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[1] The goal of groundwater contaminant plume interpolation is to provide an accurate
representation of the spatial distribution of the plume given the data limitations
associated with sparse monitoring networks with irregular geometries. Currently available
methods for plume estimation cannot fully take advantage of prior knowledge of flow
and transport information or the location of a contaminant source. This paper presents two
new geostatistical tools for incorporating transport information in estimating the spatial
distribution of groundwater contaminant plumes. The methods account for the
spatial/temporal covariance of the contaminant plume in defining a best estimate of the
plume distribution and its associated uncertainty. Overall, the methods require that the
estimated plume distribution be physically feasible given both the available concentration
measurements and the flow and transport in the affected aquifer. Sample applications
in homogeneous and heterogeneous formations are presented. Even with relatively few
observations, the new methods yield results that are superior to those obtained by kriging,
with a better reproduction of the true plume shape and lower uncertainty.
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1. Introduction

[2] Groundwater provides one third of the world’s drink-
ing water. Because surface water is largely allocated,
demand on the finite groundwater resources is increasing.
However, groundwater is highly susceptible to contamina-
tion. This vulnerability can limit the value of the resource to
society as a whole. Groundwater can be contaminated by
localized releases from waste disposal sites, landfills, and
underground storage tanks. Pesticides, fertilizers, salt water
intrusion, and contaminants from other nonpoint source
pollutants are also major sources of groundwater contami-
nation [Commission on Geosciences, Environment and
Resources, 1993].
[3] In order to avoid, or at least minimize, pumping of

polluted groundwater, the extent of any contamination
plume has to be known. Because samples can typically
only be taken at a few discrete points of a plume (i.e., at
wells), they have to be interpolated in order to depict the
span of the whole plume. Groundwater contaminant plume
interpolation is a difficult task, as contaminant concentration
fields are highly heterogeneous, anisotropic, and nonsta-
tionary phenomena [Reed et al., 2004].
[4] In addition to concentration measurements, there

usually exist other forms of information that can potentially
improve interpolation. Often, these secondary data can be
spatially and/or temporally correlated with the measured
concentrations. These data can enhance the estimation

results if used, for example, in a cokriging setup [e.g.,
Cassiani and Medina, 1997]. However, many types of data
cannot easily be assimilated into a geostatistical analysis.
This category may include information about the physical
processes that created the contaminant plume, or a ground-
water model that quantitatively describes the flow and
transport in the aquifer.
[5] In many environmental applications, data are

extremely limited. Therefore the ability to incorporate
different forms of data (e.g., physical behavior as expressed
in fate-and-transport models and spatial correlation as
quantified by geostatistical analyses) would improve the
ability to describe the shape and extent of groundwater
contaminant plumes. The high cost associated with ground-
water monitoring and the high risks posed by these con-
taminants contribute to the importance of developing a
robust plume distribution estimation technique that takes
into account diverse types of data for plume interpolation.

2. Currently Available Methods

[6] Plume estimation can be based either on mathematical
or statistical manipulation of measured contaminant con-
centrations, or on the physics of the transport process that
created the plume. When concentration measurements
are the only data available, interpolation methods such as
geostatistical kriging or inverse distance weighted interpo-
lation are typically used. When additional hydrological
parameters are available, flow-and-transport models are
often employed.
[7] In general, kriging can use measurements at sampled

locations, incorporate trends, and take advantage of meas-
urements of certain other related variables (e.g., cokriging).
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Spatial analysis can be performed to identify spatial trends
and variogram structures to be used in the estimation
process. Thus the variogram or covariance matrix contains
additional information, in the form of correlation or vari-
ance as a function of distance between points. However,
many types of supplementary physical data, such as flow
and transport information, cannot be directly used in krig-
ing. Cooper and Istok [1988] presented the use of geo-
statistics to map contaminant concentrations and estimation
errors in a groundwater plume, from a set of measured
contaminant concentrations. Reed et al. [2004] compared
two inverse distance weighting techniques and four kriging
techniques for plume interpolation. They ultimately con-
cluded that quantile kriging [Journel and Deutsch, 1997]
was the most robust method for their specific application.
They recommended using deterministic methods only as
screening tools. Jones et al. [2003] compared three different
three-dimensional plume interpolation techniques (kriging,
natural neighbor, and inverse distance weighted interpola-
tion) and demonstrated that kriging usually results in the
lowest error. Geostatistics can also be used to generate
stochastic realizations of regionalized variables [Delhomme,
1978]. Boeckenhauer et al. [2000] used nonparametric
regression and kriging to produce regional estimates of
groundwater contamination by modeling their data as a
realization of a lognormal stochastic process.
[8] Variants and extensions of kriging can be used to

introduce additional information into geostatistical analyses.
Diggle et al. [1998] defined model-based geostatistics
by modeling observations as a generalized linear model.
Figueira et al. [2001] measured the concentration of chlo-
ride and sodium in plants, and used three additional factors
(the distance from the coast, the intensity of rain observed
before the sampling date and the dry period before sampling)
in the definition of a space-time trend. Kitanidis and Shen
[1996] added one parameter to linear geostatistics to account
for the skewness of concentration distributions. Liu [2003]
incorporated gradient or sensitivity information into existing
kriging techniques for various multidisciplinary design
optimization procedures; the approach treated gradients
at the sample points as secondary functions. All of these
methods analyzed various aspects of the measured distribu-
tion, but they did not consider the source of the contamina-
tion or the process of transport.
[9] Several studies have combined the use of kriging/

interpolation and groundwater transport models in hydrol-
ogy. Some have used stochastic [e.g., Wagner and Gorelick,
1987] and geostatistical [e.g., Vyas et al., 2004] methods to
estimate parameters for flow-and-transport models, or to
interpolate input data to these models [e.g., Feehley et al.,
2000]. Saito and Goovaerts [2001] presented a variant of
kriging with a trend for incorporating source location and
wind velocity in the interpolation of soil contaminant
concentrations. To the knowledge of the authors, however,
flow-and-transport models have not themselves been used
for the specific purpose of estimating the current distribu-
tion of existing groundwater contaminant plumes. This type
of use would require knowledge of the boundary conditions,
including all contaminant sources and their behavior in
space and time. Excluding controlled tracer experiments
[e.g., Mackay et al., 1986], this information is generally not
available.

[10] Thus the advantage that transport models have to
offer, such as information about the physics controlling
advection, dispersion, retardation, and chemical behavior,
cannot be fully utilized by methods currently available for
estimating the distribution of contaminant plumes.

3. Objective

[11] In this paper, we present two new methods for
estimating the distribution of groundwater contaminant
plumes. Unlike existing tools, these methods take into
account both the spatial covariance structure of the concen-
tration field, and available flow and transport information.
The concentration data are directly coupled with the trans-
port model to estimate concentrations at unsampled loca-
tions. Thus both data pertaining to the autocorrelation of
concentrations, and results of a physical flow-and-transport
model are assimilated into a common framework.
[12] The first method is referred to as inverse/forward

modeling (IFM). It uses an existing transport model for the
aquifer and knowledge of the contaminant source location
to estimate the time series of the contaminant release into
the aquifer and its associated uncertainty. Together with the
transport model, this release history is then used to estimate
the current plume distribution and its uncertainty.
[13] The second proposed method, transport-enhanced

kriging (TREK), combines the merits of IFM with geo-
statistical kriging, in order to also take advantage of the
spatial covariance structure of the available concentration
measurements. Thus the resulting predictions are both
physically feasible, and exhibit the expected spatial auto-
correlation characteristics.

4. Methodology

4.1. Geostatistical Inverse Modeling

[14] The following section outlines the geostatistical
approach to inverse modeling, which we implement in this
work to estimate the time series of the contaminant release
into the aquifer in both of the proposed methods. No
derivations are provided, and the reader is referred to, for
example, Kitanidis and Vomvoris [1983], Snodgrass and
Kitanidis [1997], and Michalak and Kitanidis [2004a] for
additional details.
[15] Inverse methods use modeling and statistical tools to

determine the historical distribution of observed contami-
nation, the location of contaminant sources, or the release
history from a known source. The inverse problem is often
underdetermined and an infinite number of parameters that
are consistent with the data may be obtained [Woodbury and
Ulrych, 1996]. Kabala and Skaggs [1998] stress that this
nonuniqueness of the solution is caused by the ill-posed
nature of the physical problem and is not associated with
any particular solution methodology, nor can nonuniqueness
be eliminated with any particular procedure. Indeed, there
are numerous inverse modeling methods; see, for example,
reviews by Michalak and Kitanidis [2004a] and Atmadja
and Bagtzoglou [2001]. Of the available methods, only
those that provide a stochastic solution to the problem of
source estimation can potentially be applied to improve
plume estimation, because the uncertainty of the loading
history needs to be quantified in order to, in turn, determine
the precision with which the plume distribution can be
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estimated. Backward tracking [Bagtzoglou et al., 1991,
1992] and adjoint-derived source distribution probabilities
[Neupauer and Wilson, 2001] are two available stochastic
approaches, but these methods are only applicable to
identifying the location or release time of a single instan-
taneous point source. The geostatistical approach to inverse
modeling [Snodgrass and Kitanidis, 1997; Michalak and
Kitanidis, 2003, 2004a, 2004b, 2005; Butera and Tanda,
2003] and the minimum relative entropy method [Woodbury
and Ulrych, 1996, 1998], conversely, are stochastic
methods that provide a function estimate to characterize
the historical contaminant distribution, source location, or
release history. For these methods, the contaminant distri-
bution or source description is not limited to a small set
number of fixed parameters but can instead vary in space
and/or in time. The applicability of the geostatistical method
has already been demonstrated for multidimensional hetero-
geneous media [Michalak and Kitanidis, 2004a] and is
similar in form to geostatistical kriging. The stochastic
nature of the geostatistical approach to inverse modeling,
which allows the uncertainty of the estimate to be
quantified, and its affinity to kriging, which allows for
a convenient setup of a familiar equation system, make it
an appropriate basis for the proposed plume estimation
methods.
[16] The geostatistical approach to inverse modeling is

based on the dual criterion of reproducing available con-
centration data z* and preserving spatial or temporal auto-
correlation in some unknown function s[m � 1], such as the
release history of contaminants into the aquifer. The method
begins by calculating the sensitivity of available concentra-
tion measurements to the unknown function, and assigning
this information to a Jacobian matrix H* (i.e., H*ij = @z*i /
@sj). This sensitivity information is then used in combina-
tion with the available data and their associated uncertainty
to estimate a discretized version of the unknown function.
This unknown function is assumed to be spatially and/or
temporally autocorrelated.
[17] This form of inverse modeling relies on the existence

of a groundwater flow and contaminant transport model.
This usually implies knowledge of parameters such as the
hydraulic conductivity field, the dispersivity tensor, the
boundary conditions, etc. In addition, the transport model
must either be linear or meet certain conditions which
would enable a quasi-linear approximation (see Kitanidis
[1996] for details). In this work, as in past applications of
the geostatistical approach to inverse modeling for contam-
inant source identification [e.g., Snodgrass and Kitanidis,
1997; Michalak and Kitanidis, 2002, 2003, 2004a, 2004b],
the transport model itself is assumed to be deterministically
known. The concentrations of the source and of the meas-
urements, on the other hand, are treated as random functions
in a geostatistical framework.
[18] The transport model is sampled at measurement

locations and times to yield a sensitivity matrix. If we are
estimating the source release history on the basis of con-
centrations measured in the plume at a single time but at
different locations, each element H*ij of this sensitivity
matrix represents the sensitivity of the concentration
at location x*i [i = 1.. n] to the source intensity at time tj
[j = 1.. m]. The product of this sensitivity matrix and a
temporal source function s reproduces the measured con-

centrations z* at all locations x*i, to within a model-data
mismatch error �:

z* ¼ H*sþ � ð1Þ

where � is assumed to be a zero-mean model-data mismatch
error with covariance matrix R. Because measurement
errors are usually not correlated in space and typically have
a uniform variance sR

2, the covariance structure is modeled
as R = sR

2I, where I is an [n � n] identity matrix. sR
2 can

either be known a priori, or estimated from available data
(see below). Note that the model-data mismatch can also
include transport error or microvariability not explained by
the model. Thus, even though the model is deterministic,
some forms of transport model uncertainties can be taken
into account.
[19] The expected value of s is modeled as E[s] = Xsbs,

where Xs is a known [m � ps] matrix of basis functions and
bs are ps unknown drift coefficients. The prior covariance
function of s is a known function Qs(q) = E[(s � Xsbs)
(s � Xsbs)

T] of unknown parameters q, which can be
estimated, for example, using a restricted maximum
likelihood (RML) approach [Kitanidis, 1995]. This ap-
proach minimizes the negative log likelihood of the
probability of the measurements with respect to the
covariance parameters q:

Lq ¼ 1

2
ln Sj j þ 1

2
ln XT

s H*TS�1H*Xs

�� ��þ 1

2
z*TXz* ð2Þ

where S = H*QsH*T + R and

X ¼ S�1 �S�1H*Xs XT
s H*TS�1H*Xs

� ��1
XT

s H*TS�1 ð3Þ

In addition to the parameters in Qs, the variance of the
model-data mismatch errors sR

2 can also be estimated as part
of this system.
[20] Once the covariance parameters q have been opti-

mized, the source is estimated by minimizing:

Ls;�s
¼ 1

2
z*�H*sð ÞTR�1 z*�H*sð Þ

þ 1

2
s� Xsbsð ÞTQ�1

s s� Xsbsð Þ ð4Þ

which can be expressed as the following system of [n + ps]
equations

H*QsH*T þ R H*Xs

H*Xsð ÞT 0

� �
LT

s

Ms

� �
¼ H*Qs

XT
s

� �
ð5Þ

This system is solved for the [m � n] matrix of coefficients
Ls and the [ps � m] matrix of Lagrange multipliers Ms,
from which the best estimate and posterior covariance of the
source function can be found:

ŝ ¼ Lsz* ð6Þ

Vŝ ¼ Qs �QsH*TLT
s � XsMs ð7Þ
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4.2. Proposed Methods

4.2.1. Inverse/Forward Modeling
[21] In the IFM approach, the contaminant release history

estimated using geostatistical inverse modeling is used to
obtain an estimate of the distribution of the plume at the
time of sampling, and its associated uncertainty. The con-
taminant plume is reconstructed by simulating transport of
the estimated release history up to the measurement time(s).
This step involves calculating an expanded sensitivity
matrix H [N � m] which defines the sensitivity of N
locations in the aquifer at the time when the measurements
were taken to the m discretized times of the contaminant
release history. The elements of H can be obtained
numerically by running the groundwater transport model
with unit releases of contaminant for each time tj [j = 1.. m]
and recording the resulting concentration at each of the N
locations where the plume concentration is to be estimated.
Typically, these N points would be laid out on a regular grid,
to allow for easy contouring of the estimated plume
distribution. The best estimate of the concentrations is
estimated using the resulting linear model

bz ¼ Hŝ ð8Þ

where bz are the [N � 1] estimates of the concentrations z.
Note that we use z* to designate concentration at
measurement locations, and z to designate the concentra-
tions that we are interested in estimating. The same
sensitivity matrix H can also be used to define the
uncertainty and covariance of the estimated plume distribu-
tion, which is a function of the uncertainty associated with
the recovered contaminant release history:

Vẑ ¼ HVŝH
T ð9Þ

The diagonal elements of this [N � N] matrix represent
the uncertainty of the estimated concentration spatial
distribution.
4.2.2. Transport-Enhanced Kriging
[22] The second plume estimation method also relies on

the estimated release history (equation (6)) but also takes
into account the spatial covariance Qz of the plume
concentration distribution, where Qz(q) = E[(z � Xzbz)
(z � Xzbz)

T], and E[z] = Xzbz. This covariance can also be
estimated using the subset of available concentration values
z* using an RML approach, with the objective function
simplifying to:

Lq ¼ 1

2
ln Qz**j j þ 1

2
ln X*Tz Q*�1

z* X*z

��� ���
þ 1

2
z*T Q*�1

z* �Q*�1

z* X*z X*Tz Q*�1

z* X*z

� ��1

X*Tz Q*�1

z*

	 

z*

ð10Þ

where the basis functions X*z [n � pz] and covariance model
Q*z* [n � n] are the same as Xz and Qz, but are only
evaluated at the measurement locations. This correlation in
deviations of the concentration distribution from its under-
lying trend Xzbz may provide information not available
through the transport model alone. In assimilating the
covariance information Qz, we simultaneously require that
the covariance structure imposed by the physical transport

model and that implied by the spatial autocorrelation of the
measurements are honored. Explicitly, the residuals between
the model predictions H ŝ and the TREK estimates bz should
be consistent with the covariance structure implied by the
uncertainty of the release history and by the transport
model, i.e., HVŝH

T. In addition, the residuals from the
measurement-space trend Xzbz should have the spatial
structure Qz. These requirements are assimilated in a second
Bayesian step, minimizing:

Lz;�z
¼ 1

2
H ŝ�zð ÞT HVŝ H

T
� ��1

H ŝ�zð Þ

þ 1

2
z� Xzbzð ÞTQ�1

z z� Xzbzð Þ ð11Þ

with respect to the unknown concentrations z [N � 1] and
the pz spatial drift parameters bz. The first term in this
objective function makes use of the inverse modeling best
estimate bs and its posterior covariance, whereas the second
term requires the estimates to follow the kriging trend Xzbz

and covariance Qz. Note that the measured concentration
values z* do not reappear in this second objective function.
The second system of equations to be solved becomes:

Qz þHVŝ H
T Xz

XT
z 0

� �
LT

z

Mz

� �
¼ Qz

XT
z

� �
ð12Þ

Note that these (N + pz) equations can be set up only after
the inverse modeling system has been solved for ŝ and
for Vŝ. The solutions of this system, Lz [N � N] and Mz

[pz � N], are used to compute the plume concentration
distribution and its covariance:

bz ¼ LzHŝ ð13Þ

Vẑ ¼ Qz�QzL
T
z � XzMz ð14Þ

Here ẑ is the TREK best estimate of the plume distribution,
and Vẑ is the corresponding covariance structure.
4.2.3. Uncertainties Modeled in IFM and TREK
[23] For geostatistical inverse modeling, the matrix Vŝ

represents the covariance of the a posteriori source function
residuals (s � ŝ), and its diagonal elements correspond to
the uncertainty of the best estimate ŝ. For IFM, Vŝ is used to
define the covariance of the full plume concentration
distribution, using the model matrix H to yield HVŝH

T.
Thus, for a given model H, the uncertainty of an estimate at
a given point depends on its sensitivity to the source
function. For example, the sensitivity will be greater for
regions immediately downgradient from the source, while
areas further downgradient or away from the principal flow
direction are much less sensitive to the release intensity. The
result is that the uncertainty will decrease, in general, with
growing distance from the contamination source. The
uncertainty also depends on Vŝ such that plume areas

corresponding to times at which the release was highly
uncertain will have higher variance than those correspond-
ing to more certain elements of s.
[24] Similar considerations determine the uncertainty as-

sociated with TREK estimates, because this method also
relies on the estimated release history. However, TREK may
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be more directly affected by measurement locations, since it
also considers the spatial covariance structure of the plume
distribution, Qz. This additional information further con-
strains the estimate for each point, with the result that the
TREK uncertainty is always smaller than that of IFM.

4.3. Kriging With a Trend

[25] The new methods presented in section 4.2 are
compared to kriging in the applications presented in
section 5. Therefore a brief overview of kriging is presented
here for reference. In kriging with a trend, we model z as a
random vector with expected value Xzbz, where Xz is a
known [N � pz] matrix and bz are pz unknown drift
coefficients, representing the mean and the trend of the
unknown concentration distribution. The prior covariance of
z is Qz, a known function of unknown parameter(s) q,
which can be optimized using RML as presented in
Section 4.2. Once these parameters have been estimated,
the best estimate ẑ is obtained using a linear combination of
known measurements z*. The coefficients Lz* [N � n] and
Mz* [pz � N] of this linear system are calculated by solving
a kriging system of the form

Qz** X*z

X*
T

z 0

" #
LT

z*

Mz*

� �
¼ Qz*

XT
z

� �
ð15Þ

Note that Q*z* [n � n] is the covariance matrix of
measurements, whereas Qz* [n � N] is the covariance
between concentrations at the n measurements locations and
the N estimation locations. Similarly, X*z are the basis
functions evaluated at the measurement locations, and Xz

are those evaluated at the estimation locations. The kriging
estimator is

ẑ ¼ Lz*z* ð16Þ

and the a posteriori kriging covariance is

Vẑ ¼ Qz �QT
z*L

T
z* � XzMz* ð17Þ

[26] To account for measurement errors and preserve
continuity, continuous part kriging [Kitanidis, 1997], also
referred to as kriging with known measurement error
variance [Wackernagel, 2003], can be applied by adding
sR
2 to the terms on the diagonal of Q*z* in equation (15).

5. Test Cases

[27] The following section presents sample applications
of the two methods developed in this work. These examples
involve the estimation of a contaminant plume distribution
in a confined aquifer. In all examples, an aquifer is assumed
to have been contaminated by a single point source with
known location but unknown loading history as a function
of time, s. Measurements z* taken at time T and knowledge
of the hydrogeological conditions, H and H*, are used in
implementing IFM, TREK, and KT, to estimate the full
plume distributions z. Hypothetical examples were chosen
to illustrate and verify the capabilities of the methods in a
setup where the true concentration distributions are known.
[28] The two cases considered are a plume in a one-

dimensional homogeneous aquifer, and a plume in a two-

dimensional heterogeneous aquifer. In addition, sensitivity
analyses are performed to evaluate the effects of monitoring
network configurations, measurement errors, the time
elapsed prior to sampling, and spatially correlated model
mismatch errors.

5.1. Example 1: One-Dimensional Homogeneous
Aquifer

[29] In the first example we use the setup previously
implemented by Skaggs and Kabala [1994, 1995] and
Snodgrass and Kitanidis [1997]. This example involves the
release of a conservative solute into a one-dimensional
homogeneous aquifer with a steady state flow field. The
solute is released only at the origin (x0 = 0) and the
concentration is measured at various points in the aquifer at
some later time T. The advective and dispersive transport of
this solute can be expressed analytically as:

C x; Tð Þ ¼
Z T

0

s tð Þg1D x; T � tð Þdt ð18Þ

where C(x, T) is the concentration at distance x from the
source and time T. The source is a function of time and is
expressed by s(t). The one-dimensional transfer function
g1D(x, T � t) relates the source concentration at time t to the
concentration measured at point x and time T [Skaggs and
Kabala, 1994]:

g1D x; T � tð Þ ¼ x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDL T � tð Þ3

q exp � x� v T � tð Þð Þ2

4DL T � tð Þ

" #
ð19Þ

where DL is the longitudinal dispersion coefficient and v is
the seepage velocity. Note that zi = C(xi, T) is the con-
centration at location xi.
[30] The synthetic pollution event is obtained through the

numerical integration of equation (18) at T = 330 time units,
with longitudinal dispersivity DL = 1, flow velocity v = 1
and true release history

s tð Þ ¼ exp � t � 130ð Þ2

50

" #
þ 0:3 exp � t � 150ð Þ2

200

" #

þ 0:5 exp � t � 190ð Þ2

98

" #
ð20Þ

This release history is illustrated in Figure 1. Note that this
release history is used only for the purposes of simulating
the plume, but is then considered unknown in subsequent
steps. This one-dimensional plume is sampled at n = 11
locations x*. Negligible measurement error with a variance
of 10�12 is added to these concentrations to yield the
observations z*. We use these observations z* and the
transport information (equation (19)) to estimate the plume
concentrations z at m = 301 locations (x = 0, 1, 2, . . ., 300)
using KT, IFM and TREK.
5.1.1. Kriging With a Trend
[31] For kriging with a trend we use a cubic generalized

covariance function (GCF):

Qz hð Þ ¼ qzh3 ð21Þ
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and optimize the parameter qz using RML. In order to obtain
better structural information, we use more plume samples
for this optimization step than for the estimation below. For
this example, the estimated parameter is qz = 5.9 � 10�8.
[32] The plume is modeled using a linear trend in x,

yielding X*z = [[1] x*], where [1] is an (n � 1) vector of
ones. The coefficients Lz* and Mz*, calculated with
equation (15), are used to obtain the best estimate bz
(equation (16)) of the plume distribution and the kriging

covariance Vẑ (equation (17)). Measurement The best
estimate and associated uncertainty are plotted in Figure 2.
5.1.2. Inverse/Forward Modeling
[33] We use the transfer function (equation (19)) to define

the sensitivity matrix H* according to [Snodgrass and
Kitanidis, 1997]

Hij* ¼ xi*

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDL T � tj

� �3q exp �
xi*� v T � tj

� �� �2
4DL T � tj

� �" #
Dt ð22Þ

where Dt = 1 is the discretization of the source function in
time. The covariance structure Qs of the source function is
also modeled using a cubic GCF. For the presented
example, the best estimate for its single parameter
(optimized using RML) is qs = 1.3 � 10�5. This information
is used to estimate the source release history (equations (5),
(6), and (7)). The source function basis functions are Xs =
[[1] t], where [1] is an [m � 1] vector of ones and the
elements of t = 0, 1, . . ., 300 correspond to the discretized
times of the release history. We then form a second
sensitivity matrix H for the estimation points x, by replacing
the measurement locations x*i with estimation locations xi in
equation (22). The resulting estimated plume distribution bz
and its covariance HV̂sH

T are illustrated in Figure 2.
[34] The IFM best estimate fluctuates around the actual

plume while reproducing all of the measurements to within
the prescribed measurement error. The plume samples were

Figure 1. Example 1: Source release history.

Figure 2. Example 1: Homogeneous one-dimensional plume. Lines represent best estimates; shaded
areas represent 95% confidence intervals.
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all taken 30 time units after the modeled contamination
event ceased; however, the constant flow remained as
before. Consequently, uncontaminated water flowed in from
the left side of the aquifer. Thus a significant concentration
around x � 0 is physically nearly impossible according to
the transport model. For this reason, IFM’s confidence
intervals vanish there.
5.1.3. Transport-Enhanced Kriging
[35] In this third approach, we estimate the release history

of the point source as described in section 4.3. We then use
the concentration covariance structure Qz together with the
inverse modeling results to estimate the plume distribution
according to equations (12)–(14). Results are presented in
Figure 2.
[36] With 11 available measurements, and no significant

measurement error (sR = 10�6), all three methods do
reasonably well in reproducing the true (unknown)
concentration distribution throughout the domain. At
several points, the KT and IFM curves deviate noticeably
from the actual plume, whereas the TREK estimates remain
closest to the actual distribution. The confidence intervals
show that uncertainty decreases close to measurement
locations for all methods. For any given point, the
transport-enhanced kriging (TREK) has the lowest uncer-
tainty because it combines the information used in KT and
IFM. All methods yield reasonable estimates of uncertainty,
in the sense that the real plume falls within the 95%
confidence intervals in most areas. However, the TREK
estimate yields the most accurate representation of the true
plume distribution.

5.2. Example 2: Two-Dimensional Heterogeneous
Aquifer

[37] In this example, a contaminant is released into a
deterministically heterogeneous confined aquifer (Figure 3a).
The concentration of the point source located at (x1 = 0, y1 =
260) is variable in time and is described by

s tð Þ ¼ 1:4 exp � t � 850ð Þ2

56000

" #
þ 1:1 exp � t � 1700ð Þ2

13333

" #
ð23Þ

The resulting plume is measured at n = 12 locations
(Figure 3b), to yield the observations z*. A normally
distributed random error, with a variance of sR

2 = 10�6, was
added to these measurements.

[38] The conductivity field for this aquifer is taken from
Michalak and Kitanidis [2004a]. A constant head difference
was imposed between the left and right boundaries of the
aquifer, inducing flow from left to right. On the top and
bottom are zero-flux (no flow) boundaries. MODFLOW-
2000 [Hill et al., 2000] is used to calculate the correspond-
ing flow field.
[39] The numerical transport model MT3DMS [Zheng

and Wang, 1999] is used in implementing IFM and TREK
to determine the effect of a unit concentration pulse on field
concentrations. A short pulse is released, and the resultant
concentrations are sampled repeatedly on a grid of 16 � 62
locations, at 188 consecutive times, corresponding to the
discretization of the source release history s. Thus, although
the transport model is run only once, it effectively yields the
required sensitivities for all times of the release history. The
concentrations measured at each time step are used to fill
one column of the sensitivity matrix H.
[40] We use a typical 10:1 anisotropy [e.g., Delleur,

1998] for the kriging estimation, corresponding to the
modeled ratio of longitudinal (0.347) to transverse dis-
persivity (0.0347). Note that only the ratio of the
dispersivity values is needed to define the kriging
anisotropy [Chilès and Delfiner, 1999]. Using the measure-
ments z*, covariance parameters are optimized both for the
source function and for the measurement space using cubic
GCFs, yielding qs = 1.3 � 10�8 and qz = 1.4 � 10�9,
respectively. Note that qz is estimated in a transformed
coordinate system, in which the y coordinate was stretched
to account for anisotropy.
[41] As in the previous example, KT, IFM and TREK are

used to estimate the simulated plume. The KT interpolation
(Figure 4a) reproduces the measurements, but is unable to
represent the true shape of the plume, and its uncertainty
(Figure 4d) grows quickly away from measurement loca-
tions. The IFM method reproduces the plume much more
precisely (Figure 4b), and yields a substantially lower
uncertainty (Figure 4e). Contrary to KT, the uncertainty
decreases with increasing distance from the center of the
plume. Finally, the TREK solution (Figure 4c) is very
similar to the IFM solution, but slightly better. The uncer-
tainty is always lowest relative to KT and IFM.
[42] Figure 5 shows the recovered source function

(equation (6)) for this example and its confidence intervals
(equation (7)). With only 12 concentration measurements,

Figure 3. Example 2: Heterogeneous two-dimensional aquifer. (a) Hydraulic conductivity field.
(b) Simulated plume and measurement locations. All quantities are dimensionless.
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the best estimate of the release history differs from the true
loading substantially, and the uncertainty associated with
the estimate is large. This demonstrates the strongly under-
determined nature of this inverse problem (12 data points
are used to estimate the 188 points of the source function).
Note that the estimated source release history is still
accurate because the true function lies within the uncertainty
bounds of the estimate. Most interestingly, however, even
with a poor estimate for the source function, the IFM and
TREK methods reproduce the true plume very well (Figures
4b and 4c). This is due both to the fact that (1) the nature of
the flow and transport in the aquifer provides a strong
constraint on the possible plume distributions, and that
(2) the forward problem of contaminant transport is a
well-posed problem, such that the resulting plume distribu-
tion is unique for a given release history and relatively
insensitive to small uncertainties in this release [Sun, 1994].
Therefore, even in cases where the measurement network is
not sufficient to constrain the source release history,
incorporating information on the flow and transport field
leads to significant improvements in the ability to estimate
the spatial distribution of the contaminant plume.

5.3. Sensitivity Analyses

[43] Sensitivity analyses were performed to investigate
the effects of increased measurement errors, correlated
model-data mismatch errors, and sparse sampling networks
on the performance of the proposed methods. The sparse
network example is also repeated for multiple times after the
release, to draw conclusions about how the methods behave
for plumes that have undergone different degrees of trans-
port and mixing.
5.3.1. Measurement Errors
[44] In the first sensitivity test (Figure 6), we use a similar

setup to that of example 1, but introduce a measurement

error of sR = 0.01. The cubic GCF parameters become qs =
8.9 � 10�6 and qz = 6.5 � 10�8. The best estimates are now
conditioned to imperfect measurements, rather than to the
actual plume, where this error can represent instrument error
and/or uncorrelated errors associated with the transport
model. For this case, as expected, the confidence intervals
are wider relative to the case with negligible measurement
error, especially near the measurement locations. TREK
again provides the most precise plume estimates.

Figure 4. Example 2: Results. (a) Kriging with a trend best estimate. (b) Inverse/forward modeling best
estimate. (c) Transport-enhanced kriging best estimate. (d) Kriging with a trend uncertainty. (e) Inverse/
forward modeling uncertainty. (f) Transport-enhanced kriging uncertainty. All quantities are dimension-
less; uncertainties are represented by standard deviation.

Figure 5. Example 2: Actual and estimated source release
history.
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5.3.2. Repeated Sampling in a Sparse Sampling
Network
[45] We again use the setup described in example 1, but

take measurements at only eight locations, to aggravate the
ill posedness of the problem (now only 8 measurements are
used to estimate 301 points). We sample this plume as it
evolves over time. For T = 330 (Figure 7a), this sparse
network results in poorer best estimates and wider
confidence bounds for all methods. Note that the actual
plume is still contained within the confidence bounds. At
later times, T = 500 (Figure 7b) and T = 1500 (Figure 7c),
the estimated plumes are closer to the actual plume, because
the plume becomes smoother with time. This makes any
kind of sparse network interpolation easier, because these
methods tend by their nature to yield smooth estimates. For
T = 500, the KT confidence intervals are similar to those for
T = 330, but for IFM and TREK they decrease considerably.
This occurs because the transport information yields more
precise estimates as time lapses, because the effects of
additional mixing mitigate the effects of the uncertain
release history. At T = 1500, the plume is longer and the
measurement network spans a larger area. Therefore the
distance between adjacent measurement locations is larger,
which increases the KT uncertainty. The IFM and TREK
confidence intervals, on the other hand, are narrower owing
to the degree of mixing implied by the flow and transport
model. At large times, the actual plume becomes very
smooth as a result of prolonged dispersion, and the three
best estimates reproduce it very well and are almost
indistinguishable (Figure 7c). At this large time, the
accuracy of the kriging estimate is improved due to the

smoothness of the plume, whereas the IFM and TREK
estimates take advantage of this feature as well as the
diffusive nature of the transport process.
5.3.3. Correlated Model-Data Mismatch Error
[46] If transport errors are present, then measurements

cannot be reproduced perfectly, and this error is often
parameterized as an additional measurement error. Recall
that the first component of the inverse model objective
function (equation (4)) requires the forward model H*s to
reproduce the measurements z* to within an error with
covariance R. Previously, this covariance matrix was mod-
eled as a diagonal matrix, representing only independent
measurement errors, with no cross-correlated errors. Non-
zero off-diagonal terms in R imply that errors at certain
points affect the values at other points. These effects can be
interpreted as spatially correlated transport errors; hence we
repeat example 2, replacing the uncorrelated R matrix with
a cubic GCF with q = 10�10, to investigate the effect of
spatially correlated transport errors on the performance of
IFM and TREK.
[47] Figure 8 shows the results of this sensitivity analysis.

As expected, the best estimates are less precise than in
experiment 2, yielding a smoother estimated plume distribu-
tion with higher uncertainty. The estimates remain accurate,
however, providing a realistic estimate of the uncertainty
associated with the plume distribution.

6. Discussion

[48] In the presented examples, the IFM and TREK
methods are shown to be robust, providing good estimates

Figure 6. First sensitivity analysis: Example 1 with normally distributed measurement errors with
standard deviation of 0.01.
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under a variety of conditions. Kriging with a trend, in
contrast, is strongly dependent on measurement locations.
The main reason behind this is that the new methods take
advantage of transport information within the aquifer. IFM
and TREK only allow solutions which are feasible in terms
of the physical transport process. This is especially advan-
tageous in heterogeneous formations (example 2), in which
the measurement-based covariance function cannot capture
small-scale variability. In KT, the estimate reverts to an
estimated trend away from measurement locations. It is
intuitive and well known that for KT and other direct
interpolation methods, the uncertainty is lowest at the
measurement locations, and increases with distance from
them. In contrast, for IFM the highest uncertainties can
sometimes be found directly downgradient from the source
location (see example 2), because that is where any uncer-
tainty in the recovered source release history has the most
dramatic effect on concentrations. In the transverse direc-
tion, the contaminant concentration approaches zero with
increasing distance, with little sensitivity to the source

magnitude. The consequence is that if monitoring wells
were to be drilled around the expected ‘‘hot spots’’ of the
contamination, KT and IFM would complement each other:
under certain circumstances, the former would have more
precise predictions in areas of high concentrations, while the
latter would more accurately predict the concentrations
farther away. Thus careful implementation of the TREK
method takes advantage of the best features of the other two
approaches.
[49] Interestingly, although a sparse measurement net-

work can lead to high uncertainty in the recovered contam-
inant release history, the process of forward modeling often
mitigates this problem (Figure 5). This indicates that,
although the sparse measurements are not sufficient to
recover the source in some cases, the information provided
by the flow and transport model provides an additional
constraint that results in precise estimates of the current
contaminant distribution. The flow regime in an aquifer and
the contaminant source location provide a strong constraint
on the possible distributions of plumes emanating from the
source. In addition, groundwater contaminant transport is a
dispersive process and consequently there are limits to what
can be learned about the history of contamination from
measurements of a plume’s present spatial distribution
[Kabala and Skaggs, 1998]. However, this dispersion is
also the reason that the results of the forward model are
relatively insensitive to the details of the release history, i.e.,
for a given transport model, large variations in the release
would cause relatively smaller variations in the plume. Thus
the additional constraint on the plume comes not only from
the estimated release history, but also from the transport
information itself. As a result, plumes can be estimated
accurately even when the measurement network is not
sufficient to strongly constrain the contaminant release
history.
[50] The examples in this paper used deterministic trans-

port models, with no inherent uncertainty. Other sources of
uncertainty, such as the sparseness of the observation
network, measurement errors, small-scale variations in
concentrations, and model-data mismatch contributed to
the uncertainty associated with the recovered source release
history and plume distribution (Figures 2, 6, and 7a). In
field situations, incomplete characterization of the subsur-
face would lead to additional uncertainty in the flow and
transport model. This uncertainty would need to be quan-
tified and included in the IFM and TREK plume distribution
estimates, such that the estimated plume reflected the
information content of the available model and measure-
ments. In this work, the uncertainty associated with the flow
and transport model is included in the variance (or covari-
ance in the third sensitivity analysis) specified in the model-
data mismatch matrix R. Methods for explicitly quantifying
and taking in account spatially and/or temporally correlated
flow and transport errors are the subject of ongoing
research.

7. Conclusions

[51] The methods presented in this paper combine geo-
statistical kriging and inverse modeling approaches in
developing improved tools for estimating the spatial distri-
bution of contaminant plumes. The methods reconstruct the
plume accurately with low uncertainty. In addition, IFM and

Figure 7. Second sensitivity analysis: Example 1 with
sparse sampling network of eight equally spaced measure-
ments at three different times. Note that the range of the
abscissa is different in different subplots.
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TREK can often alleviate the effects of measurement errors
by using transport information to eliminate values that are
not physically feasible. The TREK method is most robust
because it assimilates information about the transport as
well as the spatial covariance structure of the measured
concentrations. In cases where such a covariance structure is
not available or not credible (e.g., measurements were taken
in different hydrogeological zones), IFM would be the
preferred choice.
[52] While the presented sample applications all assumed

a single time-varying point source of contamination, the
methods can easily be adapted to multiple point sources
[e.g., Butera and Tanda, 2003], or to historical plume
distributions [e.g. Michalak and Kitanidis, 2004a].
[53] It is interesting to note that, although we do not

enforce nonnegativity in the estimated plume distribution,
the IFM and TREK methods seldom yield estimates with
negative concentrations, even though the estimated source
function does sometimes exhibit negative concentrations.
Nonnegativity-enforcing constraints could be explicitly im-
posed [e.g., Snodgrass and Kitanidis, 1997; Michalak and
Kitanidis, 2003, 2005] to further improve plume interpola-
tion using these methods. Such a modification would be
expected to have a modest effect on the best estimates, but
could have a more significant impact on the estimated
uncertainty.
[54] We presented this work in a geostatistical frame-

work, but the developed principles could potentially also be
applied to other inversion methods. For example, the
inversion of the release history could theoretically be
performed using the minimum relative entropy approach
[Woodbury and Ulrych, 1996], with the rest of the method

unchanged, as long as the full covariance of the source
release history were calculated.
[55] Finally, in the examples presented here, a determin-

istic transport field was used, and the location of the source
was known. In field situations, these parameters may be
uncertain, which would result in higher uncertainty in the
estimated plume distribution, as demonstrated in the third
sensitivity analysis. Future work will focus on incorporating
these additional sources of uncertainty within the TREK
framework to further enhance the applicability of this
method in field situations.
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