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ABSTRACT Omics technologies include genomics, transcriptomics, proteomics, metabolomics, and
immunomics. These technologies have been used in vaccine research, which can be summarized using the
term “vaccinomics.” These omics technologies combined with advanced bioinformatics analysis form the
core of “systems vaccinology.” Omics technologies provide powerful methods in vaccine target identifi-
cation. The genomics-based reverse vaccinology starts with predicting vaccine protein candidates through
in silico bioinformatics analysis of genome sequences. The VIOLIN Vaxign vaccine design program
(http://www.violinet.org/vaxign) is the first web-based vaccine target prediction software based on the
reverse vaccinology strategy. Systematic transcriptomics and proteomics analyses facilitate rational
vaccine target identification by detesting genome-wide gene expression profiles. Immunomics is the study
of the set of antigens recognized by host immune systems and has also been used for efficient vaccine
target prediction. With the large amount of omics data available, it is necessary to integrate various
vaccine data using ontologies, including the Gene Ontology (GO) and Vaccine Ontology (VO), for more
efficient vaccine target prediction and assessment. All these omics technologies combined with advanced
bioinformatics analysis methods for a systems biology-based vaccine target prediction strategy. This article
reviews the various omics technologies and how they can be used in vaccine target identification. Drug
Dev Res 73 : 559–568, 2012. © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Vaccination is one of the most effective tools to
prevent against infectious diseases, cancer, allergy, and
autoimmune diseases. Infectious diseases are a major
source of mortality, contributing to 26% of global

human mortality in 2001 [Becker et al., 2006]. Cancer,
allergy, and autoimmune diseases also cause significant
mortality and morbidity in human and animal victims.
Vaccine immunization induces strong host immune
responses to the administrated antigen and provides a
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long-term protection against a disease. However, an
effective and safe vaccine for many deadly diseases,
including acquired immunodeficiency syndrome,
tuberculosis, and malaria, still does not exist. New
approaches toward efficient vaccine target identifica-
tion and vaccine development are desired.

A new era of vaccine research began in 1995 when
the complete genome of Haemophilus influenzae (a
pathogenic bacterium) was published [Fleischmann
et al., 1995]. Since then, thousands of pathogen
genomes have been sequenced. Various host (such as
human and mouse) genomes are also available. With
the availability of large amounts of genome sequences,
high-throughput-omics technologies—genomics, tran-
scriptomics, proteomics, metabolomics, immunomics,
and other omics approaches—have been invented.
Advance bioinformatics approaches have also been
developed to support the analysis of large amounts of
omics data at differing levels, ranging from gene anno-
tation, data normalization, significant gene expression
detection, function enrichment, to pathway analysis.
These omic and bioinformatic technologies enable the
testing and screening of millions of possible vaccine
candidates and vaccine-induced host immune targets
in real time.

This article reviews how omics technologies com-
bined with advanced bioinformatics data analyses have
been used in vaccine target identifications.

GENOMICS-BASED REVERSE VACCINOLOGY FOR
VACCINE TARGET IDENTIFICATION

Reverse vaccinology is an emerging and revolu-
tionary vaccine development approach that starts with
the prediction of vaccine targets by bioinformatics
analysis of genome sequences. Predicted proteins are
selected based on desirable attributes. Reverse vaccino-
logy was first applied to the development of a vaccine
against serogroup B Neisseria meningitidis (MenB), the
major cause of sepsis and meningitis in children and
young adults [Pizza et al., 2000]. The complete MenB
genome was screened using bioinformatics algorithms
for open reading frames coding for putative surface-
exposed or secreted proteins, which are susceptible to
antibody recognition and therefore the most suitable
vaccine candidates. Out of approximately 600 novel
vaccine candidates, 350 were expressed in Escherichia
coli, and 28 were found to elicit protective antibody
response. It took less than 18 months to identify more
vaccine candidates in MenB than had been discovered
over the previous 40 years by conventional methods
[Pizza et al., 2000]. Derived from the first reverse vac-
cinology attempt, Bexsero, a multicomponent, broad-
coverage MenB vaccine, was developed. Following the

generation of comprehensive clinical and epidemiologi-
cal data on Bexsero, Novartis submitted a Marketing
Authorization Application in late 2010 to the European
Medicines Agency for the use of Bexsero in humans
[Althoff and Gassenbach, 2010]. This milestone
occurred approximately 10 years after the first reverse
vaccinology publication, representing a huge success in
vaccine research and development (R&D).

Besides identifying secreted or outer membrane
proteins, many more reverse vaccinology criteria have
been developed since its first application report in
2000 described above. For example, when an outer
membrane protein contains more than one transmem-
brane helix, the recombinant protein is often difficult
to clone and purify [Pizza et al., 2000]. Therefore, the
number of transmembrane domains of a protein can
be used as a filtering criterion. Another criterion is the
selection of bacterial adhesins that are responsible for
adherence, colonization, and invasion of microbes to
host cells [Sachdeva et al., 2005]. With the availability
of multiple genomes sequenced for pathogens, it is
also possible to run comparative genomics analyses to
identify vaccine targets shared by many pathogenic
organisms. These conserved proteins can be used to
induce protection against multiple pathogenic strains.
It is also important to compare sequence similarities
between vaccine protein candidates and host pro-
teome. A pathogen protein homologous to a host
protein may induce an autoimmune disease or
immune tolerance. The traditional immunoinformatics
approaches for prediction immune epitopes can also
be used for screening protective antigens [He et al.,
2010b].

Vaxign (http://www.violinet.org/vaxign) is the first
web-based vaccine design program utilizing the reverse
vaccinology strategy [Xiang and He, 2009a; He et al.,
2010b]. Predicted features in the Vaxign pipeline
include protein subcellular location, transmembrane
helices, adhesin probability, conservation among patho-
gen genomes, conservation to human and/or mouse
proteins, sequence exclusion from genome(s) of non-
pathogenic strain(s), and epitope binding to major his-
tocompatibility complex (MHC) class I and class II.
Vaxign has been demonstrated to successfully predict
vaccine targets for Brucella spp. [Xiang and He, 2009a;
He and Xiang, 2010], uropathogenic E. coli [He et al.,
2010b], and human herpesvirus 1 virus [He and Xiang,
2011]. Currently, more than 200 genomes have been
precomputed using the Vaxign pipeline and available
for query in the Vaxign website. Vaxign also performs
dynamic vaccine target prediction based on input
sequences.

The concept of reverse vaccinology has been suc-
cessfully applied to many other pathogens (Table 1).
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Other features may also be considered for vaccine
target prediction, for example, the application of pos-
sible three-dimensional (3D) structure in epitope pre-
diction and antigen discovery [Mora et al., 2006;
Serruto and Rappuoli, 2006]. It is also possible to
predict vaccine targets based on other omics technolo-
gies, which will be introduced below.

TRANSCRIPTOMICS-BASED DATA ANALYSIS FOR
VACCINE TARGET IDENTIFICATION

High-throughput transcriptomics analysis of gene
expression using DNA microarray or RNA-seq next-
generation sequencing technologies has revolutionized
the way of studying genes that are involved in microbial
pathogenesis. These assay systems are able to measure
the expression pattern of thousands of genes in parallel,
permitting the generation of large amounts of gene
expression data. DNA microarrays can be hybridized
with complementary DNA (cDNA) prepared from
messenger RNA isolated from microorganisms grown
in vitro or in vivo under different growth conditions.
RNA-seq, also called “Whole Transcriptome Shotgun
Sequencing,” is a technique that uses high-throughput
next-generation sequencing technologies to sequence
cDNA in order to get information about a sample’s
RNA contents. The next-generation sequencing has
deep coverage and base-level resolution and does not
require the prior knowledge of the genome sequence
[Pinto et al., 2011]. The genes that are differentially
transcribed in response to alternation in environmental
variables in wild type or gene mutant microbes can be
measured. It is important to find out what genes are
expressed during host infection. Those genes that are
expressed during disease represent most likely protec-
tive vaccine targets.

Many examples exist. For instance, the sexual
stages of malarial parasites are essential for transmission
of malaria by the mosquito and can be targeted for
rational development of malaria vaccines. To better
understand how genes participate in the sexual devel-
opment process, Young et al. utilized microarrays to
profile the transcriptomes of Plasmodium falciparum
gametocytes at sexual stages [Young et al., 2005]. A
246-gene cluster associated with sexual development
was identified using an ontology-based pattern identifi-
cation algorithm. Some of the genes in the cluster can
be potentially used for malaria vaccine development.
More examples can be found in Table 1.

One challenge in vaccine target identification is
the difficulty in experimental verification. The gold
standard in vaccine target validation is a vaccination-
challenge experiment, which tests if a vaccine immuni-
zation is able to induce protection against challenge of

an infection with virulent pathogen in vivo. However,
such experiments are often expensive and difficult to
perform, especially for deadly pathogens (e.g., human
immunodeficiency virus [HIV] and Mycobacterium
tuberculosis) that do not have ideal small animal models
that mimic human pathogenesis mechanisms. There-
fore, it is important to identify an immune response that
correlates well with protection. For many diseases, an
ideal immune response that correlates with protection
has not been found. Omics approaches can be used to
identify host gene signatures that correlate and even
predict protective immunity. For example, to identify
early gene signatures induced in humans vaccinated
with the attenuated yellow fever vaccine YF17D, two
studies have examined total peripheral-blood mono-
nuclear cells from human volunteers at different time
points following vaccination with YF17D [Gaucher
et al., 2008; Querec et al., 2009]. Microarrays were used
to determine early effects (3 and 7 days postvaccina-
tion) of the vaccination on gene expression. A group of
transcription factors, including IRF7, STAT2, and
ETS2, functions as key regulators of the early immune
response to YF17D vaccination [Gaucher et al., 2008].
A list of gene signatures (e.g., EIF2AK4 and
TNFRSF17), which correlate with the magnitude of
antigen-specific CD8+ T-cell responses and antibody
titers, has also been identified and verified [Querec
et al., 2009]. These gene signature profiles may serve as
correlates of protection and be used in high-throughput
screening of vaccine targets.

PROTEOMICS-BASED DATA ANALYSIS FOR
VACCINE TARGET IDENTIFICATION

The availability of complete genome sequences
allows the identification of all possible protein products.
The advances in protein separation and mass spectrom-
etry technologies make it possible to identify total
protein components of a given cellular population or a
subset of proteins from a particular cell compartment
(e.g., outer membrane) under any specific growth con-
dition. The combination of proteomics with serological
analysis forms a new valuable approach called serologi-
cal proteome analysis [Serruto and Rappuoli, 2006].
These proteomics approaches have been used in
vaccine target predictions (Table 1).

Bioinformatics analysis of high-throughput gene
expression results is a key to make novel discoveries.
Gene expression is the process by which information
from a gene is used in the synthesis of a functional gene
product. The gene expression process occurs in the
transcription level as well as the protein expression
level. Therefore, omics gene expression data analysis
covers the transcriptiomical and proteomic data analy-
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ses. The bioinformatics methods used for both tran-
scriptiomical and proteomic gene expression are similar
and include the following steps: (i) data preprocessing,
including data quality controls and normalization;
(ii) identification of significantly regulated genes using
statistics methods; (iii) clustering, classification, and
pattern discovery analyses; and (iv) inference of biologi-
cal pathways and networks [Liang and Kelemen, 2006;
Hendrickson et al., 2008]. The detailed methods have
been surveyed and described in previous report [He
et al., 2010a].

IMMUNOMICS-BASED DATA ANALYSIS FOR
VACCINE TARGET IDENTIFICATION

Immunomics is the study of the set of antigens,
especially T- and B-cell epitopes, which are recognized
by host immune systems including human or animal
hosts.

As comprehensively reviewed in a previous article
[He et al., 2010a], many immunoinformatics algorithms
have been invented to predict T- and B-cell immune
epitopes. T-cell epitopes are bound in a linear form to
MHC class I or class II molecules. T-cell epitopes can
be predicted with high accuracy [He et al., 2010a].
B-cell epitopes can be linear or nonlinear (or called
conformational). It remains a huge challenge to com-
putationally predict B-cell immune epitopes. Currently,
the best accuracy of predicting linear B-cell epitopes is
approximately 60–70%. Over 90% of B-cell epitopes are
nonlinear and require the knowledge of native 3D
protein structure. There has not been proper approach
achieving high performance in nonlinear B-cell epitope
prediction.

Many examples of proteomics-based vaccine
target identification studies are summarized in Table 1.
It is noted that computational epitope prediction-based
immunomics methods have often been integrated with
other omics technologies. For example, using DNA
microarray data, Sturniolo et al., [1999] developed a
matrix-based computational algorithm to successfully
predict a list of immunogenic epitope peptides uniquely
associated with colon cancer. These peptides are likely
vaccine targets for development of a colon cancer
vaccine.

ONTOLOGY-BASED INTEGRATED OMICS DATA
ANALYSIS FOR VACCINE TARGET IDENTIFICATION

Different omics technologies, in combination with
advanced bioinformatics analyses, can be integrated to
more effectively support vaccine target identification.
Without effective integration of various omics data, it is

difficult to provide comprehensive prediction of vaccine
targets. The data integration problem can be addressed
by the use of a biomedical formal ontology, i.e., a
consensus-based controlled vocabulary of terms and
relations, with associated definitions that are logically
formulated in such a way as to promote automated
reasoning. The Gene Ontology (GO) database (http://
www.geneontology.org) has been widely used [Ash-
burner et al., 2000] in three categories: biological
process, molecular function, and cellular component.
GO has been widely used in various data integration
and omics data analysis studies. As of July, 2012, over
4000 papers in PubMed cited the GO.

The community-based Vaccine Ontology (VO;
http://www.violinet.org/vaccineontology) was devel-
oped to support vaccine data standardization, integra-
tion, and computer-assisted reasoning. VO contains
more than 3000 terms, including more than 2000 vac-
cines that are licensed, in clinical trial, or proven effec-
tive in animals. These vaccines are targeted for over 20
animal species (e.g., human, cattle, and fish) against
over 100 pathogens. Each vaccine is classified in VO
using a logically defined, structured ontological hierar-
chy. As a vaccine knowledge base, VO also stores terms
related to other vaccine-associated information, includ-
ing different vaccine components (e.g., protective anti-
gens and vaccine adjuvants) and vaccine-induced
immune responses. Semantic relations between these
terms are also included in VO to represent existing
knowledge. These representations, written in the Web
Ontology Language, can be parseable and readable by
computer programs. VO has been used to model the
meta-analysis of vaccine protection investigation
[Brinkman et al., 2010; Todd et al., 2012]. VO can also
be used to improve the indexing and literature mining
of vaccine articles for analysis of Brucella gene-vaccine
interaction networks [Xiang and He, 2009b; Hur et al.,
2010] and discovery of IFN-g and vaccine-associated
gene networks [Ozgur et al., 2010]. The VO-based
literature mining of all PubMed literature provides a
novel method to predict vaccine targets [Hur et al.,
2011].

DISCUSSION

Omics technologies combined with bioinformatics
data analysis form the core parts of the “systems vacci-
nology,” a term derived from “systems biology” that is
applied to the field of vaccinology. Systems vaccinology
studies scientific questions in the field of vaccine and
vaccination in a systems biology way. These omics and
bioinformatics-based systems vaccinology methods
have greatly supported the prediction and identification
of vaccine targets.
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Besides the omics technologies introduced above,
many other vaccine target identification methods have
been developed. For example, analysis of manually
curated vaccine target data available in existing data-
bases provides a powerful way for vaccine target pre-
diction. As part of the VIOLIN vaccine database and
analysis system [Xiang et al., 2008], Protegen is a web-
based database that contains over 600 protective
antigen information [Yang et al., 2011]. These antigens
are also collected in the VO. Protective antigens are
targeted by host acquired immunity and able to induce
protection against infectious diseases. To identify fea-
tures enriched in protective protein antigens, 201 pro-
tective protein antigens from Gram-negative bacteria
and 69 protective protein antigens from Gram-positive
bacteria collected in Protegen were analyzed [He and
Xiang, 2012]. Of the protective antigens in Gram-
positive bacteria, 64% are extracellular or cell wall pro-
teins and 48% of protective antigens in Gram-negative
bacteria belong to extracellular or outer membrane pro-
teins. Over 40% protective bacterial antigens are adhes-
ins or adhesin-like proteins. Many conserved motifs,
including Autotransporter and TonB domains, are
enriched in protective bacterial antigens. A predictive
method based on the support vector machine (SVM)
algorithm has a performance of 92% true positive rate
of sequence-based protection. However, this SVM-
based method has poor performance in differentiating
true negative from false negative results [He and Xiang,
2012]. Overall, this study is pioneer in identifying spe-
cific patterns in protective antigens and computation-
ally predicting protective antigens.

Many challenges also exist in the area of omics-
based data analysis for vaccine target identification.
Particularly, new vaccines are still needed to fight
against infections with many deadly pathogens, such as
HIV, M. tuberculosis, and P. falciparum. Although
huge amounts of financial support have been invested
and intensive research has been conducted, there still
have not been safe and effective vaccines available for
tackling these problems. Novel methods and ideas
derived from the area of omics-based systems biology
may provide hope toward better identification of new
vaccine targets to support vaccine development.
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