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Molecular inhibition of the ErbB signaling pathway represents a
promising cancer treatment strategy. Preclinical studies suggest
that enhancement of antitumor activity can be achieved by maxi-
mizing ErbB signaling inhibition. Using cDNA microarrays, we
identified histone deacetylase (HDAC) inhibitors as having strong
potential to enhance the effects of anti-ErbB agents. Studies using
a 20,000 element (20K) cDNA microarray demonstrate decreased
transcript expression of ErbB1 (epidermal growth factor recep-
tor) and ErbB2 in DU145 (prostate) and ErbB2 in SKBr3 (breast)
cancer cell lines. Additional changes in the DU145 gene expression
profile with potential interaction to ErbB signaling include down-
regulation of caveolin-1 and hypoxia inducible factor 1-a (HIF1-
a), and up-regulation of gelsolin, p19(INK4D) and Nur77. Find-
ings were validated using real time RT-PCR and Western blot
analysis. Enhanced proliferative inhibition, apoptosis induction
and signaling inhibition were demonstrated when combining
HDAC inhibition with ErbB blockade. These results suggest that
used cooperatively, anti-ErbB agents and HDAC inhibitors may
offer a promising strategy of dual targeted therapy. Additionally,
microarray data suggest that the beneficial interaction of these
agents may not derive solely from modulation of ErbB expression,
but may result from effects on other oncogenic processes including
angiogenesis, invasion and cell cycle kinetics.
' 2005 Wiley-Liss, Inc.
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The ErbB family of receptor tyrosine kinases represents impor-
tant mediators of cell growth, differentiation and survival. These
cell membrane receptors are activated following dimerization
mediated by their respective ligands. Once activated, intracellular
tyrosine kinase activity elicits diverse mitogenic and prosurvival
signaling mediated through downstream targets including PI3
kinase, AKT, RAS/RAF and MAP kinase, among others. Hetero-
dimerization between family members creates a multilayered net-
work of interactions, which may allow simultaneous activation of
signaling pathways unique to each receptor subtype.1,2

Of the ErbB family of receptors, molecular inhibition of ErbB1
(epidermal growth factor receptor, EGFR) and ErbB2 have been
the most extensively studied as promising anticancer treatment
strategies.3–6 A broad series of agents have been developed that
target either the extracellular domain or the intracellular tyrosine
kinase domain of the ErbB receptors. Additionally, there has been
increased interest in the network interaction between the individ-
ual members of the ErbB family. It is hypothesized that ligand
dependent horizontal interactions between ErbB receptors can reg-
ulate the intensity of mitogenic signaling as well as serve as a
mechanism to evade resistance to therapy targeting a single ErbB
receptor.2

Despite high promise for molecular inhibitors of ErbB signaling
as anticancer agents, early clinical trials have shown mixed
results. For example, although Phase II trials of the small molecule
EGFR inhibitors gefitinib and erlotinib showed highly favorable
monotherapy response rates in refractory lung cancer patients,7,8

subsequent Phase III studies of these agents delivered in combina-
tion with cytotoxic chemotherapy as first line therapy showed no
overall survival impact.9 Therefore, considerable effort is cur-
rently being focused to better recognize specific molecular foot-
prints of ErbB responsive tumors, and develop novel strategies to
potentiate the antitumor activity of ErbB inhibitors.

One class of agents with strong potential for enhancing the
effects of ErbB inhibitors are the histone deacetylase (HDAC)
inhibitors. inhibitors are a promising new class of anticancer
agents with demonstrated activity in a variety of solid and hemato-
logic tumors, including breast, prostate, head and neck, brain, lung
and leukemia.10–12 Encouraging results have been reported from
Phase I clinical trials with various HDAC inhibitors, and Phase II
trials have been initiated in cutaneous T-cell lymphoma, periph-
eral T-cell lymphoma and recurrent or metastatic squamous cell
cancer of the head and neck (H&N SCC).

We recently conducted preliminary screening experiments
using cDNA microarrays to identify a cohort of genes differen-
tially regulated by HDAC inhibition in human breast and prostate
cancer. This high throughput analysis identified potential cross-
talk with ErbB family members, whose expression was down-
regulated following HDAC inhibition. The present study examines
the capacity of HDAC inhibition to down-modulate both EGFR
and ErbB2 expression and thereby potentiate the antitumor activ-
ity of ErbB inhibition.

Material and methods

Chemicals

Cell culture media were obtained from Life Technologies
(Gaithersburg, MD). CI-1033 was generously provided by Pfizer
Global Research (Ann Arbor, MI). Trichostatin A (TSA) was
obtained from Sigma Chemical (St. Louis, MO), suberoylanilide
hydroxamic acid (SAHA) from Alexis Biochemicals (Lausen,
Switzerland), apicidin from Calbiochem (La Jolla, CA) and val-
proic acid from Sigma Chemical (St. Louis, MO). Primary anti-
bodies against EGFR, PARP and AKT were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA); pEGFR-1068 and pAKT
were obtained from Cell Signaling Technologies (Beverly, MA);
HER2 and p21/waf-1 were obtained from Neomarker (Freemont,
CA) and a-tubulin was obtained from Oncogene Research Prod-
ucts (Cambridge, MA). ECL1 chemiluminescence detection sys-
tem was purchased from Amersham (Arlington Heights, IL). All
other chemicals were purchased from Sigma Chemical (St. Louis,
MO).
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Cell lines

Human LnCaP, DU145 and PC3 cells were obtained from the
American Type Culture Collection (Rockville, MD) and main-
tained in complete culture media consisting of RPMI (7.4) supple-
mented with 10% fetal bovine serum and 1% penicillin and strep-
tomycin. Human SKBr3 and MCF-7 cells were obtained from the
American Type Culture Collection (Rockville, MD) and main-
tained in complete culture media consisting of DMEM (7.4) sup-
plemented with 10% fetal bovine serum and 1% penicillin and
streptomycin. The UM-SCC6 cell line (base of tongue) was pro-
vided by Dr. Thomas E. Carey (University of Michigan) and
maintained in complete culture media consisting of DMEM (7.4)
supplemented with 10% fetal bovine serum, 1% hydrocortisone
and 1% penicillin and streptomycin.

DNA microarray

DNA microarray analysis of gene expression was done essen-
tially, as described by the Brown and Derisi Labs (available at
www.microarrays.org). The sequence-verified cDNA clones on
the human cDNA microarray are available from Research Genetics
(www.resgen.com). Purified PCR products, generated using the clone
inserts as template, were spotted onto poly-L-lysine-coated micro-
scope slides, using an Omnigrid robotic arrayer (GeneMachines, CA)
equipped with quill-type pins (Majer Scientific, AZ).

Cells treated with HDAC inhibitor were solubilized and homo-
genized in Trizol (Invitrogen, Carlsbad, CA) and total RNA was
isolated, according to manufacturer instructions. Once isolated,
mRNA was used as a template for cDNA generation using reverse
transcriptase (RT). Inclusion of amino allyl-dUTP in the RT reac-
tion allowed for subsequent fluorescent labeling of cDNA using
monofunctional NHS ester dyes (as described at www.microarray-
s.org). In each experiment, fluorescent cDNA probes were pre-
pared from an experimental mRNA sample (Cy5-labeled) and
a control mRNA sample (Cy3-labeled) isolated from untreated
cells. The experimental cDNA sample was coupled to a mono-
functional Cy5 NHS-ester and the reference cDNA sample to a
Cy3 NHS-ester (Amersham). The labeled probes were then hybri-
dized to 20K human cDNA microarrays. Fluorescent images of
hybridized microarrays were obtained using a GenePix 4000A
microarray scanner (www.axon.com, Axon Instruments, CA). The
Cy5/Cy3 ratio was collected, and the data sets for each experiment
were queried for genes that were differentially expressed in the
drug treated versus control cell lines (ratios greater than 1.5 or
less than 0.75).13 Results represent an average of 3 independent
experiments.

Quantitative real-time PCR (QPCR)

To further validate microarray findings, we performed quantita-
tive QPCR using the SYBR green dye as previously described.14

Briefly, 1 lg of total RNA isolated from each sample was reverse
transcribed into first strand cDNA. Threshold levels were set for
each experiment during the exponential phase of the PCR reaction,
using the SDS v 1.7 software (Applied Biosystems, Foster City,
CA), and the quantity of DNA in each sample was calculated by
interpolating its Ct value versus a standard curve of Ct values
obtained from serially diluted cDNA from a mixture of all of the
samples, using Microsoft Excel. All standard curves had R2 values
� 0.99 over 3 orders of magnitude. The calculated quantity of the
target gene for each sample was then divided by the average cal-
culated quantity of the housekeeping genes glyceraldehyde-3
phosphate dehydrogenase (GAPD) and hydroxymethylbilane syn-
thase (HMBS) corresponding to each sample to give a relative
expression of the target gene for each sample. Oligonucleotide pri-
mers for EGFR,15 ErbB2,16 and HMBS and GAPD17 were as
described. Oligonucleotide primers for caveolin-1, hypoxia indu-
cible factor 1-a (HIF1-a), p19(INK4D) and Nur77 are available
upon request. All experiments were performed in duplicate.

Cell cycle analysis

Cells were analyzed after 24 hr exposure to HDAC inhibitors
SAHA, TSA and valproic acid. Cells were harvested by trypsini-
zation, washed with PBS, fixed and stored at 4�C before DNA
analysis. After removal of ethanol by centrifugation, cells were
incubated with phosphate–citric acid buffer at room temperature
for 45 min. After centrifugation, cells were then stained with a
propidium iodide (PI) solution for 24 hr. Stained nuclei were ana-
lyzed for DNA-PI fluorescence using a Becton Dickinson FACS-
can flow cytometer. Resulting DNA distributions were analyzed
by Modfit (Verity Software House, Topsham, ME) for the propor-
tion of cells in sub-G0, G1, S and G2-M phases of the cell cycle.

Cell proliferation assay

Exponentially growing tumor cells were plated in 6-well plates
and incubated in medium containing vehicle control, CI-1033,
SAHA or both drugs in combination for 72 hr at 37�C. Mono-
layers were then washed with PBS and fixed/stained with 0.5%
crystal violet. Plates were air-dried overnight and dye was eluted
with 0.1 M sodium citrate (pH 4.2) in ethanol (1:1). Elution was
transferred to 96-well plates, and the absorbance was read at
540 nm to determine cell viability. Results presented are an aver-
age of 2 independent experiments, each performed in duplicate.

Analysis of apoptosis by fluorescein-labeled caspase inhibitors

Cells were seeded in 100-mm dishes at a density of 6 3 105

cells/plate and incubated in medium containing vehicle control,
CI-1033, SAHA or both drugs in combination for 24 hr at 37�C.
Cells were harvested by trypsinization, centrifuged and the cell
pellet resuspended to a final concentration of 2 3 106 cells/ml.
Caspase activity was analyzed by fluorescence spectroscopy,
according to manufacturer protocol (Serologicals, Norcross, GA).
Briefly, 300 ll of cells were incubated with 13 fluorescein-
labeled pan-caspase inhibitor FAM-VAD-FMK18 at 37�C for 1 hr
in a humidified atmosphere of 5% CO2. Cells were then washed
with buffer and resuspended in 320 ll PBS. A 100 ll aliquot of
the cell suspension was transferred to a black 96-well plate in trip-
licate. Fluorescence was analyzed on a SpectraMax fluorescence
plate reader at 550 nm excitation and 600 nm emission wave-
lengths. Data represent results averaged from 2 independent
experiments.

Immunoblot analysis

Following treatment, cells were lysed with RIPA buffer and
sonicated in complete proteinase inhibitor cocktail (Roche, Indian-
apolis, IN) and sodium orthovanadate. Fifteen microgram of pro-
tein extracts were mixed with SDS sample buffer and electrophor-
esed onto a 10% SDS-polyacrylamide gel under reducing condi-
tions. The separated proteins were transferred onto nitrocellulose
membranes (Amersham Pharmacia Biotech, Piscataway, NJ). The
membrane was incubated for 1 hr in blocking buffer (Tris--buf-
fered saline with 0.1% Tween (TBS-T) and 5% nonfat dry milk).
The membranes were then incubated with specific primary anti-
bodies. After washing 3 times with TBS-T buffer, the membrane
was incubated with horseradish peroxidase-linked secondary anti-
body (Amersham Pharmacia Biotech, Piscataway, NJ) at 1:5,000
dilution for 1 hr at room temperature. The signals were visualized
with the ECL1 detection system and autoradiography. For a-
tubulin Western blots, the antibody-probed membranes were
stripped with Western Re-Probe buffer (Geno-tech, St. Louis, MO)
and blocked in Tris-buffered saline with 0.1% Tween (TBS-T) with
5% nonfat dry milk and incubated with rabbit anti-a-tubulin anti-
body. Signal quantification was performed using ImageQuant v1.2
(Molecular Dynamics). All results were normalized relative to load-
ing controls.

Statistics

Combination treatment analysis of cellular proliferation was
performed by determining a combination index (CI) based on the
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TABLE I – CONSOLIDATED LIST OF GENES DEMONSTRATING SIGNIFICANT UP-REGULATION (>1.75) OR DOWN-
REGULATION (<0.5) IN THE DU145 CELL LINE FOLLOWING 12 OR 24 HR EXPOSURE TO SAHA (1.0 lM)

12 hr 24 hr

Gene up-regulation
Connective tissue growth factor 3.312 6.053
Sialidase 1 (lysosomal sialidase) 3.91 5.027
Amphiregulin (schwannoma-derived growth factor) 3.105 4.801
Nur77 2.513 4.701
Early growth response 1 2.214 4.231
Metallothionein 1L 4.714 4.012
Nebulin 1.245 3.941
H4 histone, family 2 2.166 3.841
H1 histone family, member 0 5.343 3.185
Ubiquitin carrier protein 1.799 2.948
DNA-damage-inducible transcript 3 1.507 2.862
Metallothionein 1H 3.282 2.794
H2B histone family, member Q 1.067 2.779
Vanin 3 0.891 2.666
Legumain 2.277 2.446
Zinc finger protein 205 1.322 2.412
Microtubule-associated protein 1 light chain 3b 1.985 2.374
Phosphatidylinositol 4-kinase type II 2.129 2.158
Calmodulin-I (CALM1) 2.32 2.125
Early growth response 2 1.274 2.11
Immediate early protein 1.232 2.094
Microtubule-associated protein, RP/EB family, member 2 2.503 2.081
BCL2/adenovirus E1B 1.601 2.065
Clusterin 1.531 2.041
Gelsolin 2.1 1.945
P19(INK4D) 1.704 1.912
Heat shock 70kDa protein 1-like 2.806 1.231

Gene down-regulation
Myosin IB 0.959 0.561
ErbB2 0.462 0.51
DR1-associated protein 1 (negative cofactor 2a) 0.772 0.5
Phosphatidic acid phosphatase type 2B 0.664 0.5
Ubiquilin 1 0.911 0.497
Epiregulin 0.728 0.496
Protein tyrosine phosphatase, receptor type, G 0.982 0.494
NRAS-related gene 0.671 0.489
Neurolysin (metallopeptidase M3 family) 1.06 0.481
SUMO-1-specific protease 0.645 0.479
RAB6A, member RAS oncogene family 0.78 0.478
A kinase (PRKA) anchor protein 2 0.817 0.477
EGFR 0.753 0.476
v-myc 0.74 0.472
Retinoblastoma binding protein 4 0.841 0.47
RAD21 homolog (S. pombe) 0.597 0.463
Zinc finger protein 36 0.628 0.455
Mitogen-activated protein kinase 6 0.537 0.449
Tumor endothelial marker 6 0.604 0.443
Son of sevenless homolog 2 1.153 0.435
EphA1 0.655 0.43
Cyclin D1 0.462 0.427
EBP50-PDZ interactor of 64 kD 0.483 0.418
Transforming growth factor, b2 0.465 0.413
Zinc finger protein 146 0.635 0.412
Cell division cycle 25B 0.621 0.4
Tumor endothelial marker 8 0.734 0.396
Annexin A4 1.152 0.395
Hypoxia inducible factor 1-a 0.536 0.395
Popeye protein 3 0.942 0.39
BCL2-associated athanogene 2 0.61 0.386
RAB31, member RAS oncogene family 0.919 0.379
Cullin 4A 0.618 0.378
Serine/threonine kinase 6 0.537 0.367
DEK oncogene (DNA binding) 0.535 0.362
RAB34, member RAS oncogene family 0.59 0.355
Topoisomerase (DNA) II a 170kDa 0.622 0.326
Ubiquitin-conjugating enzyme UBC3B 0.778 0.324 0.324
v-jun sarcoma virus 17 0.739 0.323
Angiomotin like 2 0.283 0.3
Caveolin 2 0.536 0.279
Caveolin 1 0.622 0.231
CASP8 and FADD-like apoptosis regulator 0.427 0.205
Plasminogen activator, urokinase 0.228 0.183

Boldface represents genes selected for validation.
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isobologram model as described by Berenbaum.19 Briefly, synergy
was defined by the CI inequality da/Da 1 db/Db < 1, where da
and db represent doses of agents a and b (i.e. CI-1033 and SAHA)
used in combination, and Da and Db represent isoeffective doses of
the same agents used alone. Combination studies determining apop-
tosis induction were evaluated using Student’s t test with the resul-
tant p value representing a 2-sided test of statistical significance.

Results

HDAC inhibition attenuates ErbB transcription

To identify genes regulated by HDAC inhibition, we used a
20,000 element (20K) cDNA microarray consisting of known,
named genes aswell as numerous expressed sequence tags (ESTs).20

Initial experimentation was performed on LnCaP prostate cancer
cells, which demonstrated down-modulation of EGFR expres-
sion, following exposure to 3 different HDAC inhibitors (TSA,
SAHA and Apicidin) at 24 hr (data not shown). Further array
studies were performed on cell lines overexpressing ErbB to
examine the effect of the HDAC inhibitor SAHA on ErbB
expression. Using the human prostate cancer cell line DU145
(moderate overexpression of both EGFR and ErbB) and the
human breast cancer cell line SKBr3 (high-level expression of
ErbB2), exposure to SAHA decreased transcript expression
(>50%) of both EGFR and ErbB2 in the DU145 cell line, and
ErbB2 in the SKBr3 cell line. Other notable genes in the DU145
expression profile with potential interaction to ErbB signaling
include caveolin-1, HIF1-a, p19(INK4D) and Nur77 (Table I).
To further validate these DNA microarray findings, we carried
out real time RT-PCR for the transcript of these particular genes
in the DU145 and SKBr3 cell lines. In DU145, we observed
>50% down-modulation of both EGFR and ErbB2 transcript at
12 and 24 hr. In SKBr3, a >50% reduction in ErbB2 transcript
was observed at 24 hr, with no change in EGFR transcript. We
observed a greater than 50% reduction in caveolin-1 and HIF1-a
and a 6.8- and 14.3-fold increase in p19(INK4D) transcript at 12
and 24 hr in the DU145 cell line, respectively. Additionally, a
17.3- and 62.7-fold increases in Nur77 transcript were observed
in the DU145 cell line at 12 and 24 hr, respectively, and a 7.4-
fold increase in the SKBr3 cell line at 24 hr (Fig. 1).

HDAC inhibition modulates ErbB protein expression

As mRNA transcript levels do not always correlate with protein
levels, we examined the effect of HDAC inhibition on ErbB pro-
tein expression using 3 different HDAC inhibitors. HDAC inhibi-
tion by apicidin, TSA and SAHA attenuated levels of ErbB
expression in DU145 (EGFR and ErbB2) and SKBr3 (ErbB2)
cells at 24 hr. Similar results were obtained using different classes
of HDAC inhibitors, including the short chain fatty acid valproate
(data not shown). Therefore, this interaction likely represents a
general phenomenon involving HDAC inhibitors. To determine if
this interaction was applicable to other human cancers, we exam-
ined several other cell lines differentially expressing EGFR,
including human prostate (PC3) and H&N SCC (data not shown).
All cells lines demonstrated attenuated EGFR protein expression
following 24 hr of HDAC inhibition (Fig. 2).

Cell cycle kinetics

The influence HDAC inhibition of cell cycle progression was
evaluated using flow cytometry (Fig. 3). The HDAC inhibitor
SAHA precipitated a G2/M phase arrest with a resulting decrease
in the S-phase fraction, using doses that inhibited cellular prolifer-
ation (0.5 lM). A dose dependent increase in G2/M phase arrest
was demonstrated at cytotoxic doses (1.0–5.0 lM). Similar results
were obtained with TSA and valproic acid (results not shown).

HDAC inhibition enhances ErbB antiproliferative effects

The capacity of the HDAC inhibitor SAHA to enhance the
antiproliferative effects of ErbB blockade was examined in a

variety of human cancer cell lines with increased ErbB expres-
sion. The pan-ErbB tyrosine kinase inhibitor CI-1033 was
selected to exploit its ability to target the entire family of
ErbB oncoproteins.21 Enhanced inhibition of proliferation was
seen in human prostate (DU145, PC3), breast (SKBr3, MCF7)

FIGURE 1 – Microarray validation using quantitative SYBR green
RT-PCR to determine mRNA transcript modulated by HDAC inhibi-
tion in DU145 and SKBr3 cancer cell lines. RT-PCR was performed
on each sample in duplicate, and the ratio was calculated relative to
the housekeeping genes HMBS and GAPD.
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and H&N SCC (UM-SCC6) when HDAC inhibition was com-
bined with ErbB blockade (Fig. 4a). All cell lines demon-
strated a trend of decreased cellular proliferation with the com-
bination of CI-1033 and SAHA, although DU145, which over-
expresses both EGFR and ErbB2, was the only line that
achieved statistical significance (p < 0.05). A 25 and 45%
reduction in cell proliferation was observed with independent
treatments using CI-1033 (0.5 lM) and SAHA (0.5 lM). When
combined, these agents induced a >70% reduction in DU145
cell proliferation. To further examine this interaction between
CI-1033 and SAHA in the DU145 cell line, analysis was per-
formed using the CI isobologram, according to methods
described by Berenbaum.19 CI values <1 indicate treatment
synergy. Cells were treated with serial dilutions of CI-1033
and SAHA to determine the 70% isoeffective dose of growth
inhibition, yielding a CI ranging from 0.79–0.90 (Fig. 4b).
This suggests that this combination of agents produces a syner-
gistic growth inhibitory effect in the DU145 cells.

HDAC inhibition enhances anti-ErbB downstream signaling

To determine if HDAC inhibitor-mediated down-modulation of
ErbB expression translated into enhanced attenuation of cell sig-

naling, we performed Western blot analysis on DU145 whole cell
lysates treated with CI-1033, SAHA or both drugs in combination
for 48 hr. Cells were then starved in serum free media for 2 hr and
stimulated for 10 min with EGF (25 ng/ml). CI-1033 alone
induced significant inhibition of both EGFR and AKT signaling.
SAHA demonstrated modest inhibition of EGFR signaling, which
may be secondary to EGFR down-modulation, and significant
inhibition of AKT signaling. By combining HDAC inhibition with
EGFR blockade, there was almost complete abrogation (>95%
inhibition) of EGFR and AKT signaling (Fig. 5).

HDAC inhibition enhances CI-1033-induced apoptosis

Using a fluorescently labeled pan-caspase inhibitor, 24 hr expo-
sure to either CI-1033 or SAHA alone induced a 3- and 3.5-fold
increase in caspase activity, respectively, in DU145 cells. Com-
bining HDAC inhibition with ErbB blockade induced a > 7-fold
increase in caspase activity (supraadditive, p < 0.01) (Fig. 6a).
This potentiation of apoptosis when combining anti-ErbB agents
with HDAC inhibition was further assessed using Western blot
analysis to determine cleavage of the death substrate, poly(ADP-
ribose) polymerase (PARP). When combined with CI-1033, the
HDAC inhibitors TSA and SAHA both demonstrated an increase
in PARP cleavage after 24 hr (Fig. 6b).

Discussion

The results of the present study suggest the potential of HDAC
inhibitors to enhance the antiproliferative and apoptotic effects
induced by ErbB blockers. Coadministration of these agents may
represent a worthy strategy for more effective molecular targeting
of the ErbB oncogenic pathway. In this report, we demonstrate the
capacity of HDAC inhibitors to down-modulate EGFR and ErbB2
expression in a variety of human cancer cell lines that moderately
to significantly overexpress the ErbB oncoprotein. This interaction
between HDAC inhibition and ErbB expression, as well as other
tyrosine kinases such as bcr-abl, has been recently reported, and
efforts to combine HDAC inhibitors with agents targeting these
oncoproteins are currently underway.22–25

The potential importance of maximizing ErbB signaling inhibi-
tion has been demonstrated in recent reports, which indicate that
increased inhibition of phospho-tyrosine activity of EGFR corre-
lates with inhibition of proliferation; although tumor regression is

FIGURE 2 – HDAC inhibi-
tion down-modulates ErbB ex-
pression in prostate and breast
cancer cell lines. DU145, PC3
and SKBr3 cells were treated
with either TSA (0.3 lM),
SAHA (1.0 lM) or Apicidin
(1.0 lM) for 4, 10 or 24 hr.
Western blot analysis was per-
formed on whole cell lysates,
using antibodies against EGFR,
ErbB2, p21 (known CDKI up-
regulated by HDAC inhibition)
and a-tubulin, which served as
a loading control.

FIGURE 3 – Impact of SAHA on cell cycle phase distribution.
DU145 cells were harvested after 24 hr exposure to SAHA at varying
doses. Cells were subsequently stained with propidium iodide, and cell
cycle distribution was determined by flow cytometry evaluation of
DNA content.
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only demonstrated with >70% decrease in receptor activity.26 Fur-
thermore, the inhibition of certain ErbB downstream signaling
pathways, including AKT and MAPK, may require a much higher
concentration of ErbB inhibitor than that needed to simply inhibit
receptor phosphorylation.27–29 This suggests that for effective
blockade of critical downstream prosurvival and mitogenic signal-
ing pathways, agents may need to be administered at higher doses.
Therefore, combining agents with mechanistic synergy may maxi-
mize effective target inhibition and achieve a therapeutic window
greater than that allowed by the maximum tolerated doses of indi-

vidual agents. Similar findings of potential synergy have recently
been demonstrated in vitro and in vivo by maximizing EGFR
inhibition, using agents with complementary mechanisms of
action, such as monoclonal antibodies and tyrosine kinase inhibi-
tors.30,31

The mechanism underlying the influence of HDAC inhibition
on ErbB expression is not well characterized. One potential
explanation involves the capacity of HDAC inhibitors to cause
disassociation of client protein ErbB from the Hsp90 stabilizing
complex and enhance association with the destabilizing complex

FIGURE 4 – HDAC inhibition
enhances ErbB blocker capacity to
inhibit cell proliferation. (a) Cells
were plated in duplicate in 6-well
plates and treated with CI-1033,
SAHA or both drugs in combina-
tion for 72 hr. The dose of SAHA
remained constant at 0.5 lM,
although CI-1033 dose varied de-
pending on cell sensitivity: UM-
SCC6 (0.01lM), SKBr3 (0.1 lM),
DU145 (0.5 lM), PC3 (1.0 lM)
and MCF7 (1.0 lM). Cells were
then stained with 0.5% crystal
violet and eluted with 0.1 M
sodium citrate (pH 4.2) in ethanol
(1:1). Elution was transferred to
96-well plates and the absorbance
was read at 540 nm to determine
cell viability. (b) Isobole showing
synergy for inhibition of cell pro-
liferation between CI-1033 and
SAHA in the DU145 cell line.
The straight line indicates the zero
interaction isobole, i.e., the locus
of all combinations that would
produce this effect if there was no
interaction. The 4 combinations
tested (�) all reside below this
reference line, indicating that less
of the drug is required, i.e., the
combinations are synergistic.
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containing Hsp70.22,24 Targeting this interaction between client
proteins with their molecular chaperones leads to destabilization
and rapid selective degradation of the protein kinase. Interestingly,
CI-1033 has been demonstrated to serve as a potent inducer of
poly-ubiquitylation and degradation of ErbB2. The ubiquitylation
and degradation of EGFR and ErbB2 by geldanamycin, an inhibi-

tor of Hsp90, are specifically enhanced by CI-1033 via perturba-
tion of the nucleotide-binding pocket of the receptor tyrosine kin-
ase.32 This propensity for augmentation of ErbB degradation when
combining CI-1033 with HDAC inhibitors may explain how these
agents can collaborate in arresting cell growth and apoptosis
induction. This model, however, fails to explain the ability of
HDAC inhibitors to repress ErbB at the transcript level, which
may involve repression of new transcript synthesis and accelerated
decay of mature ErbB mRNA.24,33 We are currently investigating
these interactions in further detail.

We have also shown the ability of HDAC inhibitors to inhibit
AKT phosphorylation, which has been identified as a key effector
of PI3K-mediated cell survival. In addition to residing down-
stream of the ErbB signaling pathway, AKT represents another
client protein for Hsp90. Recent literature demonstrates that
although AKT is downstream of the EGFR signaling pathway,
inhibition of its activity may require a much higher dose of drug
than needed to inhibit receptor phosphorylation alone.28,29 Abro-
gation of AKT signaling by combining CI-1033 with HDAC
inhibition may also account for the augmentation of apoptosis
observed in the tumor cell lines tested. Additionally, aberrant
AKT signaling has been suggested as a key mediator in cellular
resistance, including resistance to anti-ErbB agents, chemotherapy
and radiation therapy.34–36 Inhibition of AKT activity by HDAC
inhibitors may offer a strategy to overcome these forms of cellular
resistance. This potential application of HDAC inhibitors targeting
the AKT pathway is currently being explored in our laboratory.

Selective targeting of tumor cells by HDAC inhibitors, as well as
specific mechanisms of action, has not been well defined. Our data,
and that of other gene profiling studies, suggest that HDAC inhibi-
tors modulate only 2–12% of genes.37–39 This relatively modest and
selected number of genes affected by what one might expect as a
global change in histone acetylation may reflect the hierarchical

FIGURE 5 – HDAC inhibition enhances ErbB blocker attenuation of
EGFR and AKT signaling. DU145 cells were treated with CI-1033
(0.5 lM), SAHA (0.5 lM) or both drugs in combination for 48 hr.
Cells were then washed with PBS and starved in serum-free medium
for 2 hr, followed by EGF stimulation (25 ng/ml) for 10 min. Western
blot analysis was performed on whole cell lysates, using antibodies
against EGFR, p-EGFR, AKT, p-AKT and a-tubulin.

FIGURE 6 – HDAC inhibition
enhances CI-1033-induced apopto-
sis. (a) Cells were seeded on 100-mm
plates and treated with either
vehicle control, CI-1033 (7.5 lM),
SAHA (4 lM) or both drugs in
combination for 24 hr. Cells were
then harvested, stained with fluo-
rescein-labeled pan-caspase in-
hibitor FAM-VAD-FMK and trans-
ferred to 96-well plate in triplicate.
Fluorescence was analyzed on a
Spectra-Max fluorescence plate
reader at 550 nm excitation and
600 nm emission wavelengths. Data
represent results averaged from 2
independent experiments, each per-
formed in triplicate. (b) Cells were
seeded on 100-mm plates and
treated with either vehicle control,
CI-1033 (7.5 lM), TSA (1 lM),
SAHA (4 lM) or CI-1033 com-
bined with TSA or SAHA for 24 hr.
Western blot analysis was per-
formed on whole cell lysates, de-
termining cleavage of the PARP.
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nature of epigenetic transcriptional control where DNA and histone
methylation provide a dominant-repressive effect over histone acety-
lation.11 Despite mechanistic uncertainty, genes reported to be
affected by HDAC inhibition influence a variety of oncogenic proc-
esses including cell cycle progression, proliferation, angiogenesis,
invasion, DNA damage repair and hormone resistance. In this regard,
our microarray data suggest that in addition to modulatory influence
on ErbB expression, HDAC inhibitors may have the potential to
affect transcription of other genes associated with oncogenesis,
including caveolin-1, HIF1-a, p19(INK4D), Nur77 and proteins
linked to RAS signaling, including RAB34 and SOS homolog 2.

Caveolin-1 plays a regulatory role in several signaling path-
ways, and its activity has been demonstrated to be directly
dependent on EGFR/Src signaling.40–42 Caveolin-1 is highly
expressed by prostate cancer cells and has been shown to posi-
tively correlate with stage, grade and clinical outcome in prostate
cancer. Additionally, it has been demonstrated to be a metastasis-
related gene, capable of suppressing apoptosis, and conveying
resistance to multiple antineoplastic agents.43 Our data and other
independent reports44 demonstrate the ability of HDAC inhibitors
to attenuate the expression of caveolin-1, representing another
potential mechanistic synergy between HDAC inhibition and the
ErbB pathway in prostate cancer.

Recent studies have demonstrated the effect of HDAC inhibition
on tumor angiogenesis by down-modulation of vascular endothelial
growth factor (VEGF) and HIF1-a.44,45 The VEGF molecule is crit-
ical for tumor angiogenesis, is highly expressed in prostate cancer
cells and has been shown to positively correlate with stage, grade
and clinical outcome in prostate cancer.44–47 Although not exam-
ined in our study, down-regulation of VEGF by HDAC inhibitors
may directly inhibit the proliferation of endothelial cells and poten-
tiate the sensitivity of tumor cells to chemotherapy and radiation
therapy. Additionally, since ErbB blockade has been demonstrated
to independently decrease VEGF transcription,48,49 in vivo combi-
nation studies would be of interest in determining potential
enhancement of angiogenesis inhibition.

An additional gene of interest that we and others identify to be
modulated by HDAC inhibition is HIF1-a.50,51 HIF1-a is overex-
pressed in many human malignancies and serves as a potent trans-
activator of VEGF, thereby promoting cellular survival and
growth under hypoxic conditions. The down-modulation of HIF1-
a may provide mechanistic explanation for the previously
described VEGF regulation by HDAC inhibition. Additionally,
HIF1-a and its transcription have been implicated in the neovas-
cularization of solid tumors and radioresistance in colon cancer,
cervical cancer and malignant gliomas, therefore representing a
potential target with clinical application.52,53

The ability of ErbB and HDAC inhibitors to produce cell cycle
arrest is well documented. The cyclin dependent kinase (CDK)
inhibitor p21, which can regulate cell cycle progression by inhibit-

ing the catalytic activity of CDK, is markedly up-regulated by
HDAC inhibitors in many cell types. This was confirmed at the
mRNA and protein levels and translated to a dose-dependent
increase in G2/M phase arrest. Regulation of p21 appears critical
for the activity of HDAC inhibitors, and the ability to substantially
up-regulate p21 may govern the fate of the cell, regarding cytostasis
or apoptosis following HDAC inhibition.39,54 In addition to p21
expression, our data also demonstrate the ability of HDAC inhibi-
tors to up-regulate transcription of another CDKI, namely
p19(INK4D) in both prostate and breast cancer cell lines. Although
the mechanism for this increased expression is not well understood,
a similar effect on protein reexpression has been observed when
DNA methylation is inhibited in lung cancer cell lines.55

In addition to abrogating AKT signaling, the ability of HDAC
inhibitors to induce apoptosis may be involved with its potent
transactivation of the Nur77 transcript. Nur77 is an orphan recep-
tor and a member of the steroid/thyroid hormone family of recep-
tor proteins,56,57 which play a key role in apoptosis of T lympho-
cytes and various other cell types.58 In prostate cancer cells,
Nur77 is rapidly induced following exposure to apoptotic agents
and its expression has been demonstrated to enhance tumor cell
sensitivity to cytotoxic agents.59 Apoptosis induction following
HDAC inhibition may involve the capacity of Nur77 to induce
conformational changes in Bcl-2, converting it from anti- to pro-
apoptotic factor.60 Mechanisms underlying these interactions are
currently being evaluated.

In summary, the potential of HDAC inhibitors to modulate
expression of a variety of oncopoteins render them a promising
class of agents to be examined in concert with other anticancer
agents. The current results suggest that, when used cooperatively,
anti-ErbB agents combined with HDAC inhibitors may offer a
unique strategy of dual targeted therapy by inhibiting the functional
activity of the ErbB receptor as well as attenuating overall ErbB
expression. This potential for maximizing ErbB inhibition by
exploiting this mechanistic synergy may prove valuable for enhanc-
ing antitumor activity and overall clinical response. Additionally,
preliminary cDNA microarray data suggest that the beneficial inter-
action of these agents may not derive solely from modulation of
ErbB expression, but may result from effects on other oncogenic
processes including angiogenesis, invasion and cell cycle kinetics.
In vivo studies should provide further insight regarding the potential
significance of these molecular interactions.
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