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Single-crystal X-ray diffraction (XRD) 

At Sector 13 of Advance Photon Source (APS), monochromatic X-ray beam with a 

wavelength of 0.3344 Å was collimated to 5×5 µm2 at beamline ID-D, and to 15×5 µm2 

at beamline BM-D. X-ray beam with a wavelength of 0.3757 Å was collimated to 15×5 

µm2 at beamline 16-BM-D. In order to collect XRD signals of the sample over a large 

aperture, we used a cubic boron nitride (cBN) seat on the upstream side and tungsten-

carbide seat with 60° opening on the downstream side. 

In the first experiment (Run #1), two Fe7C3 single crystals, along with ruby 

spheres as pressure markers [Mao et al., 1986], were loaded between one pair of 300 µm-

flat diamonds. In the second experiment (Run #2), one Fe7C3 single crystal and gold 

power as pressure markers [Takemura and Dewaele, 2008] were loaded between one pair 

of 100/300-µm beveled diamonds. The setup of the third experiment (Run #3) was 

similar to Run #1. In all three runs, neon served as pressure medium and the primary 

pressure marker  [Dewaele et al., 2008] and was loaded into the DACs using the gas 

loading system at GeoSoilEnviroCARS (Sector 13) of Advanced Photon Source (APS), 

Argonne National Laboratory (ANL). At pressures between 19 and 76 GPa in Run #1, the 

crystals were heated up to 1200 K for stress release, using a double-sided laser system. 

The data were processed using the GSE_ADA and RSV software [Dera et al., 

2008]. Typically 13-34 reflections of Fe7C3 were identified and used to extract the lattice 

parameters (Fig. S1, Fig. S3, and Table S1). The unit-cell volume data of pm- and nm-

Fe7C3 were fitted using the 3rd-order Birch-Murnaghan (BM) equation of state (EOS), 
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and Vinet EOS, 
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where K0T, K0′, and V0 are isothermal bulk modulus, its pressure derivative, and volume at 

1 bar, respectively (Table S2). 

Synchrotron Mössbauer spectroscopy (SMS) 

Two SMS spectra were collected in Run #1, at 66 (±2) GPa and 55 (±1) GPa (on 

decompression path). SMS measurements at pressures between 1 bar and 8.6 (±0.6) GPa 

were conducted in Run #2 prior to the XRD measurements. The CONUSS program was 

used to fit the SMS spectra and extract the magnetic hyperfine parameters [Sturhahn, 

2004]. We took the calculated local magnetic moments of the three Fe sites from Fang et 

al. [2009] as the initial values to fit the spectrum at ambient condition. After fitting the 

quadrupole splittings, isomer shifts and site proportions, the local magnetic moments 

were allowed to change. The procedure was repeated until a good fit was obtained, as 

indicated by the chi-square value. Above 7 GPa, all the SMS data can be adequately 

fitted with one Fe site. The hyperfine parameters are listed in Table S3 and plotted in 

Figure S2. 
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Fig. S1. Representative measured single-crystal X-ray diffraction (XRD) patterns (upper 

and lower left) and projections of the Fe7C3 crystal structure in the reciprocal space along 

different directions (lower right) in Run #1 (a) and Run #2 (b). Red labels in the 

measured patterns correspond to Miller indices (hkl) of the reflections. In the reciprocal 

space projections, special directions are denoted whereas general directions are not 

labeled, the top left of which is the projection perpendicular to the X-ray beam. 
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Fig. S2. Quadruple splitting values of various iron sites in Fe7C3 as a function of pressure. 

The sizes of the solid circles correspond to site proportion (Table S3). 

 

 

Fig. S3. Lattice parameters a and c of Fe7C3 at 300 K (solid circles) and BM EOS fits to 

a3 and c3 of the pm-phase (blue dotted lines) and nm-phase (red solid lines). 
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Table S1. Unit-cell parameters and volume of Fe7C3 at 300 K. 
Run PNe

a V a c Pruby
b PAu

c 

  (GPa) (Å3) (Å) (Å) (GPa) (GPa) 

#1 0.0 (0.0) 186.784 (0.706) 6.888 (0.006) 4.545 (0.011) 0.0 (0.0)   

   184.609 (0.336) 6.863 (0.001) 4.526 (0.009) 2.2 (0.0)   

   177.585 (0.361) 6.791 (0.001) 4.447 (0.015) 9.6 (0.0)   

   175.401 (0.561) 6.771 (0.002) 4.418 (0.014) 13.1 (0.6)   

 19.1 (0.6) 171.562 (0.237) 6.715 (0.001) 4.394 (0.006) 20.2 (0.2)   

 23.8 (0.5) 169.472 (0.587) 6.700 (0.002) 4.360 (0.015) 24.0 (0.1)   

 30.4 (0.6) 166.873 (0.430) 6.670 (0.002) 4.331 (0.011) 30.3 (0.3)   

 36.0 (0.7) 164.664 (0.502) 6.645 (0.002) 4.306 (0.013) 35.6 (0.6)   

 43.6 (0.9) 162.267 (0.913) 6.617 (0.002) 4.280 (0.024) 42.3 (0.6)   

 49.2 (1.0) 160.561 (0.985) 6.595 (0.003) 4.263 (0.026) 48.0 (0.5)   

 52.5 (1.6) 159.174 (0.717) 6.584 (0.002) 4.240 (0.021) 50.8 (0.5)   

 57.8 (1.2) 157.895 (0.675) 6.557 (0.003) 4.241 (0.029) 55.3 (0.5)   

 66.0 (1.5) 155.130 (0.633) 6.535 (0.002) 4.195 (0.015) 61.9 (0.5)   

 46.6 (1.2) 161.110 (2.074) 6.595 (0.004) 4.277 (0.021) 45.9 (1.0)   

 38.3 (1.0) 163.939 (1.033) 6.639 (0.003) 4.295 (0.048) 37.9 (1.1)   

 62.9 (1.3) 155.437 (0.597) 6.545 (0.003) 4.190 (0.021) 57.9 (0.6)   

 67.7 (1.4) 154.168 (0.815) 6.514 (0.004) 4.195 (0.030) 70.1 (0.4)   

 75.5 (1.6) 151.895 (0.808) 6.488 (0.003) 4.167 (0.027) 74.0 (0.4)   

#2 26.2 (0.5) 168.564 (0.158) 6.682 (0.003) 4.360 (0.003)   26.4 (0.2) 

 53.6 (1.4) 159.448 (0.456) 6.577 (0.010) 4.257 (0.008)   51.2 (0.8) 
 70.1 (2.0) 153.718 (0.419) 6.511 (0.021) 4.187 (0.018)   66.8 (0.9) 
 75.8 (1.6) 151.997 (0.176) 6.485 (0.003) 4.173 (0.004)   76.4 (0.6) 
 78.8 (1.6) 150.933 (0.196) 6.473 (0.004) 4.159 (0.004)   78.2 (0.6) 
 86.0 (1.8) 148.946 (0.146) 6.444 (0.003) 4.142 (0.004)   86.6 (0.6) 
 91.3 (1.9) 147.572 (0.363) 6.425 (0.009) 4.128 (0.006)   93.2 (0.8) 
 100.5 (2.2) 145.059 (0.286) 6.400 (0.007) 4.090 (0.005)   100.6 (0.8) 
 105.8 (2.3) 143.611 (0.218) 6.385 (0.006) 4.068 (0.009)   104.1 (0.9) 
 110.3 (2.8) 142.659 (0.285) 6.363 (0.007) 4.068 (0.006)   110.8 (1.0) 
 113.3 (2.5) 141.888 (0.283) 6.353 (0.007) 4.060 (0.007)   111.7 (1.3) 
 120.1 (3.0) 141.034 (0.591) 6.347 (0.012) 4.043 (0.016)   120.1 (1.2) 
 133.7 (3.6) 138.034 (0.489) 6.313 (0.014) 3.999 (0.014)   128.6 (1.1) 
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Run PNe
a V a c Pruby

b PAu
c 

  (GPa) (Å3) (Å) (Å) (GPa) (GPa) 
 132.7 (2.9) 138.232 (0.286) 6.301 (0.005) 4.021 (0.007)   131.6 (1.1) 
 137.7 (3.7) 136.407 (0.256) 6.265 (0.006) 4.013 (0.008)   135.6 (0.9) 
 138.6 (3.3) 136.934 (0.252) 6.291 (0.007) 3.995 (0.007)   138.3 (1.2) 
 140.0 (5.0) 136.003 (0.251) 6.270 (0.007) 3.995 (0.008)   140.8 (1.0) 
 147.7 (4.7) 134.428 (0.227) 6.241 (0.006) 3.985 (0.006)   147.5 (1.2) 
 153.6 (4.4) 134.010 (0.227) 6.246 (0.007) 3.966 (0.007)   154.5 (0.8) 
 155.7 (5.4) 133.524 (0.203) 6.237 (0.006) 3.963 (0.005)   155.2 (0.9) 
 158.0 (6.5) 132.885 (0.202) 6.225 (0.009) 3.959 (0.005)   158.1 (0.9) 
 163.7 (4.8) 131.477 (0.134) 6.202 (0.003) 3.947 (0.003)   165.0 (1.4) 
 167.4 (3.9) 132.232 (0.200) 6.210 (0.030) 3.960 (0.032)   162.7 (1.1) 
#3 4.8 (0.1) 181.459 (0.167) 6.845 (0.001) 4.472 (0.003) 4.8 (0.1)     
Note: Numbers in parentheses are one standard deviations. Uncertainties in the lattice 

parameter c in Run #2 are significantly smaller than that in Run #1 because Fe7C3 crystal 

was orientated with [110] direction nearly perpendicular to the diamond culets in Run #2. 

a Pressure was calculated using the EOS of neon [Dewaele et al., 2008].  

b Pressure was calculated using the Ruby fluorescence calibration [Mao et al., 1986]. The 

compression data using the ruby pressure scale are in good agreements with those using 

MgO pressure scale from powder XRD measurements by Nakajima et al. [2011] up to 

71.5 GPa. The pressures from neon pressure scale are generally larger than those from 

ruby and MgO by 1-3 GPa from 40 to 70 GPa, resulting in a discrepancy between our 

volume data and those from Nakajima et al. [2011] within this pressure range. 

c Pressure was calculated using the EOS of gold [Takemura and Dewaele, 2008]. 
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Table S2. Equation of state parameters of Fe7C3. 

Phase V0 (Å3) K0 (GPa) K′ EOS type Notes 

pm-Fe7C3 184.69(16) 201(12) 8.0(1.4) BM3 7-53 GPa, this study 

pm-Fe7C3 184.64(16) 203(11) 7.7 (1.1) Vinet 7-53 GPa, this study 

nm-Fe7C3 182.87(38) 307(6) 3.2(1) BM3 53-167 GPa, this study 

nm-Fe7C3 182.92(42) 309(8) 3.1(2) Vinet 53-167 GPa, this study 

fm-Fe7C3 186.4(1) 201(2) 4.0 (fixed) BM3 0-18 GPa, Nakajima et al. [2011] 

BM3: 3rd-order Birch-Murnaghan EOS 
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Table S3. Magnetic hyperfine parameters of Fe7C3. 

P (GPa) Site # Site Proportion 

(%) 

Quadrupole Splitting 

(mm/s) 

Isomer Shift 

(mm/s) 

Hyperfine Field 

(T) 

0 1 57 0.14(1) 0a 15.9(1) 

 2 25 0.40(3) 0.006(8) 11.7(1) 

 3 18 0.82(2) 0.03(1) 20.6(1) 

5.5(1) 1 88 0.13(1) 0a 15.4(1) 

 2 12 0.35(1) -0.28(2) 10.6(1) 

7.5(3) 1 100 0.38(1) - 0 

8.6(6) 1 100 0.45(1) - 0 

55 (1) 1 100 0.63(1) - 0 

66 (2) 1 100 0.65(1) - 0 

Numbers in parentheses indicate the uncertainties in the last digit. 

a The isomer shift is fixed to zero for this site. 
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