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On Bayesian methods of exploring
qualitative interactions for
targeted treatment
Wei Chen,a*† Debashis Ghosh,b Trivellore E. Raghunathan,c
Maxim Norkin,d Daniel J. Sargente and Gerold Beplera

Providing personalized treatments designed to maximize benefits and minimizing harms is of tremendous cur-
rent medical interest. One problem in this area is the evaluation of the interaction between the treatment and
other predictor variables. Treatment effects in subgroups having the same direction but different magnitudes
are called quantitative interactions, whereas those having opposite directions in subgroups are called qualitative
interactions (QIs). Identifying QIs is challenging because they are rare and usually unknown among many poten-
tial biomarkers. Meanwhile, subgroup analysis reduces the power of hypothesis testing and multiple subgroup
analyses inflate the type I error rate. We propose a new Bayesian approach to search for QI in a multiple regres-
sion setting with adaptive decision rules. We consider various regression models for the outcome. We illustrate
this method in two examples of phase III clinical trials. The algorithm is straightforward and easy to implement
using existing software packages. We provide a sample code in Appendix A. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. Introduction

Recent rapid development of biological drugs has moved cancer treatment into a new era. Because
they are more effective and less toxic than traditional chemotherapy, the biological drugs have received
increasing attention and are being used as single agents or in conjunction with chemotherapy as an
approved treatment in many malignancies. Although mechanisms of how these biological drugs elicit
their actions are relatively well studied in preclinical models, the groups of patients that will derive
maximal clinical benefit from them are harder to determine. It is likely that drugs that will be effec-
tive for one subgroup may be potentially harmful to another. We present two motivating examples,
both from oncology. A large phase III study [1] comparing epidermal growth factor receptor (EGFR)
inhibitor, gefitinib, with carboplatin plus paclitaxel as a first-line treatment for patients with pulmonary
adenocarcinoma showed that progression-free survival (PFS) was significantly longer among patients
receiving gefitinib than among those receiving carboplatin–paclitaxel only if patients were positive for
EGFR mutation (hazard ratio (HR) for progression, 0.48; 95% CI, 0.36 to 0.64; P < 0:001). However,
for patients lacking an EGFR mutation, PFS was significantly shorter in the gefitinib arm as compared
with the carboplatin–paclitaxel arm (HR, 2.85; 95% CI, 2.05 to 3.98; P < 0:001). Another example
is the CO.17 study [2] examining the effect of monoclonal anti-EGFR antibody, cetuximab, compared
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with supportive care alone among patients with advanced colorectal cancer. Cetuximab as compared
with best supportive care alone was associated with significantly improved overall survival (OS) (HR
for death, 0.55; 95% CI, 0.41 to 0.74; P < 0:001) and PFS (HR for progression or death, 0.40; 95% CI,
0.30 to 0.54; P < 0:001) in patients with the wild-type K-ras gene. The response rate to cetuximab was
almost exclusively detected in patients with the wild-type K-ras (12.8% vs. 1.2%). However, patients
with mutated K-ras tumors had no OS or PFS benefit from cetuximab.

We can describe the phenomenon in the first example as a qualitative interaction (QI) between
treatment and a predictive factor. This happens when the treatment effects have opposite directions
in different subgroups defined by the predictor. Peto [3] first introduced the term QI. When the treat-
ment effects in subgroups have the same direction but different magnitudes (as in the second example
mentioned earlier), it is called a quantitative interaction. There may be no harm when a quantitative
interaction exists, as both patient groups benefit. However, when a true QI is ignored, an experimental
treatment that is effective in one subgroup could be rejected for not reaching statistical significance in
the overall group. On the other hand, a treatment that reaches statistical significance in the overall group
due to its effectiveness in a majority group could be ineffective or harmful to a subgroup. These latter
patients would bear unnecessary toxicity and cost from the treatment. It is of great importance to identify
rare but significant QI and, hence, deliver personalized treatment, aiming to maximize the probability of
reaching the desired outcome.

Identifying QIs is challenging, because they are rare and usually unknown among many potential
biomarkers. It is well known that subgroup analysis reduces the power of hypothesis testing and that mul-
tiple subgroup analyses inflate the type I error rate. In addition, when there are other interactions in the
model, QI cannot be considered independently. Many algorithms searching for interaction effects do not
distinguish between QI and quantitative interactions. Gail and Simon [4] discussed in detail the impor-
tance of identifying QI and developed a likelihood ratio test. Dixon and Simon [5] discussed previous
work on the study of interactions and developed a Bayesian method for subset-specific treatment effects.
Recently, Gunter et al. [6] developed supervised learning algorithms for this problem. Bayman et al. [7]
developed an approach using Bayes factor to test for QI restricted to one factor/variable within multiple
subgroups. All these methods dealt with a fixed number of subgroups without any subgroup selection.
Hence, in general, they yield low power of detecting QI. In the hypothesis-generating/exploratory set-
ting, the number of potential covariates is often large. Appropriate statistical methods for identifying
QI with variable selection are lacking. We propose a Bayesian approach to search for QI in a multiple
regression setting. The algorithm is straightforward and easy to implement.

We organize the remainder of this paper as follows. Section 2 describes the hierarchical model struc-
ture and decision rules with different outcome variables. We develop an adaptive decision rule for a large
number of candidate predictors as well. Section 3 demonstrates the properties of our proposed method
through simulated studies. Section 4 illustrates the implementation of our method in two phase III trials.
We provide a concluding discussion in Section 5.

2. Method

We frame our proposed method by using a hierarchical regression model. Estimation of parameters
will be the focus rather than prediction. Furthermore, because of the small sample sizes in subgroups
formed by more than one predictor, we will consider only treatment–covariate interactions in this
paper. When sample size is sufficiently large, exploring covariate–covariate interactions or treatment–
covariate–covariate interactions is a straightforward extension of the methodology proposed here. We
start with introducing the method in the linear regression setting, followed by logistic regression, and by
the Cox proportional hazards model. We consider the problem of modeling binary covariates first. Then
we extend the method to accommodate categorical covariates with more than two levels and continuous
covariates. We extend our method further to include an adaptive variable screening phase if the number
of covariates is large.

2.1. Linear multiple regression model with latent variables

Let y be an N � 1 vector of continuous outcomes, where N is the total sample size. Let ˛0 be the inter-
cept, ˛1 the coefficient of the two treatment options denoted by an N � 1 vector of indicator variable ´
with 0 for control and 1 for experimental agent. Let xj be an N � 1 vector of the indicator variable for
the j th covariate, j D 1; : : : ; p. For simplicity, xjCp is the interaction term corresponding to the main
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effect term xj . For a simple linear regression with normally distributed errors � �N.0; �2/, we have

y D ˛0C ˛1´C

pX
jD1

ˇjxj C

2pX
jDpC1

ˇjxj´C �: (1)

We assume that the intercept and the treatment effects will be always in the model, and the variable
selection only occurs on the covariates and the treatment–covariate interactions. Diffuse normal priors
and inverse gamma prior are specified for ˛0; ˛1, and � , respectively. A mixture normal prior, first used
by [8], can be specified for each coefficient ˇj ,

ˇj j�j � .1� �j /N
�
0; �2

�
C �jN

�
0; c2�2

�
: (2)

The binary latent variables �j D 1 indicates a true predictor. The tuning parameters c and � are set to
distinguish the distribution of the coefficient of a true predictor from that of a false predictor. The �2

should be small enough so that ˇj is close to zero when �j D 0. The tuning parameter c determines the
magnitude of the difference between the two mixture normal distributions (Equation (2)) representing
the signal and noise. In our previous experiences [9–11], we followed the recommendation of choosing
these two tuning parameters that is given in [8]. Choosing c between 10 and 100 worked well when
implementing MCMC, and simulation results were not sensitive to the choice in this range. With the use
of the latent variable � , model selection and identifying a QI is a by-product of the MCMC algorithm.

Because interaction terms represent deviations from an additive effect, we adopt the convention that
a model containing interactions should also contain the corresponding main effects [12]. Hence, we
modify the aforementioned hierarchical structure by adding a restricted prior for � that corresponds to
main effects,

P r.�j D 1j�j /D

(
�j for interaction j D pC 1; : : : ; 2p

�
.1��pCj /

j for main effect j D 1; : : : ; p
; (3)

where �j could be a constant or follow a distribution, such as �j � Beta.a; b/. To favor parsimonious
models or when n < p, the parameters .a; b/ in the Beta prior can be set to force a small �j . Table I
illustrates different prior distributions of the model space under assumptions of �j , indicating that the
prior weight of each model can be flexibly specified.

Other prior assumptions could be used for � . For example, no restriction of any kind or to restrict
the selection of higher-order terms on the basis of the existence of the lower-order terms. However, the
prior structure for � specified here yields higher power to detect interactions, see [10] for more thor-
ough comparisons. The joint posterior distribution of �1; : : : ; �j reflects the probability of each model
approximating the true unknown model. Hence, the ‘best’ model or a set of ‘good’ models can be selected
accordingly by using iterations from MCMC.

The simplified treatment effect ıj in each subgroup of the j th covariate based on Equation (1) is�
ıj jxjD0 D ˛1
ıj jxjD1 D ˛1C ˇpCj

j D 1; : : : ; p:

Table I. Prior distributions of model space with one covariate
.p D 1/ under different assumptions of �main and �int.

Model Joint prior probability of each model

Main Int �main D 0:5 �main D 0:2 �main D 0:5

�int D 0:5 �int D 0:2 �int D 0:33

0 0 .25 .64 .33
1 0 .25 .16 .33
0 1 0 0 0
1 1 .5 .2 .33

�main is equivalent to �1 in Equation (3), because p D 1.
�int is equivalent to �2 in Equation (3), because p D 1.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3693–3707
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The QIs are the terms that satisfy the condition ˛1 � .˛1 C ˇpCj / < 0 and �pCj D 1. In other
words, the significance of the interaction is decided by �pCj D 1 and the direction of the interaction is
decided by ˛1 and ˇpCj . Using the output from the MCMC algorithm, we can easily obtain the pos-
terior distribution Prf˛1 � .˛1 C ˇpCj / < 0jMl ;Datag at the iterations where the joint distribution of
�1; : : : ; �j ; : : : ; �2p corresponds to the selected model Ml .

If the selected modelMl has more than one interaction term, we test interaction terms for QI by using
Bayesian loss to control the false discoveries due to multiple testings. We use two-dimensional comple-
mentary Bayesian losses FDR and FNR. Let QI j denote the marginal posterior probability of the j th
covariate having a QI with treatment, QIj D Prf˛1 � .˛1 C ˇpCj / < 0jMl ;Datag. Because a decision
dj is a function of Ml and data, FDR and FNR can be denoted as follows:

FDRD

( P
dj .1�QIj /

D
ifD > 0

0 ifD D 0
;

and

FNRD

( P
.1�dj /QIj
m�D

if D <m

0 if D Dm
;

where D D
P
dj and m the total number of interactions in consideration. To control the FDR at cer-

tain level ˛QI while minimizing the FNR, one can find a set of thresholds tQI such that a decision
dj � I.QIj > tQI/; j D 1; : : : ; m, results in FDR 6 ˛QI. Because FNR is minimized by minftQIg, the
optimal threshold is t�QI �minftQI W FDR6 ˛QIg. The proof follows directly from Muller et al. [13].

2.2. Logistic multiple regression model

Now we consider the situation of a binary response. Assume a logistic link for binomially distributed
outcome data y with probability � � Pr.y D 1jx1; : : : ; xp/. The regression model takes the form

logit .�/D ln

�
�

1� �

�
D ˛0C ˛1´C

pX
jD1

ˇjxj C

2pX
jDpC1

ˇjxj´;

which yields the following treatment effects in the form of odds ratios (ORs):�
ORj jxjD0 D expf˛1g
ORj jxjD1 D expf˛1C ˇpCj g

j D 1; : : : ; p:

The posterior distribution QIj D Prf˛1 � .˛1C ˇpCj / < 0jMl ;Datag can then be used for inferring QI
in the logistic regression setting as well.

2.3. Cox proportional hazard model

For the Cox model, we used the counting process notation introduced by [14] because it can be easily
extended to frailty models, time-dependent covariates, and multiple events. Clayton [15] discussed esti-
mation of the baseline hazard and regression parameters using MCMC methods. The implementation
of this counting process formulation can be found in the survival analysis of the BUGS manual. For
subjects i D 1; : : : ; n, we observe Ni .t/, which counts the number of failures that occurred up to time t ,
and Yi .t/, which takes the value 1 if subject i is observed at time t and 0 otherwise. Let dNi .t/ denote
the counting process increment of Ni over the small time interval Œt; tCdt/, which is assumed to follow
a Poisson distribution dNi .t/� Poisson.Ii .t/dt/, where the intensity process Ii .t/ is

Ii .t/D Yi .t/�0.t/ exp

0
@˛1´i C pX

jD1

ˇjxij C

2pX
jDpC1

ˇjxij´i

1
A :

We can write the d�0.t/dt as dƒ0.t/ and assume the conjugate independent increments prior suggested
by [16] as dƒ0.t/� Gamma.c0dƒ�0.t/; c0/. Small values of c0 correspond to weak prior beliefs, where
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dƒ�0.t/ can be thought of as a prior distribution for the unknown hazard function. In Sections 3 and 4,
we set dƒ�0.t/D 0:1 � .t.hC1/ � t.h//, where t.h/; hD 1; : : : ; T , are ordered unique event times.

The treatment effects in the form of HRs are as follows�
HRj jxjD0 D expf˛1g
HRj jxjD1 D expf˛1C ˇpCj g

j D 1; : : : ; p:

The posterior distributions of QIj D Prf˛1 � .˛1 C ˇpCj / < 0jMl ;Datag are again used for
detecting QI.

2.4. Multilevel covariates

When covariates with more than two qualitative levels are considered for subgroup analysis, multiple
dummy variables are used as regressors in the model. In our model selection procedure, we incorporate
restrictions on grouped regressors on the basis of the idea of the ‘all included or all excluded’ grouping
principle by [17]. Instead of the one-to-one mapping of ˇj and �j in formula (2), a many-to-one map-
ping of ˇ1j ; : : : ; ˇ

g
j for g dummy variables of the (g C 1)-level covariate j to a single �j is assigned

as follows:

ˇ1j ; : : : ; ˇ
g
j j�j

iid
� .1� �j /N

�
0; �2

�
C �jN

�
0; c2�2

�
:

The hierarchical restriction between an interaction term and its main effects is used in conjunction
with this grouping principle. Let ı1j ; : : : ; ı

g
j denote the treatment effects in the subgroups of j th

covariate, then a QI can be detected by estimating the quantity QIj D Œ1 � PrŒı1j < 0; : : : ; ı
g
j <

0jMl ;Data	� PrŒı1j > 0; : : : ; ı
g
j > 0jMl ;Data	.

2.5. Continuous covariates

When continuous covariates are considered in the modeling for clinical decision, two common
approaches are used. The first is to convert the continuous variables to categorical covariates. The thresh-
old is based on prior clinical knowledge or empirical evidence (e.g., using the median or tertiles of a
continuous variable). This is a straightforward unsupervised threshold, where the decision of thresh-
old is independent of the observed treatment outcomes in the current study. This approach subsumes
a strong assumption of the same treatment effect within each subgroup within levels defined by the
discrete variable.

The second approach is to fit the continuous covariates as is or with higher-order polynomials so that
the relationship between the covariate and outcome will be fully described. Thus, for a continuous covari-
ate in the subgroup analysis, the focus of this paper is the problem of finding thresholds, such that the
preferred treatment changes when the measurement of that continuous covariate is above or below that
threshold. Figure 1 illustrates four scenarios in a simple linear regression that only in the last scenario
the QI effect exists. Scenarios (a) through (c) all favor one treatment than the other through the observed
range of the continuous predictor, even though (b) and (c) indicate treatment–covariate interactions. In
scenario (d), the preferred treatment would be 0 when the predictor value is less than the threshold (the
intersection) but 1 otherwise.

Theoretically, there is always an intersection for the two fitted lines if the two slopes are not identical.
Similar to the problem of extrapolation, only the intersection that lies within the observable range of
the continuous covariate would be of interest and considered as a tentative threshold in practice. This
type of threshold is supervised in that the threshold depends on the treatment outcomes. The supervised
threshold would increase the chance of finding a QI effect compared with the unsupervised threshold.
Nonetheless, the resulting threshold should be verified using an independent external data to avoid the
problem of overfitting.

Here, we denote by g.�/ the common parametric component of the linear, logistic, and Cox regression
models, where g.�/D ˛1´C

Pp
jD1 ˇjxj C

P2p
jDpC1 ˇjxj´. We have�

g.� j´D0/ D ˇjxj C
P
j 0¤j ˇj 0xj 0

g.� j´D1/ D ˛1C ˇjxj C ˇpCjxj C
P
j 0¤j ˇj 0xj 0 C

P
j 0¤j ˇpCj 0xj 0

j D 1; : : : ; p:

The intersection of two regression lines with respect to xj is at xj D
�˛1�

P
j 0¤j ˇpCj 0xj 0

ˇpCj
. The termP

j 0¤j ˇpCj 0xj 0 reflects the contribution from other covariates whose interactions with treatment are

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3693–3707
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Figure 1. Four scenarios of interactions between treatment group and continuous predictor: (a) no interaction;
(b) quantitative interaction with same directions; (c) quantitative interaction with opposite directions; and

(d) qualitative interaction.

selected as well. Holding xj 0;j 0¤j , at its mean if it is continuous or at zero if it is categorical, we test for

the QI effect of xj by using posterior probability QIj D Prfc1 <
�˛1�

P
j 0¤j ˇpCj 0xj 0

ˇpCj
< c2jMl ;Datag,

where c1 and c2 could be approximated by the minimum and maximum of the observed xj , respec-
tively. This is equivalent to Prf.˛1C

P
j 0¤j ˇpCj 0xj 0 C c1ˇpCj /.˛1C

P
j 0¤j ˇpCj 0xj 0 C c2ˇpCj / <

0jMl ;Datag. The model with categorical covariates is a special case when c1 D 0 and c2 D 1.
All of these parameters can be estimated from posterior distributions using standard MCMC output.

At each MCMC iteration where the selected model occurs, we estimate the intersection. Hence, a dis-
tribution of the intersection could be obtained. Bayesian credible interval of the intersection between
the observed range of that continuous covariate could be obtained as well. A tentative threshold could
be decided on the basis of the posterior distribution of the intersection, for example, the median. The
percentage of the patient population that will benefit from utilizing this threshold could be presented
graphically as well; see Section 4.2 for an example. Given the practical importance of this problem, we
anticipate that this method will serve as a springboard for future work.

2.6. Variable screening with large p

When the number of candidate predictors increases, the previously described Bayesian model selection
(BMS) method tends to fail, as does any other modeling approach, because of the lack of informa-
tion. Two features of BMS are vulnerable. First, the probabilities of main effects being included in the
model are inflated more with increased p on the basis of the hierarchical prior structure in Equation (3).
Second, the highest joint posterior distribution of �1; : : : ; �2p is driven by the prior when n is not suffi-
ciently larger than p. When less information is available, the effect of the prior becomes stronger. The
Beta hyperprior in the hierarchical model can be viewed as a penalty or shrinkage effect. The use of a
larger penalty as in the second to the last panel of Table I will reduce the power to identify QI. If we set
the Beta hyperprior to favor larger models (see the first panel of Table I), the coefficient of interest, a key
component in identifying QI, will be estimated with less efficiency. Hence, the power will be reduced in
this case as well.

We believe that a model with an interaction term should also include its main effect, and we do not
wish to lose the power to detect rare QI by requiring a large shrinkage effect. The solution to improve
the performance of BMS lies in variable screening. It is common sense to screen the candidate variables
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before fitting a ‘best’ model. The rule of thumb that at least 10 events per predictor [18] can be used here
to decide if variable screening is necessary.

We propose adaptive BMS (ABMS) by adding an adaptive decision rule to screen the variables if
necessary. We begin with the model selection phase given all the candidate variables. If under the deci-
sion rule there is no model selected, the variable screening phase will be triggered to reduce the model
space. Then the process of selecting a model will be reiterated. The algorithm will oscillate between
variable screening and model selection phases until there is a ‘best’ model or models selected, or there
are no remaining candidate variables, or the variable screening phase does not result in a reduced number
of candidates.

At the model selection phase for m candidate models (M1; : : : ;Mm), we have m corresponding
decisions d D .d1; : : : ; dm/ with value 1 for selected or 0 otherwise. Let vector 
 with elements

l D Pr.Ml jData/; l D 1; : : : ; m, denote the posterior probabilities of models estimated by the pro-

portion of occurrences of model Ml in the MCMC process. Let N
1 D
Pm
lD1 dl�lPm
lD1 dl

and N
2 D
Pm
lD1.1�dl /�lPm
lD1.1�dl /

denote the mean of 
l in the set of selected models S1 and the set of nonselected models S2, respec-
tively. The decision of selecting a model is based on two posterior expected losses simultaneously: the
first, L1.d; 
/, assesses how well the selected set S1 of models ‘separates’ from the nonselected set S2
by using a squared Euclidean distance:

L1.d; 
/D

2X
kD1

X
�l2Sk

k
l � N
kk
2

D

mX
lD1

dl.
l � N
1/
2C

mX
lD1

.1� dl/.
l � N
2/
2I (4)

the second,

L2.d; 
/D �2FDC .1� �2/FN;

is the posterior false discovery FD and the false nondiscovery FN of the decision with modification
constant �2, where FDD

Pm
lD1 dl.1� 
l/ and FND

Pm
lD1 .1� dl/
l .

Let �1 denote the modification constant, we consider the following optimal rule under the posterior
expected loss L.d; 
/,

argmin
d

L.d; 
/D argmin
d

.L1.d; 
/C �1L2.d; 
//:

Theorem 1
Under the loss function L.d; 
/, the optimal decision takes the form dl D I.
l > 
.m�D�//, where D�

is the optimal number of discoveries.

Proof
Let D D

P
dl (to simplify the notation, in what follows, we omit the subscript l D 1 and superscript

m), we find from directly deriving from (4) that

L1.d; 
/D
X

dl

2
l � 2 N
1

X
dl
l CD N


2
1 C

X
.1� dl/


2
l � 2 N
2

X
.1� dl/
l C .m�D/ N


2
2

D
X


2l �D N

2
1 � .m�D/ N


2
2

D
X


2l �
.
P
dl
l/

2

DC �
�
.
P
.1� dl/
l/

2

m�DC �

D
X


2l �
.m�D/.

P
dl
l/

2CD
�
.
P

l/

2 � 2
P

l
P
dl
l C .

P
dl
l/

2
�

D.m�D/C �

D
X


2l �
.
P

l/

2

m�DC �
�

P
dl
l .m

P
dl
l � 2D

P

l/

D.m�D/C �
(5)

L2.d; 
/D �2DC .1� �2/
X


l �
X

dl
l ; (6)

where the additional term � avoids a zero denominator. Subject to a fixed total number of discoveriesD,
only the last terms in (5) and (6) involve the decision dl . For any given D, L1 and L2 are minimized by

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3693–3707
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setting dl D 1 for theD largest 
l , such that dl � I.
l > 
.m�D//, where 
.m�D/ is the .m�D/th-order
statistics of 
1; : : : ; 
m. Given D, the local minimums are

min.L1.d; 
jD//D
X


2l �
.
P

l/

2

m�DC �
�

mX
lDm�DC1


l

0
@m mX

lDm�DC1


l � 2D
X


l

1
A

D.m�D/C �

min.L2.d; 
jD//D �2DC .1� �2/
X


l �

mX
lDm�DC1


l :

Thus, we conclude that the global optimum must be the same form. The optimum D� is found
by minimizing

L.d; 
jD/DX

2l �

.
P

l/

2

m�DC �
C �1�2DC �1.1� �2/

X

l

�

mX
lDm�DC1


l

0
@m mX

lDm�DC1


l � 2D
X


l C �1D.m�D/

1
A

D.m�D/C �

with respect to D. �

Remark 1
L1 is equivalent to the k-mean clustering approach [19] in one dimension with a squared Euclidean dis-
tance metric. The models based on this part of the loss function will be partitioned into two groups, S1
and S2. L1 is considered providing a soft threshold to partition the models, where the decision is solely
driven by the data.

Remark 2
The addition of L2 penalizes the partition through the loss from false discovery and false nondiscovery
with a modification constant �2. L2 is considered providing a hard threshold to select the models. The
decision is invariant to the data. From (6), we have

L2.d; 
/D
X

dl.�2 � 
l/C .1� �2/
X


l :

Thus, the minimum is achieved when dl D I.
l > �2/. Note that the distribution of 
l changes when
the total number of models m changes. Hence, it is difficult to use L2 alone for decision making.

Remark 3
In some cases, if 
l � 
 , the expected loss L1 � 0 is invariant to any decision dl . To see that, we have
from the definition in (4),

L1j�l�� D
X

dl.
 � 
/
2C

X
.1� dl/.
 � 
/

2 D 0:

Thus, the decision will be solely based on L2. Hence, we recommend to set �2 D 0:5, which is linked
to traditional hypothesis testing problems [20].

The variable screening phase has two sequential steps due to the restricted hierarchical structure
in (3). At the first step, we apply the adaptive decision rule to the interaction terms. Selected interac-
tion terms and their main effects will be kept for the next model selection phase. At the second step, we
will apply the adaptive decision rule to the remaining main effects. The selected additional main effects
will be kept for the next model selection phase as well. The formulation of the decision rule for the
variable screening phase is the same as that of the model selection phase. Let a vector 
 with elements

l D Pr.�l jData/; l D 1; : : : ; p, denote the posterior marginal probability of a regressor being in the
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true model, where 
l is estimated by the proportion of occurrences of the l th regressor in the MCMC
iterations produced in the model selection phase. If the variable screening phase yields a reduced number
of p, the model selection phase is reiterated in a new MCMC process.

Remark 4
The modification constant �1 reflects the relative weighting between L1 and L2. Note that L1 and L2
are on different scales. In our experience, the scale of L2 has been more than 100 times greater than L1.
The process of variable screening is to reduce the dimension of the model space. When the loss function
is used for screening variables, more weight is recommended for L1 (e.g., �1 2 Œ0; 0:01/). When the loss
function is used for selecting models, more weight is recommended for L2 (e.g., �1 2 .0:01; 1	).

3. Simulation studies

Our interest lies in evaluating the frequentist power to detect the QI under various conditions, such as
outcome types, sample size, number of covariates, and treatment effect. We set the number of covariates
p D 5 and 25with a sample size of 200 and assume that all of the p covariates are independent and from a
Bin.n; 0:5/ distribution. The treatment group ´ was generated from Bin.n; 0:5/ to represent 1:1 random-
ized clinical trials. We simulated three types of outcomes: linear, binary, and survival outcomes. We con-
sidered several true models for different outcomes. The first true model was �1 D�:7´C0:5x1C1:4x1´.
This is equivalent to a treatment OR or HR of 0:5 when x1 D 0 and 2 when x1 D 1. The second true
model, with an additional interaction term, was �2 D�:7´C 0:5x1C 0:5x2C 1:4x1´� x2´. The third
true model, with smaller treatment effect, was �3 D �:5´C 0:5x1C 0:5x2C x1´� x2´. This is equiv-
alent to a treatment OR or HR of 0:6 when x1 D 0 and 1:64 when x1 D 1. For linear outcomes, we
used � � N.0; 1/. We used a logit link and an exponential link for the binary and survival outcomes,
respectively. The uniform distribution on Œ0; c	 was used to generate noninformative censoring, where
c chosen to generate 30% censoring . We generated 500 replications for each setting. For the binary
outcomes, the frequency of y D 1 was about 56% from models 1, 2, and 3.

We plotted the Kaplan–Meier (KM) curves for one simulated survival data set under models 1 and 3
(Figure 2 and 3). x1 is a prognostic factor (Figures 2(a) and 3(a)). As demonstrated, if the QI effect of
x1 is ignored, the treatment effect will not be detected (Figure 2(b)). In addition, the QI effect is not
detectable if the other interaction is ignored (Figure 3(c)). The QI effect could be detected only if other
interactions (QI or quantitative interaction), such as x2 in model 3 , were jointly considered (Figure 3(d)).

For all of the simulated data sets, we applied the method with c D 10; � D :15, and Beta(2,2). The
length of the two parallel MCMC chains was set to be 10; 000, from which the first 1000 iterations
were discarded. We conducted the data generation for the simulations in R. Through the R package
R2WinBUGS, we conducted the model estimation in BUGS [21], a popular Bayesian software package
for performing Bayesian inference using Gibbs sampling [22, 23]. We selected the ‘best’ model in this
method of BMS on the basis of the highest joint posterior distribution of � . We used the �1 equal to 1 for
selecting models and 0.01 for selecting variables in the ABMS method with the expected loss L.d; 
/.
We used the ˛QI D 0:5 as the threshold for FDR.
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Figure 2. Kaplan–Meier curves by subgroups under simulated model 1. Horizontal axis is months from random-
ization. Vertical axis is probability of survival. (a) Grouped by x1 status; (b) grouped by treatment arms; and (c)

grouped by x1 and treatment arms.
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Figure 3. Kaplan–Meier curves by subgroups under simulated model 3. Horizontal axis is months from ran-
domization. Vertical axis is probability of survival. (a) Grouped by x1 status; (b) grouped by treatment arms; (c)

grouped by x1 and treatment arms; and (d) grouped by x1 and treatment arms when x2 D 0.

Table II. Estimated power and FDR of testing QI under true models (nD 200).

BMS ABMS

p D 5 p D 25 p D 5 p D 25

Outcomes �1 �2 �3 �1 �2 �3 �1 �2 �3 �1 �2 �3

Linear Power(%) 99.2 96 86.8 89.8 83.8 58.2 99.4 94.2 81.2 98.2 92.4 78.6
FDR(%) 5.5 9.3 5.3 14.1 12.8 16.1 8.3 8.8 5 10.6 9.2 6.3
mTests 1 1.7 1.8 8.2 7.7 8.5 1 1.5 1.6 1.1 1.5 1.7

Binary* Power(%) 77 64.8 50 33.8 32.4 13.8 76.4 58.4 38.2 58.6 46.6 27.6
FDR(%) 13.3 12.3 17.8 20.8 16.1 19.6 7 8.2 13.6 10.4 8.7 14.6
mTests 1.4 1.8 1.6 12.6 12 12.2 1 1.1 1 0.8 0.9 0.7

Survival� Power(%) 98 93.2 74.2 78.4 72.6 41 98.2 88 62.6 97.8 85.8 61.8
FDR(%) 1.3 4.1 7.5 12 11.2 16.1 0.8 4.3 9 2.9 5.8 12.4
mTests 1 1.6 1.6 9.5 8.9 9.6 1 1.5 1.4 1.1 1.6 1.5

Survival�� Power(%) 82.6 71.2 47.8 35.2 31.4 13.6 80.8 64.2 36.4 69.4 59.2 33
FDR(%) 5.5 7.1 11.7 13.1 9.7 12.9 3 8.1 15.2 11.8 13.6 20.2
mTests 1.1 1.5 1.4 11.9 11.5 11.8 1 1.2 0.9 1.1 1.2 1

mTests is the number of multiple tests for QI average over the 500 simulations.
*Minor frequency of binary outcome is 44% average over the 500 simulations.
�Average number of events is 70%.
��Average number of events is 30%.

We calculated the power as the proportion of occurrences among all the simulations in which the true
QI effect was detected. We calculated the FDR as the average over 500 simulations of proportions of
falsely detected QIs among all detected QI. We present the results in Table II.

Our simulation study suggests the feasibility of detecting the QI by using the BMS or the ABMS
approach for a relatively large number of predictors. Our simulated data have one or two true interac-
tion terms for �1 or �2 and �3, respectively. The mTests ideally should be close to one or two for �1
or �2 and �3 accordingly. A deviation towards smaller value indicates that the selected model missed
true interaction terms. Conversely, a deviation towards larger values indicates that false interaction terms
were included in the selected model for the QI test. When p D 25, the much smaller mTests from ABMS
method indicates the advantage of using the adaptive variable screen phase. The BMS method does not
involve a variable screening phase. It tends to have poor power if the number of covariates is large
relative to the sample size. However, the ABMS method could falsely remove important predictors dur-
ing the variable screening phase. Apparently, when the number of main effects is relatively small (p D 5)
to the sample size, the BMS method is better than ABMS. To obtain reasonably stable estimates of the
regression coefficients, the rule of thumb is to have a minimum of 10 subjects in the smaller category in
logistic regression or 10 events in the Cox model per predictor variable [18,24]. A relaxed version could
be used in guiding the choice of BMS or ABMS. If the number of main effects is larger than 1/10th of
the effective sample size, the ABMS method is recommended.
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4. Applications

4.1. Colorectal cancer phase III trial

We illustrate the method using the data from a previously reported randomized phase III trial [11, 25].
The primary objective of the study was to compare the effect of combinations of chemotherapy agents
in patients with advanced colorectal cancer. At the time of planning the trial, two chemotherapy drugs
had been approved by the Food and Drug Administration for the treatment of advanced colon cancer,
5-fluorouracil (5-FU) and irinotecan (CPT-11), whereas oxaliplatin (OXAL), a cis-platinum analogue
with activity in colorectal cancer, was an investigational agent in the USA and Canada. Two experimen-
tal combinations of regimens, 5-FU C OXAL and OXAL C CPT-11, were compared with the standard
regimen, 5-FU C CPT-11, in the trial. We refer to these regimens as arm F, arm G, and the control as
arm A, respectively. A total of 1705 patients were included in the study, of which 513 (115 patients in
arm A, 292 patients in arm F, and 106 patients in arm G) were genotyped for 23 biomarkers. These
biomarkers were selected on the basis of previous reports indicating that they were related to bioactivity
of the chemotherapies by direct or indirect mechanisms. Table 1 in [11] shows descriptive summaries of
the covariates.

For the purpose of illustration, we focus on the treatment comparison between arm F and the stan-
dard treatment arm A and prespecified primary endpoint PFS. We applied the ABMS method with
c D 10; � D :15, and Beta(2, 2). We used the �1 equal to 1 for selecting models and 0.01 for select-
ing variables with the expected loss L.d; 
/. We set the length of the two parallel MCMC chains
to be 20; 000, from which we discarded the first 1000 iterations. We used the posterior mean of
QIj D Prf˛1 � .˛1 C ˇpCj / < 0jMl ;Datag as for testing for QI. Results from the simulation studies
(Table II) suggest that with a total of about 140 events in 1:1 randomization and 25 potential predic-
tors, the powers to detect a true QI from models �1 and �2 are 0.978 and 0.858, respectively. Hence,
in this application data set with 296 events and 2:1 randomization, we expect that the power is not less
than 80%.

Our ABMS method resulted in making inference of QI with two iterations of the model selection
phase. At the second iteration, we selected a model with posterior probability of 0.64. The selected
model only contains one QI with posterior probability of 0.87. We plotted the coefficients and the log
HR of treatment effect under the selected model in Figure 4. We plotted the KM curves by subgroups
defined by the status of selected marker (dpyd_6) and treatment groups in Figure 5. We used a different
�1 value for sensitivity analysis, and the results are almost the same (results not shown). The marker
dpyd_6 was a prognostic marker because the wild-type carriers had poor prognosis. It was also a predic-
tive marker with a QI effect. The posterior distribution (Figure 4(b)) of the HR in the dpyd_6 mutated
group suggests that the treatment was superior overall (arm F) may not benefit this subgroup. Clearly,
this result is hypothesis generating only and would require confirmation in independent trials. However,
because a majority of the patients had wild-type dpyd_6, giving experimental treatment to all the patients
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Figure 4. Posterior distributions of coefficients (a) and log HR of treatment effect in wild-type group with 272
events (dashed line) and in mutated group with 24 events (solid line) (b) in the colorectal cancer study.
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Figure 5. Kaplan–Meier curves by subgroups based on marker status and treatment arms for colorectal
cancer study.

ignoring the status of dpyd_6 will not affect the conclusion that experimental treatment is more effective
than the standard treatment.

We underline the importance of simulated power and FDR to guide the choice of different approaches
(BMS or ABMS), as well as the sensitivity analysis of tuning parameters. The results of the example in
this section may appear not persuasive regarding the merits of the proposed method. Nevertheless, these
are likely the typical results in searching for rare QI effects in cancer clinical trials in practices.

4.2. Nonsmall cell lung cancer phase III trial

DNA excision repair protein ERCC1 activity may serve as a marker in resistance to platinum chemother-
apy drugs in patients with gastric, ovarian, colorectal, nonsmall cell lung cancer (NSCLC), and bladder
cancers. In NSCLC, patients whose tumors were surgically removed and received no further therapy
have a better survival if ERCC1 is high rather than low. Thus, high ERCC1 is a favorable prognostic
marker. However, NSCLC patients with high levels of ERCC1 do not benefit from adjuvant platinum
chemotherapy, whereas ERCC1 low patients receive substantial benefit. High ERCC1 is thus a negative
predictive marker for adjuvant platinum chemotherapy [26, 27]. Most of reported studies evaluated the
ERCC1 at the RNA level, except for [26], in which the ERCC1 was measured by standard immunohisto-
chemical method. The median value of semiquantitativeH scores was a priori chosen as the cutoff point
for ERCC1 positivity tumors in [26]. Tissue microarray is an efficient way to evaluate the protein activity
in the exploratory phases. A fluorescent-based immunohistochemical method combined with automated
quantitative analysis [28] allows rapid automated analysis of protein activities. Automated quantitative
analysis identifies the separation of tumor from stromal elements and the subcellular localization of sig-
nals. The resulted quantitative scores lead to the question of identifying cutoff point for high or low
protein activity.

We illustrate our QI searching method with a randomized phase III NSCLC trial [29], where the
biomarker activity was measured as a continuous covariate. The trial was conducted in patients with
previously untreated stage IIIB/IV NSCLC, a performance of status of 2, and measurable disease by
Response Evaluation Criteria in Solid Tumors (RECIST). The trial used a 1:1 randomization to con-
trol arm (gemcitabine) or experimental arm (gemcitabine plus carboplatin). A total of 170 patients
were randomized between March 2004 and December 2006. The trial was terminated because of low
patient accrual.

Of the 65 patients with available protein expression of ERCC1 and RRM1, five had stage IIIB tumors
and all randomized to experimental arm. Because stage is a well-known prognostic factor, we focus
our inference on the 60 stage IV patients whose ERCC1 and RRM1 activities were available. There
were no significant differences between the groups of patients with and without biomarker data (Table 1
from [29]).

The covariates considered were age, gender, log2(RRM1), log2(ERCC1), and histology (adenocarci-
noma, squamous, and other). Except for gender, which is binary, and histology, which is categorical with
three levels, the remaining covariates were continuous. Each continuous covariate was scaled by divid-
ing its range to make the estimated coefficients comparable with those of categorical covariates. The
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Figure 6. Posterior distribution of intersection (solid line), median of posterior distribution of intersection (dash
dotted line), and histogram of log2-transformed observed ERCC1 protein activity in the NSCLC study.
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Figure 7. Kaplan–Meier curves by subgroups based on tentative marker high and low groups and treatment arms
for NSCLC study.

ABMS method was used because of relatively small effective samples size (49 OS events) to the number
of covariates. We used here the same choices of tuning parameters and decision rules as in Section 4.1.

At the second iteration, a model with Arm, log2(ERCC1), and histology as main effects and
log2(ERCC1)*Arm as an interaction were selected. We plotted the posterior distribution of intersection
and the histogram of observed log2(ERCC1) in Figure 6. The Bayesian credible interval of intersection
between the minimum and maximum observed log2(ERCC1) was 84.3%. By using the median of the
posterior distribution of intersection, a tentative cutoff of 15 on original scale of ERCC1 was used to
separate the patients into ERCC1 high and low subgroups. We plotted the KM curves by subgroups
in Figure 7.

In this data, the histology was identified as a prognostic factor and ERCC1 a predictive factor.
Although only 10 of 60 (17%) stage IV patients were classified as ERCC1 low with the use of the ABMS
method (Figure 6, left side of dot-dashed line classified as ERCC1 Low), the result was consistent to
the literature.

5. Discussion

In this work, we proposed BMS and ABMS methods using Bayesian regression model for subgroup
analysis. We have addressed issues of QIs in cancer treatment. The endpoints considered were linear,
categorical, and censored continuous variables, which are very common in most phase III clinical trial
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settings. Our methods increased the power of detecting QI, which becomes more important in defining
targeted group for treating complex diseases in heterogeneous population.

In addition to the power to detect a QI, another critical issue in subgroup analysis is the familywise
type I error rate, which is inflated because of multiple testing of covariates. With our proposed methods,
we reduce the familywise type I error rate by reducing the number of interactions to be tested for QI. We
first select a best model on the basis of the joint posterior distribution of possible models. This process
does not involve multiple testing. If the best model contains interaction terms, we then test for QI on the
basis of marginal poster distribution QIj for each selected term. This process involves multiple testing if
the number of interaction terms selected in the final model is larger than one. A Bayesian FDR rule was
used to control the proportion of falsely identified QI.

The estimated FDR from our simulations is small and well controlled at ˛QI D 0:5 across three dif-
ferent true models (Table II). The cutoff ˛QI D 0:5 can be interpreted as among the identified QI terms,
half of them are genuine QI terms. Because the QI is rare and our method reduces the number of multiple
tests greatly, especially the ABMS method, setting ˛QI at 0.5 is not unreasonable. Simulation results in
Table II suggest that the resulted FDR was affected by, but not limited to, decision rules, effective sample
size, number of covariates, and effect sizes. Because little is known about the truth of complex real data,
before analyzing the real data, the distribution of FDR should be studied using simulations with vari-
ous settings. We hope that the proposed study stimulates further research on the use of FDR-controlling
procedures in this setting.

Appendix A. Sample WinBUGS code for selection of QI for survival outcomes
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