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[1] The solar wind is coupled to the magnetosphere-ionosphere system through various
interactions, e.g., magnetic reconnection at the dayside magnetopause, and viscous
interactions at the low latitude boundary layer. The polar cap, a region of open magnetic
flux connecting the magnetic field of the Earth to that of the solar wind, is an ideal region in
which to investigate how solar wind drives the magnetosphere-ionosphere dynamo. For
such studies, the polar cap (PC) index provides a useful characterization of the state of the
polar ionosphere. A previous study by Gao et al. (2012a) found that polar cap dynamics,
characterized by the PC index, responds to both solar wind driving quantified by the
electric field (EK-R) proposed by Kivelson and Ridley (2008) which is a representative of
the electric field imposed on the ionosphere by magnetopause reconnection that takes cross
polar cap potential saturation into account, and the energy release in the magnetotail,
described by a modified AL index (ALU). In that study, the dependence of the PC index on
EK-R and ALU was investigated assuming a linear relationship. In this study, we test the
assumption that the relationship is linear by performing a similar analysis applying a more
general, nonlinear model to the events of the Gao et al. (2012a) study. A nonlinear
relationship can be established by use of a statistical approach referred to as the additive
model. We find that the more flexible additive model outperforms the linear model.
However, the improvement is small. Provided that EK-R is used to characterize the solar
wind input, results obtained from the additive model are very similar to those from the
linear model. This result indicates that the linear relation between the PC index and EK-R,
ALU obtained by Gao et al. (2012a) represents the data within fluctuations.
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1. Introduction

[2] The polar cap (PC) index was introduced by
Troshichev et al. [1988] as an instantaneous measure of
polar cap dynamics driven by the interplanetary magnetic
field (IMF) and the solar wind. It has been argued that
among various solar wind-magnetosphere coupling func-
tions, the polar cap magnetic field fluctuation most closely
relates to the merging electric field [Kan and Lee, 1979]
imposed by reconnection at the dayside magnetopause,

EK-L ¼ uBYZ sin
2q=2; ð1Þ

where u is the magnitude of the solar wind velocity, BYZ =
(BY

2 + BZ
2)1/2 in the GSM coordinate system, and q is the IMF

clock angle measured from the GSM Z axis. Thus, the PC
index was calibrated as a monitor of the merging electric
field [Troshichev et al., 1988]. (See Stauning [2011] for a
detailed discussion of the derivation of the PC index used in
this study.)
[3] Statistical analyses have demonstrated that the PC

index is representative of diverse ionospheric processes. For
example, Troshichev et al. [1996] related the PC index to the
cross polar cap potential (FPC) measured by the EXOS-D
satellite and obtained a linear relationship,

FPC kV½ � ¼ 19:35PCþ 8:78: ð2Þ

Ridley and Kihn [2004] took seasonal effects into account
and proposed a different formula to convert from polar cap
index to the cross polar cap potential measured by AMIE,

FPC kV½ � ¼ 29:28� 3:31sin T þ 1:49ð Þ þ 17:81PC; ð3Þ

where T is the month of the year normalized to 2p (i.e.,
Jan. = 0, Jul. = 6 � 2p/12, Dec. = 11 � 2p/12). Troshichev
et al. [2000] found that the cross polar electric field
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measured by DMSP is well represented by a second order
polynomial of the PC index. Fiori et al. [2009] studied the
relationship between the plasma convection velocity and
the PC index and got similar results. Liou et al. [2003]
examined the statistical relationship between auroral
power and the polar cap index and found a reasonably
large correlation coefficient (0.7). Chun et al. [1999, 2002]
have shown that the PC index can serve as a proxy for the
hemispheric Joule heating production rate and claimed that
it is possible to predict the Joule heating pattern from the
PC index.
[4] Despite the general success in relating polar cap

dynamics as quantified by the PC index to solar wind driv-
ing and magnetotail activity, few studies have paid attention
to times of intense geomagnetic activity. However, the sat-
uration of the cross polar cap potential at such times has
been extensively discussed [e.g., Russell et al., 2000;
Nagatsuma, 2002; Shepherd et al., 2002; Siscoe et al., 2002,
2004; Kivelson and Ridley, 2008]. In exploring the physical
mechanism of cross polar cap potential saturation, Kivelson
and Ridley [2008] took into consideration the partial reflec-
tion of the merging electric field at the top of the ionosphere
and proposed that the observed electric field in the iono-
sphere would take the form

EK-R ¼ EK-L 2SA= SP þ SAð Þ; ð4Þ

where 2SA/(SP + SA) is the transmission coefficient. In
equation (4), SA is the Alfvén conductance of the solar wind
calculated as

SA ¼ 1=m0vA; ð5Þ

where vA = B/(m0rsw)
1/2 is the Alfvén velocity in solar wind,

rsw is the solar wind mass density, m0 = 4p � 10�7H/m is
the permeability of the free space, and SP is the ionospheric
Pedersen conductance, fixed to be 10S in the analysis that
follows as suggested by Kivelson and Ridley [2008]. For
nominal solar wind conditions, vA ≈ 50 km/s, and therefore
SA = 1/m0vA ≈ 16S, which is close to SP. Thus, EK-R ≈ EK-L.
Nevertheless, under strong solar wind driving, SA decreases
significantly as vA increases and satisfies SA < SP, and thus,
EK-R < EK-L. Y. Gao et al. (Utilizing the polar cap index to
explore strong driving of polar cap dynamics, submitted to
Journal of Geophysical Research, 2012) performed a similar
analysis with SP = 5S and 15S, and found that the results are
consistent with those obtained when SP = 10S. This is
because, in equation (4), SP establishes the threshold below
which saturation occurs, i.e., SA < SP. However, for our
events, when saturation occurred, the condition SA < SP was
strongly satisfied and the results were insensitive to the
exact threshold value. Therefore, the conclusions of our
study are not sensitive to limited variations of SP (e.g.,
5S ≤ SP ≤ 15S). Theoretical analysis [Kivelson and Ridley,
2008], simulation results [Borovsky et al., 2009] and data
analysis (Gao et al., submitted manuscript, 2012) all sup-
port the idea that EK-R is a better indicator of the electric
field in the ionosphere caused by the dayside reconnection
than is EK-L, especially when EK-L is unusually large (e.g.,
EK-L > 10 mV/m).
[5] Different mechanisms have been proposed to explain

the saturation of the cross polar cap potential under strong

solar wind driving. For example, Siscoe et al. [2002,
2004], who adopted and developed the model by Hill et
al. [1976], argued that the saturation of cross polar cap
potential results from a feedback in which the magnetic
field generated by Region-1 current becomes comparable
to and opposes the Earth’s dipole field at the magneto-
pause where reconnection occurs. By significantly weak-
ening the field that is reconnecting, the Region-1 current
ultimately limits how fast reconnection occurs, resulting in
the saturation of cross polar cap potential. Although the
physical mechanism proposed by Siscoe et al. [2002,
2004] is fundamentally different from that by Kivelson
and Ridley [2008], the predicted electric fields from the
two models are similar. It is not the purpose of this paper
to explore which model is correct and, essentially, all
saturation models predict the saturated electric field in
forms similar to equation (4) [e.g., Borovsky et al., 2009].
Thus, we employ EK-R as a representative of the electric
field imposed on the polar ionosphere by magnetopause
reconnection that takes saturation into account. For other
models of cross polar cap potential saturation, see Borovsky
et al. [2009].
[6] Although solar wind driving contributes substan-

tially to polar cap dynamics, Gao et al. (submitted man-
uscript, 2012) found that the PC index not only responds
to EK-R, i.e., the driven contribution, but also responds to
magnetotail activity. The AL index, a similar measure of
geomagnetic activity, provides a measure of high latitude
nightside currents. In statistical analyses of the index, a
significant part of its variability is linked to substorms,
and this part is referred to as the unloading contribution
[Akasofu, 1979; Bargatze et al., 1985; McPherron and
Baker, 1993; Gao et al., submitted manuscript, 2012].
However, there is also an AL response directly linked to
the solar wind electric field. It is, thus, customary to
regard AL as a sum of the unloading, or nightside, con-
tribution (here denoted as ALU) and the directly driven,
or dayside contribution (here denoted as ALD), which
implies that

ALU ¼ AL� ALD: ð6Þ

Gao et al. (submitted manuscript, 2012) have calculated
ALD by regressing AL on EK-R, i.e.

ALD ¼ a0 þ a1EK-R; ð7Þ

where a0 is the intercept, and a1 is the regression
coefficient.
[7] In order to quantify the relative importance between

EK-R and ALU, standardization procedures are applied to
both EK-R and ALU, i.e., zs(EK-R) and zs(ALU), by calcu-
lating the normalized quantities referred to as z-scores,
defined as

zs Xð Þ ¼ X � mXð Þ=sX ; ð8Þ

where X is a variable with expectation mX and standard
deviation sX. In practice, mX is estimated from sample mean
(�x), i.e.

mX ≈ �x ¼ ∑ix
ið Þ=n; ð9Þ
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where x(i) represents the ith observation, and n is the
sample size. sX is estimated from sample standard devi-
ation (s), i.e.

sX ≈ s ¼ ∑i

�
xðiÞ � �x

�2
= n� 1ð Þ

� �1=2
: ð10Þ

[8] The relation between PC and EK-R, ALU can be sum-
marized as [Gao et al., 2012; Gao et al., submitted manu-
script, 2012]

PC ¼ b0 þ b1zs EK-Rð Þ þ b2zs ALUð Þ þ ɛL; ð11Þ

where b0 is the intercept, b1 and b2 are regression coeffi-
cients and ɛL is the Gaussian noise with zero expectation and
constant variance, i.e., E(ɛL) = 0 and var(ɛL) = const. With
PC related to the normalized proxies of EK-R and ALU, their
relative importance in determining the PC index is given by
the relative magnitudes of the regression coefficients b1
and b2.
[9] Equation (11) assumes that the PC index is linearly

related to EK-R and ALU. We next investigate whether this
assumption is valid by employing a more general, nonlinear
model to relate these two quantities to the PC index. Our
approach is based on using a nonlinear relation called the
additive model, which we describe below. We ask whether a
nonlinear form of the relationship among the quantities of
interest is substantially more successful in predicting the PC
index than the linear model. Our objective is to determine
the potential optimum predictor of the effect of solar wind
parameters on polar cap dynamics, as represented by the PC
index.
[10] In section 2, we describe the data used. In section 3,

we apply additive (nonlinear) analysis to the events used by
Gao et al. (submitted manuscript, 2012) and compare the
results with those obtained by linear regression analysis. We
find that (1) the additive model outperforms the linear model
in all cases; (2) the improvements by switching from the
linear model to the additive model are relatively small,
which confirms the validity of the linear assumption; (3) the
fitted values of PC index from the additive model are very
similar to those obtained from the linear model; (4) the
results from both models are adequate. Finally, we summa-
rize the results in section 4 and compare the nonlinear,
additive model to the linear model.

2. Data

[11] In this study, one-minute resolution PC index data
from the northern hemisphere (PCN) are used because they
provide a more continuous data set than the PC index from
the southern hemisphere (PCS). The events used in this
study are those used in Gao et al. (submitted manuscript,
2012) who selected 53 one or two-day intervals with sub-
intervals during which EK-L > 10 mV/m from 1998 to 2006.
The PCN index data come from magnetic data from the
Qaanaaq station (86.5� magnetic latitude) and are produced
by the Danish National Institute (DTU space); the PCS index
is from Vostok (�83.4� magnetic latitude) magnetic data
and is produced by the Arctic and Antarctic Research Insti-
tute [Troshichev and Lukianova, 2002].
[12] The solar wind data are provided by instruments on

the ACE spacecraft located at Lagrange point 1 (L1). The

one-minute magnetic field vector and plasma moments are
obtained from the Magnetic Field (MAG) [Smith et al.,
1998] and Solar Wind Electron, Proton, and Alpha Moni-
tor (SWEPAM) [McComas et al., 1998] instruments. The
GSM coordinate system is adopted for analyzing plasma
velocity and magnetic field observations. The solar wind
observations have been propagated to XGSM = 17 RE using
the techniques of Weimer et al. [2003].
[13] The AE index obtained from the World Data Center

in Kyoto comes from the geomagnetic variations in the
horizontal component observed at 12 selected observatories
near the auroral zone in the northern hemisphere. The data
from these stations are superposed as a function of UT. AU
and AL form the upper envelope and lower envelope of the
superposed traces, respectively. The difference, AU � AL,
defines the AE index.

3. Analysis

[14] Our goal is to model the dependence of PCN on a set
of potentially important predictors for at least three reasons.
The first is to describe the dependence of PCN on the pre-
dictors. The second is to access the relative contributions of
the predictors in controlling PCN. The third is to predict
PCN values to, say, identify unusual activity. Gao et al.
(submitted manuscript, 2012) identified two important pre-
dictors: the modified electric field (EK-R), taken as a repre-
sentative of the polar cap electric field imposed by dayside
reconnection, a form in which saturation is taken into
account; and the modified AL index (ALU). The standard
tool used was the multiple linear regression model given in
equation (11) and is rewritten below,

PCN ¼ b0 þ b1zs EK-Rð Þ þ b2zs ALUð Þ þ ɛL; ð12Þ

where b0 is the intercept, b1 and b2 are regression coeffi-
cients and ɛL is Gaussian noise [Hastie and Tibshirani,
1990; Myers, 2000]. In equation (12), the solar wind data
are propagated to XGSM = 17 RE by using the technique of
Weimer et al. [2003]. For each individual event, an extra
time shift (DT) is added to the solar wind data to achieve the
highest cross correlation between EK-R and the PCN index.
Using the data set of Gao et al. (submitted manuscript,
2012), the histogram of DT is shown in Figure 1, which can
be numerically summarized as: mean: 12.98; standard
deviation: 15.90; minimum: �47; 1st quartile: 7.75; median:
12; 3rd quartile: 17.25; maximum: 59. This EK-R is also used
in equation (7). Given the great complexity in establishing
time delays between solar wind quantities and the PCN
index, a cross correlation analysis provides only an approx-
imation to the precise time delay, but the uncertainty does
not mask the correlations that we are studying. Time delays
between AL and EK-R should, in principle, also be taken into
account. However, the time for convection from Qaanaaq to
AE stations is expected to be on the order of 10 min,
whereas, for our cases, the time scale for AL index to
decrease and recover is on the order of hours Gao et al.
(submitted manuscript, 2012). Thus, we do not consider
additional delays in correlating EK-R and AL.
[15] The linear model, equation (12), makes a strong

assumption about the dependence of PCN on EK-R and ALU,
namely that the dependence is linear in each of the
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predictors. If this assumption holds, even roughly, then the
linear regression model is useful and convenient, because
(i) it provides a simple description of the data, (ii) it sum-
marizes the relative contribution of each predictor with a
single coefficient, and (iii) it provides a simple method for
predicting new observations.
[16] Nevertheless, when fitting a linear regression model,

we generally do not assert that the model is correct. Rather
we believe that it will be a good first order approximation to
the true solution, and that we can uncover the important
predictors and their roles using the approximation. It is,
however, legitimate to question the validity of the linear
assumption. One way to test the validity is to employ a more
general, nonlinear model to perform the analysis and com-
pare the results with those obtained from the linear analysis.

3.1. Additive Model

[17] An important feature of the linear regression model
(e.g., equation (12)) is the additive nature among the pre-
dictors. Once we have fitted the linear model we can
examine the predictor effects separately in the absence of
interactions. There are many ways to generalize a linear
regression model. Of these, the additive model [Stone,
1985; Hastie and Tibshirani, 1990] is particularly appeal-
ing as it retains this important feature of the linear model:
it is additive in the predictor effects. Therefore, for our test
of nonlinearity, we have selected the additive model,
which is

PCN ¼ aþ f1 EK-Rð Þ þ f2 ALUð Þ þ ɛA; ð13Þ

where a is intercept, f1(EK-R) and f2(ALU) are arbitrary
univariate (depending on only one variable) smooth

functions of EK-R and ALU respectively and ɛA is Gauss-
ian noise. If f1(EK-R) and a are redefined as

f1* EK-Rð Þ ¼ f1 EK-Rð Þ þ c; and a∗ ¼ a� c; ð14Þ

where c is an constant, equation (13) remains unchanged.
Thus, to uniquely determine the values of f1(EK-R) and
f2(ALU), two constraints are imposed on equation (13)
[Stone, 1985; Hastie and Tibshirani, 1986, 1990], i.e.

E f1 EK-Rð Þð Þ ¼ 0; and E f2 ALUð Þð Þ ¼ 0; ð15Þ

where E(X) stands for the expectation of X.

3.2. Backfitting Algorithm

[18] The additive model is fitted by the “backfitting algo-
rithm” [Hastie and Tibshirani, 1990]. Notice that the con-
ditional expectations of equation (13) require that

f1 EK-Rð Þ ¼ E f1 EK-Rð Þð jEK-RÞ ¼ E PCN� a� f2 ALUð Þð jEK-RÞ;
ð16Þ

f2 ALUð Þ ¼ E f2 ALUð Þð jALUÞ ¼ E PCN� a� f1 EK-Rð Þð jALUÞ;
ð17Þ

where E(Y|X = x) represents the expectation of Y conditional
on X = x. Define PCN � a � f2(ALU) and PCN � a �
f1(EK-R) as the partial residuals of EK-R and ALU respec-
tively, i.e.

pr EK-Rð Þ ¼ PCN� a� f2 ALUð Þ; ð18Þ

pr ALUð Þ ¼ PCN� a� f1 EK-Rð Þ: ð19Þ

Starting with an initial guess, f 2
(0)(ALU) which usually takes

a linear form, the additive model can be fitted by iteratively
smoothing the partial residuals, i.e.

f 1
tþ1ð Þ EK-Rð Þ ¼ S PCN� a� f tð Þ

2 ALUð Þ
� �

; ð20Þ

f 2
tþ1ð Þ ALUð Þ ¼ S PCN� a� f tþ1ð Þ

1 EK-Rð Þ
� �

; ð21Þ

where t records the iteration step, i.e., t = 0, 1, …, and S is a
smoothing operator discussed in section 3.3. Iterations are
terminated when f 1

(t+1)(EK-R) ≈ f 1
(t)(EK-R) and f 2

(t+1)(ALU) ≈
f 2
(t)(ALU).Hastie and Tibshirani [1990] provide further details

of the backfitting algorithm, e.g., derivation, convergence, rate
of convergence, uniqueness of solutions.

3.3. Locally Weighted Scatterplot Smoothing

[19] An effective approach to extracting a nonlinear
representation of scattered data that relates to familiar
methods such as least squares regression is referred to as
the LOESS (LOcally wEighted Scatterplot Smoothing)
method [Cleveland, 1979]. The method provides a rigorous
approach to obtain a fit to scattered data, or “smoothing” it,
by joining the centroids of local straight line fits to portions
of the data. In smoothing data values, for each point x0, k
nearest points, denoted by N(x0), are identified. The distance
of the furthest point in the set N(x0) from x0 is computed as

D x0ð Þ ¼ maxxi∈N x0ð Þjx0 � xij: ð22Þ

Figure 1. Histogram of additional time shifts of the solar
wind data for events used in Gao et al. (submitted manu-
script, 2012).
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Weights wi are assigned to each point in N(x0), using the tri-
cube weight function W(| x0 � xi |/D(x0)), where

W uð Þ ¼ 1� u3
� �3h i

þ
ð23Þ

Here [x]+ = x, if x > 0, otherwise [x]+ = 0. The predicted value
at x0 is fitted from the (local) weighted least squares fit con-
fined to N(x0) using the weights computed above. Thus, our
model becomes

PCN ¼ aþ lo EK-R; k1ð Þ þ lo ALU; k2ð Þ þ ɛA; ð24Þ

where lo stands for LOESS. Here k1 and k2, the numbers of
nearest neighbors, determine the smoothness of the additive
bases, lo(EK-R, k1) and lo(ALU, k2), respectively and ɛA is
assumed to be Gaussian noise. Diverse choices of k1 and k2
are discussed in Hastie and Tibshirani [1990] in detail and
will not be pursued here. A popular choice is to fix
k1 = k2 = 0.5n [Hastie and Tibshirani, 1990] to guarantee
enough smoothness, where n is the number of observations.
This strategy is adopted in this study and k1, k2 will be
omitted in later discussions. The computational details are
summarized in the following backfitting algorithm.
[20] Algorithm 1 (The backfitting algorithm). Initialize a =

b0, f 1
(0)(EK-R) = b1zs(EK-R), and f 2

(0)(ALU) = b2zs(ALU) from
the results of linear regression (equation (12)). For t = 0, 1,
…, :
[21] 1. Compute f 1

(t+1)(EK-R) = LOESS(PCN – a –
f 2
(t)(ALU), 0.5n);
[22] 2. Compute f 2

(t+1)(ALU) = LOESS(PCN – a – f 1
(t+1)

(EK-R), 0.5n);
[23] 3. If || f 1

(t+1)(EK-R) � f 1
(t)(EK-R)|| < d and || f 2

(t+1)

(ALU) � f 2
(t)(ALU)|| < d, stop; otherwise, repeat 1 and 2.

Here ||x|| stands for the Euclidean norm of a vector x,
and d is a pre-defined small number.
[24] In steps 1 and 2, the notation LOESS(x, k) is adopted

in order to emphasize that smoothing of x is achieved by
using the LOESS technique with k nearest neighbors.
[25] Ideally, lo(EK-R) and lo(ALU) in equation (24) are

obtained from lo(EK-R) = f 1
(∞)(EK-R) and lo(ALU) =

f 2
(∞)(ALU). For finite iterations, if the stopping criterion

is satisfied after T steps, then lo(EK-R) ≈ f 1
(T)(EK-R) and

lo(ALU) ≈ f 2
(T)(ALU).

3.4. Inference

[26] An event on 20 November 2003, shown in Figure 2,
can help us better understand the approach. In Figure 2, the
blue line is the measured PCN and the red line is the pre-
dicted PCN based on the nonlinear additive model. The
consistency between measurements and predictions is
apparent.
[27] In order to quantify the performances of the linear

model and the additive model, three statistics, coefficient of
determination (R2), error variance (s2) and Akaike’s infor-
mation criterion (AIC) [Akaike, 1974], are computed to
estimate the goodness of fit and model optimality. R2,
varying between 0 and 1, represents the variation in the
response variable that is explained by the model [Myers,
2000; Gao et al., submitted manuscript, 2012]. s2 is calcu-
lated from the variance of the residuals [Myers, 2000]. Both
R2 and s2 quantify the goodness of fit of a model. AIC,
different from R2 and s2, not only rewards the goodness of
fit, but also penalizes the model complexity. Given a set of
possible models for the data, the optimal model is the one
with the minimum AIC value. A detailed discussion on the
definitions and properties of the above statistics is given in
Appendix A.

Figure 2. Comparison between the measured PCN index
(blue line) and the predicted PCN index from an additive
model (red line) based on solar wind parameters for the
storm of 20 November 2003. RA

2 , sA
2 are computed to esti-

mate goodness of fit and AICA is used to estimate the model
optimality.

Figure 3. Comparison between linear model (green line)
and additive model (red line) for the case of 20 November
2003. The change of R2, error variance and AIC can be used
to assess the performance of different models.
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[28] For the event on 20 November 2003, the values of
PCN predicted by the fitted values from the additive model
and from the linear model, i.e.

PCN ¼ 5:45 0:04ð Þ þ 2:94 0:04ð Þ zs EK-Rð Þ � 0:91 0:04ð Þ zs ALUð Þ; ð25Þ

are shown in Figure 3. The numbers in the parentheses in
the equation above are the standard deviations of the
corresponding regression coefficients. The additive model
slightly outperforms the linear model with increased R2

(from 0.82 to 0.85), decreased error variance (from 2.13
to 1.72) and reduced AIC (from 5034 to 4740). The fitted
values from the two models are extremely similar.
Figure 4 compares the estimated partial residuals of the
additive model with the linear bases. The black dots
indicate the scatters between the partial residuals and the
linear bases, i.e., pr(EK-R) versus zs(EK-R) and pr(ALU)
versus zs(ALU). The red solid lines, calculated by

smoothing the scatters, are lo(EK-R) and lo(ALU) as
functions of zs(EK-R) and of zs(ALU), respectively. The
red dashed lines are the corresponding estimated 95%
pointwise confidence intervals. The green lines partition
the region with zs(EK-R) = 0 and pr(EK-R) = 0 (left) and
zs(ALU) = 0 and pr(ALU) = 0 (right). It is clear that
lo(EK-R) roughly bears a linear relationship with zs(EK-R),
but some nonlinearity between lo(ALU) and zs(ALU)
develops for this event. Nevertheless, the part with sig-
nificant deviation from linearity of ALU lies in the strong
geomagnetic activity limit where there are few observa-
tions. Thus, if a linear relationship between lo(ALU) and
zs(ALU) is assumed, no significant error is introduced,
which is confirmed by the close correspondence between
the fitted values from the linear model and those from the
additive model (Figure 3).
[29] We have also tested the performance of EK-L as a

regression basis in the additive model. Since no saturation

Figure 4. Relation of partial residuals pr(EK-R), pr(ALU) and linear bases zs(EK-R), zs(ALU) for the case
on 20 November 2003. The scatters are between the partial residuals and their corresponding z-scores, i.e.,
pr(EK-R) versus zs(EK-R), and pr(ALU) versus zs(ALU). The red solid lines are the functional relation
(a) between lo(EK-R) and zs(EK-R) and (b) between lo(ALU) and zs(ALU). The red dashed lines give the
corresponding 95% pointwise confidence intervals. The green lines label zs(EK-R) = 0 and pr(EK-R) = 0
(Figure 4, left) and zs(ALU) = 0 and pr(ALU) = 0 (Figure 4, right).

Figure 5. (a) Partial residual of EK-R versus its linear basis. (b) Partial residual of EK-L versus its linear
basis on 20 November 2003. The format is the same as Figure 4.
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mechanism is included in EK-L, prominent nonlinearity
between lo(EK-L) and zs(EK-L) is expected under strong solar
wind driving. For the case on 20 November 2003, this is
confirmed in Figure 5. Figure 5a displays the additive basis,
lo(EK-R), as an approximately linear function of the linear
basis, zs(EK-R), of EK-R. Nevertheless, in Figure 5b, lo(EK-L)
levels off at large values of zs(EK-L). The nonlinear rela-
tionship between lo(EK-L) and zs(EK-L) is clear.
[30] The same comparisons between the linear model

and the additive model, using EK-R and ALU as predictors,
have been applied to all the cases. The results are sum-
marized in Figures 6 and 7, which show the change of R2

and change of AIC from the linear model to the additive
model. For all the cases, the additive model systematically
outperforms the linear model with increased R2 and
decreased AIC. Nevertheless, the improvements are rela-
tively small.
[31] A more direct approach is to compare the fitted values

of the linear model with those of the additive model by
calculating their correlation coefficients whose distribution
is shown in Figure 8. The correlation coefficients concen-
trate near 1 with only one exception on 18 February 1999.
The nonlinearity between the additive bases and linear bases
for this case is clear as shown in Figure 9. It also corresponds
to the largest increase of R2 from the linear model to the
additive model in Figure 6. For this case, the prediction from
the linear model fails with R2 = 0.25 as is shown in
Figure 10. Moreover, significant difference between PCS
and PCN are found between 0600UT and 1200UT (not
shown here). This case will be discussed in detail by the
authors in a later report. In a future study, it will also be of
interest to systematically investigate the consistency and
contrast between the fitted values from the additive model

and those from the linear model for various levels of geo-
magnetic activity.
[32] Furthermore, it is of great importance to compare the

relative contributions to PCN from two predictors in the
additive model and compare the result with that obtained
from the linear model. Unlike the linear model for which the

Figure 6. R2 for the linear model and the additive model.
The yellow bars indicate the R2 values for the linear model
(RL

2) and the red bars plotted beneath the yellow bars (but
extending to higher values of R2) give the changes of R2

by switching from linear model to additive model (RA
2 � RL

2).

Figure 7. Akaike’s information criterion (AIC) for the lin-
ear model and the additive model. The red bars are the AIC’s
for additive analysis (AICA) for all the cases. The yellow
bars (this time plotted below the red bars but extending
above them) on top of the red bars indicate the increases of
AIC from additive model to linear model (AICL � AICA).

Figure 8. Histogram of correlation coefficients of fitted
values to the linear model and the additive model.
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contribution of each predictor is summarized in a regres-
sion coefficient, the contribution of a predictor in an
additive model, EK-R say, has to be calculated from its
additive basis, i.e., lo(EK-R). The standard deviation of lo
(EK-R) and that of lo(ALU) summarize the contributions to
PCN from EK-R and ALU respectively, and thus, can be
used to compare their relative importance in controlling
PCN. Figure 11 shows a scatterplot of the standard
deviations of lo(EK-R), denoted as |slo(EK-R)|, and lo(ALU),
similarly written as |slo(ALU)|, for those cases with
RA
2 ≥ 0.5. The points are both colored and scaled accord-

ing to their RA
2 values. An orthogonal regression between

|slo(ALU)| and |slo(EK-R)| forced to pass through origin is

added as the blue line. The regression coefficient, 0.47,
indicates that the contribution of EK-R to PCN is roughly
twice as important as ALU in an additive model. This is
consistent with the result of Gao et al. (submitted manu-
script, 2012) based on the linear assumption between the
PCN index and EK-R, ALU.
[33] If the potential nonlinearity between AL and EK-R is

taken into account, an additive model can be used to derive
the unloading AL, denoted as ALU,A here, i.e.

ALU;A ¼ AL� ALD;A; ð26Þ

where

ALD;A ¼ a0 þ lo EK-R; 0:5nð Þ: ð27Þ

Figure 9. As for Figure 4 for the event on 18 February 1999.

Figure 10. Comparison between measured PCN (blue line)
and predicted PCN based on linear model (green line) on 18
February 1999. This is the only case during which the addi-
tive model gives inconsistent results with those obtained
from the linear model.

Figure 11. Scatterplot of standard deviations of lo(ALU)
versus that of lo(EK-R) for those cases with RA

2 ≥ 0.5.
The points are both colored and scaled according to the
corresponding RA

2 . An orthogonal regression between
|slo(ALU)| and |slo(EK-R)| in blue line was forced to pass
through origin.
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Accordingly, the additive model, equation (24), is updated to

PCN ¼ a′þ lo EK-R; 0:5nð Þ þ lo ALU;A; 0:5n
� �þ ɛ′A: ð28Þ

We have found that the results obtained by using
equation (28) are quite similar to those obtained by using
equation (24). Besides, it is more convenient to examine
the differences between the additive model and the linear
model, if the same variable, ALU, is used in the two
models. For example, in Figure 4b, we have compared
the additive basis, lo(ALU), directly with the linear basis,
zs(ALU). However, if, instead, ALU,A is used, then we are
only able to compare lo(ALU,A) with zs(ALU,A), which is
not used in the linear model. Therefore, in this paper, we
have reported the results obtained by using equation (24).

4. Discussion and Conclusions

[34] In this report, we studied the response of polar cap
dynamics as characterized by the PCN index to solar wind
parameters and geomagnetic activity under strong solar wind
driving by extending the linear regression analysis of Gao
et al. (submitted manuscript, 2012) between PCN and EK-R,
ALU to a more general, nonlinear model, i.e., an additive
model (equation (24)). Here, EK-R is used as a representative
of the electric field imposed on the ionosphere by magne-
topause reconnection, modified to account for saturation.
We have compared the results with those obtained from the
linear model (equation (12)) by using the same cases as that
used in Gao et al. (submitted manuscript, 2012). We found
that although, in general, the additive model outperforms the
linear model with increased R2 and decreased AIC, the
improvements obtained by switching from a linear model to
an additive model are small. Thus, the validity of the linear
assumption is confirmed. The fitted values from the two
models are extremely similar to each other, with the distri-
bution of the correlation coefficient between the linear fits
and the additive fits concentrating near 1 with one exception,
an event on 18 February 1999. This is an anomalous case
that will be discussed fully in a later report. With one
exception, the results from the two models are quite similar.
They both tell us that EK-R is approximately twice as
important as ALU in controlling PCN, which is the same
result reported by Gao et al. (submitted manuscript, 2012).
Although the additive model of PCN as a response to EK-R

and ALU is more flexible in the sense that it does not
require that PCN varies linearly with the independent
quantities, the linear model already provides a very good
approximation. Furthermore, the linear model gives a sim-
pler description of the data by summarizing the contribution
of each predictor in a regression coefficient and is easier to
be extended to more advanced analysis, e.g., robust
regression. The usage of a linear model in this problem is
highly encouraged.

Appendix A

[35] In this appendix, we provide the definitions and
properties of the statistics used in this study, i.e., coefficient
of determination (R2), error variance (s2) and Akaike’s
information criterion (AIC).

[36] For ease of discussion, we define y as the vector of
observations and ŷ+ as the vector of additive fits. It is
important to notice that to fit an additive model is equivalent
to generating a mapping from y to ŷ+, i.e.

ŷþ ¼ Ry; ðA1Þ

where R is the mapping matrix. Then, R2, s2 and AIC can be
computed from y, ŷ+ and R.
[37] For an additive model, the coefficient of determina-

tion, i.e., RA
2 , is defined as [Hastie and Tibshirani, 1990;

Myers, 2000]

R2
A ¼ 1� D y; ŷþ

� �
=D y; �y1ð Þ: ðA2Þ

In the above equation, D(y; ŷ+) is the deviance, calculated as

D y; ŷþ
� � ¼ky� ŷþk2; ðA3Þ

where y � ŷ+ is the model residual vector, ||x|| indicates the
Euclidean norm of vector x. D(y; �y1), the null deviance, is
defined as

D y; �y1ð Þ ¼k y� �y1k2; ðA4Þ

where �y is the sample mean and 1 = (1, 1, …, 1)T. RA
2 ,

varying between 0 and 1, can be interpreted as the fraction of
variations explained by the model [Myers, 2000; Gao et al.,
submitted manuscript, 2012]. The error variance for an
additive model is calculated as

s2
A ¼ D y; ŷþ

� �
=dferr: ðA5Þ

Here dferr, the error degree of freedom, is computed from
[Hastie and Tibshirani, 1990]

dferr ¼ n� tr 2R � RRT
� �

; ðA6Þ

where n is the number of observations, R is the mapping
matrix in equation (29) and tr(A) stands for the trace of
matrix A. RL

2 and sL
2 for the linear model can be similarly

defined by replacing ŷ+ with the least square fits, ŷLS, of a
linear model, i.e.

R2
L ¼ 1� D y; ŷLSð Þ=D y; �y1ð Þ; ðA7Þ

and dferr with n � p, i.e.

s2
L ¼ D y; ŷLSð Þ= n� pð Þ; ðA8Þ

where p is the number of parameters, e.g., p = 3 for equation
(13) [Myers, 2000]. As to Akaike’s information criterion
(AIC), in general, it is defined as [Akaike, 1974]

AIC ¼ �2 ln Lþ 2p; ðA9Þ

where L is the maximized value of the likelihood function
for the estimated model and p is still the number of para-
meters in a model. Given a set of candidate models for the
data, the preferred model is the one with the minimum AIC
value, since AIC not only rewards goodness of fit, but also
includes a penalty that is an increasing function of the
number of estimated parameters. In practice, a convenient
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form arises from writing ln(L) as [Burnham and Anderson,
2002]

ln Lð Þ ¼ C � n=2ð Þ ln D y; ŷð Þ=nð Þ; ðA10Þ

where y is the vector of observations, ŷ is the vector of fitted
values, and C is a constant independent of the model used.
Thus, AIC becomes

AICL ¼ n ln D y; ŷLSð Þ=nð Þ þ 2p� 2C ðA11Þ

for a linear model, or

AICA ¼ n ln D y; ŷþ
� �

=n
� �þ 2 tr Rð Þ � 2C ðA12Þ

for an additive model. In the above equation, tr(R), an esti-
mator of p, is the effective number of parameters of an
additive model [Hastie and Tibshirani, 1990].
[38] It is important to notice that a reduced form of AIC,

denoted as AICR, is used in Gao et al. (submitted manuscript,
2012),

AICR ¼ lns2
m þ nþ 2pð Þ=n; ðA13Þ

where sm
2 = SSRes/n. Since SSRes in Gao et al. (submitted

manuscript, 2012) is the same as the D(y; ŷLS) here, AICR is
related to AIC through

AICR ¼ AIC þ n� 2Cð Þ=n: ðA14Þ

Consequently, the AIC values obtained from this study are
consistent with those reported by Gao et al. (submitted
manuscript, 2012), although they look different.
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