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[1] Interpolation and inverse modeling problems are ubiquitous in environmental
sciences. In many applications, the parameters being estimated or mapped have physical
constraints, such as nonnegativity (e.g. concentration, hydraulic conductivity), solubility
limits, censored data (e.g. due to dry wells or detection limits), and other physical
boundaries or missing data. Geostatistical interpolation and inverse modeling techniques
have often been applied for estimating such parameters, but these methods typically
cannot enforce physical constraints. This paper describes a statistically rigorous and
computationally efficient Gibbs sampler, a Markov chain Monte Carlo technique, based
on an a priori truncated Gaussian distribution model, which allows for multiple and
variable physical constraints to be enforced within a geostatistical framework. Sample
interpolation and inverse modeling applications confirm that estimates, uncertainty bounds
and conditional simulations reflect the specified constraints, leading to conclusions that
are more consistent with the underlying conceptual model, and provide a more accurate
measure of the posterior uncertainty of the parameters being estimated. In addition,
especially in inverse modeling applications, a posteriori confidence bounds are narrower
even in areas where constraints are not imposed. The method is applicable in multiple
dimensions, for data with or without measurement error, and with any variogram model.
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1. Introduction

[2] Interpolation and inverse modeling problems are
ubiquitous in environmental sciences. Methods based on
geostatistical approaches have been used extensively to
address these problems in surface and groundwater hydrol-
ogy. In many applications, the parameters being estimated
have physical constraints. Examples from environmental
applications include solubility limits, nonnegativity con-
straints on hydraulic conductivity or species concentrations,
concentration ranges for contaminants below an instru-
ment’s detection limit, maximum hydraulic head constraints
when sampling wells are not sufficiently deep to locate the
water table, and/or other physical boundaries. Enforcing
known constraints on parameter values would allow the
resulting parameter estimates to be consistent with the
physical structure of the system. In addition, enforcing
constraints can remove biases introduced when these con-
straints are ignored, and can decrease the uncertainty of
estimates. As described in further detail in section 2,
traditional geostatistical approaches are limited in their
ability to enforce such constraints.

[3] The objective of this paper is to present a statistically
rigorous, geostatistically-based, interpolation and inverse
modeling approach applicable to inequality-constrained data
and parameters. The approach is to be applicable with any
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variogram or covariance model, in multiple dimensions, and
with multiple, and possibly variable, constraints. The pro-
posed approach is conceptually related to the approach
developed by Michalak and Kitanidis [2003, 2005], which
uses a linear variogram model, and is applicable to a single
constant constraint, for a system where the modeled param-
eter varies as a function of a single variable (e.g. time).
Whereas this existing approach is based on Reflected
Brownian Motion [e.g. Karlin and Taylor, 1975], the
approach presented here is a generalization that makes use
of truncated Gaussian distributions.

2. Background
2.1. Constrained Interpolation and Inverse Modeling

[4] In environmental applications, methods for incorpo-
rating inequality constraints into interpolation and inverse
problems have been explored for a few problems, most
commonly to enforce nonnegativity for estimated parame-
ters. Within the geostatistical literature, these developed
methods have relied on (1) constraining kriging weights
to be nonnegative, (2) using Lagrange multipliers or related
tools to enforce inequality constraints on the estimates, and
(3) applying data transformations. These approaches are
briefly summarized below.

[s] Szidarovszky et al. [1987] and Deutsch [1996] pre-
sented approaches that constrain kriging weights to be
nonnegative, which, by default, yields nonnegative esti-
mates given nonnegative observations. In general, however,
nonnegative kriging weights are not necessary for produc-
ing nonnegative estimates. In addition, these approaches are
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not applicable for multiple or variable constraints or cen-
sored data. Barnes and You [1992] present an alternative to
this approach, which does not constrain the kriging weights,
but only the estimates themselves. At locations where the
estimated value would otherwise violate an inequality
constraint, the estimate is set to the inequality bound, and
an adjustment is calculated to the estimation variance. Both
in this approach and those presented by Szidarovszky et al.
[1987] and Deutsch [1996], if this variance is used to define
symmetric confidence intervals for the estimated field, then
these confidence intervals may not honor the inequality
constraints. In addition, the approaches have not been
extended for application to inverse problems.

[6] Journel [1986] proposed a soft kriging approach
based on indicator kriging which can satisfy multiple
constraints but requires the formulation of a set of internally
consistent indicator covariance models, which can be diffi-
cult to derive in practice [Yoo and Kyriakidis, 2006]. The
final uncertainties are approximated using a series of
indicator values. The approach has also not been extended
to inverse problems.

[7] Lagrange multipliers have been used extensively in
estimation problems for equality and inequality constrained
parameters. This method amounts to restricting a common
Gaussian process by replacing the original objective func-
tion f(s) by the Lagrange function

k
h(s,v) =f(s) — Zl/i[gi(s) — by (1)

where s must satisfy the constraints g/s) = b; or gi(s) > b;, k
is the total number of active constraints, and v = (v,
Vs,...,V;) are Lagrange multipliers (see Michalak and
Kitanidis [2003] for a more thorough discussion). This
approach is effective at bounding best estimates, can be
applied to multiple and variable constraints, and is valid for
both interpolation and inverse problems. However, this
approach is not easily suited to assessing uncertainty bounds
for the estimated parameters. This is because, if this
approach is used in generating conditional realizations of
the modeled process, the ensemble of realizations yields a
finite probability for elements of s being equal to the
constraint value, which is contrary to the definition of
continuous random variables. A related approach, based on
spline formalism, was presented in Dubrule and Kostov
[1986].

[8] Data transformations are another popular method that
has been applied to geostatistical and other estimation
problems, especially for enforcing parameter nonnegativity.
The approach involves using a mapping function to trans-
form the original variable. Such methods have been applied
both to geostatistical interpolation and inverse problems
(e.g. Kitanidis and Shen [1996], Kitanidis [1997, p.70],
Chiles and Delfiner [1999], Saito and Goovaerts [2000],
Leuangthong and Deutsch [2004], and Diggle and Ribeiro
[2007]). The most common method is the power transfor-
mation, which is defined as

~ JG"=1)/k >0
S_{ SIn(s) k=0 2)
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where s is the vector of values in the original domain, s is
the transformed data vector, and  is a constant selected
based on the application. The commonly used logarithmic
transformation is included as a special case at the limit of «
tending to zero. In general, data transformations lead to
highly non-symmetric probability density functions for the
estimated parameter values in the untransformed space,
make linear inverse problems nonlinear, and present
difficulties for measurements of zero (e.g. non-detects).
These and other difficulties have been documented in
Snodgrass and Kitanidis [1997], Walvoort and de Gruijter
[2001], and Michalak and Kitanidis [2003], among others.
In addition, traditional data transformations are only valid
for enforcing a single upper or lower bound that is constant
for all estimation times or locations.

[¢] In a few instances, numerical sampling approaches
have been proposed to address specific problems in spatial
interpolation. Militino and Ugarte [1999] used expectation
maximization to analyze censored spatial data. The
approach involves “whitening” the available data, and
using these transformed observations to estimate the
censored values. Abrahamsen and Benth [2001] used a
Monte Carlo approach together with data augmentation and
prior information on the drift parameters describing the
trend in the modeled data to apply inequality constraints in a
kriging context. Both of these approaches assumed exact
measurements, and are further reviewed in De Oliveira
[2005]. De Oliveira [2005] developed an MCMC Bayesian
model for modeling the spatial distribution of a parameter
with censored observations, using a Metropolis-Hastings
algorithm [Hastings, 1970]. Fridley and Dixon [2007]
recently developed a similar algorithm focusing specifically
on estimating observations that are below detection limits,
and making use of both a Gibbs sampler and a Metropolis-
Hastings step. Some of these sampling approaches assume
error-free measurements, while others are designed for
specific constraints on data values, or do not fully account
for the additional uncertainty associated with censored
measurements. In addition, none of these approaches have
been extended for application to inverse problems.

[10] Recently, Michalak and Kitanidis [2003, 2005]
developed a nonnegativity-enforcing interpolation and
inverse modeling approach based on a Gibbs sampling
algorithm. This approach provides nonnegative best esti-
mates as well as confidence intervals. The method is
described in more detail in section 2.2.

2.2. MCMC Methods in Hydrology

[11] Markov chain Monte Carlo (MCMC) approaches
have been applied in hydrology to problems such as
hydrologic model parameter optimization [e.g. Vrugt et al.,
2003a, 2003b] and parameterization of rainfall-runoff
models [e.g. Bates and Campbell, 2001; Campbell et al.,
1999; Marshall et al., 2004]. The majority of these
approaches have been based on the Metropolis or
Metropolis-Hastings algorithms. The Metropolis algorithm
involves the sequential generation of correlated conditional
realizations, which are accepted or rejected based on their a
posteriori probability density relative to that of the previous
accepted realization. The Metropolis-Hastings algorithm is
an extension of this approach for the case where the
transition probability between successive realizations is not
symmetric. A useful introduction to these approaches is
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presented in Chib and Greenberg [1995]. In hydrology,
these approaches have primarily been applied to the
estimation of a relatively small number of distinct variables
representing different components of an examined system.
A few other applications, such as parameter optimization for
groundwater contaminant fate and transport models [e.g.
Balakrishnan et al., 2003] and zonation estimation [Chen et
al., 2006], have also been developed.

[12] The applications that are of interest in this paper
involve the estimation of a spatially or temporally autocor-
related parameter field that can be described using a geo-
statistical variogram or covariance model. In this case, the
state space, which includes each of the parameters to be
estimated, is much larger relative to the applications listed
above, with each location in discretized time or space
represented by a random variable, yielding hundreds to
millions of random variables to be characterized. A few
applications of MCMC approaches to spatial processes have
been presented in the literature. For example, Chen et al.
[2004] presented an application of a Gibbs sampler for
estimating the spatial distribution of iron concentrations
using GPR tomographic data and borehole lithofacies logs.
A Gibbs sampler is an approach that relies on sequentially
sampling the marginal distribution of individual random
variables. An overview of this general approach can be
found in Casella and George [1992].

[13] Michalak and Kitanidis [2002, 2004a] developed a
Metropolis-Hastings algorithm for enforcing nonnegativity
in geostatistical inverse modeling. Michalak and Kitanidis
[2003, 2005] developed a Gibbs sampling approach for
enforcing nonnegativity using a prior probability density
function based on the method of images applied to reflected
Brownian motion [Karlin and Taylor, 1975]. This approach
yields a prior pdf that is the sum of a Gaussian distribution
and its reflection about the constraint boundary. This
method eliminates some approximations necessary in the
earlier approach, and the method was applied in an
interpolation context to contaminant load estimation in the
North Fork of the Humboldt River, and in an inverse
modeling context to contaminant source identification at the
Dover Air Force Base. The approach uses the method of
images to define a marginal probability density function that
is defined only for the nonnegative portion of the parameter
space. This approach provides a rigorous statistical frame-
work for defining a probability density function that
constrains parameter values to be nonnegative at each
estimation point, yielding nonnegative best estimates as
well as confidence intervals. Given its reliance on the
method of images, the approach is applicable for parameters
that vary as a function of a single variable (e.g. time).
Furthermore, the Brownian motion model implies that the
modeled process can be represented using a linear
variogram. Fienen et al. [2004] applied the approach to
vertical deconvolution of hydraulic conductivities.

2.3. Use of Truncated Normal Distribution for
Statistical Estimation

[14] Applications involving constrained estimation, in-
cluding nonnegativity, other threshold constraints, and
censored data abound in the statistical literature. One of
the most common approaches to enforcing inequality con-
straints has been through the implementation of truncated
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distributions. Several of the implemented algorithms make
use of the Gibbs sampling algorithm, described in section 2.2.
Smith and Roberts [1993] provide a review of such
applications, with those most relevant to the current work
involving constrained parameter models, missing data, and
censored data problems. Gelfand et al. [1992] also describe
Gibbs sampling for constrained parameter and truncated
data problems, specifically in the context of Bayesian
analysis. In the context of mining and petroleum engineer-
ing, a Gibbs sampler applied with a truncated Gaussian
distribution has been applied for generating individual
simulations of sampled constrained processes [Freulon and
de Fouquet, 1993; Freulon, 1994], and this approach has
also been described in Lantuéjoul [2002] and Chiles and
Delfiner [1999]. More recently, this approach has been used
to delineate geologic facies [Armstrong et al., 2003]. In
these applications, the emphasis is on generating a single
representative map of the sampled process, and not on
assessing the uncertainty associated with the estimated
process, or exploring the impact of constraints in inverse
modeling applications.

[15] Overall, although the use of the Gibbs sampler for
sampling truncated distributions as a solution to constrained
problems is well established in the statistical literature, the
applicability of such a method for estimating uncertainty in
both geostatistical interpolation and inverse modeling is
presented for the first time in this work.

3. Model Development

[16] Bayes’ rule states that the posterior pdf of a state
vector s given an observation vector z is proportional to the
likelihood of the data given the state, times the prior pdf of
the state. Symbolically:

J(s) = pls)p'(s) 3)

/ plals)p (s)ds

In this context, prior and posterior are with respect to using
the data z, and the state vector s represents the parameter
field under estimation. If we want to enforce constraints of
the form g(s) > b, we modify the probability distribution
by multiplying it by heaviside functions corresponding to
the desired constraints, effectively truncating the distribu-
tion at the constraint boundary, and rescaling the remaining
portion of the probability density function to integrate to

unity:

p”(s) _ p(Z‘S)P’(S) HL] 'H(gl(s) _ bl) (4)

/(p(Z‘S)P/(S) HL] H(gl(s) _ bz))ds

where
1 g,(s) > by
H(g)(s) —b) = 1/2 gfls)=b; (%)
0 gs)<b

The inclusion of the heaviside function in the integral in the
denominator of the pdf ensures that, at each point in the
discretized parameter field s, the pdf still integrates to unity,
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which amounts to truncating the prior pdf at the inequality
constraints. This approach is theoretically applicable with
any probability density function, but is used here to truncate
a Gaussian prior. Note that this setup can be used for
specifying both lower and upper limits on parameter values.
In addition, because both g and b are vectors, different
upper and/or lower bounds can be specified for each
component of the vector s, such that the constraints can vary
in space or in time. For example, for the simple case of a
nonnegative parameter with an upper limit s, (e.g. a
solubility limit), £k = 2 and

g (s)=s b; =0
g(s) = —s

(6)

b = Smax

More complex examples of constraints are described in the
applications presented in section 5.

[17] In geostatistical approaches, the prior represents the
deviation of the unknown vector from a model of the trend.
As such, if we assume a truncated multi-Gaussian distribu-
tion, we define the unconstrained portion of the prior
probability of the parameter values as

m exp —%(S —-XB)'Q (s — XB) (7)

where s is an m x 1 state vector obtained from the
discretization of the unknown parameter distribution that
we wish to estimate, X3 is the model of the trend, where X
is a m X p matrix of drift functions and 3 is a p x 1 vector
of unknown drift coefficients, Q is the m Xx m prior
covariance matrix based on the geostatistical model of the
parameter distribution, and | | denotes matrix determinant.
In the case of inverse modeling, Q is the prior covariance
matrix of the estimated state vector. In the case of
interpolation, Q represents the covariance among all
estimation and measurement locations. Given that the
method, as presented in this work, is based on a prior
defined as a truncated Gaussian distribution, the method
should only be applied for datasets where a multivariate
Gaussian distribution would be appropriate, were it not for
the presence of constraints.

[18] The likelihood of the observations can be expressed
as:

p(s) =

plals) = exp| 3 (2~ h(s,0))"R (2~ h(s,0))

@m)"R|
(3)

where z is an n x 1 vector of observations. When the
system is underdetermined, which is the case of most
interest for the application of geostatistical approaches, m > n.
The vector @ contains other parameters needed by the model
function h (s, ). We assume that the measurement error € has
zero mean and known covariance matrix R. The measurement
errors are typically assumed to be uncorrelated, yielding a
diagonal matrix R, with the measurement error variances
0'%3,1 to 0123,,, on the diagonal. Note that the measurement error
encompasses both the actual observation error when data are
collected, and any inaccuracies inherent in the physical or
conceptual model used to represent the problem. If the

MICHALAK: CONSTRAINED GEOSTATISTICAL GIBBS SAMPLER

W09437

dependence of observations is linear in the unknown parameter
s, then:

exp|— ! (z—Hs)"R™'(z — Hs) 9)

plals) = :

(7)"[R]

where H is an n X m sensitivity matrix, where H;; = 0z/0s;. For
interpolation applications, H simply maps the measurement
locations onto the unknown state vector, and is therefore made
up of ones and zeros. For inverse modeling application, H
represents the sensitivity of each observation to each element of
the state vector, as determined by a physical model of the
system (e.g. a groundwater transport model). The method, as
presented here for inverse modeling applications, assumes that
the forward model is indeed linear. Although the presented
approach could also be implemented within an iterative
solution to a non-linear inverse problem, the computational
feasibility of such an application will be the topic of future
research.

4. Conditional Realizations and Estimation of
Uncertainty

[19] One of the advantages of using a stochastic approach
to interpolation and inverse problems is that physically
significant confidence intervals and conditional realizations
can be obtained in addition to a best estimate of the
parameter values. In the case of classical linear geostatistical
methods, the posterior pdf of the unknown parameters is a
multivariate Gaussian distribution, and can therefore easily
be sampled.

[20] The constrained posterior pdf in equation (4) is not
Gaussian, and therefore does not lend itself to straightfor-
ward computation of confidence intervals or generation of
conditional realizations. Therefore, a Markov chain Monte
Carlo (MCMC) method is used to obtain conditional real-
izations from the posterior pdf. Ensemble properties of
conditional realizations can then be used to infer other
statistics of the estimated parameters, such as a measure
of central tendency and percentiles, which can be used as a
measure of the uncertainty associated with the estimate. In
the discussion that follows, the median of the conditional
realizations is used as the measure of central tendency,
because it represents the estimated value for which there
is an equal probability of the true parameter value being
above or below the estimate. The mean can clearly also be
used as a measure of central tendency, depending on the
application.

[21] MCMC methods allow for the sampling of probabil-
ity density functions in multiple dimensions with computa-
tional effort that is manageable relative to performing the
multi-dimensional integrations that would otherwise be
required. The dimensionality of the posterior pdf is equal
to the number of points in the discretized parameter field,
and can therefore easily be on the order of thousands to
millions.

[22] One of the methods falling into the MCMC category
is the Gibbs sampling algorithm. In this approach, condi-
tional realizations are generated by sequentially sampling
the marginal (i.e. 1-dimensional) probability density func-
tion at each point in the discretized parameter field, while
holding the values at all other points constant. This marginal

4 of 14



W09437

pdf is defined using the most recent conditional realization
available at each of the other points in the discretized
parameter space. It can be shown that, once the chain has
converged, the realizations resulting from this process are
equally likely realizations from the full multi-dimensional
posterior pdf (see, for example, Casella and George
[1992)).

4.1. Description of Constrained Geostatistical Gibbs
Sampling (CGGS) Algorithm

[23] This section describes the Gibbs sampling algorithm
as implemented in the constrained interpolation and inverse
modeling method. We define the /-th conditional con-
strained realization as s..;,. In this context, a conditional
realization is one that has been conditioned on the data z.
The chain can be initialized with any realization that has a
non-zero posterior probability. The Gibbs sampler proceeds
as follows (see, for example, Casella and George [1992] for
a more detailed discussion):

1. Set initial values s.. (Suc.0(x1)s Suc.0(x2),- - -
Suc.o(x,))? and initialize the iteration counter of the
chain / = 1.

2. Obtain a new conditional constrained realization
Sce,l (Scc,l(xl)ascc,l(x2)s . 'asz:c,l(xm))r from Sce,i—1
through successive generation of values from the
marginal pdf at each point (note the use of counter
values / and / — 1):

P(Sces(x1)) = p(Sces (1) Sces—1(x2), - - -, Sces—1(Xm))

P (Sce(x2)) = p(Sces(2)Sce (1), Seei—1(x3) - - s Sce—1 (Xm) )

P (Sces(x1)) = P (Seea (%) |scea(x1)s - s See(Xiz1), Seea—1 (Xis1)s - - -
See—1(Xm))

p(scc‘l(xm)) = p(scc‘l(xm) |Scc,l(xl )a s 7Scc‘l(xmf] ))

3. Change counter / to / + 1 and return to step 2 until
convergence is reached.

[24] When convergence is reached, the resulting realiza-
tion s, is a conditional constrained realization from the full
posterior pdf. Steps 2 and 3 can then be repeated to obtain
additional conditional realizations. In the presented applica-
tions, convergence is evaluated by tracking the values of the
two components (likelihood and prior) of the posterior
probability of the realizations. When the running average of
both components stabilizes, convergence has been reached.
The number of realizations discarded during this ramp-up
portion of the Markov chain is listed in section 5 for each of
the presented applications. Once the realizations are
representative of the probability space of the estimated
parameters, the chain is run until the probability space has
been appropriately sampled. The starting realization and the
length of the Markov Chain are also listed in section 5 for
each of the presented applications. The reader is referred to
the original work by Geman and Geman [1984], and
subsequent publications by Casella and George [1992],
Gamerman [1997], Gelman et al. [1995], and Robert and
Casella [2004] for a more thorough discussion of
convergence in the context of the Gibbs sampler.

4.2. Derivation of Marginal Posterior Probability
Density Function

[25] In order to apply the Gibbs sampling algorithm as
described in the previous section, a marginal pdf from which
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it is possible to draw samples of s at a single point x; is
needed. The problem is broken into two components, first
presenting the marginal likelihood, then the marginal prior.
4.2.1. Marginal Likelihood of s;

[26] The likelihood of the measurements, defined in equa-
tion (9), can be expressed as [Michalak and Kitanidis, 2003]:

2
. . n 1 m
p(Z|S) = (27‘() /20'R eXp |:Z <_F (Z/'— ZH/?"S") ):I
=1 R =1
(10)
Therefore, the marginal likelihood for a single point in the

discretized parameter field s, if values at all other points are
held constant, is:

plals;) = 2m) "oy

- exp {i

=1

2
1 m
Iy (Zj Z Hjjsp — Hj,isi>
R k=1, ki

m 2
" I 5= %#_Hi,ksk
=02m) """ Tl exp | - -4 | g - 20570
( ) R H p 20_1% i H]l

J

combining the n Gaussian distributions, we obtain

plals) = 1 exp _1 M (12)
' V2T 2 TL
where
a’b o%
= — T = ——
S I Y
a4=zj— Z I{jﬁkslﬁ J = L g (13)
k=1, ki
ijI{j,h J_17 s n
[27] In the case of interpolation
[—[j,i = 1 if Xzj = Xs,i
H;; = 0 otherwise (14)

yielding p; = z; if the ith estimation point x;; is at the jth
measurement point x.; and p(zl|s;) o ¢, where ¢ is a
constant, otherwise. For the special case of interpolation
with no measurement error, p(zs;) = &, - -, at a measurement
point; in other words, the estimate at a measurement
location is fixed at the measurement value.

[28] Note that the equations presented in this section have
been written under the common assumption that measure-
ment errors are independent, as described in section 3. The
presented approach can also be applied with correlated
errors, modifying the presented equations to reflect the
resulting off-diagonal terms in R, in a manner analogous
to the way in which the off-diagonal terms in Q are treated
in the following section.
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4.2.2. Marginal Prior of s;

[29] The prior probability density function of the discre-
tized parameter field s was defined in equations (4) and (7).
The unconstrained portion of the marginal prior pdf of a
single point in the discretized parameter field is therefore
P'(sils), where, in this case, § = {Si,.. ;S 1,515« -»Sm}-
This portion of the marginal prior can be rearranged to be

1 -
—5(6=X8)'Q (s - Xﬂ)}

o exp [— % > (Sj = ZX,:/ﬂ/>

J=1 k=1 =1

P
: (Qil)j’k (Sk - Xj.,/ﬂzﬂ
P

where (Q*I)j,k refers to the j,k-th component of Q ', not
the inverse of the j,k-th component of Q. This expression is
the probability density function of s;, given known values
for all other elements of s. This is equivalent to a standard
kriging problem where all elements of s except for s; are
treated as the measurement locations, and s; is the point at
which an estimate is needed. The mean and variance of the
distribution of s; define a normal distribution:

2
exp (1 7(& pr) >
2 Tp

where the mean pp and variance 7p are obtained as in the
solution of a regular universal kriging system of equations,
holding all measurement and other estimation points
constant, and estimating at a single point:

Psls) o exp[

(15)

e (16)

{ Qptifri (17)

Xk%i A o Q/c;éi‘i
X/, 0 -v| | X

1

which yields the kriging weights A and the Lagrange
multipliers v. These parameters define the mean and
variance of the estimate of s; as:

m—1

=Y N
=1

m—1 P
7p = 0Oii — Z NOji + ZXZ:/V/ (18)
= =1

where s; = s;; includes all the most recent sampled values
at all other estimation points, and Q;; = Oi;; is the
covariance between the current estimation point, and all
other estimation points. For interpolation, the measurement
locations are included as estimation points in Q. Equiva-

lently, the influence of the trend X3 can first be removed,
and these statistics can then instead be represented as:

2 k=1 azi Gk
pp =S = (19)
where
G=0Q ' - Q'X(X'Q'x)'X'Q"" (20)
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[30] Note that obtaining pp and 7p at each point requires
the solution of m systems of m linear equations, which are
then used for each realization. However, the kriging weights
and Lagrange multipliers are only a function of the
arrangement of the measurements and estimation locations,
not of the values of the samples or realizations at these
locations (see equation (17)). Therefore, these systems of
equations need only be solved a single time, and not for
every realization, yielding considerable computational
savings.

4.2.3. Marginal Posterior of s;

[31] Combining the marginal likelihood and prior, the full
marginal posterior pdf of s; can be expressed, to within a
normalizing constant, as:

p(sils,z) o Hf:l Hlgi(si) = br) \/Z_lﬁ

1 (s — 2
p<2<u>

L

~
\S)
3'—‘
)

S
o
/‘\

| —
—
e
gt
<
N
8]
S~

which can be written as:

1 1 (s; — p)?
plsils,2) o= exp<2 <’“‘)) T, Has) - o)
(22)
where,

TpPTY,

uw= T(& + ﬂ) (23)
Tp TL

This general formulation can be applied to include
constraints in kriging with no measurement error (e.g.
ordinary kriging, universal kriging, kriging with a trend,
etc.), kriging with measurement error (a.k.a. continuous-part
kriging), and linear geostatistical inverse modeling.

4.2.4. Sampling of Marginal Posterior of s;

[32] We are interested in sampling from a normal distri-
bution that has been truncated at the inequality constraints.
As such, we simply draw a random sample from the
distribution N(p,7), until we obtain one that is in the
allowable range for s;; Once we obtain an admissible
sample, this realization of s; is used as the next conditional
constrained realization at point x;, denoted s..;(x;). The
computational efficiency of this sampling approach can
further be improved by implementing a more efficient
algorithm for obtaining a sample from a one-dimensional
truncated normal distribution. Robert [1995], for example,
presents an efficient method for sampling the portion of a
normal distribution lying within the constraint boundaries,
based on an acceptance-rejection scheme using an expo-
nential distribution.

TP+ TL

5. Applications

[33] The following section includes three sample appli-
cations of the CGGS approach. The first application repre-
sents a hypothetical case of interpolating hydraulic head in
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the presence of censored data and variable topography. The
second application involves the estimation of contaminant
load in a river with censored data and a nonnegativity
constraint. The third application is a hypothetical inverse
modeling example involving the estimation of the historical
distribution of a contaminant in an aquifer. These sample
applications were selected to be both simple and illustrative
of a variety of applications for the presented approach, with
the recognition that field applications will often have higher
dimensionality relative to the presented examples.

5.1. Example 1: Hydraulic Head Mapping

[34] The first application involves the estimation of a
hypothetical hydraulic head distribution in an unconfined
aquifer. Five wells are present in the aquifer, three of which
measure the hydraulic head, and two of which are dry. The
two dry wells represent censored data, or inequality con-
strained data, because we know that the water table is below
the bottom of the well, but we do not know its exact
location. We wish to estimate the water table depth at all
unsampled locations, including the two dry wells. As an
additional constraint, we know that the groundwater table
cannot be above the land surface, and all estimation
locations can also therefore be thought of either as inequal-
ity constrained parameters, or as censored data. For sim-
plicity, we assume that the measurements in the wells are
exact (i.e. no measurement error). An example where this
assumption does not hold is presented in the second
application.

[35] Figure la presents the available data and estimation
constraints. We assume that the unconstrained spatial co-
variance of the water table distribution can be represented
using an exponential covariance function:

Oy = o exp(—hy/1) (24)

with parameters o2 = 1.0 m?, [ = 600 m, where hy; is the
separation distance between estimation points 7 and j. In a
practical setting, this covariance information would be
derived from additional sampling or previous experience.
The hydraulic head is estimated at 1 m intervals.

[36] Figure lc presents the estimated water table distri-
bution using ordinary kriging. Because ordinary kriging
cannot directly handle the inequality constraints imposed
by the dry wells, these measurement location either have to
be ignored, or the water table depth has to be set to a fixed
value. In this case, ignoring the dry wells would yield best
estimates at the dry well locations above the bottom of one
of these wells, a physically inconsistent result. Therefore, as
is often done in practice, the water table in the dry wells is
assumed to be at the bottom of the well. This approach
underestimates the uncertainty in the groundwater level at
and around the dry well locations. In addition, ordinary

Figure 1. (a) Hypothetical hydraulic head measurements.
(b) Best estimate and 95% confidence intervals for
hydraulic head distribution using constrained estimation
method. (c) Best estimate and 95% confidence intervals for
hydraulic head distribution using unconstrained estimation
method. (d) Sample conditional realizations for hydraulic
head distribution using constrained and unconstrained
estimation methods.
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Figure 2. A posteriori hydraulic head probability density
function at four sample points.

kriging cannot incorporate the ground level constraint on
the water table depth, and the uncertainty bounds of the
estimate extend above ground. This is again a physically
inconsistent result stemming from the Gaussian assump-
tions common to estimating uncertainty bounds using the
kriging variance.

[37] Figure 1b presents the estimated water table distri-
bution using the CGGS algorithm. No measured water table
depth is specified at the dry well locations, but the ground-
water level is constrained to be below the bottom of the
well. In addition, the realizations are everywhere con-
strained to be below the ground surface. The Markov chain
was initialized with the ordinary kriging best estimate of the
hydraulic head distribution, because this was a realistic
starting point that also did not violate the constraints for
this application. The chain is run for a total of 50,000
realizations, because the large distance between measure-
ments requires a relatively large number of realizations in
order to effectively sample the uncertainty space. Because
the starting point for the Markov chain is very good in this
case, only the first 100 realization of the chain are discarded
in the analysis. Contrary to the ordinary kriging result, none
of the estimates or their uncertainty bounds violate the
physical constraints imposed by the dry wells or ground
surface. In addition, the uncertainty associated with the
groundwater level at the dry wells is realistically repre-
sented, with wide uncertainty on the water table depth at
these locations. Interestingly, for both dry wells, the best
estimate of the groundwater depth is significantly below the
bottoms of the wells for this example. Finally, the uncer-
tainty intervals on the water table depth are not symmetric
close to constraint boundaries, which is realistic for this
situation and results from the use of a non-Gaussian a priori
pdf.

[38] Figure 1d presents a sample conditional realization
generated using a multi-Gaussian assumption as is repre-
sentative of a traditional kriging sampling approach, and a
sample conditional realization generated using the proposed
constrained algorithm. The two realizations exhibit a similar
degree of spatial variability, because they are both based on
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the same prior covariance model. As was already demon-
strated in Figure 1b, however, the realization generated
using the CGGS algorithm does not reach above ground
level, and is better reflective of the uncertainty in ground-
water levels at the locations of the dry wells.

[39] Note that the marginal pdf at each point for each
conditional realization is modeled as a truncated Gaussian
distribution. However, the overall pdf describing the uncer-
tainty across the ensemble of realizations can take on a
variety of forms (Figure 2). Away from constraint bound-
aries (e.g. x = 100 m), the pdf is close to Gaussian and
similar to that which would be obtained using a traditional
kriging setup. At locations where constraints have a
significant impact on the estimates (e.g. x = 140 m), the
final pdf looks like the truncated Gaussian pdf used in the
sampling procedure. Near such boundaries (e.g. x = 138 m,
x =20 m), the distribution is skewed. These pdfs reflect the
spread in the ensemble of conditional realizations used to
characterize the uncertainty associated with parameter
values at unsampled locations. Note that the product of a
multidimensional truncated-Gaussian prior with a Gaussian
likelihood function does not point-wise yield a truncated
Gaussian distribution.

5.2. Example 2: Contaminant Load Estimation

[40] The Humboldt River basin is located in North-
Eastern Nevada in the United States, and its water resources
have a variety of recreational and agricultural uses. The
Humboldt River contains arsenic which results in large part
from mining practices when mineralized rock is crushed and
exposed to oxygen and water. The concentration history of
dissolved arsenic in the North Fork of the Humboldt river
and the total dissolved arsenic load supplied to downstream
locations were previously estimated using the nonnegativ-
ity-enforcing Gibbs sampling approach of Michalak and
Kitanidis [2005].

[41] The CGGS approach not only allows for this lower
concentration bound to be enforced and measurement errors
to be taken into account, but also provides a statistically
rigorous methods for accounting for censored data where
the measured concentration was below the detection limit.
The new approach is compared with results obtained using
ordinary kriging with a linear variogram, chosen based on
an examination of the experimental variogram of available
data and for easy comparison to Example 3 in Michalak and
Kitanidis [2005]. The covariance structure of the contami-
nant concentrations is therefore modeled using a linear
generalized covariance function:
where 0 = 10"% (ug/l) *day ™', hj, is the time lag between the
i and j estimation times, and the generalized covariance
takes the place of the covariance Q; used for stationary
parameter distributions.

[42] The concentration data were obtained from the EPA
STORET database [EPA, 2003] and are plotted in Figure 3a.
All measured and estimated concentrations must be
nonnegative. Based on documentation from EPA, the
detection limit is 3 pg/l. The measurement error is assumed
to be normally-distributed with a variance of 0.25(ug/1)*,
yielding 95% confidence bounds of +1 pg/l, corresponding
to the reported data precision.
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[43] We discretize the concentration history into ten-day
intervals, augmented by the times at which measurements
were actually taken, with time zero starting on the day of the
first measurement, 21 April 1999, yielding a total of m =
173 estimation times. Note that although we are interested
in the variability of the arsenic concentration in time rather
than in space, the approach presented in sections 3 and 4 is
directly applicable, simply by substituting temporal co-
ordinates ¢ for spatial coordinates x in the algorithm
presented in section 4.1.

[44] For this application, the median and 95% confidence
intervals of the probability density functions of concentra-
tion values at ten day intervals are determined based on
ensemble properties of conditional realizations generated
using the method described in section 4. The Markov chain
is initialized with the ordinary kriging best estimate of the
concentration history, because this is a realistic starting
point that also does not violate the constraints for this
application. The chain is run for a total of 10,000 realiza-
tions. Because the starting point for the Markov chain is
very good in this case, only the first 100 realization of the
chain are discarded in the analysis. Results are plotted in
Figure 3b. The equivalent plot using kriging with a linear
variogram is presented in Figure 3c. As can be seen in these
figures, the proposed approach behaves similarly to the
kriging interpolation away from constraints, but the best
estimate near constraints deviates from the kriging esti-
mates. For the kriging application, the non-detect points are
assumed to have no arsenic (0 pg/l). An alternative approach
which is sometimes used is to set non-detects at half the
detection limit (1.5 ug/l in this case).

[45] As can be seen from Figure 3b, the new methodol-
ogy is effective at enforcing parameter nonnegativity, and
constraining non-detects to below the detection limit with-
out specifying a prior estimate of concentrations at those
times. The measurement uncertainty is also reflected in the
estimates. Note that the measurement error is modeled
through the likelihood term (section 4.2), whereas the
non-detects are modeled as an interval constraint in the
range of zero to the detection limit. By design, the new
methodology behaves similarly to kriging with a linear
variogram in high concentration regions.

[46] Traditional geostatistical simulation, on the other
hand, leads to conditional realizations and confidence
intervals reaching into the negative parameter range, which
have no physical significance, and can be misleading. In
addition, kriging requires explicit assumptions about the
concentration for non-detect samples, and cannot account
for the finite uncertainty range for these measurement times.

[47] Figure 3d presents a sample conditional realization
generated using a multi-Gaussian assumption as is repre-

Figure 3. (a) Concentration measurements for North Fork
of Humboldt River at North Fork Ranch, Elko county,
Nevada. (b) Best estimate and 95% confidence intervals for
concentration as a function of time using constrained
estimation method. (c) Best estimate and 95% confidence
intervals for concentration as a function of time using
unconstrained estimation method. (d) Sample conditional
realizations for concentration history using constrained and
unconstrained estimation methods.
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Figure 4. Averaged flow data at one-day intervals for
North Fork of Humboldt River, Elko county, Nevada.

sentative of a traditional kriging setup, and a sample
conditional realization generated using the CGGS algo-
rithm. The two realizations exhibit similar degrees of spatial
variability, because they are both based on the same
covariance model. As was already demonstrated in Figure 3c,
however, the realization generated using the proposed
algorithm does not violate the nonnegativity constraint,
and is better reflective of the uncertainty in concentrations
at times of non-detect samples.

[48] The obtained estimates can also be used in conjunc-
tion with flowrate information to estimate total contaminant
load, as was presented in Michalak and Kitanidis [2005].
River flow data for the equivalent time period, however,
were not available. Therefore, flows for 1 January 1971,
through 31 December 1981, are averaged to obtain a
representative hydrograph for the stream [USGS, 2001].
These daily average flows are used to estimate the flowrate
history for the period of 21 April 1999, through 30 July
2003, by assigning to each day a flowrate equivalent to the
average flow for that calendar day. These flows are
presented in Figure 4.

[49] To estimate the total contaminant load, individual
conditional realizations are weighted using river flows,
yielding an ensemble of contaminant loads that can be used
to describe the uncertainty associated with this quantity. The
total loads are presented in Figure 5 for the kriging and
constrained approaches. As discussed in Michalak and
Kitanidis [2005], for this river, high concentration events
are associated with high flows. Therefore, because the
proposed method has a stronger impact close to constraint
boundaries, the impact of the constraints on total load is
relatively limited. However, Figure 5 shows that the kriging
approach consistently underestimates contaminant loads
relative to the constrained approach, which is more
consistent with the physical bounds on parameter values.
This effect is more pronounced than that discussed in
Michalak and Kitanidis [2005], because the current
approach is able to provide a better representation of
observations with non-detect concentrations. At the end of
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the four-year period, the new approach estimates a statisti-
cally significantly higher contaminant load relative to the
kriging approach, at the 0.05 confidence level. This effect is
important because it implies that methods that do not account
for physical constraints on parameter values, especially with
regard to nonnegativity and representation of non-detect
values, can lead to strong underestimation of contamination.

5.3. Example 3: Estimation of Historical Contaminant
Distribution

[s0] The final example application involves the identifi-
cation of the historical distribution of a contaminant in a
two-dimensional aquifer, and is modeled after the hetero-
geneous example presented in Michalak and Kitanidis
[2004b]. The two-dimensional distribution at time 7, is
estimated based on downgradient concentration measure-
ments taken at time 7, = T, + 2000 days. The affected
aquifer is represented as having a deterministically hetero-
geneous hydraulic conductivity field.

[s1] The domain is finite, measuring 1024 m and 512 m
in the x; and x, directions, respectively. It is discretized into
128 x 64 nodes in the x; and x, directions, respectively,
resulting in an 8§ m x 8 m grid. No-flux boundary
conditions are applied at the top and bottom boundaries
for both flow and transport. The left-hand side and right-
hand side boundaries have prescribed constant heads,
resulting in a mean gradient of 3.472 x 10~% m/m. Details
regarding the aquifer heterogeneity are available in
Michalak and Kitanidis [2004b]. The flow solution is
obtained using MODFLOW [McDonald and Harbaugh,
1988; Harbaugh and McDonald, 1996].

[52] The actual contaminant distribution at time 7, used
in this example is presented in Figure 6a. The plume profile
at time 7, is obtained using MT3DMS [Zheng, 1990; Zheng
and Wang, 1999]. The boundary conditions used to solve
the forward problem are:

C(x,t) =0 x; =[0,1024]; x; € [0,512]

oC 26
nviC —nDy— |n; =0 x; € [0,1024]; x, = [0,512] (26)
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Figure 5. Cumulative arsenic load best estimate and 95%
confidence intervals for constrained and unconstrained
estimation methods.
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where 7 is time, x; are the spatial directions (i = 1, 2), x =
(x1, x5), C is resident concentration, 7 is porosity, D;; is the
i,jth entry of the dispersion tensor, and v; is fluid velocity in
the direction x;. Uncorrelated random error with a standard
deviation of 1 x 10~ mg/l is added to the observations to
represent measurement error.

[53] The distribution at time 7}, is presented in Figure 6b,
along with sampling locations. The sampling is conducted
on a 32 m x 32 m grid, yielding a total of 105 observation
locations. We recover the contaminant distribution in the
region 2, = {x: x; € (0,256), x, € (168, 392)}. For the
purpose of solving the inverse problem, this area is
discretized into 8 m intervals, yielding 896 points at which
the concentration at time 7, is to be estimated. This
represents a strongly underdetermined problem. The adjoint
approach of Michalak and Kitanidis [2004b] is applied to
define the sensitivity matrix H needed to solve the inverse
problem, which defines the sensitivity of each observation
at time T}, to a historical concentration at each location in
the domain 2,. The covariance of the concentration
distribution at time 7, is taken from this earlier work, where
it was estimated using a Restricted Maximum Likelihood
approach. A cubic generalized covariance model was used:

5001

4001

K = ok, (27)

100}
where £;; is the physical separation distance between the ith
ot and jth locations at which the contaminant distribution is to

be estimated, and 6 = 107¢ (mg/l)2 m° [Michalak and
Kitanidis, 2004b].

[54] Figure 6d presents the recovered historical distribu-
tion using a linear geostatistical inverse modeling approach,
analogous to the method presented in Michalak and Kitanidis
[2004b]. Although the overall distribution at time 7, is
recovered reasonably well, the best estimate includes areas
with negative concentrations. Even in locations where the
best estimate itself is positive, the uncertainty bounds can
encompass negative values, as seen in the one-dimensional
slice presented in Figure 7b. Figure 6c presents the
recovered historical distribution using the proposed CGGS
approach. The Markov chain is initialized with the absolute
value of the best estimate obtained using linear inverse
modeling, because this is a starting point that does not
violate the constraints for this application. The chain is run
for a total of 1000 realizations. As in the two previous
applications, the first 100 realization of the chain are
discarded in the analysis. The applied constraint in this case
is nonnegativity within the entire domain. As can be seen
from this figure, the best estimate is indeed everywhere
nonnegative. In addition, as seen in Figure 7a, the entire
probability density function at each point is constrained to
be nonnegative, yielding positive uncertainty bounds.

100 200 300 400 500 600
x [m]

50 100 150 200 250
x [m]

y [m]

Figure 6. (a) Actual contaminant distribution at time 7.
(b) Actual contaminant distribution at time 7, and
measurement locations for inverse modeling application.
50 100 150 200 250 (c) Recovered contaminant distribution for time 7, using

x[m] constrained estimation method. (d) Recovered contaminant
distribution for time 7, using unconstrained estimation
method. Concentration units are mg/I.
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[55] Furthermore, the accuracy and precision of the
estimates are improved by the addition of the constraint.
First, the third peak in the historical contaminant distribu-
tion, which is absent in the estimate obtained using the
linear approach, is correctly inferred in the best estimates of
the constrained approach. Second, because of the strong
implicit constraint on total contaminant mass offered by the
plume measurements, the addition of the nonnegativity
constraint decreases the uncertainty throughout the domain.
Conceptually, through mass conservation, by eliminating
the possibility for negative concentrations, the possibility
for some large positive concentrations is eliminated as well.
This effect can be seen clearly by comparing Figures 7a and
7b, where the uncertainty bounds for the constrained ap-
proach are everywhere narrower relative to the linear
approach. This effect is especially pronounced in areas of
low concentration. Overall, the new approach successfully
enforces physical constraints in an inverse modeling setup,
while improving the precision and accuracy of the obtained
estimates. Note that the inverse modeling approach used for
the solution of the solute inverse problem assumes a known
transport model, parameterized in H. The current literature
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on stochastic methods for solving solute transport inverse
problems in groundwater hydrology does not consider
uncertainties in transport parameters (see, €.g. review in
Michalak and Kitanidis [2004b]), although a few recent
works have considered such uncertainty in a deterministic
context [e.g. Sun et al., 2006; Sun, 2007]. Relaxing this
assumption within a probabilistic framework is the topic of
ongoing research. The innovation presented in the current
paper, however, focuses specifically on the treatment of the
constraints within the solution space.

6. Conclusions

[s6] The presented approach provides a statistically-
rigorous methodology for geostatistical interpolation and
inverse modeling, subject to multiple and spatially-variable
inequality constraints. The approach uses a Gibbs sampler
to characterize the marginal probability distribution at each
estimation point, using a truncated Gaussian prior probability
distribution. As presented in the current work, the method
is applicable to cases where a truncated Gaussian distribution
is a good representation of the a priori uncertainty on the
parameter distribution, and would therefore be less applicable
to highly skewed distributions. In addition, for applications
to inverse problems, the method assumes a linear and known
forward model.

[57] From a methodological perspective, the three pre-
sented applications demonstrate the applicability of the
proposed approach to a wide range of problems and con-
straints. Censored data with an upper bound were used in
Example 1, whereas interval censored data were used in
Example 2. Nonnegativity was enforced in Examples 2 and
3. Example 1 also demonstrated the applicability of the
proposed approach to data with a spatially-variable inequal-
ity constraint. Applications to interpolation were presented
in Examples 1 and 2, whereas an application to geostat-
istical inverse modeling was shown in Example 3. Example
1 presented an application in one spatial dimension, Exam-
ple 2 presented a temporal problem, and Example 3 repre-
sented an application in two spatial dimensions. Finally the
three presented examples also applied three different co-
variance structures (exponential covariance, linear general-
ized covariance, cubic generalized covariance).

[s8] Scientifically, the presented examples demonstrate
the broad need for constrained interpolation and inverse
modeling approaches, with sample applications to ground-
water flow, surface water quality, and groundwater solute
transport. The presented approach can also be applied to a
wide range of other data types and problems.

[s9] Overall, the geostatistical Gibbs sampler using a
truncated Gaussian prior distribution offers an effective,
simple, computationally efficient and universally applicable
approach for spatial and temporal interpolation and inverse
modeling problems in environmental applications where
inequality constraints are present. In addition, the method
yields estimates with high precision and accuracy relative to
classical geostatistical methods.

[60] Acknowledgments. This material is based upon work supported
by the National Science Foundation under grant 0644648 “Development of
Geostatistical Data Assimilation Tools for Water Quality Monitoring.” Olaf
Cirpka, Jinsong Chen and one anonymous reviewer contributed signifi-
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