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X band model of Venus atmosphere permittivity
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[11 A model of Venus’ atmosphere permittivity profile up to 300 km is developed in
this paper for X band. The model includes both the real and imaginary parts of the
atmospheric permittivity, derived using data sets inferred or directly measured
from past exploration missions to Venus: the real part is obtained by calculating the
total polarization of the mixture of the atmospheric components including CO,, N,
H>0, SO,, H,SOq4, CO, etc.; the imaginary part is derived using the superposition
of the absorption of each component. The properties of the atmospheric components
such as polarization and absorption are modeled with respect to frequency,
temperature, and pressure. The validity of this model is verified by comparing
simulation results with available measurements of Venus’ atmosphere. This
permittivity model is intended as a critical tool for the design of next-generation
orbiting radar systems, in particular interferometric radars.
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1. Introduction

[2] During the past 30 years, several satellite missions
have been carried out to study the surface of Venus. In
particular, orbiting radars have been utilized to study the
Venus surface structure dating back to the American
Pioneer Venus project (1978 to 1992). Although at low
resolution (~5-20 km), the Magellan mission (1990 to
1994) provided the best global altimetry for Venus to
date. These topographic data were important for under-
standing the basic physiography of Venus and identifying
its important surface features. In addition, stereo topog-
raphy data for parts of Venus (>17% of the planet) were
generated using radar images obtained at different look
angles. This stereo data set, which provides almost
100 times better horizontal resolution (~100 m) than the
altimeter [Ford et al., 1993], has been immensely impor-
tant for addressing more detailed geologic questions,
particularly those related to tectonic structures, resurfa-
cing, and stratigraphy.

[3] Nevertheless, the existing stereo data on Venus can
only be used to study a small range of questions over a
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small fraction of the planet; also, the stereo data have only
limited relative vertical precision (~10 m) [Howington-
Kraus et al., 2001]. Analogous to the information re-
vealed from the Mars’ high-resolution topography provided
by Mars Orbiter Laser Altimeter (MOLA), fundamental
questions in the study of Venus, such as how resurfacing of
the planet occurred within the last 1 Gy and why geologic
activity may have declined following the resurfacing
[Phillips et al., 1992; Phillips and Izenberg, 1995], are
expected to be addressed with high-resolution topography
of Venus. Hence, there has been significant recent interest
in investigating radar systems for measuring Venus’
topography with high resolution. In particular, the fea-
sibility of X band altimeter and/or SAR interferometer
systems are being examined.

[4] To design this system, the effects of the Venusian
atmosphere on an X band signal must first be estimated.
However, in past and current Venus missions, no syn-
thesized information on the atmosphere’s influence on
electromagnetic wave propagation has been delivered. To
address this need for the design of next-generation Venus
radar missions, a model of Venus atmosphere permit-
tivity as a function of altitude up to 300 km has been
developed in this work. Moreover, although the focus
of this work is on the X band model, it is noted that
important measurements have also been made at S band
[Pettengill et al., 1996]. The reason for immediate
emphasis on X band is that InSAR systems at X band are
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expected to be more efficient in mapping the Venus
surface topography than other frequencies. Specially,
they are more compact (smaller antenna and interfero-
metric baseline), have higher resolution, and are less
impacted by the ionosphere. Furthermore, the use of
dual-frequency measurements can potentially lend to
enhanced discoveries about the atmosphere and surface
of Venus [Jenkins et al., 1994]. Therefore, a similar
atmospheric model at S band will be quite valuable as
well and is a subject for future research. The method-
ology developed here for X band will be equally valid
at S band if the input data are also available at S band
frequency.

[s] To construct the Venus atmosphere permittivity
model, many types of information are required, including
temperature, pressure, material composition, properties
of the ionosphere, and properties of the cloud layer. Past
and current Venus missions provide significant infor-
mation on these parameters. The temperature, pressure,
and density profiles (up to 100 km) are mainly provided
by the Venera, Pioneer Venus and VEGA missions [Seiff’
et al., 1985; Zasova et al., 2006]. The Venus Express
Radio Science (VeRa) experiment gives the most recent
temperature and pressure profiles with detailed analysis
including variations with latitudes [Tellmann et al., 2009].
The cloud properties (~40 km to 60 km) are based on the
Pioneer Venus project observations [Knollenberg and
Hunten, 1980; James et al., 1997]. Information on Venu-
sian atmospheric composition under the cloud is contrib-
uted by Magellan radio occultations [Kolodner and
Steffes, 1998] and ground-based microwave observations
[Jenkins et al., 2002], in addition to the missions men-
tioned above [de Bergh et al., 2006]. The gaseous mixing
ratios in Venus’ mesosphere were recently updated by
results delivered from the Venus Express project
[Fedorova et al., 2008; Vandaele et al., 2008], which also
provides the most recent distribution of the ionosphere
[Pétzold et al., 2007].

[6] Venus’ atmosphere consists mainly of carbon
dioxide (slightly less than 96.5%) and nitrogen (slightly
less than 3.5%). Trace gases include water vapor, sulfur
compounds, and carbon monoxide. The planet’s surface
pressure can reach 90 atm, with surface temperature of
around 700 K. Thick clouds consisting of sulfuric acid
droplets exist at lower altitudes (~40 km to 60 km) in the
Venus atmosphere. The high atmospheric density result-
ing from high pressure and temperatures considerably
impacts on electromagnetic wave propagation. Also both
the clouds and the atmospheric gases cause significant
absorption of the radio signals [Janssen and Poynter,
1981; Kolodner and Steffes, 1998].

[7] To study the electromagnetic wave propagation
characteristics through Venus’ atmosphere, its complex
permittivity profile must be known. The real part of the
complex permittivity is used to find the propagation
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coefficient, and the imaginary part accounts for the signal
absorption. Since the complex permittivity is frequency-
dependent, to investigate the X band signal propagation
for future radar mission design, Venus atmosphere per-
mittivity at that frequency needs to be derived.

[8] In this work, a model was constructed for the real
and the imaginary parts of the Venus atmosphere per-
mittivity profile. Using the relationship between the
permittivity and polarization of polar materials, the real
part of the atmospheric permittivity was obtained by
calculating the total polarization of the mixture of known
components. The contribution of each component was
calculated based on the assumed known (though arbitrary)
component fraction in the mixture. For each atmospheric
component, its polarization was modeled as a function
of frequency, temperature, and pressure based on the
available information in the literature. The imaginary
part of the atmospheric permittivity was found from the
available measurements of the mixture component
absorptions. The temperature and pressure dependences of
the absorption from each component were modeled using
the data and information given in the literature. The model
was verified by comparing the simulation results with
those inferred from the absorption and the refractivity data
acquired from previous missions to Venus and from
ground-based measurements.

[o] This article is organized as follows: Section 2
describes the construction of the permittivity model,
including the real and the imaginary parts. Section 3
presents the simulation results and the model verification
based on the available Venus observation data. Finally,
section 4 concludes the article with a discussion of pos-
sible improvements to the model in the future. Application
of this permittivity model in studying the X band signal
propagation for a future radar mission is being reported in
a separate paper by the authors.

2. Model Construction

[10] The Venus atmosphere permittivity model is
constructed for both the real and the imaginary parts. In
this work, the dielectric constant is used to refer to the
real part of the relative permittivity. The dielectric con-
stant ¢, is found by calculating the total polarization of
the mixture of known atmospheric components; the
imaginary part of the relative atmospheric permittivity €,
is obtained using the measured absorptions of the mixture
components. The total complex relative permittivity is
given by

(1)

and the total complex permittivity is € = €,.€q, where €5 =
8.854 x 10 '2 F/m is the permittivity of free space.

! . 11
€ = €, + 1€,
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2.1.

[11] The dielectric constant ¢, is modeled utilizing its
relation with the total polarization of the atmospheric
mixture. To get the polarization of the mixture, the ap-
proach of Harvey and Prausnitz [1987] and Harvey and
Lemmon [2005] is applied. Using this method, the po-
larization of each atmospheric component is added into
the total polarization of the atmospheric mixture main-
taining the component density. Though this method was
developed for calculating the static dielectric constant of
a fluid mixture in the work of Harvey and Lemmon [2005],
for the dielectric constant value at X band, the mixing
principle is still valid as long as the corresponding X band
dielectric constant values and polarizations are used.
2.1.1. Relation Between Polarization and Dielectric
Constant

[12] Polarization or polarization density is the density
of permanent or induced electric dipole moments in a
dielectric material. It is directly related to the material
dielectric constant. The relationship between polarization
and dielectric constant is different for polar and nonpolar
materials, both of which exist in the Venusian atmo-
sphere. For example, CO, and N, are nonpolar mole-
cules, while H,O and SO, are polar molecules.

[13] There are three mechanisms producing electric
polarization for dielectrics [Boettcher, 1973]: (1) dipole
or orientational polarization, which exists in polar media
possessing permanent dipole moments, (2) ionic or mo-
lecular polarization, existing in materials including posi-
tive and negative ions that tend to displace themselves
when an electric field is applied, and (3) electronic po-
larization, which exists in most materials; the applied
electric field displaces the electric cloud center of an atom
relative to the center of the nucleus. For nonpolar gases,
only the electronic polarization needs to be considered
while in the polar gases, both the orientational polarization
and the electronic polarization are important.

[14] As described by Kirkwood [1936], the electric
dipole moment in a nonpolar material is proportional to
the field acting on the molecule; this dependence is
defined as polarizability az. The electric dipole moment
isp = arg, where E is the applied electric field am-
plitude, and F is the average local field in the interior of
the molecule. With microscopic modeling of molecular
moment and macroscopic relation between polarization
and the applied field [Kirkwood, 1936], the Clausius-
Mosotti formula can be deduced to describe the relation
between polarization and dielectric constant for a non-
polar material,

Dielectric Constant of the Venus Atmosphere

Po_E;—I

v o€ +2

)

where v is the molar volume and P, is the molecular
polarization, which has the units of volume.
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[15] For a polar material, both the orientational polar-
ization and the electronic polarization must be considered
in the electric dipole moment p = p + aT% [Kirkwood,
1939], where 1 accounts for the effect of the permanent
dipole moment that produces the orientational polariza-
tion. The second term describes the electronic polarization
as mentioned above. With different microscopic modeling
and similar macroscopic relation as in the nonpolar case
[Kirkwood, 1939], the following expression can be used
to relate polarization and dielectric constant ¢, in the polar
material:

Py (6—1)(2¢+1)

% 9€. 3)
Equations (2) and (3) apply for general fluids, including
liquids and gases.

[16] Since the Venusian atmosphere is a mixture of
both polar and nonpolar molecules, its dielectric constant
can be treated similarly to the polar material case in that
both the orientational polarization and the electronic
polarization have to be considered. With a low fraction of
the polar gases, the term p, which accounts for the ori-
entational polarization, would be small; however, this
does not affect the macroscopic relation described by the
Kirkwood model, which can be applied for the mixture of
polar and nonpolar fluids.

[17] When the applied electric field is time-dependent,
polarization and dielectric constant are both functions of
frequency. Compared to the static case, the polarization
need not be in equilibrium in a dynamic field, since
motions of microscopic particles require a certain time to
reach a certain polarization value; the amount of time
required is the characteristic time of the material. How-
ever, due to the low density of its fluid phase, Venus’
atmosphere can be treated as being quasi-static in the
microwave region. Therefore, the derivations of above
relations using the statistical-mechanical theories in the
equilibrium case still hold [Boettcher, 1973], indicating
that the relationships between polarization and dielectric
constant shown in equations (2) and (3) are admissible
for the X band analysis.

2.1.2. Polarization of Fluid Mixture

[18] The contribution of each atmospheric component
to the polarization of the mixture can be calculated under
a given temperature and with its reduced density, which
is described in detail below. This method maintains the
density of the component in the mixture when calculating
the polarization of the pure material. As shown by
Harvey and Prausnitz [1987], the total polarization of a
mixture can be written as:

Pmix = Z (I'TPI (T7 pnmix)
i

*
Vi

(4)
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where v¥ is a characteristic molar volume for component
i. It can be the critical volume of the gas (the volume of
one mole substance measured at its critical temperature
and pressure) or its characteristic volume under known

conditions (temperature, pressure, etc.). 24 is the re-

Vi
duced density of the ith component. The quantity p, ;. is
dimensionless and defined as:

Pr.mix = Pmix Z xi‘;; (5)
i

The volume fraction ®F is defined using the character-
istic volumes as:

P
* ivi
o =

- Z/"/‘V}k (©

where x; is the molar fraction of ith component.

[19] Given the values of temperature and pressure, the
reduced density acts as the ratio of total ‘reduced’
volume of the mixture, which is obtained from the
characteristic volume and the molar fraction of each
component, to the real volume of the mixture. The
polarization of each atmospheric component, which is

pP; (T , pv—;'i) in equation (4), is evaluated under the

condition corresponding to its characteristic volume.
The polarization densities of all components are then
added up to obtain the polarization of the total mixture
for the given temperature and pressure.

[20] To find the mixture polarization using equation (4),
the polarization of the ith component is required at the
same temperature as the mixture and with the reduced
density pv% Therefore, polarization of each component

in the Venus atmosphere and its dependence on tem-
perature and density, or pressure, need to be investigated.
2.1.3. Polarization of the Nonpolar Venus
Atmospheric Components

[21] As discussed by Harvey and Lemmon [2005],
ratio of polarization to the molar density p can be
expanded in a power series known as the dielectric virial
expansion:

P
;:Ae—i-Bep—&-Cepz—i---- (7)

The first dielectric virial coefficient 4, is proportional to
the molecular polarizability and slightly dependent on the
temperature. The molecular rotational effect, which is
most important to the molecules and the temperature range
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of interest here, gives an approximately linear increase of
A, with temperature [Harvey and Lemmon, 2005].

[22] The second dielectric virial coefficient B, describes
the interactions between pairs of molecules. It is approx-
imately linear with % for a nonpolar material. Based on the
analysis of Harvey and Lemmon [2005], both 4. and B,
can be extracted from the measured laboratory data.

[23] According to Harvey and Lemmon [2005], dielec-
tric virial coefficient C. is less important for gas-phase
fluids. Due to the difficulty of extracting higher-order
terms from their laboratory data, an empirical term Cp” is
chosen for extending the correlation to high densities as
follows:

P

Dependences of these dielectric virial coefficients on
temperature are given by:

T
A= — 1
wta(5-1) )
T
B.=by+ b (—0— 1) (10)
T
T,
C:co+cl(70—l) (11)

where Ty is 273.16 K; T is the temperature in Kelvin.

[24] For CO, and N, the parameters in above equations
are taken from Harvey and Lemmon [2005] and given in
Table 1. These values are for the polarization in a static
field. However, as shown by Boettcher [1978], dispersion
of the dielectric constant with respect to frequency is
determined by locations of the absorption frequencies
and expansion of the absorption line of the molecules.
For nonpolar materials, rotational absorption, which
accounts for the absorption at the microwave region, is
not important. Hence, the nonpolar materials have
absorption frequencies much higher than X band. For
example, the first absorption frequencies of CO, are
in the wavelength range of several microns. Therefore,
the coefficient values for the static case given in Table 1
are expected to be valid in X band.

[25] The volume fractions of the two major gases,
CO, and N,, are widely accepted to be approximately
96.5% and 3.5%, respectively [de Bergh et al., 2006].
Considering both of them as ideal gases (equation of
state: pV = nRT; p is pressure in atm, V is volume in
m3, n is the number of moles, R is the gas constant
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Table 1. Parameters for Mixture Components®

Fluid ao a by b, Co c D
CO, 7.3455 0.00335 8393 145.1 -578.8 —1012. 1.55
N, 43872  0.00226 2.206 1.135 -169.0 —35.83 2.1
Ar 4.1414 0 1.597 0262 -117.9 0 2.1
He 0.517254 0 -0.203 0.039 747 0 2
Ne 0.9969 0 -0.109 0.0708 -2.88 -1.0 2

Source: Harvey and Lemmon [2005].

82.057 cm® - atm - K' mol ™' and T is the absolute
temperature), the volume fractions can be directly used
as the molar fractions in the mixing formula. For more
accurate calculations, the van der Waals equation can be
utilized as the equation of state,

(p+";—f>(V—nb)=nRT (12)

where a and b are van der Waals constants; ¢ = 3.592 x
10° ecm® - atm/mol®, b = 0.04267 x 10> c¢cm*/mol for
CO,; a = 1.390 x 10° cm® - atm/mol?, b = 0.03913 x
10° ecm?/mol for Ns.
2.1.4. Polarization of the Polar Venus Atmospheric
Components

[26] Most trace gases in the Venusian atmosphere are
polar molecules, such as H,O, SO,, H,SO,4, CO, etc. For
the polar molecules, the rotational absorption extends
their absorption spectrum to the microwave region. These
low-frequency absorption lines and the pressure broad-
ening play important roles in determining the dispersion
of polarization with frequency in X band. Therefore,
though the total amount of these minor constituents make
up less than 1% volume fraction in the atmosphere, their
effects on the atmospheric permittivity are examined and
included in this model.
2.1.4.1. Water Vapor

[27] To include the polarization of water vapor (H,O)
into the atmosphere mixture, its value at X band as a
function of temperature and density needs to be investi-
gated. The first absorption frequency of water which may
have an effect is a weak line at 22.235 GHz. However,
due to the low density of the water vapor, broadening of
this line is very limited with little effect in X band.
Therefore, the dispersion of water vapor is negligible at
this frequency, which is proven by the lab measurements
of Birnbaum [1952]. However, since the surface tem-
perature on Venus is as high as 700 K, the Birnbaum
[1952] model (measured at 9.28 GHz and verified from
24.5°C to 103°C) may not be accurate. Therefore, an-
other two models describing more accurately the be-
havior of the water vapor dielectric constant as a function
of temperature and pressure were considered. One is the
measurement data-fitted model by Uematsu and Franck
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[1980] (temperature: 0 to 823.15 K, pressure: up to
4935 atm), which is given by

, A A
=1+ (Ti)f’* + <T1+A3 +A4T*>p*2

A
+ (T_>5k+A6T* +A7T*2>p*3

T (W+F+Alo>p*4

where p* = p/po, T* = T/Ty, p is density in kg/m> and T'is
temperature in Kelvin. Coefficients of equation (13) are
listed in Table 2.

[28] The other model given by Pitzer [1983] is in
analytic form and more easily extrapolated to higher
temperatures (3% error at 850 K). In this model, the
polarization per molar volume P, is given by

€.—1)(2e.+1) 4rNyd 2
o)

(13)

where the Kirkwood correlation factor g = 1 + 2.68d +
6.69d° (%) %3 _ 1. It accounts for the nonrandom ori-

entation of neighboring molecules and can be approxi-
mated as 1 for the gas phase, indicating a linear relation
between density and polarization [Boettcher, 1973]. Ny in
equation (14) is the Avogadro’s number which is the
number of particles in one mole, Ny = 6.023 X 103 molfl;
d is the density in g/em®, M is the molecular weight in
g/mol, k is the Boltzmann constant. oy and p are the
molecular polarizability and the molecular dipole moment
having the values 1.444 x 10 2*cm ™ and 1.84 x 10 "® esu -
cm, respectively. The dielectric constant can be found
from the polarization given by this model.

[20] The dielectric constant values resulting from the
above two models agree with each other very well under
the conditions of interest (differed less than 1% for
density <0.1 g/cm® and temperature from 150 K to 700 K).

Table 2. Coefficients for Equation (13)*

Coefficient Value

A4, 7.62571 x 10°
A4, 2.44003 x 107
A, —1.40569 x 10>
Ay 2.77841 x 10!
As -9.62805 x 10"
As 4.17909 x 10!
A -1.02099 x 10"
Ag —4.52059 x 10!
Ao 8.46395 % 10!
Ao -3.58644 x 10!
Ty 298.15 K

2o 1000 kg/m®

aSource: Uematsu and Franck [1980].
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Figure 1. (a) Convergence check for SO,: € versus frequency; (b) €/ of SO, in X band. (7= 0°C,

pressure is 1 atm.)

Considering the accuracy of the available temperature
profile and extendibility to higher temperatures, the Pitzer
[1983] model is utilized in this work. To apply the mixing
rules of Harvey and Lemmon [2005], the characteristic
molar volume of 18.80407 cm>/mol is used for the water
vapor given the pressure of 1 atm and the temperature of
100°C.
2.1.4.2. Sulfur Dioxide

[30] Sulfur dioxide (SO,) has numerous absorption
lines in the microwave region; hence dispersion is
expected for this constituent. Due to the limited infor-
mation available in the literature about the SO, dielectric
constant in X band, the relation between the real and the
imaginary parts of complex permittivity, known as the
Kramers-Kroenig rule, is used here to obtain €. From
the knowledge of the imaginary part of the permittivity
€, over the whole frequency range, €, can be calculated as:

1 oo I /
E(w) — €ro0 = f/ LACPY (15)
™ )_

oW —w
Based on the catalog of measured SO, absorption lines
[Poynter and Pickett, 1985], the absorption coefficient at a
given frequency is calculated with the knowledge of
temperature and pressure. With \/E ~ 1 as suggested by
Ho et al. [1966], the imaginary part of the relative per-
mittivity €, is obtained as:

2 2T,
a :)\—:\/gtanéz)\—::er

Since ¢/ cannot be known over the whole frequency

range, to use this approach, the convergence of « () in

W —w

(16)

equation (15) is examined. This convergence can be seen
in Figure la, showing ¢ vs. frequency at a temperature
of 0°C and pressure of 1 atm, based on the calculation
absorption lines up to 7.68 THz. By using the estimated
value for €., = 1.0013 from Cuthbertson [1908] and
static value of ¢/, = 1.0093 at 7= 10°C and ¢, = 1.0053 at
T = 100°C in the work of Gupta [2001], the calculated
dielectric constant in X band is shown in Figure 1b at
T = 0°C and pressure of 1 atm. From this, the dielectric
constant at 9.6 GHz is estimated to be 1.1423.

[31] Dependence of the dielectric constant of SO, on
temperature and pressure is required for finding the
polarization of the mixture as well. As the polarizability
and permanent dipole moment of material are the molec-
ular properties, the following relation between dielectric
constant and molecular properties is not expected to
change for different frequencies.

+28)
3kT

(26, +1)(e. — 1)  4nNod
9¢. - 3M (
where N, is the Avogadro’s number, d is the density in
g/m’, M is the molecular weight in g, k is the Boltzmann
constant, a7 is the molecular polarizability, p is the
molecular dipole moment, g is the Kirkwood correlation
factor that equals 1 for the gas phase. By knowing the
permanent dipole moment p50, = 1.63D [Janssen and
Poynter, 1981] (D is the unit ‘Debye’ for electric dipole
moment, D=3.33564 x 107" C - m), the polarizability can
be calculated from the above €. at 7= 0°C and pressure of
1 atm. The dielectric constant and polarization of SO, at
other temperatures and pressures are consequently known.

(17)
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Table 3. First Absorption Line and Composition of HCI, SO,
and HF?

Properties HCl1 SO HF
First absorption line 625.9 GHz 13.043 GHz 1232.476 GHz
(weak)
Maximum concentration 0.5 ppm 0.02 ppm 0.007 ppm

aSource: Poynter and Pickett [1985].

[32] Dispersion effect of SO, can hardly be observed
after mixing into the atmosphere model, due to its small
volume fraction (maximum 150 ppm). The latest SO,
mixing ratio profile from the clouds’ top down to the
surface is given by Bertaux et al. [1996] from the Vega
mission. The SO, distribution in the Venus mesosphere
was recently updated by the Venus Express data [Belyaev
et al., 2008] with the amount less than 1 ppm. These
profiles are still being updated, hence, despite its very
small effect, the SO, contribution is kept in the overall
atmospheric dielectric constant model to allow future
updates and applicability to other planetary atmospheres.
2.1.4.3. Gaseous Sulfuric Acid

[33] The X band refractivity of gaseous sulfuric acid
(H,S0,) has been reported by Kolodner and Steffes
[1998]. The measurements were carried at frequencies of
8.39 GHz and 8.78 GHz under temperature of 553 Kelvin.
The density was known by measuring the volume of
vaporized solution into the resonator [Kolodner and
Steffes, 1998, Table 5]. The averaged density-normalized
refractivity was obtained as (3.086 + 0.272) x 107'°
[Kolodner and Steffes, 1998]. Using equation (17), the
polarizability can be calculated for above temperature and
density, with g =1 and pg,s0, = 2.725D [Kuczkowski et
al., 1981]. Thereby, the polarization of H,SO, at other
temperatures and densities can be obtained from the same
equation. The effect of mixing gaseous H,SO, into the
atmosphere model is found to be quite small with very
low dispersion.
2.1.4.4. Carbon Monoxide

[34] According to Poynter and Pickett [1985], carbon
monoxide (CO) has a weak rotational line at 115.27 GHz.
With a low concentration of CO of maximum 36 ppm
under the clouds, it can be assumed that in X band, there is
no discernable microwave absorption and dispersion due
to CO in the Venusian atmosphere. Hence, the effect of
CO on ¢ can be ignored. For its effect on ¢/, the static
value is used. According to Bohnet et al. [2010], the static
dielectric constant of CO is 1.000634 at temperature of
298 K and pressure of 1 atm. Carbon monoxide has the
molar volume of v,, = 2.4463 x 10* cm®/mol under these
conditions, which is used as the characteristic volume for
the polarization mixing calculation. Using equation (17)
and the CO dipole moment of 0.112 D, its polarizability
aris calculated from the above permittivity value, and the
permittivity at other temperatures and densities is conse-
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quently obtained. Shown in the work of Vandaele et al.
[2008], the mixing ratio of CO increases with altitude
and can reach 10* ppm at about 125 km. Therefore, though
its effect is still small due to the low atmosphere density at
this altitude, CO is not a negligible constituent for model
completeness.

2.1.4.5. Carbonyl Sulfide

[35] According to Poynter and Pickett [1985], Carbonyl
Sulfide (OCS or COS) has absorption features covering
the microwave spectrum. Its absorption lines start at
12.163 GHz with the repetition period of 12.163 GHz.
The line at 12.163 GHz has the line intensity of 4.8933 x
107 nm? MHz (compare to the weak absorption line of
water at 22.235 GHz with intensity of 1.3243 x 10° nm?
MHz). The next absorption line is at 24.326 GHz with
intensity of 3.9030 x 10°® nm* MHz. Since the first
absorption line is near X band, its effects need to be
investigated.

[36] The method to estimate the OCS effect on the
dielectric constant is similar as the one applied for SO,.
The Lorentzian function is utilized as the line-shape
function and the line width factor of OCS used is
6.4 MHz/torr as determined by Kolbe et al. [1977]. With
the Poynter and Pickett [1985] catalog, the simulation
shows a negligible dispersion effect of OCS within X
band. With the small fraction of 14 ppm, the variation
due to OCS in the overall dielectric constant is in the
order of 107>,
2.1.4.6. Other Trace Gases

[37] The other trace gases given by de Bergh et al.
[2006] with possible effects on the atmospheric permit-
tivity are HCI, SO and HF. Their first absorption lines and
compositions are listed in Table 3. Among them, SO has
one weak absorption line near X band. However, due to
its trivial amount and based on the previous analysis of
OCS, its effect on the dielectric constant is expected to be
negligible.

2.1.5. Polarization of the Cloud Layer

[38] So far, only the gaseous components in the Venus
atmosphere have been discussed. In the lower part of the
atmosphere (~40 km to 58 km [James et al., 1997]), there
is a cloud layer containing liquid sulfuric acid droplets
with considerable absorption in the microwave region. Its
effect on the dielectric constant is discussed here first.

[39] The particle size distribution of Venus’ cloud is
bimodal in the upper layer, and trimodal or possibly also
bimodal in the middle and lower regions [Knollenberg
and Hunten, 1980; James et al., 1997]. Shown by
Knollenberg and Hunten [1980] and James et al. [1997],
the radius of these particles are on the order of micro-
meters, therefore their X band scattering is negligible.
The permittivity of the cloud layer is modeled as dis-
tributed liquid sulfuric acid droplets.

[40] In the work of James et al. [1997], the mass
mixing ratio of both cloud droplets and cloud nuclei are
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Table 4. Concentration Versus Density for Sulfuric Acid®

Weight Percentage (%) Density (g/cm)

0.5 1.0016
1.0 1.0049
2.0 1.0116
3.0 1.0183
4.0 1.0250
5.0 1.0318
6.0 1.0385
7.0 1.0453
8.0 1.0522
9.0 1.0591
10.0 1.0661
12.0 1.0802
14.0 1.0947
16.0 1.1094
18.0 1.1245
20.0 1.1398
22.0 1.1554
24.0 1.1714
26.0 1.1872
28.0 1.2031
30.0 1.2191
32.0 1.2353
34.0 1.2518
36.0 1.2685
38.0 1.2855
40.0 1.3028
42.0 1.3205
44.0 1.3386
46.0 1.3570
48.0 1.3759
50.0 1.3952
52.0 1.4149
54.0 1.4351
56.0 1.4558
58.0 1.4770
60.0 1.4987
70.0 1.6105
80.0 1.7272
90.0 1.8144
92.0 1.8240
94.0 1.8312
96.0 1.8355
98.0 1.8361
100.0 1.8305

*Temperature is 20°C. Source: Lide [2000].

provided, noted here as M, ,pe; and M,y,c; in ppm or
mg/kg. By subtracting the mass mixing ratio of the cloud
nuclei from that of cloud droplets, the mass mixing ratio
of the distributed H,SO4-H,O solution in the Venus
cloud, Mf;;g"or 1,0 is obtained. This mass mixing ratio
together with the Venusian atmosphere density gives the
density of the distributed H,SO4-H,O solution in the
Venus cloud layer as shown in equation (18).

distr  __ 7 gdistr _
/0[-};5]‘04 - MHl;SlO[fozO * Patm = (Mdroplet - Mnuclei) * Patm

(18)
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where p,,, is the atmosphere density in kg/m? and pﬁ;‘g@

is the distributed H>,SO4-H>O solution density in mg/m3
in the Venus cloud.

[41] Furthermore, the relation between the H,SO4-H,O
solution density and its concentration, or H,SO, weight
percentage, has been measured at 20°C and provided by
Lide [2000] as shown in Table 4. This relation is adapted
to the temperature range at the cloud layer (~250 K to
400 K), since according to the H,SO4-H,O solution
permittivity measurement as a function of concentration
in the work of Cimino [1982], its real part, or volumetric
polarization, has little dependence on temperature for
higher concentrations (>80%), which includes the con-
centration range of the H,SO4-H,O solution in the Venus
cloud (~80% to 99%) [James et al., 1997]. Using this
density-concentration relation, the concentrated H,SOy4-
H,0 solution density pg55"" (in g/em®) corresponding to
the concentration profile in the Venus cloud [James et al.,
1997] can be found. The ratio between pg’s5"" and ngtsrm

in the cloud layer is defined as a spreading factor 7,,

concentr
_ P50,
s distr
H,S0,

107°

(19)

Therefore, the polarization of the distributed H,SO4-H,O
solution in the cloud layer can be calculated by dividing
the polarization of the concentrated H,SO4-H,O solution,
which is obtained from its measured dielectric constant at
X band [Cimino, 1982], by the spreading factor:

Pwrggntr 0

distr _ T H)SO4—H,

PHZSO4—H20 - n (20)
s

where P{t, o and PErést™,,  are the volumetric po-
larization of the distributed H,SO4-H,O solution in the
cloud layer and the concentrated H,SO4-H,O solution,
respectively. As the mass mixing ratio of the cloud nuclei
is much smaller than the H,SO4-H,O solution, its polari-
zation is neglected. The polarization of the distributed
H,S04-H,0 solution is taken as the polarization of the
cloud layer P_;y,4.

[42] Considering the cloud droplets as a part of the
atmospheric fluid, their polarization was added into the
total polarization of the atmosphere mixture in a similar
way as for the gaseous components. The density of
droplets is assumed not to change before and after being
incorporated into the mixture of gaseous components and
droplets. The volume fraction of droplets @, is the

8 of 19



RS2003

inverse of the spreading factor. Thereby, polarization of
the cloud layer can be directly included into total polar-
ization as:

Ppi= Y TP, <T7

gaseous

pl,le) + q)clnuchloud (P) (2 1)

Vi

The first term above is the same as the one discussed
previously in the mixing approach based on the constant
temperature and reduced density; the second term is the
polarization from clouds. The overall dielectric constant
of Venus’ atmosphere is obtained from the total polari-
zation by equation (3).
2.1.6. Polarization of the Ionosphere

[43] An ionosphere exists in Venus’ atmosphere above
100 km, where the density of gases becomes very small.
The ionosphere is a plasma medium. Assuming only
interaction between free electrons and electromagnetic
waves, the expression for the dielectric constant of
plasma can be written as [Kong, 1990]:

P
e(w) = € (1 - w—‘;) (22)
where the plasma frequency wj, is
'Ng?
Wp = ||~ 56.4v/N (23)
€Eom

N is the electron density in m >, ¢ = —1.6 x 10 C;
electron mass m = 9.1 x 1028 g; €9 = 8.854 x 10" F/m.
Based on the electron density information provided by
Pdtzold et al. [2007], the dielectric constant profile of the
ionosphere is modeled. As the dielectric constant due to
the atmospheric gases can be approximated as 1 above
100 km, the overall dielectric constant profile can be
constructed by superposition of the profiles modeled
from the ionosphere above 100 km and from atmospheric
gases and clouds below 100 km. Small amounts of dis-
persion due to the ionosphere can be seen in Figure 2,
showing the differences between the dielectric constant
profiles at 5 frequencies and the values at 9.6 GHz. The
ionosphere electron density distribution along altitudes
varies with time and location and the profile used in this
estimation is according to the typical Venus ionospheric
electron density height profile derived from the VeRa
occultation data [Pdtzold et al., 2007].

2.2. Imaginary Part of Permittivity

[44] The imaginary part of the relative permittivity, €;,
can be extracted from the total absorption of the Venusian
atmosphere at X band. With the assumption that € < €.
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and the relative permeability p, =~ 1, the field absorption
coefficient is [Ulaby et al., 1981]

6I/ 2
1+(—T> —1
€
2 ’ 1 " 2 I/2
T | € €, T ;
~ —<(—L =+ ~—+Vetand 24
/\0{ 2 [2(5,)]} Ao\/;an %)

where tand = €/¢/. is the loss tangent. This coefficient
has the unit of one over the unit of length. The power
absorption coefficient, or absorptivity, which is twice the
above absorption coefficient, is noted as «,

1/2

27 | e,
ap = —
A o )

2 - 2 "
(J¢:—7T\/67t21n<5:—7T s
Ao Ao

!
€r

By knowing the total microwave absorption and model-
ing the dielectric constant of Venus’ atmosphere as de-
scribed previously, the imaginary part of the permittivity
is obtained. The total absorption of the atmosphere can be
found to good approximation by summing up absorptions
of each component in the mixture. Note that the unit of
above absorption coefficient is cm ™', which is often used
in physics and astronomy. It has the relation of 1 cm ™' =
0.5 Np/em = 0.5 x 10° Np/km = 4.343 x 10°> dB/km
[Steffes and Eshleman, 1981a], the latter unit is com-
monly used in the papers being referenced below.
2.2.1. Absorption of CO,, N,, Ar, and H,O

[45] In the work of Ho et al. [1966], total absorption of
CO,, N, Ar and H,O mixture has been modeled based
on laboratory measurement results. It is expressed as:

(25)

273.15\°
o = P2 (T> <15'7f62'02 + 3.90/co, fn,

+2.64 fco, fir + 0.085£7, + 1330sz0> x10~8 cm™!
(26)

with p = P21, wave number 7 = 1 and P is pressure in
atm. The quantities fco,, fv,, f4 and fm,o are the molar
fractions of CO,, N,, Ar and H,O, respectively.

2.2.2. Absorption of SO,

[46] The SO, molecule is an asymmetric rotor with a
rich rotational spectrum extending throughout the mi-
crowave region; therefore, the microwave absorption of
SO, is significant. Janssen and Poynter [1981] provide a
theoretical model describing this absorption, and Steffes and
Eshleman [1981Db] give a model based on the laboratory

measurements simulating the temperature and pressure

9 of 19



RS2003

DUAN ET AL.: VENUS ATMOSPHERE PERMITTIVITY MODEL

RS2003

Differences in dielectric constant profiles due to the ionosphere

240
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Difference in dielectric constant

x 10°

Figure 2. Dispersion due to the ionosphere. Differences are taken by subtracting values at five
frequencies from value at 9.6 GHz. The electron density profile uses VeRa occultation observation

[Pétzold et al., 2007].

at the layer containing SO, in the Venus atmosphere.
However, in the recent literature, Suleiman et al. [1996]
mention that the Steffes and Eshleman [1981b] model is
not an optimal fit to the measured results at all fre-
quencies and that the frequency dependence is not
uniformly valid due to measurement errors. In the same
paper, Suleiman et al. [1996] present detailed laboratory
measurements of gaseous SO, in CO, under pressure of
1 to 4 atm and temperature from 290 to 505 K at fre-
quencies of 2.25 GHz, 8.5 GHz, and 21.7 GHz. The
Ben-Reuven line shape expression was used in their
modeling. The Suleiman et al. [1996] model is used in
the atmosphere model developed here.

[47] The absorption at frequency v due to a single ro-
tational resonant line at frequency vy is,

a = amaxﬂ-'yFshape(V, Vo, - ) cm! (27)

where v and vy are in MHz, + is the linewidth in MHz,
and Flp,p is the spectral line shape function in MHz .
The quantity oy« is the absorption at the line center,

P T\ % (reyg (1
Omax = 102.46 SWOZ I(Ty) (70) e BEGFT) !

(28)

where Ps, is the partial pressure of SO, in torr (1 torr =
1/760 atm), I(T,) is line center intensity in nm> MHz at
To =300 K, £, is the lower state energy in cm ', kis the
Boltzmann’s constant 1.38 x 10723 J/K, h is the Planck’s
constant 6.63 x 107** J - s, and ¢ is the speed of light 3 x
10'° cm/s in free space. The total absorption coefficient
at a given frequency can be obtained by summing up all
the line contributions to this frequency. The absorption
spectrum up to 750 GHz has been covered in this cal-
culation, which is obtained from Poynter and Pickett
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Table 5. Parameters for Ben-Reuven Line Shape Function®

Yso0,/co, Y50, /50, Cso, /CO, (so, /80, 050, m=n
7.2 MHz/torr 16 MHz/torr 1.3 MHz/torr 1.6 MHz/torr 2.9 MHz/torr 0.85

“Source: Suleiman et al. [1996].

[1985]. The line shape function Fjj,,. in equation (27) is
substituted by the Ben-Reuven expression,

2 (v)?
thape:FBR(Va Yo, 7, Ca 6) = (_)

™\
(-0 ++0[m+8 7 -¢]
. 5 MHz
V= (v + 8) =7 + | a2

(29)

where the linewidth v is

To\" To\"
v = (Ys0,/co,) Pco, <7?) + (750,/50, ) Psos (TO> MHz

(30)

and the coupling element ( is

TO m T() m
¢=(¢s0,/c0, ) Pco, (7) + (¢s0,/50, ) Pso, (7) MHz
(31)
The frequency shift § is given by

6= 6502P502 MHz (32)
The foreign gas broadened linewidth parameter 5o, /co, ,
the self-broadened linewidth parameter ~so,/s0,, the
foreign gas coupling parameter (5o, /co, , the self-coupling
parameter (so,/s0,, the frequency shift parameter 650,,
temperature dependence of linewidth n, and the tem-
perature dependence of coupling element m are given in
Table 5.

2.2.3. Absorption of H,SO,

[48] Early laboratory measurements by Steffes [1985]
indicate that the dominant microwave absorber at S band
and X band in the 10 km region below the Venus cloud
layer (approximately 38 to 48 km) is H,SO,4. The model
provided in that paper was later updated by Kolodner and
Steffes [1998] with improved measurements that provide a
better fit model. The absorptivity « is normalized to the
number mixing ratio ¢, which is the ratio of the number of

H,SO,4 molecules in the H,SO,/CO, mixture, to give an
expression over all pressures and frequencies:

o 553 3.0+£0.2
— =53.601p" 1115 (T) dB km™'  (33)
q

where f'is frequency in GHz, p is pressure in atm and 7 is
temperature in Kelvin.

[49] Gaseous H,SO, thermally dissociates into SO;
and H,O at altitudes between 35 and 40 km. The mi-
crowave absorption of dissociates (H,O and SOs) is
negligible in these small amounts when compared to the
microwave absorption of the H,SO,4 vapor. As shown by
the simulation results in Figure 3, both SO, and H,SO,
have noticeable effects on the microwave absorption. At
35 km to 50 km where H,SO, exists, the curve shows a
large effect due to H,SOy, though its mixing ratio is less
than 5 ppm.

2.2.4. Absorption of Other Trace Gases

[s0] Among the other trace gases, only OCS is con-
sidered in the absorption model here, for it has periodi-
cally repeated absorption lines near X band. As
mentioned previously in the dielectric constant modeling,
the Lorentzian function is utilized as the line-shape
function and the line width factor of OCS is using
6.4 MHz/torr as determined by Kolbe et al. [1977]. With
the absorption line data provided by Poynter and Pickett
[1985], absorption of OCS in X band can be calculated
by adding up the absorption contributions from every line
by equations (27) and (28). As discussed previously, the
other minor gaseous constituents, e.g., CO, HCI, SO, HF,
etc., have negligible absorption in X band.

2.2.5. Absorption of Cloud Layer

[51] The absorption of the cloud droplets is investi-
gated using the measured imaginary permittivity of the
H>SO4-H,0 solution in the work of Cimino [1982], as
well as the spreading factor defined in the previous cloud
layer polarization modeling section.

[52] Shown in the results measured at temperature
between about 295 K and 376 K [Cimino, 1982], which
covers the temperature range in the Venus cloud layer,
the value of the imaginary part of the relative permittivity
€, varies little as a function of concentration in the 80%
to 95% range and can be assumed to be concentration-
independent when the H,SO,4 weight percentage is in that
range; it decreases as the concentration increases from

!

95% to ~99%. The dependence on temperature of € is
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Figure 3. Comparison of effects of including SO, and
H,SO,4 on the imaginary part of the relative permittivity
at 9.6 GHz. The mixing ratio of SO, is up to 130 ppm,
while the mixing ratio of H,SO, is only up to 5 ppm.

modeled by fitting the X band €] measurement data for
H,S04-H,0 solution with different concentration pro-
vided by Cimino [1982]. The resulting expression shows
linear dependence on temperature as,

er = k(T —295) + €r95x (34)
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where k is about 1.17 for H,SO4-H,O solution with
concentration between 80% and 95% and is assumed to
be linearly decreasing from 1.17 to 0.85, which gives a
good fit for concentration of ~99%.

[53] Using the ¢, value obtained above together with
the €, value of the concentrated H,SO,4-H,O solution,
which has been discussed in the cloud layer polarization
modeling section, the absorption coefficient corresponding
to the temperature and concentration profile in the cloud
layer can be calculated using equation (24) for the con-
centrated H,SO4-H,O solution. By dividing this absorp-
tion by the spreading factor, the absorption coefficient of
the cloud layer is obtained and added into the total
absorption of the Venusian atmosphere.

3. Model Verification

3.1.

[54] To verify the Venus atmospheric permittivity
model, profiles of temperature, pressure (or density),
electron density of the ionosphere, composition of atmo-
spheric gases, mass content and concentration of the cloud
droplets in Venus’ atmosphere are required. These profiles
vary at different locations, in particular, at different lati-
tudes [Cimino, 1982; Seiff et al., 1985; Marcq et al., 2008;
Zasova et al., 2006], thus a comprehensive parametric
model is generated here that could be used for simulations

Standard Atmospheric Profiles and Results
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Figure 4. Profiles used in the simulation: (a) temperature profile using the measurement data at
latitude of 75° in the work of Seiff et al. [1985] after its being increased by 3 K [Zasova et al.,
2006; James et al., 1997], (b) pressure profile [Seiff et al., 1985], and (c) density profile [Seiff et

al., 1985].
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Figure 5. Comparison between CO, density profile
constructed assuming constant composition of 96.5%
(solid line with crosses), VIRA model [Keating et al.,
1985] (dashed line), and the measured CO, density
profile from Venus Express [Fedorova et al, 2008]
(solid line) in the Venus mesosphere.
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based on information provided in the literature, or as new
atmospheric information becomes available.

[s5] The temperature profiles at different latitudes
[Seiff et al., 1985] show steady values under the clouds
but vary above 40 km and these profiles have been fur-
ther updated by the proceeding Venusian missions
[Moroz and Zasova, 1997]. For the lower atmosphere
(62 km down to the surface), the temperature and pres-
sure profiles were measured with higher accuracy by
VEGA spacecraft [Zasova et al., 2006]. Particularly, the
vertical profiles below 12 km were obtained with suffi-
cient accuracy for the first time [Zasova et al., 2006]. The
temperature measured by VEGA-2 at the same pressure
is approximately 3 to 4 K warmer than the profile of Seiff’
et al. [1985]. Recently, the temperature profile is further
measured by the Venus Express mission [Pdtzold et al.,
2007; Tellmann et al., 2009]. However, since the latest
measurement data set was not available to us, the profiles
before Venus Express are taken as the standard temper-
ature profile input for the model simulation. First, for the
lower atmosphere, since most atmospheric profiles are
available at higher latitudes, the temperature curve at
latitude of 75° in the work of Seiff et al. [1985] is used
after being increased by 3 K [James et al., 1997] as the
‘standard’ temperature profile. The pressure and density
profiles of Seiff et al. [1985] are included in the ‘standard’
lower atmosphere model. For the middle atmosphere, the
profiles have been updated by the Magellan radio eclipse

300 1 " . , : : 115 - . -
14 ' =8=profile used in the simulation :
. s s = profile used in
2801 ! : : : 110 ; -+ the simulation
R : :
260 4o : :
i 105 e 2
240 : : : i
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1204 . qﬂ 75
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Figure 6. Standard profiles of (a) electron density (compared with the Venus Express observation
[Pdtzold et al., 2007]) and (b) water vapor (compared with the Venus Express observation

[Vandaele et al., 2008]).
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Figure 7. Standard profiles for (a) SO, (together with profiles measured by ISAV 1 and ISAV 2 in
the VEGA mission [Bertaux et al., 1996]), (b) H,SO, (together with the retrieved profiles from
the VLA observation; they are obtained assuming different SO, abundance [Jenkins et al., 2002]),
(c) OCS (from the ground observation [Svedhem et al., 2007]), and (d) CO (together with the
profiles measured at different locations by Venus Express mission [Vandaele et al., 2008]).

experiments and Venera 15, 16 observations [Zasova,
1995; Zasova et al., 2006]. In the simulation, the middle
atmosphere temperature and pressure profiles are using the
column of L, = 200°-270° in Table 5 of Zasova et al.
[2006] to have the closer conditions as Magellan occul-
tation data used in the model verification. The density
profile in the middle atmosphere can be obtained by the
equation of state of ideal gas. These ‘standard’ atmosphere
profiles are shown in Figure 4. The main constituents in
Venus’ atmosphere are generally accepted as 96.5% CO,
and 3.5% N, in volume fractions. The validity of the
assumption of a constant mixing ratio of these major

gases is shown in Figure 5, where the density profile of
CO, obtained under this assumption is compared with the
density of CO, in the Venus mesosphere from VIRA and
measured by Venus Express [Fedorova et al., 2008]. It
shows a larger discrepancy above 80 km. Hence, in the
simulation, this assumption is only applied at altitudes up
to 80 km. For higher altitudes, the VIRA profile for CO,
density is used since the Venus Express data set is not
currently available to us.

[s6] The electron density profile of the ionosphere is built
according to Pdtzold et al. [2007] as shown in Figure 6a.
The ionosphere structure on Venus varies with latitudes,
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Figure 8. Standard profiles for the mass content and
concentration of cloud (according to the Pioneer Venus
observation [Knollenberg and Hunten, 1980; James et
al., 1997)).

local time, solar activity, etc. [Pdtzold et al., 2007]. There-
fore, local profiles of electron density should be used in
the applications requiring higher accuracy. Composition
of the trace gases under the clouds is based on the mixing
ratios listed by de Bergh et al. [2006] and illustrated by
Svedhem et al. [2007]. The latest detailed profile of SO, is
provided from the VEGA mission [Bertaux et al., 1996],

include: CO2 N2, H20, S02, H2S04 (g), CO, OCS, cloud
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and the one of H,SOy, is provided from observation by the
Very Large Array (VLA) of the National Radio Astron-
omy Observatory [Jenkins et al., 2002]. In the work of
Bertaux et al. [1996], the SO, profiles are measured by
ISAV, a spectrometer designed to measure the local
atmospheric absorption and its detailed spectrum in the
ultraviolet range. The ISAV 1 and ISAV 2 instruments
are carried on VEGA 1 and VEGA 2, respectively. The
SO, profile for the model simulation is constructed
similar to the measured profile by ISAV 2 as plotted in
Figure 7a, since its larger mixing ratio is preferred to
estimate the largest possible distortion and absorption
on the signal propagation when applying this model in
the radar design.

[57] In Figure 7b, the H,SO, profile used in the sim-
ulation is shown together with the retrieved abundance
profiles given by Jenkins et al. [2002]. They were obtained
by assuming different SO, abundances. Similarly, the
largest abundance of H,SO, is selected for the model
simulation. The distributions of water vapor, SO,, and CO
in the mesosphere are recently updated by Venus Express
data, they are included in the simulation except for SO,
above the clouds, which is negligible (<1 ppm). Profiles
used for H,O and CO are shown in Figures 6b and 7d,
together with the measured values at different locations
[Vandaele et al., 2008]. Distribution of OCS is shown in
Figure 7c. From recent Venus Express data, Marcq et al.
[2008] discussed the distribution dispersion of these
minor gases with respect to latitude. The data showed a
noticeable variation of CO mixing ratio from 24 ppm to
31 ppm at 36 km and small variation (<4 ppm at 33 km) of
OCS as well. Given these dispersions with respect to

include: CO2, N2, H20, S02, H2S04 (g), CO, OCS, cloud
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Figure 9. Relative permittivity profiles resulting from the standard atmospheric profiles.
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Figure 10. Verification of the relative permittivity: (a) comparison of the dielectric constant result
from our model simulation, the result from the radio refractivity model, and the measured data from
Magellan; (b) comparison of absorption between model simulation results and the measurement

from Magellan (orbit 3212 data set).

location, the dispersion of the atmospheric permittivity
can also be estimated using this model. For the cloud
layer, the mass mixing ratio of H,SO4-H,O droplets is
constructed according to Knollenberg and Hunten [1980]
and James et al. [1997]. With the atmosphere density
profile constructed above, the cloud mass density distri-
bution along altitudes is obtained from the cloud mass
mixing ratio as shown in Figure 8. Figure 8 also presents
the concentration profile of cloud layer used in the model
simulation, which is given by James et al. [1997].

[s8] Above profiles are used as the ‘standard’ atmo-
spheric profiles for the model simulation in this paper.
Resulting relative permittivity profiles are shown in
Figure 9.

3.2. Verification of the Model: Real Part of
Permittivity

[59] In the work of Stratton [1968], radio refractivity of
a mixture consisting of CO,, N, and H,O in the Venusian
atmosphere has been described by,

B Pco, Py, 5748\ Puo
N = 13492 4 80.29 2 4 16.57( 1+ =~ ) =
(35)

where Pco,, Py, and Py, are partial pressures of CO,,
N, and H,0 in mbar; T is temperature in Kelvin. With
the relationship between radio refractivity and refractive

index given by N = 10°n — 1), and that €, = n?, the di-
electric constant is estimated and compared with the
model simulation results. The comparison is shown in
Figure 10a, in which the result from Magellan orbit 3212
data set is plotted as well. Difference between the sim-
ulation result and the one from the radio refractivity
model is in the order of 10>, likely due to errors in as-
sumed temperature and pressure profiles.

[60] In the work of Jenkins et al. [1994], absorption
profiles of three orbits at frequencies of S band and X band
are analyzed in the region of gaseous H,SO,4. The X band
profiles can be used to verify our atmospheric permittivity
model in this region. The distribution profiles of HSO,4
obtained from the same Magellan orbits [Kolodner and
Steffes, 1998] are used for model verification here. The
results of our model for absorption due to CO,, SO, and
H,S0, in this region are compared to the measured results
from Magellan orbit 3212 data set as shown in Figure 10b.
The calculated absorption is generally consistent with the
measured curve. Since the value is affected by the tem-
perature and pressure profiles, as well as the difference
between the exact H,SO, profile and values used as the
simulation entries, error exists between the simulated
results and the measured data. Our simulation slightly
overestimates the absorption rates below 45 km.

[61] Since the Magellan data set is the only measured
absorption data found, which is from altitude of 35 km to
57 km, absorption profiles in other regions have not been
compared. The overall absorption profile gives a one-
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way absorption of about 5.62 dB, assuming a nadir look
direction from altitude of 200 km. There is no significant
contribution to the absorption from SO, and CO,,
therefore it is difficult to compare the results due to these
two components alone with the existing data.

4. Conclusion and Improvement

[62] In this work, a permittivity model for the Venus
atmosphere up to 300 km has been constructed. Using
previous Venus observations and data analyses, the
model has been simulated and verified. It is shown that
the model results are in good agreement with those from
available measurements. This model will provide a nec-
essary tool for the analysis of X band electromagnetic
wave propagation in the Venus atmosphere, which is
critical information needed for the proper design of future
orbiting radar systems.

[63] Potential minor improvements to the model pre-
sented here could be obtained as follows:

[64] 1. This work uses the equation of state for ideal
gas. Instead, the van der Waals equation, which may be
more accurate, can be applied.

[65] 2. For several of the atmospheric constituents such
as H,SO4-H,0, instead of fitting curves to the available
measurements to get the profiles, look-up tables may be
more true to the original data and can be utilized if ac-
curate data are available in the whole region of interest.

[66] 3. Accuracy of this atmosphere model can be al-
ways improved by new or more reliable measurements
from the Venus atmospheric conditions and composition.

[67] A strength of this model is that it accounts for all
of the known atmospheric components of Venus, even
for the trace gases. The formulation is kept general and
flexible, such that the model can be easily updated for
pressure, temperature, and composition profiles as these
parameters are updated in the future. The model can be
applied to any location of interest on Venus as long as the
composition and temperature/pressure profiles are given.
Furthermore, the model can be easily modified to apply
to other planetary bodies.
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