////////////////////////////////////////////////////////
     // stepReport
     // each step write out:
     // Note: update the writeHeaderCommentsToReportFile() to print
     // lines of text describing the data written to the report file.

     public void stepReport()
     {

          // set up a string with the values to write
          String s = String.format( "%5.0f", getTickCount() );
          s += String.format("  %10.3f", time);
          s += String.format("  %10.3f", totalS);
          s += String.format("  %10.3f", totalI);
          s += String.format("  %10.3f", totalW);
          s += String.format("  %10.3f", totalQ);
          s += String.format("  %10d", infectedSites);
          s += String.format("  %10d", uninfectedSites);

          // write it to the xml and plain text report files
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          writeLineToReportFile("<stepreport>" + s + "</stepreport>");
          writeLineToPlaintextReportFile(s);

          // flush the buffers so the data is not lost in a "crash"
          getReportFile().flush();
          getPlaintextReportFile().flush();
     }

     // ///////////////////////////////////////////////////////////////////////////////
     // writeHeaderCommentsToReportFile
     // customize to match what you are writing to the report files in
     // stepReport.

     @Override
     public void writeHeaderCommentsToReportFile()
     {
          writeLineToReportFile("<comment>");
          writeLineToReportFile("      ");
          writeLineToReportFile("  tick      time      totalS      totalI      totalW      totalQ  infectedSites 
 uninfectedSites");
          writeLineToReportFile("</comment>");

          writeLineToPlaintextReportFile("#      ");
          writeLineToPlaintextReportFile("#  tick      time      totalS      totalI      totalW      totalQ  infectedSites 
 uninfectedSites");
     }

     // ////////////////////////////////////////////////////////////////////////////////
     // printProjectHelp
     // this could be filled in with some help to get from running with -help
     // parameter

     @Override
     public void printProjectHelp()
     {
          // print project help
          System.out.printf("\n%s -- \n", getName());

          System.out.printf("\n **** Add more info here!! **** \n");

          System.out.printf("\nactivationOrder            value\n");
          System.out.printf("\nfixed                        0\n");
          System.out.printf("\nrandomWithReplacement        1\n");
          System.out.printf("\nrandomWithoutReplacement     2\n");

          System.out.printf("\n");

          printParametersMap();

          System.exit(0);

     }
        
     public void updateGraphs()
     {
          
          //check one of the graphs to see if we are in GUI mode
          if (numSusceptibleGraph != null ) 
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          {
               numSusceptibleGraph.plotPoint(time, totalS, 1);
               numInfectedGraph.plotPoint(time, totalI, 1);
               infectiousGraph.plotPoint(time, totalW, 1);
               latentGraph.plotPoint(time, totalQ, 1);
               
          }
          
     }
     
     public void calcStatistics()
     {
          totalS = 0;
          totalI = 0;
          totalW = 0;
          totalQ = 0;
          infectedSites = 0;
          uninfectedSites = 0;

          for(Site aSite : siteList)
          {
               totalS = totalS + aSite.getS();
               totalI = totalI + aSite.getI();
               totalW = totalW + aSite.getW();
               totalQ = totalQ + aSite.getQ();
               if(aSite.getI()>0)
               {
                    infectedSites ++;
               }
               else
               {
                    uninfectedSites ++;
               }
          }
     }
     
     @Override
     public Schedule getSchedule()
     {
          return schedule;
     }

     @Override
     public String getName()
     {
          return "HostPathogen";
     }

     // setters and getters
     // notes:
     // - we use the schedule != null to indicated model has been initialized
     // - some things can't be changed after model initialization
     // (which things just depends on how the model is implemented)
     // - if we set something after model initialization,
     // we need to write an change entry to the report file.
     // - some things need to send messages to update class variables.
     // 
     // NOTE: if you want changes a user makes to parameter like numBugs
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     // to be used after a restart (vs going back to defaults),
     // you probably have to change setup() to not reinitialize IVs.
     
     public static void setNumSusceptibleGraph (Plot graph) {numSusceptibleGraph = graph; };
     public static void setNumInfectedGraph (Plot graph) {numInfectedGraph = graph; };
     public static void setInfectiousGraph (Plot graph) {infectiousGraph = graph; };
     public static void setLatentGraph (Plot graph) {latentGraph = graph; };

     public static void setGUI(boolean b) 
     {
          gui = b;
     }
     
     public double getSizeX()
     {
          return sizeX;
     }

     public void setSizeX(double sizeX)
     {
          this.sizeX = sizeX;
     }

     public double getSizeY()
     {
          return sizeY;
     }

     public void setSizeY(double sizeY)
     {
          this.sizeY = sizeY;
     }
     
     public void setDistanceMatrix(int site1, int site2, double distance)
     {
          this.distanceMatrix[site1][site2] = distance;
     }
     
     public double getDistanceMatrix(int site1, int site2)
     {
          return distanceMatrix[site1][site2];
     }
     
     public int getNumSites()
     {
          return numSites;
     }

     public void setNumSites(int numSites)
     {
          this.numSites = numSites;
     }
     
     /////////////////////////////////
     public int getGraphUpdatePeriod()
     {
          return graphUpdatePeriod;
     }
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     public void setGraphUpdatePeriod(int gUP)
     {
          graphUpdatePeriod = gUP;
     }
     
     ////////////////////////////////
     public double getDefaultS0()
     {
          return defaultS0;
     }
     public void setDefaultS0(double dS0)
     {
          defaultS0 = dS0;
     }
     
     ////////////////////////////////
     public double getDefaultI0()
     {
          return defaultI0;
     }
     public void setDefaultI0(double dI0)
     {
          defaultS0 = dI0;
     }
     
     ////////////////////////////////
     public double getDefaultW0()
     {
          return defaultW0;
     }
     public void setDefaultW0(double dW0)
     {
          defaultW0 = dW0;
     }
     
     ////////////////////////////////
     public double getDefaultQ0()
     {
          return defaultQ0;
     }
     public void setDefaultQ0(double dQ0)
     {
          defaultQ0 = dQ0;
     }

     ////////////////////////////////
     public double getDefaultQDecayConstant()
     {
          return defaultQDecayConstant;
     }
     public void setDefaultQDecayConstant(double dQd)
     {
          defaultQDecayConstant = dQd;
     }
     
     ////////////////////////////////
     public double getDefaultB()
     {
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          return defaultB;
     }
     public void setDefaultB(double dB)
     {
          defaultB = dB;
     }
     
     ////////////////////////////////
     public double getDefaultD()
     {
          return defaultD;
     }
     public void setDefaultD(double dD)
     {
          defaultD = dD;
     }
     
     ////////////////////////////////
     public double getDefaultK()
     {
          return defaultK;
     }
     public void setDefaultK(double dK)
     {
          defaultK = dK;
     }
     
     ////////////////////////////////
     public double getDefaultBeta()
     {
          return defaultBeta;
     }
     public void setDefaultBeta(double dBe)
     {
          defaultBeta = dBe;
     }
     
     ////////////////////////////////
     public double getDefaultSigma()
     {
          return defaultSigma;
     }
     public void setDefaultSigma(double dSi)
     {
          defaultSigma = dSi;
     }
     
     ////////////////////////////////
     public double getDefaultTheta1()
     {
          return defaultTheta1;
     }
     public void setDefaultTheta1(double dT1)
     {
          defaultTheta1 = dT1;
     }

     ////////////////////////////////
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     public double getDefaultTheta2()
     {
          return defaultTheta2;
     }
     public void setDefaultTheta2(double dT2)
     {
          defaultTheta2 = dT2;
     }
     
     ////////////////////////////////
     public double getDefaultMu()
     {
          return defaultMu;
     }
     public void setDefaultMu(double dMu)
     {
          defaultMu = dMu;
     }
     
     ////////////////////////////////
     public double getDefaultEpsilon()
     {
          return defaultEpsilon;
     }
     public void setDefaultEpsilon(double dE)
     {
          defaultEpsilon = dE;
     }
     
     ////////////////////////////////
     public double getDefaultLambda()
     {
          return defaultLambda;
     }
     public void setDefaultLambda(double dLa)
     {
          defaultLambda = dLa;
     }
     
     ////////////////////////////////
     public double getDefaultNu()
     {
          return defaultNu;
     }
     public void setDefaultNu(double dNu)
     {
          defaultNu = dNu;
     }
     
     ////////////////////////////////
     public double getDefaultPhi()
     {
          return defaultPhi;
     }
     public void setDefaultPhi(double dPh)
     {
          defaultPhi = dPh;
     }
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     ////////////////////////////////
     public double getDefaultRho()
     {
          return defaultRho;
     }
     public void setDefaultRho(double dRh)
     {
          defaultRho = dRh;
     }
     
     public ArrayList<Site> getSiteList()
     {
          return siteList;
     }
     ////////////////////////////////
     public double getDefaultAlpha()
     {
          return defaultAlpha;
     }
     public void setDefaultAlpha(double dAl)
     {
          defaultAlpha = dAl;
     }
     
     ////////////////////////////////
     public double getDefaultDelta()
     {
          return defaultDelta;
     }
     public void setDefaultDelta(double dDe)
     {
          defaultDelta = dDe;
     }
     
     ////////////////////////////////
     public double getDefaultTimeWet()
     {
          return defaultTimeWet;
     }
     public void setDefaultTimeWet(double dTw)
     {
          defaultTimeWet = dTw;
     }
     
     ////////////////////////////////
     public double getDefaultTimeDry()
     {
          return defaultTimeDry;
     }
     public void setDefaultTimeDry(double dTd)
     {
          defaultTimeDry = dTd;
     }    
     
     ////////////////////////////////
     public double getDefaultTau()
     {
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          return defaultTau;
     }
     public void setDefaultTau(double dTa)
     {
          defaultTau = dTa;
     }
     
     ////////////////////////////////
     public double getRadiusCoef()
     {
          return radiusCoef;
     }
     public void setRadiusCoef(double rC)
     {
          radiusCoef = rC;
     }
     
     public double getTau()
     {
          // if it's the wet season, time will advance by tau;
          // otherwise, time will advance by the length of the dry season
          if(wetSeason())
          {
               return defaultTau;
          }
          else
          {
               return defaultTimeDry;
          }
          
     }
     
     public double getTime()
     {
          return time;
     }
     
     public boolean wetSeason()
     {
          if(time%(defaultTimeWet+defaultTimeDry)<defaultTimeWet)
          {
               wetSeasonDynamics=true;
               return true;
          }
          else
          {
               wetSeasonDynamics=false;
               return false;
          }
     }
     
     private void calcDistances()
     {
          int i = 0;
          int j = 0;
          
          for(Site aSite: siteList)
          {
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               j = 0;
               
               for(Site bSite: siteList)
               {
                    distanceMatrix[i][j] = Math.sqrt(
                              Math.pow((aSite.getX()-bSite.getX()), 2)+Math.pow((aSite.getY()-bSite.getY()),2));
                    j++;
               }
               i++;
          }
     }
     
     public double getDistance(Site siteA, Site siteB)
     {
          return distanceMatrix[siteA.getID()][siteB.getID()];
     }
     
     // ///////////////////////////////////////////////////////////////////////////
     // processEndOfRun
     // called once, at end of run.
     // writes some final info, closes report files, etc.
     public void processEndOfRun()
     {
          if (rDebug > 0)
               System.out.printf("\n\n===== processEndOfRun =====\n\n");
          applyAnyStoredChanges();
          endReportFile();
          this.fireStopSim();
     }
     
     public void closeSiteReports()
     {
          for(Site aSite : siteList)
          {
               aSite.closeOutputFile();
          }    
     }
}
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Site.java

// Simulate Hochberg reservoir disease dynamics in a site
// Doug Jackson
// Fall 2011

package lecLecABM_v3;

import java.awt.BasicStroke;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.lang.Boolean;
import java.util.Vector;

import uchicago.src.sim.gui.*;
import java.awt.Color;

import java.util.Random;
import org.uncommons.maths.random.MersenneTwisterRNG;
import org.uncommons.maths.random.PoissonGenerator;

import lecLecABM_v3.GUIModel;

public class Site
{
     // class variables
     public static int nextID = 0; // to give each an ID
     public static LecLecMain model; // the model "in charge"
     public static GUIModel guiModel = null; // the gui model "in charge"
     static final int criticalThr = 10;
     static final double eps = 0.03;
     static final int g = 2;
     static final int directThr = 10;
     static final int numDirect = 100;
     static final boolean doChangeParameters = false;
          
     // instance variables
     public int ID;
     public double x, y;
     public double S;
     public double I;
     public double W;
     public double Q;
     public double QDecayConstant;
     public double b;
     public double d;
     public double K;
     public double beta;
     public double sigma;
     public double theta1;
     public double theta2;
     public double mu;
     public double epsilon;
     public double lambda;
     public double nu;
     public double phi;
     public double rho;
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     public double alpha;
     public double delta;     
     public double radiusCoef;
     public Circle circleS;
     public Circle circleI;
     public Circle circleQ;
     public Circle circleW;
     
     // Each site has its own unique time
     public double time;
     
     // variables for generating Poisson random variables using
     // org.uncommons.maths.random 
     public Random rng;
     public PoissonGenerator gen; 
     public PoissonMean meanSeed;
     
     // variables for the OTL
     public double[][] nuMat;
     public double[] a;
     public boolean[] critical;
     public double tau;
     public double tau1;
     public double tau2;
     
     // BufferedWriter for output file
     public BufferedWriter out;    
     
     // changeParameters schedule (currently changes rho and QDecayConstant) 
     // To change a different parameter, modify the methods changeParameters, writeState, and 
     // setupOutputFile
          
     // first nu hysteresis sweep
     public double[] changeParametersTimes =  {0, 3650, 7300, 10950, 14600, 18250, 21900, 25550, 29200, 
 32850, 36500, 40150, 43800, 47450, 51100, 54750, 58400, 62050, 65700, 69350, 73000, 76650, 
 80300, 83950, 87600, 91250, 94900, 98550, 102200, 105850, 109500, 113150, 116800, 120450, 
 124100, 127750, 131400, 135050, 138700, 142350, 146000, 149650, 153300, 156950, 160600,
 164250, 167900, 171550, 175200, 178850, 182500, 186150, 189800, 193450, 197100, 200750, 
 204400, 208050, 211700, 215350, 219000, 222650};
     public double[] changeParametersValues =  {0.01, 0.0095, 0.009, 0.0085, 0.008, 0.0075, 0.007, 0.0065,
  0.006, 0.0055, 0.005, 0.0045, 0.004, 0.0035, 0.003, 0.0025, 0.002, 0.0015, 0.001, 0.0005, 
 0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 7.8125E-06, 3.9062E-06, 1.9531E-06, 
 9.766E-07, 4.883E-07, 2.441E-07, 2.441E-07, 4.883E-07, 9.766E-07, 1.9531E-06, 3.9062E-06, 
 7.8125E-06, 0.000015625, 0.00003125, 0.0000625, 0.000125, 0.00025, 0.0005, 0.001, 0.0015, 
 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005, 0.0055, 0.006, 0.0065, 0.007, 0.0075, 0.008, 
 0.0085, 0.009, 0.0095, 0.01};
     
     // the Host constructors
     public Site(double X, double Y, Circle circleS, Circle circleI, Circle circleW, Circle circleQ)
     {
          ID = nextID++;
          x = X;
          y = Y;
          S = model.getDefaultS0();
          I = model.getDefaultI0();
          W = model.getDefaultW0();
          Q = model.getDefaultQ0();
          QDecayConstant = model.getDefaultQDecayConstant();
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          b = model.getDefaultB();
          d = model.getDefaultD();
          K = model.getDefaultK();
          beta = model.getDefaultBeta();
          sigma = model.getDefaultSigma();
          theta1 = model.getDefaultTheta1();
          theta2 = model.getDefaultTheta2();
          mu = model.getDefaultMu();
          epsilon = model.getDefaultEpsilon();
          lambda = model.getDefaultLambda();
          nu = model.getDefaultNu();
          phi = model.getDefaultPhi();
          rho = model.getDefaultRho();
          alpha = model.getDefaultAlpha();
          delta = model.getDefaultDelta();
          
          // circle setup
          radiusCoef = model.getRadiusCoef();
          this.circleS = circleS;
          this.circleI = circleI;
          this.circleW = circleW;
          this.circleQ = circleQ;
          
          // set up PoissonGenerator
          rng = new MersenneTwisterRNG();
          meanSeed = new PoissonMean(0);
          gen = new PoissonGenerator(meanSeed, rng);
          
          // state change matrix
          nuMat = new double[4][8];

          // propensity functions
          a = new double[8];
          
          // critical reaction flag vector
          critical = new boolean[8];
          
          // set up OTL (optimized tau-leap) method
          // This is based on:
          // Efficient step size selection for the tau-leaping simulation method
          // Cao, Gillespie, Petzold
          setupOTL();    
          
          // initialize the time
          time = 0;
          
          // Set up the output file
          setupOutputFile();
          
     }

     public void dynamicsWet()
     {              
          boolean calcTaus;
          double oldS;
          double oldI;
          double oldW;
          double oldQ;

256



               
          // check to see if there's anything to do at this site
          if(S==0 & I==0 & W==0 & Q==0)
          {
               time = model.getTime();
          }
          // keep running the dynamics until the local time catches
          // up to the model time
          while(time < model.getTime())
          {
               if(doChangeParameters)
               {
                    // change the parameters based on a predifined schedule 
                    changeParameters();
               }
               
               calcTaus = true;
               oldS = S;
               oldI = I;
               oldW = W;
               oldQ = Q;
               
               // OTL method
               calcCritical();
               calcTau1();
               
               // keep trying until you get non-negative results
               while(calcTaus)
               {
                    // choose which method to execute based on the values of tau1 and tau2
                    if(tau1 < directThr/calcSumA())
                    {
                         directMethod();
                         calcTaus = false;
                    }
                    else
                    {
                         calcTau2();
                         if(tau1<tau2)
                         {
                              tau = tau1;
                              nonCritETL();
                         }
                         else
                         {
                              tau = tau2;
                              oneCrit();
                              nonCritETL();
                         }
                         
                         // Check to see if any of the species are negative.
                         // If so, return to step 3
                         if(S<0 | I<0 | W<0 | Q<0)
                         {
                              // cut tau1 in half and try again
                              tau1 = tau1/2;
                              
                              // revert to the previous state
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                              S = oldS;
                              I = oldI;
                              W = oldW;
                              Q = oldQ;
                              
                              calcTaus = true;
                         }
                         else
                         {
                              
                              // update time                          
                              time = time + tau;
                                                       
                              calcTaus = false;
                         }
                         
                    }
                    
                    // get rid of fractional remainders
                    if(S<1) S=0;
                    if(I<1) I=0;
                    if(W<1) W=0;
                    if(Q<1) Q=0;
                    if(S==0 & I==0 & W==0 & Q==0)
                    {
                         time = model.getTime();
                    }
                    
               }         
          }
          
          writeState();
          plotResults();
          
     }
     
     public void dynamicsDry()
     {
          if(doChangeParameters)
          {    
               // change the parameters based on a predifined schedule   
               changeParameters();           
          }
          
          S = model.getDefaultS0();
          Q = (theta2*I+Q)*Math.exp(-QDecayConstant*model.getDefaultTimeDry());
          I = 0;
          W = 0;
          
          // update individual time to match overall time
          time = model.getTime();
          
          writeState();
          plotResults();
     }
     
     // //////////////////////////////////////////////////////////////////////////
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     // note these are class methods, to set class variables     
     public static void setModel(LecLecMain m)
     {
          model = m;
     }

     public static void setGUIModel(GUIModel m)
     {
          guiModel = m;
     }
     
     // setters and getters
     public void setID(int i)
     {
          ID = i;
     }
     public int getID()
     {
          return ID;
     }
     
     public double getX()
     {
          return x;
     }
     public void setX(double x)
     {
          this.x = x;
     }

     public double getY()
     {
          return y;
     }
     public void setY(double y)
     {
          this.y = y;
     }
     
     public double getS()
     {
          return S;
     }
     
     public double getI()
     {
          return I;
     }
     
     public double getW()
     {
          return W;
     }
     
     public double getQ()
     {
          return Q;
     }
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     // methods
     public void setupOTL()
     {
          double[][] newNuMat = 
          {
                    {1, -1, -1, 0, 0, 0, 0, 0},
                    {0, 0, 1, -1, 0, 0, 0, 0},
                    {0, 0, 0, theta1, -1, -1, 1, 0},
                    {0, 0, 0, theta2, 0, 1, -1, -1}
          };
          // set up state change matrix
          // rows = S, I, W, Q
          // col = births, deaths, infections, removedInfecteds, removedInfectious, infectiousToLatent, 
          //         latentToInfectious, removedLatent
          nuMat = newNuMat;
          
     }
     
     // Calculate the propensity vector
     public void calcA()
     {
          double birthRate;
          double deathRate;
          double selfInfectionRate;
          double externalInfectionRate;
          double infectionRate;
          double removedInfectedsRate;
          double removedInfectiousRate;
          double infectiousToLatentRate;
          double latentToInfectiousRate;
          double removedLatentRate;
          double distance;
          
          // set up the propensity equations
          // births and deaths from the logistic growth component
          // See GillespieSSA: Implementing the Stochastic Simulation Algorithm in R
          birthRate = b*S;
          deathRate = S*(d+(b-d)*S/K);
          
          // infections from local infectious spores
          selfInfectionRate = beta*S*W;
          
          // infections from infectious spores in other sites
          externalInfectionRate = 0;
          for (Site aSite : model.getSiteList())
          {
               if(aSite.getID() != this.ID)
               {
                    distance = model.getDistance(this, aSite);
                    externalInfectionRate = externalInfectionRate + 
                         alpha*mu*aSite.getW()/Math.exp(delta*distance);
               }
          }
          externalInfectionRate = (externalInfectionRate+epsilon)*beta*S;
                    
          // removal of infected scales
          removedInfectedsRate = sigma*I;
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          // removal of infectious spores
          removedInfectiousRate = mu*W;
          
          // translocation of infectious spores to latent class
          infectiousToLatentRate = lambda*W;
          
          // translocation of latent spores to infectious class
          latentToInfectiousRate = nu*Q;
          
          // removal of latent spores
          removedLatentRate = rho*Q;
          
          // col = births, deaths, infections, removedInfecteds, removedInfectious, infectiousToLatent, 
          //         latentToInfectious, removedLatent
          double[] newA = 
          {
                    birthRate,
                    deathRate,
                    selfInfectionRate+externalInfectionRate,
                    removedInfectedsRate,
                    removedInfectiousRate,
                    infectiousToLatentRate,
                    latentToInfectiousRate,
                    removedLatentRate             
          };   
          a = newA;
          
     }
     
     public void calcCritical()
     {
          boolean[] newCritical = 
          {
                    false,
                    S<criticalThr,
                    S<criticalThr,
                    I<criticalThr,
                    W<criticalThr,
                    W<criticalThr,
                    Q<criticalThr,
                    Q<criticalThr                 
          };
          critical = newCritical;
     }
     
     // Calculate the first candidate tau
     public void calcTau1()
     {
          double mu;
          double sigmaSquared;
          double leftTerm;
          double rightTerm;
          
          // recalculate the propensity function
          calcA();
                    
          if(!critical[0] | !critical[1] | !critical[2] | !critical[3] | !critical[4] |
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                    !critical[5] | !critical[6] | !critical[7])
          {
               mu = 0;
               sigmaSquared = 0;
               for(int j=0; j<8; j++)
               {
                    if(!critical[j])
                    {
                         for(int i=0; i<4; i++)
                         {
                              // equation 32a
                              mu = mu + nuMat[i][j]*a[j];
                              // equation 32b
                              sigmaSquared = sigmaSquared + Math.pow(nuMat[i][j],2)*a[j];
                         }
                    }
               }
               
               // equation 33
               leftTerm = Math.max(eps*S/g,
                         Math.max(eps*I/g,
                                   Math.max(eps*W/g,
                                             Math.max(eps*Q/g, 1))))/Math.abs(mu);
               rightTerm = Math.pow(Math.max(eps*S/g,
                         Math.max(eps*I/g,
                                   Math.max(eps*W/g,
                                             Math.max(eps*Q/g, 1)))),2)/sigmaSquared;
               tau1 = Math.min(leftTerm, rightTerm);
                                   
          }
          else
          {
               tau1 = Double.POSITIVE_INFINITY;
          }
          
     }
     
     // Calculate the second candidate tau
     public void calcTau2()
     {
          double sumCritA = 0;
          
          // recalculate the propensity function
          calcA();
          
          if(critical[0] | critical[1] | critical[2] | critical[3] | critical[4] |
                    critical[5] | critical[6] | critical[7])
          {
               for(int i=0; i<8; i++)
               {
                    if(critical[i])
                    {
                         sumCritA = sumCritA + a[i];
                         
                    }
               }
               tau2 = -Math.log(Math.random())/sumCritA;
          }
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          else
          {
               tau2 = Double.POSITIVE_INFINITY;
          }         
     }
     
     // Execute the non-critical reactions using the explicit tau-leap
     // method
     public void nonCritETL()
     {
          int numReactions;
          
          // recalculate the propensity function
          calcA();
          
          for(int j=0; j<8; j++)
          {
               // only fire non-critical reactions
               if(!critical[j])
               {
                    // calculate the number of times the reaction occurs
                    meanSeed.setMean(tau*a[j]);
                    numReactions = gen.nextValue();
                    
                    S = Math.max(0, S + numReactions*nuMat[0][j]);
                    I = Math.max(0, I + numReactions*nuMat[1][j]);
                    W = Math.max(0, W + numReactions*nuMat[2][j]);
                    Q = Math.max(0, Q + numReactions*nuMat[3][j]);
               }
          }
     }
     
     // Execute one of the critical reactions at random
     public void oneCrit()
     {
          double sumCritA = 0;
          double[] probCrit = new double[8];
          double cumulProb=0;
          double randNum;     
          
          // recalculate the propensity function
          calcA();
          
          // Calculate the sum of the critical propensity functions
          for(int j=0; j<8; j++)
          {
               if(critical[j])
               {
                    sumCritA = sumCritA + a[j];
                    
               }
          }
          
          // Calculate the probability of each critical reaction occurring 
          for(int j=0; j<8; j++)
          {
               if(critical[j])
               {
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                    probCrit[j] = a[j]/sumCritA;
               }
               else
               {
                    // not a critical reaction
                    probCrit[j] = 0;
               }
          }
          
          // Choose the next reaction randomly
          randNum = Math.random();
          for(int j=0; j<8; j++)
          {
               cumulProb += probCrit[j];
               if(randNum<cumulProb)
               {
                    // execute the reaction once
                    S = Math.max(0, S + nuMat[0][j]);
                    I = Math.max(0, I + nuMat[1][j]);
                    W = Math.max(0, W + nuMat[2][j]);
                    Q = Math.max(0, Q + nuMat[3][j]);
                    break;
               }
          }
     }
     
     // Calculate the sum of the propensity vector
     public double calcSumA()
     {
          double sumA = 0;
     
          for(int i=0; i< 8; i++)
          {
               sumA = sumA + a[i];
          }

          return sumA;
          
     }
     // Execute the direct method
     public void directMethod()
     {
          double randNum;
          double sumA;
          double tempTime;
          double[] cumulProb = new double[8];
          
          for(int i=0; i<numDirect; i++)
          {
               // recalculate the propensity function
               calcA();
               sumA = calcSumA();
               
               // Calculate the cumulative probability of each critical reaction occurring
               cumulProb[0] = a[0]/sumA;
               for(int j=1; j<8; j++)
               {
                    cumulProb[j] = cumulProb[j-1]+a[j]/sumA;
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               }
               
               // calculate the time step
               randNum = Math.random();
               tempTime = time + -Math.log(randNum)/sumA;
               
               // Check to see if the next event would occur in the future.
               // If so, don't do it, and abort the direct method.
               if(tempTime > model.getTime())
               {
                    time = model.getTime();
                    break;                   
               }
               else
               {
                    time = tempTime;
               }
               
               // determine which reaction occurs
               randNum = Math.random();
               for(int j=0; j<8; j++)
               {
                    if(randNum<cumulProb[j])
                    {
                         // execute the reaction once
                         S = Math.max(0, S + nuMat[0][j]);
                         I = Math.max(0, I + nuMat[1][j]);
                         W = Math.max(0, W + nuMat[2][j]);
                         Q = Math.max(0, Q + nuMat[3][j]);
                         break;
                    }
               }
               
          }
          
     }
     
     public void plotResults()
     {
          // plot results
          circleS.setRadius((float) (radiusCoef*(S+I)));
          circleI.setRadius((float) (radiusCoef*I));
          circleW.setRadius((float) (radiusCoef*W));
          circleQ.setRadius((float) (radiusCoef*Q));
     }
     
     public void setupOutputFile()
     {
          try 
          {
               out = new BufferedWriter(new FileWriter("site_" + Integer.toString(ID) + ".csv"));
               out.write("x, y");
               out.newLine();
               out.write(Double.toString(x));
               out.write(",");
               out.write(Double.toString(y));
               out.newLine();
               out.write("time, S, I, Q, W, nu");
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               out.newLine();
          } catch (IOException e) 
          {
               
          }
     }
     public void changeParameters()
     {
          // There's definitely a more efficient way to do this...
          for(int i=0; i<changeParametersTimes.length; i++)
          {
               if(time>changeParametersTimes[i])
               {
                    //QDecayConstant = changeParametersValues[i];
                    //rho = changeParametersValues[i];
                    nu = changeParametersValues[i];
               }
          }

     }
     public void writeState()
     {
          // write this Site's state to its own file
          try
          {         
               out.write(Double.toString(model.getTime()));
               out.write(",");
               out.write(Double.toString(S));
               out.write(",");
               out.write(Double.toString(I));
               out.write(",");
               out.write(Double.toString(Q));
               out.write(",");
               out.write(Double.toString(W));
               out.write(",");
               out.write(Double.toString(nu));
               out.newLine();
          } catch (IOException e)
          {
               
          }
     }
     
     public void closeOutputFile()
     {
          try 
          {
               out.close();
          } catch (IOException e) 
          {
          }
     }
}
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PoissonMean.java

package lecLecABM_v3;

import org.uncommons.maths.number.NumberGenerator;

public class PoissonMean implements NumberGenerator<Double> 
{

     public double mean;
     
     public PoissonMean(double mean)
     {
          this.mean = mean;
     }
     
     //@Override
     public Double nextValue() 
     {
          // TODO Auto-generated method stub
          return mean;
     }
     
     public void setMean(double mean)
     {
          this.mean = mean;
     }

}
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Controller.java

package lecLecABM_v3;

import java.awt.*;
import java.awt.event.*; 
import java.applet.Applet;

public class Controller extends Frame 
{    
     // constructor 
     public Controller(Applet bubble, int width, int height)
     {
          
          // call to superclass needs to come first in constructor 
          super("green=healthy, white=infected, red=infectious, brown=reservoir");
          
          // set up frame (which will hold applet) 
          setSize(width, height); 
          setLayout(new FlowLayout(FlowLayout.LEFT, 0, 0));
          
          // add Applet component to frame 
          add(bubble);
          
          // won't allow frame to be resized 
          setResizable(false);
          
          // allow window and application to be closed 
          addWindowListener(new WindowAdapter() 
          {
               public void windowClosing(WindowEvent e)
               {
                    System.exit(0);
               }
          });
          
          // Next comment taken directly from PApplet class: 
          /* "...ensures that the animation thread is started and that other internal variables are properly set."*/
          bubble.init();
     }
     
}
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BubblePlot.java

package lecLecABM_v3;

import java.util.ArrayList;

import processing.core.*;

public class BubblePlot extends PApplet 
{
     // the lockDraw variable is necessary to keep the draw function from trying to 
     // access the circleList ArrayList while I'm adding elements to it (which
     // throws a ConcurrentModification exception)
     public static boolean lockDraw = true;
     
     // instance variables
     private int width;
     private int height;
     public ArrayList<Circle> circleList;
     
     // constructor
     public BubblePlot(ArrayList<Circle> circleList, int width, int height)
     {
          this.circleList = circleList;
          this.width = width;
          this.height = height;
     }
     
     public void setup() 
     {
          size(width, height);
          
          smooth();
          noStroke();
                    
     }

     public void draw()
     {
          background(100);
          if(!lockDraw)
          {
               for (Circle aCircle : circleList)
               {
                    fill(aCircle.getFillR(), aCircle.getFillG(), aCircle.getFillB(), aCircle.getFillAlpha());
                    aCircle.display();
               }
          }
     }
}
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Circle.java

package lecLecABM_v3;
import processing.core.PApplet;

public class Circle 
{
     float x;
     float y;
     float radius;
     public float fillR;
     public float fillG;
     public float fillB;
     public float fillAlpha;
     
     PApplet parent; // The parent PApplet that we will render ourselves onto
     
     Circle(PApplet p, float x, float y, float radius ) 
     {
          parent = p;
          
         // store the values of the parameters into the matching object
         // variables
         this.x = x;
         this.y = y;
         this.radius = radius;
         
         // default color
         setRGBAlpha(255, 0, 0, 160);
         
       }

     // Draw circle
     void display() 
     {
         // draw the circle
         parent.ellipse(this.x, this.y, this.radius*2, this.radius*2);
     }
     
     void setRadius(float radius)
     {
          this.radius = radius;
     }
     
     void setRGBAlpha(float r, float g, float b, float alpha)
     {
          fillR = r;
          fillG = g;
          fillB = b;
          fillAlpha = alpha;
     }
     
     float getFillR()
     {
          return fillR;
     }
     
     float getFillG()
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     {
          return fillG;
     }
     
     float getFillB()
     {
          return fillB;
     }
     
     float getFillAlpha()
     {
          return fillAlpha;
     }
}
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GUIModel.java

package lecLecABM_v3;

import uchicago.src.sim.gui.DisplaySurface;
import uchicago.src.sim.gui.Object2DDisplay;
import uchicago.src.sim.engine.AbstractGUIController;
import uchicago.src.sim.engine.Schedule;
import uchicago.src.sim.analysis.*;

public class GUIModel extends LecLecMain
{
     
     // ///////////////////////////////////////////////////////////////////
     // setup
     //
     // this runs automatically when the model starts
     // and when you click the reload button, to "tear down" any
     // existing display objects, and get ready to initialize
     // them at the start of the next 'run'.
     //
     @Override
     public void setup()
     {
          super.setup(); // the super class does conceptual-model setup

          AbstractGUIController.CONSOLE_ERR = false;
          AbstractGUIController.CONSOLE_OUT = false;
          AbstractGUIController.UPDATE_PROBES = true;
     
          // tell the Host class we are in GUI mode.
          LecLecMain.setGUI(true);

          // init, setup and turn on the modelMinipulator stuff (in custom
          // actions)
          modelManipulator.init();

          if (rDebug > 0)
               System.out.printf("<== GUIModel setup() done.\n");
     }

     // ///////////////////////////////////////////////////////////////////
     // begin
     //
     // this runs when you click the "initialize" button
     // (the button with the single arrow that goes around in a circle)
     //
     @Override
     public void begin()
     {
          DMSG(1, "==> enter GUIModel-begin()");
          buildModel(); // the base model does this
          buildDisplay();
          buildSchedule();
          DMSG(1, "<== leave GUIModel-begin() done.");
     }

     // ///////////////////////////////////////////////////////////////////
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     // buildDisplay
     //
     // builds the display and display related things
     //
     public void buildDisplay()
     {         
          // Graphs
          // Graphs in Repast are too slow, so I'll just graph everything in R
          
     }

     // //////////////////////////////////////////////////////////////
     // buildSchedule
     //
     // This builds the entire schedule, i.e.,
     // - the base model step
     // - report step
     // - display steps.

     @Override
     public void buildSchedule()
     {

          if (rDebug > 0)
               System.out.printf("==> GUIModel buildSchedule...\n");

          // schedule the current GUIModel's step() function
          // to execute every time step starting with time step 0
          schedule.scheduleActionBeginning(0, this, "step");
          // start report at 1
          schedule.scheduleActionAtInterval(1, this, "stepReport", Schedule.LAST);

          // schedule the current GUIModel's processEndOfRun()
          // function to execute at the end of the run
          schedule.scheduleActionAtEnd(this, "processEndOfRun");
     }

     // /////////////////////////////////////////////////////////////////////////////
     // step
     //
     // executed each step of the model.
     // Ask the super class to do its step() method,
     // and then this does display related activities.
     //
     @Override
     public void step()
     {

          super.step(); // the model does whatever it does

     }

     // processEndOfRun
     // called once, at end of run.
     @Override
     public void processEndOfRun()
     {
          if (rDebug > 0)
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               System.out.printf("\n\n===== GUIModel processEndOfRun =====\n\n");
          applyAnyStoredChanges();
          endReportFile();
          closeSiteReports();
          this.fireStopSim();
     }

     // //////////////////////////////////////////////////////////////////
     // main entry point
     public static void main(String[] args)
     {

          uchicago.src.sim.engine.SimInit init = new uchicago.src.sim.engine.SimInit();
          GUIModel model = new GUIModel();

          // set the type of model class, this is necessary
          // so the parameters object knows whether or not
          // to do GUI related updates of panels,etc when a
          // parameter is changed
          model.setModelType("GUIModel");

          // Do this to set the Update Probes option to true in the
          // Repast Actions panel
          AbstractGUIController.UPDATE_PROBES = true;

          model.setCommandLineArgs(args);
          init.loadModel(model, null, false); // does setup()

          // this new function calls ProbeUtilities.updateProbePanels() and
          // ProbeUtilities.updateModelProbePanel()
          model.updateAllProbePanels();

     }

}
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BatchModel.java

package lecLecABM_v3;

import uchicago.src.sim.engine.*;
import processing.core.*;
import java.applet.Applet;

public class BatchModel extends LecLecMain
{

     // //////////////////////////////////////////////////////////////////
     // main entry point
     public static void main(String[] args)
     {

          BatchModel model = new BatchModel();

          // set the type of model class, this is necessary
          // so the parameters object knows whether or not
          // to do GUI related updates of panels, etc when a
          // parameter is changed
          model.setModelType("BatchModel");

          model.setCommandLineArgs(args);

          PlainController control = new PlainController();
          model.setController(control);
          control.setExitOnExit(true);
          control.setModel(model);
          model.addSimEventListener(control);
          if (model.getRDebug() > 0)
               System.out.printf("\n==> BatchModel main...about to startSimulation...\n");
          control.startSimulation();
     }

     // setup() -- BatchModel just does what the super class does.
     @Override
     public void setup()
     {
          super.setup();
     }

     // begin()
     // ask the super class to do its building, then build a schedule.
     @Override
     public void begin()
     {
          // set schedule to null so buildModel knows not to
          // record changes ( changes are recorded if
          // schedule != null ). in buildSchedule() the
          // schedule is allocated before the actual schedule is created.
          schedule = null;
          buildModel(); // the base Model class does this
          buildSchedule();
     }

     // //////////////////////////////////////////////////////////////
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     // buildSchedule
     @Override
     public void buildSchedule()
     {

          schedule = new Schedule(1);

          // schedule the current BatchModel's step() function
          // to execute every time step starting with time step 0
          schedule.scheduleActionBeginning(0, this, "step");
          schedule.scheduleActionAtInterval(1, this, "stepReport", Schedule.LAST);

          // schedule the current BatchModel's processEndOfRun()
          // function to execute at the end of the Batch Run.
          // You need to specify the time to schedule it (instead
          // of doing scheduleActionAtEnd() or it will just run forever
          schedule.scheduleActionAt(getStopT(), this, "processEndOfRun");
     }

     // processEndOfRun
     // we need this to tell it to stop running!
     @Override
     public void processEndOfRun()
     {
          super.processEndOfRun();
          this.fireEndSim();
     }
}

// ///////////////////////////////////////////////////////////////////////////
// //////////////////////////////////////////////////////////////////////////
// Why this class below?
//
// the reason we did that is because the repast "BatchController" had methods
// in it that started GUI stuff. this caused problems when we ssh'd into
// another machine and run a job--when we tried to disconnect, the ssh
// session would stay hung until the job was finished because the job needed
// the X11-forwarding to be open to run.

class PlainController extends BaseController
{
     private boolean exitonexit;

     public PlainController()
     {
          super();
          exitonexit = false;
     }

     public void startSimulation()
     {
          startSim();
     }

     public void stopSimulation()
     {
          stopSim();
     }
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     public void exitSim()
     {
          exitSim();
     }

     public void pauseSimulation()
     {
          pauseSim();
     }

     @Override
     public boolean isBatch()
     {
          return true;
     }

     @Override
     protected void onTickCountUpdate()
     {
     }

     @Override
     public void setExitOnExit(boolean in_Exitonexit)
     {
          exitonexit = in_Exitonexit;
     }

     public void simEventPerformed(SimEvent evt)
     {
          if (evt.getId() == SimEvent.STOP_EVENT)
          {
               stopSimulation();
          } else if (evt.getId() == SimEvent.END_EVENT)
          {
               if (exitonexit)
               {
                    System.exit(0);
               }
          } else if (evt.getId() == SimEvent.PAUSE_EVENT)
          {
               pauseSimulation();
          }
     }

     // function added because it is required for repast 2.2
     public long getRunCount()
     {
          return 0;
     }

     // function added because it is required for repast 2.2
     public boolean isGUI()
     {
          return false;
     }
}
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ModelParameters.java

See ModelParameters.java in Appendix A. This class is identical except the package name, which reads: 

package lecLecABM_v3;
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