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[1] Contaminant mass discharge across a control plane downstream of a dense
nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for
the assessment of the effectiveness of source zone treatment technologies and for the
development of risk-based source-plume remediation strategies. However, too often the
uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In
this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify
its associated uncertainty using multilevel transect measurements of contaminant
concentration (C) and hydraulic conductivity (K). The approach adapts the p-field
simulation algorithm to propagate and upscale the uncertainty of mass discharge from the
local uncertainty models of C and K. Application of this methodology to numerically
simulated transects shows that, with a regular sampling pattern, geostatistics can provide
an accurate model of uncertainty for the transects that are associated with low levels of
source mass removal (i.e., transects that have a large percentage of contaminated area).
For high levels of mass removal (i.e., transects with a few hot spots and large areas of

near-zero concentration), a total sampling area equivalent to 6~7% of the transect is
required to achieve accurate uncertainty modeling. A comparison of the results for
different measurement supports indicates that samples taken with longer screen lengths
may lead to less accurate models of mass discharge uncertainty. The quantification of mass
discharge uncertainty, in the form of a probability distribution, will facilitate risk
assessment associated with various remediation strategies.
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1. Introduction

[2] The remediation of dense nonaqueous phase liquid
(DNAPL) contamination in the subsurface raises significant
technical and nontechnical challenges. When released into
the subsurface, relatively large amounts of free phase
DNAPL can be trapped within the pores of formations
and form a “source zone” that continuously dissolves into
the water, creating a persistent long-term plume down-
gradient. The complexity of the source zone architecture
[Sale and McWhorter, 2001] and the heterogeneity of the
subsurface make restoration of the contaminated ground-
water to drinking water standards or maximum contaminant
levels (MCL) currently impractical within a reasonable
time frame [U.S. Environmental Protection Agency (EPA),
2004, 2003; Stroo et al., 2003]. Conventional “pump and
treat” technology is typically not effective to remedy
DNAPL contamination [Mackay and Cherry, 1989; U. S.
National Research Council (NRC), 1994]. Over the past
two decades, innovative remediation technologies [e.g.,
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Pennell and Abriola, 1997; Reddy et al., 1995; Udell,
1997; Basel and Nelson, 2000] have been demonstrated
capable of removing considerable amounts of mass [NRC,
2004] from source zones within a relatively short time
frame. However, even the small amounts of mass left in
the subsurface continue to serve as long-term sources
adversely impacting down-gradient water quality [U. S.
EPA, 2003; Sale and McWhorter, 2001]. Under these
conditions, the traditional metric, point measurement of
contaminant concentration, is insufficient to evaluate of the
effectiveness of partial mass removal [Interstate Technology
and Regulatory Council (ITRC), 2004; Stroo et al., 2003].
Another potential performance metric, the percentage of the
source mass removed (mass removal efficiency), may not be
well correlated to the impact of the source zone on the
down-gradient plume and is not easily predictable a priori
[Lemke et al., 2004; Lemke and Abriola, 2003; Rao et al.,
2002; Sale and McWhorter, 2001].

[3] Mass discharge, defined as the contaminant mass per
unit time ([M/T]) migrating across a hypothetical control
plane orthogonal to the mean groundwater flow, has been
proposed as a more intuitive metric [/7RC, 2004; Soga et
al., 2004; U. S. EPA, 2003; Stroo et al., 2003; Rao et al.,
2002; Freeze and McWhorter, 1997, Feenstra et al., 1996]
because it is closely related both to the source mass removal
efficiency and to the down-gradient plume. Since numerical
modeling studies have yielded different conclusions relating
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to mass discharge reduction behavior after partial source
mass removal, it has been difficult to define an acceptable
remediation level in terms of mass removal efficiency. Thus
available field information on mass discharge pre- and
postremediation has become extremely valuable. Currently,
there are three major mass discharge measurement technol-
ogies used in the field: the Multilevel Sampling method
(MLS), the Integral Pumping Test (IPT) method [Schwarz
et al., 1998; Holder et al., 1998; Bockelmann et al., 2001;
Bockelmann et al., 2003], and the Passive Flux Meter
(PFM) method [Hatfield et al., 2002, 2004]. Unfortunately,
regardless of the measurement technology applied, mass
discharge measured in the field is subject to great uncer-
tainty [U. S. EPA, 2004; ITRC, 2004; Soga et al., 2004;
Stroo et al., 2003; Einarson and Mackay, 2001; Wilson
et al., 2000].

[4] Contaminant mass discharge across a control plane is

typically computed as > Ciq;4; [e.g., Borden et al., 1997,

Einarson and Mackay, l2001], where ¢; is the flow rate at
location i; C; is the corresponding contaminant concentra-
tion, and A; is the weight for C,q;, which usually takes the
value of the area corresponding to C;q;. Because C; and ¢;
are local measurements (C; is inversely calculated in the IPT
method, and Cyq; is directly measured in the PFM method),
to obtain the mass discharge across the entire control plane,
these measurements must be interpolated and aggregated. In
previous studies, researchers have used a number of inter-
polation methods and aggregation sequences [Kiibert and
Finkel, 2006]. In many studies, C; is interpolated, while g; is
assumed to be uniform [e.g., Semprini et al., 1995; Borden
et al., 1997; King et al., 1999; Kao and Wang, 2001]. When
assuming a uniform ¢;, some studies aggregate C; along
monitoring wells first and then among wells [e.g., Kao and
Wang, 2001]. The Thiessen Polygon method is the most
common interpolation technique [e.g., Borden et al., 1997;
Einarson and Mackay, 2001; Kao and Wang, 2001], where
the weight 4; takes the value of the influence area (in the
shape of a polygon) of each observation. Semprini et al.
[1995] used a more advanced nonlinear geostatistical esti-
mator to interpolate C; with the assumption of a uniform
flow field. Regardless of the method applied, the calculated
mass discharge is always subject to uncertainty arising from
interpolation and aggregation processes, even if the mea-
surement errors are negligible.

[5] Although the uncertainty of field-estimated mass
discharge is beginning to be widely acknowledged [e.g.,
Jarsjo et al., 2005; Zeru and Schafer, 2005; Hatfield et al.,
2004], there have been few attempts to quantify mass
discharge uncertainty. Only one case study [Wilson et al.,
2000] reported a few statistics (e.g., mean, 95% confidence
interval) of variables (e.g., hydraulic conductivity, concen-
tration) for the mass discharge estimation. This study was
based, however, on a classical statistical approach which
may not be appropriate when the data are correlated in
space. In addition, the classical way of expressing uncer-
tainty, using mean and variance, fully characterizes the
uncertainty space of a random variable only for particular
distribution functions (e.g., Gaussian assumption).

[6] This paper adopts a geostatistical stochastic simula-
tion algorithm (p-field simulation) to propagate the uncer-
tainty of mass discharge in a nonparametric way; that is, the

LI ET AL.: UNCERTAINTY ANALYSIS OF SOURCE

W06436

probability distribution of the mass discharge, not just a few
statistical moments, is provided. Joint conditional simula-
tion of hydraulic conductivity (K) and contaminant concen-
tration (C) allows the generation of multiple, equally
probable realizations of local mass flux ([M/T- .L*]), which
can then be upscaled to provide the probability distribution
of mass discharge ([M/T]). As intermediate results, realiza-
tions of mass flux can also be used in decision-making
processes, such as mapping the probability that the local
mass flux exceeds a given threshold. The inputs of this
approach are measurements of C and K from multilevel
samplers. These measurements do not need to be collocated
and the measurement supports (volume that one sample
represents) can be different for the two attributes. C and
K measurements are, thus, processed separately in this
approach, and the results of the geostatistical analysis are
then combined and aggregated [Heuvelink and Pebesma,
1999]. Direct measurements of mass flux from flux meter
observations could be processed in a similar way (equiva-
lent to calculating Cjqg; first, followed by an aggregation) to
quantify the uncertainty of mass discharge estimates. This
paper focuses on the MLS method, however, because we
recognize that the spatial patterns of C and K may be quite
different, and hence, the uncertainty analysis may benefit
from the spatial information of both C and K.

[7] The approach presented in this paper is essentially a
Monte Carlo simulation analysis of the uncertainty resulting
from both subsurface geologic and source zone saturation
variability [Beck, 1987]. The paper first presents the meth-
odology that combines a series of specific geostatistical
methods (e.g., indicator kriging, p-field simulation) for the
uncertainty analysis of mass discharge. Then key factors
(e.g., sampling density, screen length, etc.) that control the
magnitude of the uncertainty are explored on the basis of the
application of the approach to 48 numerically generated
transects. The paper ends with an examination of current
practice in mass discharge sampling/monitoring in light of
these findings.

2. A Geostatistical Approach for Uncertainty
Analysis of Mass Discharge

[8] In the geostatistical approach, C and K are modeled as
spatial random variables, and the mass discharge across the
control plane is estimated as the following linear combina-
tion of point estimates of mass flux:

N
M= Z_Cf x K; x gradient (1)
i=1

[9] Here C; and K; are the interpolated concentration and
hydraulic conductivity values at location i, respectively. N is
the number of nodes on the sectionalized control plane. The
longitudinal gradient is considered a constant across the
control plane because it generally varies little on a plane that
is orthogonal to the groundwater flow. Note that this method
estimates a time snapshot of mass discharge and its uncer-
tainty; therefore, it must be applied either at a steady
concentration distribution or on concentration measurements
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taken at particular times (e.g., before and after remediation) to
illustrate the evolution of mass discharge.

2.1.

[t10] The computation of mass discharge according to
equation (1) relies on the interpolation of C and K measure-
ments at N unsampled locations on a control plane. Each
estimate is necessarily uncertain and the associated error
(thus, the uncertainty) will impact the accuracy of the mass
discharge estimate. The uncertainty of mass discharge can
be assessed by propagating the uncertainty attached to the
estimated C and K values through equation (1) (Monte
Carlo simulation). In this paper, we propose to use a
simulation-based approach [Goovaerts, 2001] to model the
uncertainty relating to the spatial distribution of C and K
values within the control plane and to propagate it through
equation (1) to obtain the mass discharge uncertainty. The
basic idea is to generate multiple, equally probable realiza-
tions of local mass flux at each location i on the control
plane: {My), i=1,.,N; [l =1,..L}. Each realization of
simulated mass flux values can then be aggregated over the
control plane, yielding a set of L simulated mass discharge
values that empirically define the probability distribution of
mass discharge. The probability distribution fully character-
izes the uncertainty space because it provides the probabil-
ity that the true value of the mass discharge is no greater
than any given mass discharge threshold. Local mass flux
values, M,%]), are computed as the product of collocated K
and C values, K and C!”, that need to be simulated jointly
in order to account for their potential correlation.

2.2. Joint Simulation of K and C Fields

[11] Methods to simulate random fields jointly can be
broadly classified into two main categories: the spectrum-
based approach and the covariance-based approach. Spectrum-
based approaches jointly generate cross-correlated random
fields with the Discrete Fourier Transform (DFT) algorithm
or the Fast Fourier Transform (FFT) algorithm [Robin et al.,
1993; Gutjahr et al., 1994; Ruan and McLaughlin, 1998].
The common limitation of these methods is that the
generated random fields are Gaussian, because of the
derivation processes [Gutjahr et al., 1994]. In addition, a
transform function between variables (e.g., based upon a
physical relationship) is needed to obtain the cross spectrum
function, and multivariate normality is usually assumed
[Gutjahr et al., 1994; Robin et al., 1993]. Theoretically,
covariance-based approaches can jointly simulate two or
more variables by directly simulating a vectorial random
function using sequential simulation algorithms such as
Sequential Gaussian Simulation (SGS) [Gomez-Herndndez
and Journel, 1993; Verly, 1993] or Sequential Indicator
Simulation (SIS) [Gomez-Herndandez and Srivastava,
1990; Goovaerts, 1997]. In these methods, the difficulty
resides in the inference and modeling of the cross
covariance matrix. Not only might there not be enough
data for the reliable inference of each covariance function,
but all the direct and cross covariance functions must be fit
jointly to ensure that the linear model of coregionalization
(LMC) is permissible [Goovaerts, 1997]. The implementa-
tion becomes even more difficult when Gaussian-related
algorithms are not suitable. The indicator-based algorithm
requires the joint modeling of a (cross) covariance matrix
that not only includes each variable, but also all the
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thresholds for each variable, a tedious and impractical task.
Note that for both spectrum-based and covariance-based
approaches, an alternative to the direct simulation of
correlated variables using a cross covariance matrix or
cross spectrum function is to separately simulate a set of
independent factors [i.e., factors obtained through principal
component analysis (PCA) or minimum/maximum auto-
correlation factors (MAF)] from which the original
variables can be reconstituted [Luster, 1985; Desbarats
and Dimitrakopoulos, 2004].

[12] The approach proposed herein is covariance-based. It
alleviates the cross covariance modeling effort using the
method introduced by Almeida and Journel [1994] whereby
a hierarchy of variables is defined and then each variable is
simulated in turn. This method is built on the concept of
collocated cokriging and the Markov-type approximation:
the collocated higher ranking datum Z; (u) prevails over
(screens) the influence of any more distant data Z; (u + h) on
the currently simulated data Z,(u) (lower ranking). Here u is
the location vector, and h is the displacement. This hypoth-
esis greatly simplifies the modeling step at the expense of no
control on the cross covariance at |h| > 0. Another limitation
is the underlying multiGaussian assumption [4/meida and
Journel, 1994; Grimmet and Stirzaker, 2001]. Other cross
covariance modeling methods are available, such as least
squares techniques [Goulard and Voltz, 1992], FFT
approaches [Yao and Journel, 1998], and modified MAF
techniques [Vargas-Guzman, 2004]; see references for the
discussion of their advantages and limitations.

2.3. The p-Field Simulation Approach

[13] In this paper the probability-field simulation,
commonly referred to as ‘p-field’ simulation, is adopted
to jointly simulate contaminant concentration and hydraulic
conductivity. The p-field simulation is a popular algorithm
introduced by Srivastava [1992] and further documented
by Froidevaux [1993]. Journel [1995] showed that theo-
retically, the univariate and bivariate statistics of the p-field
simulated values are correct in the absence of any local
conditioning data (i.e., sample data). The effectiveness of
this algorithm has been demonstrated in many field appli-
cations [e.g., Goovaerts, 2002; Saito and Goovaerts, 2002;
Painter, 2001; Yao and Chopra, 2000; Mao and Journel,
1999; Dungan, 1998]. Unlike sequential simulation algo-
rithms, the p-field simulation algorithm separates the task of
constructing conditional cumulative distribution functions
(ccdfs) from the task of covariance reproduction by using
autocorrelated probability values (p values) to sample the
preconstructed ccdfs. Thus literally any algorithm can be
used to construct ccdfs, and the spatial structure of the
target variable is imparted from the spatial structure of
the set of p values, known as the p field. The simulation
proceeds as follows: (1) build ccdf model at each location
using any appropriate algorithm (e.g., indicator or multi-
Gaussian kriging); (2) generate unconditional realizations
of autocorrelated probability values (p field) with a uniform
marginal distribution and covariance structure of the
uniform transform of the original variable; (3) generate
conditional realizations of the original variable by sam-
pling the ccdf models using the corresponding simulated
probability at each location. In this paper, ccdfs were
constructed using the indicator-based approach, and the
Markov-type hypothesis was used to jointly simulate
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Samples of hydraulic
conductivity
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modeling
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Local uncertainty (ccdf) of
hydraulic conductivity field
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Local uncertainty (ccdf) of
concentration field

Correlated p-field
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p-field for p-field for hydraulic
concentration conductivity

p-field simulation
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Multiple, equally probable realizations of the spatial
distribution of local mass flux map along the control

plane

Probability distribution of
overall mass discharge

Figure 1. Flowchart of the geostatistical approach for
uncertainty analysis of mass discharge using multilevel
transect data.

“p-field pairs” for C and K, where the p values are
derived from normal scores generated using sequential
Gaussian simulation [Goovaerts, 1997].

2.4. The Approach Flowchart

[14] As shown in Figure 1, the proposed approach com-
prises four major steps: (1) model the local uncertainty
(ccdfs) of C and K using indicator kriging; (2) generate
unconditional, correlated p-field pairs and use them to
sample the ccdfs of C and K; (3) propagate the uncertainty
of local mass flux using the sampled C and K values (Monte
Carlo simulation) and generate realizations of the spatial
distribution of local mass flux within the control plane; and
(4) upscale the local mass flux realizations to generate the
probability distribution of the mass discharge across the
entire control plane.

[15] Local uncertainty modeling of C and K is achieved
by indicator kriging, which does not assume any type or
shape for the probability distribution of a random variable
(nonparametric approach). The ccdf is modeled through a
series of thresholds that partitions the range of variation of
the physical attribute [Goovaerts, 1997]. The joint simula-
tion algorithm proposed by Almeida and Journel [1994] is
adopted to generate correlated p-field pairs. In order to
avoid artificially defining a hierarchy between C and K, the
first p field (for either C or K) is generated through SGS
unconditionally. This p field serves as soft information to
cosimulate the second p field using collocated cokriging and
the Markov-type approximation. The multiple, equally
probable realizations of p-field pairs are used to sample
the ccdfs of C and K to generate realizations of C, K.
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Multiple realizations of C and K are then incorporated into
equation (1) to simulate local mass flux. Aggregation of one
local mass flux realization results in one mass discharge
realization (a single value). The ensemble of simulated mass
discharges provides the probability distribution of the
overall mass discharge across the entire control plane.

3. The Synthetic Data Sets

[16] In the field, it is impossible to measure the “true
value” of the mass discharge across a control plane.
However, the true value should be known to evaluate the
quality of the modeled mass discharge uncertainty. There-
fore numerically simulated transects were constructed on
the basis of a real field site [Abriola et al., 2005]. These
transects served as the reference fields that provide
exclusive information to test the approach.

[17] The geostatistical approach presented here was tested
on 48 reference fields, which were provided by Lawrence
Lemke [Lemke et al., 2004] and John Christ [Christ et al.,
2005, 2006]. The generation process was designed to
produce physically realistic plume transect data associated
with heterogeneous source zones. Field sample data were
obtained from the Bachman road site, MI [Abriola et al.,
2005], where the perchloroethylene (PCE)-contaminated
aquifer is composed of relatively homogeneous glacial
outwash sand. The Kozeny-Carman hydraulic conductivity
estimates varied from 1 to 48 m/d, with a lognormal
variance of 0.29. Representative statistics such as histo-
grams and semivariograms were calculated to construct
three-dimensional realizations of the formation, where all of
the realizations were conditional to the sample data and the
calculated statistics [Lemke et al., 2004]. The source zones
generated from two-dimensional simulations of hypothetical
PCE infiltration and entrapment were analyzed to select
representative three-dimensional formation realizations,
which were then used to generate three-dimensional source
zones using the multiphase simulator University of Texas
Chemical Compositional Simulator (UTCHEM) [Lemke et
al., 2004; Christ et al., 2005]. After this step, 16
representative source zones were used as initial inputs for
a modified version of MT3D [Parker and Park, 2004] to
simulate mass recovery (dissolution) processes and the
evolution of the downstream plume [Christ et al., 2006].
The three-dimensional domain for this mass recovery
simulation was 7.9248 m long (x) by 7.9248 m wide ()
by 9.7536 m deep (z). The initial spill was at the center of
the top “x-y”” plane (“x” is the groundwater flow direction).
The resolution of the hydraulic conductivity field was
0.3048 m by 0.3048 m by 0.3048 m, which is based upon
the measurement support of the field data. The resolution
for the concentration field was 0.3048m (x) by 0.3048m (y)
by 0.0762m (z). For more details regarding the synthetic
data set, please refer to the studies by Lemke et al. [2004]
and Christ et al. [2005, 2006].

[18] The downstream boundary “y-z” plane of the three-
dimensional plume realizations was selected as the location
for the “control plane”. This plane was located 3.962m
downstream of the hypothetical spill. The concentration
distributions on the control plane changed with time as the
mass recovery was progressing. To obtain representative
concentration distributions, the following temporal events in
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[lustration of the reference fields. (a) Concentration field corresponds to 1% of source

mass removal (mg/l); (b) concentration field corresponds to 50% of source mass removal (mg/l);
(c) concentration field corresponds to 98% source mass removal (mg/l); (d) hydraulic conductivity

field (m/d).

the mass recovery process were selected for each of the
16 realizations: the times at which 1, 50, and 98% of the
source mass removal had occurred. As a result, there are
16 reference hydraulic conductivity fields and 48 reference
concentration fields.

[19] An example of the planar cross sections is illustrated
in Figure 2. Note that the 1 and 50% mass removal cases
share similar spatial patterns for concentration. The highly
concentrated area is spatially continuous and occupies a
relatively large area on the transects, which is similar to the
pretreatment situation. In contrast, the spatial distribution of
concentrations for the 98% mass removal case is much more
heterogeneous, with scattered small hot spots and large
near-zero concentration areas. This type of spatial pattern
is more likely to be encountered in the field immediately

downstream of a source zone and can be considered as the
distribution characteristic of posttreatment.

4. Approach Demonstration and Evaluation
4.1.

[20] The approach requires some user-defined parameters
that are standard for geostatistical methods implemented in
the software library Geostatistical Software Library (GSLIB)
[Deutsch and Journel, 1998]. These include the maximum
number of data for kriging, the number of thresholds for
indicator kriging, the interpolation/extrapolation methods
for the enhancement of the resolution of ccdfs, and the
number of realizations for the p-field simulation. See the
works by Deutsch and Journel [1998] and Goovaerts [1997]

Parameters for the Geostatistical Approach
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for a general discussion. Preliminary results showed that the
mass discharge estimation was not sensitive to the maximum
number of data used in kriging when sample data are
regularly spaced. This parameter was set to 24 for all of the
simulations presented herein. The thresholds for indicator
kriging were selected as the nine deciles of the sample
histogram in order to achieve a reasonable discretization of
the range of variation. If an empty class occurred (i.c.,
existence of identical deciles), the number of thresholds was
reduced by 1 and all of the thresholds were redefined
automatically.

[21] For all of the simulations in this section, the resolu-
tion of the ccdfs was enhanced by interpolating between
thresholds according to the shape of the marginal distribu-
tion (cumulative distribution function, cdf of the sample
data), which recovered some information that was lost
during the indicator transformation process [Deutsch and
Journel, 1998]. This method was also used in the
extrapolation of ccdfs with the allowed maximum set to
the maximum sampled value. The number of realizations for
the p-field simulation determines whether the uncertainty
space is fully explored. Goovaerts [1999] found that 20 is
the minimum number to achieve a stable assessment of the
extent of the space of uncertainty for major simulation
algorithms. In this study, preliminary simulations confirmed
that 20~25 realizations allowed one to capture the extent of
the uncertainty space. The number of realizations was
conservatively set to 100 for the results presented herein.

4.2. Sampling Designs

[22] The reference fields in this demonstration adopted
the resolution of the hydraulic conductivity field and used
both 0.3048 m (1 ft) and 0.6096 m (2 ft) as the vertical
resolutions for the concentration field to explore the influ-
ence of the screen length. Finer vertical resolution for the
concentration field was not used because the concentration
varies little within the 0.3048-m intervals. The same reso-
lution (support) was used for the hydraulic conductivity
field to be consistent with the measurement support of the
field data used to construct the synthetic permeability fields;
K values were measured in the lab by homogenizing
0.3048-m segments of soil cores [Lemke et al., 2004].
Although the same measurement support for C and K was
assumed in the present case study, the proposed methodol-
ogy can be applied in presence of different supports since C
and K values are first interpolated separately.

[23] “Multilevel samplers” were positioned in the refer-
ence fields according to a regular pattern, consistent with
vertical well installation. Without prior information, a
regular grid is the most appropriate sampling pattern to
cover the whole area and to prevent preferential sampling.
The circles in Figures 3a and 3b indicate the locations of
sample measurements. A series of regular sampling events
with different sampling densities was applied on each
reference field. Sampling density is defined as the ratio of
the sampled area over the whole area of the control plane,
which in the demonstration is calculated as %, where
N is the number of samples, S is the measurement support,
and 77.2953 m? is the area of the reference field. Although
sampling density is a convenient metric, note that the
horizontal resolution of the reference field is 0.3048 m,
which may be too large to mimic the horizontal sampling
scale in the field (i.e., well diameter). This factor may limit
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direct comparison with field-sampling densities. The
number of samples is therefore also reported herein.

4.3. Accuracy and Precision of Mass Flux Uncertainty
Models

[24] The output probability distributions for the 48 refer-
ence fields were analyzed to explore the impact of the
sampling density on their accuracy and precision. Figure 3¢
illustrates the output probability distribution of mass dis-
charge. The dot below the x axis depicts the true value of the
mass discharge. The sides of the ““box” represent the 25 and
75% quantiles, respectively (the range in between is the
50% confidence interval). The line represents the 95%
confidence interval bounded by the 2.5 and 97.5%
quantiles. The probability distribution is accurate to some
degree if the true value is contained within the fixed
probability interval. For a symmetric distribution, the ideal
situation is when the mean of the distribution coincides with
the true value. The spread of the probability distribution
illustrates another assessment criterion: precision. The
sharper the curve, the more precise is the distribution.

[25] The accuracy plot (e.g., Figure 4a) is a tool that can
be used to assess the accuracy and precision of models of
uncertainty. It was originally proposed by Deutsch
[Deutsch, 1997] to evaluate local uncertainty models (ccdfs)
and plots the frequencies (computed from ccdfs) for which
local true values fall within a series of symmetric p-
probability intervals (PI) bounded by the (1 — p)/2 and (1 +
p)/2 quantiles. An uncertainty model is accurate if the
frequency of true values falling in the p-PI exceeds p for all
p-Pls. The precision of an accurate uncertainty model is
measured by the closeness of the computed frequency to p.
In this paper, the accuracy plot was adapted to evaluate the
uncertainty space of the mass discharge modeled by the
proposed approach. Given a certain sampling strategy
(number of samples, measurement support, sampling
locations), the probability distributions derived from
different reference fields were analyzed to compute the
frequency of occurrence of the true values within a series of
symmetric p-PIs. The accuracy plot then depicts the
calculated frequencies as a function of the expected
probabilities (p). For example, to create one curve
(representing one sampling density) on the accuracy plot
in Figure 4a, 16 reference fields were used, and 16 true
values of mass discharge were calculated for each reference
field. A series of symmetric p-PIs with p varying from 2 to
100% (50 p-PIs in total) was calculated from the 16 output
probability distributions. Theoretically, the frequency with
which the p-PI includes the true value should be close to the
expected probability p; that is, all of the points should fall
along the 45° line. If all the points fall above the 45° line,
the observed frequency is higher than the expected
probability, indicating that the model of uncertainty is
accurate but is not as precise as expected.

[26] Because the spatial distribution of concentration
varies remarkably among the reference fields with 1, 50,
and 98% source mass removal (Figure 2), the approach was
assessed separately on three sets of reference fields (each set
has 16 reference fields). For the screen length of 0.3048 m,
regular sampling with sampling densities varying from 1 to
25% (number of samples from 9 to 208) was applied on
each reference field. For each set of reference fields,
accuracy plots for all of the sampling densities used were
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Figure 3. An example of the inputs and output of the proposed approach. (a) Concentration samples
(mg/l); (b) hydraulic conductivity samples (m/d); (c) the output probability distribution of mass

discharge.

grouped into one figure. Different symbols represent differ-
ent sampling densities. Figure 4 shows the grouped accu-
racy plots for the 1, 50, and 98% mass removal cases, which
leads to the following findings:

[27] 1. For concentration distributions that display large
continuous regions of high concentration (corresponding to
low levels of mass removal (Figures 2a and 2b), the
approach provides an accurate model of uncertainty for all
of the sampling densities used in this study. All of the points
fall above the 45° line, indicating that the frequency of
capturing the true value is higher than the theoretical (i.e.,
expected) probability value, which means that the uncer-
tainty model is accurate but conservative (The reasons for
this behavior are discussed further in sections 4.5 and 4.6).

[28] 2. For concentration distributions that consist of
scattered hot spots and large areas of near-zero concentra-
tion [the case for high levels of mass removal (Figure 2¢)], a
sampling density of 6~7% (corresponding to 50~60 sam-
ples in an area of 77.3 m?) is required to obtain an accurate

model of uncertainty, according to the accuracy plots. This
sampling density appears unrealistic for field applications.
For example, King et al. [1999] used 21 points (six wells) in
an area of 50 m?. Assuming the same measurement support
of 0.0929 m?, the sampling density is 3.9%. Kao and Wang
[2001] had 20 points (five wells) in an area of 283.8 m?.
The screen length is 0.6 m. If it is assumed that the
horizontal scale of each sample is 0.3048 m as in this work,
their sampling density is 1.3%. Einarson and Mackay used
49 points (seven wells) in an area of 154.29 m” with
unknown measurement support. Again, assuming 0.0929 m?
measurement support, the sampling density is 3.0%.

[20] According to the definition of the accuracy plot,
whether or not the uncertainty model is accurate is not only
influenced by the closeness of the median of the probability
distribution to the true value but also by the width of the
p-PIs. Therefore to further elucidate the performance of
the proposed approach, the accuracy and precision of the
uncertainty models were assessed respectively by the fol-
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Accuracy Plot - 1% Mass Removal
(Sampling Density from 1% to 25%)
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Accuracy Plot - 98% Mass Removal
(Sampling Density No Less Than 6%)
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Figure 4. Grouped accuracy plots for the samples with a screen length of 0.3048 m (different symbols
represent different sampling densities). (a) 1% mass removal cases (sampling density from 1 to 25%);
(b) 50% mass removal cases (sampling density from 1 to 25%); (c) 98% mass removal cases (sampling
density from 1 to 25%); (d) 98% mass removal cases with sampling density higher than 6%.

lowing two statistics: (1) magnitude of the normalized mean
absolute error of prediction (MAEP), which is defined as
the absolute value of the difference between the mean of the
probability distribution and the true value, normalized by
the true value (Figure 5), and (2) the width of the 95%
confidence interval that is calculated as the difference
between the 97.5% quantile and the 2.5% quantile
(Figure 6). Figure 5 reveals that if the mean of the
probability distribution is used as the mass discharge
estimate, the absolute error of prediction does not exceed
20% of the true value at most sampling densities for the
concentration distributions corresponding to 1 and 50%
mass removal. Beyond a sampling density of about
4~5%, this error is below 10% of the true value. For these
cases, Figure 5 also suggests that the MAEP is much less
sensitive to the increase in the sampling density compared
to the 98% mass removal case. This is likely because the

Mean Absolute Error of Prediction (MAEP) (Normalized by True Values)
190% +

180% —— Average true value of massflux is 15 g/d-77.3m2
170% - (98% Mass Removal cases)

160% -

150% —=— Average true value of massflux is 321 g/d-77.3m2

9
140% 4 (1% Mass Removal cases)

130% -
120% +
110%
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Average true value of massflux is 415 g/d-77.3m2
(50% Mass Removal cases)

Normalized MAEP

Sampling Density

Figure 5. Normalized mean absolute error of prediction,
averaged over 16 reference fields.
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Normalized 95% Confidence Interval (Averaged over 16 reference fields)
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Figure 6. The 95% confidence interval of the probability
distributions averaged over 16 reference fields.

concentration distribution is more continuous, and its spatial
structure is easier to recognize. For the 98% mass removal
case, the MAEP improves quickly with more samples
initially, and the improvement slows down at about a
sampling density of 6~7%, which corresponds to a predic-
tion error of about 50% of the true value. This behavior is
attributed to a slow improvement in the recognition of
spatial structure (see section 4.5 for more detail). Figure 6
shows that the 95% confidence intervals are quite large at
low sampling densities, and their width decrease (precision
increases) slowly as the sampling density increases, indi-
cating the need for reporting the uncertainty of mass
discharge, in addition to the “best estimate”. Note that
the probability distribution of mass discharge is highly
skewed (Figure 3c); therefore the uncertainty cannot be
quantified simply by confidence intervals which are typi-
cally used for symmetric distributions. In addition to insuf-
ficient sampling density, the large confidence interval may
also be caused by the regular sampling design, where a large
portion of samples are placed in the near-zero concentration
areas, which does not tend to contribute significantly to the
mass discharge and therefore does not help to refine the
mass discharge estimate. The impact of the sampling design
will be investigated in another paper.

4.4.

[30] All of the results above are for a screen length of
0.3048 m (1 ft). To explore the impact of screen length on
the mass discharge uncertainty, a 0.6096-m (2-ft) vertical
sampling scale was applied for the same 48 reference fields.
Thus for the same sampling densities, the number of
samples was reduced to half of the amount collected in
the corresponding 1-ft sample case. The normalized MAEP
and the 95% confidence interval were used to compare the
accuracy and precision of the probability distributions
modeled from the two different measurement supports.
The comparison of the normalized MAEP is shown for
equal sampling density in Figure 7.

[31] The comparison reveals that using a 2-ft sampling
interval does not lead to more accurate results. For the same
number of samples, there is no discernible difference in
accuracy for the 1-ft and 2-ft screen samples (not shown).
For the same sampling density (same sampling volume),
Figure 7 reveals that the 2-ft screen samples generate less

Impact of the Measurement Support
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accurate probability distributions for the mass discharge
than the 1-ft screen samples. The reduction in the accuracy
is especially remarkable for the concentration distribution
associated with 98% source mass removal (Figure 2c).

[32] When comparing the 95% confidence intervals for
the samples with 1 ft and 2 ft screens at the same sampling
density, the probability distributions of 2 ft screen samples
were slightly less precise. In terms of sample numbers, there
was little difference in precision between the two measure-
ment supports.

[33] This comparison suggests that increasing the mea-
surement support (sampling volume) does not improve the
quality of the probability distribution of mass discharge.
This may be explained through the change in the sample
statistics. Indeed, increasing the measurement support
results in changes in the statistics of sample data such as
the histogram (spread, asymmetry, and standard deviation)
[Isaaks and Srivastava, 1989] and semivariogram (nugget,
range, and sill) [Journel and Huijbregts, 1978]. Typically,
larger measurement support reduces the spread of samples
values (smoothing effect) while the histogram becomes
more symmetric. The elimination of the spatial variance
within the sampling volume causes a reduction of variance,
which changes the structure of the experimental semivar-
iogram. Most simulation algorithms, including p-field
simulation, aim to reproduce sample histogram and semi-
variogram; thus, the changes in sample statistics directly
affect the generated realizations.

[34] The magnitude of the impact of increasing measure-
ment support depends upon the spatial structure of the data
set. Spatially uncorrelated data are affected the most. As the
spatial continuity increases, the statistics become more
robust [Isaaks and Srivastava, 1989]. Note that two data
sets with the same semivariogram may exhibit different
degrees of robustness to measurement support as it is
increased. The data set with larger spatial disorder (that is,
extreme values are poorly connected) is affected more
readily. Thus the optimal screen length will be site specific,
related to the spatial pattern of the target attribute. It may be
determined by analyzing the degree of heterogeneity (e.g.,
the variance), the correlation length, and the degree of
spatial disorder (i.e., entropy, see Journel and Deutsch

Mean Absolute Error of Prediction (MVAEP) (Normalized by true values)

—e— 1ft screen: 98% Mass Removal

—=—1ft screen: 1% Mass Removal

1ft screen: 50% Mass Removal

2ft screen: 98% Mass Removal

—&-2ft screen: 1% Mass Removal

—e—2ft screen: 50% Mass Removal

Normalized MAEP

Sampling Density

Figure 7. The comparison of the mean absolute error of
prediction expressed in sampling densities for the 0.3048-m
(1-ft) screen and the 0.6096-m (2-ft) screen samples.
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Figure 8. The Q-Q plot, comparing the histograms of
50 samples and the reference histogram (98% mass removal
case).

[1993]). However, this topic is beyond the scope of this
paper. The proposed approach cannot automatically choose
an appropriate measurement support.

4.5. Impact of Sample Representativeness

[35] The quality of the output probability distributions is
affected not only by the stochastic simulation algorithm but
also by the characteristics of the data, such as their histo-
gram and semivariogram model. Stochastic simulation aims
to reproduce the univariate (histogram) and bivariate statis-
tics (semivariogram) derived from the observations. When
field data are sparse and not representative of the control
plane properties, any algorithm will likely fail to provide
accurate and precise models of uncertainty. The earlier
results were obtained using relatively homogeneous refer-
ence hydraulic conductivity fields. Thus for this scenario,
the problem of sample representativeness is, to a large
extent, caused by the concentration field. In this section,
the histograms and semivariograms of the concentration
samples (1-ft screen) are analyzed to explore this problem.

[36] The difference between two histograms can be illus-
trated by a Q-Q plot [Deutsch and Journel, 1998], which
can be viewed as a scatterplot of the series of p quantiles of
the two data sets (Figure 8). If the points fall along the
45° line, the two histograms are similar. The Q-Q plot in
Figure 8 compares the histogram of a 50-data sample set to
the reference histogram (50 p quantiles). The plot indicates
that this sample histogram (98% mass removal case) is not
representative. For small cumulative frequencies, the
sample cdf has larger quantiles, and when the probability
gets higher, the corresponding quantiles for the sample
become lower than the reference. This means that both the
low and high values are undersampled (sample histogram is
more symmetric than the reference).

[37] The average histogram deviation can be quantified
by calculating the averaged difference of p quantiles be-

LI ET AL.: UNCERTAINTY ANALYSIS OF SOURCE

W06436

tween the sample histogram and the reference histogram
[Goovaerts, 1999]:

iample n ref n

n=1 k=1

[38] Here N is the number of reference fields, K is the
number of quantiles used for the comparison, qsample” =
F;allnple,, (pk) is the p, quantile of the sample histogram,
and ¢ is the corresponding quantile of the reference
histogram.

[39] Figure 9 plots histogram deviation as a function of
sampling density (98% mass removal case). As more
observations are collected, the sample histograms on aver-
age gradually approach the reference histogram. Unfortu-
nately, the literature offers no guidance on the acceptable
level of this deviation. The O-Q plot in Figure 8 suggests
that even with 50 samples (sampling density of 6%), the
sample histogram may still not be representative. A rough
estimate of the acceptable deviation can be obtained from
Figure 9 by examining the average histogram deviation at a
sampling density of 6% (the histogram is not representative,
as shown in Figure 8). The average histogram deviation
associated with this sampling density is about 2% of the
range of variation, suggesting that the acceptable level of
the deviation could be even lower than 2%. Moreover, the
deviation decreases at a slower rate with sampling densities
beyond 6%. All of these findings based upon Figure 9
suggest that most field applications cannot provide
sufficient sample data to infer a representative histogram.

[40] Similarly, the departure between the sample semi-
variogram and the reference semivariogram can be calcu-
lated as:

samplc n ref n

n=1 I=1

[41] Here N is the number of reference fields, L is the
number of lags used for the calculation of experlmental
semivariograms, ™" is the reference semivariogram value
at lag i for the nth reference field, and ™" is the

corresponding sample semivariogram value at the same lag.

The Average Histogram Difference
7%

— 1ft: 1% Mass Removal
—=—1ft: 50% Mass Removal
6% 1ft: 98% Mass Removal
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- %wﬁw I

Normalized Difference

Sampling Density

Figure 9. Average deviation of sample histogram from the
reference histogram (normalized by the range of variation).
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Average Semivariogram Difference
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Figure 10. Average deviation of sample semivariogram
from the reference semivariogram (standardized).

[42] The calculated semivariogram deviation is depicted
in Figure 10. This figure shows that for the best situation (at
a sampling density of 25%), the sample semivariogram still
deviates by about 5% of the variance. Figure 11 presents an
example for which the experimental semivariogram is not
representative at a sampling density of 6% for the 98% mass
removal case. Furthermore, Figure 10 shows that the
deviation of the semivariogram drops quickly as sampling
density increases, but that the deviation decreases more
gradually and exhibits a long tail when the sampling density
exceeds about 6~7%. This suggests that beyond this
density, the detection of the spatial structure improves little
with more samples. This 6~7% density is consistent with
the results of the accuracy plots in section 4.3. Figure 10
also indicates that it is more difficult to capture the spatial
variability for the control planes that are associated with
high levels of source mass removal, which is the type of

Semivariogram Reference VS sample
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Figure 11. The comparison of the semivariograms of

50 samples (0.3048-m screen) and the reference field (98%
mass removal). Solid line, reference semivariogram; dash
line, sample semivariogram.
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Semivariogram: Hot spot area VS global
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Figure 12. Semivariogram comparisons (50% mass
removal). Solid line, semivariogram of the hot spot area
only; dash line, semivariogram of all the data.

concentration distribution that has few hot spots and large
areas of near-zero concentration (Figure 2c).

4.6.

[43] When spatial variables are modeled by random
functions (RF), second-order stationarity or at least the
intrinsic hypothesis [Journel and Huijbregts, 1978] is
required for geostatistical applications. The intrinsic hypo-
thesis ensures the RF increments have finite variance and
are independent of location. The synthetic hydraulic
conductivity fields in this work are stationary (because of
the construction process), while the resulting transect
concentration fields have different degrees of nonstationar-
ity, related to the percentage of mass removal. For example,
the concentration fields associated with low levels of mass
removal (Figures 2a and 2b) have higher degrees of
nonstationarity in comparison to those associated with high
levels of mass removal (Figure 2c). It is common in
stochastic hydrology to detrend nonstationary permeability
fields whenever geological information supports the use of a
specific mathematical form for the deterministic trend
model [e.g., Rehfeldt et al., 1992; Indelman and Rubin,
1995]. In this paper, interpolation was conducted using
ordinary indicator kriging which implicitly accounts for
global trends by estimating the local mean within each
search window and limits the assumption of stationarity to
that window [Goovaerts, 1997]. More complicated trend
modeling was not considered here because (1) there is no
other information to justify a reasonable deterministic trend
model, and a model derived purely from a limited number
of samples may bring in large uncertainty; and (2)
theoretical and experimental studies showed that compared
to ordinary kriging, trend modeling using kriging with a
trend (universal kriging) has an impact on kriging results
only for the extrapolation situation [Journel and Rossi,
1989; Zimmerman et al., 1999; Reed et al., 2004]. However,
in that case, the sample data alone cannot justify the choice
of a trend model [Deutsch and Journel, 1998].

[44] For the concentration distributions with large con-
taminated areas (1 and 50% mass removal case), Figure 12
shows that the semivariogram computed with only the hot

Impact of Nonstationary Concentration Field
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spot data is quite different from the semivariogram com-
puted with all of the sample data. The nonstationarity of the
variance threatens the intrinsic hypothesis for the geosta-
tistics analysis. To solve this problem, kriging within strata
[e.g., Goovaerts, 1997] has been suggested. However, it is
difficult to classify the sample data into “hot spot strata”
and ‘“‘nonhot spot strata” in this analysis because the
boundary of the hot spot is usually unknown. Therefore
one-stage sampling strategy cannot address the difficulty of
nonstationarity encountered here. The above discussion
suggests that a stage-sampling strategy should be explored
for this problem.

5. Conclusion

[45s] The proposed geostatistical approach has been dem-
onstrated to estimate the contaminant mass discharge and
quantify the associated uncertainty from multilevel transect
measurements of hydraulic conductivity and contaminant
concentration. The approach does not require that measure-
ments are collocated, and the measurement supports can be
different for the two attributes. The simulation-based
approach provides a probability distribution of mass dis-
charge, which can serve for risk-based source-plume reme-
diation strategies. Multiple realizations of the spatial
distribution of mass flux values can be used for decision
making, for example for mapping the probability that the
local mass flux exceeds a given threshold.

[46] Application of the approach on 48 numerically
simulated transects suggests that, for all of the sampling
densities used (1~25%), the approach provides an accurate
estimate of mass discharge and a conservative model of
mass discharge uncertainty for control planes associated
with low levels of source mass removal. For high levels of
mass removal, a minimum sampling density of 6~7% was
required for an accurate model of uncertainty (regular
sampling pattern). Note that the required sampling density
is typically not achieved in field applications (see examples
in section 4.3); however, concentration distributions asso-
ciated with high levels of mass removal are more likely to
be encountered in the field. Thus most field applications to
date may not have been based upon a sample size sufficient
to accurately quantify the uncertainty of mass discharge,
and the estimated mass discharge may have large errors.

[47] Comparison of results for different screen lengths
suggests that longer screen lengths may not lead to better
modeling of the uncertainty of mass discharge.

[48] These conclusions regarding sampling density are
based on the analysis of synthetic transects, where the
hydraulic conductivity field is relatively homogeneous.
The model is applicable to more heterogeneous hydraulic
conductivity fields; however, the required sampling density
could be even larger under such circumstances and is
expected to more closely correspond to the 98% removal
case. A more efficient sampling strategy (rather than one-
stage regular sampling) will be investigated in future studies
to reduce the required sampling density.
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