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[1] ODP Legs 129 and 185 sampled the upper 474 m of �170 Ma ocean crust in the western Pacific in

order to investigate alteration processes in fast spread crust and to determine inputs to subduction. Fourteen

composite bulk samples of altered upper oceanic crust from Site 801 have d18O = 8.7–25.7%, dD =

�69.4% to �90.4%, and d13C = �2.7% to 1.8%. The intensity of alteration and the amount of sediment

within the basement decrease with depth, leading to corresponding decreases in d18O and dD. A SUPER

composite, constructed to estimate the bulk composition of the upper crust, has d18O = 12.0%, dD =

�87.0%, and d13C = 0.7%. Compared to core descriptions and geophysical logs, the SUPER composite

contains too much 18O-rich sediment (d18O = 25.7%), and a corrected d18O value of 10.8% is more

reasonable for the upper crust at Site 801. These values are higher than those for other bulk upper oceanic

basement sections (d18O = 8.0–10.0%) and result in part from: (1) intense low-temperature (<100�C)
hydrothermal alteration of the upper 100 m of tholeiitic basement at Site 801 that may not be representative

of material subducting in the western Pacific and (2) an aging effect, whereby progressive addition of 18O-

rich secondary carbonate in veins and breccia cements contributed to the high bulk d18O of this old upper

crustal section.
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1. Introduction

[2] Low temperature interaction of seawater with

the upper oceanic crust is an important sink for

seawater alkalis, Mg, 18O, C, and H2O [Muehlen-

bachs and Clayton, 1976; Alt et al., 1996; Staudi-

gel et al., 1996; Alt and Teagle, 1999; Wheat and

Mottl, 2000]. This process exerts a significant

control on the composition of seawater and the

seawater component in altered crust is important

for recycling of subducted material into the mantle

or through arc volcanism. In particular, 18O uptake

in the upper ocean crust balances the 18O source

from high temperature axial hydrothermal systems,

maintaining the oxygen isotopic composition of the

oceans [Muehlenbachs and Clayton, 1976; Greg-
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ory and Taylor, 1981; Jean-Baptiste et al., 1997;

Wallmann, 2001]. The O and H isotopic composi-

tions of altered oceanic crust can be retained during

high-pressure metamorphism and recycling into the

mantle [Eiler, 2002], and fluids released during

subduction can modify the O and H isotopic

compositions of subduction-related lavas [Kyser

and O’Neil, 1984; Poreda, 1985]. The sink of

carbon as carbonate minerals in the upper crust

exceeds the source of carbon by degassing of CO2

at mid-ocean ridges, and is an important compo-

nent of metamorphic reactions and degassing in

subduction zones [Staudigel et al., 1989; Alt and

Teagle, 1999; Kerrick and Connolly, 2001].

[3] Most crust subducting today was generated at

fast spreading ridges, but our knowledge of the

composition of altered oceanic basement comes

mainly from crust formed at slow and intermediate

spreading rates because this is where most deep

drilling has occurred. Hole 801C, on �170 Ma

crust in the western Pacific, was deepened to 474 m

into basement on ODP Leg 185 in order to inves-

tigate alteration processes in old crust generated at

a fast spreading ridge and to determine inputs to

subduction in the Mariana arc [Shipboard Scientific

Party, 2000]. This paper presents results of a study

to determine the bulk stable isotopic (O, H, C)

composition of altered basement at Site 801.

Because chemical and isotopic results for Site

801 will be used in models for subduction recy-

cling, a major question to address is whether

basement at Site 801 is representative of altered

old Pacific crust.

2. Site 801

[4] ODP Site 801 is located at 18�38.537980N,
156�21.588130E in the western Pacific (Figure 1).

The crust at this site formed at �170 Ma at a fast

spreading ridge having an estimated spreading rate

of 160 km/m.y. [Pringle, 1992; Shipboard Scien-

tific Party, 2000]. The site was cored to 133 m

subbasement on ODP Leg 129 in 1989 [Lancelot et

al., 1990] and was extended to 936 mbsf (meters

below seafloor) on ODP Leg 185 in 1999, for a

total basement penetration of 474 m. Core recovery

averages 50% and is slightly better in massive units

than in flows and pillows [Lancelot et al., 1990;

Shipboard Scientific Party, 2000].

[5] Eight major sequences have been identified in

the basement (Figure 2). Unit I consists of 60.2 m of

late alkalic basalt sills that intruded into sediments

at 157 Ma [Pringle, 1992; Shipboard Scientific

Party, 2000]. The underlying �404 m of tholeiitic

basalts have N-MORB compositions and contain

6–8 wt% MgO [Shipboard Scientific Party, 2000].

The massive flows of Units III and VI include

minor pillows and thin flows. Units IV and VII

consist mainly of thin flows and pillows. Thin (cm-

dm) intervals of recrystallized sediments are com-

mon in Units III and IV. Also present are two

hydrothermal silica-iron deposits, the �20 m thick

Unit II and a thin (�1 m thick) Unit V (Figure 2).

[6] Alteration of the basement section is described

in detail elsewhere [Alt et al., 1992; Shipboard

Scientific Party, 2000], and is briefly summarized

here. Most of the tholeiites are characterized by

slight (10–15%) recrystallization to smectite and

carbonate, with minor celadonite, Fe oxyhydrox-

ides, and pyrite. Volcanic glass at pillow rims and

flowmargins is extensively replaced by saponite and

palagonite. Carbonate minerals (mainly calcite),

smectite, and minor celadonite and quartz cement

breccias and fill fractures. Alteration temperatures of

5–95�C are estimated from oxygen isotopic com-

positions of secondaryminerals (J. C. Alt andD.A.H

Teagle, Hydrothermal alteration of the upper oce-

anic crust formed at a fast spreading ridge: Mineral,

chemical, and isotopic evidence fromODP Site 801,

manuscript submitted to Chemical Geology, 2003,

hereinafter referred to as Alt and Teagle, submitted

manuscript, 2003). Although alteration of Site 801

basement is generally similar to that in other upper

oceanic crustal sections, a major difference is the

much lower abundance of oxidation effects at Site

801 than elsewhere, only 2 volume% versus 20–

30% at other sites (Figure 2) [Alt et al., 1996; Alt,

2003]. A second major difference is the presence of

the two silica-iron hydrothermal deposits and asso-

ciated intense alteration at Site 801 (60–100%

recrystallization of basalt to smectite, calcite, cela-

donite, and local K-feldspar; Figure 2). This alter-

ation occurred by reaction with upwelling of distal,

mixed hydrothermal fluids at the spreading axis, at
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temperatures <100�C [Alt et al., 1992]. High tem-

perature (�350�C) hydrothermal fluids originating

at depth mixed with seawater in the subsurface

(probably in the uppermost sheeted dikes), resulting

in precipitation of sulfides, while the resultant cooler

(�10–100�C), mixed fluids remained enriched in

Fe, Si and alkalies compared to seawater [Edmond et

al., 1979]. The hydrothermal deposits formed where

these fluids vented onto the seafloor, and the intense

alteration in the upper 100 m of the basement is

related to fluid pathways that were the feeder zones

for the deposits at the surface.

3. Sampling and Methods

[7] Altered ocean crust is heterogeneous at various

scales, from the scale of centimeters to hundreds of

meters. During Leg 185 a sampling approach was

undertaken in an attempt to obtain bulk samples of

altered crust at a scale of�100 m. This was done by

sampling of the core at a small scale (cm) and

combining numerous samples into composites for

specific depth intervals at the scale of tens to hun-

dreds of meters [Shipboard Scientific Party, 2000].

[8] A total of 116 ‘‘communal’’ samples from Site

801 were taken on board the JOIDES Resolution

[Shipboard Scientific Party, 2000]. This was an

attempt to representatively sample all parameters,

including primary characteristics such as rock type

and chemical composition, grain size and texture, as

well as secondary parameters such as veins, differ-

ent alteration types, and alteration halos along veins.

The Site 801 basement was divided into four depth

intervals based on primary geochemistry and alter-

ation effects: the alkali basalt sills and three MORB

intervals (Table 1). For each interval, communal

samples were combined into one composite for

submarine extrusives (FLO) and one for clastic

rocks (VCL). Sample selections and proportions in

the composites were based on detailed core descrip-

Figure 1. Map showing location of Site 801 in the western Pacific [from Shipboard Scientific Party, 2000].
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tions and geophysical logging results, but it is

nonetheless very difficult to get proportions correct

because of the wide variety of features to be

included, their heterogeneity of occurrence, and

because incomplete core recovery (50%) results in

biases in sampling by the core and uncertainties

about the true proportions of various features.

[9] Based on estimates of rock proportions from

geophysical logs [Barret al., 2002], compositeswere

combined in theproportions30%VCLand70%FLO

to make a combined lithology composite for each

depth interval (the MIX composites in Table 1). A

SUPER composite was made for the entire MORB

section by combining the three MORB depth

composites in proportion to their total thicknesses,

and a sediment composite was made for interflow

sediments from the upper 230 m of the basement.

[10] Each rock sample contributing to composites

was ultrasonically cleaned for 10–20 minutes in

distilled water, air-dried, reduced to 2–4 mm

particles in a hydraulic press, freeze-dried and then

powdered for 15 minutes in an alumina ball mill.

Multiple samples were weighed into a clean plastic

bag, and homogenized by grinding for five minutes

in an agate shatterbox.

[11] Oxygen was extracted from bulk rocks and

sediment by reaction with ClF3 and converted to

CO2 gas for measurement of oxygen isotope ratios

on a Finnegan Delta-S mass spectrometer [Clayton

and Mayeda, 1963]. Repeated extractions and

measurements of samples and standards were

reproducible within ±0.2%.

[12] Hydrogen isotopic analyses were performed

on selected composite samples [Venneman and

O’Neil, 1993]. Rock powders were dried at

110�C in air, placed under vacuum overnight, and

heated to 150�C under vacuum for 2 hours. Water

Figure 2. Schematic lithostratigraphy of Site 801 basement and distribution of alteration halos. ‘‘Brown’’ indicates
oxidation halos along veins, and ‘‘Hydrothermal’’ indicates intense low-temperature hydrothermal alteration related
to formation of the two silica-iron hydrothermal deposits (Units II and V). The disproportionately high proportion
(100%) of brown alteration halos in the uppermost alkali basalts is an artifact of the extremely low recovery in these
cores (<2%) and is not representative. Depth given as m subbasement and m below seafloor (mbsf). After Shipboard
Scientific Party [2000] and Alt and Teagle (submitted manuscript, 2003).
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was then extracted by melting the sample, and

frozen into a quartz tube. Any H2 that was gen-

erated was converted to H2O by reaction with hot

CuO. The water was then converted to hydrogen

for isotopic analysis by heating with Zn metal in a

sealed quartz tube. Isotope ratios were measured on

a Finnegan Delta-S mass spectrometer. Multiple

extractions and measurements of standards over the

course of these analyses were reproducible within

±2.8% (1s; n = 7).

[13] CO2 from carbonate in bulk rock powders was

liberated by dissolution in phosphoric acid at 78 ±

2�C, and carbon and oxygen isotope ratios meas-

ured on a Finnegan MAT 251 mass spectrometer.

Results are reported as d notation relative to VPDB

and VSMOW for carbon and oxygen, respectively.

Reproducibilty of standards is better than 0.1% for

both carbon and oxygen isotope compositions.

4. Results and Discussion

4.1. Oxygen Isotopes

[14] The FLO composites have d18O values of

8.7–13.5% and the VCL composites have values

of 13.4–22.3% (Table 1; Figure 3). There is a

general decrease in d18O with depth (Figure 3),

reflecting variations in rock types as well as alter-

ation effects. The alkali basalt sills at the top of the

section have high values because they are more

intensely altered (30–80%) than most of the tho-

leiites (10–15%). The greater alteration of the

alkalic sills may be related to differences in their

primary composition or texture compared to the

tholeiites, or to a different mode of origin (injection

into sediments rather than eruption onto the sea-

floor). The high d18O value of 13.5% for the upper

tholeiitic FLO composite is influenced by the

highly altered rocks related to upwelling hydro-

thermal fluids and formation of the silica-iron

hydrothermal deposits. The deeper FLO compo-

sites have lower values of 8.7–9.2%, reflecting

their less intense alteration.

[15] The VCL composites have much higher d18O
than the FLO composites, and values generally

decrease with depth. The upper three VCL compo-

sites contain �50% interflow sediments, resulting

in high d18O values of 19.6–22.3% that approach

that of the sediment composite (25.7%). The

much lower d18O of the deepest VCL composite

reflects the lack of sediment and much greater

proportion of igneous material in hyaloclastites

and breccias in this interval. The MIX composites

appropriately have values intermediate between the

FLO and VCL composites, and the SUPER compo-

site value, 12%, is similar to the intermediate

mixture.

[16] Core recovery at Site 801 averages 50%, and

from comparison of recovered core material with

Table 1. Stable Isotopic Data for Site 801 Composite Samples

Depth Interval, m #d18O #dD #d13C #d18O CO2 VCL,a % Sed,a % Veins,a %

801 TAB 0–50 FLO 14.6 �2.7 29.1 6.8 3.7 5.1
801 TAB 0–50 VCL 20.2 �0.2 29.5 100 55
801 TAB 0–50 MIX 16.8 �69.4 �1.5 29.3 35 20 3.6
801 MORB 0–110 FLO 13.5 0.9 28.2 10 5.9 5.2
801 MORB 0–110 VCL 22.3 0.9 28.0 100 59
801 MORB 0–110 MIX 15.3 �83.5 0.9 28.3 32 23 3.6
801 MORB 110–220 FLO 8.7 1.1 29.1 5.3 2.4 5.1
801 MORB 110–220 VCL 19.6 �0.2 27.5 100 45
801 MORB 110–220 MIX 12.1 �88.3 0.0 27.8 34 16 3.6
801 MORB 220–420 FLO 9.2 0.5 26.6 2.6 0 7.7
801 MORB 220–420 VCL 13.4 0.9 27.1 100 0
801 MORB 220–420 MIX 10.3 �90.4 0.6 26.9 32 0 5.4
801 SUPER 12.0 �87.0 0.7 27.9 35 9 4.4
801 SED 25.7 1.8 28.5

a
From Shipboard Scientific Party, Leg 200 Preliminary Report, available at http://www-odp.tamu.edu/publications/prelim/200_prel/

200PREL.PDF, 2002. MIX includes sediment in VCL composite and in FLO composite. Sediment (Sed) in VCL and FLO composites estimated
from composite recipes, sample descriptions and photographs of communal samples. Veins includes carbonate and silicate secondary mineral veins.
#d18O and dD in per mil VSMOW, d13C in per mil VPDB. Also given is the d18O of CO2 evolved from bulk carbonate in the composites.
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geophysical logs, it is clear that there is preferential

loss of vein and breccia material during drilling of

oceanic volcanic basement [Barr et al., 2002;

Haggas et al., 2002]. Barr et al. [2002] estimate

that 31% of the cored basement at Site 801 consists

of breccia, compared to 9.5% breccia in the recov-

ered core. These authors also found 33% pillows

and 33% massive flows in the 801 section versus

32% pillows and 58% massive units in the recov-

ered core. Sediment estimated from combined logs

+ cores is the same as that in the recovered cores

(2.5%). The unrecovered breccia material probably

includes some sediment, but it is unlikely that the

lost material contains as much sediment as the

upper 3 VCL composites (�50% sediment; Table

1). Samples making up the VCL composite contain

abundant interflow sediment, whereas the breccias

documented by the logs are mainly highly frac-

tured pillows and thin flows cemented by secon-

dary minerals [Barr et al., 2002]. Thus, while 30%

breccia appears reasonable for the Site 801 base-

ment section, the amount of sediment mixed into

the VCL (breccia) composites is too great. The

MIX composites (30% VCL + 70% FLO) therefore

also contain proportions of sediment that are too

large (�20% sediment in the upper two MORB

composites; Table 1).

[17] The 35% volcaniclastic material contained in

the SUPER composite (Table 1) agrees nominally

with the 33% breccia estimate from the logs [Barr

et al., 2002], but the large amount of sediment

contained in the VCL composites is propagated

through the MIX composites and into the SUPER

composite, leading to an excess of sediment in the

latter (�9%; Table 1). Through comparison of

geophysical and geochemical logs with drillcore,

Révillon et al. [2002] came to a similar conclusion

that the composite samples overestimate the K

uptake by the Site 801 basement.

[18] A ‘‘corrected’’ SUPER composite value can

be estimated by mass balance. To start, the 10%

sediment (d18O = 25.7%) is subtracted from the

upper MORB FLO composite giving d18O =

12.1% for the latter. The average 801 breccia

contains 20% breccia cement [Shipboard Scientific

Party, 2000], and if this breccia cement has the

same d18O as the sediment (25.7%), then this can

be combined with 80% corrected upper MORB

FLO composite (12.1%) to give an upper MORB

VCL composite value of 14.8%. The two lower

MORB VCL composites can be similarly calcu-

lated: 20% matrix (25.7%) + 80% FLO (�9.0%) =

12.3%, in reasonable agreement with the measured

value of 13.4% for the VCL 220–420 composite,

which contains no sediment. Combining the calcu-

lated VCL and FLO composites in the 30:70

proportions observed from the borehole logs [Barr

Figure 3. Oxygen isotope data for Site 801 composite
samples. Late alkalic basalt sills are plotted at negative
depth values because these intrude sediment overlying
the tholeiitic basement. Vertical line indicates SUPER
composite composition, which does not include alkalic
basalt sills. Unaltered MORB plot at d18O = 5.8% at the
left side of the diagram [Muehlenbachs and Clayton,
1976].
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et al., 2002] then gives 12.9% for the 0–110 MIX,

10.0% for the 110–220 and 220–420 MIX com-

posites, and a corrected SUPER composite d18O of

10.8%.

4.2. Hydrogen Isotopes

[19] The MIX composites have dD values of

�69.4% to �90.4% that decrease with depth,

and the SUPER composite has a value of

�87.0% (Table 1). These values are at the heavier

end of the range of values for whole rocks from

other deep volcanic basement sites, �76% to

�135% (Figure 4). The slightly heavier dD values

for the Site 801 composites may in part result from

higher temperatures of alteration at Site 801 com-

pared to the other sites. Another factor for the Site

801 composites is the presence of sediments, which

at nearby Site 800 have relatively high dD values,

�48.9 to �53.6% [France-Lanord and Sheppard,

1992]. Like in the basalts, the main water carrier in

the sediments is smectite, and the slightly heavier

dD of sediments is related to retention of some

interlayer water that has estimated dD = �27% to

�44% [France-Lanord and Sheppard, 1992].

Decreasing the amount of sediment in the Site

801 composites would have the effect of decreas-

ing the dD slightly, although the difference between

the SUPER composite (�87%) and the deepest

composite (�90.4%), which contains no sediment,

may not be significant.

4.3. Comparison With Other Upper
Oceanic Crust

[20] Oxygen isotopic data for other deep holes in

oceanic volcanic basement are compiled in Figure 5.

Basalts from Sites 332, 395 and 396 (3.2–10 Ma)

in the Atlantic have d18O values of 6–10%, with

no apparent depth trends. These data do not,

however, include analyses of more altered brec-

cias or interflow hyaloclasite or sediment. Data for

6 Ma ODP Holes 504B and 896A in the eastern

Pacific mostly fall in the range 6–9%, with

higher values (up to 18%) in breccias and in

local zeolite rich samples. Although there are few

data for breccias, there is a decrease in the

maximum values of bulk samples with depth.

This has been attributed to lower seawater/rock

ratios and more evolved seawater fluids at depth

[Alt et al., 1996].

[21] Holes 417A, 417D, and 418A lie in 110 Ma

crust in the Atlantic. Hole 417A is sited on a

basement hill, so samples that extend above the

Figure 4. Hydrogen isotopic compositions of Site 801
MIX and SUPER composites. Shown for comparison
are isotopic data for basalts from other deep basement
holes. Data from Hoernes and Friedrichsen [1977,
1978], Friedrichsen and Hoernes [1979], and Frie-
drichsen [1985]. Alkalic basalt sill composite plotted as
negative depth. Unaltered MORB plot at dD = �80 ±
5% [Kyser and O’Neil, 1984].
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surrounding basement are plotted at negative depth

values in Figure 5. Rocks in the upper part of Hole

417A remained exposed to seawater for �20 Ma

and the outcrop was a site of prolonged and

focused fluid flow leading to extreme alteration

of the protruding rocks [Bohlke et al., 1984]. Rocks

from the basement hill have d18O values of 8–

27%, whereas the buried basement mostly has

d18O = 6–20%. Excluding the high values from

Site 417A there is no clear trend with depth,

although there are decreases in scatter and max-

imum values in the bottom 100 m. Composite

samples similar to those for Site 801 were made

for Sites 417/418 [Staudigel et al., 1995]. These

exhibit a general decrease in d18O with depth,

although the upper 6 composites include data from

the highly altered Hole 417A, which may not be

representative of the crust (Figure 5). Hole 896A

also penetrates a basement hill, but, with the

exception of thicker secondary mineral veins, alter-

ation there is similar to the nearby basement at

Hole 504B [Alt et al., 1996].

[22] Differences in alteration temperatures at the

various sites could contribute to differences in

d18O, but this does not appear significant for the

sites in Figure 5. Temperatures estimated from

oxygen isotopic analyses of secondary minerals at

Sites 395 and 332 are 0–50�C, although temper-

atures locally ranged up to 150�C adjacent to an

intrusive sill near the base of Hole 395A [Mueh-

lenbachs, 1977; Lawrence and Drever, 1981].

Similar but slightly higher temperatures of 15–

100�C are estimated for Sites 417/418 [Muehlen-

Figure 5. Oxygen isotopic data for upper oceanic crust from other deep (>200 m) basement holes for comparison to
Site 801 basement composites. Data for 3.2 Ma Site 332A–C in the Atlantic from Gray et al. [1977], Hoernes and
Friedrichsen [1977] and Muehlenbachs [1977]; for 7 Ma Site 395 in the Atlantic from Hoernes et al. [1978] and von
Drach et al. [1978]; for 10 Ma Hole 396B in the Atlantic from Hoernes and Friedrichsen [1978] and Muehlenbachs
and Hodges [1978]; for 110 Ma Sites 417 and 418 in the Atlantic from Muehlenbachs [1979], Friedrichsen and
Hoernes [1979], Staudigel et al. [1981] and Bohlke et al. [1984], and for 6 Ma Holes 504B and 896A in the eastern
Pacific compiled in Alt et al. [1996] and from Teagle et al. [1996]. SUPER, FLO and VCL composite samples for
Sites 417/418 constructed similarly to those for Site 801, and solid circles are depth composites (including veins,
interflow material, etc.) for several intervals at those sites [Staudigel et al., 1995]. Bulk upper crust estimate at Sites
504/896 from Alt et al. [1998] (see text). Unaltered MORB plot at d18O = 5.8% at the left side of the diagrams
[Muehlenbachs and Clayton, 1976].
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bachs, 1979; Staudigel et al., 1981; Bohlke et al.,

1984], and temperatures were comparable at sites

504 and 896, mostly �20–110�C [Alt et al., 1996].

[23] One of the main influences on the stable

isotopic composition of the upper crust is the

proportion of 18O-rich material in veins, breccias,

and interflow material (sediment, hyaloclastite, sec-

ondary minerals, etc.). Analyses of this material are

missing from Sites 332, 395 and 396, leading to low

overall d18O values (mean � 7.5 in Figure 5). In a

mass balance approach, Alt et al. [1998] combined

oxygen isotopic analyses with data for the distribu-

tion of different alteration types, veins, and breccias

in Holes 504B and 896A to calculate a bulk d18O of

7.6–8.0% for the upper crust at these sites. This

calculation was based on the proportions of materi-

als in recovered cores at �30% core recovery, so

breccias and interflow material were underesti-

mated resulting in a low bulk d18O. From compar-

ison of cores and geophysical logs Haggas et al.

[2002] suggest that breccias comprise 16% of the

896A section rather than the 9% determined in the

recovered core. Using the higher proportion of

breccia results in a slightly higher bulk d18O for

the upper crust of 8.0–8.5%. This estimate is based

on the same type of data as that used to construct the

Site 801 composites. Staudigel et al. [1995] con-

structed composite samples for Sites 417/418, sim-

ilar to those for Site 801, and determined a bulk

upper crustal d18O of 10.0% for Sites 417/418.

These composites include data from the highly

altered basement hill penetrated by Hole 417A,

which may not be representative of the upper crust,

but subtraction of this material from the 417/418

SUPER composite only decreases its d18O by 0.2%
[Staudigel et al., 1995].

[24] These estimates of bulk upper crustal d18O are

lower than the Site 801 SUPER composite

(12.0%), which can be attributed in part to the

high proportion of sediment in the VCL and

SUPER composites. The corrected SUPER com-

posite for site 801 calculated above, 10.8%, is

considered a better estimate for the upper crust at

Site 801.

[25] A second factor leading to the high d18O of

the 801 SUPER composite is the intense alteration

associated with formation of the hydrothermal

silica-iron deposits at Site 801. This occurred by

upwelling low-temperature hydrothermal fluids at

the spreading axis and differs from the ridge flank

alteration that dominates at other sites. The highly
18O-enriched rocksmake up 10%of the upper 110m

of the tholeiitic basement at Site 801 (Alt and

Teagle, submitted manuscript, 2003), contributing

to the high values of the upper tholeiite composites

(Figure 3). Key questions here are (1) whether this is

representative of the upper crust formed at fast

spreading centers and (2) whether Site 801 is repre-

sentative of basement subducting in this part of the

western Pacific. Several holes penetrate at least the

upper 100 m of oceanic basement generated at fast

spreading rates, but these do not contain such

hydrothermal deposits or associated intense alter-

ation [Rosendahl, 1980; Lewis et al., 1983; Leinen et

al., 1986; Alt, 1993; Shipboard Scientific Party, Leg

2000 Preliminary Report, available at http://www-

odp.tamu.edu/publications/prelim/200_prel/

200PREL.PDF, 2002; Shipboard Scientific Party,

Leg 206 Preliminary Report, available at http://

www-odp.tamu.edu/publications/prelim/206_prel/

206PREL.PDF, 2003]. Thus, while perhaps a com-

mon component of crust from fast spreading rates,

the hydrothermal deposits and associated intense

alteration and 18O-enrichment at Site 801 are not

ubiquitous.

[26] An aging effect contributes to the differences

between younger (�10 Ma) and older (�100 Ma)

sites in Figures 3 and 5. Secondary carbonates are

the last phases to form in the upper crust, and have

the highest d18O values. Alt and Teagle [1999]

show that these phases continue to form in veins

as the crust ages resulting in the progressive uptake

of C by the crust. Addition of these 18O-rich phases

would result in a corresponding increase in d18O of

the upper crust. Starting with a bulk upper crust

d18O of 8.0% and adding 2.6% carbonate (d18O =

30%) to the upper crust, Alt and Teagle [1999]

would increase the d18O of the upper crust by

0.6%. Veins and breccias are preferentially lost

during coring so carbonate addition and the aging

effect are probably greater than this estimate based

on recovered core. This carbonate aging effect can

account at least in part for the progressively higher

Geochemistry
Geophysics
Geosystems G3G3

alt: isotopic composition of upper oceanic crust 10.1029/2002GC000400

9 of 11



d18O of the upper crust from 6 Ma Sites 504/896 to

100 Ma Sites 417/418 and to 170 Ma Site 801.

5. Conclusions

[27] Composite bulk samples of altered Jurassic

upper oceanic crust from ODP Site 801 in the

western Pacific have d18O = 8.7–20.2%, dD =

�69.4% to �90.4%, and d13C = �2.7% to 1.1%.

The intensity of alteration and the amount of sedi-

ment within the basement decrease with depth,

leading to corresponding decrease in d18O and dD
values of the composites. A SUPER composite,

constructed to estimate the bulk composition of the

upper crust, has d18O = 12.0%, dD = �87.0%, and

d13C = 0.7%.

[28] The d18O of the SUPER composite is higher

than values of 8.0–10.0% for other bulk upper

oceanic basement sections based on similar data.

Although constructed according to constraints

from geophysical logs and from recovered cores,

evaluation of the SUPER composite recipe sug-

gests that it contains too much 18O-rich sediment

(d18O = 25.7%). A corrected d18O value of

10.8% is considered more reasonable for the Site

801 basement section. Other factors also contrib-

ute to the relatively 18O-rich nature of the Site

801basement: (1) intense low-temperature (<100�C)
hydrothermal alteration occurred at the spreading

axis associated with formation of hydrothermal

silica-iron deposits and contributes to the strong
18O-enrichment of the upper 100 m of basement,

which is probably not representative of subduct-

ing material and (2) an aging effect, whereby

progressive addition of 18O-rich secondary car-

bonate in veins and breccia cements leads to

increasing d18O of the bulk upper crust with

time.
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