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[1] The south polar terrain (SPT) of Saturn’s moon Enceladus is a mysteriously active
region that exhibits intriguing tectonic signatures and widespread fracturing. The central
region of the nearly-circular SPT is depressed into the surface by a few hundred meters
and bounded by a ring of cliffs roughly 1 km high. In this study, we investigate whether
this depression and surrounding mountainous uplift is consistent with the morphology
of terrestrial rift basins and the possibility that the SPT could have formed during a tectonic
event analogous to those of such rift basins on Earth. Using three mechanical models
of basin formation, we compare our predicted topography of the SPT with observed
topography of the region. The first of three models we consider assumes crustal stretching
by factor b, and predicts a basin depth of roughly 600 m, closely matching previously
published estimates of the depth at the SPT. Models of extension and compression,
assuming an elastic response in the ice crust, predict best-fit mountain uplift of roughly
1820 m and 1130 m, respectively. Our preferred model suggests that the icy shell in the
SPT has been stretched, but the extension is (partially) balanced by compression along the
edges of the basin leading to the uplift of the mountains along the boundary, thereby
implying that the SPT may have a tectonic origin analogous to that of a terrestrial basin.
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1. Introduction

[2] Saturn’s moon Enceladus is unusual in that it is among
only a handful of solar system objects known to be geologi-
cally active; a striking characteristic given that the global
surface temperature is 70 K and the moon, covered in an icy
shell, has an effective radius of only 250 km [Porco et al.,
2006]. Observations of the icy surface indicate a long history
of activity and deformation. Different sections of the surface
range in age from primordial (cratered plains regions have
estimated age up to 4.2 billion years or 1.7 billion years,
depending on impactor fluxmodel used [Spencer et al., 2009])
to geologically recent [Porco et al., 2006; Bland et al., 2007;
Barr, 2008]. The variation in surface features and ages across
the moon imply that regional, rather than global, resurfacing
processes are dominant [Kargel and Pozio, 1996].
[3] The region of interest in this paper is the South Pole

Terrain (SPT), the youngest region of the satellite’s surface
with an age <10 Myr [Barr and Preuss, 2010]. The SPT
most notably features the “tiger stripe” fractures at its center,
along with their associated active plume vents [e.g., Spencer

et al., 2009]. Evidence of continual tectonic activity in the
region and the observation of the active venting at the South
Pole suggest the possibility of a subsurface ocean [e.g.,
Collins and Goodman, 2007]. The SPT on the whole has
been described in detail by Gioia et al. [2007], Spencer et al.
[2009], and others; the terrain can be generally classified
into the central tiger stripe terrain, which coincides with the
underlying thermal anomaly at the South Pole, a slim cir-
cular terrain which surrounds the central terrain but has few
fractures of its own, and a prominent, concentric ring of
ridges. The floor of the region is relatively flat and shallowly
depressed relative to the geoid [Thomas et al., 2007; Schenk
and McKinnon, 2009]. Estimates of the depth of the floor
range from 200 m [Thomas et al., 2007; Roberts and Nimmo,
2008] to about 500 m at the center [Helfenstein et al., 2011]
and up to about 800 m [Schenk and McKinnon, 2009],
depending on assumed shape models and density structures
within the ice, respectively. The area is enclosed by a curved,
pole-ward facing cliff system, creating a nearly-circular
border to the region at about 55�S [Spencer et al., 2009] and
has been interpreted as a convergent feature resulting from
compressive stress along that boundary in the North-South
direction [Porco et al., 2006]. The steep footwalls and
gradually sloping flanks have been estimated to be roughly 1
km in height [e.g., Schenk and McKinnon, 2009; Spencer
et al., 2009]. Another significant feature of the SPT man-
ifests itself in a radial set of large rifted features, extending in
a “starfish” shape toward the equator [Gioia et al., 2007]
(Figure 1). Speculation that the topographic appearance and
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activity at the SPT are manifestations of subsurface dynamics
and/or variability in structure is bolstered by the observation
of a hot spot beneath the SPT region [e.g., Howett et al.,
2011] suggesting that the SPT may have a (partially) tec-
tonic origin.
[4] Similarly, rift basins found on the Earth are generally

complex features, but can be characterized by large-scale
structural components, including: a depressed floor or trough,
occasionally found to have relatively flat [e.g., Colman et al.,
2003; Lagabrielle et al., 1997] and faulted [e.g., Allen and
Allen, 2005; Withjack et al., 2002] floors; moderately-to-
steeply dipping footwalls, uplifted flanks, and border fault-
ing; and transform zones [Withjack et al., 2002]. Noting the
topographic similarity between rift basins on the Earth and
the SPT region of Enceladus, we seek to use simple terres-
trially-motivated rift basin models to determine if the pre-
dicted magnitude of rift basin depression and mountainous
uplift are consistent with observations. The models are
intended to explain the overall shape of the region (i.e., floor
depression and uplifted flanks) rather than the tiger stripe rifts
themselves; our models seek to provide the tectonic setting in
which such features could form (subject to additional tidal
forcing, e.g., tidal flexure, differential rotation of the shell,
etc.).
[5] To explore the possibility that similar processes

formed the SPT, we examine three mechanical models that
have historically been proposed to explain the topographic
signatures observed in terrestrial rift basins, and examine
which of these models are consistent with observed topo-
graphic features of the SPT. The models we examine here
provide first order estimates of the processes controlling
basin floor depth and the height of the rift wall bounding

fault zone consistent with known material properties, rheo-
logical structure of the moon and observations. The models
we use are summarized in the next sections, after which we
present our results, and then compare the topography pre-
dicted by the models with observed topography at
Enceladus.

2. Mechanical Models of Basin Formation

[6] The three terrestrial basin-forming models we consider
are illustrated in Figure 2. The first model, formation due to
thinning, shall describe the subsidence of the floor, while we
intend to describe the flank uplift at the sides of the basin
using the flexural models. These models are not necessarily
independent and we later include the non-local flexural
response of the ice into the thinning model. We describe the
physical setting of each model in the following sections. We

Figure 1. The south polar terrain of Enceladus as imaged by
Cassini (NASA/JPL/Space Science Institute). The major sec-
tions of topography at the SPT are denoted here: the four main
tiger stripes marked in red, within the central depressed tiger
stripe terrain outlined in yellow; the surrounding region that
appears mottled but has few fractures itself, also depressed,
outlined in green; the green outline, thereby, also highlights
the location of the mountainous uplift at the boundary of
the region. The highest point of uplift is estimated at 1 km.
Blue lines radially outward from the SPT mark two of the
“starfish arms” - large-scale fracture features radiating away
from the SPT toward the equator.

Figure 2. Schematics of the three basin models considered:
(a) Thinning model: a section of crust is stretched by b,
thereby thinning the solid layer by b, which leads isostatic
imbalance and subsequent subsidence at the surface. (b)
Extensional model of rift flank uplift: Dependent upon elas-
tic response in the crust, we envision tensional forces pull-
apart a crustal block which breaks at angle qb, causing uplift
ur. The footwall block (right) rises to maintain isostasy
above the hanging wall block (left). (c) Compressional
model of rift flank uplift: assuming an elastic response in
the crust, we envision that horizontal forces push on a block
until it breaks, causing a reverse fault and uplift ur. All three
models are dependent on layer properties, most importantly
ri (ice density), and the density of the underlying substra-
tum, ru. In our models we consider several states for ru.
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note that Enceladus has a radius of just 250 km, and so
in contrast to the traditional Cartesian geometry often
employed, our model calculations are carried out using a
spherical geometry, described in Appendix A.

2.1. An Icy Analog: Enceladus’ Structure

[7] Prior to constructing mechanical models of the SPT
topography, we need to make assumptions about the internal
structure and composition of Enceladus (Figure 3). We con-
sider Enceladus to be differentiated with a rocky silicate core
and a concentric water and ice layer of approximately 100 km,
up to Enceladus’ effective radius of 250 km. We assume this
100-km outer layer consists of a liquid layer between 40 and
60 km thick (roughly consistent with estimates by Barr and
McKinnon [2007], Barr [2008], Mitri and Showman [2008],
Smith-Konter and Pappalardo [2008],Olgin et al. [2011], and
Patthoff and Kattenhorn [2011]) beneath an upper layer of
solid ice between 60 and 40 km, respectively (consistent with
estimates above). Unlike rocky material, ice remains brittle
up to the melting point and so, consistent with previous
studies, we define the brittle-ductile transition as the depth d
that a fracture penetrates. We generally assume the brittle layer
thickness Hb to be 3 km, on the high-end but roughly consis-
tent with Tobie et al. [2010], who showed the brittle-ductile
transition depth to be 2–3 km, but consider a range of fracture

penetration depths. Later, we employ an elastic layer thickness
to investigate the flexural response in the ice. Although
not well constrained [Smith-Konter and Pappalardo, 2008],
estimates for elastic thickness in the past range between 0.3 km
in flexural studies by Giese et al. [2008], 0.4–1.4 km in heat
flux analyses [Bland et al., 2007], at least 0.5 km in satellite
reorientation models [Nimmo and Pappalardo, 2006], and
up to approximately 8 km in tidal stress models [Smith-Konter
and Pappalardo, 2008; Olgin et al., 2011]. In order to justify
our own use of values, we computed preliminary results
using a range of values for elastic and brittle thickness
(between 1 and 10 km), and compared these to the profile
produced by Schenk and McKinnon [2009]. Keeping in mind
that this single profile may not be completely representative,
our best RMS misfit values come from elastic thicknesses
between 1 and 5 km; however, the elastic thickness of 1 km
curve also reaches roughly the elevation that we would expect
(1 km). It is due to this that we assume a 1 km elastic thickness,
which also allows us to remain roughly consistent with the
lower range of previous estimates.

2.2. Subsidence of the SPT Floor

[8] The first model we consider is motivated by early
studies of sedimentary basins on Earth. McKenzie [1978]
hypothesized that the stratigraphy of basins was formed
through stretching and extensive normal faulting in the brittle
crust (as suggested by Vening-Meinesz [1950]), followed by
local isostatic subsidence. In contrast, for a basin to form
without horizontal stretching, a large amount of material
must be removed by erosion. In the case of Enceladus, even
the most conservative estimate for elevation change would
require the removal of 200 m [Thomas et al., 2007] of icy
material across the approximately 300 km wide area across
the South Pole. Although the terrestrial McKenzie [1978]
model involves complexities due to thermal diffusion that
are not relevant to our simpler ice-water structure, we pos-
tulate that the extensional portion of the model still provides a
reasonable setting in which the SPT basin may have formed.
[9] The McKenzie [1978] thinning model (Figure 2a)

describes a section of lithosphere that is stretched and
thinned, allowing warmer subsurface material to rise to fill
the thinned region from below. Neglecting elastic effects, the
subsidence of the floor is described as the isostatic adjust-
ment due to the thinning, where, as in Schenk and McKinnon
[2009], the isostatic adjustment at the base of the shell is
given by

Si ¼ lDrgb
rgs

ð1Þ

where l is the amount of thinning of the ice (positive upwards
from the base), Dr is the density difference between ice and
water at the base of the shell, r is the ice density, and gs and
gb are the surface and basal acceleration due to gravity, which
ranges between 0.11 up to 0.15 m/s2, respectively, depending
on the thickness of the ice shell.
[10] This model is attractive in that it describes the for-

mation of a depressed surface associated with a thinned ice
layer. The model, however, has several deficiencies,
including the possibility of regional (flexural) compensation.
We can address this easily by including a finite elastic
thickness of the ice. More problematic, we have employed

Figure 3. Model structure for Enceladus. We assume an ice
shell of thickness 50 km over an ocean of 40 km depth, for a
total outer water-ice layer of 90 km. For models of flexure,
we assume that the elastic thickness, Te (light gray), at Ence-
ladus is 1 km. The brittle layer of ice, or the depth t which
fractures penetrate (d), is taken to be 3 km (though we exper-
iment with upper bounds in our results). We assume a sur-
face temperature of 70 K, a thermal gradient in the ice
layer (thick black line), and an isothermal water ocean (dark
gray) beneath at 273 K.
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this thinning model to describe the floor subsidence, but we
also need to explain uplift at the boundary of the subsided
region. To bound the magnitude of uplift, we imagine that
we have one of two scenarios. In the first scenario, we
assume the SPT is subject to a large-scale tensile stress and
examine whether rift flank uplift as the result of the forma-
tion of extensional grabens is sufficient to explain the size
of the mountains. In the second scenario, we imagine that the
tensile stresses that caused subsidence are more local,
allowing for extension in our basin that is then compensated
by compressional stress at the edges of the region. These
flexural models are described next.

2.3. Flexural Response of the Ice Crust

[11] We begin by describing flexure on a sphere [Turcotte
et al., 1981]:

Dr6ur þ 4Dr4ur þ EhR2r2ur þ 2EhR2ur ¼ R4 r2 þ 1� n
� �

p

ð2Þ

where p represents the pressure or force on the shell, ur is the
resulting displacement in the radial dimension for which to
solve, R is the radius, h is the elastic shell thickness, and D is
the flexural rigidity, defined as

D ¼ Eh3

12 1� n2ð Þ ð3Þ

with E defined as Young’s modulus and n defined as
Poisson’s ratio. In contrast with previous studies, due to the
fact that Enceladus’ radius of curvature is so small, it is
possible that the often-used Cartesian elastic plate model of
lithospheric flexure [e.g., Turcotte and Schubert, 1982] may
not be sufficiently accurate in predicting the flexure of
Enceladus’ ice crust and may have an effect on our tectonic
problem [e.g., Yamaoka et al., 1986; Yamaoka, 1988;
Mahadevan et al., 2010; Lagabrielle et al., 1997].
[12] Using a force-balance approach in the spherical

dimensions, we use Legendre polynomials to determine the
equation for the flexure of a spherical shell (approach is
detailed in Appendix A), subject to line force Fr as

ur ¼ �R4

D
Fr

X∞
l¼0

l þ 1
2

� �
sinf0

G lð Þ Pl cosf0ð ÞPl cosfð Þ ð4Þ

where f0 is the colatitude angle at which the line force is
applied (break point). We have also defined G(l) here, as in
Tanimoto [1997],

G lð Þ ¼ L2 � 1� nð ÞL� �
1� Vl

Ul

� �
þ 12 1þ nð ÞR

2

h2

� 2� L
Vl

Ul

� �
þDrgR4

D
ð5Þ

where L = l(l + 1) (l is the angular degree), Dr is the density
contrast between the elastic layer and substratum, and Vl

and Ul are Legendre coefficients defined in Appendix A. All
calculations are carried to harmonic degree of 90 and solu-
tions using a higher order do not alter results significantly.
The line force Fr to be applied in each case (thinning,
extension, and compression) is derived in the following
subsections.

2.3.1. Flexural Response to Thinning
[13] If we assume that at least the top layer of cold ice

behaves elastically (elastic thickness: 1 km) and that the
extension is accommodated by a brittle layer Hb of roughly
3 km, the change in topography due to thinning at the SPT
described above induces a flexural response in the elastic shell,
described by the spherical flexure equation (equation (4)). The
pressure at the base of the shell can be found as in Turcotte
et al. [1981] for a change in topography:

p ¼ g rih� ruhg � ru � rið Þur
� �

; ð6Þ

Here, ri is the ice density and ru as the underlying substratum
density (here defined as warm ductile ice), h is the change in
topography after thinning, hg is the displacement of the geoid,
and ur is the flexure of the shell as before. The associated force
over the basin (Fr in equation (4)) induces bending stress in the
elastic shell in the f direction (co-latitude), calculated as
[Tanimoto, 1997]

sff ¼ E

1� n2
ɛff þ nɛyy
� �

; ð7Þ

where ɛff and ɛyy are extensional strains. In determining
stress over the shell, we can investigate points at which the
yield strength of ice is surpassed, and therefore predict possi-
ble boundary fault locations (at which the uplift, calculated
above, would occur). While the yield strength of ice at Ence-
ladus is difficult to constrain [Rudolph and Manga, 2009], in
this study we assume a yield strength of 1 MPa, consistent
with terrestrial values [Bassis and Walker, 2011] and experi-
mentally derived values for temperatures more appropriate for
icy moons [e.g., Schulson, 1999].
2.3.2. Boundary Flexure Due to Crustal Extension
[14] It was suggested by Vening-Meinesz [1950] that if an

extensional force were applied to a section of crust, normal
faulting would eventually occur, illustrated in Figure 2b. In
the past it has been applied to active rift systems as well as to
basin settings; more specifically, to “syn-rift” basins that
form in response to extension, e.g., seafloor spreading (a
mechanism that had previously been suggested for the tiger
stripes [e.g., Parkinson et al., 2008; Abramov and Spencer,
2009]). The Vening-Meinesz model considered the mechan-
ics of blocks on either side of a fault (the original crustal block
fractured along an angle, effectively leading to a reduction
of mass of one crustal block (the footwall) and the addition
of this mass to the opposite block (the hanging wall)
[Watts, 2001, pp. 290–294], as illustrated in Figure 2b). In
this terrestrial model, when considering the restoration of
isostasy, the removal of mass from a section of crust will
cause uplift and that area will rise; likewise the addition of
mass to an adjacent section of crust, the hanging wall, will
cause loading and sinking.
[15] In estimating the point of greatest curvature, and

therefore bending stress, it is possible to determine the dis-
tance along the surface to a break in the plate. After this
break, the gradual sinking of the downward block is even-
tually counteracted when the wedge is “caught” by the
inward-sloping walls of the normal faults, unless extensional
forces continue to act. This process produces a structure
called a “graben,” a bounding fault zone that characterizes a
terrestrial basin [Schlische, 1991]. After Watts [2001],
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faulting disturbs the isostatic balance of the initial block, and
a load is applied by the crustal block on the left in Figure 4
onto the right block.
[16] While this is easily applied to the layer and density

structure of the Earth, because the ice can remain brittle up
to the melting point, in our study we can envision three
different scenarios. In case A, we consider the (unrealistic)
upper bound and imagine that brittle faulting due to exten-
sion penetrates the entire shell (fault depth d = shell thick-
ness Hi). In case B, we allow faulting to penetrate a brittle
layer thickness of 3 km, overlying a ductile ice layer. In this
case, we can assume that the ductile layer is either (i) entirely
relaxed, thus negating any upward force at the base due to
hydrostatic equilibrium, or (ii) that it is not entirely relaxed,
and an upward force at its base due to the loading of the
subsided block results in some amount of surface uplift. In
case C, if we assume that the ductile layer of ice is partially

infiltrated by ocean water, then a dense layer underlies the
surface ice and allows for a small amount of buoyant uplift.
[17] Regardless of the case we consider, in order to deter-

mine the flexure in equation (4), we must determine the force
experienced by the shell in extension. To do this, we consider
the process described by Watts [2001], and adapt it to our
spherical frame (outlined in Appendix B). We find that the
force on the shell at the plate break can be expressed as

FE ¼ AACDrigSi
TeLf

; ð8Þ

where we have defined Te as the elastic thickness; ri as the
density of ice (averaged); g is the acceleration due to gravity;
Si is the vertical distance the subsided block has been forced
down as defined in equation (1); Lf is the length of the
bending surface between breaks in the f (co-latitude) direc-
tion, here taken to be the width of the SPT; and AACD is the
area of semi-triangle ACD in Figure 4. This equation effec-
tively calculates the force initiated by the subsided block that
impinges upon the base of the shell at the opposite block and
can be simplified down to the linear elastic plate case found
in Watts [2001] by altering the geometry in Figure 4.
2.3.3. Boundary Flexure Due to Crustal Compression
[18] Bullard [1936] hypothesized instead that rift basins

formed in compressional stress regimes. We suppose that
local extension that created the subsided floor of the basin
may have resulted in corresponding compression at the
border of the region that then results in uplift. In the Bullard
[1936] theory, compression would cause a reverse fault,
allowing one crustal block to ride up on the opposing block,
resulting in buoyancy-induced flexure (dependent on den-
sity differences between layers), as illustrated in Figure 2c.
Bullard [1936] further proposed that the reverse faulting
causes bending of the opposing block, leading to a second
plate break (from extension) in the plate where the bending
stress is greatest, allowing the central block to sink, thereby
forming a basin. To determine the depth and width of a rift
valley in this model, Bullard used an early broken elastic
plate model developed by Jeffreys [1915], using a calcu-
lated force on the end of the plate.
[19] As in the extensional case (section 2.3.2), while this

proposed process works well for the structure and densities
of the Earth’s layers, we have to think carefully about how to
apply an analogous model to the ice and water layers at
Enceladus. In case A, we imagine again that the entire ice
shell behaves as a brittle layer, allowing faults to penetrate
through to the base (d = Hi); in case B, we assume a more
realistic brittle layer thickness of 3 km, allowing fractures to
penetrate to this depth only over a ductile ice layer below;
and in case C, we again investigate the possibility that there
exists an ice-water mixed layer that allows for buoyant uplift
of the dense, cold surface ice. Of course, as before, the
outcome is dependent upon the density differences between
layers; by splitting Case B into two subsets (density differ-
ence between warm and cold ice vs no density difference at
all), we will show that in this case that densities have less of
an effect, ceding dominance to the assumed elastic thickness
term (1 km).
[20] As in the extensional model, we use our spherical

flexure equation (equation (4)) and apply a calculated line

Figure 4. Schematic diagram illustrating the geometry of a
section of shell in extension and the effective load necessary
in order to return to isostatic equilibrium after a normal fault
disrupts balance. (a) Prior to rifting, extensional stresses act
on a section of shell. (b) The right hanging wall block slides
downward, creating an isostatic imbalance thereby inducing
uplift of the left footwall block. (c) A second break due to
bending stress creates (ideally) a symmetric graben structure
about the South Pole. Adapted to the spherical equivalent
from Watts [2001, Figure 7.6].
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force at the plate break to determine uplift. To determine this
upward force acting at the plate break, we adapt the approach
ofBullard [1936] (as adapted byWatts [2001]) to our spherical
structure, and express the force as

FC ¼ ruLfgx
2Te

ð9Þ

where ru is defined again here as the underlying layer density,
dependent on which case (A, B, or C) is being considered (ice
or water density). This force is then applied at the plate break
to determine uplift.
[21] Geological evidence has subsequently shown that most

terrestrial rift basins formed in extensional rather than com-
pressional tectonic stress regimes, a criticism that has since
proven fatal to the Bullard [1936] hypothesis [e.g., [Weissel
and Karner, 1989; Watts, 2001], as measurements of gravity
and increased observations of rift valleys could be better
explained in an extensional regime. Nonetheless, compression
has been proposed as a mechanism for the SPT mountainous
features and we consider this as a viable model for the uplift
surrounding the SPT basin, even if it is not observed on Earth.

3. Model Results and Comparison to Topographic
Observations

3.1. Subsidence of the Basin Floor Due to Thinning

[22] In applying our thinning model (i.e., section 2.2),
we assume that a section of the icy shell was stretched by a
factor of b due to far-field extensional stresses [e.g.,Withjack
et al., 2002; Allen and Allen, 2005] leading to thinning of the
ice shell in the localized region beneath the SPT (final
extended basin width can be calculated by b and an initial
basin width). In this case, this assumed instantaneous thin-
ning causes subsidence Si (equation (1)). We find that by
stretching the region by b = 1.11 to 1.13 thins the crust by

approximately 5 to 6 km, and the resulting topographic sub-
sidence is approximately 600 m. This value corresponds
reasonably well with previously published estimates of SPT
topography and the elevation change, which range between
200 and 800 m [Thomas et al., 2007; Roberts and Nimmo,
2008; Schenk and McKinnon, 2009;Helfenstein et al., 2011].

3.2. Flexural Response of the Crust

3.2.1. Flexural Response to Thinning
[23] The change in topography due to thinning at the SPT

induces a flexural response in the shell, described by
equation (4). This flexure (Figure 5, top) and stress (Figure 5,
bottom) are shown in Figure 5. Black squares on the stress
curve denote the location at which the stress in the elastic
shell surpasses 1 MPa, our projected yield strength of ice.
These points result in a basin floor with a diameter of
approximately 250–310 km, illustrated by white squares in
Figure 5 (top). This result roughly agrees with observations
of the basin width (approximately 300 km across in the f
direction).
3.2.2. Boundary Zone Uplift by Extensional Forces
[24] Porco et al. [2006] observe that the mountainous

boundary reaches approximately 1 km in height, a value
matched by Schenk and McKinnon [2009]. In applying the
model of crustal extension attributed to Vening-Meinesz
[1950] (section 2.3.2), we can calculate the amount of flex-
ural footwall uplift, dependent upon the normal faulting
angle [Watts, 2001] at the break. Figure 6 shows the amount
of uplift for an assumed fault angle of 20� and floor
depression (about 500 m), for an elastic thickness of 1 km.
The value is similar to best-fit values used to assess normal
faulting on Europa, an icy satellite of Jupiter with a possibly
similar ice shell. Nimmo and Schenk [2006] studied two
possible normal faults on Europa and found best-fit angles
to be 11� and 22�. Figure 6 shows that for this faulting angle

Figure 5. (top) Flexure of the ice shell due to thinning-
induced subsidence, used to calculate (bottom) associated
tensional stress. Black squares in Figure 5, bottom, show
points at which stress surpasses 1 MPa, our assumed yield
strength of ice. These locations are translated to Figure 5,
top, in white, showing the locations at which the ice will fail,
noting that negative stress implies compressive stress. This
break allows for uplift at the boundary and shows the width
of our predicted basin, roughly 240 to 310 km across,
assuming an elastic response in the ice.

Figure 6. Footwall uplift in the case of extensional forces
at the boundary of the SPT area. Uplift varies with assumed
layer properties. Case A (green): Fracturing penetrates the
entire ice thickness (d = Hi), and underlying substratum
taken to be water (ru = rw). Case B (dark blue): Fracturing
penetrates an brittle layer of 3 km, over a warm ductile ice
layer, whose density is related to the temperature gradient
in the ice layer (coldest ice at surface: 933 kg/m3, warmest
ice at base: 917 kg/m3), i.e., ru = ri(warm). Case C (light
blue): Fracturing penetrates a brittle layer of 3 km, over a
substrate of a “slushy” ice-water mixture.

WALKER ET AL.: ENCELADUS BASIN ICE TECTONICS E07003E07003

6 of 12



in cases A, B, and C, if the south polar basin formed in
this extensional manner, flexural uplift at the boundary is
predicted to be approximately 4.6 km in case A (d =Hb =Hi),
1.8 km in case B (d = Hb = 3 km) assuming the ice below is
not completely relaxed (total viscous relaxation results in
sinking rather than uplift), and 2.05 km in case C (d = Te)
over a “slushy” ice-water layer. Even this lowest result
(Case B, also the most realistic) is about twice the height of
the uplift observed today. Though it is likely that, over its
active lifetime, the SPT has undergone additional topogra-
phy-altering events (i.e., heights predicted here may have
been altered by subsequent tectonic events), the requirements
(i.e., cases A, B, and C) for uplift under extension are
unlikely. So we conclude that the extension model cannot
realistically predict the basin at the South Pole.
3.2.3. Boundary Zone Uplift by Compressional Forces
[25] Similarly, in applying the compressional uplift model

as described by Bullard [1936] (section 2.3.3), we find that
uplift can develop at the edge of the region if we assume
that compression is accommodated at that location in
response to the extension of the floor. We find that the
footwall uplift height of a basin with floor depth of roughly
500 m and elastic thickness of 1 km reaches approximately
2.6 km in case A (d = Hb = Hi), approximately 1.15 km in
case B (d = Hb = 3 km) in which the brittle layer overlies
warmer ductile ice, and roughly 1.06 km in case C (d = 3
km over “slushy” water-ice matrix). The most realistic
scenario, case B (in which the brittle layer accommodates
fracture overlying warmer ductile ice) also gives promising
results, approximately the mountain height observed today

(1 km). These results are shown in Figure 7 and further
discussed in our integrated model in the following section.

4. Discussion

4.1. Thinning and Flexural Uplift: Integrated Model

[26] In our best integrated model from those analyzed in
the previous section, we postulate that the ice shell at the
South Pole was stretched by local extensional stresses,
which induced thinning of the shell. The associated subsi-
dence, as described by our thinning model, places the SPT
floor in a depression of 600 m. The local extension of the
area is compensated by compression at the boundary of the
thinned region, resulting in reverse faulting of the brittle ice
layer (of thickness 3 km) overlying a warmer ductile ice
layer, which results in uplift of roughly 1.15 km. We pos-
tulate that the overall bowl-shape of the SPT region is
reflected in this model and that it begets generally favorable
agreement with past observations of topography there.
This integrated model also assumes a structure similar to
that suggested by past analyses (e.g., Smith-Konter and
Pappalardo [2008], Patthoff and Kattenhorn [2011], and
others), with an ocean layer of 40 km underlying a solid ice
shell of 50 km, which features an elastic thickness of 1 km.
The stresses that we predict in the shell are larger than
diurnal tidal stresses at Enceladus [Rudolph and Manga,
2009] but on the order of previous estimates of tectonic
stresses [e.g., Nimmo and Pappalardo, 2006] and estimates
of stress due to thickness changes [Manga and Wang, 2007].
The locations along the surface where the stress surpasses
our assumed yield strength of 1 MPa (also marked in
Figure 5) are marked in Figure 8 as magenta (tensile) and
orange (compressive) squares. It is worthwhile to note that
the maximum compressive stress occurs at the flank loca-
tion, bolstering our argument that our compressive model of
flank uplift is appropriate here. It is also relevant to point out
that, while our model exhibits axial symmetry, the “tiger
stripes” notably break that symmetry, suggesting that the
additional processes, such as tidal stresses, may be respon-
sible for the observed symmetry-breaking formation of these
features; the tectonic stress and thinning provide the back-
ground environment which makes this likely.
[27] Figure 8 shows the topography derived by Schenk

and McKinnon [2009] through the use of digital terrain
maps, illustrating the bowl-shaped basin of the SPT and its
boundary uplift relative to sea level. As many properties and
parameters at Enceladus are poorly constrained, the gray
block in Figure 8 exhibits the effect on the results when
model parameters are varied. Varying the thinning model
between upper and lower limits of published parameters at
Enceladus cause the margin of resulting subsidence levels
(gray) to remain fairly wide. Elevation estimates from pub-
lished sources mentioned above are shown on the plot in
Figure 8 in varying colors, and exhibit a good fit within the
grayed area of our model estimates. This agreement with
previously published values reinforces the possibility that
the extensional model is a viable model for subsidence of the
floor (and therefore basin formation) at the SPT region.
[28] While we include simplifying assumptions in our

models (e.g., layer composition, column-averaged densities,
assumed elastic thickness), our basin models do, in most
cases, reasonably describe the subsidence and mountainous

Figure 7. Footwall uplift profile in the case of compres-
sional forces at the boundary of the SPT area. Case A (dark
blue): Fracturing penetrates the entire ice thickness (d = Hb =
Hi), and underlying substratum taken to be water (ru = rw).
Case B1 (purple): Fracturing penetrates a brittle layer of 3
km, over a warm ductile ice layer, whose density is related
to the temperature gradient in the ice layer (coldest ice at sur-
face: 933 kg/m3, warmest ice at base: 917 kg/m3), i.e., ru =
ri(warm). Case B2 (green): similar to Case B1 in structure,
this case was used to illustrate the small effect of assumed
substratum density on result. In this case, we assume no den-
sity difference between the brittle ice and underlying ice,
resulting in only a small change from the density-gradient
version in Case B1. Case C (light blue): Fracturing pene-
trates a brittle layer of 3 km, over a substrate of a “slushy”
ice-water mixture.
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uplift at the boundary and provide self-consistent estimates
of the uplift and subsidence of the topography.

4.2. Terrestrial Basins and Implications for the SPT

[29] Standard rift basins in the terrestrial setting are related
to stresses in the crust and are idealized as manifestations of
active or passive rifting. During active rifting, deformation is
associated with impingement by a mantle plume (warm
material) on the base of the lithosphere, causing thinning,
doming, and eventual downwarping of the area, along with
extensional rifting. Alternatively, under passive rifting, far-
field tensional strains in the lithosphere cause a weakening of
the surface material, allowing for upwelling of hot material
[e.g., Huismans et al., 2001]. Most terrestrial basins exhibit
features of both behaviors [Allen and Allen, 2005], and so
these are generally regarded as end-members of the forma-
tion spectrum. They mostly refer to whether or not a basin
forms at a plate boundary (active) or not (passive). Rift basins
in general are complex features, but can be characterized
by large-scale structural components, including: a depressed
floor or trough, occasionally found to be relatively flat [e.g.,
Colman et al., 2003; Lagabrielle et al., 1997] and faulted
[e.g., Allen and Allen, 2005; Withjack et al., 2002];

moderately-to-steeply dipping footwalls, uplifted flanks, and
border faulting; and transform zones [Withjack et al., 2002].
These large-scale components of basin topography are
observed at the SPT of Enceladus - the circular depression
features a rifted floor, steep cliff footwalls, and uplifted
boundary flanks (see original DEM profile by Schenk and
McKinnon [2009]). The SPT also overlies a high-heat tem-
perature anomaly, suggestive of the subsurface heating that
normally goes along with basin formation, as noted above.
The possibility that basin-forming mechanisms may be used
to explain the formation of circular depressions on planetary
surfaces has been suggested previously, both on Earth (e.g.,
the Michigan Basin [Sleep et al., 1980]), and on other planets
(e.g., Atalanta Planitia [Solomon et al., 1982], and regions of
Atropos Tessera [Ori and Baker, 1995], both on Venus) to
explain the formation of circular basins that did not originate
via impact cratering.
[30] An example of thermally-driven basin formation

presents itself in the North Fiji Basin (NFB) in the Pacific
Ocean. Overlying a hot spot, Lagabrielle et al. [1997]
showed that active upper mantle convection is a key pro-
cess in controlling the crustal dynamics of the NFB, and is
largely independent from the evolution of larger structural

Figure 8. The topographic profile (black) of the SPT from Schenk and McKinnon [2009] is used to
illustrate model results. Left hand navy blue line denotes the best-fitting result from the extensional
model. This reaches approximately 1.8 km in height, assuming a brittle layer overlying a warm ductile
ice layer. On the right hand side, the green line denotes our best fit curve of flank uplift in the compres-
sional model, reaching 1.15 km, assuming a brittle layer of 3 km over a ductile layer of ice beneath. This
result and structure match previous estimates of elevation and internal structure. Purple line denotes the
subsidence we find from our thinning model (600 m depression); we put this in context of previous estimates
of the depression depth at the SPT (Thomas et al. [2007] and Roberts and Nimmo [2008] (red);Helfenstein et
al. [2011] (yellow); and Schenk and McKinnon [2009] (green (lowest estimate)); teal box denotes the span of
estimated depths at the South Pole). Due to the uncertainty in parameters at Enceladus, we include error in our
assessment, marked by the gray box. Maximum extensional stress (magenta) and compressional stress
(orange) are marked by boxes (see Figure 5). Note that the profile is a single side of the basin mirrored over
the central axis.
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features, such as the Vitiaz and New Hebrides subduction
zones [Lagabrielle et al., 1997]. This is an important point in
our Enceladus application: the spreading at the ridges is
largely controlled by the existence of subsurface heat and
subsequent convection rather than the action of subduction
zones at the borders. This independence of the NFB basin
formation from an adjacent subduction zone suggests that
the maintenance and propagation of its ridges may be similar
to that of the SPT, as the SPT features are likely dependent
upon subsurface processes related to south polar hot spot
rather than active subduction, i.e., heat and/or subsurface
convection [Barr, 2008; Mitri and Showman, 2008] may
have driven (and continue to drive) the evolution of the SPT.
This study shows that the depression at the SPT could have
formed during a tectonic event analogous to those respon-
sible for the formation of rift basins on our own planet,
an inquiry motivated by our simple observation that the
NFB seemed to be somewhat similar in appearance and
thermal setting. While current surface expressions of stress
and activity (including the tiger stripes) are likely just the
latest in a long history of deformation, we suggest that the
original subsidence of the SPT floor, and therefore the large-
scale shape of the region still seen today, may have origi-
nated in a similar fashion to Earth’s basins.
[31] It is also notable that stresses computed due to a change

in topography of the icy shell are on the order of estimates of
tidal stresses, bolstering the possibility that, first, stresses on
this order exist in the shell, and second, that the shell reacts to
such stresses (e.g., the activation of the tiger stripes). Our
hypothesis was motivated by the simple observation that ter-
restrial rift basins have similar structural characteristics,
including those mentioned above and an associated “starfish”
pattern at the tectonic boundary, seen both at the SPT and
tectonic boundaries on Earth [Mahadevan et al., 2010].

5. Conclusions

[32] Through an application of simple terrestrial basin
models, we conclude that it is possible that the SPT of
Enceladus formed by processes analogous to those associ-
ated with the formation of our own terrestrial rift basins. This
application was motivated by the observation that the SPT
topography agrees with the overall characteristics of a ter-
restrial rift basin, exhibiting a rifted central depression, steep
footwalls, uplifted flanks, and border faulting, in addition to
its existence over a high-heat spot that is independent of
active subduction zones. Our best integrated model, assum-
ing local extension of the shell at the South Pole that is
accommodated by compression at the border, shows that our
SPT basin attains a shape that approximates previous topo-
graphic estimates to a fair degree. Although we speculate on
both compressive and extensional scenarios, in reality the
models constitute end-members of a continuous spectrum of
processes; it is widely thought that Enceladus’ SPT current
form is the result of a sequence of tectonic events that con-
tinues today, and is likely a combination of many processes.
Here we speculate only on the origin of the depression and
ringed boundary uplift region.
[33] While the compression case showed more favorable

results, it is likely that the elevation of the mountains, in
either case, has been modified by subsequent tectonic events.
Our results, while based on simple models, lend themselves

to the possibility that the general shallow bowl-shape of the
SPT may have an origin similar to that of terrestrial rift
basins. Future work could include enhanced modeling, most
specifically the use of 3D geometries, the influence of rhe-
ology, and better estimates of ice strength at the SPT.
Enhancing this model to the level of current advanced ter-
restrial basin models (e.g., those used for petroleum geology)
would be a prudent next step.

Appendix A: Flexure of the Spherical Shell

[34] Idealizing Enceladus as a spherical shell, the flexure
equation on a sphere can be written as the sixth-degree
partial differential equation [Turcotte et al., 1981]

Dr6ur þ 4Dr4ur þ EhR2r2ur þ 2EhR2ur ¼ R4 r2 þ 1� n
� �

p

ðA1Þ

where h is the thickness of the shell, R is the radius of cur-
vature, E is Young’s modulus, n is Poisson’s ratio, and
where D is the flexural rigidity, defined as

D ¼ Eh3

12 1� n2ð Þ ðA2Þ

Equation (2) can alternately be written [Beuthe, 2008;
Sandwell and Schubert, 2010] as

hDr2r′2r′2ur þ FR2r′2r′2ur þ EhR2r′2ur þ R4 r2 þ 1� n
� �

�Drgur ¼ R4 r2 þ 1� n
� �

q0∂ fð Þ ðA3Þ

where F is the end load on the shell, q0 is the point vertical
load applied at f, and f is the polar angle (or co-latitude).
We define h as in Sandwell and Schubert [2010] as

h ¼ 12R2

12R2 þ h2
ðA4Þ

In equation (A2), the differential operators r2 and r′2 are
given by

r2 ¼ 1

sinf
∂
∂f

sinf
∂a
∂f

� �
ðA5Þ

and

r′2 ¼ r2 þ 2a ðA6Þ

where a, in both cases, serves as a placeholder for the subject
of the operator. Beuthe [2008] shows that these equations
stem from a balance of forces. Assuming a symmetric shell
as in Tanimoto [1998], we can define a balance of forces in
spherical coordinates as

1

sinf
∂
∂f

sinf�srf
� �� �sff � �syy ¼ �R

h
fr þ R

h
Drgur ðA7Þ

1

sinf
∂
∂f

sinf�sff
� �þ �srf � �syy cotf ¼ 0 ðA8Þ

1

sinf
∂
∂f

sinfMff
� �þ Rh�srf �Myy cotf ¼ 0 ðA9Þ
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with f the polar angle (or colatitude) as above and y the
azimuthal angle (or longitude) and fr is the vertical line load
acting at f = f0. Equations (A7), (A8), and (A9) represent
the force balance in r, f, and moment balance about a con-
stant colatitude [Timoshenko and Woinosky-Krieger, 1959;
Tanimoto, 1997], respectively. �s represents the depth-
averaged stress over the shell thickness. ur is the vertical
displacement in the radial direction (deflection) as defined
previously in the main text. As we will simplify our problem
by ignoring azimuthal variations, then from Beuthe [2008],
the stress component can be written

�sff ¼ E

1� n2
ɛff þ nɛyy
� � ðA10Þ

where ɛ is the extensional strain. This can be related to the
displacement as

ɛff ¼ ur
R
þ 1

R

∂uf
∂f

ðA11Þ

and

ɛyy ¼ ur
R
þ cotf

R
uf ðA12Þ

The bending moments Mff and Myy are related to the cur-
vature of the shell and can also be expressed in terms of the
displacement.

Mff ¼ D

R2

∂2ur
∂f2 � ∂uf

∂f

� �
þ n

∂ur
∂f

� uf

� �
cotf

� �� 	
ðA13Þ

and

Myy ¼ D

R2

∂ur
∂f

� uf

� �
cotf

� �
þ n

∂2ur
∂f2 � ∂uf

∂f

� �� 	
ðA14Þ

Since the vertical displacement that we seek should be of the
spheroid vector form, then we can expect it to have the form
[Tanimoto, 1997; Sandwell and Schubert, 2010]

ur ¼
X∞
l¼0

UlPl cosfð Þ ðA15Þ

and

uf ¼
X∞
l¼1

Vl
dPl

df
ðA16Þ

Employing (for now) the asymptotic solution found in
Tanimoto [1997], assuming that a downward line force loads
the shell at f = f0 (axisymmetric), we can write the full
solution for the vertical deformation ur using the asymptotic
formula for Legendre polynomials as

ur ¼ �A
sinf0

sinf

� �1=2

exp �a f� f0ð Þð Þx cosa f� f0ð Þð

þ sina f� f0ð ÞÞ ðA17Þ

Here, A is a conglomerate of parameters:

A ¼ R4

2
ffiffiffi
22

p
Dk3

Fr ðA18Þ

and a can be expressed as k
2
ffiffi
2

p . In these expressions, k is

defined as [Tanimoto, 1998]

k4 ¼ 12 1� n2ð ÞR2

h2
1þ BEð Þ ðA19Þ

where BE represents the buoyancy ratio between the elastic
crust and the viscous layer below it:

BE ¼ Drgh
E

R

h

� �2

ðA20Þ

More fully, we can also write the complete solution using
Legendre Polynomials as

ur ¼ �R4

D
Fr

X∞
l¼0

l þ 1
2

� �
sinf0

G lð Þ Pl cosf0ð ÞPl cosfð Þ ðA21Þ

Here, we have defined G(l) as in Tanimoto [1997]:

G lð Þ ¼ L2 � 1� nð ÞL� �
1� Vl

Ul

� �
þ 12 1þ nð ÞR

2

h2
2� L

Vl

Ul

� �

þDrgR4

D
ðA22Þ

where Vl and Ul are Legendre coefficients and their ratio can
be simplified, as shown in Tanimoto [1997], and written

Ul

Vl
≈

l l þ 1ð Þ
1þ nð Þ ðA23Þ

Applying this flexural model to Enceladus’ ice crust requires
specification of various ice parameters as well as the mag-
nitude and nature of the deforming load (Fr) applied to the
shell. In each of the three basin models used in this study, Fr

will be defined as a load in the radial direction that impinges
on the shell. Using the flexure to determine the stress within
the shell, it is possible to determine the point at which the
shell is likely to break (using an assumed value for the
strength of ice).

Appendix B: Cartesian Geometry Results
and Comparison

[35] Enceladus has a small radius of curvature, and we
therefore adopted a spherical geometry with which the
deformation was modeled. In the interest of comparison, we
present the Cartesian results of the models described in the
text.
[36] In the application of the compressional model of

Bullard [1936], we find flexure y as a function of distance x
away from the plate break using the broken elastic plate
solution to find a maximum uplift of roughly 0.5 km. This an
order of magnitude less than our results (computed in a
spherical geometry) of 1.15 km. It could be that the differ-
ence can be attributed to stresses due to the curvature of the
shell adding to the compressive force in the spherical model.
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[37] In the case of the extension model of Vening-Meinesz
[1950], we use the Cartesian geometrical set-up by Watts
[2001], which we had adapted to spherical form, to deter-
mine the uplift by finding the force on the block and applying
it to the end of a broken plate. In this case, we find a total
uplift, assuming a 20� fracture, of approximately 0.6 km.
This is about one-third of our lowest results in the spherical
formulation, which is to be expected from our geometric
approach. The difference between flexure results likely arises
from the application of the spherical flexure formula which
incorporates stresses due to the curvature of the shell into
the results.
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