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[1] The purpose of this paper is to investigate the statistical properties of high-speed
coronal mass ejections (fast CMEs), which play a major role in Space Weather. We study
the cumulative distribution of the initial CME speeds applying a new, advanced statistical
method based on the scaling properties of averages of maximal speeds selected in time
intervals of fixed sizes. This method allows us for the first time to obtain a systematic
statistical description of the fast CME speeds. Using this method, we identify a self-similar
(power law) high-speed portion of the spectrum of the speed maxima in the range of
speeds from about 700 km/s to 2000 km/s. This self-similar range of the speed distribution
provides a meaningful definition of “the fast” CMEs and indicates that these CMEs are
produced by a process that is the same across the range of scales. The investigation of the
temporal behavior of the fast CME events indicates that the time intervals between fast
CME:s are not independent, i.e., fast CMEs arrive in clusters. We characterize the fast
CME:s clustering by the exponent 6 called the extremal index, which is the inverse of the
averaged number of CMEs per cluster. An independent correlation analysis of the tail of
the CME distribution confirms and further quantifies the temporal dependence among the
fast CME events. To illustrate the predictive capabilities of the method, we identify
clusters in the time series of CMEs with speeds greater than 1000 km/s and calculate their
statistical characteristics such as the size and duration of the clusters. The method used in

this paper can be applied to many other extreme geophysical events.

Citation: Ruzmaikin, A., J. Feynman, and S. A. Stoev (2011), Distribution and clustering of fast coronal mass ejections,

J. Geophys. Res., 116, A04220, doi:10.1029/2010JA016247.

1. Introduction

[2] The coronal mass ejections (CMEs) vary widely in
their speeds. When viewed near the Sun, some are very slow
(<10 km/s) and others have very high speeds, even exceeding
2000 km/s [Kahler, 1987]. Among all CMEs the most
interesting in the context of Space Weather are the high-
speed CMEs. These fast CMEs and the shocks they generate
in the solar wind are directly responsible for major geo-
magnetic storms [Hirshberg and Colburn, 1969; Tsurutani
and Gonzalez, 1997; Gopalswamy, 2008] and solar ener-
getic particle (SEP) events [Reames, 1999; Li et al., 2005],
which present hazards for spacecraft design and operation,
for science instrumentation and astronauts. The causes of
these enormous differences in CME speeds have not been
identified as yet, but the differences in speed are likely
presaged by differences in the buildup phases of the CMEs
[Feynman, 1997]. The CMEs are associated with active
regions and disappearing filaments, which appear randomly
on the surface of the Sun. The frequency of their occurrence
is regulated by the solar cycle. Observations have shown
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that active regions have a tendency to cluster, i.e., new
magnetic fluxes preferably emerge in the vicinity of old
ones [Gaizauskas et al., 1983; Harvey and Zwaan, 1993].
The clusters may last for as many as six solar rotations
and there are indications that the fastest CMEs preferably
originate from them [Ruzmaikin and Feynman, 1998]. For
example, the active region AR 8210 observed in April-May
1998 produced six CMEs with speeds greater than 1000 km/s
[Thompson et al., 2000]. During the famous Halloween
period October—November 2003 most of the 80 observed
CME:s originated from three active regions [Gopalswamy
et al., 2005]. Over 30 CMEs had speeds between 1000 km/s
and 2000 km/s, and 7 CMEs had speeds exceeding 2000 km/s
resulting in intense geomagnetic storms and large SEP events.
These fast CMEs were launched in association with two of
the solar active region clusters [Feynman and Ruzmaikin,
2004].

[3] Understanding and forecasting of the most hazardous
extreme events in many geophysical phenomena (floods and
major earthquakes, solar energetic particles, etc) requires the
knowledge of the tails of probability distribution functions.
The distributions of the intensity of these events are not
Gaussian and are characterized by the extended high-
intensity (heavy) tails, which give information that can be
used in probabilistic prediction and physical understanding
of the underlying physical processes. In practice the form of
these high-energy tails is often estimated using a fit of an
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empirical distribution to some known distribution function,
such as a lognormal. The quality of the fit is difficult to
evaluate because of scarcity of extreme events and a lack of
precise mathematical techniques to do so. The curve fitting
does not use specific data properties; it depends on the
selected fraction of data, adjustable parameters and the skill
of the researcher. Thus, [Yurchyshyn et al., 2005] studied
the distribution of plane-of-sky speeds determined for
4,315 CMEs detected by the SOHO LASCO in 1998-2001
and found that the speed distribution is non-Gaussian and
can be fitted with a lognormal distribution. However recent
advances in statistical methods of analysis have made it
possible to find the form of the tail using approaches based
on the properties of the data rather than the skill of curve
fitting.

[4] In this paper we apply one of the new methods based
on the use of scaling properties of the data maxima [Stoev
et al., 2006] to Coronal Mass Ejection (CME) speeds. We
also examine the temporal dependence of the fast CMEs
and by using the statistical properties of data maxima show
that the time intervals between CMEs have a tendency to
cluster. The method introduces two exponents: one defines
the tail of the distribution function (i.e., extremes) and the
other characterizes the clustering of extremes in time.
We complement the calculation and discussion of these
exponents with a supporting study of time correlation of
extreme events obtained by different methods.

[5] Section 2 below describes the data set we used.
Section 3 introduces the method used to quantify the form of
the extreme tail and clustering of extreme events. Section 4
presents two exponents that characterize the distribution of
speeds and clustering of fast CMEs. In section 5 we
investigate the onset times of the fast CMEs (as observed in
the solar corona) using one of the exponents and additional
information obtained from the data. Section 6 summaries the
results with a brief discussion of their possible implications
for causes and consequences of fast CMEs.

2. The Data Set

[6] The plane of the sky CME speed propagation through
the solar corona is measured by coronographic techniques.
Here we use data from the Large Angle and Spectrometric
Coronagraph Experiment on board the Solar and Helio-
spheric Observatory (LASCO SOHO) given in the catalog
developed in cooperation with the Naval Research Labora-
tory and the Solar Data Analysis Center at the Goddard
Space Flight Center and at the Center for Solar Physics and
Space Weather at the Catholic University of America
[Gopalswamy et al., 2009]. The entries begin in January
1996. The model studies based on the STEREO mission
observation show that actual 3D speeds are well correlated
with the speeds determined by the LASCO [Thernisien et al.,
2009]. This justifies statistical analyses of the speeds from
the LASCO catalog, although specific estimates of, say, a
mean speed or a threshold speed for fast CMEs below are
expected to be lower compared with estimates that would be
found using the values of real 3D speeds.

[7] The CMEs in the LASCO catalog are listed according
to the time of their first appearance above the C2 occulting
disk and hence are spaced unevenly in time. Since our
method of data analysis requires evenly spaced records, we
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form an hourly spaced time frame and assign the CMEs to
the hour of their first appearance. Almost all CMEs are used,
with no averaging or binning. The hours with no CMEs are
assigned a zero speed. In a few cases when there is more
than one CME in the same hour we use the CME with the
highest speed, which is well justified by our method (see
below) based on the investigation of speed maxima. To
avoid the obvious nonstationarity due to solar cycle
dependence we limit the data set to the high-activity part
of solar cycle 23 (from January 1999 to December 2006,
resulting in 9,408 CMEs). The speed we use for this paper is
given in the catalog as obtained by the second order poly-
nomial fit to the time-height measurements during the CME
propagation through the solar corona. Note that even though
we study properties of extreme (fast) CMEs the data input to
the method includes all CMEs without preselection of those
with high speeds. In particular, the speed at which the tail of
the distribution function begins is not preselected but iden-
tified by the method.

[8] The observed speeds and their partial distribution
function are shown in Figure 1. The distribution function of
the speed for the time interval selected above clearly has a
non-Gaussian form, as emphasized earlier by Yurchyshyn
et al. [2005], with the peak at 263 km/s and an extended
high-speed tail. The mean speed is 472 km/s. About 18%
(1,746) of the CMEs have speeds exceeding 700 km/s, 6%
(about 600 CMEs) have speeds exceeding 1000 km/s and
less than 0.5% CMEs have speeds exceeding 2000 km/s.

3. The Method

[v9] Here we briefly describe the method of studying
extreme events, which we use to quantify the shape of the
tail of the CME speeds distribution and the clustering of the
fast CME onset times.

[10] We use the Max-Spectrum method based on investi-
gating of averages of data maxima taken in all time intervals
of fixed sizes when the size is progressively increased [Stoev
et al., 2006; Hamidieh et al., 2009], see below for more
detailed description. The method does not involve a fit to an
empirically determined distribution function. It employs the
scaling properties of a specific variable of the data, the data
maxima observed at different time scales. The scaling
approach, which had originally been used in turbulence
studies (recall the Kolmogorov’s power law preceded by
attempts to fit a distribution function to the velocity incre-
ments) and now in many other applications, allows a natural
extension of scaling when new data becomes available. It
also allows an interpolation of the behavior of the variable
beyond the limits of a given data set if there is no indication
of any preferred value that could break the scaling. Let us
briefly describe the method in application to the time series
of CME speeds.

[11] Consider the time series of length N of the CME
speeds V(i), where 1 <i < N. For each time scale index j (j =
1,2, 3, ..., [log, N]), we form nonoverlapping time blocks
of length 2/ i. e. we progressively double the time scale. At
each fixed scale j we calculate the maximum of the speed
within each block:

D(j, k) = max V(2/(k—1)+i), k=1,2,....b;,

1<i<2/
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Figure 1. (top) The CME speeds taken in each hour from the LASCO catalog and positioned according
to the hour of their occurrence. (bottom) Partial distribution function (PDF) of all CME speeds.

where b; = [N/2/] is the number of blocks (of length 2/) and i
indexes the data points within the kth block. The index &
defines the location of the block on the time axis. The log
block size j plays the role of a time scale parameter. Observe
that

D(j+ 1,k) =max{D(j,2k — 1), D(j,2k)}, k=1,2,..., b1,

so the blocks of scale j are naturally nested in the blocks of
scale (j + 1). Now, we average the logs of the block maxima
D(j, k) over all blocks at the fixed scale j:

b
1 J

V() =53 log, DL K)
T k=1

The function Y(), i.e., a set of [log, N] numbers, is called
the “Max-Spectrum” of the data. An important result,
established by Stoev et al. [2006], is that if for a sufficiently
large j

Y(j) ~j/a+C, (1

where C is a constant and « > 0, then the tail of the data
distribution follows a power law with exponent «. If the tail
were not of power law, say Exponential, Gaussian, or even

Lognormal, the Max-Spectrum would level off at large
scales.

[12] Stoev et al. [2006] proved that the exponent « is the
same for both independent and dependent (correlated in
time) data, provided that the time series are stationary and
have the same distribution function. The dependence
(related to the clustering of the times of extreme events)
affects only the intercept in equation (1). That is, if we have
dependent data with the same distribution function, then
with the same constant C, equation (1) becomes

Y(j) =j/a+ C+log(0)/a, )

where the quantity § (0 < 6 < 1), is the extremal index
introduced by Leadbetter et al. [1983].

[13] The extremal index is used in statistical studies to
quantify the temporal clustering of the extreme events.
Mathematical details that clarify the interpretation of the
extremal index can be found by Leadbetter et al. [1983].
The notion of the extremal index is simple. The extremal
index allows the distribution function of maxima of n
dependent events to be presented as a distribution function
of the maxima of roughly nf independent events, i.e., to
group the n-dependent events into nf-independent clusters.
Thus the average number of events in a cluster is 1/6. This
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fact is used in section 5 below to identify clusters of fast
CMEs.

[14] To be more formal, consider a stationary data time
series X, and let M, = max,<;<, X; be the maximum of n
consecutive data points. The time series X; has an extremal
index 0, if for large n the probability

My —d,

Cn

P(M”Ci_d" < x> = G(x), while 7>< < x) = G(x),

where M} is the maximum of n-independent random
variables X¥ drawn from the same probability distribution as
the original time series X,, and ¢, > 0, d, are normalizing
constants. The constants depend on the distribution function
of the data. For example, if the X;’s are distributed as a
power law with exponent o > 0, then ¢, = n"/* and d,, = 0. It
is important that the constants are the same whether the X,’s
are dependent or independent. The G(x) is the cumulative
extreme value distribution:

Gx) = exp{~(1+1(x = w)/0) '}, 149(x = w)/o >0

and G’(x) is G(x) to the power 6. The parameter o > 0 plays
the role of the scale, i is the location and « is the shape
parameter of the distribution. If v — 0 we obtain the
Gumbel cumulative distribution: exp{—e “ 7}, If v < 0,
then the right-side tail is bounded and G becomes the
reversed Weibul law. Finally, when ~ > 0 the right-side tail
decays like a power law and G is called the Fréchet distri-
bution. We will show in section 4 that the Fréchet distri-
bution models the fast CMEs.

[15] Note that the extremal index refers only to the tem-
poral dependence between extreme events but not between
all events. The smaller the index, the stronger is the extreme
events interdependence that is exhibited by clustering of
time intervals between events. In the limiting case 6 = 1
(independent events), consider the onset times #; of CMEs
with speeds exceeding a specified threshold speed U, which
may be chosen as say 90th or 95th percentile of the speed
distribution, or from physical considerations. Then the dis-
tribution of times between two consecutive onsets of CMEs
Ti=t—t,i=1,2, . issimply P(r =k)= (1 — p) 'p,
where k=1, 2, 3,..., marks the discretized time and p = p(U)
denotes the probability of occurrence of one CME in a unit
of time. For large U, p is small and this distribution con-
verges to an exponential distribution with the expectation
value 1/p = 1/P(V, > U).

[16] Equations (1) and (2) suggest a method of estimating
both « and 6 [Stoev et al., 2006; Hamidieh et al., 2009]. The
inverse exponent 1/« is obtained as a slope of the line fitted
to the Max-Spectrum of the data. The best linear fit outlines
the self-similar part of the Max-Spectrum. We should take
into account that in practice the larger the scale j, the fewer
the block maxima D( j, k) (indexed by k) and the greater the
variability of the Max-Spectrum statistic ¥( j). The best way
to deal with this problem is applying, as we do here, the
method of generalized least squares, which accounts for the
bias variance tradeoff [Stoev et al., 2006].

[17] Taking into account equations (1) and (2), we can
obtain estimates of the extremal index. By permuting the
data with a substitute of data points (bootstrap) or by simply
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randomly permuting the original data time series, we obtain
a time series V¥ 1 <i < N, which has the same distribution
function as the original data set but the dependence (i.c.,
correlations between data points) has been destroyed.
Carrying this out we create a large set of pseudo time series
in which the original data dependence is destroyed and the
events may be viewed as nearly independent in time. For
each such time series, we compute a Max-Spectrum, Y*( ),
1 <j < [log, N] that satisfies equation (1). The Max-
Spectrum of the original data Y{( j) satisfies equation (2) with
the same constant C, thus the difference between two spectra
yields an estimate of 6:

g(j) = 22010, 3)
where « stands for an estimate of the tail exponent «,
obtained from the slope of the Max-Spectrum. Since we
have a large sample of pseudo-independent time series, we
obtain many realizations of 6( j) at each scale j. The median
or the mean of these estimates can be taken as a point
estimator of 6 at the scale j. The whole sample of estimates
can be used to quantify the estimation error at each scale.

4. The Distribution and the Clustering of Fast
CMEs

[18] Using the method described above we calculate the
values of the exponent o and of the extremal index 6 for the
CME speeds. The resulting Max-Spectrum of the CME
speeds is shown in Figure 2. Our best fit to the slope gives
evidence that the cumulative distribution function of the
CME speeds has a Fréchet type power law tail, with the
exponent o = 3.4. The lower boundary of the Max Spectrum
identifies the onset of the power law tail, i.e., the corre-
sponding speed threshold, and a self-similar range. This
gives a meaningful definition of “the fast” CMEs. Specifi-
cally, we find that the Max Spectrum above 700 km/s is
self-similar. Bear in mind the analogy with the standard,
self-similar cascade process in turbulence, which is fully
defined by a Kolmogorov-type spectral index, we conjec-
ture that the physical process leading to the fast CMEs
production is the same from about 700 km/s to the highest
velocities in the data set.

[19] To be more confident, we made estimates of the
extremal index shown in Figure 3 by two independent
methods. The first estimate is obtained by the Max-
Spectrum method (Figure 3, top) and the second (Figure 3,
bottom) by an alternative estimator based on the use of the
data percentiles quantifying the average number of CME’s
of speeds exceeding U that arrive in a “cluster” [Ferro and
Segers, 2003]. The Ferro-Segers method produces a more
stable index than the Max-Spectrum for small speed
thresholds. This is because the maxima taken in blocks
of data in the Max-Spectrum method include both extreme
(>U km/s) and nonextreme (<U km/s) speeds. Hence the
blocks of small sizes (small scales) are dominated by more
numerous maxima having small speeds. The Max-Spectrum
performs well when the size of blocks is larger, i.e., at
sufficiently large scales. The Max-Spectrum method has the
advantage of providing “confidence intervals” as illustrated
with the histogram (Figure 4) plotted for the thresholds
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Figure 2. The Max-Spectrum of the CME speeds at progressively increased time scales. The error bars
are estimated using the generalized regression [Stoev et al., 2006], corresponding to 95% confidence
intervals. We converted the log, units for Y(j) into km/s and converted the scales j into time units 2/. The
vertical line segment indicates the starting scale selected for the evaluation of a.. The speed at this scale
may be interpreted as the beginning of the distribution function tail thus defining the fast CMEs.

1000-2300 km/s. The resulting empirical 95% confidence
interval for 6 is from 0.33 to 0.60 with a midpoint § = 0.49 =
0.5. The values 0.4-0.6 seen on the bottom for the Ferro-
Segers estimator also fall in this interval. The rapidly
growing statistical error for the “most extreme” CMEs
suggests that neither of the two methods should be used for
speeds above 2300 km/s due to insufficient number of
available data points. The 6 in the range 0.3-0.6 with the
mean 0.5 can be taken as an estimate of the extremal index.
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Figure 3. (top) The extremal index obtained by the Max-
Spectrum method. The box plots for each time scale are
obtained from 100 independent realizations of the random-
ized 0, as explained in the text. The central mark in a box
is the median; the box edges are the 10th and 90th percen-
tiles and whiskers extend to the most extreme data points.
(bottom) The extremal index obtained by the Segers-Ferro
method.

The inverse value of the index gives an estimate of an
average cluster size 2-3, i.e., on average an appearance of a
fast CME will be followed by one or two other fast CMEs.
These estimates can be further justified by the asymptotic
statistical theory of Hsing et al. [1988].

[20] Although the extremal index provides statistical evi-
dence for significant temporal dependence between the fast
CME:s it is also imperative to investigate the correlation of
the fast CMEs. The traditional correlation function is not
useful for this purpose because we consider only extreme
speed CMEs. Instead we consider the probability A\, of
observing another fast CME £ time lags after a fast CME has
already been observed, i.e.,

M(U) =PV > UV > U), k=1,2,... (4)

100}

80f
5 60f
40t

207

0

0 0.2 0.4 0.6

0

0.8 1

Figure 4. The histogram of the 9 for speed thresholds from
1000 to 2300 km/s.
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mates of this parameter for randomly rearranged CMEs.
The mean level(5%) of this cloud is well below the param-
eter calculated from the data.

for a threshold speed U. Now, if the V};’s were time inde-
pendent, this conditional probability would equal the
unconditional probability P(V; > U). Therefore, the V}’s are
statistically dependent in time if )\ is significantly different
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from P(V} > U). The parameter )\, can be estimated with the
following empirical statistic:
) / ( ) , (5)

(z*f

where I(A) equals one if the event 4 occurs and zero
otherwise.

[21] Figure 5 shows the estimate of ), as a function of
the lag k& for the CME data set with the threshold speed U
corresponding to the 95th percentile of the data (1000 km/s).
To test the statistical significance of A; we randomized the
order of the V,’s and calculated A for these randomized
(independent) in time data. This calculation was repeated
independently 100 times and the resulting \;’s are shown by
the dots. One can see that A is significantly larger than the
unconditional probability P(Vy > U) (equal to 5% in this
case) for the lags less than at least 150 h thus confirming our
conclusion that the fast CMEs are temporally dependent.
This empirical estimate of \; may be used to predict the
likelihood of a CME as fast or faster than U km/s k hours in
the future.

I(V,«Jrk>U,Vj>U)
n—k

> (V> U)
n

A =

5. Size and Duration of CME Clusters

[22] It is useful to demonstrate the interdependence of
fast CME onset times directly by using the observed time
intervals between the CMEs. In Figure 6 we compare the
distribution of the observed time intervals between events

200

180

160

140

120

100

PDF(1)

80

60

40

20

50 100

Figure 6. Distribution function of time interval

O |
[T Exponential

150
1 (hrs)

200 250 300

s between successive CMEs with speeds exceeding

1000 km/s (black) versus the Exponential distribution function of time intervals for a randomized data
(white). The sample, with which the distributions are built, consists of 586 events. The Exponential dis-
tribution has been generated in MATLAB by the operator log(1./rand(1,n)), where rand(1,n) are uniform
(0,1) random numbers of length n, and then normalized using the mean value of the data time intervals.
Both distributions have the same standard deviation, which is also a mean value for the randomized dis-
tribution. The peak near zero for the real CME data indicates the dominance of small time intervals com-

pared to the times from the random distribution (i.

6

e., clustering of extremes).
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for CMEs with speeds > 1000 km/s with the Exponential
distribution expected if these fast CMEs occurred indepen-
dently of one another. Figure 6 clearly shows that the
Exponential time distribution does not fit our data set. There
are about twice as many time intervals of duration less than
about a day than would be expected for independent events.
This means that many fast CMEs essentially arrive in groups
that are closely spaced together (clusters). The distribution
of time intervals between two clusters of fast CMEs follows
the Exponential distribution.

[23] The mean time interval between CMEs within a
cluster depends on the speed threshold. It is known from
theory [Hsing et al., 1988] that if one focuses on asymp-
totically larger and larger thresholds U, the time intervals 7;
between the fast CMEs will converge (under time-rescaling)
to a cluster Poisson process, which is similar to a Poisson
process, but with several (random number) of events arriv-
ing clustered in time. The average number of events in a
cluster defined by a given threshold is 1/6.

[24] To obtain more detailed information about the clus-
ters it is instructive to apply the statistical methodology,

Table 1. Example of Predictive Statistics for the Clusters of
CMEs With Speed Exceeding 1000 km/s*

Number Number of Recording Mean

Size  of Clusters ~ CMEs in Clusters  Probabilities ~ Duration (h)
1 177 177 0.61 (0.03) -

2 53 106 0.18 (0.02) 20.1 (1.7)
3 18 54 0.06 (0.01) 39.7 (3.8)
4 20 80 0.07 (0.01) 56.8 (4.5)
5 7 35 0.02 (0.01) 70 (7.2)
>5 17 169 0.06 (0.01) 107.7 (10.6)

*The first column (size) lists the number of CMEs in the cluster. The
second and third columns give the number of clusters of this size and
total number of CMEs in these clusters. The fourth column provides
estimates and standard error (in parentheses) of the probabilities that a
cluster of the corresponding size is recorded. The last column lists the
expected mean durations of the clusters (with standard error in
parentheses).

RUZMAIKIN ET AL.: CLUSTERING OF FAST CMES

A04220

called “de-clustering”, which employs the extremal index
[Ferro and Segers, 2003].

[25] First, the extremal index allows us to estimate the
number of clusters. Indeed, if our time series consists of
n extreme events (i.e., n CMEs with speeds exceeding a
threshold U), they are on average grouped into 6 x n clus-
ters. Second, there is a useful concept of a “de-clustering
threshold time” 7.. Consider the time intervals 7; between
consecutive fast CMEs. If the time interval between two fast
CMEs is less than 7., then these CMEs can be grouped into
a cluster. To determine the “de-clustering threshold time,”
which separates intracluster time intervals from intercluster
time intervals, we consider the sorted collection of all times
between consecutive fast CMEs

M<n< << ST (6)
and take 7, as the 6 x nth largest among them [Ferro and
Segers, 2003]. As an example consider a threshold U =
1000 km/s and 6 = 0.5. With this threshold we have n = 586
fast CMEs with the “de-clustering time” 7. = 42 h. (A close
de-clustering time can be obtained by comparison the dis-
tribution of observed time intervals with the Exponential
distribution as has been shown in Figure 6.) By identifying
the start and end times of intervals exceeding 7. we can
count the number of clusters with 2, 3, .. and more members
and the duration of these clusters. The average duration time
within a cluster is 18 h with standard error 2 h and the
distribution of the cluster durations is highly skewed (see
Figure 7 (bottom)).

[26] Table 1 provides more detailed information about the
probability and the corresponding duration of clusters as a
function of their size (number of CMEs in the cluster). We
see that about 30% of the fast CMEs are single. The rest of
the fast CMEs are in clusters of different sizes. There is a
statistically significant proportion (about 35%) of clusters
with five or more members, which have an average duration
of about 110 h. This duration is in agreement with the
estimate shown in Figure 5.

[27] These empirical findings confirm and quantify the
presence of temporal dependence of the CMEs. Similar
estimates can be made using different threshold speeds.
Figure 8 shows estimates of how the ratio of the cluster
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Figure 8. The ratio of cluster duration to intercluster time
as a function of the speed threshold.
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duration to the time between the clusters depends on the
speed threshold.

6. Conclusions

[28] The Max-Spectrum method has allowed us for the
first time to obtain a systematic statistical description of the
fast CME speeds. We find by analyzing the data maxima
that the fast CME speeds have a Fréchet type self-similar
distribution, i.e., asymptotically follow a power law with
the power exponent 3.4 in the range of speeds from about
700 km/s to 2000 km/s. Our tests show that the value of the
exponent weakly depends on the size of the data sample thus
evidencing on stationary of the Max-Spectrum. For example
after splitting the studied time series into two parts we find
« = 3.1 for the first half and o = 3.2 for the second half of
the time series.

[29] In statistics the power law tails are called “heavy”.
They are commonly observed in financial and Internet
traffic data. The fact that the CME speed has a heavy (power
law) tail means that the fast ones are produced with much
larger probability than one would expect from the standard
normal or exponential distribution. The lognormal distri-
bution does not belong to the class of heavy-tailed dis-
tributions. Practically, for any large but finite data sample
the lognormal distribution, which has two adjustable para-
meters (mean and standard deviation), approximates a
power law distribution rather well. And this is probably the
reason why the lognormal distribution is often used. How-
ever, in contrast with the heavy-tailed distributions, the
lognormal approximation needs reevaluation of the fitting
parameters as new data become available.

[30] The finding of the self-similar range of the speed
distribution provides a meaningful definition of “the fast”
CMEs and has an important consequence for our under-
standing of the physical process responsible for their gen-
eration. As indicated by observations [Feynman, 1997],
the fast CMEs apparently originate from the clusters of
emerging magnetic flux on the solar surface. These powerful
agglomerates of activity produce more energetic (fast)
CMEs compared with single active regions. Thus the clus-
tering of active regions apparently simulates the clustering
of the fast CMEs. The existence of a self-similar range of
scales and related speeds means that the physical process
responsible for producing the series of fast CMEs is the
same over the ranged scales and differs in some way from
the process that generates the slower CMEs. However the
connection between active regions and fast CMEs is not
straightforward already because not every active region
produces a CME. Active regions are generated by solar
dynamo process, and clustering of active regions is, least
conceptually, understood in the context of the solar dynamo
[Ruzmaikin, 1998]. But we do not know yet how and which
cluster of solar activity produces a multiple set of fast
CME:s.

[31] Another finding from our study has a potential for
developing a capability for statistical prediction of fast
CME:s. We find that the onset times of the fast CMEs are not
independent, as would be expected according to a standard
Poisson process, but they tend to cluster. This “clustering
phenomenon” is described in the context of Extreme Value
Theory by the extremal index [Leadbetter et al., 1983].
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Using the extremal index we estimated the critical time scale
that separates the time intervals between clusters from time
intervals between CMEs within a cluster as a function of the
speed threshold. Note that both exponents, « and 6, can be
useful in statistical forecasting of fast CME. The exponent «
gives us a range of fast CMEs speed thresholds, and 6 is
used to separating the time intervals between the clusters
from time intervals between CMEs within the clusters.

[32] In the Space Weather context clustering implies a
serial impact of CMEs on interplanetary environments. For
example, if a CME over 1000 km/s occurs one should
expect with probability 60% another CME with that speed
or faster within the next 2 days (see Table 1 for more
details). Lowering the speed threshold leads to more fast
CMEs per cluster and longer duration of the clusters relative
to the times between clusters (Figure 8). The clustering in
time of fast CMEs also means that the process (mechanism)
of their production must include the correlation (memory)
between the subsequently launched CMEs. In other words,
the process should be not simply additive (this type of
process leads to normal, Gaussian distribution) but multi-
plicative, similar to the spread of the forest fires or to cas-
cade process in the turbulent inertial range.

[33] An important consequence of the CME clustering for
the Space Weather has had in fact been used earlier in an
empirical definition of a SEP event [Feynman et al., 1993,
2002]. A high-flux SEP event (closely associated with the
fast CMEs) was defined as a cluster of the fluxes and flu-
ences appearing over several days. Thus defined SEP event
typically involves many successive increases in particle
flux. It has also been shown that the time between the SEP
events is distributed according to the exponential law of the
Poisson process, while the timing between all SEPs does not
follow this distribution. (For a discussion of possible gen-
eralization to a time-dependent Poisson process see Jiggens
and Gabriel [2009].) This definition of the SEP event is
widely used in space environment models employed for the
designs of space missions. The methods and results pre-
sented in our paper put a firm scientific basis for definitions
of “extreme Space Weather events,” including fast CME and
extreme SEP events. Table 1 gives an example of statistical
estimates that can be a useful guide in developing techni-
ques for prediction of fast CMEs and related to them SEPs.
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