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[1] In order to better describe the space plasmas where pressure anisotropy has prominent
effects, we extend the BATS-R-US magnetohydrodynamics (MHD) model to include
anisotropic pressure. We implement the anisotropic MHD equations under the double
adiabatic approximation with an additional pressure relaxation term into BATS-R-US and
perform global magnetospheric simulations. The results from idealized magnetospheric
simulations confirm previous studies: pressure anisotropy widens the magnetosheath,
increases the density depletion in the vicinity of the magnetopause, enhances the nightside
plasma pressure, and introduces an eastward ring current. In addition, we find that the flow
speed in the magnetotail is significantly reduced by including pressure anisotropy in MHD
simulations. Our model is validated through comparing the simulations to the THEMIS
data on both the dayside and nightside of the magnetosphere during quiet times. The
comparison to the results from isotropic MHD simulations implies that although
anisotropic MHD is comparable to isotropic MHD in matching the measurement, it
improves the simulated plasma velocity in some cases.
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1. Introduction

[2] Pressure anisotropy is important in magnetized plas-
mas with low densities, where particle collisions are not
frequent enough to balance the particle motions along and
perpendicular to the magnetic field. Thus the corresponding
parallel and perpendicular pressures are different. Space
plasmas provide the favored environments where the pres-
sure anisotropy arises. In the Earth’s magnetosphere, such
environments include the magnetosheath, the tail reconnec-
tion region, and the closed-field-line region surrounding the
Earth.
[3] To describe the pressure anisotropy feature of space

plasmas that cannot be captured by ideal magnetohydrody-
namics (MHD) simulations, we extend the BATS-R-USMHD
code [Powell et al., 1999] to account for anisotropic pressure.
A major difficulty during the implementation is the insuffi-
cient jump relations across a discontinuity in an anisotropic
plasma [Abraham-Shrauner, 1967; Lynn, 1967; Neubauer,
1970], requiring us to develop special treatments in order to
compute the bow shock accurately. In addition, several types
of plasma instabilities can arise in an anisotropic plasma

[Chandrasekhar et al., 1958; Barnes, 1966; Kennel and
Petschek, 1966], restricting the pressure anisotropy. Finally,
we need to perform verification and validation tests to ensure
the numerical and physical correctness of the model itself.
[4] Our study is being conducted in several steps. In our

recent paper [Meng et al., 2012], we reported in detail the
implementation and verification of BATS-R-US with aniso-
tropic pressure. There we described the equations for MHD
with anisotropic ion pressure and isotropic electron pressure
under both the classical and semirelativistic limits. The ion
pressure equations are the same as the double adiabatic
equations [Chew et al., 1956] plus an anisotropy relaxation
term. We also presented the characteristic wave speeds
acquired by numerical fluxes, the numerical algorithm and a
set of numerical tests that we performed to verify the aniso-
tropic MHD code. In the present paper, we focus on the
Earth’s quiet time magnetospheric simulations to validate the
anisotropic MHD model. We also investigate the timescale
for limiting the pressure anisotropy in the simulations. In a
follow-up paper, we will describe the coupling between
anisotropic BATS-R-US and ring current models, particu-
larly the Comprehensive Ring Current Model (CRCM) [Fok
et al., 2001], which resolves pitch angle distribution and thus
can provide pressure anisotropy information in the inner
magnetosphere to anisotropic BATS-R-US. The coupled
model is used to perform geomagnetic storm simulations.
Since the electron pressure plays a minor role compared to
the ion pressure in the magnetosphere, we do not consider
electron pressure in our magnetospheric modeling.
[5] No global magnetospheric MHD models considering

pressure anisotropy have been developed to our knowledge.
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Nevertheless, MHD modeling with anisotropic pressure has
been addressed by many publications. A heavily studied
topic is the anisotropic MHD model of the magnetosheath.
For example, Erkaev et al. [1999] presented a three-
dimensional (3-D) steady state MHD model of the magne-
tosheath flow near the subsolar line with anisotropic pressure.

Denton and Lyon [2000] studied the effects of pressure
anisotropy using a two-dimensional (2-D) fluid model of the
magnetosheath. Recently, Samsonov et al. [2007] validated
their 3-D anisotropic MHD model of the magnetosheath by
comparing the model results to Cluster data. The magnetotail
has also been simulated with a 3-D anisotropic MHD model

Figure 1. The pressure anisotropy ratio p? / pk in the Y = 0 plane (left column) and the Z = 0 plane (right
column) from the idealized magnetospheric simulations using anisotropic BATS-R-US in the southward
IMF case. The four rows are from runs with different pressure relaxation time t. Top to bottom:
growth-rate based t, t = 10 s, t = 100 s, t = ∞ (no pressure relaxation).
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by Hesse and Birn [1992]. These regional models signifi-
cantly contribute to the numerical modeling of space plasmas
with anisotropic pressure, however they cannot reveal the
global impacts of pressure anisotropy.
[6] In addition to the study of MHD models, a few

researchers have investigated pressure anisotropy with equi-
librium models. Cheng [1992] obtained self-consistent mag-
netospheric equilibria with anisotropic pressure by solving the
inverse equilibrium equation. Zaharia et al. [2004] computed
3-D force-balanced magnetospheric configurations with their
3-D equilibrium code and applied to magnetic storm

simulations. Wu et al. [2009] extended a friction code equi-
librium solver to include pressure anisotropy. These studies
provide very interesting insight of how anisotropic pressures
modify the magnetic field and current configuration in the
inner magnetosphere. Yet the equilibrium modeling, relying
on empirical models of the pressure distribution as initial
inputs, is very different from the self-consistent and time-
dependent MHD model presented in this paper.
[7] Moverover, pressure anisotropy has been studied with

empirical models, which belong to another important branch
of magnetospheric modeling techniques.Horton et al. [1993]

Figure 2. The logarithmic t contour in the Y = 0 plane (left column) and the Z = 0 plane (right column)
of the three instabilities from the growth-rate based t run for the southward IMF case. t is given in sec-
onds. The white regions are stable for the respective instabilities.
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Figure 3. The logarithmic density contour in the X = 0 plane (left column) and the Y = 0 plane (right col-
umn) from the idealized magnetospheric simulations in the southward IMF case. Top to bottom: isotropic
MHD, anisotropic MHD with physical t based on the growth rates, anisotropic MHD with t = 10 s, aniso-
tropic MHD with t = 100 s and anisotropic MHD with t = ∞.
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derived the plasma pressure tensors from the Tsyganenko
magnetic field models. Lui et al. [1994] obtained the per-
pendicular and parallel pressure distribution in force equi-
librium with magnetic stresses from the Tsyganenko field
models for the quiet time nightside magnetosphere. They
found the deduced pressure profiles are in good agreement
with the observations. The efforts of including pressure
anisotropy in empirical modeling are successful and worth-
while, providing valid references and comparisons to our
MHD modeling with anisotropic pressure.
[8] The following content of this paper is divided into three

parts. For the sake of completeness, we begin by introducing
the equation set for MHD with anisotropic pressure and its
implementation into BATS-R-US in section 2. Then, in
section 3, we present a variety of magnetospheric simulations
performed using the anisotropic BATS-R-US model. These
simulations cover the cases with idealized and real solar wind
and IMF conditions as inputs. Finally, in section 4, we

evaluate the model, propose future work and explore poten-
tial applications.

2. Methods

2.1. Background

[9] BATS-R-US is a global MHD model that can solve the
idealized MHD equation set and its various extensions, for
instance Hall, semirelativistic, multifluid and so on. It is also
a part of the Space Weather Modeling Framework (SWMF)
[Tóth et al., 2012], a toolkit for the Sun-Earth environment
modeling developed at the University of Michigan. For the
Earth’s magnetospheric simulations, BATS-R-US can be
coupled with other physical components in the SWMF,
including those modeling the ring current, the radiation belt,
the ionospheric electrodynamics and the polar wind.

Figure 4. The number density (top), pressure (middle) and magnetic field strength (bottom) profiles of
the dayside magnetosheath along the X axis from the idealized magnetospheric simulations in the south-
ward IMF case. Different lines represent different runs as indicated in the figure.
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2.2. Equations

[10] As a newly implemented capability, BATS-R-US with
anisotropic pressure solves the anisotropic MHD equations,
which can be written as:

∂r
∂t

þr⋅ ruð Þ ¼ 0 ð1Þ

∂ru
∂t

þr⋅ ruuþ p?Iþ pk � p?
� �

bb� 1

m0
BB� B2

2
I

� �� �
¼ 0

ð2Þ

∂B
∂t

þr� � u� Bð Þ½ � ¼ 0 ð3Þ

∂pk
∂t

þr⋅ pku
� �þ 2pkb⋅ b⋅rð Þu ¼ dpk

dt
ð4Þ

∂p
∂t

þr⋅ puð Þ þ 2

3
p? r⋅uð Þ þ 2

3
pk � p?
� �

b⋅ b⋅rð Þu ¼ 0; ð5Þ

where r, u and B are the density, velocity and magnetic field,
respectively. b = B/|B| is defined as the unit vector along the
magnetic field. pk represents the parallel pressure component

with respect to the magnetic field, while p is the average
scalar pressure. m0 denotes the permeability of vacuum. We
take the polytropic index to be 5/3.
[11] We adopt the total scalar pressure p as one of the

primitive variables for the sake of simplicity of the imple-
mentation and consistency with the ideal MHD case. The
conversion between the total scalar pressure and the pressure
components can be expressed as:

p ¼ 2p? þ pk
3

: ð6Þ

Mathematically, we can use either pk or p? as the other pres-
sure variable as theymake no difference. However, given p? is
larger than pk in most places where pressure anisotropy exists
in the magnetosphere, the chance of pk becoming negative
when solving for p and p? is larger than the chance of p?
getting negative when solving for p and pk. In favor of
numerical computation, we choose to solve pk instead of p?.
[12] Compared to the ideal MHD equations, the momen-

tum equation (2) and the total scalar pressure equation (5)
are changed. Each of these equations contains a new term
resulting from the difference between pk and p?: (pk � p?)
bb in equation (2) and 2

3 pk � p?
� �

b⋅ b⋅rð Þu in equation (5).
These two new terms are eliminated in the case of pressure
isotropy, thus the equations reduce to the standard ideal MHD

Figure 5. The x-direction velocity contour in the Y = 0 plane (top row) and the Z = 0 plane (bottom row)
from the idealized magnetospheric simulations with isotropic MHD (left column) and anisotropic MHD
with growth-rate based t (right column) in the southward IMF case.
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equations as p? = p. The right-hand side of equation (4) is
the pressure relaxation term that will be discussed shortly.
In the absence of the pressure relaxation term, equations (4)
and (5) are equivalent to the double adiabatic equations.
[13] Capturing jump conditions across a discontinuity

relies on acquiring conservation laws of the system. Therefore,
we need to solve the conservative form of the equation set
for the bow shock region. Only the pressure equations (4)
and (5) are not in a conservation form. The conservation
of energy density e provides the conservative equation that
replaces total scalar pressure of equation (5) as:

∂e
∂t

þr⋅ u eþ p? þ B2

2m0

� �
þ u⋅ pk � p?

� �
bb� BB

2m0

� �� �
¼ 0

ð7Þ

with

e ¼ ru2

2
þ B2

2m0
þ 3

2
p: ð8Þ

Compared to isotropic MHD, the total energy density equation
also contains the additional term introduced by the pressure
difference of the parallel and perpendicular components.
[14] However, the system is underdetermined as the

parallel pressure equation (4) cannot be written in an
appropriate conservative form. This particular issue has been

discussed by many researchers [Hudson, 1970; Chao and
Goldstein, 1972; Lyu and Kan, 1986; Erkaev et al., 2000;
Vogl et al., 2001a, 2001b]. We solve equation (4), while
using the instability criteria to bound the parallel pressure
jump across the bow shock, similar to the bounded aniso-
tropic fluid model proposed by Denton et al. [1994].
[15] Apart from supplementing the jump conditions, the

plasma instabilities associated with anisotropic pressure
limit the pressure anisotropy throughout the magnetosphere.
We consider the firehose, the mirror, and the ion cyclotron
instabilities, all of which can arise in plasmas with aniso-
tropic pressure. The firehose instability occurs when [Gary
et al., 1998; Lazar and Poedts, 2009a, 2009b]

pk
p?

> 1þ B2

m0p?
: ð9Þ

The mirror and ion cyclotron instability criteria are [Tajiri,
1967; Gary et al., 1976; Gary, 1992]

p?
pk

> 1þ B2

2m0 p?
ð10Þ

and

p?
pk

> 1þ C1
B2

2m0 pk

� �C2

; ð11Þ

Figure 6. The logarithmic pressure contour in the Y = 0 plane (top) and the Z = 0 plane (bottom) from the
idealized magnetospheric simulations with isotropic MHD (left column) and anisotropic MHD with
growth-rate based t (right column) in the southward IMF case.
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respectively, where we use C1 = 0.3 and C2 = 0.5 as they are
close to the average values derived from observations in the
magnetosphere [Anderson et al., 1996; Gary et al., 1995].
[16] The latter two instabilities involve kinetic effects and

thus cannot be fully described by MHD. Moreover, the grid
resolution that we normally apply in global MHD simula-
tions may not be fine enough to resolve even hydromagnetic
instabilities. The effect of these instabilities is represented by
the collision term of the parallel pressure equation (4):

dpk
dt

¼ �pk � pk
t

; ð12Þ

where �pk is the marginally stable parallel pressure obtained
from equations (9), (10) or (11). We call equation (12) the
pressure relaxation term due to the instabilities, with the
relaxation time t relates to their growth rates. In regions
stable for all types of instabilities, the relaxation term (12) is
zero. In unstable regions, the pressure relaxation term pushes
the parallel pressure so that the plasma reaches the margin-
ally stable states over time t. In the case when both the
mirror and ion cyclotron instabilities are present, only the
one that gives larger dpk/dt is applied. The details of how we
set t will be addressed in section 2.3.
[17] In addition to the pressure relaxation term applied in

the unstable regions, we introduce a global pressure

Figure 7. The number density (top), pressure (middle) and temperature (bottom) profiles of the nightside
magnetosphere along the X axis from the idealized magnetospheric simulations with isotropic MHD (dot-
ted line) and anisotropic MHD with growth-rate based t (solid line) in the southward IMF case. For the
anisotropic MHD case, we plot the scalar pressure as defined by equation (6) and the corresponding scalar
temperature.
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relaxation term that applies everywhere to represent other
possible mechanisms constraining the plasma pressure
anisotropy in the real magnetosphere. We write the global
relaxation term as

dpk
dt

¼ p� pk
tg

; ð13Þ

where tg is the global relaxation time. In unstable regions,
both (12) and (13) are computed, and the one with
larger absolute value, which changes pk more, is applied.

To minimize the effect of the global relaxation term on the
unstable regions, we set tg to be of the order of 100 s in quiet
time magnetospheric simulations. According to the idealized
simulations we performed, shown in section 3.1, the typical
relaxation time t due to the instabilities is much lower than
100 s.
[18] For the implementation into BATS-R-US, equations

(1)–(5) and (7) are discretized with several numerical
schemes. To deal with the case when the Alfvén speed is
comparable or larger than the speed of light, including the

Figure 8. The ionospheric field-aligned currents (left column) and cross polar cap potential (right col-
umn) of the Northern Hemisphere from the idealized magnetospheric simulations with isotropic MHD
(top) and anisotropic MHD with growth-rate based t (bottom) in the southward IMF case.
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artificially reduced speed of light for the “Boris Correction”
[Boris, 1970], we also implemented the semirelativistic for-
mulation of MHD with anisotropic pressure. More details of
the algorithm and implementation, as well as the series of
numerical tests performed to verify the code can be found
in Meng et al. [2012].

2.3. Anisotropy Relaxation Time

[19] We have implemented two types of relaxation time t
for the instability induced relaxation term (12). First, t
can be set to a constant value homogeneously in the
computational domain. For magnetospheric simulations,
typical values are of the order of 10 s, as we shall see later.
Second, t can be set based on the growth rates of the
instabilities.
[20] For the firehose instability, the growth rate can be cal-

culated from the dispersion relation of the Alfvén wave in a
plasma with anisotropic pressure, written as [Baranov, 1970]:

w2

k2k
¼ 1

r
B2

m0
þ p? � pk

� �
: ð14Þ

[21] When the firehose instability is excited—i.e., when
equation (9) is satisfied—the growth rate is given by

gf ¼ kk

ffiffiffiffiffiffiffiffiffi
Dpf
r

s
; ð15Þ

where kk = kcosq = (2p/l)cosq, with q representing the angle
between the wave number k and the magnetic field, and
Dpf = pk � p? � B2/m0.
[22] As the growth rate gf varies with the wavelength l,

we are seeking the wavelength that grows fastest. However,
according to equation (15), the growth rate becomes infinity
when the wavelength approaches zero. This is because the
growth rate (equation (15)) is derived from the MHD theory
that is valid only in the long-wavelength limit, i.e., the
wavelength is much longer than the mean particle Larmor
radius. Taking the finite Larmor radius effects into account,
Hall [1979, 1981] showed that the growth rate is

gfFLR ¼ kk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r
Dpf � 1

3rW2
i

1

4
p? pk � p?

� �
k2? þ pk p? � pk

4

	 

k2k

� �( )vuut ;

ð16Þ

Figure 9. The Y-direction current density contour in the Y = 0 plane (top row) and the Z = 0 plane (bot-
tom row) from the idealized magnetospheric simulations with isotropic MHD (left column) and aniso-
tropic MHD with growth-rate based t (right column) in the southward IMF case. The field lines are
shown in the Y = 0 plane.
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where r is plasma density, Wi = qB/m is ion gyrofrequency,
and k? = ksinq. After some algebra, we found the maximum
growth occurs when q = 0, for pk / p? < 4, which shall hold
true for the firehose instability in the magnetosphere. The
corresponding fastest growing wavelength is obtained as

lf ¼ 2pri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6pk p? � pk=4

� �
p?Dpf

s
; ð17Þ

where ri = mv?/(qB) is the ion Larmor radius.
[23] Based on the fastest growth rate, we write the relax-

ation time of the firehose instability as

tf ¼ 1

gfFLR lf

� � ¼ 2

Wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk p? � pk=4
� �q
Dpf

: ð18Þ

In our single-fluid model, Wi is taken to be the gyrofre-
quency of a proton.
[24] A similar approach is applied to obtain the relaxation

time for the mirror instability. The fluid description of this
instability based on the MHD analysis yields the following
growth rate [Southwood and Kivelson, 1993]

gm ¼ k?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p?Dpm

pkr

s
; ð19Þ

where k? = ksinq = (2p/l)sinq andDpm = (p? � pk) � B2pk/
(2m0p?). Again the growth rate gm increases monotonically
with k. Unfortunately, given the complicated expression for
the growth rate with the finite Larmor radius effects [Hall,
1980], it is difficult to find the maximum growth rate.

Figure 10. Same as Figure 1 for the northward IMF case.
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However, Hall calculated the fastest growing wavelength
assuming low pressure anisotropy and high plasma beta as

lm ¼ 3
ffiffiffi
5

p
p

2
ri: ð20Þ

This is close to the typical values found from the full kinetic
analysis by Pokhotelov et al. [2004], as shown in their
Figure 1.
[25] Given lm is an order of magnitude larger than the ion

gyroradius, we approximate the maximum growth rate from
the long-wavelength MHD analysis by substituting (20) into
(19). The relaxation time for the mirror instability is thus
written as

tm ¼ 1

gm lmð Þ ¼
3

ffiffiffi
5

p

4Wi

ffiffiffiffiffiffiffiffiffiffiffiffi
pk

2Dpm

r
: ð21Þ

[26] For the ion cyclotron instability, its growth rate varies
with both the wavelength and the instability criterion (C1

and C2 in equation (11)) [Gary et al., 1994]. In reality, the
ion cyclotron instability can arise in the magnetosheath and
the closed field line region near the Earth. However, the
mirror instability often dominates over the ion cyclotron
instability in the magnetosheath as observed and modeled
[Phan et al., 1994; Shoji et al., 2009], which we have
already taken care of. The only concern is for the inner
magnetosphere. A good estimation of the relaxation time for
the ion cyclotron instability should probably relate to the
bouncing period of the particles travelling along the field
lines. For sake of simplicity we approximate the growth rate
based on observations in the magnetosphere [Anderson

Figure 11. Same as Figure 2 for the northward IMF case.
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et al., 1996] and theories [Märk, 1974; Gary et al.,
1993, 1995] as

tic ¼ 102

Wi
: ð22Þ

[27] Although the relaxation times (18), (21) and (22) have
a physical basis, they are only approximations to the reality,
so is the relaxation term (12). An underlying assumption is
that the time rate of the change in the parallel pressure is the
same as the growth rate of an instability. However, these
simplifications are appropriate for our MHD model in terms
of both computational cost and physical accuracy.

3. Global Magnetospheric Simulations

[28] To validate the anisotropic BATS-R-US code, we
perform global magnetospheric simulations including ideal-
ized and real magnetosphere cases. All the simulations are
produced from coupling BATS-R-US with the ionospheric

electric potential solver Ridley Ionosphere Model (RIM)
[Ridley et al., 2004], i.e., the GM and IE components of the
SWMF. Comparisons between the simulations and mea-
surements are reported.

3.1. Idealized Magnetospheric Simulations

[29] Our model validation starts with simulating the mag-
netosphere under idealized conditions to exclude unneces-
sary factors that complicate the system. First, we neglect the
rotation of the Earth. Second, we assume the magnetic axis
aligns with the ecliptic North direction. Third, we use con-
stant solar wind and interplanetary magnetic field (IMF)
conditions through the simulations: number density rsw = 5/
cc, temperature Tsw = 105 K, velocity uxsw = � 400 km/s,
uysw = uzsw = 0 and purely southward IMF Bzsw = � 5 nT or
northward IMF Bzsw = 5 nT. The input solar wind pressure is
assumed to be isotropic. Finally, for the ionosphere we apply
constant Pedersen conductance 5 mho and neglect Hall
conductance.
[30] The computational domain is a three-dimensional box

in GSM coordinates. With the Earth at the origin, the box

Figure 12. Same as Figure 4 for the northward IMF case.
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covers from �224 to 32 Earth radii (Re) in the X direction
and from �64 to 64 Re in the Y and Z directions. The inner
boundary is the surface of a sphere surrounding the Earth at
a radius of 2.5 Re, where the density is set to be 28/cc.
Taking advantage of the adaptive mesh refinement (AMR)
in BATS-R-US, we set the finest resolution of 1/4 Re near
the Earth and the coarsest resolution of 4 Re far down the
tail. We take the Boris factor to be 0.01, i.e., the reduced
speed of light is 3000 km/s. We use the Sokolov scheme
[Sokolov et al., 2002] with the Koren limiter [Koren, 1993]
in all idealized runs. We do not apply the global pressure
relaxation term (13), so the pressure anisotropy is only lim-
ited by the instabilities, if present, based on (12).

3.1.1. Southward IMF Case
[31] To investigate the effects of the pressure relaxation

term (12) we compute four runs identically except with
different relaxation times. One of them uses the growth-rate
dependent relaxation times for the three instabilities as (18),
(21) and (22); The other three use a constant relaxation time
of t = 10 s, 100 s, ∞ (no relaxation term at all) for all three
instabilities. For comparisons, we also produce a run using
standard BATS-R-US with isotropic pressure. All five runs
starts with 5000 iterations in steady state mode before they
are switched to time accurate mode lasting for 4 hours in
physical time. We analyze the results at the end of the
simulations.

Figure 13. The solar wind and IMF conditions from ACE data for 12:00–24:00 UT on 16 June 2008.
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[32] First we examine the pressure anisotropy. Figure 1
shows the pressure anisotropy ratio p? / pk . We extract
the solutions in the noon-midnight meridional plane Y = 0
(left column) and the equatorial plane Z = 0 (right column)
from the four runs with different relaxation times. To have a
better visualization for all cases, the color scale is saturated
for p? / pk > 4. In the t = 100 s and t = ∞ cases, p? / pk
reaches a maximum of 15 and 200 in the magnetosheath,

respectively, which are highly unrealistic values. The t =
10 s case gives a little higher p? / pk compared to the
growth-rate based t case, thus an appropriate constant t
should be a few seconds. Essentially, three regions
develop highly perpendicular pressure: the magnetosheath,
the cusps and the magnetotail reconnection site. These
regions are filled with compressed flow, thus the perpen-
dicular pressure increases [Hesse and Birn, 1992].

Figure 14. The pressure anisotropy ratio p? / pk in the Y = 0 (top left) and Z = 0 (top right) planes at
18:00 UT on 16 June 2008. Trajectories of THEMIS B and C during 12:00–24:00 UT are shown by white
lines started from the stars. The two bottom panels show the simulated p? / pk (black lines) against the
actual data along the satellite trajectories.
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[33] Next we look into the spatial variation of t in the
growth-rate based t case, as displayed in Figure 2. We plot t
for three instabilities as color contours on the noon-midnight
meridional plane and the equatorial plane. The white regions
are stable with infinite t. The relaxation term (12) is only
applied in the unstable regions as colored with the
corresponding t value. The firehose instability (first row)
only arises in very limited regions of the dayside magneto-
sphere and in the distant tail, with tf varying from about 10 s
to hundreds of seconds. Both the mirror (middle row) and
ion cyclotron instabilities exist throughout the magne-
tosheath and in the tail reconnection region. In the magne-
tosheath and the tail reconnection region, tm (around a few
seconds) is much smaller than tic (hundreds of seconds).
Compared to the mirror instability region, the ion cyclotron
instability region extends into the inner magnetosphere, but
it does not include the region very close to the Earth. This is
probably due to the strong magnetic field near the Earth that
stabilizes the plasma, as can be seen in the stability condition
(11).
[34] To have more insight into the differences between

anisotropic and isotropic MHD in global models, we com-
pare the results from these two types of simulations. For

anisotropic MHD we refer to the run with growth-rate based
relaxation time unless otherwise specified. The most prom-
inent distinctions are:
[35] 1. The width and shape of the magnetosheath. Previ-

ous 2-D and 3-D anisotropic MHD simulations of the mag-
netosheath [Erkaev et al., 1999; Denton and Lyon, 2000;
Samsonov and Pudovkin, 2000] have observed a thicker
magnetosheath than isotropic MHD simulations give. Our
results agree with it. Moreover, with global simulations, we
are able to examine the effects of pressure anisotropy on the
shape of the whole magnetosphere.
[36] Figure 3 shows density contours in the X = 0 and Y =

0 planes. As the constant relaxation time t increases, i.e.,
higher pressure anisotropy is allowed in the system, the
magnetosheath, shown as the red region, becomes thicker.
At the same time, the magnetosheath grows faster in the Y
direction than in the Z direction, such that the boundary of
the magnetosphere in the X = 0 cut changes from an oval to a
circle. This is due to the larger pressure along the Y direction
than the one along the Z direction, since the pressure per-
pendicular to the magnetic field, which is mostly along the Z
direction, is larger than the pressure parallel to the magnetic
field in the magnetosheath.

Figure 15. The simulated anisotropy factor A (black lines in the first and third rows from top), the unsta-
ble bounds (red lines) and the relaxation time (the second and fourth rows from top) along THEMIS B and
C orbits during 12:00–24:00 UT on 16 June 2008.
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[37] The thickening of the magnetosheath can also be
identified in Figure 4 that shows the variations of the vari-
ables along the X axis. The t = ∞ case is not shown as it is
too far from the reality. The density and pressure profiles of
different t and their comparisons with isotropic MHD
results clearly indicate the trend of the increasing width of
the sub-solar magnetosheath. For the realistic t = 10s set-
ting, represented by the dashed line, the profiles are very

close to the profiles of the growth-rate based t case repre-
sented by the solid line. Both cases are reasonably close to
the isotropic MHD solution shown by the dotted line except
the region inside the magnetosphere, where isotropic MHD
produces higher density. Compared to the isotropic case, the
anisotropic MHD simulation with growth-rate based t
slightly widens the subsolar magnetosheath. Figure 4 also
indicates that the anisotropic MHD model yields smaller
density and pressure across the magnetosheath.

Figure 16. The simulated and measured variables along the THEMIS B orbit during 12:00–24:00 UT on
16 June 2008.
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[38] 2. The speed of the earthward plasma jet from the tail.
The standard isotropic MHD simulation generates high-
speed plasma jets from the tail reconnection site toward the
Earth and the far tail. The speed reaches a highly unrealistic
value of 1000 km/s, as Figure 5 shows in the left column.
Observations give the typical tail flow speed smaller than
300 km/s during quiet time [Baumjohann and Pashmann,
1989], as also shown in our February 2009 event later.

Higher speeds are only observed intermittently
[Angelopoulos et al., 1994]. The anisotropic MHD simula-
tion shown in the right column significantly reduces this
speed to about half. As these plasma jets are produced
directly by the tail magnetic reconnection, slower jets imply
a weaker reconnection. A qualitatively similar behavior was
observed by Birn et al. [2001], who have found that pressure
anisotropy leads to reduced growth rate of magnetic islands

Figure 17. The simulated and measured variables along the THEMIS C orbit during 12:00–24:00 UT on
16 June 2008.
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in their study for the Geospace Environment Modeling
(GEM) magnetic reconnection challenge.
[39] 3. The magnitude and distribution of the nightside

plasma pressure. Figure 6 displays pressure contours in the
Y = 0 and Z = 0 planes. First, the nightside plasma pressure
of the anisotropic MHD simulation is stronger than that in
the isotropic MHD simulation. This agrees with the empir-
ical modeling result reported by Lui et al. [1994], who
found the inclusion of pressure anisotropy in empirical
magnetic field models increases the plasma pressure in the
quiet time nightside magnetosphere. In our anisotropic
MHD simulation, the nightside pressure is mostly contrib-
uted by the perpendicular pressure given p? / pk >1 in this
region (see Figure 1). Unlike the anisotropic MHD case, in
which the perpendicular pressure can evolve differently
from the parallel pressure, the traditional isotropic MHD
forces the pressure in the inner magnetosphere to be iso-
tropic thus limits the magnitude of the pressure, which
directly affects the field-aligned currents in the ionosphere
as we shall see later.
[40] Second, compared to the pressure distribution from

the isotropic MHD simulation, the anisotropic MHD simu-
lation has a peak in total scalar pressure at around �7 Re.
A clearer view is given by the middle panel of Figure 7, in
which the nightside pressure profiles are extracted along the
X axis from the two simulations denoted by the dotted and
the solid lines, respectively. The anisotropic MHD simula-
tion has almost three times larger pressure at �7 Re than the
isotropic MHD simulation does. The latter shows no peak in
the pressure distribution. This difference leads to different
pressure gradients, and furthermore different ring current
patterns in the two simulations. Figure 7 also shows the
density and temperature profiles along the X axis in the
nightside. For the anisotropic MHD case, the total scalar
temperature is plotted. The anisotropic MHD run produces
hotter nightside plasma.
[41] 4. The magnitudes of the field-aligned currents and

the cross polar cap potential. The anisotropic MHD simula-
tion generates stronger region 2 currents compared to the
isotropic simulation, as shown by the ionospheric view over
the northern hemisphere in the left column of Figure 8. This
is expected from the stronger nightside pressure in the
anisotropic MHD simulation, since the nightside plasma
contributes to the region 2 currents through the partial ring
current. In addition, the cross polar cap potential shown in
the right column of Figure 8 is slightly less in the anisotropic

MHD case (the lower plot) than in the isotropic MHD case
(the upper plot).
[42] 5. The pattern of the ring current. As mentioned

before, the different pressure distributions from the aniso-
tropic MHD and isotropic MHD simulations result in dif-
ferent ring current patterns in these two cases. In general, the
anisotropic MHD case will give stronger ring current as the
pressure gradient is larger than that of the isotropic case.
A more strict analysis should consider the individual con-
tributors to the ring current. For isotropic MHD, only the
gradient of the pressure plays a role. For anisotropic MHD,
both the gradient of the perpendicular pressure and another
term involving the difference between the perpendicular and
parallel pressures contribute to the ring current. The addi-
tional term in anisotropic MHD introduces an eastward ring
current, which make the original westward ring current peak
away from the equator, as found by Cheng and confirmed by
Zaharia in their equilibrium model [Cheng, 1992; Zaharia et
al., 2004]. Our anisotropic MHD simulation produces the
same phenomenon.
[43] In Figure 9, the Y-direction current density, as an

indicator of the ring current density, is shown in the merid-
ional and equatorial planes. The color scale is saturated for jy
above 0.64 nA/m2 and below �0.64 nA/m2. The westward
current (in red) at around �9 Re is much more prominent in
the anisotropic MHD case. It peaks away from the equator
and extends to higher latitude along the field lines. Mean-
while an eastward current (in blue) peaked at the equator at
around�7 Re appears in the anisotropic MHD case, which is
contributed from both the perpendicular pressure gradient
and the additional pressure anisotropy term. The magnitude
of the eastward current (around 0.3 nA/m2) is smaller than
the observed values (about 1 nA/m2) from Lui and Hamilton
[1992]. The discrepancy is expected given the lack of an
inner magnetospheric model.
3.1.2. Northward IMF Case
[44] For the northward IMF case, we also perform a set of

five runs. All parameters remain the same as the southward
IMF case except the change in the IMF orientation.
[45] The pressure anisotropy in the meridional and equa-

torial planes is shown in Figure 10. Again we observe highly
perpendicular pressure in the magnetosheath and in the
vincinity of the Earth. Increased relaxation time t leads to
increased pressure anisotropy. The t = 10 s run is most
similar to the growth-rate based t run. In the t = 100 s and
t = ∞ simulations, the maximum of p? / pk is much larger
than 4 such that the anisotropy ratio is saturated on the color
scale.
[46] Figure 11 displays the spatial variation of t. Most of

it is very similar to the southward IMF case, except no
mirror instability is excited in the close tail. The magnitude
of t varies between less than 1 second to hundreds of sec-
onds, depending on the location.
[47] The effect of pressure anisotropy on the width of the

magnetosheath is shown in Figure 12. Similar to the south-
ward IMF case, the increased pressure anisotropy results in a
thicker magnetosheath. However, compared to Figure 4, the
width of the magnetosheath is more sensitive to pressure
anisotropy in the northward IMF case, as the same amount
of relaxation time t results in a larger change of the mag-
netosheath position in the northward IMF case than in the
southward IMF case. An exception occurs when t = 100 s,

Table 1. RMS Errors of the Simulated Variables: 16 June 2008
Event

THEMIS B THEMIS C

Isotropic
MHD

Anisotropic
MHD

Isotropic
MHD

Anisotropic
MHD

n [/cc] 2.18 2.29 1.66 1.66
ux [km/s] 63.37 52.93 80.21 74.22
uy [km/s] 37.67 36.45 46.68 45.23
uz [km/s] 45.48 46.12 42.52 42.30
bx [nT] 5.81 5.52 3.95 3.93
by [nT] 11.75 11.77 6.85 6.70
bz [nT] 11.57 10.86 10.13 10.32
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which does not seem to widen the magnetosheath more for
the northward IMF than for the southward IMF.
[48] With northward IMF, a plasma depletion layer just

outside of the magnetopause forms. The depletion layer is
identified by decreased plasma density and increased mag-
netic field strength relative to the adjacent magnetosheath
plasma [Zwan and Wolf, 1976], as marked by the shadowed
region in Figure 12. The comparison between the isotropic
MHD and the anisotropic MHD with growth-rate based t,
t = 10 s and t = 100 s reveals that pressure anisotropy
increases the density depletion, although the overall effect
is very small. The same conclusion has been drawn by

Denton from the study of a 2-D magnetosheath model
[Denton and Lyon, 2000].

3.2. Quiet Time Magnetosphere

[49] To further validate our model, we perform magneto-
spheric simulations driven by real solar wind and IMF con-
ditions. As we do not couple any ring current model to
anisotropic BATS-R-US for this study, we only simulate the
quiet time magnetosphere. Two time periods are selected
based on the geomagnetic activity level indicated by the Dst
index, the positions of the THEMIS satellites and the data
avaiability. Both the dayside and nightside magnetosphere

Figure 18. The solar wind and IMF conditions from ACE and WIND data for 12:00–24:00 UT on 6 Feb-
ruary 2009.
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are covered in our validation. We apply the global relaxation
term in the simulations.
3.2.1. Dayside Validation – 16 June 2008
[50] The first time interval we choose is 12:00–24:00 UT

on 16 June 2008, when two THEMIS satellites B and C went
across the dayside magnetosheath and the bow shock. The

solar wind and IMF conditions measured by the ACE sat-
ellite are shown in Figure 13. The IMF Bz component varies
a bit between positive and negative values, yet the magni-
tude is small. The average Dst index during this period is
about �13 nT. Therefore the magnetosphere basically stays
in a quiet state.
[51] The 3-D computational domain extends from X =

�224 Re to X = 32 Re, from Y = �128 Re to Y = 128 Re, and
from Z = �128 Re to Z = 128 Re. To better capture the
magnetosheath where THEMIS B and C cross, we increase
the grid resolution to 1/8 Re in that region. Other parameters
are the same as they are in the idealized simulations. We
perform two simulations with anisotropic and isotropic
BATS-R-US respectively. We use the growth-rate based
relaxation time and the global relaxation time 200 s in the
anisotropic MHD run.
[52] First we look at the pressure anisotropy. In the top

panel of Figure 14, we plot the anisotropy ratio p? / pk at
18:00 UT in the meridional and the equatorial planes, with
the trajectories of THEMIS B and C overplotted. The lower
two panels show the anisotropy ratio extracted along the
satellite orbits from the simulation against the actual data.
The comparison indicates that the simulation does fairly well
in reproducing the anisotropy ratio in the magnetosheath,
including the anisotropy jumps near the magnetopause.
[53] Second, as the idealized simulations show the evi-

dence of the mirror and ion cyclotron instabilities across the
magnetosheath, we plot the criteria and relaxation times of
these two instabilities along the satellite orbits in Figure 15.
The first and third row from top show the variations of the
anisotropy factor A = p? / pk � 1 with red lines representing
the mirror and ion cyclotron unstable bound respectively. An
instability is excited if A is larger than the unstable bound,
i.e., the black line is higher than the red one, under which
circumstance the relaxation times are shown in the second
and fourth row. The mirror and ion cyclotron instabilities
are found in the time interval of 13:00–16:50 UT during
the magnetosheath crossing by THEMIS B, and in the
time interval of 16:50–23:00 UT for THEMIS C. The
mirror instability plays a more important role, because its
bound is exceeded by approximately the same amount as
the ion cyclotron instability bound is exceeded, but the
relaxation time of the mirror instability is much smaller
than that of the ion cyclotron instability, so the former
results in larger changes in the parallel pressure.
[54] Finally, we extract the number density, total pressure,

velocity and magnetic field from the anisotropic MHD
simulation to compare with the data from the ESA instru-
ment and the isotropic MHD solutions, as shown in
Figure 16 and Figure 17. The root-mean-square (RMS)
errors with respect to the data are presented in Table 1.
Overall the anisotropic and isotropic MHD simulations give
very similar variations of the MHD variables across the
magnetosheath. The simulations both resemble the mea-
surements reasonably. However, we are more interested in
any improvements or drawbacks brought by the anisotropic
MHD simulation. One improvement we observe from the
figures is that the anisotropic MHD simulation reduces or
even eliminates some sudden drops in the density, the total
pressure and especially the velocity behind the bow shock,
leading to better agreement with the data. The RMS errors
reveal an obvious improvement on the velocity. Note both

Figure 19. The pressure anisotropy ratio p? / pk in the Y =
0 (top left) and Z = 0 (top right) planes at 24:00 UT on 6 Feb-
ruary 2009. Trajectories of THEMIS B and C during 14:00–
24:00 UT are shown by white lines started from the stars.
The two bottom panels show the simulated p? / pk (black
lines) against the actual data along the satellite trajectories.
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the anisotropic and isotropic MHD simulations do not
predict the location of the bowshock well especially for
THEMIS C crossing. But the discrepancy between simu-
lated and measured bowshock locations can also be caused
by the plane parallel solar wind conditions based on a point
measurement by ACE. We checked that the agreement with
data is improved if the satellite positions are shifed slightly
(by 0.2 Re) toward the positive X direction.

3.2.2. Nightside Validation – 6 February 2009
[55] The second time interval is 14:00–24:00 UT on 6

February 2009, during which the THEMIS satellites were in
the nightside magnetosphere. Both THEMIS B and C were
close to the tail current sheet. Figure 18 shows the solar wind
and IMF conditions from the combined ACE and WIND
data. Bz has small variarions around 0. The averaged Dst
index is about �14 nT.

Figure 20. The simulated and measured variables along the THEMIS B orbit during 14:00–24:00 UT on
6 February 2009.
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[56] We compute the simulations in a manner similar to
the dayside study, except that we do not have a high
resolution magnetosheath, but 1/8 Re resolution in the tail
where the satellites cross. Both the anisotropic MHD with
growth-rate depended t and isotropic MHD simulations
are conducted.
[57] We plot p? / pk in the Y = 0 and Z = 0 planes and

overplot the satellite trajectories in the top panels of

Figure 19. A direct comparison between the simulation and
the data is shown in lower panels. The overall results are
much worse than the dayside comparison, as the tail
dynamics cannot be fully described by MHD.
[58] The number density, total pressure, velocity and

magnetic field profiles along the satellite orbits are shown in
Figure 20 and Figure 21. Table 2 shows the RMS errors. The
agreement looks poor compared to the dayside case.

Figure 21. The simulated and measured variables along the THEMIS C orbit during 14:00–24:00 UT on
6 February 2009.
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However, compared to the isotropic simulation, the aniso-
tropic MHD simulation improves the agreement with data on
uy and uz for THEMIS B and ux and uz for THEMIS C. This
matches with the results we have seen in the idealized
simulations, as the anisotropic MHD model reduces the
plasma speed in the tail. But the ux agreement is worse in the
anisotropic case for THEMIS B. The anisotropic MHD
simulation also sightly improves the magnetic field agree-
ment with the data, particularly Bz for THEMIS C. Note a
major contradiction to the measurement occurs at around
19:00 UT, when both the isotropic and anisotropic MHD
simulations predict that THEMIS B crosses the current
sheet, identified by the sign change of Bx. The incorrect
position of the simulated current sheet closely relates to the
bad data-model agreement on other variables.

4. Conclusions

[59] We have implemented the anisotropic MHD equa-
tions into the BATS-R-US MHD model to take into account
the effects of pressure anisotropy in space plasmas. The
anisotropic MHD equation set differs from the isotropic
MHD equation set in the momentum, pressure and energy
equations. The pressure equations follow the double adia-
batic approximation. As anisotropic MHD does not contain
sufficient jump conditions across a discontinuity, we sup-
plement the conservation laws with bounded pressure
anisotropy provided by the firehose, mirror and ion cyclo-
tron instabilities. The instability criteria are also applied to
limit the pressure anisotropy wherever the plasma becomes
unstable through the pressure relaxation term that reduces
pressure anisotropy in a given relaxation time t. We
implement two options for setting t. One is a constant and
uniform value, the other is based on the instability growth
rates, which in turn depend on local plasma parameters. In
addition, we have the global relaxation term that limits the
pressure anisotropy everywhere.
[60] To validate the model, we have performed 3-D global

magnetospheric simulations with anisotropic BATS-R-US.
The idealized magnetosphere simulations with southward
IMF show several interesting differences between aniso-
tropic and isotropic MHD in modeling the magnetosphere,
further revealing the effects of pressure anisotropy. First of
all, pressure anisotropy thickens the magnetosheath and
changes the shape of the magnetosphere. Second, pressure
anisotropy reduces the reconnection rate and consequently
the flow speed in the tail significantly. Third, pressure

anisotropy increases the nightside plasma pressure and
forms a pressure peak away from the Earth. The increase in
the nightside pressure strengthens the region 2 currents. The
steepened pressure distribution results in a stronger ring
current. Some of these results are supported by previous
studies that obtained similar features. The idealized magne-
tosphere simulations with northward IMF confirms the
increased density depletion near the magnetopause resulting
from pressure anisotropy that has been found by past studies.
[61] The simulations of the quiet time magnetosphere

provides a direct evaluation of the anisotropic MHD model
when comparing the simulations to the measurements.
In general the model predicts the dayside magnetosheath
better than the nightside magnetosphere. Compared to the
isotropic MHD simulations, the anisotropic MHD simula-
tions improve the model-data agreement on the velocity
most. Not much improvement has been seen in the other
variables.
[62] Despite of its many advantages, our anisotropic MHD

model exhibits several limitations that may require
improvements in the future. First of all, the anisotropic
pressure equations are formulated equivalently to the double
adiabatic equations. However, the double adiabatic approx-
imation is not applicable to some processes, for example
mirror instability [Kulsrud, 1982; Shi et al., 1987]. Although
the pressure relaxation term mimics the effect of instabilities
on pressure, it is still an approximation. Second, like iso-
tropic MHD, anisotropic MHD based on the double adia-
batic approximation is not appropriate to describe the inner
magnetospheric dynamics, since it cannot capture the dia-
magnetic drift and neglects the heat flux [Wolf et al., 2009;
Heinemann and Wolf, 2001]. To better describe the near-
Earth plasma and perform geomagnetic storm simulations,
we couple the anisotropic BATS-R-US model to inner mag-
netospheric models that capture various kinetic processes.
The details will be reported in a follow-up paper.
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