
Geostatistical modeling of the spatial variability of arsenic

in groundwater of southeast Michigan

P. Goovaerts,1 G. AvRuskin,1 J. Meliker,2 M. Slotnick,2 G. Jacquez,1 and J. Nriagu2

Received 3 October 2004; revised 14 March 2005; accepted 6 April 2005; published 14 July 2005.

[1] During the last decade one has witnessed an increasing interest in assessing health
risks caused by exposure to contaminants present in the soil, air, and water. A key
component of any exposure study is a reliable model for the space-time distribution of
pollutants. This paper compares the performances of multi-Gaussian and indicator kriging
for modeling probabilistically the spatial distribution of arsenic concentrations in
groundwater of southeast Michigan, accounting for arsenic data collected at private
residential wells and the hydrogeochemistry of the area. The arsenic data set, which was
provided by the Michigan Department of Environmental Quality (MDEQ), includes
measurements collected between 1993 and 2002 at 8212 different wells. Factorial kriging
was used to filter the short-range spatial variability in arsenic concentration, leading to a
significant increase (17–65%) in the proportion of variance explained by secondary
information, such as type of unconsolidated deposits and proximity to Marshall Sandstone
subcrop. Cross validation of well data shows that accounting for this regional background
does not improve the local prediction of arsenic, which reveals the presence of
unexplained sources of variability and the importance of modeling the uncertainty
attached to these predictions. Slightly more precise models of uncertainty were obtained
using indicator kriging. Well data collected in 2004 were compared to the prediction
model and best results were found for soft indicator kriging which has a mean absolute error
of 5.6 mg/L. Although this error is large with respect to the USEPA standard of 10 mg/L,
it is smaller than the average difference (12.53 mg/L) between data collected at the same
well and day, as reported in the MDEQ data set. Thus the uncertainty attached to the
sampled values themselves, which arises from laboratory errors and lack of information
regarding the sample origin, contributes to the poor accuracy of the geostatistical
predictions in southeast Michigan.
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1. Introduction

[2] Assessment of the health risks associated with expo-
sure to elevated levels of contaminants has become the
subject of considerable interest in our societies. Environ-
mental exposure assessment is frequently hampered by the
existence of multiple confounding risk factors (e.g., smok-
ing, diet, stress, ethnicity, home and occupational expo-
sures) leading to complex exposure models, and the
mobility of the population which can interact with many
different sources of exposure over the lifetime. A rigorous
study thus requires modeling the study subjects as spatio-
temporally referenced objects that move through space and
time, their cumulative exposure increasing as they come in
contact with sources of contamination [AvRuskin et al.,
2004]. The computation of human exposure is particularly
challenging for cancers because they usually take years or
decades to develop, especially in presence of low level of

contaminants. For example, Steinmaus et al. [2003] found
that the latency of arsenic-caused cancer may be greater
than 40 years. In this situation contaminant concentrations
are rarely available for every location and time interval
visited by the subjects; therefore data gaps need to be filled
in through space-time interpolation.
[3] Geostatistical spatiotemporal models provide a prob-

abilistic framework for data analysis and predictions that
build on the joint spatial and temporal dependence between
observations (e.g., see Kyriakidis and Journel [1999] for a
review). Geostatistical tools have been applied to the
modeling of spatiotemporal distributions in many disci-
plines, such as environmental sciences (e.g., deposition of
atmospheric pollutants), ecology (characterization of popu-
lation dynamics) and health (patterns of diseases and
exposure to pollutants). These tools are increasingly cou-
pled with GIS capabilities [Burrough and McDonnell, 2000]
for applications that characterize space-time structures
(semivariogram analysis), spatially interpolate scattered
measurements to create spatially exhaustive layers of infor-
mation and assess the corresponding accuracy and preci-
sion. Of critical importance when coupling GIS data and
environmental/exposure models is the issue of error prop-
agation, that is how the uncertainty in input data (e.g.,
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arsenic concentrations) translates into uncertainty about
model outputs (e.g., risk of cancer). Methods for uncertainty
propagation [Heuvelink, 1998; Goovaerts, 2001], such as
Monte Carlo analysis, are critical for estimating uncertain-
ties associated with spatially based policies in the area of
environmental health, and in dealing effectively with risks
[Goodchild, 1996].
[4] A bladder cancer case control study is underway in

Michigan (11 counties) to evaluate risks associated with
exposure to low levels of arsenic in drinking water (typi-
cally, 5–100 mg/L). A key part of this study is the creation
of a space-time information system (STIS) to visualize and
analyze the spatiotemporal mobility of study participants
and their surrounding environment [Jacquez et al., 2004],
leading to the estimation of individual-level historical
exposure to arsenic. In Michigan, many generations have
depended on groundwater as their source of drinking water
and they have experienced lifetime exposures to elevated
concentrations of arsenic, an unwanted chemical in their
water supply derived from local rocks [Kolker et al., 1998].
A model of the space-time distribution of arsenic in ground-
water is thus an important layer of the STIS.
[5] Geostatistics has been used recently to evaluate the

spatial variability of arsenic contamination in the ground-
water of the continental United States. For example, Ryker
[2001] plotted arsenic concentrations analyzed in water
samples collected from approximately 31,000 wells across
the United States and developed a national-scale point map
of arsenic concentrations. Warner et al. [2003] used cokrig-
ing to interpolate arsenic concentrations across Illinois using
arsenic, iron, and manganese concentrations measured in
1449 community water supplies that utilize the glacial and
alluvial aquifer. Similar geostatistical studies were con-
ducted in other states, such as Idaho [Welhan and Merrick,
2003] or Michigan [Aichele and Shortridge, 2002]. A vast
body of the literature relates to the mapping of the wide-
spread groundwater contamination in Bangladesh [British
Geological Survey and of Department of Public Health
Engineering (BGS and DPHE), 2001; Frisbie et al., 2002].
Karthik et al.’s [2001] semivariogram analysis suggested
that the complex spatial distribution of high-level arsenic
concentrations is a consequence of interactions among
multiscale geologic and geochemical processes. Serre et
al. [2003] showed that most of the variability in arsenic
concentrations across Bangladesh occurs within a distance
of 2 km, which makes spatial interpolation very challeng-
ing. Yu et al. [2003] found that much of the large-scale
(>10 km) variability in arsenic concentration is explained by
differences in geology and geomorphology, while small-
scale (<3 km) variability is mainly due to variations in well
depth, with lower concentrations being measured in deeper
wells.
[6] This paper presents a study of the spatial variability of

arsenic concentrations in groundwater of southeast Michi-
gan, accounting for information collected at private resi-
dential wells and the hydrogeochemistry of the area.
Variants of traditional semivariogram estimators and kriging
systems are introduced to tackle specific features of the data
set, such as the preferential sampling of high concentrations,
the existence of repeated measurements at hundreds of
wells, and the presence of high variability over very short
distances. Cross validation is used to assess the prediction

performances and quality of uncertainty models provided by
multi-Gaussian and indicator approaches. Last, recently
collected well data allow us to assess how well the spatial
variability of arsenic is captured by the geostatistical model.

2. Data Sets

2.1. Well Data

[7] Elevated concentrations of arsenic in drinking water
have been identified in groundwater supplies of 11 counties
in southeastern Michigan: Genesee, Huron, Ingham,
Jackson, Lapeer, Livingston, Oakland, Sanilac, Shiawassee,
Tuscola, and Washtenaw [Kim et al., 2002; Kolker et
al., 2003; Slotnick et al., 2003]. The spatial distribution of
arsenic over these counties will be modeled using 9188
data recorded at 8212 different wells and stored in the
Michigan Department of Environmental Quality (MDEQ)
database of arsenic measurements (Figure 1a). These data
were collected at private wells sampled between 1993 and
2002. Graphite furnace atomic absorption spectrometry
(AAS) and hydride flame (quartz tube AAS) were used
to measure samples from 1989–1995; inductively coupled
plasma/mass spectrometry has been used since 1996.
Wells were not randomly sampled in this database, and
quality control of water sampling was executed to varying
degrees over time. Less than 10% of the measurements
(737 observations) were below the detection limit and
these were reset to half the value of the detection limit at
that time; that is 0.15 mg/L for 12 wells, 0.5 mg/L for
670 wells, and 1.0 mg/L for 55 wells.
[8] The sample distribution is positively skewed, with a

mean that is more than twice the median value of 6 mg/L. A
lognormal transform was performed and the corresponding
histogram is displayed in Figure 1b. It is noteworthy that a
mere log transform does not make the distribution symmet-
ric but it reveals the existence of two modes, the first one
corresponding to half the detection limit of 1.0 mg/L. A
graphical normal score transform will be introduced in
section 3.2.1 to achieve a ‘‘perfectly’’ Gaussian univariate
distribution required for the application of multi-Gaussian
kriging.
[9] At 662 wells concentrations were measured multiple

times (2–14 times) on the same day or up to 113 months
apart, with an average time interval of 14 days. These very
short time series do not allow a modeling of the temporal
autocorrelation of the data, but they may provide useful
information on the relative importance of spatial, temporal
and laboratory variabilities. Unfortunately, the MDEQ ar-
senic database inconsistently reports changes in water
treatment practices by homeowners, which makes it difficult
to interpret apparent temporal variability. The average
difference between data collected at the same well is
12.53 mg/L (median = 3.60) for same day measurements
while it is 15.92 mg/L (median = 4.20) for multiple date
measurements. In comparison, the average difference be-
tween noncolocated data measured the same day anywhere
within the 11 counties is 17.00 mg/L (median = 8.40).
Information regarding the sample origin, which could have
explained the important variability observed between mea-
surements taken the same day at the same well, is lacking.
Hereafter the variability between same day measurements
will be referred to as measurement errors, although it clearly
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includes other sources of variability. The small magnitude
of temporal variation relative to the variability in space or
arising from measurement error, as well as the absence of
temporal trend or seasonality, led us to ignore the temporal
dimension in this study. Another reason for this simplifica-
tion is that a space-time model only addressing the period
1993–2002 would not help in characterizing lifetime expo-
sure for most participants in this epidemiological study.
[10] Since this database contains arsenic measurements

requested by homeowners, we hypothesized that sampling
would be more dense in areas where higher pollutant con-
centrations were initially reported. The existence of such a
preferential sampling was investigated by plotting the aver-

age arsenic concentration measured for pairs of wells as a
function of their separation distance (Figure 2a). The average
concentration at multisampled wells (i.e., distance = 0) is
24.75 mg/L, and it still exceeds 19.00 mg/L for separation
distances smaller than 150 meters. Both values are substan-
tially higher than the global mean of 13.38 mg/L, and this
curve clearly indicates the existence of preferential sampling
at high-valued wells. Because of the positive relationship
between the local mean and variance of the data, known as
direct proportional effect [Goovaerts, 1997], the clustering of
high values entails a bias in the estimation of short-range
variability. In other words, most data pairs that contribute to
small separation distances come from these high-valued

Figure 1. The 8212 well data observations (MDEQ database, 1993–2002) available for modeling.
(a) Location map with the township boundaries overlaid and the location of the study area within the state
of Michigan. (b) Histogram of arsenic concentration (mg/L).
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areas, leading to an overestimation of the variability of arsenic
concentration for short distances (Figure 2b). This effect will
have to be taken into account during the modeling of the
spatial variability, see section 3.1.
[11] Another consequence of the preferential sampling is

that sample statistics, such as the mean and standard
deviation displayed in Figure 1b, are not representative of
the whole study area. The uneven sampling of MDEQ data
was corrected using the cell-declustering technique
[Deutsch and Journel, 1998] which calls for dividing the
study area into rectangular cells; then each observation
within a cell is assigned a weight inversely proportional to
the number of data within that cell. These declustering
weights are used, instead of equal weights, in the compu-
tation of summary statistics. This correction gives more
importance to isolated wells which tend to be located in
areas with low levels of arsenic in groundwater. Square cells
of 2.5 km were used since they lead to the smallest
declustered mean, which is the target because of the
preferential sampling of high-valued areas. The declustered

mean and standard deviation are, respectively, 10.97 and
15.22 mg/L, which is much smaller than the estimates
obtained without regard to the clustering of high-valued
wells. This declustered distribution will be used hereafter for
the normal score transform of arsenic concentrations and the
interpolation/extrapolation of probability values estimated
by indicator kriging.

2.2. Secondary Information

[12] Elevated levels of naturally occurring arsenic have
been identified in regional patterns within the United States
and are attributed to geochemistry, geology, climate, and
glacial history [Welch et al., 2000]. In the Michigan thumb
region, arsenian pyrite (up to 7% As by weight) has been
identified in the bedrock of the Marshall Sandstone aquifer,
one of the region’s most productive aquifers [Westjohn et
al., 1998]. The mechanisms responsible for arsenic mobili-
zation into groundwater supplies in Michigan, however, are
not well understood. Geochemical analyses reveal that
arsenic is not likely to be oxidized out of the bedrock since
the groundwater is reducing; suggesting there must be
another mechanism to explain the elevated arsenic levels
in the water [Kolker et al., 1998]. Arsenian pyrite grains
have also been identified in the glacial till, where the
conditions are favorable for the oxidation of arsenic into
the water [Kolker et al., 2003]. In addition to arsenian
pyrite, arseniferrous iron oxy-hydroxides have been found
in Marshall Sandstone till fragments [Kolker et al., 2003];
these arsenic-rich iron oxy-hydroxides may be undergoing
reductive dissolution.
[13] Literature suggests that geochemical properties of the

aquifer, as well as characteristics of the wells (i.e., well depth,
casing depth, and depth of bedrock-unconsolidated inter-
face), might explain part of the spatial variability of arsenic
concentrations. In this paper, the focus has been on variables
that can be retrieved easily at each location across the eleven
counties; hence well characteristics, although potentially
important factors, have not been considered since this infor-
mation is available only at recently drilled wells. Maps of
unconsolidated deposits and bedrock subcrops, however,
were retrieved from the Michigan Center for Geographic
Information, Geographic Data Library (http://www.mcgi.
state.mi.us/mgdl/). The following layers of secondary infor-
mation have been built using a Geographical Information
System: type of bedrock and unconsolidated deposits, and
proximity of well to the Marshall Sandstone subcrop, where
the highest concentrations of arsenic were found [Kim,
1999]. Multivariate regression was conducted using the
aforementioned attributes and a quadratic function of the
spatial coordinates as explanatory variables. A very small R2

of 17.3% was obtained, which is likely caused by the large
variability of arsenic concentration over very short distances
and the magnitude of measurement and data entry errors.

2.3. Validation Data Set (2004 Campaign)

[14] Additional well data were collected in 2004 at the
homes of 73 participants of the cancer case control study.
Water sampleswere collected from the kitchen tap, or primary
source of drinkingwater, for participantswith private wells. If
an in-line softener or filter was present at the tap, a second
sample was collected prior to the treatment; this sample was
often taken from an outside or basement spigot. Only samples

Figure 2. Plots of (a) mean and (b) standard deviation of
arsenic concentrations measured at increasingly distant
wells. The higher concentrations observed for closer wells
reflects the preferential sampling of areas where elevated
concentrations of arsenic are anticipated.
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taken in the absence of a softener or filter will be used for
validation purposes. To flush out standing water in the pipes,
the faucet was run for at least a minute prior to sample
collection. Water samples were collected in 60 ml acid-
washed polyethylene bottles, stored on ice, acidified with
0.2% trace metal grade nitric acid, and refrigerated until
analysis. Field blanks and replicates were collected for 10%
of the samples. Laboratory analysis for arsenic was done
using an inductively coupled plasmamass spectrometer (ICP-
MS, Argilent Technologies Model 7500c).
[15] Figure 3 shows the location of the 73 validation

wells and the histogram of measured arsenic concentration.
Unlike the MDEQ sampling campaign, wells with high
concentrations have not been sampled preferentially; hence
the sample mean is half the average concentrations of data
used for the spatial modeling.

3. Geostatistical Approach

[16] Geostatistics is used to model the uncertainty about
the arsenic concentration in the drinking water at any
location u in the study area A. This model takes the form
of a conditional cumulative distribution function (ccdf)
F(u;zj(Info)) which gives the probability that the concen-
tration is no greater than any given threshold z. The
conditioning information, ‘‘Info’’, consists of the set of
n = 9,188 well concentrations {z(ua); a = 1,. . .,n} plus
the L secondary attributes available across the study area
{zl(u); l = 1,. . .,L, 8 u � A}.

3.1. Semivariogram Estimation and Modeling

[17] All techniques described in section 3 capitalize on the
presence of spatial correlation between either the raw arsenic
concentrations or their transforms to make predictions (using
kriging) at unsampled locations. Although all kriging systems
are written in terms of covariances, common practice consists
of computing andmodeling the semivariogram rather than the
covariance function. The experimental semivariogram for a
given lag vector h is estimated as

ĝ hð Þ ¼ 1

2N hð Þ
XN hð Þ

a¼1

z uað Þ � z ua þ hð Þ½ 
2 ð1Þ

where N(h) is the number of data pairs within the class of
distance and direction used for the lag vector h. To correct
for the preferential sampling of high values, the following
rescaled semivariogram estimator implemented in Variowin
[Pannatier, 1996] was used:

ĝ hð Þ ¼ 1

2N hð Þs2 hð Þ
XN hð Þ

a¼1

z uað Þ � z ua þ hð Þ½ 
2 ð2Þ

where s2(h) is the variance of the 2N(h) data used for
estimation at lag h. The rescaling accounts for the large
change in variance from one lag to the next (recall
Figure 2b), leading to a semivariogram with much less
erratic fluctuations and a more accurate estimate of the
short-range variability (i.e., nugget effect).
[18] A continuous function must be fitted to ĝ(h) in order

to compute semivariogram values for any possible lag
h required by prediction algorithms, and also to smooth out
sample fluctuations. In this paper, the semivariograms were
modeled using least squares regression [Pardo-Iguzquiza,

1999] under the constraint of reproduction of the nugget
effect estimated from colocated well measurements. All
semivariogram models were bounded (i.e., reached a sill),
and the covariance models were derived by subtracting the
semivariogram model from the sill value.

3.2. Multi-Gaussian Approach

[19] Under the multi-Gaussian (MG) model, the ccdf at
any location u is Gaussian and fully defined by its mean and
variance which can be estimated by kriging [Goovaerts,
2001]. The approach typically requires a prior normal score
transform of data to ensure that at least the univariate
distribution (histogram) is normal. The normal score ccdf
then undergoes a back transform to yield the ccdf of the
original variable.
3.2.1. Normal Score Transform
[20] Normal score transform is a graphical procedure that

normalizes any distribution, regardless of its shape. It can be
seen as a correspondence table between equal p quantiles zp
and yp of the z cdf F(z) (cumulative distribution function)
and the standard Gaussian cdf G(y). In practice, the normal
score transform proceeds in three steps.
[21] 1. The n original data z(ua) are ranked in ascending

order. Since the normal score transform must be monotonic,
ties in z values must be broken, which may be a problem in
presence of a large proportion of censored data (i.e., non
detects). In this paper, such untying or despiking has been
done randomly as implemented in GSLIB software
[Deutsch and Journel, 1998].
[22] 2. The sample cumulative frequency of the datum

z(ua), denoted p*k, in the declustered sample distribution is
computed.
[23] 3. The normal score transform of the z datum with

rank k is matched to the p*k quantile of the standard normal
cdf:

y uað Þ ¼ f z uað Þð Þ ¼ G�1 F z uað Þð Þ½ 
 ¼ G�1 pk*½ 
 ð3Þ

3.2.2. Multi-Gaussian Kriging
[24] The probability distribution of the normal score

variable Y at location u is Gaussian. Its mean and standard
deviation are the ordinary kriging (OK) estimate y*OK(u) and
simple kriging (SK) standard deviation s*SK(u) computed
from the normal score data:

FY u; yj Infoð Þð Þ ¼ G y� yOK* uð Þ
� �

=sSK* uð Þ
� �

ð4Þ

The OK estimate is computed as a linear combination of
n(u) surrounding normal score data:

yOK* uð Þ ¼
Xn uð Þ

a¼1

lay uað Þ ð5Þ

The kriging weights la are calculated by solving the
following system of linear equations:

Pn uð Þ

b¼1

lb C ua � ub
� �

� da;bb0
� �

þ m ¼ C ua � uð Þ a ¼ 1; . . . ;n uð Þ

Pn uð Þ

b¼1

lb ¼ 1

where C(ua � ub) is the covariance function of the normal
score variable Y for the separation vector hab = ua � ub,

ð6Þ
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m is a Lagrange multiplier that results from minimizing the
estimation variance subject to the unbiasedness constraint
on the estimator, dab = 1 if ua = ub with a 6¼ b, and 0
otherwise. The parameter b0 is the nugget effect (i.e.,

variability for a distance of zero) which was estimated
using the set of colocated observations at 662 wells. This
system is modified from the traditional OK system so that
data with the same spatial coordinates can be incorporated

Figure 3. The 73 validation wells sampled in 2004. (a) Location map with the township boundaries
overlaid. (b) Histogram of arsenic concentration (mg/L).
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without making the kriging matrix noninvertible. The
standard deviation of the probability distribution is
computed as

sSK* uð Þ ¼ 1�
Xn uð Þ

a¼1

l0
aC ua � uð Þ

" #1=2

ð7Þ

where the kriging weights l 0
a are obtained by solving a

system similar to equation (6) except that no constraint is
imposed on the weights (simple kriging).
3.2.3. Accounting for Secondary Information
[25] Several approaches are available for incorporating

secondary data in the estimation procedure [e.g., see
Goovaerts, 1997]. In this study the secondary data, which
are available everywhere, were used to compute the local
mean of the normal score variable Y, m*Y(u), at any node of
the interpolation grid. The ccdf means were then estimated
by simple kriging with local means (SKlm) as

ySKlm* uð Þ ¼
Xn uð Þ

a¼1

la y uað Þ � mY* uað Þ
� �

þ mY* uð Þ ð8Þ

The weights la are the solution of the following system:

Xn uð Þ

b¼1

lb CR ua � ub
� �

� da;bb0R
� �

¼ CR ua � uð Þ a ¼ 1; . . . ; n uð Þ

ð9Þ

where CR(ua � ub) is the covariance function of the normal
score residual variable R(u) = Y(u) � m*Y (u) for the
separation vector hab = ua � ub, and b0R is the
corresponding nugget effect. The ccdf variance is computed
as the sum of the SKlm variance (equation (7) using the
residual covariance CR(h)) and the variance of the local
mean estimator.
[26] In this paper the local means m*Y(u) were predicted

by multivariate regression on the secondary variables Zl and
a quadratic function of the spatial coordinates, see section 4
for more details. The independent variable was the local
mean of normal score data estimated by factorial kriging
[Matheron, 1982; Goovaerts et al., 1993] using the
following estimator:

mY* uað Þ ¼
Xn uð Þ

a¼1

lay uað Þ ð10Þ

The weights la are the solution of an ordinary kriging
system (equation (6)) with the right-hand side covariance
terms, C(ua � u), set to zero [Goovaerts, 1997, p. 135].

3.2.4. Back Transform of Results
[27] The probability of nonexceeding any arsenic con-

centration z can be easily computed as

Prob Z uð Þ 
 zj Infoð Þf g ¼ F u; zj Infoð Þð Þ ¼ FY u;f zð Þj Infoð Þð Þ ð11Þ

where f(z) = y is the normal score transform of the
threshold of interest, and the function FY(.) is defined in
equation (4). The mean and variance of the probability
distribution of the original variable Z are estimated using the

following empirical expressions [Saito and Goovaerts,
2000]:

zMG* uð Þ ¼ 1

100

X100
j¼1

zp uð Þ ¼ 1

100

X100
j¼1

f�1 yp uð Þ
� �

with p ¼ 0:01� j� 0:5ð Þ ð12Þ

sMG
2* uð Þ ¼ 1

100

X100
j¼1

zp uð Þ � zMG* uð Þ
� �2

with p ¼ 0:01� j� 0:5ð Þ ð13Þ

where zp(u) are p quantiles of the z ccdf obtained by a
normal score back transform of the corresponding p
quantiles of the y ccdf, yp(u).
[28] An implicit assumption of multi-Gaussian kriging is

that the multipoint cdf of the random function Z(u) is
Gaussian. Unfortunately, the normality of the one-point cdf
(histogram), which is achieved by the normal score
transform, is a necessary but not sufficient condition to
ensure the normality of the multipoint cdf [Goovaerts,
1997]. Although graphical procedures exist for checking the
appropriateness of the normality assumption for the two-
point cdf [Deutsch and Journel, 1998], there is no formal
statistical test. Furthermore, to be complete one should also
check the normality of the three-point, four-point,. . .,N-point
cumulative distribution functions, which is unfeasible in
practice. For all these reasons the MG approach is usually
adopted with little regard to the underlying assumptions.

3.3. Indicator Approach

[29] Although the normal score transform makes the
sample histogram perfectly symmetric it is not well suited
to censored data since it requires a necessarily subjective
ordering of all equally valued observations. For example, in
this study 670 data below the same detection limit need to
be artificially untied (first mode in the sample histogram of
Figure 1b). Indicator kriging [Journel, 1983] is an
alternative to the use of multi-Gaussian kriging to infer
the ccdf F(u;zj(Info)) and the corresponding E-type
estimate:

zIK* uð Þ ¼ 1

100

X100
j¼1

zp uð Þ with p ¼ 0:01� j� 0:5ð Þ ð14Þ

Estimates (12) and (14) differ in the way the ccdf is modeled
and so in how the series of quantiles zp(u) are computed.
Instead of assuming that the ccdf is Gaussian and fully
characterized by two parameters (parametric approach), the
indicator approach estimates the conditional probabilities for
a series of thresholds zk discretizing the range of variation of z,
and the complete function is obtained by interpolation/
extrapolation of the estimated probabilities.
3.3.1. Indicator Transform
[30] The first step is to transform each observation z(ua)

into a vector of K indicators defined as

i ua; zkð Þ ¼
1 if z uað Þ 
 zk

0 otherwise

8<
: k ¼ 1; 2; . . . ;K ð15Þ
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In this paper K = 22 threshold values were selected,
including the 19 0.05 quantiles of the sample histogram to
cover uniformly the range of variation of arsenic concentra-
tion and three thresholds (47, 70, and 100 mg/L) in the upper
tail of the distribution.
3.3.2. Indicator Kriging (IK)
[31] Ccdf values at unsampled location u are estimated as

a linear combination of n(u) surrounding indicator data:

FIK u; zk j Infoð Þð Þ ¼
Xn uð Þ

a¼1

lak i ua; zkð Þ ð16Þ

The kriging weights are computed by solving a kriging
system similar to equation (6) where the normal score
covariance terms are replaced by covariances of indicator
variables I(u;zk), CI(h;zk). Indicator covariance functions are
derived from indicator semivariogram models, gI(h;zk),
fitted to experimental values which were computed
according to equation (1) where the z data are replaced by
the corresponding indicator transforms.
[32] As for the multi-Gaussian approach secondary infor-

mation was incorporated using simple kriging with local
means (SKlm). The estimator is the following:

FSKlm u; zk j Infoð Þð Þ ¼ j u; zkð Þ þ
Xn uð Þ

a¼1

l0
ak i ua; zkð Þ � j ua; zkð Þ½ 


ð17Þ

The probabilities j(ua;zk) are referred to as ‘‘soft’’ indicators
since they are valued between zero and one, unlike the
‘‘hard’’ indicators defined in equation (15). They were
computed from the soft information as:

j u; zkð Þ ¼ Prob Z uð Þ 
 zk j Infoð Þf g ¼ G f zkð Þð½ � mY
* uð Þ

�
=s* uð Þ

�
ð18Þ

where m*Y (u) and s*(u) are the mean and standard error of
the multivariate regression prediction at location u. In other
words, the distribution of the regression estimator is used as
a prior probability distribution for arsenic concentration at
that location, and the soft probabilities are retrieved directly
for normal score transforms of the target thresholds zk. The
weights l0ak in expression (17) are computed by solving a
simple kriging system (equation (9)), where the residual
variable is now the difference between hard and soft
indicator variables R(u;zk) = I(u;zk) � j(u;zk).
3.3.3. Modeling of the ccdf
[33] Because the K probabilities are estimated individu-

ally (i.e., K indicator kriging systems are solved at each
location) the following constraints, which are implicit to any
probability distribution, might not be satisfied by all sets of
K estimates:

0 
 FIK u; zk j Infoð Þð Þ 
 1 8 k ð19Þ

FIK u; zk 0 j Infoð Þð Þ 
 FIK u; zk j Infoð Þð Þ if zk 0 
 zk ð20Þ

All probabilities that are not within [0,1] are first reset to the
closest bound, 0 or 1. Then, condition (20) is ensured by

averaging the results of an upward and downward
correction of ccdf values [Deutsch and Journel, 1998].
[34] Once conditional probabilities were estimated and

corrected for potential order relation deviations, the set of K
probabilities must be interpolated within each class (zk, zk+1]
and extrapolated beyond the smallest and the largest
thresholds to build a continuous model for the conditional
cdf. In this paper, the resolution of the discrete ccdf was
increased by performing a linear interpolation between
tabulated bounds provided by the sample histogram of
arsenic concentration [Deutsch and Journel, 1998].

3.4. Validation of the Prediction Models

[35] Relative performances of the multi-Gaussian versus
indicator approaches, as well as the benefit of incorporating
secondary information in the prediction, were assessed first
using cross validation. One observation of the MDEQ data
set is removed at a time and reestimated using neighboring
noncolocated well data; i.e., repeated measurements in time
were not used when estimating arsenic concentration.
The second step was to compare the predictions with the
recently collected data which were not used during the
modeling itself (jack knife approach).
3.4.1. Prediction Errors
[36] The ability of the different techniques to estimate

arsenic concentration was quantified using the mean abso-
lute error of prediction (MAE) defined as

MAE ¼ 1

n

Xn
a¼1

z uað Þ � z* uað Þj j ð21Þ

where n is the number (8212 or 73) of individual wells.
Colocated data were averaged to compute the reference
arsenic concentration z(ua).
3.4.2. Model of Uncertainty
[37] At any location u knowledge of the ccdf

F(u;zj(Info)) allows the computation of a series of
symmetric p probability intervals (PI) bounded by the
(1 � p)/2 and (1 + p)/2 quantiles of that ccdf. For example,
the 0.5 PI is bounded by the lower and upper quartiles
[F�1(u;0.25j(Info)), F�1(u;0.75j(Info))]. A correct model-
ing of local uncertainty would entail that there is a 0.5
probability that the actual z value at u falls into that interval
or, equivalently, that over the study area 50% of the 0.5 PI
include the true value. Cross validation or jack knife yields
a set of z measurements and independently derived ccdfs at
the n locations ua, allowing the fraction of true values
falling into the symmetric p PI to be computed as:

�z pð Þ ¼ 1

n

Xn
a¼1

z ua; pð Þ ð22Þ

where z(ua;p) equals 1 if z(ua) lies between the (1� p)/2 and
(1 + p)/2 quantiles of the ccdf, and zero otherwise. The
scattergram of the estimated, �z(p), versus expected, p,
fractions is called the ‘‘accuracy plot’’. Deutsch [1997]
proposed to assess the closeness of the estimated and
theoretical fractions using the following ‘‘goodness’’ statistic:

G ¼ 1� 1

K

XK
k¼1

w pkð Þj�z pkð Þ � pk j ð23Þ
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where w(pk) = 1 if �z (pk) > pk, and 2 otherwise. Twice more
importance is given to deviations when �z (pk) < pk (inaccurate
case), i.e., the case where the fraction of true values falling
into the p PI is smaller than expected.
[38] Not only should the true value fall into the PI

according to the expected probability p, but this interval

should be as narrow as possible to reduce the uncertainty
about that value. In other words, among two probabilistic
models with similar goodness statistics one would prefer the
one with the smallest spread (less uncertain). Different
measures of ccdf spread can be used: variance, interquartile
range, and entropy. Following Goovaerts [2001], the

Figure 4. Spatial variability of normal score transforms. (a) The semivariogram map. (b) The map of
bedrock with the location of the Marshall Sandstone subcrop where the highest concentrations of arsenic
were found. Township boundaries are overlaid on the bedrock map. See color version of this figure at
back of this issue.
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average width of the PIs that include the true value are
plotted for a series of probabilities p. For a probability p the
average width is computed as

�W pð Þ ¼ 1

n�z pð Þ
Xn
a¼1

z ua; pð Þ F�1 ua; 1þ pð Þ=2j Infoð Þð Þ
�

� F�1 ua; 1� pð Þ=2j Infoð Þð Þ
 ð24Þ

4. Results and Discussion

4.1. Mapping Arsenic Concentration Using
Multi-Gaussian Kriging

[39] The study of the spatial variability of arsenic con-
centration began with the computation of the semivariogram
map of normal score transforms which plots the experimen-
tal g(h) values in the system of coordinates (hx,hy). This
map (Figure 4a) shows that as the distance between
observations increases (i.e., as we go away from the center
of the semivariogram map) the variability increases more
slowly in the NE-SW direction (azimuth = 45	 as measured
in degrees clockwise from the N-S axis). This anisotropy
reflects the impact of bedrock on the spatial distribution of
arsenic concentrations, since NE-SW corresponds to the
preferential orientation of bedrock layers (Figure 4b).
[40] Directional semivariograms (equation (1)) were then

computed along four directions of azimuth: 0, 45, 90 and
135 (Figure 5a). These graphs indicate that the anisotropy
occurs mainly for large distances (large-scale variability),
and the variability is essentially isotropic within the radius
of 5 km used for prediction later. Thus the subsequent
modeling of the variability was limited to the omnidirec-
tional semivariogram computed up to 5 km (Figures 5b and
5c). Two semivariogram estimators were used: the tradi-
tional one (equation (1)) and a rescaled semivariogram
where each value is divided by the variance of the data used
for that lag (equation (2)). The rescaling clearly attenuates
the erratic fluctuations displayed by the traditional estimator
which are caused by the preferential sampling of high-valued
wells. On these graphs, the solid line represents the model
fitted using least squares regression under the constraint of
reproduction of the nugget effect inferred from colocated
well measurements.
[41] Regardless of the estimator, the nugget effect repre-

sents more than 50% of the total variance and the well data
are spatially independent for a separation distance larger
than 2 km. This short-range variability of arsenic concen-
trations, which was reported by other authors [e.g., BGS and
DPHE, 2001; Serre et al., 2003; Yu et al., 2003], suggests
that spatial interpolation would benefit from secondary
information to complement the arsenic data. Multivariate
regression on the secondary variables described in section 2
resulted in a very small R2 of 17.3%, which is caused by the
large variability of arsenic concentration over very short
distances and the magnitude of measurement errors (i.e.,
nugget effect). Once these short-range fluctuations were
filtered using the factorial kriging procedure described in
section 3.2.3 (equation (10)), the secondary information
explained 65.2% of the variance. The regression model was
then used to predict the local mean of arsenic concentrations
across the study area (Figure 6a). Except in the southern
part of the study area, the map of local means illustrates the

Figure 5. Spatial variability of normal score transforms.
(a) Directional semivariograms (shaded line is NE-SW
direction). (b) Omnidirectional semivariogram (traditional
estimator). (c) Omnidirectional semivariogram (rescaled
estimator).
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Figure 6. Incorporation of secondary information in the spatial prediction of arsenic concentration.
(a) Map of normal score local means obtained using multiple linear regression and the bedrock map of
Figure 4 as one of the explanatory variables. (b) Omnidirectional semivariogram of normal score
transforms before (black dots) and after subtracting the local means (gray dots). See color version of this
figure at back of this issue.
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impact of Marshall Sandstone on high arsenic concentra-
tions. Interestingly, the semivariogram of residuals (gray
dots in Figure 6b) is very close to the original normal score
semivariogram (black dots) up to 15km, which indicates
that secondary data explain mainly large-scale fluctuations.
Similar results and scale were found by Yu et al. [2003] in
Bangladesh.
[42] Figure 7 shows the maps of arsenic concentration

obtained after back transform of estimates produced by
multi-Gaussian kriging using only well data (Figure 7a)
or incorporating the local means displayed in Figure 6
(SKlm estimate, Figure 7b). The estimates were computed

at the nodes of a 500 meter spacing grid. Accounting for
the secondary information allows one to capture better the
bedrock regional variability, leading to fewer pixels with
concentration exceeding 35 mg/L, but more pixels in the
middle range 20–30 mg/L. Both maps display strong
discontinuities in the vicinity of well locations; this salt-
and-pepper effect is caused by the high nugget effect and
short-range variability that lead to smooth estimates as
one moves a few hundred meters away from sampled
wells. Figures 8a and 8b show the corresponding maps
of the probability of exceeding the USEPA standard of
10 mg/L. Probability maps show similar patterns as the

Figure 7. Alternative methods for spatial prediction of arsenic concentration. (a) Multi-Gaussian
kriging. (b) Simple kriging of normal scores using the map in Figure 6a as local means. (c) Indicator
kriging. (d) Soft indicator kriging using the same secondary information as for Figure 7b. Township
boundaries are overlaid on each map. See color version of this figure at back of this issue.
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arsenic maps, with the secondary information (in partic-
ular the location of Marshall Sandstone) leading to higher
probability of exceeding USEPA standard in the northern
part of the study area.

4.2. Mapping Arsenic Concentration Using Indicator
Kriging

[43] Indicator kriging was performed using K = 22
thresholds described in section 3.3.1. For each threshold, the
omnidirectional indicator semivariogram was estimated up
to 5 km, and then a model was fitted using least squares
regression. Figure 9 shows the experimental and model
semivariograms for five different thresholds. As the thresh-

old increases, the short-range variability becomes more
important, which indicates that small arsenic concentrations
are better connected in space than large concentrations. This
effect has been observed for other contaminants, such as soil
Cd concentrations [Goovaerts, 1997].
[44] The 22 semivariogram models were used in ordi-

nary kriging of indicators to estimate the set of local
probabilities of nonexceedence at each grid node. After
order relation correction and interpolation/extrapolation,
the mean of each local ccdf was estimated using expres-
sion (14), and they are mapped in Figure 7c. Except for a
less pronounced salt-and-pepper effect and fewer pixels
with concentration exceeding 40 mg/L, this map is very

Figure 8. Alternative methods for spatial prediction of the probability of exceeding the USEPA
standard of 10 mg/L. (a) Multi-Gaussian kriging. (b) Simple kriging of normal scores using the map in
Figure 6a as local means. (c) Indicator kriging. (d) Soft indicator kriging using the same secondary
information as Figure 8b. Township boundaries are overlaid on each map. See color version of this figure
at back of this issue.
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Figure 9. Sample omnidirectional indicator semivariograms with the model fitted using least squares
regression. Note the larger short-range variability for the upper quartile and ninth decile of the sample
histogram, which reflects the smaller spatial connectivity of high arsenic concentrations.

Figure 10. Scatterplots of estimated versus observed arsenic concentrations (MDEQ data set) for multi-
Gaussian and indicator kriging approaches with and without secondary information. The mean absolute
error of prediction (MAE) is also reported.
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similar to the one obtained using multi-Gaussian kriging.
In both cases, artifacts can be seen in the lower left part
of the map and these discontinuities are caused by the
sparse density of sampled wells in that region.
[45] The map of local means displayed in Figure 6a was

combined with the regression standard error to derive prior
probability distributions at each grid node. The prior infor-
mation provided by secondary data was then updated with
hard well data using the SKlm algorithm described in
section 3.3.2. The resulting estimates of arsenic concentra-
tion are mapped in Figure 7d. This map strongly reproduces
the spatial pattern of bedrock formation (Figure 4b), yield-
ing smaller estimates in the Northwestern part of the study
area. In general, the indicator kriging estimates are lower
than the ones obtained using the multi-Gaussian approach
(mean = 9.17 mg/L for soft IK versus 11.53 mg/L for SKlm).
Although the SKlm mean is closer to the declustered sample
mean of 10.97 mg/L, cross-validation analysis below indi-
cates that at sampled wells the indicator approach leads to
smaller bias. Also, the artifact noticed in the lower left part
of the MG map is now clearly apparent, and is caused by the
presence of a few high concentrations in this sparsely
sampled region which are then spread through the circular
search window.
[46] As with the multi-Gaussian approach, the maps of

the probability of exceeding the USEPA standard show
patterns similar to the arsenic maps (Figures 8c and 8d).
The impact of the secondary information is however much
more pronounced, with clear discontinuities in the soft IK
probability map which coincide with the boundaries of the
bedrock map. One of the thresholds for the indicator coding
is 10 mg/L, hence this probability is directly estimated and

does not need to be retrieved from the local probability
distribution as for the MG approach.

4.3. Performance Comparison: The MDEQ Data Set

[47] The visual comparison of maps in Figure 7 does not
indicate which technique produces the most accurate esti-
mates. Cross validation of the MDEQ data was used to
compare the prediction performances of the four interpola-
tion algorithms. Figure 10 shows the scatterplots of ob-
served concentrations versus estimates at each of the 8212
individual wells. They all reveal an underestimation of large
concentrations and an overestimation of low concentrations,
which is common for least squares estimators such as the
mean of local probability distributions (overestimation of
low concentrations is also visually enhanced by the use of a
log-log scale). The balancing of these two effects results
however in a somewhat global unbiasedness. The smallest
bias (�0.4 mg/L) is observed for indicator kriging, while
both types of multi-Gaussian kriging lead to an average
overestimation of 1.2 mg/L. The same two algorithms also
yield the largest mean absolute errors of prediction (MAE),
however differences between all four algorithms are quite
small. Although the magnitude of mean absolute errors is
large with respect to the USEPA standard of 10 mg/L, it is
worth remembering that the average difference between
data collected at the same well is 12.53 mg/L in the MDEQ
arsenic data set. Thus the uncertainty attached to the
sampled values themselves contributes to the poor accuracy
of the geostatistical predictions.
[48] For comparison purposes, cross-validation was also

performed for lognormal kriging and the inverse square
distance method. For lognormal kriging, the MAE of

Figure 11. Plots of the proportion of observed arsenic data falling within probability intervals (accuracy
plot) and the width of these intervals versus the probability p. The goodness statistics measure the
similarity between the expected and observed proportions in the accuracy plots.
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11.49 mg/L is substantially larger than the results obtained in
this study, which emphasizes the risk of using this type of
kriging because of the strong influence of semivariogram
modeling on the lognormal back transform of estimated
values. The inverse square distance method yields a MAE
of 9.66 mg/L, which is slightly larger than the errors
obtained by any of the four geostatistical methods presented
in Figure 10. The benefit of kriging might not be as large as
intuitively expected, but this result is in agreement with
previous studies [e.g., Goovaerts, 2000] that showed that
the gain of using ordinary kriging versus the inverse square
distance method decreases as the correlation between
observations weakens.
[49] The quality of the models of uncertainty for each

technique was assessed using the accuracy plots, described
in section 3.4.2 and displayed in Figures 11a–11d. For the
two MG models of uncertainty, the probability intervals (PI)
contain a higher than expected proportion of true values, a
property referred as to accuracy by Deutsch [1997]. Best
results are obtained again for univariate indicator kriging
where expected and empirical proportions are very close,
yielding a goodness statistic close to unity. Not only should
the true value fall into the PI according to the expected
probability p, but this interval should be as narrow as
possible to reduce the uncertainty about that value.

Figures 11e and 11f indicate that the best model of
uncertainty is obtained using indicator kriging in that the
probability intervals are narrower (larger precision) while
including the expected proportions of true values (large
goodness statistic).

4.4. Performance Comparison: The 2004 Campaign

[50] Because cross-validation in section 4.3 relies on
the MDEQ data both for building the prediction model
and assessing its quality, it may tend to provide optimistic
assessments of prediction performances. Interpolation
errors might also be underestimated since a single obser-
vation is removed at a time, leaving a high sampling
density for prediction. Well data collected at the homes of
73 participants in the cancer case control study are here
used to validate the prediction models obtained using the
multi-Gaussian and indicator approaches. This data set
was not utilized in the preliminary analysis and so
qualifies as an independent validation set for quantifying
the accuracy of the prediction at unmonitored locations
and times. To mimic the future use of the layer of arsenic
concentration estimates in the space-time information
system, the concentration at validation wells was estimated
using the value of the 500 � 500 meter pixel within
which it falls, thereby eliminating the need to solve a kriging

Figure 12. Validation of the prediction models using recently collected well data. Scatterplots of
estimated versus observed arsenic concentrations (2004 campaign) for multi-Gaussian and indicator
kriging approaches with and without secondary information. The mean absolute error of prediction
(MAE) is also reported.
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system every time a study subject moves. Sensitivity anal-
ysis indicated that such a simplification leads only to a
marginal increase in the prediction error (e.g., MAE =
6.61 mg/L versus 6.58 mg/L using the exact spatial coordi-
nates in multi-Gaussian kriging).
[51] Figure 12 shows the scatterplots of observed con-

centrations versus estimates at each of the 73 validation
wells. As for the cross validation results, the low concen-
trations are overestimated by the four algorithms. However,
this conditional bias is clearly reduced for the concentration
range 1 to 5 mg/L when using soft indicator kriging. It is
noteworthy that accounting for secondary information actu-
ally leads to larger prediction errors for the multi-Gaussian
approach. In general, indicator kriging outperforms multi-
Gaussian kriging, as exemplified by the smaller mean
absolute error of prediction obtained for both hard and soft
indicator kriging. The magnitude of these errors is also
smaller than the ones found in cross validation, which is
likely due to the smaller concentrations measured at valida-
tion wells versus the MDEQ data set (no preferential
sampling of high-valued areas).
[52] The uncertainty attached to the concentration esti-

mate at any particular location can be assessed using the
spread of the local distribution of probability at that loca-
tion. The standard deviation of the ccdf is here used as a
measure of uncertainty and plotted against the magnitude of
the actual prediction error in Figure 13. The standard
deviation is clearly much smaller for the IK-based ccdfs

and exhibits a stronger correlation with the actual prediction
error, which confirms the ability of the nonparametric
approach to account for data values in uncertainty modeling
[Goovaerts, 2001].

5. Conclusions

[53] This paper described several approaches for spatial
interpolation of arsenic concentration in southeast Mich-
igan groundwater. It is the first step toward the assess-
ment of the risk associated with exposure to low levels of
arsenic in drinking water (typically, 5–100 mg/L), in
particular for the development of bladder cancer. This
study confirmed results in the literature that reported
intense spatial nonhomogeneity of As concentration,
resulting in samples that vary greatly even when located
only a few meters apart [Serre et al., 2003]. However, the
short-range variability in this data set was likely inflated by
the combination of water samples of different origins, which
could explain the magnitude of fluctuations observed
between observations collected the same day at the same
wells. Indicator semivariograms showed a better spatial
connectivity of low concentrations while values exceeding
32 mg/L (10% of wells) are spatially uncorrelated.
Secondary information, such as proximity to Marshall
Sandstone, helped only the prediction at a regional scale
(i.e., beyond 15 km), leaving the short-range variability
largely unexplained.

Figure 13. Validation of the models of local uncertainty using recently collected well data. Scatterplots
of absolute prediction errors versus standard deviation of the local probability distributions (ccdf )
modeled using multi-Gaussian and indicator kriging approaches with and without secondary information.
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[54] Several geostatistical tools were tailored to the fea-
tures of the MDEQ data set: (1) semivariogram values were
standardized by the lag variance to correct for the prefer-
ential sampling of wells with high arsenic concentrations,
(2) semivariogram modeling was conducted under the
constraint of reproduction of the nugget effect inferred from
colocated well measurements, (3) kriging systems were
modified to account for repeated measurements at a series
of wells while avoiding noninvertible kriging matrices,
(4) kriging-based smoothing was combined with multivariate
regression to predict the regional background of arsenic
concentration across the study area. Cross validation indi-
cated the little benefit of secondary information in local
prediction of arsenic concentration. Slightly better results
were obtained using soft indicator kriging that generated the
smallest mean absolute error of prediction, while the most
precise and accurate models of uncertainty are produced by
univariate indicator kriging.
[55] All predictions in this study were conducted at the

nodes of a 500 meter spaced grid using punctual kriging
algorithms. Analysis of the 2004 validation set indicated
that reasonable estimates are obtained by assigning these
punctual estimates to all the wells located within a
500�500 meter square centered on this node. The predic-
tion support could, however, be expanded to provide in
theory more meaningful values for exposure assessment.
Future research will implement geostatistical simulation to
perform an upscaling of the model of uncertainty, yielding
empirical probability distribution of the arsenic concentra-
tion over 2.5 km2 blocks. This probabilistic model will then
be combined with the spatiotemporal mobility and water
consumption of study participants, leading to the estimation
of individual-level historical exposure to arsenic and the
attached uncertainty [Meliker et al., 2005].
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Figure 4. Spatial variability of normal score transforms. (a) The semivariogram map. (b) The map of
bedrock with the location of the Marshall Sandstone subcrop where the highest concentrations of arsenic
were found. Township boundaries are overlaid on the bedrock map.
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Figure 6. Incorporation of secondary information in the spatial prediction of arsenic concentration.
(a) Map of normal score local means obtained using multiple linear regression and the bedrock map of
Figure 4 as one of the explanatory variables. (b) Omnidirectional semivariogram of normal score
transforms before (black dots) and after subtracting the local means (gray dots).
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Figure 7. Alternative methods for spatial prediction of arsenic concentration. (a) Multi-Gaussian
kriging. (b) Simple kriging of normal scores using the map in Figure 6a as local means. (c) Indicator
kriging. (d) Soft indicator kriging using the same secondary information as for Figure 7b. Township
boundaries are overlaid on each map.
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Figure 8. Alternative methods for spatial prediction of the probability of exceeding the USEPA
standard of 10 mg/L. (a) Multi-Gaussian kriging. (b) Simple kriging of normal scores using the map in
Figure 6a as local means. (c) Indicator kriging. (d) Soft indicator kriging using the same secondary
information as Figure 8b. Township boundaries are overlaid on each map.
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