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ABSTRACT 

Diethyhexyl phthalate (DEHP) is an environmental pollutant used universally as a 

plasticizer in polyvinyl consumer products.  Exposure to DEHP increases risk of 

adverse pregnancy outcomes in humans, including decreased gestation length, 

preterm birth, low birth weight, and early pregnancy loss.   Moreover, mono-

ethylhexyl phthalate (MEHP), the active metabolite of DEHP increases oxidative 

stress and inflammatory responses in vitro.  Because oxidative stress and 

inflammatory responses are linked to the pathogenesis of preterm birth, we 

investigated MEHP stimulated oxidative stress and inflammatory responses in 

human gestational cells and tissues as mechanisms by which MEHP exposure 

may contribute to preterm birth.  To identify whether MEHP exposure induces  

oxidative stress responses in the gestational compartment, we treated human 

placental cells (HTR-8/SVneo) with MEHP and measured reactive oxygen 

species (ROS) generation using the dichlorofluorescein (DCF) assay, oxidized 

thymine (oT) with mass-spectrometry, redox-sensitive gene expression with qRT-

PCR, and activation of caspase 3/7 using a luminescence assay.  We found that 

MEHP increased ROS generation, oxidative DNA damage, and apoptosis, and 

modified redox-sensitive gene expression.  Notably, MEHP significantly induced 



 

x 

  

mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), the gene 

for COX-2, an enzyme important for prostaglandin synthesis.  To assess whether 

MEHP may stimulate inflammatory responses in the gestational compartment, 

we treated human primary placental macrophages, primary decidual 

macrophages, gestational membrane explants, and HTR-8 cells with MEHP and 

measured prostaglandin and cytokine release using enzyme-linked 

immunosorbent assays (ELISA) and PTGS2 mRNA expression using qRT-PCR.  

Our results demonstrate that MEHP treatment significantly increased total 

prostaglandin, PGF2!, and PGE2 release in human primary placental 

macrophage Hofbauer cells, and induced PTGS2 mRNA expression in the HTR-

8 human trophoblast cell line.   MEHP treatment showed no effect on pro-

inflammatory cytokine release.  The results from the present study are consistent 

with the hypothesis that MEHP stimulates oxidative stress and prostaglandin 

synthesis in gestational tissues and cells.  The findings from the current study 

warrant future epidemiological studies of oxidative stress and prostaglandin 

synthesis as mechanisms by which MEHP may contribute to preterm birth and 

other adverse pregnancy outcomes.   
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CHAPTER I 
 
  

Introduction  

DEHP is an abundant environmental pollutant 

Di-2-ethylhexyl phthalate (DEHP) (Figure 1.1A), a phthalic acid ester, is a 

ubiquitous environmental pollutant used primarily in plastic products to impart 

flexibility.  DEHP can be found in a wide variety of consumer products ranging 

from medical tubing and blood storage bags to plastic food containers, shower 

curtains, children’s toys, clothing, automobile and furniture upholstery.  Because 

DEHP is not covalently bound to plastic, it is particularly susceptible to leeching 

into the environment. Consequently, DEHP has been found in at least 733 of the 

1,613 Environmental Protection Agency National Priorities List sites and in 2005, 

the EPA listed DEHP as an ATSDR priority chemical.  The ubiquitous nature of 

DEHP has resulted in wide-spread exposure in the US population.  A recent 

study conducted by the National Health and Nutrition Examination Survey 

(NHANES) found measureable levels of monoethylhexyl phthalate (MEHP) 

(Figure 1.1B), the active monoester metabolite of DEHP, in nearly every urine 

sample analyzed.  Because DEHP is rapidly metabolized to its active monoester 

metabolites and excreted in the urine, the latter finding suggests that exposure to 

DEHP is essentially a daily occurrence.   
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DEHP is a reproductive toxicant 

Exposure to DEHP is associated with a number of negative reproductive 

health outcomes in both humans and animals, including abnormal Leydig cell 

aggregation, disruption of steroidogenesis and cholesterol uptake in rat testes 

(Ge, Chen et al. 2007), and  decreased anogenital distance—an index of 

prenatal androgen status-- in human male infants (Marsee, Woodruff et al. 2006).   

In female rats, DEHP exposure reduces serum levels of progesterone and 

estradiol, and suppresses ovulation (Davis, Maronpot et al. 1994). DEHP is 

associated with adverse pregnancy outcomes in humans including decreased 

gestation length, preterm birth, low birth weight, and early pregnancy loss (Latini, 

De Felice et al. 2003).  Furthermore, measureable levels of MEHP are found in 

human cord blood, amniotic fluid, and placenta (Mose, Mortensen et al. 2007; 

Wittassek, Angerer et al. 2009; Lin, Ku et al. 2011). Though the latter studies 

suggest that the gestational compartment may be a target of MEHP toxicity, 

further studies are needed to elucidate the mechanisms underlying adverse 

pregnancy outcomes.   

Preterm birth is a significant health problem 

Preterm birth, defined as live birth occurring before 37 completed weeks of 

gestation, affects 21 million infants worldwide and half a million, or 1 in 8, infants 

per year in the U.S.  Furthermore, preterm birth accounts for nearly one-third of 

all neonatal mortalities (Callaghan, MacDorman et al. 2006).  Among preterm 

infants that survive, many develop long-term health complications later in life, 
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including blindness, deafness, cerebral palsy, and low IQ.  Consequently, 

medical costs due to preterm birth represent a significant economic burden, 

costing the U.S. nearly $26 billion per year.  The Center for Disease Control 

noted research into maternal, child, and infant health - including preterm birth - 

as an objective under the Healthy People 2020 initiative.  Intrauterine infection 

and preeclampsia are the leading known causes of preterm birth, but only 

represent 25 and 15 percent of total preterm births, respectively (Goldenberg and 

Rouse 1998; Romero, Chaiworapongsa et al. 2003).  In fact, greater than half of 

preterm births are attributed to unknown causes (Hamilton, Martin et al. 2005).  A 

recent report from The Institute of Medicine highlighted the importance of further 

research into factors contributing to preterm birth, including environmental factors 

such as pollutants.  The coincidental rise of environmental pollutants, such as 

phthalates gives further impetus to study the relationship between exposure to 

xenobiotics and adverse pregnancy outcomes such untimely parturition. 

The placenta and gestational membranes play a role in initiation of 

parturition  

The gestational membrane tissues, consisting of amniotic, chorionic and 

decidual tissue, extend from the placenta to surround the fetus and provide a 

barrier between the maternal and fetal compartments (Figure 1.2).  The amnion 

layer of the gestational membranes includes a thick collagen layer that imparts 

strength and flexibility to the membranes. The proximity of the gestational 

membranes to the myometrium allows for transfer of secreted factors between 

these tissues.  Trophoblast cells provide a barrier between fetal and maternal 
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blood flow, and contribute structural integrity to the placenta and gestational 

membranes (Figure 1.2).  In addition to providing structural integrity, the 

trophoblasts produce protein and steroid hormones throughout gestation.  

Placental and gestational membrane chorionic trophoblasts also synthesize and 

secrete inflammatory mediators throughout gestation, including prostaglandins 

and pro-inflammatory cytokines.  Other resident cells of the gestational 

membranes and placenta, including decidual macrophages, placental Hofbauer 

macrophages (Figure 1.2), amnion fibroblasts, and amnion epithelial cells, 

contribute to synthesis and secretion of prostaglandins and pro-inflammatory 

cytokines as well.   

Measurable levels of MEHP are found in the gestational compartment 

Following ingestion, DEHP is absorbed by the intestinal epithelium and rapidly 

hydrolyzed by lipases to MEHP (Rusyn, Peters et al. 2006).   Consequently, 

blood is the primary vehicle for exposure to MEHP as distal organs, including the 

placenta and gestational membranes, are exposed primarily to MEHP through 

circulating blood.  Measureable concentrations of MEHP have been found in 

maternal blood, cord blood, placenta, and amniotic fluid with the highest 

concentrations measured in maternal and cord blood. Specifically, median cord 

blood concentrations ranging from 1.8 to 35 !M, and median maternal blood 

concentrations ranging from 42.6 !M have been detected in Italian and Chinese 

cohorts, respectively (Latini, Del Vecchio et al. 2006; Lin, Zheng et al. 2008).    At 

term, between 450 and 650 ml of blood per minute circulates through the 

placenta, therefore, circulating MEHP represents a significant source of exposure 
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for the gestational compartment (Edman, Toofanian et al. 1981).   The 

concentrations of MEHP used in the present study (10-180 !M) are 

physiologically relevant and within an order of magnitude of MEHP 

concentrations measured in human maternal and cord blood.  

Pro-inflammatory cytokines and prostaglandins mediate normal and 

preterm parturition  

Both preterm and normal human parturition are associated with increased 

pro-inflammatory cytokine and prostaglandin synthesis and release from cells of 

the gestational compartment.  Specifically, increased amniotic fluid 

concentrations of the pro-inflammatory cytokines IL-1!, IL-6 and TNF-" and the 

prostaglandins PGE2 and PGF2" are associated with preterm birth (Romero, 

Manogue et al. 1989; Hillier, Witkin et al. 1993; Carroll, Abbas et al. 1995; Lee, 

Park et al. 2009; Menon, Fortunato et al. 2011).  This activation of the 

inflammatory response is central to the pathogenesis of intrauterine infection, the 

leading known cause of preterm birth.  Elevated  pro-inflammatory cytokines and 

prostaglandins are observed in the amniotic fluid of preterm birth cases with 

intrauterine infections (Keelan, Blumenstein et al. 2003).  Furthermore, exposure 

to the pro-inflammatory stimulus lipopolysaccharide (LPS) increases pro-

inflammatory cytokine and prostaglandin release from gestational tissues and 

induces preterm birth in mice (Miller and Loch-Caruso 2010; Phillippe, Diamond 

et al. 2011).  Preceding labor, the amnion, chorion, and decidua of the 

gestational membranes, in addition to resident immune cells of the placenta, 

participate in production of pro-inflammatory cytokines and prostaglandins.  Pro-
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inflammatory cytokines are secreted proteins that act through autocrine and 

paracrine mechanisms to initiate inflammatory events, including recruitment of 

circulating leukocytes to sites of infection. Prostaglandins represent a class of 

lipid mediators that have pleiotropic physiological functions in nearly every tissue.  

These functions range from vasodilation/vasoconstriction to platelet function and 

cytoprotection (Miller 2006). During pregnancy, pro-inflammatory cytokines 

stimulate bioactive prostaglandin synthesis through induction of the prostaglandin 

catabolic enzyme COX-2 (Hansen, Keelan et al. 1999).  COX-2 synthesizes 

prostaglandin E2 (PGE2) and prostaglandin F2" (PGF2"), which bind to 

excitatory receptors in the uterus to initiate myometrial contractions (Olson 2003).  

Inhibition of prostaglandin synthesis through COX-2 inhibition delays pregnancy 

and prevents preterm labor in rodents, and in vivo or in vitro exposure to 

bioactive prostaglandins stimulates myometrial contractions (Wikland, Lindblom 

et al. 1984; Lee, Kim et al. 2003; Fischer, Hutchinson et al. 2008).   In addition to 

their role in prostaglandin synthesis, pro-inflammatory cytokines also stimulate 

expression and activation of matrix metalloproteinases and activation of 

apoptosis, contributing to gestational membrane weakening and cervical ripening 

(Vadillo-Ortega and Estrada-Gutierrez 2005).  In summary, pro-inflammatory 

cytokine release from gestational tissues stimulates prostaglandin synthesis, 

apoptosis, and activation of matrix-metalloproteinases to promote membrane 

rupture, uterine contractions, cervical ripening, and ultimately, parturition (Figure 

1.3). 
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DEHP exposure is associated with inflammation and induction of 

inflammatory mediators 

In humans, urinary metabolites of DEHP are associated with increases in 

urinary markers of inflammation, including C-reactive protein and absolute 

neutrophil count (Ferguson, Loch-Caruso et al. 2011; Meeker and Ferguson 

2011).Consistent with an observed increase in inflammatory markers in humans 

exposed to DEHP, airway inflammation and allergic responses have also been 

observed in DEHP-exposed humans and animals (Deutschle T 2008, Kolarik B).   

 Exposure to DEHP or its metabolite MEHP stimulates release and 

synthesis of inflammatory mediators that are known to be associated with 

preterm labor. MEHP treatment of primary neonatal neutrophils, rat alveolar 

macrophages, murine monocyte-macrophages, human lung epithelial cells, and 

mouse Leydig cells increases pro-inflammatory cytokine release (Jepsen, 

Abildtrup et al. 2004; Rakkestad, Holme et al. 2010; Vetrano, Laskin et al. 2010).  

Furthermore, MEHP treatment increases release of the bioactive prostaglandin 

PGF2" in cultured bovine ovarian and endometrial cells, and increases 

expression of the prostaglandin catabolizing enzyme COX-2 in spermatocytes 

and rat and human mast cells (Ledwith, Pauley et al. 1997; Onorato, Brown et al. 

2008; Oh, Lim et al. 2010; Wang, Shang et al. 2010; Oh and Lim 2011).   

 Of direct relevance to the present work is the finding that DEHP exposure 

(750 or 1500 mg/kg/day oral gavage) decreases COX-2 expression and total 

prostaglandin concentration in rat placental tissue (Xu, Agrawal et al. 2008).  The 
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findings from the latter study are contrary to studies in other species and organ 

systems demonstrating increased COX-2 and prostaglandins with DEHP or 

MEHP exposure.  For example, MEHP treatment increases PGE2 release from 

cultured bovine ovarian and endometrial cells, and increases COX-2 expression 

in spermatocytes and rat and human mast cells (Ledwith, Pauley et al. 1997; 

Onorato, Brown et al. 2008; Oh, Lim et al. 2010; Wang, Shang et al. 2010; Oh 

and Lim 2011).  Differences could be due to species or organ system differences 

in prostaglandin pathway responses to MEHP.  Furthermore, the doses of DEHP 

used in the latter study exceeded the 95th percentile of estimated adult human 

intake of 21 !g/kg/day by approximately four orders of magnitude (Koch, Preuss 

et al. 2006).   Further studies testing the effects of physiologically relevant 

concentrations of MEHP on prostaglandin synthesis and pro-inflammatory 

cytokine release in human gestational tissues and cells would provide additional 

insight into the role of MEHP in stimulation of inflammatory responses during 

pregnancy.    

Oxidative stress is associated with preterm and normal term parturition 

Oxidative stress is characterized by an excess of damaging reactive 

oxygen species (ROS) resulting from an imbalance between oxidant species 

generation and cellular antioxidant capacity.  Excess ROS can result in damage 

to macromolecules, including lipid peroxidation, oxidative DNA adduct formation, 

and protein oxidation.  Exposure to pollutants that induce oxidative stress, 

including air pollution, cigarette smoke, and organochlorine pesticides increases 

risk for preterm birth (Cnattingius 2004; Malmqvist, Rignell-Hydbom et al. 2011; 
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Chang, Reich et al. 2012).  Specifically, exposure to organochlorine pesticide 

residues during pregnancy is associated with elevated cord blood concentrations 

of malondialdehyde and decreased cord blood concentrations of reduced 

glutathione, indicative of lipid peroxidation and antioxidant depletion (Pathak, 

Suke et al. 2010). 

Oxidative stress in the cells and tissues of the gestational compartment is 

linked to preterm labor and normal human parturition.  Normal human parturition 

corresponds with increased protein oxidation and lipid peroxidation and 

decreased antioxidants in myometrial tissues (Khan, Matharoo-Ball et al. 2010).  

Similarly, preterm labor is associated with oxidative stress markers including the 

lipid peroxidation products F2-isoprostane and malondialdehyde, and decreases 

in the antioxidant enzyme glutathione peroxidase (Fainaru, Almog et al. 2002; 

Mocatta, Winterbourn et al. 2004).  Furthermore, increased levels of the urinary 

oxidative stress markers 8-isoprostane and 8-hydroxydeoxyguanosine (8-OHdG) 

in early or mid-gestation are predictive of preeclampsia and decreased gestation 

length (Peter Stein, Scholl et al. 2008; Hsieh, Chen et al. 2012).   Although the 

latter observations suggest that oxidative stress events correspond with preterm 

and normal term parturition, the function of these events in initiation of parturition 

is not fully understood.  

 Evidence suggests that reactive oxygen species generation in cells of the 

gestational compartment may activate cellular pathways relevant to preterm birth 

including NF-#B, pro-inflammatory cytokine response, and apoptosis. 

Specifically, antioxidant pretreatment prevents LPS-stimulated release of pro-
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inflammatory cytokines and NF-kB activation in gestational membrane explant 

cultures, and prevents LPS-induced preterm labor in mice (Buhimschi, Buhimschi 

et al. 2003; Lappas, Permezel et al. 2003).  In addition, oxidative insult in 

cultured placental and chorionic membrane trophoblasts initiates apoptosis 

(Rosado-Berrios, Velez et al. 2011).  The latter studies provide compelling 

evidence to suggest that parturition relevant pathways, including apoptosis, pro-

inflammatory cytokine release, and lipid mediator synthesis may be mediated 

through oxidative stress.  Furthermore, these studies suggest that oxidative 

stress may have more than an associative relationship to parturition events and 

that, in fact, oxidative insult may be capable of initiating these events.   

DEHP exposure induces oxidative stress responses 

Both apoptosis and oxidative stress are mechanisms common to the toxicity of 

many environmental pollutants, including MEHP.  In humans, urinary MEHP or its 

oxidized metabolites are correlated with urinary markers of oxidative stress 

including decreased bilirubin and increased gamma glutamyltransferase (GGT), 

malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) (Hong, Park 

et al. 2009; Ferguson, Loch-Caruso et al. 2011; Ferguson, Loch-Caruso et al. 

2011). In vitro, MEHP treatment induces reactive oxygen species generation in 

neutrophils and cells of the liver and testes. (Rose, Rivera et al. 1999; Erkekoglu, 

Rachidi et al. 2010; Fan, Traore et al. 2010; Vetrano, Laskin et al. 2010; 

Erkeko$lu, Rachidi et al. 2011; Rosado-Berrios, Vélez et al. 2011).  Furthermore, 

MEHP toxicity in germ cells and Leydig cells of the testes is linked to decreases 

in antioxidant levels, increased oxidative DNA damage, and induction of 
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apoptosis (Richburg, Nañez et al. 2000; Kasahara, Sato et al. 2002; Hauser, 

Meeker et al. 2007; Suna, Yamaguchi et al. 2007; Erkekoglu, Rachidi et al. 

2010). Despite the evidence linking MEHP-induced oxidative stress to disease 

outcomes in the liver, immune system, and male reproductive system, little 

attention has been given to the role of oxidative stress in adverse female 

reproductive outcomes. 

Research Objectives 

Based on the evidence that MEHP induces oxidative stress and inflammatory 

mediator synthesis in other organ systems, and because MEHP exposure is 

associated with adverse pregnancy outcomes in humans, we hypothesize that 

MEHP activates cellular responses relevant to preterm birth in human 

gestational tissues and cells.  The specific aims of this project are to: 1) 

Examine the effects of MEHP treatment on reactive oxygen species generation, 

oxidative DNA damage, antioxidant gene expression, and apoptotic cell death in 

human placental trophoblast cells; and 2) Examine the effects of in vitro MEHP 

treatment on prostaglandin synthesis and pro-inflammatory cytokine release in 

primary human placental and decidual macrophages, human placental 

trophoblast cells, and gestational membrane explants.   
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Figure 1.1A.  Structure of diethylhexyl phthalate (DEHP). 
Image taken from http://pubchem.ncbi.nlm.nih.gov. 
 

 

 

 

 

Figure 1.1B.  Structure of monoethylhexyl phthalate (MEHP). 
Image taken from http://pubchem.ncbi.nlm.nih.gov. 
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Figure 1.2. Anatomy of the pregnant uterus.   
Diagram adapted from A.D.A.M Interactive Anatomy 2009.  Gestational membrane histology 
section from Thiex 2008.  Chorionic villi image adapted from Miller 1921. 
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Figure 1.3.  Model of parturition initiation.  Pro-inflammatory cytokine release from 
gestational tissues stimulates prostaglandin synthesis, apoptosis, and activation of 
matrix-metalloproteases to promote membrane rupture, uterine contractions, cervical 
ripening, and ultimately, parturition. 
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CHAPTER II 

Mono-2-ethylhexyl phthalate-induced oxidative stress 

in human placental cells 

 

Abstract 

Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant used as a 

plasticizer in polyvinyl chloride products. Mono-ethylhexyl phthalate (MEHP), the 

active metabolite of DEHP, increases reactive oxygen species production and 

decreases antioxidants in liver, kidney and testicular cells. To investigate whether 

placenta is a potential target of MEHP, we evaluated MEHP effects on reactive 

oxygen species generation, oxidative DNA adduct formation, apoptosis and 

expression of redox-sensitive genes in the human extravillous trophoblast cell 

line HTR-8/SVneo (HTR-8). HTR-8 cells were treated with MEHP concentrations 

ranging from 10-180 !M. Solvent controls were exposed to dimethyl sulfoxide 

(DMSO; 0.05% v/v).  Stimulation of oxidant species generation was assessed by 

formation of the fluorescent product 2,7"-dichlorofluorescein (DCF) in HTR-8 cells 

loaded with 5-(and-6)-carboxy-2´7´-dichlorodihydrofluorescein diacetate (H2DCF-

DA) and exposed for 1 h to MEHP.  Treatment with 45, 90, or 180 !M MEHP for 

1 h significantly increased oxidant species after 1 h of exposure. In other 

experiments, HTR-8 cells were loaded with H2DCF-DA, pretreated for 1 h with or 
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without the iron chelator deferoxamine mesylate (DFO; 1 mM), and then exposed 

for 1 h to MEHP.  Pretreatment with DFO reduced MEHP-induced DCF 

fluorescence. To measure oxidized thymine adduct formation, cells were treated 

24 h with MEHP. DNA then was extracted, and concentrations of oxidized 

thymine were quantified using mass-spectrometry. Treatment with 180 !M MEHP 

increased oxidized thymine adduct formation two-fold compared with solvent 

controls. To assess apoptosis, caspase 3/7 activation was measured using a 

luminescence-based assay following 24-h exposure to MEHP.  A 1.5-fold 

increase in caspase 3/7 activation was observed with 180 !M MEHP treatment 

(p#0.05). RNA expression of 84 redox-sensitive genes was measured in cells 

exposed to MEHP for 4, 8 or 24 h using a qRT-PCR array (n=3 experiments). 

Using qqRT-PCR, we validated the findings of the array for those genes with 

significant mRNA expression changes that were approximately two–fold or more 

with 180 !M MEHP treatment: AOX1, DHCR24, GLRX2, PRNP, SCARA3, 

TXNRD1, and PTGS2.   Treatment with 180 !M MEHP significantly increased 

mRNA expression of PTGS2, GLRX2, and TXNRD1 and significantly decreased 

mRNA expression of DHCR24. These results show that MEHP induces an 

oxidative stress response in human placental cells.  
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Introduction 

 Diethylhexyl phthalate (DEHP) is primarily used as a plasticizer in the 

manufacturing of polyvinyl chloride (PVC) and is found in a wide variety of 

consumer products including food packaging, intravenous medical tubing, 

clothing, furniture and automobile upholstery, and children's toys.  DEHP is not 

covalently bound to PVC products and as a result leaches into the environment 

where it collects in dust particles or in food contained in PVC plastic.  DEHP is a 

pervasive environmental contaminant, present in 733 out of 1613 Environmental 

Protection Agency (EPA) National Priority List sites.  Exposure to DEHP is 

widespread and frequent in the US population. Data collected from the National 

Health and Nutrition Examination Survey (NHANES) datasets from 1999 to 2006 

show measurable levels of monoethylhexyl phthalate (MEHP), the active 

metabolite of DEHP, in 98% of urine samples analyzed.  Because DEHP is 

rapidly metabolized to its active monoester metabolites and excreted in the urine, 

the latter finding suggests that human exposure to DEHP is a widespread and 

daily occurrence. 

 Exposure to DEHP is linked to adverse pregnancy outcomes.  In humans, 

higher concentrations of MEHP in urine or cord blood samples of pregnant 

women are associated with low birth weight, increased risk for preterm birth, 

decreased gestation length, and pregnancy loss (Latini, De Felice et al. 2003; 

Lin, Zheng et al. 2008; Meeker, Hu et al. 2009; Toft, Jonsson et al. 2011).   

Furthermore, MEHP has been detected in placenta, amniotic fluid and cord blood 

of humans (Mose, Mortensen et al. 2007; Wittassek, Angerer et al. 2009; Lin, Ku 
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et al. 2011).  The latter two findings suggest that the gestational compartment 

may be a target of MEHP toxicity.  Despite the evidence linking DEHP exposure 

to adverse pregnancy outcomes, the mechanism underlying these associations is 

unclear.   

Oxidative stress, defined as an imbalance between the production of 

damaging reactive oxygen species (ROS) and cellular antioxidant defenses, and 

apoptosis in cells of the gestational compartment are closely linked to the 

pathology of adverse pregnancy outcomes, as evidenced by increased markers 

of apoptosis and oxidative stress in pathological pregnancies. For example, 

placental trophoblasts from pregnancies complicated by preeclampsia, 

intrauterine growth restriction, and miscarriage express higher levels of oxidative 

stress and apoptotic markers compared to normal controls (DiFederico, 

Genbacev et al. 1999; Hempstock, Jauniaux et al. 2003; Tomas, Prusac et al. 

2011).  Furthermore, increased levels of urinary oxidative stress markers early in 

pregnancy predict preeclampsia and shortened gestation length (Peter Stein, 

Scholl et al. 2008; Bazavilvaso-Rodríguez, Hernández-Valencia et al. 2011; 

Miranda Guisado, Vallejo-Vaz et al. 2011).   

Apoptosis and oxidative stress are mechanisms common to the toxicity of 

many environmental pollutants, including MEHP.  In humans, urinary MEHP or its 

oxidized metabolites are associated with urinary markers of oxidative stress 

(Ferguson, Loch-Caruso et al. 2011; Ferguson, Loch-Caruso et al. 2011).  In vitro 

MEHP treatment of neutrophils, Kupfer cells and Leydig cells generates (ROS) 

(Rose, Rivera et al. 1999; Erkekoglu, Rachidi et al. 2010; Fan, Traore et al. 2010; 



26 
 

Vetrano, Laskin et al. 2010; Erkeko$lu, Rachidi et al. 2011; Rosado-Berrios, 

Vélez et al. 2011).  Furthermore, MEHP toxicity in germ cells or Leydig cells of 

the testes is linked to decreased levels of GSH and ascorbic acid, decreased 

thioredoxin reductase expression, decreased glutathione peroxidase activity, 

increased DNA damage, and induction of apoptosis (Richburg, Nañez et al. 

2000; Kasahara, Sato et al. 2002; Hauser, Meeker et al. 2007; Suna, Yamaguchi 

et al. 2007; Erkekoglu, Rachidi et al. 2010).  In human first trimester trophoblast 

cells, in vitro DEHP treatment increases apoptosis and expression of the pro-

apoptotic gene BAX2 (Wang, Shang et al. 2010). The biological relevance of the 

latter study is challenged, however, by the fact that DEHP is rapidly metabolized 

to MEHP by lipases in the gut or lungs after ingestion or inhalation, respectively, 

converting most DEHP to MEHP before distribution to distal organs of the body, 

including the placenta (Frederiksen, Skakkebaek et al. 2007). 

 In the present study, we hypothesize that MEHP induces oxidative stress 

responses and subsequent apoptotic cell death in cells of the gestational 

compartment. We examined the effects of MEHP treatment on ROS generation, 

oxidative DNA damage, redox-sensitive gene expression, and apoptotic cell 

death in HTR-8/SVneo (HTR-8) cells, a human first trimester extravillous 

trophoblast cell line.   
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Materials and Methods 

Reagents.  We purchased carboxy-dichlorodihydrofluorescein diacetate (H2DCF-

DA), Hoechst dye, phosphate buffered saline (PBS), and Hank’s balanced salt 

solution (HBSS) from Invitrogen Life Technologies; dimethyl sulfoxide (DMSO), 

deferoxamine mesylate, tert-butyl hydroperoxide (TBHP), and camptothecin from 

Sigma-Aldrich (St. Louis, MO, USA); and MEHP from Accustandard (New Haven, 

CT).   

Cell culture and treatment.  The HTR-8 cells were a gift from Dr. Charles 

Graham (Queens University, Ontario, Canada).  The HTR-8 cells were isolated 

from first trimester human placenta and immortalized with SV40 antigen 

(Graham, Hawley et al. 1993).  Similar to their primary counterparts, HTR-8 cells 

express human chorionic gonadropin, stain positive for the epithelial marker 

cytokeratin-7, and retain migratory capabilities in culture (Graham, Hawley et al. 

1993).  Cells between passages 71 and 84 were cultured in RPMI 1640 medium 

with L-glutamine without phenol red (Gibco; Grand Island, NY, USA), 

supplemented with 10% fetal bovine serum (FBS; Hyclone, Logan, UT, USA) and 

1% penicillin/streptomycin (Gibco) at 37°C in a 5% CO2 humidified atmosphere.  

For most experiments, cells were grown to a confluence of 70-80% before 

treatment.  For the dichlorofluorescein (DCF) plate-based assay, cells were 

grown to a confluence of 80-90% before treatment. From stock solutions of 392 

!M MEHP in DMSO, exposure media solutions of 10, 22.5, 45, 90, or 180 !M 

MEHP were made immediately prior to initiating the experiment. The DMSO 

concentration was 0.05% for all exposure groups. 
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ROS measurement.  Stimulation of ROS generation was assessed 

spectrofluorometrically using the dichlorofluorescein (DCF) assay. The HTR-8 

cells were seeded at a density of 30,000 cells per well in a 96-well black, clear 

bottom plate and incubated at 37°C in a 5% CO2 atmosphere for 24 h.  Cells 

were then pre-incubated with 100 !M H2DCF-DA in HBSS for 60 min at 37 °C.  

The dye solution was then removed, the cultures were rinsed with HBSS, and the 

cells were then treated with dimethyl sulfoxide (DMSO; 0.05% v/v; solvent 

control), or with 10, 22.5, 45, 90, or 180 !M MEHP in replicates of 6 for 60 min. 

Treatment with the prototypical chemical oxidant tert-butyl hydroperoxide 

(TBHP;100 !M)  served  as a positive control.  After washing with HBSS and 

then adding fresh HBSS back to the cells, fluorescence was measured from the 

bottom of the culture plate with the Molecular Devices SpectraMax Gemini M2e 

at an excitation wavelength of 492 nm and emission wavelength of 522 nm.  In 

previous experiments, we determined that MEHP  in 0.05% DMSO showed no 

effects on DCF fluorescence in cell-free HBSS buffer compared to DMSO alone  

(Appendix A, Figure A1.) 

 Inhibition of DCF fluorescence was assayed by fluorescence microscopy.  

The HTR-8 cells were seeded at a density of 400,000 cells per well in a 6-well 

plate and cultured for  24 h before incubation with 100 !M H2DCF-DA in HBSS 

for 1 h.  After removal of the dye solution and rinsing with HBSS, cultures were 

incubated for an additional 1 h with 1 mM deferoxamine mesylate (DFO) as an 

antioxidant treatment. Previously, we had determined that 1mM deferoxamine 

was not cytotoxic to HTR-8 cells, using the Promega Cyquant viability assay 
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(data not shown).  Cultures were exposed to HBSS alone, 0.05% DMSO (solvent 

control), or 180 !M MEHP for 90 min, and then counterstained with the nucleic 

acid stain Hoechst for 5 min. Using an EVOS digital inverted fluorescence 

microscope, intracellular DCF fluorescence was visualized at 470 nm excitation 

and 525 nm emission, and Hoechst stain was visualized at 357 nm excitation and 

447 nm emission.  Five images per treatment were taken, one image in each of 

the four quadrants and one in the center of the well.   

Oxidized thymine measurement.  HTR-8 cells were seeded at a density of 3.5-

4 x 106 cells in 175 cm2 flasks.  After 24 h of incubation, cells were treated with 

DMSO (solvent control), 50 !M TBHP, 90 !M MEHP, or 180 !M MEHP for 24 h.  

Genomic DNA was extracted using the Qiagen Blood and Cell Culture DNA Midi 

Kit following the manufacturer's protocol.  Oxidized thymine (oT) was measured 

in collaboration with the Giese laboratory at Northeastern University as described 

in detail elsewhere by the following sequence of steps: (1) DNA was digested to 

nucleotides with nuclease P1 and phosphodiesterase; (2) the enzymes were 

removed by ultrafiltration; (3) the nucleotides were separated by reversed-phase 

HPLC and fractions eluting between dCMP and TMP were collected; (4) the 

nucleotides in the collected fraction were converted to phosphorimidazolides with 

a pair of isotopologue (do,d4) benzoylhistamine (BH) reagents in the presence of 

a water-soluble carbodiimide; (5) cation exchange filtration was conducted to 

remove residual reagents; (6) capillary reversed-phase HPLC was conducted by 

spotting onto a MALDI target followed by matrix addition containing an internal 

standard (BH-labeled 1,N6-etheno-dAMP) ; and (7) BH-labeled-oT and internal 
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standard were measures by MALDI-TOF-MS with structural confirmation by 

MALDI-TOF/TOF-MS (Wang, Fisher et al. 2012).   

Caspase 3/7 activity assay.  We measured caspase 3/7 activity in cell lysates 

using the Caspase-Glo 3/7 luminescent assay (Promega) following the 

manufacturer's recommended protocol.  The HTR-8 cells were seeded at a 

density of 10,000 cells per well in a 96-well white, clear-bottom plate 24 h prior to 

treatment.  Cells were then treated with medium alone, DMSO (solvent control), 

MEHP (22.5, 45, 100, or 180 µM), or 4 µM camptothecin (positive control) for 4, 

8, or 24 h.  We observed no significant differences between medium alone and 

solvent control (DMSO) cultures (data not shown). 

 Cytotoxicity and viability assay.  The MultiTox-Glo Multiplex Cytotoxicity 

Assay (Promega, Madison, WI, USA) was used to quantify cytotoxicity using a 

luminescent substrate for extracellular, dead-cell protease, and to quantify 

viability using a fluorescent substrate for intracellular proteases, following the 

manufacturer's recommended protocol. The HTR-8 cells were seeded at 10,000 

cells/well in a 96-well, white, clear-bottomed plate 24 h prior to treatment. Cells 

were treated with medium alone, DMSO (solvent control), MEHP (22.5, 45, 90, or 

180 !M), or 4 !M camptothecin (positive control) for 24 or 48 h. Fluorescence 

was measured using the SpectraMax M2 Multi-Mode Microplate Reader 

(Molecular Devices) and luminescence was measured using the Glomax Multi 

Plus Detection System (Promega).  
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Oxidative stress and antioxidant response gene array and qRT-PCR 

validation.  Because MEHP stimulated reactive ROS generation as assessed by 

DCF fluorescence, we evaluated changes in gene expression in the oxidative 

stress response pathway using the Oxidative Stress and Antioxidant PCR Array 

from SABiosciences. The HTR-8 cells were seeded at a density of 400,000 cells 

per well in a 6-well cell culture plate and allowed to adhere for one day.  Cells 

were treated with medium alone, DMSO (solvent control), MEHP (90, or 180 !M) 

or 50 !M TBHP.  After 4, 8, or 24 h of exposure, RNA was extracted using the 

RNeasy Plus Mini Kit (Qiagen), and cDNA was synthesized from 1 !g of total 

RNA using the RT2 First Strand Kit (SABiosciences) following the manufacturers' 

recommended protocols.  For the array, the cDNA from solvent control and 180 

!M MEHP treatments was analyzed using the ABI 7900HT Sequence Detection 

System following the SABiosciences recommended protocol.  Fold changes were 

calculated using the %%CT method, normalizing each sample to the average CT 

of all housekeeping gene CT values.  Mean %CT values were compared between 

groups using paired t-tests from the Limma package of Bioconductor (Smyth 

Gordon 2004). The resulting p-values were adjusted for multiplicity using the 

Benjamini and Hochberg false discovery rate method (Benjamini and Hochberg 

1995).  Using qRT-PCR, we validated the findings of the array for those genes 

with significant mRNA expression changes that were approximately two–fold or 

more with 180 !M MEHP treatment: AOX1, DHCR24, GLRX2, PRNP, SCARA, 

TXNRD1, and PTGS2. qRT-PCR was performed on these seven genes using 

samples from cells treated with medium alone, DMSO (solvent control), 90 or 
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180 !M MEHP, or 50 !M TBHP for 24 h.  Using the SABiosciences RT2 First 

Strand Kit, cDNA was made from 1 !g of mRNA.  PCR reactions were run with 

the same SABiosciences primers used in the Oxidative Stress and Antioxidant 

PCR Array and SYBR green mastermix (SABiosciences), with 2-5 !L of 

template. qRT- PCR reactions were run on the Bio-Rad CFX96 Real Time C1000 

thermal cycler following the manufacturer's recommended protocol.   

Statistical analysis.  Multiple group comparisons were carried out using a 

paired one-way ANOVA or two-way ANOVA for two-factor analyses and pairwise 

comparisons were carried out using paired t-tests, with p<0.05 as the 

significance cutoff.  Data are expressed as the mean ± SD of between 3 and 5 

experiments.   

 

Results 

Cellular generation of reactive chemical species.  Treatment of HTR-8 cells 

with 45, 90 or 180 µM MEHP for 1 h resulted in a significant increase in relative 

fluorescence units over the solvent control, indicating increased H2DCF-DA 

oxidation (Figure 2.1).  Interestingly, this increase was larger than that observed 

with the prototypical chemical oxidant, TBHP (100 µM).  When cells were 

pretreated with the iron chelator, deferoxamine mesylate, DCF fluorescence was 

visibly decreased in cells treated with 180 !M MEHP, suggesting a Fenton-

dependent production of hydroxyl radical from hydrogen peroxide with MEHP 

treatment (Figure 2.2).  Using microscopy, we observed no differences in 
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fluorescence when cells were incubated in HBSS alone or HBSS with 0.05% 

DMSO (data not shown). 

Oxidized thymine (oT) formation.  Figure 2.3A shows oxidation of thymine in 

three separate experiments.  Treatment with MEHP for 24 h increased oT 

approximately 20% with 90 !M and approximately 80% with 180 !M MEHP, on 

average.  An increase in oT of approximately 200% was also observed with 50 

!M TBHP treatment.  To obtain these results, DNA from the samples was 

digested to nucleotides and the appropriate HPLC fraction was subjected to 

labeling with a mass tag prior to analysis by mass spectrometry.  Samples were 

paired, where one sample (after HPLC collection) was labeled with a nonisotopic 

(d0) tag, whereas the other sample was labeled with a corresponding isotopic (d4) 

tag, prior to combining the samples to assess the relative amounts of oT.  At the 

same time, the absolute amounts were determined based on the internal 

standard (BH-labeled 1,N6-etheno-dAMP).   In these experiments, the tags were 

also reversed.  Representative data is shown in Figure 2.3B.   

Caspase 3/7 activity.  MEHP treatment significantly increased caspase 3/7 

activation by approximately 80% at 24 h (Figure 2.4; p=0.01). This increase was 

modest, though, in comparison to the positive control (4 !M camptothecin).  We 

observed no significant treatment effects at 4 h or 8 h, and no differences in 

caspase 3/7 activity in controls treated with medium alone compared with 0.05% 

DMSO (solvent control) at 4, 8, or 24 h (data not shown).  
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Cytotoxicity and cell viability.  MEHP treatment had no effect on cytotoxicity, at 

either 24 h or 48 h, as assessed by an extracellular protease activity assay for 

membrane integrity (data not shown).  We observed no differences in cytotoxicity 

or viability with medium alone compared with 0.05% DMSO at 24 h or 48 h.  

Treatment with 180 µM MEHP, but not lower MEHP concentrations, significantly 

decreased cell viability at 48 h but not 24 h, as measured by intracellular 

protease activity (Figure 2.5; p<0.001).    

mRNA expression.  We identified seven genes with the Oxidative Stress and 

Antioxidant Response Gene Array whose mRNA expression significantly 

changed two-fold or more with 180 µM MEHP treatment compared to solvent 

control (Table 2.1; adjusted p value<0.05).  The results of the array showed that 

MEHP treatment significantly increased expression of PTGS2 at 4, 8, and 24 h, 

and GLRX2, PRNP, TXNRD1, and AOX1 at 24 h; whereas expression 

significantly decreased for SCARA3 and DHCR24 at 24 h.  With qRT-PCR 

analysis of RNA extracts from samples treated for 24 h, we confirmed MEHP-

stimulated changes in gene expression for four of these genes:  increased 

expression of PTGS2,  GLRX2, TXNRD1 and decreased expression of DHCR24 

(p-value=0.001, 0.01, 0.048, and 0.002, respectively) (Figure 2.6 A, B, C, and D, 

respectively).  Although the expression changes observed with MEHP treatment 

were not significant for SCARA, PRNP, or AOX1 (Figure 2.6E, F, and G, 

respectively), we observed the same directional changes in expression as were 

observed with the qRT-PCR array. Cells exposed to 180 !M MEHP had similar 

magnitude changes in gene expression as were observed with 50 !M TBHP; 
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however, these groups were not compared by statistical analysis due to low 

sample size in the TBHP treatment group.  Likewise, statistical comparisons 

were not performed between the solvent (DMSO) control group and the control 

group exposed to medium alone because we had an n of 2 for the medium alone 

treatment group. 

 

Discussion 

 The goal of the current study was to investigate oxidative stress as a 

cellular mechanism by which MEHP exposure may contribute to adverse 

pregnancy outcomes.  Our findings demonstrate that MEHP induces oxidative 

stress responses in human placental cells, specifically, ROS production, 

oxidative DNA damage, and modification of redox-sensitive gene expression.  

The direction and magnitude of redox-sensitive gene expression changes 

observed with MEHP treatment were comparable to those observed with tert-

butyl hydroperoxide (TBHP) treatment, suggesting that MEHP acts similarly to a 

prototypical chemical oxidant to modify antioxidant and redox sensitive gene 

expression in the HTR-8 cells.  Notably, MEHP treatment strongly induced 

PTGS2, the gene for COX-2, suggesting that MEHP may stimulate synthesis of 

prostaglandins necessary for stimulation of myometrial contractions and 

ultimately, parturition.   

 This is the first study to document MEHP-stimulated oxidative stress 

responses in cells of the gestational compartment, consistent with previous 
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reports that MEHP stimulates ROS production  and oxidative DNA damage are 

observed in other cell types.  In humans, urinary levels of MEHP are correlated 

with increased DNA damage in sperm.  In vitro, MEHP treatment induces DNA 

damage in human liver carcinoma cells at concentrations ranging from 25 to 100 

µM, and human lymphocytes at concentrations ranging from 100-2500 µM 

(Yang, Zhou et al. ; Kleinsasser, Harreus et al. 2004; Hauser, Meeker et al. 

2007). In addition, in vitro MEHP treatment stimulates ROS generation in human 

prostate adenocarcimona cells at a concentration of 3 !M and human 

neutrophils, human lymphoblast  cells, and mouse Leydig cells at concentrations 

ranging from 100-500 µM (Zhao, Ao et al. ; Erkekoglu, Rachidi et al. 2010; 

Erkekoglu, Rachidi et al. 2010; Rosado-Berrios, Vélez et al. 2011).   

Previous studies demonstrating that increased urinary 8-OHdG is 

predictive of shortened gestation length and low birth weight highlight the 

relevance of our findings to the etiology of adverse pregnancy outcomes.  The 

intrauterine environment is maintained at relatively low-oxygen concentrations in 

order to support proper development of the placenta.  As a consequence, early 

trophoblast cells tend to express lower levels of antioxidants (Davis and Auten 

2010).  This suggests that first trimester trophoblasts may be more susceptible to 

oxidative stress from chemicals that increase the generation of ROS compared to 

third trimester trophoblast cells. 

     In the HTR-8 cells, MEHP increased activity of the executioner caspases 3 

and 7 at 24h and decreased cell viability at 48h, suggesting apoptotic activation 

and subsequent cell death.  This finding is supported by in vitro studies 
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evidencing apoptosis with MEHP concentrations ranging from 196-1000 !M  in 

immune cells, testicular germ cells, Sertoli cells, and mouse embryonic stem 

cells (Yao, Lin et al. 2007; Lim, Kim et al. 2009; Vetrano, Laskin et al. 2010; 

Rosado-Berrios, Vélez et al. 2011).   Interestingly, MEHP-induced apoptosis is 

dependent on ROS in male germ cells and TK6 human lymphoblast cells and, 

similarly, oxidative insult in cultured first-trimester placental trophoblasts and term 

chorionic membrane trophoblasts triggers apoptosis (Moll, Jones et al. 2007; 

Rogers, Ouellet et al. 2008; Yuan, Ohyama et al. 2008; Rosado-Berrios, Velez et 

al. 2011).  ROS and oxidative DNA damage, both of which were increased with 

MEHP in the HTR-8 cells, can activate caspases directly by interaction with 

redox-sensitive cysteines on caspases or by p53 induction, respectively (Circu 

and Aw 2010).  Although not directly measured in this study, we suggest that the 

increased caspase activity observed at 24 h may be dependent on the MEHP-

stimulated generation of ROS in HTR-8 cells.    Because apoptosis of first 

trimester placental trophoblasts and later-gestation chorionic laeve trophoblasts 

is linked to preeclampsia and preterm birth, and our results show increased 

activation of caspases, we suggest that apoptosis may be implicated in MEHP-

induced adverse pregnancy outcomes.  We observed decreased cell viability with 

180 !M MEHP at 48 h without any measurable cytotoxic effects.   A possible 

explanation for this may be that extracellular proteases released into cell medium 

do not remain viable for longer treatment periods and therefore may not be the 

most suitable indicator of cytotoxicity at later time points.   
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           Differential antioxidant expression is observed in gestational tissues of 

pregnancies complicated by preeclampsia, IUGR, and miscarriage (Sahlin, Wang 

et al. 2000; Biri, Kavutcu et al. 2006; Hoegh, Borup et al. 2010).  Our gene 

expression array results demonstrate that MEHP treatment resulted in a robust 

induction of the dual peroxidase and oxidase PTGS2, modest changes in 

antioxidant genes GLRX2, TXNRD1, DHCR24, PRNP, and SCARA3, and 

modest changes in the phase 1 metabolizing enzyme gene AOX1.  TXNRD1, 

PRNP, and AOX1 each contain an antioxidant response element in their 

promoter regions (Varela-Nallar, Toledo et al. 2006; Suvorova, Lucas et al. 

2009). The latter results suggest that Nrf2 may be activated as a protective 

response to ROS generated with MEHP treatment.  GLRX2 and TXNRD1, both 

classic antioxidants and oxidoreductases, confer protection from oxidative DNA 

damage, apoptosis, and cell death (Meyer, Buchanan et al. 2009).  Increased 

levels of GLRX and TXNRD protein are found in preeclamptic placentae 

compared to controls, suggesting involvement of GLRX and TXNRD proteins in 

protection of the placenta from oxidative insult (Shibata, Ejima et al. 2001). 

Increases in GLRX2 and TXNRD1 gene expression observed in this study may 

serve to protect the cell from increased ROS generated by MEHP.  AOX1 is the 

gene for aldehyde oxidase 1, a phase 1 metabolizing enzyme that transfers 

electrons to molecular oxygen, resulting in formation of radicals.  Because of the 

possibility of radical formation with aldehyde oxidase activity, we suggest that the 

observed decrease in AOX1 with MEHP treatment may be a protective cellular 

response. SCARA3, DHCR24, and PRNP have radical scavenging and cyto-



39 
 

protective functions; however, the function of these genes in the gestational 

compartment is unknown (Han, Tokino et al. 1998; Kawashiro, Fukata et al. 

2009).  The decrease observed in this study in DHCR24, the gene for 3&-

hydroxysterol-D24 reductase, which catalyzes the last step in cholesterol 

biosynthesis converting desmosterol to cholesterol, suggests that MEHP may 

interfere with steroid synthesis, which has implications for sustaining 

progesterone levels necessary for maintenance of pregnancy (Kawashiro, Fukata 

et al. 2009).  The parallel changes in the magnitude and direction of gene 

expression between 180 !M MEHP and TBHP treatment for all genes measured 

is not surprising considering that TBHP works through the Fenton reaction to 

generate hydroxyl radical from hydrogen peroxide and our results from the DCF 

assay suggest that MEHP generates hydroxyl radical through the Fenton 

reaction also.    

 Considering our observations that MEHP treatment increases both ROS 

generation and oxidative DNA damage, we expected to see more genes 

differentially expressed with MEHP.  Because the antioxidant and oxidative 

stress response array includes genes that are responsive to a wide array of 

reactive species, it may be that MEHP treatment is generating only a subset of 

these reactive species.   Furthermore, because gene expression is often 

transient and we measured expression at only three time points, some MEHP-

induced changes in expression may have been missed.  Future experiments 

could test additional time points and validate these gene expression changes 

with protein expression data.   
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 Particularly interesting is our finding that MEHP induced a robust increase 

in expression of PTGS2, the gene for cyclooxygenase-2 (COX-2) enzyme, an 

enzyme necessary for the initiation of parturition.  COX-2, the translated enzyme 

product of PTGS2, catalyzes synthesis of bioactive prostaglandins, including 

PGE2 and PGF2', which bind to excitatory receptors and stimulate myometrial 

contractions, a hallmark of labor induction.  In chorion laeve, PTGS2 mRNA 

levels are approximately seven times higher in tissues from spontaneous preterm 

labor compared to non-laboring tissues of equivalent gestational age, an 

increase comparable to the 8-fold increase that we observed with 180 !M MEHP 

compared to the solvent control in the present study (Mijovic, Zakar et al. 1998).  

In HTR-8 cells and primary extravillous trophoblast cells, COX-2 inhibition 

suppresses migration, suggesting that perturbation of COX-2 expression early in 

gestation may interfere with placentation (Horita, Kuroda et al. 2007).  The 

observed increase in PTGS2 levels with MEHP treatment is corroborated by 

studies showing increased PTGS2 mRNA expression with MEHP treatment in 

murine liver cells and increased COX-2 protein expression with MEHP treatment 

in spermatocytes and rat and human mast cells (Ledwith, Pauley et al. 1997; 

Onorato, Brown et al. 2008; Oh, Lim et al. 2010; Oh and Lim 2011).  In contrast, 

an in vivo study found that 750 and 1500 mg/kg DEHP exposure decreased 

PTGS2 mRNA and COX-2 protein expression in rat placenta.  Differences 

between the current study and previously published studies may be related to 

species differences, because differences in response to DEHP have been 

observed in studies comparing peroxisome proliferation in rat and human 
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hepatocytes  (Xu, Agrawal et al. 2008).  Furthermore, the doses of DEHP used in 

the rat study were four orders of magnitude above the 95th percentile of relevant 

human intake estimates (Koch, Preuss et al. 2006).  Further in vivo studies 

testing exposure doses that are closer to physiologically relevant concentrations 

are needed.  In addition, it is possibly that MEHP may exert differential effects in 

the in vivo context compared to in vitro.   

     We chose to use HTR-8 cells as a model to study the effects of MEHP on the 

gestational compartment because these cells exhibit normal chromosome 

numbers as compared to other immortalized cell lines from the gestational 

compartment and they have a similar phenotype compared to their primary 

counterparts (Graham, Hawley et al. 1993; Nicola, Timoshenko et al. 2005; 

Biondi, Ferretti et al. 2006; Nicola, Chirpac et al. 2008; Jovanovi( and Vi(ovac 

2009; Jovanovi(, Stefanoska et al. 2010).  It is important to note, however, that 

these cells may have a different gene expression and gene methylation profile 

compared to primary extravillous trophoblast cells (Bilban, Tauber et al. 2010; 

Novakovic, Gordon et al. 2011).  For this reason, we plan to further investigate 

the mechanisms of toxicity of MEHP which were identified in the current study in 

primary cells of the gestational compartment.    

     In the present study, we have identified oxidative stress as a mechanism by 

which MEHP may influence pregnancy outcomes using an immortalized human 

first trimester trophoblast cell line as a model.  In the future, we intend to study 

MEHP-induced oxidative stress in primary human gestational cells and tissues 

from late term pregnancies, as well as in an in vivo rodent model, with the goal of 
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identifying mechanisms that may explain the association between MEHP 

exposure and preterm birth.  Furthermore, based on our finding of increased 

PTGS2 gene expression with MEHP treatment, we are interested in studying the 

effects of MEHP treatment on prostaglandin synthesis pathways, specifically, 

PGE2 and PGF2!, in primary human gestational tissues and cells.  The findings 

from the current study warrant future epidemiological studies of oxidative stress, 

apoptosis, and prostaglandin synthesis as potential cellular mechanisms by 

which MEHP exposure, and possibly other environmental contaminants, may 

contribute to increased risk for adverse pregnancy outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

 

 

 

 

Table 2.1. Oxidative stress and antioxidant response gene expression array results. 
HTR-8 cells were treated with DMSO (0.05% v/v; solvent control) or 180 !M MEHP for 4, 
8, or 24 h.  The Oxidative Stress and Antioxidant Response qRT-PCR Array was 
performed as described in the “Materials and Methods” section.  Results are shown for 
those genes with a significant change of approximately two-fold or more compared to 
solvent controls at 4, 8, or 24 h.  Statistically significant changes of two-fold or more are 
highlighted in bold (adjusted p-value < 0.05).   
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Figure 2.1.  MEHP-stimulated generation of reactive oxygen species (ROS).  MEHP 
treatment increased ROS generation in HTR-8 cells in a concentration-dependent 
manner as measured by the DCF assay.  HTR-8 cells were pre-loaded with H2DCF-DA 
for 1 h, then treated with DMSO, (0.05% v/v; solvent control) 10, 22.5, 45, 90, or 180 !M 
MEHP (n = 3-5 experiments) or 100 !M TBHP (n=2 experiments) for 1 h as described in 
the “Materials and Methods” section.  Bars represent means ± SE. *p < 0.05, compared 
to solvent control.  
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Figure 2.2.  Effect of pretreatment with the antioxidant deferoxamine (DFO) on MEHP-
stimulated reactive oxygen species (ROS) generation.  HTR-8 cells were pre-loaded with 
H2DCF-DA for 1 h.  After removal of H2DCF-DA, cells were treated with 1 mM DFO for 1 
h, and then treated with DMSO (0.05% v/v; solvent control) or 180 !M MEHP as 
described in the “Materials and Methods” section (n=3 experiments).  The top panels 
show representative images of intracellular DCF fluorescence of A) solvent control, B) 
180 !M MEHP, and C) 180 !M MEHP + 1 mM DFO. The bottom panel shows 
corresponding Hoescht nuclear staining of D) solvent control, E) 180 !M MEHP, and F) 
180 !M MEHP + 1 mM DFO.  
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Figure 2.3A.  MEHP treatment effects on oxidation of the DNA base thymine.  HTR-8 
cells were treated with solvent control, 90 !M MEHP, 180 !M MEHP, or 50 !M TBHP for 
24 h.  Levels of oxidized thymine were measured from extracted genomic DNA and 
normalized to ppm total DNA base using mass spectrometry, as described in the 
“Materials and Methods” section.  All treatments were tested in experiment 1 (circle) and 
experiment 3 (triangle), and only solvent control and 90 !M MEHP were tested in 
experiment 2 (square). 

 

 

 



47 
 

 

 

 

 

 

Figure 2.3B.  Detection of oxidized thymine (as a mass-tagged deoxynucleotide) by 
MALDI-TOF-MS.  Peaks 1 and 2: oxidized thymine labeled with d0 and d4 mass tags, 
respectively.  Peak 3: mass tagged N2-ethyl dGMP spiked (25 fmol) into each MALD1 
spot as an internal standard.  A: peak 1 (1.7 ppm of oxidized thymine in DNA 
nucleobases) represents the DMSO sample and peak 2 (1.9 ppm) represents the 90 !M 
MEHP sample.  B: peak 1 (3.7 ppm) represents the180 !M MEHP sample and peak 2 
(6.0 ppm) represents the 50 µM TBHP sample. 
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Figure 2.4. MEHP treatment effects on caspase 3/7 activity.  HTR-8 cells were treated 
with DMSO (0.05% v/v; solvent control), MEHP (22.5, 45, 90, or 180 !M), or 4 !M 
camptothecin (positive control) for 24 h, then caspase 3/7 activity was assessed as 
described in the “Materials and Methods” section (n = 3).  Bars represent means ± SE. 
*p<0.05 compared to solvent control. 
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Figure 2.5. Effects of MEHP on HTR-8 cell viability. Cells were treated with DMSO 
(0.05% v/v; solvent control), MEHP (22.5, 45, 90, or 180 !M), or 4 !M camptothecin 
(positive control) for 24 h or 48 h, then the cultures were assessed for cell viability using 
a commercial intracellular protease activity assay as described in the “Materials and 
Methods” section.  Bars represent means ± SE. *p<0.05 compared to solvent control. 
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Figure 2.6.  qRT-PCR validation of gene array results (from Table 1), showing MEHP 
treatment effects on mRNA expression:  A) PTGS2; B) GLRX2; C)TXNRD1; D) 
DHCR24; E) SCARA3; F) PRNP; G) AOX1. Cells were treated for 24 h with medium 
alone (n=2), DMSO (0.05% v/v; solvent control), MEHP (90 !M or 180 !M), or TBHP (50 
!M) (n=3). qRT-PCR reactions were run as described in “Materials and Methods” 
section. Bars represent means ± SE.  *p<0.05 comparing treatments to solvent control. 
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APPENDIX A  

MEHP effects on DCF fluorescence in cell-free buffer solutions 

 

Materials and Methods 

Measurement of MEHP-stimulated fluorescence with the H2DCF-DA assay. 

To assess the effects of MEHP on DCF fluorescence in cell-free buffer, 45, 90, 

and 180 !M MEHP solutions were prepared in either HBSS buffer or to RPMI 

medium with or without 10% fetal bovine serum (FBS).  H2DCF-DA reagent was 

mixed with each treatment or solvent control (0.05% DMSO) in HBSS or RPMI to 

a final concentration of 10 !M H2DCF-DA and 200 !l aliquots were added to a 

96-well plate in replicates of six.  Fluorescence readings were taken every 10 min 

for 1 h using a plate spectrofluorometer. 

 

Results 

MEHP effects on DCF fluorescence.  Exposure to MEHP for 1 h had no effect 

on DCF fluorescence in HBSS containing H2DCF-DA or RPMI medium 

containing H2DCF-DA in the absence of serum (Figure A.1, HBSS buffer, RPMI 

buffer).  However, 45, 90, and 180 !M MEHP concentrations significantly 
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increased DCF fluorescence when cell-free RPMI medium containing 10% serum 

and H2DCF-DA was used as the buffer  (Figure A.1; p<0.0001).   

Conclusion 

The results from the present study suggest that the DCF assay is appropriate for 

studying MEHP affects on ROS production when serum-free conditions are 

applied.   
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Figure A.1.   MEHP effects on DCF fluorescence in HBSS and RPMI medium 
solutions.  MEHP effects on DCF fluorescence were determined after a1-h incubation in 
cell-free solutions containing 10 µM DCFH2-DA in HBSS or in RPMI medium with or 
without serum.  The bars represent the means of 3 independent experiments containing 
6 replicates each (n = 3).  There were significant increases in DCF fluorescence with 
MEHP treatments compared to solvent control when RPMI + serum was used as the 
buffer, but not when RPMI (without serum) or HBSS was used as the buffer.  Asterisks 
indicate statistically significant increases compared with not treated and solvent controls 
(p<0.0001).   
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CHAPTER III 

 

MEHP stimulates release of prostaglandins but not inflammatory cytokines 
in human gestational cells and tissues  

 

Abstract 

Di-2-ethylhexyl phthalate (DEHP) is a ubiquitous environmental pollutant used in 

a wide variety of consumer polyvinyl chloride (PVC) products. Monoethylhexyl 

phthalate (MEHP), the active monoester metabolite of DEHP, increases release 

of inflammatory mediators, including prostaglandins and inflammatory cytokines 

in various tissues and cell types.   To investigate the effects of MEHP on 

inflammatory responses in the gestational compartment, we assessed MEHP-

stimulated prostaglandin and inflammatory cytokine responses in gestational 

membrane explants, placental macrophage Hofbauer cells, decidual macrophage 

cells, and human placental cells (HTR-8/SVneo). With IRB approval, term 

gestational tissues were obtained from healthy non-laboring term pregnancies 

delivered by cesarean section and first trimester decidual macrophages were 

obtained from women undergoing surgical abortion. Gestational cells and tissues 

were treated for 4, 8, or 24 h with MEHP concentrations ranging from 10-180 !M. 

PTGS2 mRNA expression of was measured in HTR-8 cells with qRT-PCR. 

Treatment with 180 µM MEHP for 4, 8, or 24 h, or 90 µM MEHP for 4 or 8 h 
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significantly induced PTGS2 mRNA expression. Release of total prostaglandin, 

PGE2, PGF2", IL-6, IL-8, IL-1#, TNF-", IL-10, and TGF-# in cell culture medium 

was assessed using enzyme-linked immunosorbant assays (ELISA).  We found 

that 90 or 180 µM MEHP treatment significantly increased release of total 

prostaglandins in placental macrophage Hofbauer cells, decidual macrophages, 

and gestational membrane explants.  Treatment with 90 or 180 µM MEHP also 

increased PGF2", and PGE2 in human primary placental macrophage Hofbauer 

cells. MEHP treatment suppressed IL-10 levels in decidual macrophage cells but 

had no effects on inflammatory cytokine release in other in vitro models. These 

data suggest that MEHP may contribute to initiation of preterm labor through 

increased bioactive prostaglandin synthesis in the gestational compartment. 
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Introduction 

 Diethylhexyl phthalate (DEHP) is a ubiquitous environmental contaminant 

used widely as a plasticizer in polyvinyl chloride (PVC) consumer products.  

Because DEHP is not covalently bound to PVC, it is released into the 

environment where it collects in dust particles or in material contained in PVC 

plastic.  Consequently, human exposure to DEHP is widespread in the general 

population.  A recent study conducted by NHANES found measureable levels of 

monoethylhexyl phthalate (MEHP), the active metabolite of DEHP, in 98% of 

urine samples analyzed.  Because DEHP is rapidly converted to MEHP, which is 

excreted within hours of exposure, the NHANES findings suggest that exposure 

to DEHP is a widespread and daily occurrence.   

Exposure to DEHP is associated with adverse pregnancy outcomes in 

humans.  Specifically, phthalate exposure was associated with decreased 

gestation length in studies of women living in New York City and Italy (Latini, De 

Felice et al. 2003; Adibi, Hauser et al. 2009).  Likewise, phthalate urinary 

metabolites were associated with preterm birth in a Mexico City cohort.  

Conversely, a negative association between urinary DEHP metabolites and 

preterm birth was found in another New York City cohort (Wolff, Engel et al. 

2008).   

 Measureable levels of MEHP are found in human cord blood, placenta, 

and amniotic fluid, suggesting that tissues of the gestational compartment may 

be targets of MEHP toxicity (Mose, Mortensen et al. 2007; Wittassek, Angerer et 
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al. 2009; Lin, Ku et al. 2011).  The placenta and extraplacental membranes of the 

gestational compartment are significant sources of signaling molecules, including 

inflammatory mediators, which are important for parturition.  Specifically, the 

placenta and extraplacental membranes produce and release pro-inflammatory 

cytokines and prostaglandins which together activate parturition events. Pro-

inflammatory cytokines stimulate synthesis of the bio-active prostaglandins PGE2 

and PGF2" in gestational tissues through induction of prostaglandin synthesis 

enzymes, including cyclooxygenase-2 (COX-2) (Hansen, Keelan et al. 1999).  

Bioactive prostaglandins PGE2 and PGF2" released from gestational tissues 

stimulate myometrial contractions (Olson 2003).   Pro-inflammatory cytokines 

tumor-necrosis factor alpha (TNF-") and interleukin-8 (IL-8) also promote cervical 

dilation and membrane rupture through activation of apoptosis and induction of 

matrix metalloproteinase (MMP) expression, respectively (Vadillo-Ortega and 

Estrada-Gutierrez 2005).  Furthermore, increased amniotic fluid levels of pro-

inflammatory cytokines IL-1!, IL-6, IL-8 and TNF-" and prostaglandins PGE2 

and PGF2" are evident in preterm labor (Romero, Manogue et al. 1989; Hillier, 

Witkin et al. 1993; Carroll, Abbas et al. 1995; Lee, Park et al. 2009; Yoneda, 

Shiozaki et al. 2011).  Hence, pro-inflammatory cytokine signaling and 

prostaglandin synthesis pathways work in concert to initiate myometrial 

contractions, cervical ripening, and membrane rupture, leading to initiation of 

human parturition and preterm labor.   

 Recent reports suggest that exposure to DEHP or its metabolite MEHP 

may result in activation of inflammatory responses.  In humans, urinary MEHP or 
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its oxidized metabolites are associated with urinary markers of inflammation 

(Ferguson, Loch-Caruso et al. 2011). In addition, MEHP treatment increases pro-

inflammatory cytokine release in primary neonatal neutrophils, rat alveolar 

macrophages, murine monocyte-macrophages, and human lung epithelial cells, 

suggesting activation of inflammatory responses with MEHP (Jepsen, Abildtrup 

et al. 2004; Rakkestad, Holme et al. 2010; Vetrano, Laskin et al. 2010).  

Similarly, MEHP treatment increases prostaglandin release from cultured bovine 

ovarian and endometrial cells, and increases COX-2 expression in 

spermatocytes and rat and human mast cells (Ledwith, Pauley et al. 1997; 

Onorato, Brown et al. 2008; Oh, Lim et al. 2010; Wang, Shang et al. 2010; Oh 

and Lim 2011).  Previous data collected from our laboratory show that MEHP 

treatment strongly induces expression of PTGS2, the gene for COX-2, in human 

placental cells.  The latter finding contrasts with a report that placental COX-2 

expression and prostaglandin production are decreased in pregnant rats exposed 

to DEHP compared to unexposed animals (Xu, Agrawal et al. 2008).   

 In the present study, we utilize a variety of in vitro model systems to 

examine the effects of MEHP treatment on prostaglandin synthesis and pro-

inflammatory cytokine release in cells and tissues of the gestational 

compartment.  Specifically, we assess MEHP-stimulated responses in first 

trimester placental cells (HTR-8/SVneo), primary decidual and placental 

macrophages, and gestational membrane explants.  
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Materials and Methods 

Reagents. We purchased dimethyl sulfoxide (DMSO), deferoxamine mesylate, 

tert-butyl hydroperoxide (TBHP), and camptothecin from Sigma-Aldrich (St. 

Louis, MO, USA); FBS and charcoal-stripped FBS from HyClone Laboratories 

(Waltham, MA); RPMI 1640, Dulbecco’s Modified Eagle Medium (DMEM), 

penicillin/streptomycin solution, and DPBS from Life Technologies-Invitrogen 

(Carlsbad, CA); recombinant IL-1# from R&D Systems (Minneapolis, MN); and 

MEHP from Accustandard (New Haven, CT). 

Human subjects.  This study was reviewed and approved by the Institutional 

Review Board (IRB) at the University of Michigan.  In compliance with the IRB, 

the investigators did not collect any personal identifiable information, the 

investigators had no direct interaction with the patient, and the tissues would 

otherwise have been discarded. 

Third trimester gestational tissue acquisition. Extraplacental gestational 

membranes and placental tissue were collected from women undergoing normal, 

medically indicated cesarean section delivery at the University of Michigan 

Women’s Hospital Birth Center between 37 and 39 weeks of gestation.  

Exclusion criteria included the following: preeclampsia, diabetes, multifetal 

pregnancy, collagen vascular disease, cervical cerclage, immune-compromised 

conditions, bacterial vaginosis or clinical chorioamnionitis (as noted in the chart 

or suspected by attending physician), prescription of antibiotics in the past two 

weeks (with the exception of routine, pre-operative antibiotics), cigarette 
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smoking, third trimester bleeding, major maternal medical conditions (e.g., 

chronic renal disease, sarcoidosis, hepatitis, HIV), or any condition requiring the 

tissues to undergo pathological examination.  

 Immediately following delivery, extraplacental membranes were excised 

from the placental disk, maintaining a 3-mm margin from the chorionic plate, and 

submerged in warm isotonic Dulbecco’s phosphate buffered saline (DPBS).  For 

placental macrophage isolations, a 5 g sample of tissue was excised from the 

chorionic villous stalk of the placenta and placed in warm DPBS.  Samples were 

then transported to the laboratory for further processing. 

First trimester decidual tissue acquisition. First trimester decidual tissues 

were collected from women age 18-44 undergoing surgical abortion at Planned 

Parenthood of Mid-Michigan. Exclusion criteria included subjects receiving 

immunosuppressive medications, subjects with acute reproductive tract infection, 

and subjects with chronic medical conditions of the skin, heart, lung, liver, 

gastrointestinal tract, endocrine, reproductive, hematological, neurological, 

musculoskeletal, or immune systems. Tissues requiring pathological 

examination, as determined by the physician, were excluded from this study.  

Immediately following the abortion procedure, decidual tissue was separated 

from the gestational sac and fetal tissues by the physician and then placed in 

isotonic DPBS by the researchers.  

Placental and decidual macrophage isolation.  Placental and decidual 

macrophage isolations were performed as described previously (Thelen, Hao et 
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al. 2010).  Before mincing, placental tissues were washed 3 times with DPBS to 

remove blood.  The purity of decidual and placental isolates was between 92-

94%, determined with flow cytometry as cells positive for CD14+.Cells were 

seeded at a density of 200,000-400,000 cells per well in a polystyrene, 24-well 

culture plate in RPMI with antibiotics (100 U/mL penicillin and 100 !g/mL 

streptomycin) and 10% charcoal dextran FBS, and then incubated for 24 h in a 

humidified atmosphere at 37°C and 5% CO2. 

Extraplacental gestational membrane tissue culture and treatment. Under 

aseptic conditions, tissues were washed 3 times in warm DPBS to remove blood 

and 12-mm punches of full-thickness tissue were made using a biopsy punch. 

Punches were then placed, one punch per well, in a 12-well polystyrene culture 

plate containing 1 mL per well of warm DMEM supplemented with 100 units/ml 

penicillin and 100 !g/ml streptomycin.  Following 4 h of culture in a humidified 

atmosphere at 37°C and 5% CO2, medium was removed and replaced with fresh 

medium, and the punches were incubated for an additional 24 h.  The medium 

was replaced and tissue was allowed to incubate for 1 h before treatment.  

Tissue punches were treated in triplicate with medium alone, 0.05% dimethyl 

sulfoxide (DMSO; solvent control), or 22.5, 45, 90, or 180 !M MEHP, or 100 

ng/mL LPS for 24 h.   

Placental and decidual macrophage culture and treatment.   Primary 

macrophage cells were treated with medium alone, 0.05% DMSO (solvent 

control), 90 !M MEHP or 180 !M MEHP in triplicate in RPMI 1640 medium with 

L-glutamine without phenol red supplemented with 10% fetal bovine serum and 
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100 U/mL penicillin and 100 !g/mL streptomycin for 8 or 24 h in a humidified 

atmosphere at 37°C and 5% CO2.  

HTR-8/SVneo cell culture and treatment.  The HTR-8/SVneo (HTR-8) cells 

were a gift from Dr. Charles Graham (Queens University, Ontario, Canada).  The 

HTR-8 cells were isolated from first trimester human placenta and immortalized 

with SV40 antigen (Graham, Hawley et al. 1993).  Similar to their primary 

counterparts, HTR-8 cells express human chorionic gonadropin, stain positive for 

the epithelial marker cytokeratin-7, and retain migratory capabilities in culture 

(Graham, Hawley et al. 1993).  Cells were cultured in RPMI 1640 medium with L-

glutamine without phenol red, supplemented with 10% fetal bovine serum and 

100 U/mL penicillin and 100 !g/mL streptomycin at 37°C in a 5% CO2 humidified 

atmosphere.  Cells were grown to approximately 70-80% confluence before 

treatment. For cytokine and prostaglandin measurements, cells were seeded at 

100,000 cells per well in a 24-well culture plate. Following a 24 h incubation, cells 

were treated with 0.05% DMSO (solvent control), 10, 22.5, 45, 90 or 180 !M 

MEHP, or 100 ng/mL LPS (positive control) for 24 h.  The 24-h time point was 

selected based on a preliminary time-course experiment in which we determined 

that 24 h gave optimal cytokine responses.   For qRT-PCR, cells were seeded 

400,000 cells per well in a 6-well culture plate. Following a 24-h incubation, cells 

were treated with medium alone, 0.05% DMSO (solvent control), 90 or 180 !M 

MEHP for 4, 8, or 24 h.   

Prostaglandin quantification.  Because MEHP increased expression of PTGS2 

mRNA in our previous study (Chapter II), we measured secreted prostaglandin 
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concentrations in HTR-8 cells, primary placental and decidual macrophages, and 

gestational membrane punches.   Total prostaglandin release was measured in 

gestational tissue and primary macrophage cell medium using the Prostaglandin 

Screening EIA kit (Cayman Chemical, Ann Arbor, MI).  Prostaglandin E2 (PGE2) 

concentrations in primary macrophage and HTR-8 cell medium and 

prostaglandin F2" (PGF2") concentrations in primary macrophage medium were 

quantified with enzyme immunoassay following the manufacturer’s 

recommended protocol (EIA; Cayman Chemical, Ann Arbor, MI, USA).   

Cytokine quantification. Interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-1# 

(IL-1#), tumor necrosis factor-" (TNF-"), transforming growth factor beta (TGF-#) 

and interleukin-10 (IL-10) concentrations were quantified in cell and tissue 

medium by enzyme-linked immunosorbent assay (ELISA) following the 

manufacturer’s recommended protocol (Duosets, R&D systems, Minneapolis, 

MN) in the Immunology Core Facility at the University of Michigan Cancer 

Center. 

qRT-PCR for PTGS2 mRNA expression.   After 4, 8, or 24 h of exposure, RNA 

was extracted from HTR-8 cells using the RNeasy Plus Mini Kit (Qiagen), and 

cDNA was synthesized from 1 !g of total RNA using the RT2 First Strand Kit 

(SABiosciences) following the manufacturers' recommended protocols.  Using 

the SABiosciences RT2 First Strand Kit, cDNA was made from 1 !g of mRNA.  

PCR reactions were run with the SYBR Green Mastermix (SABiosciences), with 

5 !L of template. RT- PCR reactions were run on the Bio-Rad CFX96 Real Time 

C1000 thermal cycler following the manufacturer's recommended protocol.   
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Results 

PTGS2 mRNA expression, prostaglandin, and cytokine response in HTR-8 

cells.  Treatment of HTR-8 cells with 180 !M MEHP for 4, 8, or 24 h increased 

PTGS2 expression 5.3 (±0.6), 8.4 (±2.0), and 6.7 (±0.7) fold, respectively (Figure 

3.1). Treatment with 90 !M MEHP for 4 or 8 h resulted in fold increases in 

PTGS2 expression of 2.2 (±0.2) and 3.3 (±0.7), respectively.  PGE2 

concentrations in the medium were below the limit of detection of the assay for all 

treatments assayed (data not shown).  Treatment with MEHP had no effect on IL-

6 or IL-8 release whereas 100 ng/mL LPS, included as a positive control, 

stimulated both IL-6 and IL-8 release (Figure 3.2).  IL-10 and TNF-" 

concentrations were near or below the limit of detection for all treatments 

assayed (data not shown).   

Prostaglandin release in placental macrophage cultures.  Treatment of 

primary placental macrophages with 90 or 180 µM MEHP for 8 or 24 h increased 

total prostaglandin release (Figure 3.3), PGF2! release (Figure 3.4), and PGE2 

release (Figure 3.5) into the culture medium.  Treatment of primary placental 

macrophages from subject 1, 2, or 3 with MEHP significantly increased 

prostaglandin release by 34.5, 11.9, and 4.5 fold, respectively; PGF2! release by 

3.2, 1.3, and 1.4 fold, respectively; and PGE2 release by 2.2 and 1.9 fold, 

respectively.  Solvent control cultures (0.05% DMSO v/v) showed no significant 

changes of total prostaglandin, PGF2!, or PGE2 release compared to cultures 

exposed to medium alone (data not shown).    
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Prostaglandin and cytokine release in decidual macrophage cultures.  

Consistent with the response in placental macrophages, treatment of primary 

decidual macrophages with 90 !M MEHP for 24 h significantly increased total 

prostaglandins release by 1.7 fold (Figure 3.6).  Treatment with MEHP for 8 h 

significantly decreased release of IL-10 into the culture medium (Figure 3.7A) but 

had no effect on IL-6, IL-8, TNF-!, or TGF-! release after 8 or 24 h of treatment 

(Figure 3.7 B, C, D, and E, respectively).  Treatment with10 ng/mL IL-1! (positive 

control) for 8 or 24 h significantly increased release of all cytokines measured 

(Figure 3.7).  

 Prostaglandin and cytokine release in gestational membrane explant 

cultures.  Treatment of gestational membrane punches with 180 !M MEHP for 

24 h significantly increased release of total prostaglandins by 2.5 fold (Figure 3.8 

A).   However, within-tissue variability was high for most of the subjects (Figure 

3.8. B, C, D, and E).  MEHP had no significant effects on release of any of the 

cytokines measured (Figure 3.9).  However, treatment of gestational membrane 

punches for 24 h with 100 ng/mL LPS, included as a positive control, stimulated 

IL-6, IL-8, TNF-!, and IL-10 (Figure 3.9 A, B, C, and D, respectively).  IL-6 and 

IL-8 release in gestational tissues was highly variable both between subjects and 

within subjects (within subject data not shown).The solvent control (0.05% 

DMSO) showed no effects on prostaglandin release compared to medium alone.  

In earlier experiments, we found that 0.05% DMSO showed no effects on IL-6, 

IL-8, or IL-1! release (Miller 2009).  
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Discussion 

 The objective of the current study was to investigate inflammatory 

responses in various gestational tissues and cells following MEHP treatment in 

vitro.  Our results demonstrate that MEHP treatment significantly increased 

release of total prostaglandins, PGF2", and PGE2 in human primary placental 

macrophage Hofbauer cells, and induced PTGS2 mRNA expression in the HTR-

8 human trophoblast cell line.   Furthermore, our data suggest that MEHP 

suppresses levels of the anti-inflammatory cytokine IL-10 in decidual 

macrophage cells, though these results require replication using cells from 

additional subjects. These data suggest that MEHP may contribute to initiation of 

preterm labor through increased bioactive prostaglandin synthesis in the 

gestational compartment. 

Bioactive prostaglandin synthesis is a critical event for the initiation of 

human parturition, mediating such events as myometrial contractions and 

cervical ripening. Inhibition of prostaglandin synthesis with COX-2 inhibitors 

delays pregnancy and prevents preterm labor in rodents, and in vitro exposure to 

bioactive prostaglandins stimulates myometrial contractions and labor (Wikland, 

Lindblom et al. 1984; Lee, Kim et al. 2003; Fischer, Hutchinson et al. 2008). In 

humans, increases in the bioactive prostaglandins PGE2 and PGF2 in tissues 

and fluids of the gestational compartment precede and correspond with preterm 

and term labor (Mazor, Wiznitzer et al. 1990; Lee, Romero et al. 2008). Though 

the placenta is considered the primary producer of prostaglandins in the 

gestational compartment, only one published study exists that has measured 
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prostaglandin release in placental macrophage Hofbauer cells, which reside in 

the lumen of the chorionic villi of the placenta (Wetzka, Clark et al. 1997).  Novel 

to the present study is the finding that MEHP significantly increases release of 

bioactive prostaglandins PGE2 and PGF2" and total prostaglandins in human 

primary term placental macrophage Hofbauer cells at physiologically relevant 

concentrations.  Also novel is our finding that MEHP stimulated release of total 

prostaglandins in term gestational membrane explants and first trimester primary 

decidual macrophage cells.  These results are corroborated by the findings from 

a previous study where MEHP treatment increased release of PGF2" in bovine 

ovarian and endometrial cells (Wang, Shang et al. 2010).  However, our results 

are inconsistent with the findings from a previous study where DEHP exposure 

(750 – 1500 mg/kg/day oral gavage) resulted in decreases in total placental 

prostaglandins in pregnant rats (Xu, Agrawal et al. 2008).  The differences 

between the latter study and the present study prostaglandin responses to MEHP 

could be explained by species differences in prostaglandin synthesis pathway 

responses or differences between in vivo and in vitro systems. Furthermore, the 

doses of DEHP used in the latter study were at least four orders of magnitude 

greater than the 95th percentile of estimated adult human intake of 21 !g/kg/day 

(Koch, Preuss et al. 2006).   

Interestingly, the concentration and magnitude of increase of PGE2 and 

PGF2" release observed with MEHP treatment in placental macrophages did not 

fully explain the increase in total prostaglandin levels observed with MEHP 

treatment.  In addition to PGE2 and PGF2", the prostaglandin screening EIA 
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recognizes arachadonic acid-derived COX-dependent thromboxane and 

prostacyclin as well as prostaglandins synthesized by COX conversion of 

eicosapentaenoic acid and dihomo-gamma-linolenic acid.  Additionally, the 

prostaglandin screening EIA recognizes COX-independent isoprostanes, 8-iso 

prostaglandin F2" (8-iso PGF2") and 8-iso prostaglandin E2 (8-iso PGE2), that 

are synthesized from reactive oxygen species (ROS) oxidation of arachadonic 

acid.  Based on our finding that MEHP strongly induces PTGS2 expression in 

HTR-8 cells, future experiments in placental macrophages could include 

measurements of PTGS2 mRNA expression, COX-2 protein expression, and 

release of COX-2 dependent thromboxane and prostacyclin.  In addition, based 

on our findings from Chapter II that MEHP treatment induces oxidative stress 

responses, we intend to measure release of isoprostanes following MEHP 

treatment of placental macrophages.  Increased urinary isoprostanes early in 

gestation are predictive of preterm labor and preeclampsia; however, the function 

of isoprostanes in the parturition processes is not known (Peter Stein, Scholl et 

al. 2008).  Previous studies demonstrate, though, that isoprostanes are bioactive 

and interact with excitatory receptors, similar to PGE2 and PGF2 (Hoffman, 

Moore et al. 1997; Friel, Sexton et al. 2006).  Similarly, we plan to further 

investigate PGE2, PGF2", and isoprostane release in the gestational membrane 

explant model to identify specific prostaglandin increases that may explain the 

observed increase in total prostaglandins. 

Pro-inflammatory cytokines are important mediators of both preterm and 

normal human parturition.  A widely discussed model for labor initiation describes 
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labor as an inflammatory event, with pro-inflammatory cytokine induction.  Pro-

inflammatory cytokines mediate prostaglandin synthesis and release, matrix 

metalloproteinase activation and expression, and recruitment of inflammatory 

cells, leading to labor events including membrane rupture, cervical ripening, and 

uterine contractions (Kamel 2010).  In our gestational tissue and cell models, 

MEHP stimulated prostaglandin synthesis without effects on pro-inflammatory 

cytokine release.  The latter finding suggests that MEHP may work through a 

non-traditional, pro-inflammatory cytokine independent pathway to initiate 

prostaglandin synthesis.  Previous studies from other laboratories demonstrate 

that antioxidant treatment prevents COX-2 induction and PGE2 synthesis and 

release (Mögel, Baumann et al. 2011; Temma-Asano, Tskitishvili et al. 2011).  In 

addition, results from Chapter II of this thesis demonstrate that MEHP induces 

ROS generation in gestational cells.  Based on the latter two findings, we 

propose that MEHP may stimulate prostaglandin synthesis through ROS 

generation.  Alternatively, PPARs, for which MEHP is a ligand, can initiate 

prostaglandin synthesis by interacting with the PTGS2 promoter to induce 

PTGS2 gene expression (Kusu, Oishi et al. 2008).  However, the effects of 

PPARs on PTGS2 gene expression are cell-type specific and in some cases 

PPAR activation can result in suppression of PTGS2 expression (Kang, Mbonye 

et al. 2007; Scoditti, Massaro et al. 2010).  Further research, beyond the scope of 

the present study, is needed to elucidate these early events in the up regulation 

of prostaglandin synthesis. 
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Although we observed no changes in pro-inflammatory cytokine release 

with MEHP in any of our in vitro models, we did observe a significant suppression 

of IL-10 release in first-trimester decidual macrophages with MEHP treatment.  

This novel finding suggests that exposure to MEHP during the first trimester of 

pregnancy may have effects on the ability of macrophages to maintain sufficient 

IL-10 levels necessary for protection from innate immune activation and fetal 

tissue rejection (Nagamatsu and Schust 2010).  IL-10 deficiency or 

polymorphism is associated with preeclampsia, miscarriage, and preterm birth, 

and DEHP exposure has recently been associated with early pregnancy loss and 

preterm birth in humans (Hennessy, Pilmore et al. 1999; Kaur 2011; Ruiz, Jallo et 

al. 2012).  Due to difficulty in obtaining first-trimester tissues, we only have data 

from one subject demonstrating MEHP suppression of IL-10. Further 

experiments in isolates from additional subjects are necessary to determine 

whether or not these effects are reproducible.  Furthermore, because IL-10 is 

important for suppression of innate immune responses and women with IL-10 

polymorphisms are at greater risk of preterm birth, future studies could 

investigate the effects of MEHP treatment on term decidual macrophage IL-10 

secretion.    

The findings from this study suggest a possible mechanism whereby 

MEHP exposure during pregnancy could stimulate myometrial contractions and 

ultimately preterm labor through induction of bio-active prostaglandin synthesis.  

Based on our findings, future studies investigating the associations between 
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PGE2 and PGF2" urinary metabolite levels, MEHP exposure, and preterm birth 

in human populations are warranted.  
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Figure 3.1.  MEHP treatment effects on mRNA expression of PTGS2 in HTR-8 cells.  
Cells were treated for 4, 8, or 24 h with medium alone, DMSO (0.05% v/v; solvent 
control), 90 !M MEHP or 180 !M MEHP, and then qRT-PCR reactions were run as 
described in the “Materials and Methods” section.  Solvent control cultures showed no 
significant changes of PTGS2 expression compared to cultures exposed to medium 
alone (data not shown).  Bars represent means ± SEs (n = 3).  *p<0.05, compared to 
solvent controls. 
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Figure 3.2.  MEHP treatment effects on cytokine release from HTR-8 cells into culture 
medium.  Cells were treated for 24 h with medium alone, DMSO (0.05% v/v; solvent 
control), or 10, 22.5, 45, 90 or 180 !M MEHP.  A) IL-6 release in HTR-8 cells.  B) IL-8 
release in HTR-8 cells. IL-6 and IL-8 ELISAs were performed as described in “Materials 
and Methods” section.  Solvent control cultures (0.05% DMSO v/v) showed no significant 
changes of cytokine release compared to cultures exposed to medium alone (data not 
shown).  Bars represent means ± SEs (n = 3-4 experiments).  *p<0.05, compared to 
solvent controls. 

 

 

 

 

 



 
 

83 

 

 

 

0

500

1000

1500

MEHP
Solvent control

*

*
*

Subject 2 31

MEHP (µM) 180 18090

Time (h) 24 248

pr
os

ta
gl

an
di

n 
co

nc
en

tr
at

io
n

(p
g/

m
L)

 

Figure 3.3. MEHP treatment effects on total prostaglandin release from primary 
placental macrophages into cell culture medium. Data are shown from three subjects.  
Cells were treated for 8 h (Subject 2) or 24 h (Subjects 1 and 3) with medium alone, 
DMSO (0.05% v/v; solvent control), 90 !M MEHP or 180 !M MEHP.  The prostaglandin 
screening EIA was performed as described in the “Materials and Methods”.  Data points 
represent individual wells for each subject: open circles are solvent control values and 
filled circle are from cultures exposure to MEHP (n = 3 wells per treatment). Horizontal 
lines indicate mean values for each treatment within each subject.  *p<0.05, compared 
to solvent controls. 
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Figure 3.4.  MEHP treatment effects on PGF2" release from primary placental 
macrophages into cell culture medium. Data are shown from three subjects.  Cells were 
treated for 8 h (Subject 2) or 24 h (Subject 1 and 3) with medium alone, DMSO (0.05% 
v/v; solvent control), 90 !M MEHP or 180 !M MEHP.  The PGF2" EIA was performed as 
described in the “Materials and Methods” section.  Data points represent individual wells 
for each subject: open circles are solvent control values and filled circle are from cultures 
exposure to MEHP (n = 3 wells per treatment). Horizontal lines indicate mean values for 
each treatment within each subject.  *p<0.05, compared to solvent controls. 
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Figure 3.5.  MEHP treatment effects on PGE2 release from primary placental 
macrophages into cell culture medium.  Data are shown from two subjects.  Cells were 
treated for 8 h (Subject 2) or 24 h (Subject 1) with medium alone, DMSO (0.05% v/v; 
solvent control), 90 or 180 !M MEHP.  The PGE2 EIA was performed as described in 
the “Materials and Methods” section.  Data points represent individual wells for each 
subject: open circles are solvent control values and filled circle are from cultures 
exposure to MEHP (n = 3 wells per treatment). Horizontal lines indicate mean values for 
each treatment within each subject.  *p<0.05, compared to solvent controls. 

 

 

 

 

 



 
 

86 

 

 

 

med
ium al

one

so
lve

nt c
ontro

l

M M
EHP

µ
90

 

0

1000

2000

3000

4000

*
pr

os
ta

gl
an

di
n 

co
nc

en
tr

at
io

n 
(p

g/
m

L)

 

Figure 3.6.  MEHP treatment effects on total prostaglandin release from primary 
decidual macrophage cell medium.  Cells isolated from one subject were treated for 24 h 
with medium alone, DMSO (0.05% v/v; solvent control), or 90 !M MEHP.  The 
prostaglandin screening EIA was performed as described in “Materials and Methods” 
section (means ± SE, n = 3 wells per treatment).  Solvent control cultures (0.05% DMSO 
v/v) showed no significant changes of total prostaglandin release compared to medium 
alone.   *p<0.05, comparing treatments to solvent control. 
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Figure 3.7. MEHP treatment effects on cytokine release from decidual macrophages 
into cell culture medium: A) IL-10; B) IL-6; C) IL-8; D) TNF-"; and E) TGF-#. Cells 
were treated for 8 h or 24 h with medium alone, DMSO (0.05% v/v; solvent control), 
90 !M MEHP or IL-1# (positive control), and then cytokine concentrations in the 
culture medium were determined by ELISA as described in the “Materials and 
Methods” section.  Data shown are from macrophages collected from one subject.  
*p<0.05, comparing treatments to solvent control. 
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Figure 3.8.  MEHP treatment effects on total prostaglandin release in gestational 
membrane explant medium. Figure 4A shows the subject averages for DMSO 
(0.05% v/v; solvent control), and 180 !M MEHP.  Figures B- E show the individual 
replicate punch measurements for each subject (n=3 punches per subject).  Cells 
were treated for 24 h with medium alone, DMSO (0.05% v/v; solvent control), 180 
!M MEHP, or 100 ng/mL LPS.  The prostaglandin screening EIA was performed as 
described in the “Materials and Methods” section. (means ± SE, n = 4 subjects.  
Figures B-E show data points representing 3 individual wells for each subject (n = 3 
wells per treatment). Horizontal lines indicate mean values for each treatment within 
each subject.  Solvent control cultures (0.05% DMSO v/v) showed no significant 
changes of prostaglandin release compared to medium alone (n=2 subjects).  
*p<0.05, comparing treatments to solvent control. 
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Figure 3.9.  MEHP treatment effects on cytokine release from gestational membrane 
explants into cell culture medium: A) IL-6; B) IL-8; C) TNF-"; D); E) IL-10; and F)TGF-#. 
Punches were treated for 24 h with medium alone, DMSO (0.05% v/v; solvent control), 
22.5, 45, 90 or 180 !M MEHP, or 100 ng/mL LPS and.  Cytokine ELISAs were 
performed as described in the “Materials and Methods” section.  Each black circle 
represents the mean of three wells from one subject.  *p<0.05, comparing treatments to 
solvent control. 
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 CHAPTER IV:  
 
 

Discussion 

The present study is the first to identify cellular mechanisms by which 

MEHP may contribute to adverse pregnancy outcomes in human in vitro 

gestational cell and tissue models. Our results demonstrate that MEHP induces 

oxidative stress responses ranging from generation of hydroxyl radical, increased 

DNA damage, and modification of redox sensitive gene expression to activation 

of apoptotic proteases caspase 3/7. In addition, MEHP treatment stimulated 

prostaglandin synthesis, evidenced by increases in total prostaglandin release 

from immortalized human placental cells, decidual macrophages, placental 

macrophage Hofbauer cells, and gestational membrane explants. Moreover, 

MEHP increased release from placental macrophage Hofbauer cells of PGE2 

and PGF2!, bioactive prostaglandins that promote uterine contractions. 

Though the importance of prostaglandin synthesis in the initiation of 

parturition is clear, the role of oxidative stress responses in labor is not well 

understood.  Association studies suggest a link between oxidative stress 

endpoints and preterm birth; however, few studies examine generation of ROS 

as a mediator of parturition pathways (Al-Gubory, Fowler et al. 2010; Pathak, 

Suke et al. 2010; Menon, Fortunato et al. 2011; Clerici, Slavescu et al. 2012).  
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Some insight can be gained from N-acetyl cysteine antioxidant pretreatment 

studies demonstrating that ROS species generation is necessary for LPS-

induced preterm birth in mice and necessary for LPS-stimulated pro-inflammatory 

cytokine and prostaglandin release in gestational membrane explant cultures  

(Buhimschi, Buhimschi et al. 2003; Lappas, Permezel et al. 2003) .  Similarly, 

oxidative insult can induce apoptosis in placental and gestational membrane 

chorionic trophoblast cells (Moll, Jones et al. 2007; Rogers, Ouellet et al. 2008; 

Yuan, Ohyama et al. 2008). Results from our laboratory suggest that treatment 

with the prototypical chemical oxidant, TBHP stimulates parturition-related 

pathways, including prostaglandin synthesis, apoptosis, and signal transduction 

in human placental cells, suggesting that ROS signaling may be important for 

initiation of these events (Cassandra Korte, personal communication).  

Furthermore, anti-oxidant pretreatment prevents MEHP-induced apoptosis in 

male germ cells and TK lymphoblasts and prevents DEHP-induced antral follicle 

injury in mice, suggesting that toxicologic and pathologic outcomes of MEHP 

treatment can be mediated through ROS generation (Rosado-Berrios, Velez et 

al. 2011; Wang, Craig et al. 2012). 

Although not directly tested, the data in this dissertation are consistent 

with the following proposed model: that ROS generation stimulates prostaglandin 

synthesis, apoptosis, redox-sensitive gene expression and oxidative DNA 

damage in gestational tissues and cells, promoting the events of parturition 

(Figure 4.1).  PTGS2 gene expression is controlled by a number of transcription 

factors that can be activated by ROS species , including AP-1, SP-1, and NF-!B 
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(Kang, Mbonye et al. 2007).  These transcription factors can be activated by 

ROS through oxidation of redox-sensitive residues, such as cysteines existing 

within the protein itself, or through activation or modification by ROS of inhibitory 

proteins or upstream regulatory factors.   For example, intracellular ROS 

generation resulting from an oxidative stimulus can lead to dissociation and 

degradation of the NF-!B inhibitory protein I!B, resulting in migration of the NF-

!B subunit to the nucleus where it can initiate transcription (Allen and Tresini 

2000).  Similarly, ROS can inactivate phosphatases through direct oxidation of 

cysteine residues, resulting in increased kinase activity (Ma 2010); this signal can 

then be propagated to downstream kinase-dependent transcription factors, such 

as AP-1, NF-!B, and SP-1 (Allen and Tresini 2000; Ma 2010).  Additionally, 

executioner caspases, including caspase 3/7 can be directly activated by ROS 

through redox sensitive cysteines, or indirectly through p53 activation following 

oxidative damage to DNA (Circu and Aw 2010).   

 Our finding that MEHP treatment increases ROS generation in human 

placental cells is corroborated by results from other studies demonstrating ROS 

generation with MEHP in cells and tissues from other organ systems.  Despite 

the evidence linking MEHP exposure to increases in ROS generation, the 

mechanism underlying this occurrence is unknown.  Because MEHP can activate 

the nuclear receptor PPAR through direct binding, some authors postulate that 

MEHP may increase hydrogen peroxide generation through peroxisome 

proliferation.  This latter hypothesis is challenged, however, by studies 

demonstrating that MEHP-induced ROS generation is independent of PPAR"  
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(Rusyn, Kadiiska et al. 2001; Kamijo, Hora et al. 2007).  MEHP can also affect 

mitochondrial permeability, resulting in leakage of superoxide anion into the 

cytoplasm; however, it is unknown how MEHP affects mitochondrial permeability 

(Rosado-Berrios, Vélez et al. 2011).  Additionally, cytochrome P450 metabolism 

of MEHP to its oxidized metabolites may generate superoxide and thereby 

represent another possible mechanism of MEHP-induced ROS generation. 

Lastly, because some phthalates can act as iron chelators, some phthalates, 

including MEHP, may increase Fenton-dependent hydroxyl radical production 

through facilitation of iron transport into and within the cell (Chang and Zylstra 

1999).  Further work is need to elucidate the mechanism of MEHP induced ROS 

generation. 

 With the exception of total prostaglandin release and cytokine analysis in 

whole tissue explants, the majority of this work was performed in cell culture 

models.  The benefits of using cell culture models to study mechanisms of 

toxicity include ease of studying cell signaling mechanisms and measurement of 

ROS generation using cell-permeable, ROS-sensitive probes.  Furthermore, as 

evidenced by the work in this proposal, primary cell isolates exhibit less within-

subject variability in cytokine and prostaglandin responses as compared to 

gestational tissue explants.  We recognize, however, that important cell-cell and 

tissue-tissue interactions may be missed when using cell culture models.  

Therefore, future studies should include measurements of oxidative stress 

responses with MEHP in whole tissue and in vivo exposure scenarios. Recent 

development of a photostable, tissue-permeable hydrocyanine ROS dye provides 
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possibilities for studying ROS generation both in vivo and in whole tissue culture 

(Kim, Choi et al. 2011; Selvam, Kundu et al. 2011).  Furthermore, measurement 

of oxidative stress endpoints, including oxidized thymine measurements, 

caspase activity, and redox-sensitive gene expression can be applied to in vivo 

and whole tissue explant MEHP exposure scenarios.   

The mechanisms of MEHP-induced toxicity identified in the present study 

can inform future molecular epidemiology studies to further strengthen the link 

between MEHP exposure and adverse pregnancy outcomes, including preterm 

birth. To strengthen the hypothesis that MEHP targets the gestational 

compartment, further studies could correlate urinary or gestational tissue MEHP 

concentrations with measurements of oxidative stress markers, including 8-

hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA) and antioxidant 

protein expression, in addition to prostaglandin pathway factors including COX-2 

protein and PTGS2 mRNA.  Furthermore, circulating or urinary measures of 8-

OHdG, MDA, antioxidants, and prostaglandin metabolites can also be correlated 

with MEHP exposure and preterm birth (Minuz, Covi et al. 1988).  

In the current study, we were interested in effects of MEHP on preterm 

birth related responses relevant to the third trimester of gestation. Due to the 

limited availability of immortalized human gestational cells with normal 

chromosome number and phenotypes similar to primary cells or term primary 

macrophage cells, we chose to work with the HTR-8 cells and primary decidual 

macrophages, which originate from first trimester placenta, to study mechanisms 

relevant to parturition.  We recognize, however, that the mechanisms studied in 
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this dissertation may be relevant to first-trimester adverse pregnancy outcomes 

as well, including preeclampsia and early pregnancy loss.  As described in 

Chapter I, preeclampsia is linked to oxidative stress and apoptosis.  In addition, 

PGE2 promotes migration of first trimester trophoblast cells in culture, a process 

important for proper vascularization of the placenta (Nicola, Lala et al. 2008).  

Furthermore, as described in Chapter II, IL-10 release by decidual macrophages 

helps to prevent maternal tissue rejection of the fetal allograft, a pathology linked 

to early pregnancy loss (Nagamatsu and Schust 2010).  Future studies could 

elaborate on apoptosis, oxidative stress, and prostaglandins as mechanisms of 

MEHP-induced, first-trimester adverse pregnancy outcomes. 

The concentrations of MEHP tested in the present study are comparable 

to concentrations of MEHP tested for ROS generation in previous studies in other 

cells types.  Furthermore, the concentrations at which MEHP induced ROS 

production are comparable to the higher range of MEHP concentrations found in 

the gestational compartment.  Specifically, the concentrations used in the current 

study were within an order of magnitude of reported human umbilical cord blood 

concentrations that range from 0.01 µM to 35 µM (Latini, De Felice et al. 2003; 

Lin, Zheng et al. 2008; Lin, Wang et al. 2011).  Concentrations of MEHP in 

placental tissue range from 0 to 14.96 ug/kg (n=5 subjects) (Mose, Mortensen et 

al. 2007).  Further studies with larger samples sizes are needed to more 

accurately assess placental exposure.   

In summary, the findings from this study suggest a possible mechanism 

whereby MEHP exposure during pregnancy could contribute to preterm birth 
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through induction of bio-active prostaglandin synthesis, apoptosis, and oxidative 

stress.  Based on these findings, future studies investigating the associations 

between the latter endpoints, MEHP exposure, and preterm birth in human 

populations are warranted.   Furthermore, prostaglandin synthesis, oxidative 

stress and apoptosis may represent mechanisms by which other environmental 

pollutants could contribute to preterm birth.  Therefore, this work warrants future 

studies investigating the effects of other environmental pollutants on 

prostaglandin synthesis, oxidative stress, and apoptosis in human gestational 

tissues and cells.   
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Figure 4.1.  Conceptual model of MEHP effects in gestational tissues and cells. Reactive 
oxygen species (ROS) generation stimulates prostaglandin synthesis, apoptosis, redox-sensitive 
gene expression and oxidative DNA damage in gestational tissues and cells, promoting the 
events of parturition.  Endpoints that were directly tested in this dissertation are highlighted in 
bold.   
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