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[1] Inverse modeling methods have been used to estimate surface fluxes of atmospheric
trace gases such as CFCs, CHy, and CO, on the basis of atmospheric mass fraction
measurements. A majority of recent studies use a classical Bayesian setup, in which prior
flux estimates at regional or grid scales are specified in order to further constrain the
flux estimates. This paper, on the other hand, explores the applicability of using a
geostatistical approach to the inverse problem, a Bayesian method in which the prior
probability density function is based on an assumed form for the spatial and/or temporal
correlation of the surface fluxes, and no prior flux estimates are specified. The degree
to which surface fluxes at two points are expected to be correlated is defined as a function
of the separation distance in space or in time between the two points. Flux estimates
obtained in this manner are not subject to some of the limitations associated with
traditional Bayesian inversions, such as potential biases created by the choice of prior
fluxes and aggregation error resulting from the use of large regions with prescribed flux
patterns. In essence, they shed light on the information contained in the measurements
themselves. The geostatistical algorithm is tested using CO, pseudodata at 39 observation
locations to recover surface fluxes on a 3.75° latitude by 5.0° longitude grid. Results
show that CO, surface flux variations can be recovered on a significantly smaller scale
than that imposed by inversions that group surface fluxes into a small number of large

regions.
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1. Introduction

[2] The use of inverse modeling methods as a tool for
estimating surface fluxes of atmospheric trace gases has
become increasingly common as the need to constrain their
global and regional budgets has been recognized [Houghton
et al., 2001; Committee on the Science of Climate Change,
Division on Earth and Life Studies, National Research
Council, 2001; Wofsy and Harriss, 2002]. Inverse methods
attempt to deconvolute the effects of atmospheric transport
and recover source fluxes (typically surface fluxes) on the
basis of atmospheric measurements. Information about
regions that are not being directly sampled can potentially
be inferred from downwind atmospheric measurements.
Inverse modeling methods have been used to estimate
regional contributions to global budgets of trace gases such
as CFCs, CHy, and CO,, and a review of recent applications
is presented by Enting [2002, chap. 14—17].
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[3] The ill-conditioned nature of the inverse problem
constitutes a principal difficulty in constraining trace gas
emissions. Substantially differing source/sink configura-
tions do not necessarily lead to substantial differences in
modeled mixing ratios at observational network sites.
Therefore small uncertainties in the observational data
correspond to much higher uncertainties in the estimated
emission magnitudes [Enting and Newsam, 1990; Brown,
1993; Hein et al., 1997]. In order to extract a meaningful
solution, either the number of unknowns has to be decreased
by substantially limiting the number of flux regions that are
estimated [e.g., Brown, 1993; Tans et al., 1990], or addi-
tional information on the sources and sinks has to be
introduced into the calculation.

[4] In atmospheric science, this additional information
has often been introduced by requiring that the source
estimates resulting from the inversion be close to a first
guess, or a priori information, on the sources. This can
be done in a consistent way by adopting a classical
Bayesian approach, in which all parameters are expressed
as statistical probability distributions. This paper inves-
tigates the applicability of an alternate geostatistical
approach, where the prior information is defined solely
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on the basis of a spatial and/or temporal correlation
between the fluxes.

[5] In the classical Bayesian approach, the solution to
the inverse problem of flux estimation is defined as the
set of parameter values that represent an optimal balance
between two requirements. First, the optimized, or a
posteriori, fluxes should be as close as possible to the
first-guess, or a priori, fluxes. Second, the measurement
values that would result from the inversion-derived
(a posteriori) fluxes should agree as closely as possible
with the actual measured concentrations. Mathematically,
this solution corresponds to the minimum of a cost
function L, defined as

Ly == (z—Hs)"R'(z — Hs) +%(s - Sp)TQq (s—s,), (1)

N —

where z is an n x 1 vector of observations, H is a known
n X m matrix, the Jacobian representing the sensitivity of
the observations z to the function s (i.e., H;; = 0z/0s)), s is
an m x 1 vector of the discretized unknown surface flux
distribution, R is the n x »n model-data mismatch
covariance, s, is the m x 1 prior estimate of the flux
distribution s, Q is the covariance of flux deviations from
the prior estimate s,, and the superscript 7' denotes the
matrix transpose operation. Typically, both R and Q have
been modeled as diagonal matrices. A solution in the form
of a superposition of all statistical distributions involved
can be computed, from which a posteriori means and
covariances can be derived [e.g., Enting et al., 1995]. The
solution is [Tarantola, 1987; Enting, 2002]

$=s,+QH/(HQH +R) ' (z— Hs,), 2)

Vi = Q- QH (HQH' + R) 'HQ, (3)

where § is the posterior best estimate of s and Vg is its
posterior covariance.

[6] As will be presented in more detail in section 2.3,
the geostatistical approach entails modifying the Bayesian
objective function to

Ly,s == (z—Hs)"R™!(z — Hs) + % (s —XB)'Q (s — XB), (4)

N —

where X is a known m X p matrix, 3 are p X 1 unknown
drift coefficients, and X@3 is the model of the mean of the
surface flux distribution. The covariance matrix Q is based
on a spatial and/or temporal correlation structure for the flux
distribution s and will therefore have nonzero oft-diagonal
components. The inverse problem involves solving for
both 3 and s. In addition, the parameters (e.g., variance and
correlation length) of R and Q can also be estimated using
the data themselves.

[7] One of the limitations of the classical Bayesian
approach is that it is often difficult to estimate the prior
uncertainty and model-data mismatch, making it difficult to
estimate the reduction in uncertainty and the absolute a
posteriori uncertainties of source magnitudes resulting from
the integration of atmospheric data [Hein et al., 1997,
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Houweling et al., 1999; Bousquet et al., 1999; Rayner et
al., 1999]. Also, similar data are sometimes used in defining
and updating prior flux estimates [Hein et al., 1997;
Houweling et al., 1999; Bousquet et al., 1999], which is
not strictly correct given the assumptions of the Bayesian
approach. In addition, erroneous prior flux estimates can
lead to estimated fluxes that are inconsistent with the
atmospheric data and/or do not correspond to actual flux
patterns [Brown, 1993]. This can be due to narrow uncer-
tainty bounds being assigned to unrealistic prior flux
estimates or to incorrect spatial flux patterns being assigned
within regions, which can lead to aggregation errors [e.g.,
Kaminski et al., 2001]. Finally, if all available data are used
in defining and/or updating the prior flux estimates, no
additional data are available for independently validating
the obtained final flux estimates.

[8] A second issue to be considered is the resolution at
which fluxes are estimated. The vast majority of studies
conducted up to this point have attempted to identify fluxes
at continental or ocean basin scales, which can be referred to
as a “big regions” perspective. As such, fluxes are aggre-
gated into a few large regions, and emission distributions
over predefined regions are assumed to be perfectly well
known. The result of such a setup is that the number of
unknowns, i.e., the total number of fluxes to be estimated, is
greatly reduced relative to the number of surface grid cells
used in the transport model. The advantage of such an
approach is that it typically renders the overall problem
overdetermined, in the sense that the total number of
available observations is greater than the number of fluxes
to be estimated. Therefore, even if certain regions are less
well sampled than others, they can usually be constrained to
some extent. The disadvantage is that variations in fluxes at
scales smaller than the selected regions cannot be estimated.
In addition, aggregation errors can occur when incorrect
flux patterns are assigned within regions. If measurements
are sensitive to these prescribed flux patterns, the inferred
total fluxes for given regions will not be representative of
the actual overall fluxes for these regions [Kaminski et al.,
2001; Peylin et al., 2002; Law et al., 2002; Rédenbeck et
al., 2003].

[9] As a result of these issues, certain researchers have
moved toward grid-scale inversions, where the fluxes are
estimated at a resolution close to that of the atmospheric
transport model used [Kaminski et al., 1999b; Houweling et
al., 1999; Rodenbeck et al., 2003]. These studies have used
resolutions as fine as 8° latitude by 10° longitude. In such a
setup, the problem is strongly underdetermined, with the
number of fluxes to be estimated being significantly greater
than the number of available observations, and results in
infinite variances on the recovered fluxes if no other
information is used to constrain the problem. For this
reason, grid-scale inversions have all relied on a Bayesian
framework to introduce additional prior information into the
solution and help constrain the estimates.

[10] Because of the underdetermined nature of the prob-
lem, most studies that have coupled prior flux information
about grid-scale fluxes with atmospheric measurements
have found that the reduction in uncertainty relative to the
specified prior flux estimate uncertainty was small and
the inversion yielded flux estimates that were similar to
the prior flux estimates used to constrain the solution
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[Kaminski et al., 1999b; Houweling et al., 1999]. These
studies have minimized dependence on prior information by
modeling the uncertainties in the fluxes as fully uncorrelated
between grid cells [Kaminski et al., 1999b; Houweling et al.,
1999]. This is opposite to the big regions approach, where
either fluxes over a region are assumed to be fully correlated
(i.e., uniform), or their variation is assumed to be perfectly
known, with a prescribed flux pattern within regions.

[11] It is reasonable to assume, however, that reality lies
somewhere in between the two extremes of either perfectly
correlated or completely uncorrelated fluxes at the grid scale
and that small-scale spatial patterns exist in surface fluxes
that the data themselves can help in defining. In fact,
Rédenbeck et al. [2003] recently made a first attempt at
introducing spatial correlations within a traditional Bayesian
framework, presenting a method that required the specifi-
cation of flux patterns and correlations among source
strengths in addition to prior flux estimates.

[12] Spatial correlation can offer useful additional in-
formation that can be used to reduce the uncertainty of
source estimates. That is precisely the goal of the geo-
statistical approach to inverse modeling, which uses
inferred information about spatial and/or temporal corre-
lations in the unknown function (in this case, surface
fluxes of atmospheric trace gases) in addition to available
measurements to constrain the estimate of the function,
without specifying a prior estimate. Because prior flux
estimates are not used, the inversion is strongly data-
driven and sheds light on whether useful flux information
can be derived from the data themselves. The feasibility
of implementing such an approach for atmospheric
inverse modeling, specifically for the estimation of sur-
face fluxes of atmospheric trace gases, is the subject of
this paper.

[13] The objective of this paper is twofold. First, it
develops the implementation of a geostatistically based
inversion method for estimating surface fluxes of atmo-
spheric trace gases. The presented application is for the
recovery of a yearly averaged global CO, surface flux
distribution using monthly averaged concentration mea-
surements. This sample application uses pseudodata in
order to isolate the behavior of the inversion algorithm
from other factors, such as the accuracy of the transport
model and the measurement error associated with obser-
vations [Hartley and Prinn, 1993; Plumb and Zheng,
1996; Mulquiney and Norton, 1998; Law et al., 2002]. In
addition, the use of pseudodata allows for a direct
comparison between the “actual” fluxes (which would
be unknown in a real-data case) and the fluxes inferred
from the limited available measurements. Second, this
paper is also intended to describe the presented method-
ology in enough detail to make it possible for interested
parties to implement it and use it for their specific
applications. To this end, several additional references,
partial derivations, and examples are provided wherever
practical.

[14] The remainder of this paper is organized as follows.
Section 2 discusses the geostatistical approach to inverse
modeling and provides a detailed description of the meth-
odology as applied to atmospheric problems. Section 3
presents the sample pseudodata application involving the
estimation of yearly averaged CO, surface fluxes. Section 4
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presents a discussion of the results, and section 5 draws
conclusions and discusses future avenues for the application
of the geostatistical approach to inverse modeling.

2. Geostatistical Approach to Inverse Modeling

[15] This section describes the geostatistical approach to
inverse modeling, along with an outline of its implementa-
tion for atmospheric inverse modeling.

2.1. Basic Principles

[16] The field of geostatistics, or the theory of regional-
ized variables, was introduced by Matheron [1963, 1971]
and is an adaptation of least squares methods to quantities
that are correlated in space. Geostatistical inverse modeling
methods have been used extensively in groundwater
systems, mainly in estimating spatial patterns of hydraulic
conductivity or transmissivity based on transmissivity and
hydraulic head measurements [e.g., Kitanidis and Vomvoris,
1983; Hoeksema and Kitanidis, 1984; Gelhar, 1993;
Kitanidis, 1995; Yeh and Zhang, 1996; Zimmerman et al.,
1998]. Similar methods have also been used for subsurface
characterization using data such as ground-penetrating
radar (GPR) and seismic measurements [e.g., Rea and
Knight, 1998; Doyen, 1988]. Recently, geostatistically
based methods have also been applied to the identification
of contaminant sources in groundwater systems [Snodgrass
and Kitanidis, 1997; Michalak and Kitanidis, 2002, 2003,
2004a, 2004b]. Source identification problems in ground-
water contaminant hydrology typically involve the estima-
tion of the release history from a given source or the
identification of the location of sources of contamination.
The problem of groundwater contaminant source identifi-
cation is similar to the one being examined here. The
transport of solute in groundwater is modeled as being
governed by a second-order advection-dispersion equation,
with optional reactive terms. The heterogeneity of the
subsurface complicates analyses in a similar manner as
spatially and temporally variable wind fields affect inverse
modeling in atmospheric applications.

[17] The geostatistical approach to inverse modeling is a
Bayesian approach, as was presented in equation (4). As
such, it is based on the principle of combining prior
information with information supplied by available mea-
surements. In the geostatistical approach, however, the prior
information is not an initial estimate of source fluxes for
given regions or grid cells. Instead, the prior information is
in the form of a spatial and/or temporal correlation. What is
prescribed is the degree to which the deviations of surface
fluxes from their mean behavior at two different locations or
times are expected to be correlated, as a function of the
distance in space or in time between the two points at which
the flux is to be estimated. The correlation structure
prescribed in the geostatistical approach is specified as a
prior covariance matrix for deviations from the mean.
The mean of the flux distribution is specified either as a
constant or as a function of auxiliary variables such as
time, latitude, population density, etc.

[18] The first key component of the approach is the model
of the mean, X@3, which defines the factors that are expected
to affect the mean behavior of the surface fluxes. For
example, if we expect land fluxes to behave differently
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from ocean fluxes, a separate mean can be defined for ocean
and land grid cells. In addition, if the mean behavior is
expected to vary with other variables, this can also be
specified. The actual parameters of the model of the mean
are not prescribed a priori, but are instead inferred from the
data as part of the inversion, in a manner somewhat
analogous to multiple linear regression. The model of the
mean is therefore not equivalent to the priors used in a
traditional Bayesian framework (see equation (1)). This
point will be discussed further in section 2.3.2.

[19] The second key component of the geostatistical
approach is the model used for the prior covariance. The
prior covariance function of the surface fluxes s is

Q(0) = E|(s — E[s])(s — E[s))" |, (5)

where Q(0) is a known function of parameters 0, where 0
can encompass parameters such as a correlation length and
variance and where E[ ] designates the expected value of a
variable. For example, in most applications of the traditional
Bayesian approach, deviations from the prior estimates of s
are assumed uncorrelated, and the prior covariance matrix is

typically

o? 0 0
0 o 0
Q = ; (6)
10 0 ozm, ]

where o7 are prescribed variances. In geostatistical applica-
tions the prior covariance model is based on a selected
covariance or generalized covariance function. Covariance
models define the rate at which the correlation of the surface
flux distribution’s deviation from its mean behavior decays
with the separation between two points (for a thorough
discussion of this topic, see, e.g., Cressie [1991] and
Kitanidis [1997a]). Parameters required by the selected
covariance model, such as the variance and correlation
length of the process being estimated, can also be estimated
using the data themselves. Note that when spatial correla-
tion is taken into account by applying a covariance model,
the prior covariance matrix Q has nonzero off-diagonal
elements.

2.2. Potential Advantages for Atmospheric Modeling

[20] The geostatistical approach to inverse modeling has
the potential to offer additional information relative to that
obtained using Bayesian inversions that rely on prior flux
estimates being assigned to regions or grid cells. Also, for
some applications, the geostatistical approach has distinct
advantages over methods applied in the past. First, because
the geostatistical approach does not require a prior estimate of
fluxes, it does not suffer from the risks associated with using
prior flux estimates discussed in section 1. Second, the
geostatistical approach can be used to estimate a variety of
parameters that have had to be specified in the past, such as
the spatial correlation parameters of the surface fluxes (e.g.,
correlation length and variance) and the variance associated
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with the model-data mismatch (which encompasses mea-
surement error and transport error). Third, because the geo-
statistical approach is based on a compromise between
reproducing available measurements and conserving spatial
correlation in the unknown function, the method can be
applied at any resolution. As the grid resolution increases,
the resolved correlation length, posterior best estimate, and
covariance function all converge. Thus the method allows for
the estimation of surface fluxes on a much finer scale than is
possible with region-scale models, while still resulting in
meaningful confidence intervals.

[21] Overall, the geostatistical approach minimizes the
number of assumptions that go into the solution of the inverse
problem. The geostatistical method maximizes the extent to
which the data can “speak for themselves” by allowing each
component of the inversion to be data-driven. This does not
mean to imply that the geostatistical approach is the best
choice for every study. If part of the goal of a project is to
quantify the degree to which atmospheric data themselves
can constrain surface fluxes, however, the geostatistical
approach offers a unique opportunity. In this way, it provides
clarity to the evidence for fluxes, separating what can be
deduced from atmospheric observations from what rests on
other lines of evidence. We consider this to be a distinct
advantage.

2.3. Methodology and Algorithm

[22] The linear geostatistical inverse modeling methodol-
ogy as applied to atmospheric surface flux estimation is
briefly described here. The reader is referred to Kitanidis
and Vomvoris [1983], Hoeksema and Kitanidis [1984], and
Kitanidis [1995] for additional details and background.
Note that throughout this discussion, m refers to the number
of points at which the surface flux distribution is to be
estimated, n refers to the number of observations to be used
to constrain the problem, and p refers to the number of
terms in the model of the mean.

2.3.1. Summary of Algorithm

[23] The overall method proceeds as follows:

[24] 1. Select the prior covariance model Q of the fluxes s.
See section 2.3.2.

[25] 2. Optimize model parameters ®. These can include
both parameters of the covariance model Q and of the
model-data mismatch covariance R. See section 2.3.6.

[26] 3. Solve the linear inverse problem to obtain s, the
posterior best estimate of the unknown function, and Vj, the
posterior covariance of the estimate. See sections 2.3.3—
2.3.5.

[27] 4. If needed, generate conditional realizations, s,
See section 2.3.7.

[28] Note that if the covariance parameters are known or
have been estimated independently, step 2 can be omitted.
2.3.2. Setup

[20] Overall, the objective is to estimate an unknown
surface flux distribution. The standard estimation problem
may be expressed in the following form:

z=h(s,r) +v, (7)

where z is an n X 1 vector of observations and s is an m x 1
“state vector” obtained from the discretization of the
surface fluxes that we wish to estimate. The vector r
contains other parameters needed by the transport model

4 of 19



D14109

function h (s, r). The model-data mismatch is represented
by the vector v. This error encompasses both the
measurement error associated with collecting the data and
any random numerical or conceptual inaccuracies associated
with the evaluation of the function h (s, r). When the
function h (s, r) is linear in the unknown s, as is the case
with linear transport models such as the one that will be
used here, it can be written as

h(s,r) = Hs, (8)

where H is a known n X m matrix, the Jacobian
representing the sensitivity of the observations z to the
surface fluxes s (i.e., H;; = 0z,/0s)).

[30] Following geostatistical methodology, s and v are
represented as random vectors. We assume that v has zero
mean and known covariance matrix R. The covariance of
the measurement errors is most commonly modeled as

R = o2l, 9)

where 0% is the variance of the measurement error and T is
an n x n identity matrix. The variance o% can either be
derived independently (e.g., by estimating the actual
measurement error as well as the variance of the error
introduced by the application of the chosen transport model)
or can be estimated from the data themselves, as described
in section 2.3.6. Also, although the variance 0% will here be
considered as constant for all measurements, a variable
variance could instead be identified, distinguishing between
measurements that are easier or more difficult to reproduce.
For example, sites could be broken up into categories that
exhibit similar properties in terms of data reproduction,
yielding different 0% values for different sites. Clearly, this
could not be taken to the extreme of identifying a different
variance for each available measurement.

[31] We model s as a random vector with a priori
expected value (i.e., mean)

E[s] = X3, (10)
where X is a known m X p matrix, 3 are p x 1 unknown
drift coefficients, and X3 is the model of the mean. For
example, for a constant mean, p = 1,

X =1 1", (11)
and (3 is the prior mean of the surface fluxes, an unknown
scalar. Note that this formulation is appropriate for fluxes
expressed in mass or moles per unit area and time. If total
fluxes per grid cell were to be estimated, the elements of X
would need to be scaled by the relative area of individual
grid cells. For a system where fluxes in individual grid cells
are expected to form two distinct populations, each with a
constant mean (e.g., if ocean and land grid cells are
expected to have different means), X and 3 take the form

1 ~« 1.0 - 0 3,
X: ) B: b
0 --- 0 1 --- 1 8,

T

(12)

where B, and (3, are again unknown scalars. For a system
where there is a single population and the mean of the
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fluxes is expected to have a linear trend with an additional
variable ¢,

I -1
X = , B:
LS B,

The model of the mean could also take on more complex
forms to include other factors that are known to correlate
with flux intensities (e.g., population, vegetation cover,
patterns obtained through remote sensing). In general, the
model of the mean is chosen to have the simplest form that
captures the essential behavior of the mean of the unknown
function, and the number p of drift parameters is very small.
The general guideline is to only use components of the
model of the mean that are known to be a determining factor
in the function’s behavior. Using a simple model may lead
to higher uncertainty in the posterior fluxes, but using an
erroneous, more complex model can lead to biased results,
which is more of a concern. Statistical tests can be
performed to test the validity of incorporating additional
terms in the model of the mean [Kitanidis, 1997b]. Note that
even when the model of the mean is quite simple, the
resulting best estimate of the flux distribution can be quite
complex because the prior covariance matrix Q prescribes a
correlation structure to deviations from the mean behavior.

[32] Given the model of the mean in equation (10), the
prior covariance matrix of s defined in equation (5) takes the
form

Bi
(13)

Q(0) = (s — XB)(s - X8)"|. (14)
This prior covariance matrix can be based on a covariance
function or a generalized covariance function (GCF). GCFs
extend the applicability of the methods to nonstationary
functions [Matheron, 1973; Kitanidis, 1993]. Both covar-
iance functions and GCFs are associated with corresponding
variograms. A variogram defines the expected variance of
the deviation of function values from their mean behavior as
a function of separation distance [see, e.g., Cressie, 1991;
Kitanidis, 1997a]. Various forms of the covariance matrix
have been used in groundwater contaminant source
identification. These include the Gaussian covariance
function [Snodgrass and Kitanidis, 1997], the linear GCF
[Michalak and Kitanidis, 2003], and the cubic GCF
[Michalak and Kitanidis, 2002, 2004a]. For the applications
presented here, the exponential covariance function will be
used, which, for a set of correlated points, is defined as

0(hlo?,1) = o exp(—?), (15)

exp( — b exp( — b2 1
L p Z p l .
(16)

where 6 = {02, I}, o’isa variance, / is an integral scale, / is
the separation distance between two points at which s is
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estimated, and | means “given.” The corresponding
variogram is defined as

y(hlo*, 1) = o? [1 — exp (f %)} .

For this model, as the separation distance 4 between two
points goes to infinity, the mean square difference between
the unknown function’s deviations from its mean behavior
at these points approaches o2, and the covariance between
the points approaches zero.

[33] The choice of covariance model should be based on
our understanding of the problem and the expected behavior
of the function to be estimated. An examination of the
characteristics of various covariance functions is given by,
for example, Cressie [1991] and Kitanidis [1993, 1997a].
The choice of covariance function used in this work will be
discussed further in section 3.3.1.

[34] The parameters needed by the selected covariance
model (e.g., o° and / in the case of the exponential
covariance) can either be known a priori or can be estimated
as described in section 2.3.6.

2.3.3. Bayesian Framework

[35] Geostatistical inverse modeling follows a Bayesian
approach. Bayes’ theorem states that the posterior pdf of a
state vector s given an observation vector z is proportional
to the likelihood of the state given the data (or, conversely,
the pdf of the data given the state) times the prior pdf of
the state. Because we are assuming that the drift param-
eters (3 are unknown as well, they are estimated along with
s. Symbolically,

(17)

p(zls)p' (s, B8)

P(5.812) = — . (18)
/ plals)p (s, B)ds

In this context, prior and posterior probability density
functions are with respect to using the data z. In the
geostatistical approach, the prior represents the assumed
spatial or temporal structure of the unknown surface
fluxes, as described by a covariance function. The like-
lihood of the data represents the degree to which an estimate
of the unknown function s reproduces the available
data z.
[36] The prior is modeled as

P'(s,8) =p'(sIB)p'(B)

QI P exp| -5~ XBTQ - XB)|,  (19)

where | | denotes matrix determinant and the prior
probability density function of 3 is assumed to be uniform
over all values (’(B) o 1).

[37] The likelihood function is defined in the same way as
in past Bayesian atmospheric studies:

1
p(z|s) |R|71/2 exp —E(z —Hs)'R™'(z— Hs)|. (20)

MICHALAK ET AL.: GEOSTATISTICAL SURFACE FLUX ESTIMATION

D14109

[38] The posterior probability density of the unknown
flux distribution s therefore becomes

_ - 1 _
P/ B) x IRIPIQ exp | (o~ R (o 1)

s X8)7Q s xB)|. o)
Its negative logarithm, which is the objective function that
will be minimized in obtaining a best estimate of the flux
distribution, is as presented in equation (4).

2.3.4. Solution

[39] Because the geostatistical approach does not incor-
porate a prior estimate of the fluxes and s, is therefore not
defined, equations of the form presented in equations (2)
and (3) cannot be used for the solution of the problem.
Instead, a linear system of equations is derived, the solution
of which is then used to define the posterior estimate and
covariance of s.

[40] The objective function to be minimized is the neg-
ative logarithm of the posterior probability density function
of s, as defined in equation (4). X( takes the place of the
prior estimate of s used in traditional Bayesian modeling.
The posterior best estimates of s and 3, denoted s and
B, minimize L¢g. Taking the derivative of the objective
function Lgg with respect to s and 3 and setting these equal
to zero yields, respectively,

s=XB+QH ¥ (z - Hxé), (22)
where
¥ = HQH” + R, (23)
and
B = (XTQ_1X>_1XTQ_1§. (24)

[41] These equations can be rearranged to define a m x n
matrix of coefficients A according to

§=Az (25)
where
A=XX'H' & 'HX) X'H' &' + QH ¥
_QH'¥ 'HX (XT HT\II_IHX> xrare (26)

In addition, we define a p x m matrix of multipliers M,
where

_ -1 _ T

M= <XTHT\II 1HX) (QHT\II ‘fox) . @)

Manipulating the above equations and expressing the results
in matrix form, we obtain

HQ

X |

¥ HX][AT
mxX)" 0 || m
Once this system is solved for A and M, we obtain § from

equation (25). The size of the matrix to be inverted
(equation (28)) is (n + p) X (n + p), whereas the inversion in

(28)
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the classical Bayesian approach (equations (2) and (3)) is
n x n. Given that p is generally very small, the numerical
cost of a geostatistical inversion is comparable to that of an
equivalent classical Bayesian inversion.
2.3.5. Posterior Covariance R

[42] The posterior covariance of s and (3 is given by
the inverse of the Hessian of the objective function,
which is
Vi Vg Q'+HR'H Q'x ]
= . (29
Vas Vs X'Q' X'Q'x

Note that taking the inverse of the above matrix is not
equivalent to taking the inverses of its parts. In fact, the
uncertainty associated with the estimation of 3 is incorpo-
rated in the posterior covariance of §. After taking the
inverse of equation (29) analytically by using properties of
partitioned matrices [e.g., Schweppe, 1973, pp. 495—-496]
and performing some linear algebra manipulations, the
portion of the matrix defining the posterior covariance of s
can be shown to be [Kitanidis, 1995]

Vi =—-XM+Q - QH'AT, (30)
which does not require taking the inverse of Q or R and is
therefore more numerically stable than taking the inverse of
equation (29) directly. The diagonal elements of Vi
represent the posterior variance of individual elements of s.
2.3.6. Parameter Optimization

[43] This section outlines the optimization of structural
parameters that can be estimated in addition to s and 3.
Typical parameters to be estimated in this way are the
parameters 0 of the covariance matrix Q (for example, o>
and / for an exponential covariance function) and the
variance(s) of the model-data mismatch o%. These parame-
ters will be jointly termed @ in the discussion that follows.

[44] The approach used to obtain the structural parame-
ters is detailed by Kitanidis [1995]. In short, the parameters
are estimated by maximizing the probability of the measure-
ments, which is defined as

p(z|®) = /B / pldls, ®)p/(s,B1®)ds 4, (31)

where the inside of the integral is as defined in equation (21)
(where Q and R are functions of ®). By integrating out all
possible values of s and 3 in equation (31), the marginal
probability density function of the observations z with
respect to the parameters ® is defined as

Y 1
p(z|®) o |®|2 X H @ le) exp|:—§ZTEZ]7 (32)

where W is defined in equation (23) and is a function of ®
and

_ -1 _
E:\If’l—\Il’lHX<XTHT\IJ 'HX) XTH'® . (33)
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The objective is to find the values of ® that maximize
equation (32) or, alternately, minimize its negative
logarithm:

1 1 . 1
Ly =5 In|®| + 2 In|X"H'® 'HX +578 (34)

The number of parameters ® is relatively small, and a
number of search algorithms can be implemented to find
the minimum of equation (34) with respect to P.
Common algorithms include the Gauss-Newton and
Levenberg-Marquardt methods [Gill et al., 1986,
pp. 134—137]. In cases where there is insufficient data
to estimate these structural parameters well, the full pdf
of the parameters (equation (32)) can be used in the
solution of the inverse problem [Kifanidis, 1986], thereby
explicitly taking into account the uncertainty on P.
However, such an approach can be significantly compu-
tationally more expensive. Alternately, some or all of the
structural parameters in such cases can be estimated
independently from other information.

2.3.7. Conditional Realizations

[45] Using geostatistical methodology, it is also possible
to generate realizations of the surface fluxes that are
conditional on all the observations. The procedure for
generating conditional realizations is discussed by Gutjahr
et al. [1994] and Kitanidis [1995]. Conditional realizations
are equally likely realizations that follow the spatial corre-
lation structure dictated by Q and also reproduce the
observations z to within the estimated or specified model-
data mismatch. Conditional realizations represent individual
possible flux histories, given the available data. The average
of a large number of such realizations would reproduce the
best estimate of the function (equation (25)), which is
smoother than the individual realizations. Although the best
estimate represents the maximum of the posterior pdf of the
fluxes, it is the conditional realizations that represent the
range of possible actual flux distributions.

[46] To obtain a conditional realization, an unconditional
realization must first be generated that follows the correla-
tion statistics specified in Q. Although there are a variety of
ways to do this, one of the simplest (although not neces-
sarily computationally most efficient) approaches is to
decompose the covariance matrix by Cholesky decomposi-
tion to

Q=cc’. (35)

An unconditional realization following the correlation

structure defined by Q is then generated according to

sui = XB + Cu, (36)

where the values of 3 are arbitrary and can be set to zero

and u; is a vector of normally distributed random numbers

with zero mean and unit variance. Finally, the conditional

realization is defined as

Sci = Sui + A(Z +v-— Hsu[)7 (37)

where v is a normally distributed random number with

zero mean and variance o%. In other words, v is a random
sample from the model-data mismatch error covariance R.
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[47] The resulting conditional realizations are equally
likely realizations of the surface fluxes from the posterior
pdf presented in equation (21). If a large number of condi-
tional realizations is generated, their mean and covariance
will reproduce those derived in equations (25) and (30).

3. Sample Application

[48] The following section presents a sample application
of linear geostatistical inverse modeling to the estimation of
surface fluxes of CO, on a 3.75° latitude by 5.0° longitude
grid, an even finer grid than those used in past grid-scale
inversion studies. Because this application is meant primar-
ily as an illustration of the features and capabilities of the
presented methodology, the inversion is kept relatively
simple, with a single year of monthly averaged pseudodata
being used to estimate fluxes that are constant in time over
that same year. The background concentration in the atmo-
sphere prior to the start of the year of interest is considered
perfectly known, and only the component of the observed
CO, mole fraction resulting from the flux from the current
year is used in the inversion.

3.1. Available Tools and Generation of Pseudodata

3.1.1. Flux Data

[49] The flux data that were used to generate the pseudo-
data were selected to reflect a realistic set of fluxes for CO,.
The estimates used for both the fossil fuel and oceanic
components of the global fluxes were the same as those
applied in the Atmospheric Tracer Transport Model Inter-
comparison Project 3 (TransCom3), an atmospheric carbon
budget inversion intercomparison study [Gurney et al.,
2002]. The fossil fuel emissions were based on Brenkert
[1998] and Andres et al. [1996], who assume constant fossil
fuel sources throughout the year. The net oceanic carbon
exchange was taken from Takahashi et al. [2002]. Monthly
fluxes were averaged to obtain a yearly flux equivalent. For
the net ecosystem production (NEP) component of the land
fluxes, the TransCom3 estimates were based on a neutral
biosphere assumption that results in a zero average yearly
flux on a grid cell by grid cell basis [Randerson et al., 1997].
Because we were interested in a yearly inversion, this set of
fluxes was not very interesting for our application. Therefore
we instead used yearly averaged land biospheric fluxes from
McGuire et al. [2001]. These fluxes represent the average net
ecosystem production (NEP) as generated using the Lund-
Potsdam-Jena (LPJ) terrestrial biosphere model.

[50] All flux data were defined on a 3.75° latitude by 5.0°
longitude grid, which yields a 48 x 72 surface grid with a
total of 3456 points at which the surface fluxes are defined
and will be estimated. The fluxes used to generate the
pseudodata are presented in Figure 1.

3.1.2. Basis Functions

[s1] As in other Bayesian inversions, the geostatistical

approach requires the formulation of a Jacobian matrix H,

Figure 1. Surface flux distributions used in generating
pseudodata, in units of umol/(m?s). (a) Sum of yearly averaged
land fluxes (fossil fuels and NEP). (b) Yearly averaged
net ecosystem production (NEP). (c) Yearly averaged oceanic
exchange. Note that the color scales have been set to agree
with those presented in Figures 4—7.
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relating the unknown flux field to the available observa-
tions. This sensitivity matrix is typically obtained by
sequentially running the transport model with pulses
located in each region or grid cell, for each time at which
a flux is to be estimated, and observing the response at
times and locations where measurements are available.
Recently, adjoints have been developed for certain trans-
port models, which allow for H to be inferred from adjoint
simulations, with one run required for each observation,
instead of each source region [Kaminski et al., 1999a]. The
adjoint formulation results in computational savings when
the total number of flux values to be estimated is greater
than the number of available observations. This computa-
tional savings is therefore particularly significant for grid-
scale inversions.

[52] For the application presented here, results from an
adjoint implementation of Tracer Model 3 (TM3) were
used to define H [Kaminski et al., 1999a]. Basis func-
tions relating monthly averaged CO, observations at a
subset of the Climate Monitoring and Diagnostics Labo-
ratory (CMDL) observation network sites to monthly
averaged grid-scale fluxes were calculated by Rddenbeck
et al. [2003] for 1982—-2001. The 2001 subset of these
same basis functions were used for the work presented
here.

[53] We are using monthly averaged data to infer fluxes
that, for the application presented here, have been defined as
being constant throughout the year. We are interested in
inferring these fluxes on the basis of the additional contri-
bution of these fluxes over a single year to the atmospheric
mass fraction of CO,. Therefore the sensitivity matrix
integrates the effect of the fluxes for all months leading
up to a given observation:

k=1
Hij= ) Hijk, (38)
k=1

where H;; ; is the sensitivity of observation i to a flux in grid
cell j that occurred in month & and / is the month in which
the observation is taken. In other words, we are summing
the influence of the constant fluxes up to the times when
observations are taken.
3.1.3. Observation Pseudodata

[s4] In an effort to generate a set of pseudodata that is
consistent with the amount of data typically used in
inversion studies, the basis functions generated for 2001
by Rodenbeck et al. [2003] were used to generate pseu-
dodata for months and CMDL sites where actual CO, data
are available. Therefore, although the observational data
have been numerically generated, their spatial and tempo-
ral distribution represents a subset of the CMDL Cooper-
ative Global Air Sampling Network’s data collected for
2001. Overall, the data set consists of 433 monthly
averaged datapoints, collected over 12 months at a total
of 39 sites. Random error was added to the pseudodata to
simulate the effect of measurement and transport errors
(see section 3.2). Note that not every station has data at
every month. A map illustrating the sites at which data
were modeled, as well as the number of months for which
these sites were sampled, is presented in Figure 2. Given
the 433 observations and the 3456 grid points at which the
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Figure 2. Locations of pseudodata measurements. The
numbers indicate the number of monthly averaged measure-
ments available at each location. Note that the two locations
listing 12 x 2 measurements are areas where two
observation locations are too close to one another to be
resolved on the plot. This occurs for (i) St. Davids Head,
Bermuda (BME), and Tudor Hill, Bermuda (BMW), and
(i) Mauna Loa, Hawaii (MLO), and Cape Kumukahi,

Hawaii (KUM).

flux distribution is to be estimated, the inversion is
strongly underdetermined.
3.1.4. Calculation of Separation Distance

[s5] The separation distance / needs to be defined between
all points at which the fluxes are to be estimated in order to
construct the covariance matrix Q. Because we are working
at a global scale, 7 was calculated using the great circle
distance between two points on the surface of the Earth:

h(x,-,xj) =7 cos”! [sin &, sin d; + cos ; cos ; cos(ﬁ,— — ﬂj)],
(39)

where the coordinates x; = (¢;, ¥,) are the latitude and
longitude, respectively, of the grid points at which the fluxes
are to be estimated, r is the mean radius of the Earth
(6378 km), and latitude, longitude, and all angles are in
radians.

3.2. Test Cases

[s6] A total of four test cases was examined. We were
interested not only in the general behavior of the method-
ology but also in the effect of certain parameters on the
inversion results. Two different levels of model-data mis-
match were used, with standard deviations of 0.50 ppm
and 0.10 ppm (o* = 0.25 ppm* and 0.01 ppm?). Note that
these levels of model-data mismatch are not necessarily
those that one would expect to use with real data. Most
surface flux estimation studies have used higher model-
data mismatch variances, and these variances were also
variable between observation sites. Such effects will be
incorporated in future work using atmospheric data, but for
the purposes of this pseudodata example, we had the
option of keeping the system relatively simple. Second,
the effect of recognizing that land and oceans are known
to have distinctly different source characteristics was
examined by treating all fluxes as correlated in one case
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Table 1. Examined Inversion Scenarios

Case
A B C D

Model-data mismatch lower lower higher lower
Number of zones 1 2 2 2
Fossil fuel fluxes estimated estimated estimated known

and treating land fluxes as uncorrelated to ocean fluxes in
other cases. Finally, although the method is capable of
inverting for the total of all fluxes (fossil fuel, net
ecosystem production, and oceanic exchange), one inver-
sion was carried out where the fossil fuel sources were
considered known because such an assumption has been
made in some past CO, inversion studies [e.g., Peylin et
al., 2002; Rédenbeck et al., 2003]. The four examined
scenarios are outlined in Table 1. The model-data mis-
match error was numerically added to the generated
pseudodata by adding to each observation a normally
distributed random number with the variance specified in
Table 3 (see Introduced Error).

3.3. Results

[57] Note that for all the cases, the inferred surface
fluxes will be presented separately for land and oceans,
although they were estimated simultaneously, using a
single inversion. We do this because, when fossil fuel
sources are considered, the magnitude of fluxes over land
is much greater than that over oceans and using a single
scale to present results for both domains would mask
much of the variability in the oceans. Also, although
conditional realizations of the inferred fluxes could be
generated for all examined cases, they will be presented
here only for case B.

3.3.1. Covariance Model Selection

[s8] The solution method follows the algorithm described
in section 2. On the basis of the setup presented in
Table 1, the model of the mean was selected to reflect a
single zone for case A, as described in equation (11), and
two zones for cases B, C, and D, as in equation (12). For
cases B, C, and D, each grid cell needed to be assigned
to either the land or ocean zone. An index of the land
fraction on the required grid was obtained from the TM3
input files [Heimann, 1996]. For grid cells that were
neither fully land nor ocean, the sum of the fossil fuel
and NEP fluxes would tend to dominate the signal
whenever the land fraction in a grid cell was greater
than approximately 10%. Therefore, for cases B and C,
grid cells with a land fraction over 10% were pooled as
land, yielding 1444 land grid cells and 2012 ocean grid
cells. For case D, once the fossil fuel source was assumed
known, the magnitude of the remaining land sources was
similar to that of the ocean sources, and grid cells were
assigned to the land or ocean zone on the basis of the
surface type that constituted more than 50% of the grid
cell. This division yielded a total of 1138 land grid cells
and 2318 ocean grid cells.

[59] The prior covariance matrix was based on an expo-
nential correlation structure, defined as in equation (15).
The structure of the covariance matrix for a single zone
(case A) was therefore as defined in equation (16). For the
two-zone setup (cases B, C, and D), no correlation was
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assumed between land and ocean grid cells. Therefore the
structure of the covariance matrix was

o7 exp(—hy /1) [0]

Q = b
(0] 0(21 exp(—h,/1,)

(40)

where each component is itself a matrix, the subscripts / and
o represent the land and ocean zones, respectively, and h;
and h, are matrices containing the separation distances
between all points in the land and ocean zones, respectively.
The exponential covariance function model and its corre-
sponding variogram are illustrated in Figure 3. As can be
seen from this figure, the exponential model implies that
there is a sill in the overall variance of the process as the
separation distance increases. Functions following an
exponential covariance function have a variability that can
be described by a correlation length and an asymptotic
variance at large separation distances, and they do not have
to have continuous derivatives. These characteristics are
consistent with our understanding of the surface flux
distribution of greenhouse gases. Note also that the
covariance approaches zero for separation distances on the
order of three integral scales /, indicating a correlation length
of approximately 3/.
3.3.2. Optimization of Structural Parameters

[60] The variance of the model-data mismatch and the
parameters needed by the covariance function were consid-
ered unknown and were optimized using the method
described in section 2.3.6. The covariance parameters
estimated for the various cases are presented in Table 2
(see Inferred Parameters). Note that, as will be discussed in
section 4, the land parameters were not inferred for case D.
This table also presents the same statistics, but for the actual
fluxes used in generating the pseudodata (see Actual
Parameters). The spatial correlation structure of the actual
fluxes was determined using a method analogous to that
presented in section 2.3.6 [Kitanidis and Shen, 1996]. Note
that for the actual fluxes, land and ocean structural param-
eters are identical for cases B and C because the same fluxes
were used to generate the pseudodata in both cases and the
same zone definition was used to separate land from ocean.

Model variogram

o
©

o
o))

°
~

o
o

Normalized variogram (v (h) / 02)
and covariance (Q (h) /02)

Covariance function

0 2 4 6 8 10
Normalized separation distance h/L

Figure 3. Normalized exponential covariance and vario-
gram functions.
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Table 2. Structural Parameters Calculated From Real Fluxes and Inferred From Data
Actual Parameters Inferred Parameters
2 2412 —14 3 2 2112 —14 3
Case Zone o°, [molce,/(ms)]” x 10 /, km x 10 0°, [molco,/(m’s)]” x 10 /, km x 10
Case A land + ocean 2.1 1.5 3.7 0.76
Case B land 4.5 1.6 7.2 0.74
ocean 0.140 7.6 0.35 2.1
Case C land 4.5 1.6 7.6 1.01
ocean 0.140 7.6 0.26 4.5
Case D land 0.022 2.4 - -
ocean 0.141 6.7 0.35 2.0

Also, the ocean flux characteristics in case D are almost
identical to those in cases B and C for similar reasons, the
only differences arising from the different definition of land
versus ocean grid cells.

[61] The model-data mismatch variance estimated for the
various cases is presented in Table 3 (see Inferred Error),
along with the actual variance of the error added to the
observation pseudodata in each case (see Introduced Error).
In addition, the mean square error between the available
measurements (which themselves contain the introduced
measurement error) and the observations that would result
from individual conditional realizations of the surface fluxes
obtained from the inversion is also included (see Final
Mismatch). Note that the information presented in the first
two columns of Table 2 and the “Introduced Error” column
of Table 3 would not be available if real data were used.
3.3.3. Solution of Inverse Problem

[62] The inferred parameters in Tables 2 and 3 were used
in the solution of the inverse problem using the methodol-
ogy described in sections 2.3.2—2.3.4.

[63] The recovered surface flux distributions are presented
in Figures 4—7 for cases A to D, respectively. Land and
ocean fluxes were obtained using a single inversion but are
presented separately for visualization purposes, as described
earlier. These figures also illustrate the posterior standard
deviation associated with the best estimates of the surface
fluxes. The actual surface fluxes were presented in Figure 1.
Note that an effort was made to use consistent color scales in
Figures 1, 4, 5, 6, and 7 wherever possible. The color scales
for the ocean flux uncertainty for case A (Figure 4d) and the
land fluxes for case D (Figures 7a and 7b), however, are
different from their counterparts for the other cases.

[64] These results were also aggregated into 22 regions
corresponding to those used in the TransCom3 study
[Gurney et al., 2002], taking into account the area of
individual grid cells to yield a total mass flux per unit time.
These regions are presented in Figure 8. The uncertainty on
this regional scale was determined by summing the entries
(both on and off the diagonal) in the area-weighted posterior
covariance matrix corresponding to grid cells belonging to
each region. In this manner, the effect of inferred correla-
tions or anticorrelations among neighboring grid cells is
taken into account in the uncertainty estimate at the regional
scale. The results of this analysis are presented in Figure 9,
along with the actual fluxes aggregated to the same grid.
3.3.4. Conditional Realizations

[65] As discussed in section 2.3.7, the geostatistical
approach allows for the generation of realizations of the
unknown function that are conditional on all the observa-
tions. This can help in the visualization process because
the conditional realizations represent individual possible

scenarios of the flux distribution. The best estimates pre-
sented in Figures 4—7, on the other hand, represent an
average of all possible scenarios and only include the
features that tend to be common to all these possible
scenarios. As a result, the best estimates are significantly
smoother than the individual conditional realizations, and it
is the realizations, not the best estimates, that have statistical
properties that are consistent with those derived in Tables 2
and 3 (see Inferred Parameters). In addition, conditional
realizations give a visual indication of the structure of the
off-diagonal terms in the posterior covariance matrix V. For
example, correlations and anticorrelations between cells are
visible in the conditional realizations, as certain cells or
regions are seen to vary jointly. Figure 10 presents three
such realizations for case B.

4. Discussion

[66] As can be seen from Figures 4—7, the geostatistical
approach is effective at identifying mesoscale variability in
the surface fluxes in all cases. Variability is clearly visible at
scales much smaller than those specified by large regions
such as those presented in Figure 8. In addition, the
recovered fluxes are in good agreement with the fluxes
used in generating the pseudodata (Figure 1). We do not, in
fact, expect to be able to recover the distribution perfectly,
because of the information loss that inevitably results when
sharp gradients are attenuated by the diffusive nature of
atmospheric transport, the introduced model and measure-
ment error, and the small number of measurements relative
to unknowns. In this hypothetical case, we could easily have
come as close to recovering the exact surface flux distribu-
tion as we would have wanted to, by increasing the number
of measurement locations and decreasing the variance of the
error vector v added to the measurements. This was not the
goal of the exercise, however. Instead, we are interested in
verifying whether the method can reasonably recover sur-
face fluxes given realistic data availability and quality. We
recognize, of course, that although we add random error to

Table 3. Actual Error Variance Added to the Observation
Pseudodata, Model-Data Mismatch Error Inferred From the Data,
and Final Model-Data Mismatch Resulting From the Flux Best
Estimate

Model-Data Mismatch Variance o, ppm>

Final Mismatch

Introduced Error Inferred Error

Case A 1.0 x 1072 0.98 x 1072 1.0 x 1072
Case B 1.0 x 1072 0.98 x 102 0.99 x 102
Case C 25 x 1072 23 x 1072 23 x 1072
Case D 1.0 x 1072 0.91 x 1072 0.92 x 1072
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Figure 4. Recovered flux estimate for case A, in units of pumol/(m?s). (a) Best estimate of land fluxes
(fossil fuels and NEP). (b) Posterior standard deviation of land fluxes (fossil fuels and NEP). (c) Best
estimate of oceanic exchange. (d) Posterior standard deviation of oceanic exchange.

the pseudodata, we are dealing with a case where the
transport model has no consistent bias, whereas model bias
is an additional complicating factor in real-data applications.

[67] In addition to recovering the surface fluxes, the
method is effective at inferring the statistical parameters
of the surface fluxes and at estimating the model-data
mismatch variance. The integral scales and variances
inferred from the observations are similar to those calculated
from the actual surface fluxes, which would be unavailable
in a real-data application (see Table 2). Because we are
trying to infer the statistical properties of the fluxes from
information available from the measurements, we cannot
expect to recover these statistical parameters exactly. The
method can also discern, using the available measurements,
the fact that fluxes from land and ocean regions exhibit very
different variances and integral scales from one another (see
cases B and C). Note that this is a separate issue from the
variance associated with individual measurement locations.
As is clearly visible in Figure 1 as well as in the actual
parameters listed in Table 2, the ocean fluxes exhibit a lower
variance and longer correlation length relative to land

regions. The method is able to discern these differences
from the available data (Table 2, Inferred Parameters). The
method is also set up to estimate the model-data mismatch
variance, which, in this pseudodata example, is known to be
the variance of the error added to the pseudodata observa-
tions. As can be seen from Table 3, the model-data
mismatch is accurately inferred from the data. In addition,
the model-data mismatch resulting from the transport of the
conditional realizations of the surface flux distribution (see
Final Mismatch) is consistent with the inferred model-
data mismatch (and therefore the actual introduced error
variance).

[68] In the presented application, we have chosen to solve
for fluxes over the entire globe, including regions such as
Antarctica and Greenland, which are known to have negli-
gible CO, fluxes. Solving for these regions serves as a good
check to verify that the method and data can identify the fact
that fluxes from these regions are near zero, and this is in
fact the case when looking at Figures 4—7. Clearly, one
could instead enforce the fact that these regions exhibit no
CO, fluxes by not solving for these regions, as was done,
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Figure 5. Recovered flux estimate for case B, in units of pmol/(m?s). (a) Best estimate of land fluxes
(fossil fuels and NEP). (b) Posterior standard deviation of land fluxes (fossil fuels and NEP). (c) Best
estimate of oceanic exchange. (d) Posterior standard deviation of oceanic exchange.

for example, in the TransCom3 study [Gurney et al., 2002]
(see also TransCom3 regions in Figure 8).

4.1. Case A (Figure 4)

[69] In this simplest case, the Earth is considered to
constitute a single zone, with all grid cells tending to a
common single mean value, and with a single set of
statistical parameters describing the deviations of the sur-
face fluxes from this mean. In reality, it is undeniable that
oceanic fluxes tend to display different statistical properties
relative to land fluxes (see Figures la and lc), but it is
interesting that case A still captures many of the features of
the actual fluxes. For example, fossil fuel sources in eastern
North America, Europe, and ecastern Asia are clearly
identified. These flux patterns are statistically significant
even at the grid scale, as can be seen by comparing the flux
intensities (Figure 4a) with the posterior standard deviations
(Figure 4b). Regions of CO, uptake and release are also
recovered in the oceans. The single set of statistical param-
eters recovered for this case tends toward the higher
variance and shorter integral scale characteristic of land

sources (see Table 2). Therefore the recovered oceanic
fluxes tend to exhibit more variance and less correlation
relative to the actual oceanic fluxes (Figures 4c and 4d).
Also, because this setup assumes that all fluxes are corre-
lated, flux patterns cross over land/ocean interfaces. This
can be seen, for example, in the ocean regions adjacent to
eastern North America and Southeast Asia (Figures 4a and
4c). When fluxes are aggregated over the TransCom3
regions (Figure 9), even this simple setup does a reasonable
job of recovering the total regional fluxes. Furthermore, for
this case as well as all the others, the posterior standard
deviations (Figures 4b and 4d) are higher in the Southern
Hemisphere. This is consistent with past studies [e.g.,
Gurney et al., 2002] and is indicative of the sparsity of
the observation network in the Southern Hemisphere.

4.2. Case B (Figures 5 and 10)

[70] Case B differs from case A in that we recognize that
land and ocean regions will have surface fluxes with
different statistical characteristics. The magnitude of the
model-data mismatch error added to the generated measure-
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Figure 6. Recovered flux estimate for case C, in units of pmol/(m?s). (a) Best estimate of land fluxes
(fossil fuels and NEP). (b) Posterior standard deviation of land fluxes (fossil fuels and NEP). (c) Best
estimate of oceanic exchange. (d) Posterior standard deviation of oceanic exchange.

ments is unchanged, with o = 0.10 ppm (6% = 0.01 ppm?).
The first interesting result is that the method is able to
recognize, on the basis of only the sparse atmospheric
measurements, that land and ocean regions display signif-
icantly different statistical properties (see Table 2, Inferred
Parameters). The estimated variance for the land regions is
approximately twentyfold larger than that in the oceans,
which is similar to the actual ratio between these variances
(see Table 2, Actual Parameters). Similarly, a greater integral
scale for the ocean fluxes is also inferred from the measure-
ments. The best estimate for land fluxes (Figure 5a) is
similar to that found in case A, with somewhat more detail
made possible by the slightly larger variance obtained in the
parameter estimation stage. The key flux patterns are again
statistically significant even at the grid scale, as can be seen
by looking at the posterior standard deviations in Figure 5b.
In addition, looking at the conditional realizations in
Figure 10 confirms that features such as the large sources
in eastern North America and western Europe are common
among the realizations and therefore are essential features of
the flux pattern. The oceanic fluxes look very different from

those in case A. No longer bound by statistical parameters
that are more representative of land regions, the best estimate
of the ocean fluxes now has magnitudes and patterns very
similar to the actual fluxes. Also, the land variance estimate
in this case is higher than the single variance estimated in
case A, resulting in a higher posterior standard deviation for
land (Figure 5b). The opposite is true for oceans (Figure 5d).
The release in the tropical South Atlantic and the drawdown
farther south are not recovered to the same extent as they are
present in the actual fluxes, but this is due to the large
uncertainty in that region (see Figures Sc and 5d). In fact,
in observing the conditional realizations (Figure 10), the
release is present in certain realizations. This indicates that
the available data not only do not point to a necessary release
in that region but also do not rule out such a release,
indicating that the region is not well constrained by the
available observations. The conditional realizations in
Figure 10 also reveal some other interesting patterns of
uncertainty and correlation. For example, the land fluxes
in the Northern Hemisphere are fairly consistent throughout
the realizations, but fluxes in South America and southern
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Figure 7. Recovered flux estimate for case D, in units of pumol/(m?s). (a) Best estimate of land fluxes
(NEP only). (b) Posterior standard deviation of land fluxes (NEP only). (c) Best estimate of oceanic
exchange. (d) Posterior standard deviation of oceanic exchange.

Asia vary more significantly. The higher uncertainty in
southern oceanic regions also results in larger variability
between conditional realizations, which is consistent with
the results presented in Figure 5d.

4.3. Case C (Figure 6)

[71] Case C is similar to case B, but the model-data
mismatch artificially added to the generated measurements
has a variance that is 25 times larger, with o = 0.50 ppm
(0% = 0.25 ppm?). Overall, the inversion recognizes that
there is less information in the data used in case C relative to
case B. This can be seen most clearly by noticing that the
uncertainty bounds in Figure 9 are wider in case C relative
to case B. Also, the parameter optimization step was able to
recognize the higher model-data mismatch error present in
this scenario (Table 3). The parameter optimization routine
aims to estimate the covariance parameters representing the
underlying fluxes. However, as the amount of information
decreases (e.g., when the model-data mismatch increases),
small-scale features of the flux distribution can no longer be
reliably identified, and the parameters that are estimated
tend to correspond to those of larger-scale features that can

still be resolved (see Table 2). This is not a problem to the
extent where these parameters are still reasonable represen-
tations of those of the underlying flux patterns, as is the case
here (see Table 2). The best estimates for both the land and
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Figure 8. Definition of 22 TransCom3 regions on a 3.75°
latitude by 5.0° longitude scale.
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Figure 9. Recovered flux estimates aggregated to 22 TransCom3 regions. Circles and error bars
represent aggregated posterior best estimates and standard deviations. Stars represent aggregated fluxes
used in generating the observation pseudodata (see Figure 1).

ocean regions also reflect the increased uncertainty of this
scenario, with the estimates being generally smoother rela-
tive to case B, and some of the smaller-scale features, such
as the strong land flux in the western United States, being
less well resolved.

4.4. Case D (Figure 7)

[72] Case D, finally, assumed that fossil fuel sources are
relatively well constrained from economic statistics and
only the NEP and oceanic exchange are estimated. For this
case, as can be seen in Figure 1b, the only significant yearly
averaged net land fluxes are in central South America and in
southeastern Africa. As can already be seen from the
posterior standard deviations for cases A, B, and C
(Figures 4b—6b), these regions are very poorly constrained
by the observation network. The result is that for case D, the
optimization routine failed to converge when the statistical
parameters of the model-data mismatch and the variance
and integral scale of the land and ocean regions were to be
identified. In effect, this means that the measurements do
not contain information about the statistical structure of the
land fluxes on a yearly basis. To circumvent this problem,
the land region was assigned statistical parameters (variance
and integral scale) equal to those of the actual fluxes (see
Table 2, case D, Land, Actual Parameters). The optimization
routine was then used to identify the statistical character-
istics of the ocean fluxes and the model-data mismatch
based on the atmospheric measurements. In a case involving
real data the exact variance and integral scale would not
have been known for the land regions but could likely have
been estimated from outside information. Again as a result
of the sparse sampling in the Southern Hemisphere, the best

estimate of the land fluxes is much more uniform than the
actual fluxes for this case. Generally, higher sources are
observed in South America and South Africa, and the
biggest sinks are found in Siberia, consistent with the actual
fluxes. Averaged over the TransCom3 regions, in fact, this
case recovers regional land flux averages well. In the
oceans, case D performs very well overall. With a lower
portion of the unknown signal being attributed to land
fluxes, the inversion is able to pinpoint oceanic fluxes
extremely well. The patterns observed in the recovered
oceanic fluxes (Figure 7¢) are remarkably similar to those
in the actual fluxes (Figure 1c).

[73] Case D actually represents a particularly difficult set
of fluxes to recover. The NEP component of the land
surface fluxes is larger in any given month than its annual
average. Therefore, when monthly inversions are per-
formed, the signal is stronger than that which was used to
recover the land surface fluxes in case D. This observation
raises questions about the precision with which annual NEP
fluxes can be inferred from monthly inversions, however,
because the underlying annual signal can be very small, as
was the case in this pseudodata application.

5. Conclusions

[74] This work presents the first application of a geo-
statistically based inverse modeling method to recovering
the surface fluxes of atmospheric constituents. Although
geostatistical methods were developed in the context of
subsurface applications, they are in fact applicable to many
problems where spatial or temporal correlation is expected
in the function to be estimated. The nature of geostatistical
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methods makes them particularly applicable to grid-scale
inversions, which have been difficult to constrain by tradi-
tional Bayesian methods unless these methods took into
account spatial correlation [Rodenbeck et al., 2003]. The
geostatistical approach to inverse modeling avoids certain
problems associated with the application of traditional
Bayesian approaches at both regional and grid scales.
Because the geostatistical approach does not rely on a prior
estimate of fluxes, the method allows each component of
the inversion to be data-driven. On the basis of the obtained
results, it appears that even a subset of the current CMDL
network may be sufficient to constrain flux distributions at a
scale much smaller than that allowed in typical Bayesian

inversions (where the Earth is subdivided into a small
number of regions) as long as spatial correlation is taken
into account and the transport model errors are not biased
and not overwhelmingly large.

[75] The method was applied to the recovery of surface
fluxes from CO, pseudodata. Three inversions involved the
estimation of fossil fuel sources along with other land and
oceanic fluxes, while one inversion considered the fossil
fuel sources as known. The effect of model-data mismatch
error and the use of a single zone versus separate land and
ocean zones were also investigated. The method performed
well in all cases, yielding best estimates consistent with the
fluxes used to generate the pseudodata and confidence
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intervals that represented the precision of the best estimates
well. In the case where the fossil fuel sources were assumed
known, the remaining land fluxes (representing annually
averaged net ecosystem production) were very small and
not well constrained by the selected observation network. In
that case, the method was not able to estimate the correla-
tion characteristics of the flux distribution. When the
correlation parameters over land were specified, however,
the method performed well.

[76] The main conclusion that can be drawn from this
study is that geostatistical inverse modeling methods show
great promise in their application to grid-scale atmospheric
inversions. The current study has focused on a pseudodata
application, in an effort to isolate certain characteristics of
the methodology and investigate the effect of various
parameters in a setup where the surface fluxes are known.
Future applications will involve the application of the
presented methodology to the estimation of surface fluxes
of various gases using available observations. Because
geostatistical methods do not use a prior estimate of fluxes
in the inversion, their application will shed light on the
extent to which previous inversion studies have been
affected by the choice of prior flux patterns.

[77] There are several possible extensions to the methods
presented here that would make them applicable to a wider
range of atmospheric problems. The presented methods can
be extended to include correlations in time in addition to
space, which should prove to be of particular interest in
inversions on smaller timescales, such as the estimation of
monthly or weekly fluxes. Also, more complex models of
the mean could be applied to incorporate correlations
between flux intensities and other parameters such as
vegetative cover, population, seasonality, etc. In addition,
these methods could potentially be merged with traditional
Bayesian inverse modeling methods, allowing for the use of
both a geostatistical prior and a prior specifying a first
estimate of surface fluxes.

[78] Finally, as the number of observations used in
inversions increases and the spatial and temporal scale at
which we want to estimate fluxes continues to decrease, the
numerical costs of the direct geostatistical approach will
grow in the same way as those of classical Bayesian inverse
modeling. As such, the geostatistical approach may even-
tually need to be combined with specialized numerical
minimization methods that are well equipped to deal with
such large systems.
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