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[1] A higher-order geometry modeling technique is presented for the solution of volume integral
equations (VIEs) involving arbitrarily shaped inhomogeneous dielectric structures. Conformal basis
functions defined in curved hexahedral finite elements are used to develop a moment method
solution of the VIE. Results are compared with available analytical solutions, and the method is
shown to deliver higher accuracy using coarser meshes as compared to partial differential equation
solvers. INDEX TERMS: 0619 Electromagnetics: Electromagnetic theory; 0644 Electromagnetics:
Numerical methods; 0669 Electromagnetics: Scattering and diffraction

1. Introduction

[2] Method of moments (MOM) techniques have been

widely used in electromagnetics to solve radiation and

scattering problems. For perfect electric conductor (PEC)

geometries a surface integral equation formulation is

typically used, and a suitable geometry modeling scheme

along with appropriate basis functions has been demon-

strated to have significant effect on the accuracy of the

solution [Antilla and Alexopoulos, 1994; Song and Chew,

1995].

[3] Several methods have been used to formulate

scattering and radiation problems involving dielectric

materials. The finite element method (FEM), along

with various mesh truncation schemes [Volakis et al.,

1998], is one of the most commonly used approaches.

Among these FEMs the finite element boundary inte-

gral (FE-BI) method [Volakis et al., 1998] provides an

exact means of truncating the FEM mesh, hence

keeping the FEM domain small. Keeping the FEM

domain small is crucial in numerical simulations since

the FEM is prone to error propagation. The necessity

of using suitable geometry modeling schemes and

basis functions in the FE-BI formulation has also been

demonstrated to be important, both in terms of solution

accuracy and in terms of convergence. When dealing

with homogeneous regions, a surface integral equation

formulation can be used [Poggio and Miller, 1973].

However, for regions with varying material properties

a volume integral equation must be employed [Livesay

and Chen, 1974; Schaubert et al., 1984]. Livesay and

Chen [1974] used cubic elements in this context, and

tetrahedral elements were used by Schaubert et al.

[1984]. For curved geometries, tetrahedral elements are

suitable because of their flexibility in modeling. How-

ever, when dealing with thin layers, hexahedral ele-

ments are more suitable since they avoid elongated

tetrahedra, which lead to ill-conditioned matrix sys-

tems.

[4] Also, so far, direct volume integral equations

(VIEs) have not been exploited because of their

excessive CPU and memory requirements. Neverthe-

less, the recent introduction of fast methods [Coifman

et al., 1993] is beginning to make VIE solutions more

practical. In this paper, we consider direct VIE sol-

utions of electromagnetics problems using curvilinear

hexahedra, which are particularly suited for thin layers

and curvilinear volumes.

2. Volume Integral Equation Formulation

and Solution

[5] Referring to Figure 1, the electric field integral

equation for modeling the volume of a dielectric structure

is given by

E rð Þ ¼ Einc rð Þ þ
Z
v

dv0 �G r; r0ð Þ k2 r0ð Þ � k20
� �

E r0ð Þ: ð1Þ

Here, v denotes the domain of the dielectric volume, Einc

is the incident or excitation electric field, k(r)=
k0

ffiffiffiffiffiffiffiffiffiffi
er rð Þ

p
is the wave number inside the inhomogeneous
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medium, r is the position vector, k0 is the free space wave

number, er(r) is the relative dielectric constant, and

�G r; r0ð Þ ¼ Iþ 1

k20
rr

� �
g r; r0ð Þ ð2Þ

is the dyadic Green’s function, where g(r, r0 )=
eik0 r�r0j j= r� r0j j (an e�iwt time dependence is assumed

and suppressed). To solve for E, we proceed to discretize

the volume v using hexahedra and introduce the

expansion

E rð Þ 	
XN
i¼1

aiei rð Þ; ð3Þ

where ai are the unknown expansion coefficients, N

denotes the number of basis functions used to discretize

the domain, and ei(r) are the basis functions defined

within the hexahedra and are given in section 3. As noted

above, we employ the higher-order hexahedral elements

reported by Antilla and Alexopoulos [1994].

[6] Substituting (3) into (1) and employing Galerkin’s

testing, we obtain the matrix system [Z ][a] = [b], with the

elements of the impedance matrix given by

Zji ¼ ej rð Þ; ei rð Þ
	 


� ej rð Þ;
Z
v

dv0 �G r; r0ð Þ
�


 k2 r0ð Þ � k20
� �

ei r
0ð Þ
+
: ð4Þ

Those of the excitation vector are bj = hej (r), Einc(r)i. The
inner product hf, gi is defined as

f ; gh i ¼
Z
v

f 
 gdv: ð5Þ

Throughout this paper the dielectric parameters of each

finite element are assumed to be constant. The evaluation

of the self-cells of this matrix is discussed in Appendix A.

3. Geometry Discretization and Basis

Functions

[7] In this section, we discuss details associated with

the discretization of the volume geometry using hexahe-

dra. Referring to Figure 2, any point inside the hexahe-

dron is a parametric mapping of a corresponding point in

a unit cube through the transformation

r u; v;wð Þ ¼
X2
i¼0

X2
j¼0

X2
k¼0

rijkLijkðu; v;wÞ;

u; v;wð Þ 2 0; 1½ �; 0; 1½ �; 0; 1½ �ð Þ; ð6Þ

where rijk define the 27 points of the hexahedron andLijk(u,

v, w) are the quadratic Lagrange interpolation functions in

three parameters (u, v, w). These coefficients can be

constructed using the 27 constraints: r(0.0, 0.0, 0.0) = r000,

r(0.5, 0.0, 0.0) = r100, r(1.0, 0.0, 0.0) = r200, . . ., r(1.0, 1.0,
1.0) = r222.

[8] The set of basis functions used in this work are edge-

based functions defined in curved hexahedra and are

defined in terms of the covariant unitary vectors. The four

basis functions associated with the edges parallel to the

parametric direction u have the form

e uð Þ r u; v;wð Þ½ � ¼ 1ffiffiffiffi
G

p 1� v

v


 �
1� w

w


 �
@r

@u
: ð7Þ

Similarly, for the edges in the v and w parametric

directions, the basis functions are defined by

e vð Þ r u; v;wð Þ½ � ¼ 1ffiffiffiffi
G

p 1� u

u


 �
1� w

w


 �
@r

@v
; ð8Þ

e wð Þ r u; v;wð Þ½ � ¼ 1ffiffiffiffi
G

p 1� u

u


 �
1� v

v


 �
@r

@w
: ð9Þ

The curly brackets above imply that any of the two choices

enclosed in the brackets can be selected. Thus each of (7),

(8), or (9) represent four possible choices for the basis

functions. The appropriate choice depends on the edge

being considered. The determinant of the parametric

transformation (6) is given by

G ¼
guu guv guw
gvu gvv gvw
gwu gwv gww

������
������; ð10Þ

ε(r)
v

ε0

E   (r)inc

Figure 1. Dielectric structure illuminated by an incident field.
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in which

ghx ¼
@r

@h

 @r
@x

: ð11Þ

Here, h and x represent any of the parameters u, v, and w.

Expressions (7)–(9) represent a set of 12 basis functions

for each hexahedron. However, the total number of

unknowns for a given tessellation is determined by the

number of edges in the mesh. This is because the

coefficients of the basis functions in adjoining elements

sharing the same edge will be identical. Thus ei in (3) will

be some combination of (7)–(9) from different hexahedra

as determined by the impedance matrix assembly process.

[9] The basis functions defined here are slightly differ-

ent from those given by Crowley et al. [1988]. They are

defined in terms of covariant unitary basis vectors, whereas

the basis functions given by Crowley et al. [1988] are

defined using contravariant unitary basis vectors. Being

defined by covariant basis vectors, they have the advan-

tages of having continuous tangential components across

common faces of neighboring hexahedra, and have zero

divergence inside the hexahedron. The latter property is

not shared by the basis functions given by Crowley et al.

[1988]. Both of these properties must be satisfied by the

electric field intensity E.

4. Numerical Results

[10] Two examples were used to validate the above

VIE solution. For both examples, the conjugate gradient

squared (CGS) solver was used to solve the matrix

system. We remark that since (1) is a second kind integral

equation, CGS converged rather rapidly (in 10 iterations

for 300 unknowns with a 10�4 residual).

[11] The first geometry considered is a dielectric sphere

of radius 0.2 l having er = 2.592. Figure 3 shows the

computed bistatic radar cross section (RCS) using our

MOM formulation and Mie series. As seen, the VIE

provides excellent agreement between the computed and

analytical data. More importantly, this level of accuracy

is achieved using a fairly low sampling because of the

conformality of the curved hexahedra. The convergence

of the solution can be observed by comparing the results

of two different discretizations (for N = 300 and N =

882).

[12] Our second geometry is a spherical shell. The

dielectric constant of the shell is er = 1.75 + 0.3i, the

u

v

w

r
000 r

100 r
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r
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r
002

r
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r
220

r
211

r
212

r
221

Figure 2. Curvilinear hexahedral element.
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outer radius is 0.2l, and the shell thickness is 0.02l.
From Figure 4 it can be seen that the VIE solution curve

is in very good agreement with the analytical solution.
[13] The VIE converged fast (in 10 iterations) as

compared to a FE-BI solution (in 160 iterations) using

the same hexahedral finite elements. In terms of CPU

time for solving the same problem, the VIE outperforms

the FE-BI by a factor of 10. An additional advantage of

the VIE is its inherent property of being free of spurious

resonances. In terms of accuracy, when the same geo-

metrical model of the sphere (using 64 hexahedra) is

used, the maximum RCS error in the VIE solution is

4.8%, whereas that for the FE-BI solution is 9.4%.

Basically, FE-BI needed much finer discretization (216

elements and 1314 unknowns) to achieve a 4.6% error. It

must also be noted that, to achieve this level of accuracy,

a much higher discretization density would be required

when a low-order geometry modeling scheme is used.

Here, the percent error is computed by

error ¼ computed �j jreferencek k
referencej j

� 100%: ð12Þ

5. Conclusions

[14] A general volume integral equation formulation

was presented for electromagnetic scattering using a new

class of elements suited for modeling inhomogeneous

scatterers. Higher-order finite elements and conformal

basis functions were used to model the volume. Also, a

new annihilation technique was described for evaluating

the self-cell impedance matrix elements. Based on the

considered geometries, the solution of the resulting

matrix system was shown to provide more accurate

results and faster convergence than those based on partial

differential equation methods.

Appendix A: Evaluation of Self Term in the
Impedance Matrix

[15] The matrix elements in (4) can be rewritten as

Zji ¼ ej rð Þ; ei rð Þ
	 


� ej rð Þ; I1 rð Þ
	 


þ 1

k20
ej rð Þ; I2 rð Þ
	 


; ð13Þ
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Figure 3. Bistatic RCS of a 0.2l radius dielectric sphere (er = 2.592) using VIE and Mie solutions.
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where

I1 rð Þ ¼
Z
v

dv0g r; r0ð Þ k2 r0ð Þ � k20
� �

ei r
0ð Þ; ð14Þ

I2 rð Þ ¼ r
Z
v

dv0rg r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ: ð15Þ

To deal with the 1/|r� r0|3 singularity in I2(r), we proceed

as usual by transferring the r operator to the testing

function. We haveZ
v

dvej rð Þ 
 I2 rð Þ

¼
Z
v

dvej rð Þ 
 r
Z
v

dv0rg r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ

¼
Z
v

dvr 
 ej rð Þ
Z
v

dv0rg r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ


 �

�
Z
v

dv r 
 ej rð Þ
� �Z

v

dv0rg r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ

¼
I

ds 
 ej rð Þ
Z
v

dv0rg r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ


 �

�
Z
v

dvr 
 ej rð Þ
Z
v

dv0rg r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ; ð16Þ

where s denotes the surface enclosing v. The source

(primed) integral in (16) can be further rewritten as

Z
v

dv0rg r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ

¼ �
Z
v

dv0r0g r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ

¼ �
Z
v

dv0r0 
 g r; r0ð Þ 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ

� �
þ
Z
v

dv0g r; r0ð Þr0 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ

� �
¼ �

I
s

ds0 
 g r; r0ð Þ k2 r0ð Þ � k20
� �

ei r
0ð Þ

þ
Z
v

dv0g r; r0ð Þr0 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ

� �
: ð17Þ

[16] The above integrals are not improper, but never-

theless, their numerical integration must be carefully
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Figure 4. Bistatic RCS of a dielectric spherical shell (er = 1.75 + 0.3i, outer radius is 0.2l, and thickness is
0.02l).
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done because of the first-order singularity of the Green’s

function. To evaluate the singular source integrals in

(17), we herewith employ an annihilation technique that

converts the singular integrands from the original (u, v,

w) parametric space to smooth, nonsingular integrands

on an auxiliary (a, b, g) parametric space. To illustrate

this, let us consider the source term volume integral in

(17). First, we recast it in the (u, v, w) space as

I ¼
Z 1

0

Z 1

0

Z 1

0

g r; r0ð Þr0 
 k2 r0ð Þ � k20
� �

ei r
0ð Þ

� � ffiffiffiffi
G

p
dudvdw:

ð18Þ

For further discussion, we conveniently rewrite (18) in a

more general form as a ratio of two well-behaved

functions in the (u, v, w) space

I ¼
Z 1

0

Z 1

0

Z 1

0

f u0; v0;w0; u; v;wð Þ
g u0; v0;w0; u; v;wð Þ dudvdw; ð19Þ

where g(u0, v0, w0, u, v, w) = 0 when (u, v, w) = (u0, v0,

w0) and f (u0, v0, w0, u, v, w) is well behaved at the same

point. We note that in (19) the original observation point

has been mapped to (u0, v0, w0).

[17] The next step in the annihilation process is to

divide the unit cube into eight quadrants using the three

planes defined by u = u0, v = v0, and w = w0 (see Figure

5a). When these quadrants are considered separately, the

original singularity now appears at a vertex of each of the

eight quadrants. For integration we next proceed to map

each of the eight quadrants to a unit cube in the (h, z, x)
parametric space as shown in Figure 5b. We need to again

be careful to choose our transformations so that the

singularity for one of the vertices of each quadrant appears

at the origin of the (h, z, x) space. For example, the

transformation to map one of the quadrants defined by (u0
< u < 1), (0 < v < v0), (w0 < w < 1) is

u ¼ 1� u0ð Þhþ u0;

v ¼ v0 1� zð Þ;

w ¼ 1� w0ð Þxþ w0: ð20Þ

Similar transformations must be used for the other seven

quadrants.

[18] Using this eight-quadrant decomposition, the inte-

gral (19) can be written as

I ¼
X8
i¼1

Z 1

0

Z 1

0

Z 1

0

fi h; z; xð Þ
gi h; z; xð Þ Ji h; z; xð Þdhdzdx; ð21Þ

where Ji(h, z, x) are the Jacobians of the transformations

for each quadrant and fi and gi are the portions of the

original f and g that fall in respective quadrants. We

should remark that fi, gi, and Ji do depend on (u0, v0, w0),

but this dependence has been suppressed. Also, since the

transformations used to map (h, z, x) to (u, v, w) are

simple scaling transformations, the Jacobians Ji(h, z, x)
are constants. For the example given in (20) the Jacobian

is simply Ji = (1 � u0) (�v0) (1 � w0).

[19] A final step for integration is to propose another

parametric transformation whose Jacobian has a zero (of

order equal to or higher than that of g) at the origin of the

(h, z, x) space (Figure 5c). One such transformation is

h ¼ a3;

z ¼ b3;

x ¼ g3; ð22Þ

u

v

w

(u ,v ,w )0 0 0

η
ζ

ζ
singularity

a.

b. c.

α
β

γ
singularity
annihilated

Figure 5. (a) Hexahedron in real space, (b) auxiliary parametric space, and (c) integration space.
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and we note that a third-order transformation is used for

sufficient smoothness of the integrand in the (a, b, g)
space. Doing this transformation allows us to rewrite the

integral (21) as

I ¼
X8
i¼1

Z 1

0

Z 1

0

Z 1

0

fi a; b; gð Þ
gi a; b; gð Þ Ji j a; b; gð Þdadbdg:

ð23Þ

In this, j(a, b, g) = 27a2b2g2 is the Jacobian of the (h, z,
x) to (a, b, g) transformation. Since the Jacobian has a

second-order zero at the origin of the (a, b, g) space, it
serves to annihilate the singularity 1/gi(a, b, g) in each of

the eight quadrants. Thus (23) has a nonsingular

integrand and can be evaluated numerically using a

sufficient order quadrature rule (e.g., Gaussian quad-

rature).

[20] A similar integration procedure can be applied to

evaluate the surface source integral in (17), considering

each of the six faces of the source hexahedron sepa-

rately.
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