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[1] It is commonly assumed that ice cloud property retrievals are well-constrained so that
a look-up table or an optimal estimation approach can be used to provide a unique
solution. However, because of nonlinearities in radiative transfer models, error
characteristics of retrieved ice cloud properties are generally not well-known. The Markov
chain Monte Carlo (MCMC) approach, which represents information from prior
knowledge, observations, and the forward model probabilistically, allows for an accurate
assessment of the solution space and the nature of uncertainties in the retrieval. In this
paper, an MCMC algorithm is used to examine the sensitivity of infrared split window
retrieved ice water path and ice particle effective radius to changes in cloud top height,
cloud geometric thickness, and the assumed ice crystal shape. In addition, we assess the
effect of particle settling, changes to observation error magnitude, and the implementation
of a log-normal error distribution on the retrieval results. It is found that, though the
effects of uncertainty in cloud top height are not insignificant, uncertainty in the ice crystal
shape contributes most to the uncertainty in the retrieval and gives rise to the potential for
multiple solutions. Reduction of observation error and the assumption of particle
settling serve to change the preferred combination of crystal shapes in the volume but do
not eliminate the potential for a multimodal result. Application of the MCMC algorithm to
a scene reveals that both the nature and magnitude of retrieval errors exhibit a strong
dependence on cloud optical depth.
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1. Introduction

[2] In their most general sense, all retrievals exploit the
fact that a set of observations contains information about a
geophysical parameter of interest, and all employ a func-
tional relationship between observations and retrieved
parameters (e.g., a forward radiative transfer model, regres-
sion, etc. [Rodgers, 2000; Miller et al., 2000, and references
therein]). Though most retrieval techniques produce a single
answer, all retrieval solutions are characterized by some
uncertainty. The magnitude and characteristics of the un-
certainty in the retrieval result depend on the characteristics
of uncertainty in the observations, their sensitivity to the
parameters of interest, forward radiative transfer model
accuracy, and the quality of available prior information
about the retrieved state [Rodgers, 2000; Cooper et al.,
2003; L0Ecuyer et al., 2006; Cooper et al., 2007]. Though
the requirements of instrument design stipulate that uncer-

tainty in the measurements be well-understood, components
of retrieval error owing to algorithm assumptions, whether
explicit or implicit, and uncertainty in the prior knowledge
are much more difficult to quantify. It has been shown that
information regarding uncertainty can be conveniently stated
in the form of a probability distribution so that the uncer-
tainty in the solution is represented as the probability
distribution that arises from the conjunction of probability
distributions of observations, model uncertainty, and prior
information on the parameters [Tamminen, 2004; Tarantola,
2005; Vukicevic and Posselt, 2008]. Such ‘‘probabilistic’’
approaches not only provide a solution to the retrieval
problem but also a rigorous error analysis, however, the
reliability of the resulting uncertainty estimates depends crit-
ically on an accurate specification of measurement, model, and
a priori error distributions. Gaussian statistics are commonly
used to assign uncertainty to a retrieval, but the problem is
complicated by the fact that the probability distribution of the
solution will not be Gaussian if the relationship between
observations and retrieved parameters is nonlinear, as is the
case with many radiative transfer problems [Jazwinski, 1970;
Tarantola, 2005; Vukicevic and Posselt, 2008].
[3] In contrast to methods that rely on Gaussian statistics,

the Markov chain Monte Carlo technique has been shown to
robustly return the characteristics of the solution space and
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to flexibly incorporate adjustments to assumptions on errors
in observations and forward model. In previous examples,
the MCMC approach has been used to retrieve atmospheric
composition from the Global Ozone Monitoring by Occul-
tation of Stars (GOMOS) instrument, and subsequently to
assess errors in the operational retrievals [Tamminen and
Kyrola, 2001; Tamminen, 2004]. In this study, the MCMC
algorithm is used to diagnose the characteristics of ice cloud
property retrievals from the well-known split window
technique that relies on relative differences in absorption
of infrared radiation by clouds at two channels in the
infrared window (wavelengths between 8 and 14 microns
[Inoue, 1985; Prabhakara et al., 1988]). Split-window
retrievals provide global estimates of the optical properties
of widespread thin cirrus clouds under both daytime and
nighttime conditions through channels available on a num-
ber of both geostationary (GOES sounder) and polar orbit-
ing (MODIS, VIRS on TRMM, AIRS, METEOSAT)
satellites. Although the split-window technique has been
extensively used [e.g., Inoue, 1985; Prabhakara et al.,
1988; Ackerman et al., 1990] it is known to have large
uncertainties due to errors in cloud top height (CTH)
position [Miller et al., 2000; Cooper et al., 2003], cloud
geometric thickness [Hong et al., 2007], and ice crystal
shape [Cooper et al., 2003; Baum et al., 2005]. Though
these sources of uncertainty have been identified, questions
remain as to the relative magnitude of errors in cloud
boundary information versus ice crystal shape. In addition,
it is unknown whether an increase in accuracy of observa-
tions or atmospheric profiles can reduce these errors, or to
what extent uncertainty is scene-dependent. A corollary to
this question is whether errors are random (as is typically
assumed) or systematic, and to what extent retrieval uncer-
tainty conforms to a Gaussian distribution.
[4] We wish to emphasize at the outset that this paper

does not attempt to outline a new operational retrieval
technique, nor does it advocate the use of one type of
algorithm over another. Our primary goals are first to
demonstrate the robustness of the Markov chain Monte
Carlo technique in the context of cloud property retrievals,
and second to explore the characteristics of the infrared split
window technique, which returns ice cloud property infor-
mation relevant to the study of the role of cirrus clouds in
climate. The importance of uncertainties in CTH, cloud
geometric thickness, and ice crystal shape will be assessed
in the context of their relative impacts on retrieved ice water
path (IWP) and effective radius (Re). We then assess the
effects of reducing observation errors, changes to the form
of the CTH error distribution, and adding an explicit model
of particle settling in the cloud on the character of the
solution. Finally, we apply the MCMC algorithm to a cloud
scene observed by the Moderate Resolution Imaging Spec-
troradiometer (MODIS) to demonstrate the scene-dependent
characteristics of the solution space. We focus on the
information content of the measurements, as well as the
potential for non-Gaussianity in the solution probability
density function (PDF), including the presence of skewness
and multiple modes. Particular emphasis will be given to a
demonstration of the utility of the MCMC algorithm for not
only determining the effect of uncertainties on a retrieved
estimate, but also on the relationship between variables.

[5] The remainder of this paper is organized as follows:
the observations, forward model, and Markov chain Monte
Carlo technique are briefly described in section 2. Section 3
details results of application of the MCMC algorithm to an
ice cloud property retrieval for a single pixel that contains a
cirrus cloud associated with a midlatitude warm front.
Uncertainty associated with specification of cloud bound-
aries and ice crystal shape, and the effect of particle settling
and changes to error assumptions on the retrieved PDFs of
ice water path and effective radius are addressed. Variation
in retrieval characteristics across a scene, as well as an
examination of information content in the retrieval, are
detailed in section 4, while a summary and conclusions
are offered in section 5.

2. Data and Methods

2.1. Cloud Observations

[6] The scene considered in this paper was observed by
Aqua MODIS at approximately 1730 UTC 22 November
2006, and consists of a cirrus cloud associated with a warm
front located off of the east coast of North America [Posselt
et al., 2008]. Consistent with the warm-front archetype, the
cloud decreases in thickness with increasing distance from
the front’s leading edge (increasing north latitude, in this
case, Figure 1b), and exhibits evidence of size sorting, with
higher reflectivities located near the bottom of the cloud and
decreasing toward cloud top. Owing to its higher sensitivity
to diffuse cloud [Weisz et al., 2007], the CALIPSO observed
cloud top height is consistently 1–2 km higher than the
CloudSat cloud top height over the entire scene. The collo-
cated European Centre for Medium-range Weather Forecasts
(ECMWF) analysis indicates that temperatures in the cloud
were uniformly below �25.0 degrees Celsius north of
44.5 degrees latitude, and we assume that the cloud in this
scene is composed entirely of ice. Although the presence of
supercooled water cannot be entirely ruled out, we assume
that any liquid water is present in such low quantities as to
cause it to be a negligible source of error. Because the scene is
over ocean with an above-freezing skin temperature, we
specify constant surface emissivities of 0.99 and 0.97 for
the 11-micron and 13.3-micron channels, respectively.
[7] Eleven-micron brightness temperature for a portion of

the swath around the CloudSat track is depicted in Figure 1a,
and it can be seen that the cloud exhibits greater variability
along the CloudSat track than in the cross-track direction. A
subset of the full scene is examined in detail in section 4;
this subset is indicated in the box in Figures 1a and 1b.
Optical depth from the operational MODIS retrieval ranges
from approximately 1–3 across this region, and the 11� to
12-micron brightness temperature difference ranges from
0.5 to 2.0. As such, the cloud geometric and optical
thickness is in the range in which the split window tech-
nique would be expected to perform well. Note that we use
the 13.3-micron channel in the MCMC-based retrieval
results, as this channel has been shown to have slightly
higher information content for retrievals of ice cloud effec-
tive radius [Cooper et al., 2007].

2.2. Radiative Transfer Models

[8] Simulated brightness temperatures at infrared wave-
lengths depend not only on cloud thickness and properties,
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but also on absorption/emission by CO2, water vapor, and
ozone. For the results presented in this paper, gaseous
optical depths were computed using the OPTRAN forward
radiative transfer model [Kleespies et al., 2004], with
temperature, water vapor, and ozone profiles obtained from
the ECMWF operational analysis and AIRS response func-
tions centered on the selected MODIS wavelengths. Be-
cause the 11� and 13.3-micron wavelengths lie in a region
with little variation in absorption by CO2, H2O, and O3, the
choice of response function should have a negligible effect
on the characteristics of the retrieved PDFs.
[9] The effect of clouds on infrared brightness temper-

atures is treated using the Successive Order of Interaction
(SOI) radiative transfer model, which has been shown to

perform well for a range of cloud thicknesses and scattering
properties [Heidinger et al., 2006; O’Dell et al., 2006]. Ice
crystal scattering properties for four different habits known
to exist in warm front cirrus clouds [Heymsfield and
Iaquinta, 2000]: solid columns, droxtals, bullet rosettes,
and aggregates were computed using a combination of the
finite-difference time domain method [Yang and Liou,
1996a] and an improved geometric optics method [Yang
and Liou, 1996b]. The details of these data sets are reported
by Yang et al. [2005].
[10] Our implementation of the infrared split window

technique follows Cooper et al. [2003, 2006], and uses as
observations the brightness temperature at the 11-micron
wavelength, as well as the 11� to 13.3-micron brightness

Figure 1. (a) MODIS 11-micron brightness temperature observations of the cirrus cloud of interest. The
small circle indicates the pixel examined in section 3, while the box outlines the scene described in detail
in section 4. The dotted red line indicates the CloudSat ground track. (b) Cross section of CloudSat radar
reflectivities (color shaded) and CALIPSO retrieved cloud top height (red line). The vertical dotted line
depicts the location of the single pixel examined in section 3, while, as in Figure 1a, the box delineates
the subscene described in section 4.
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temperature difference. Ice water path (IWP) and effective
radius are the retrieved quantities, where the ice crystal
effective radius is defined as

re ¼
3

4

Particle Volumeð Þ
Projected Particle Areað Þ : ð1Þ

The SOI model requires inputs of optical depth, single
scatter albedo, and asymmetry parameter. Optical depth is
computed from IWP using the formulation of Heymsfield et
al. [2003], while retrieved effective radius is used to assign
values of the single scatter albedo and asymmetry parameter
based on the precomputed single scattering properties of ice
crystals mentioned above. With the exception of the particle
settling experiments described below, clouds are assumed to
be vertically homogeneous.

2.3. Markov Chain Monte Carlo Algorithm

[11] The most general statement of an inverse problem
treats the solution as the conjunction of the set of informa-
tion spaces that define our state of knowledge of the system
[Rodgers, 2000; Tarantola, 2005; Vukicevic and Posselt,
2008]. The character and magnitude of the uncertainties in
observations and forward model translate directly to the
extent and shape of their corresponding information spaces,
and the uncertainty in the resulting estimate is similarly
characterized by the extent and shape of the solution
information space. If uncertainties in measurements, model,
and prior estimate are represented by probability distribu-
tions, then the solution is defined as the joint posterior
distribution of the retrieved parameters. The conjunction of
the probabilities of parameters x and observations y is
typically expressed via Bayes’ Theorem as a relationship
between conditional probabilities

p xjyð Þ ¼ p yjxð Þp xð Þ
p yð Þ : ð2Þ

Here, p(xjy) is the posterior probability density to be solved
for, p(x) is the prior probability density of the set of
parameters x, p(yjx) is the probability density that describes
the likelihood that the parameters are the true parameters
(given the uncertainty in the forward model and observa-
tions), and p(y) is the prior probability density of the
observations. The optimal parameter estimate is, by
definition, the maximum likelihood point in the conditional
distribution p(xjy), and the error characteristics for each
retrieved parameter can be examined by considering each
parameter’s marginal probability distribution. The marginal
probability distribution is computed by integrating the joint
PDF over all parameters except the parameter of interest.
[12] Variational (least squares) retrieval methods are

based in this framework [Cooper et al., 2006; Rodgers,
2000], and assume that the probability distributions for the
prior estimate and observations are Gaussian so that an
estimate of the maximum likelihood point can be obtained
by minimizing a quadratic cost function

F xð Þ ¼ F xð Þ � y½ �TSy�1 F xð Þ � y½ � þ x� xa½ �TSa�1 x� xa½ �;
ð3Þ

where F(x) is the set of observations simulated using the
parameters x, xa is the a priori parameter estimate, and Sy
and Sa are the covariance matrices of the Gaussian
observation and prior PDFs, respectively. While variational
methods are capable of returning a robust estimate of the
maximum likelihood point, they cannot return information
about the presence of multiple solutions, and the retrieval
uncertainty estimates are generally restricted to the values
that lie immediately around the solution. A more complete
description of a retrieval solution, including the potential for
obtaining multiple solutions, can be obtained through
examination of the full joint posterior PDF, which can be
thought of as a map of the solution space.
[13] If the number of desired parameters is small, the

simplest way to obtain a complete map of the solution space
is to compute the (nonnormalized) posterior PDF directly.
This can be done by first defining probability distributions
for p(x) and p(yjx), then by running the forward model
repeatedly for small increments in each variable parameter
and computing the probability p(xjy) for each set of
simulated and observed measurements. However, the com-
putational expense of doing so increases as NM, where N is
the desired resolution of the parameter space and M is the
number of parameters allowed to vary. For joint probability
distributions that contain a moderate amount of mass in
each dimension, the theory of empty spaces [Tarantola,
2005] dictates that the amount of empty space in the
solution space (e.g., the percentage of the space for which
values of the parameters are associated with very low
probability) increases exponentially with each additional
dimension. It follows that an effective method of mapping
the probability density function is one that avoids empty
regions of the space in favor of regions with relatively high
probability.
[14] Markov chain Monte Carlo methods address the

problem of empty parameter spaces by sampling the prob-
ability distribution in such a way as to revisit those regions
with high probability while avoiding regions with low
probability [Tamminen and Kyrola, 2001; Tarantola,
2005]. Specifically, the MCMC algorithm is made up of a
random walk that consists of multiple successive iterations.
In each iteration, test values (~x) of all parameters are
randomly drawn from a ‘‘proposal’’ distribution (~x 
 q(~x;
x(i))) that depends on the current estimate (x(i)). Proposed
parameter values are then used in the forward model, and
the resulting simulated measurements (~y = F(~x)) and prior
(p(~x)) are compared with observations via a cost function
derived from the assumed form of p(yjx). The proposed
parameter values are accepted as a sample in the posterior
distribution with probability

Q ~x; x ið Þ
� �

¼ min r; 1ð Þ; ð4Þ

where the acceptance ratio r is defined as

r ¼
p ~xð Þp yj~xð Þq ~x; x ið Þ� �

p x ið Þð Þp yjx ið Þð Þq x ið Þ; ~xð Þ
: ð5Þ

If the prior parameter probability distribution is constant
(e.g., Uniform), and the proposal distribution is symmetric
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(e.g., q(~x; x(i)) = q(x(i); ~x)), then the acceptance ratio reduces
to

r ¼ p yj~xð Þ
p yjx ið Þð Þ

; ð6Þ

which easily be computed from the specified form of the
observation uncertainty PDF applied to the current and
proposed parameter values. Note that this also eliminates
the need for an a priori term in the cost function.
[15] The value of the acceptance ratio determines whether

the proposed set of parameters is saved as a sample of the
posterior distribution. If the new parameters generate a
better fit to observations (r > 1), then the proposed set of
parameters is saved as the next sample in the distribution
(x(i+1) = ~x). If not (r < 1), then a test value is drawn from a
Uniform (0,1) distribution. If this value is less than r, then
the proposed parameter set is also accepted as a sample in
the distribution. Otherwise, the proposed set of parameters
is rejected, and new proposed parameter values are drawn
on the basis of the original set. The accept/reject procedure
ensures that parameter sets that provide a better fit to the
observations are immediately accepted, those that provide a
similar fit are considered, and those that lead to simulated
observations that are very different from the measurements
are rejected. In the process, regions of the parameter space
with relatively high probability are preferentially sampled,
while regions with low probability are avoided, and a
sample of the posterior distribution is produced using far
fewer computations than brute force PDF mapping. A more
complete description of the theoretical underpinnings of the
MCMC algorithm is given by Mosegaard and Tarantola
[1995] and Tarantola [2005].
[16] The sample of the PDF returned by the MCMC

algorithm fully characterizes the retrieved state, and allows
the sources of error that dominate the uncertainty in the
result to be identified. Testing different error assumptions,
including specification of not only different error magni-
tudes, but also different error probability distributions, is
straightforward, as is introduction of new observations and
evaluation of new physical models. Our implementation of
the MCMC algorithm for the split window ice cloud
property retrieval is based on a simplified version of the
algorithm described in full by Tamminen and Kyrola [2001].
In our approach, we use a Gaussian proposal distribution
centered on the current estimate and with variance that is
adaptively changed during a burn in period to give the
desired sampling rate. For a discussion on optimal sampling
rates, the reader is referred to Gelman et al. [2004] and
Haario et al. [1999]. It should be noted that samples of the
posterior PDF obtained during burn-in are not used in the
final analysis.
[17] Variable parameters consist of IWP, effective radius,

cloud top height, cloud base height, and ice crystal shape,

where the shape is allowed to be solid columns, droxtals,
bullet rosettes, or aggregates. As such, the space to be
sampled is five-dimensional. The prior distribution for each
variable parameter is assumed to be Uniform, bounded by
physically realistic values (Table 1). Note that we set the
maximum IWP to 800 g/m2 for convenience; tests in which
the maximum ice water path was doubled to 1600 g/m2

yielded identical results. Note also that the range of effec-
tive radius values was limited by the available lookup
tables, in which effective radius varied between 1 and
100 microns. Results from in situ observations of midlati-
tude cirrus clouds [Heymsfield and Iaquinta, 2000] indicate
that this should adequately span the appropriate range of
particle sizes.
[18] Because the ice crystal shape is allowed to assume

one of four discrete forms, some discussion of how the
MCMC algorithm chooses between discrete (integer) values
is warranted here. Each allowed ice crystal shape is assigned
a different integer index between 1 and 4. The MCMC
algorithm is allowed to sample a range of real values
between 0.5 and 4.5, and the proposed ice crystal shape is
determined by rounding the result to the nearest integer
value. When a proposed crystal shape is selected as a
sample, the proposed (real) value of the parameter index
is retained for use in the next proposal. The robustness of
this technique was tested by assigning different integer
values to each of the ice crystal shapes and rerunning the
algorithm; the results were found to be completely insensi-
tive to the integer value of the index assigned to each crystal
shape.
[19] Except where noted below, we assume a Gaussian

probability distribution function for the observation errors
so that the misfit (cost) function consists of the sum of the
squared differences between simulated and observed mea-
surements, weighted by a specified error variance. For a
given observation yi, this can be written

F xð Þ ¼ � 1

2

F xð Þ � yi

syi

� �2

: ð7Þ

Error standard deviations (syi) are based on the uncertainty
analysis described in Cooper et al. [2006] that included both
instrument noise and uncertainty from the specification of
ECMWF temperature profiles, and are set equal to 1.5 K
and 1.0 K for the 11.0-micron brightness temperature and
11.0� to 13.3-micron brightness temperature difference,
respectively. The errors in observations of brightness
temperature in 11� and 13.3-micron wavelengths are
assumed to be uncorrelated, and all other sources of
uncertainty (such as variability in ocean surface emissivity
and the effects of cloud inhomogeneity) are assumed to be
small by comparison.

Table 1. Minimum and Maximum Values of the Retrieval Parameters Used in the Markov Chain Monte Carlo

Algorithm

Ice Water Path
(g/m2)

Effective Radius
(microns)

Cloud Top Height
(m)

Cloud Base and Height
(m)

Minimum 0.11 1.0 2000.0 1000.0
Maximum 800.0 100.0 20,000.0 20,000.0
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[20] According to the results of Haario et al. [1999],
approximately 20,000 iterations is sufficient to sample a
five-dimensional parameter space if the underlying target
(posterior) distribution is multivariate Gaussian. In practice,
PDFs of IWP and effective radius were found to be non-
Gaussian, and approximately 100,000 iterations were nec-
essary to sample the posterior PDF. Convergence of the
algorithm was assessed by comparing distributions gener-
ated by drawing random samples of 100,000 from a much
larger sample. For each single pixel experiment, we ran 2 �
106 iterations to ensure a robust and complete sample. For
the scene, this number was reduced to 500,000 to speed
computation. In Figure 2, the convergent properties of the
MCMC algorithm are demonstrated for the single MODIS
pixel examined in section 3 (see also Figure 6 in
section 3.2). This plot shows successively greater numbers
of samples of the joint PDF of IWP and effective radius,
demonstrating the manner in which the solution PDF is
constructed.
[21] Retrieved IWPand effective radiuswere estimated using

the mode of the joint probability distribution returned by the
MCMC algorithm. As such, the retrieved IWP and effective
radius values correspond to the Maximum A Posteriori
(MAP) estimate. While it is also possible to produce an
estimate using marginal expectations, the MAP estimate is
more robust for cases in which the posterior PDF exhibits
skewness and/or multiple modes. For plotting and identi-
fication of modes in the PDF, we employ the kernel density
estimate (KDE) with Gaussian kernel and variance (band-
width) chosen via use of a data-driven bandwidth selector
[Wand and Jones, 1995]. Because the sample of the PDF is
relatively large, the characteristics of the PDF, including
the location of the mode, are insensitive to the choice of
bandwidth. The KDE has been shown to accurately char-
acterize the properties of the underlying continuous PDF
for discrete samples, and avoids problems associated with
choice of histogram bin widths and start and end points.

3. Characteristics of Single Pixel Retrievals

[22] We first examine the characteristics of a single-pixel
split-window retrieval PDF under different error assump-
tions. The pixel of interest is located at 45.1 degrees north
latitude and �65.6 degrees west longitude, and contains
cirrus cloud 3–4 km thick, with cloud top located between 11
and 12 kilometers according to CloudSat and CALIPSO
observations, respectively (Figure 1). The 11� and
13.3-micron brightness temperatures for this pixel are
251.1 K and 240.0 K, respectively, and results of the
MCMC-based inversion documented below indicate an
11-micron optical depth of 1.77. Note that the 11.0� to
12.0-micron brightness temperature difference for this pixel
is 1.52 K, so the observations are expected to contain
sufficient information to constrain the split window retrieval.
For experiments in which cloud top and base heights are
fixed, cloud boundaries are specified to be the levels at which
the CloudSat reflectivity drops below �30 dBZ.

3.1. Fixed Crystal Shape

[23] In the first set of experiments, we assume that all
particles are solid columns. We first examine the general
characteristics of the solution space for cloud top and base

Figure 2. Plots of successive numbers of samples of the
joint PDF of IWP and effective radius for the single pixel
results described in section 3.2. Number of samples
depicted in each plot are (a) 500, (b) 1000, (c) 10,000,
and (d) 2,000,000.
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height that are set to the CloudSat observed base and top
height, then allow the cloud top and base heights to vary.
Marginal PDFs of IWP and effective radius returned from
the MCMC algorithm (Figures 3a and 3b, respectively)
represent the probability that brightness temperatures in the
single pixel being considered correspond to particular
values of IWP and effective radius, and reveal a well-
defined mode with skewness toward larger IWP/effective
radius. Since the prior PDF was Uniform, the fact that the
posterior PDF of both IWP and effective radius has a well-
defined mode reflects the influence of information in the
observations, however, the width of the resulting PDF
demonstrates that a range of solutions are possible. If the

retrieval were perfectly constrained, the posterior PDF
would take the shape of a delta function. Though skewness
in both PDFs reflects nonlinearity in the model, the results
suggest that, provided the crystal shape can be definitively
identified as solid columns and cloud top and base are well-
constrained, the optimal solution is also well-defined.
[24] In reality, however, a comparison of CloudSat and

CALIPSO cloud top heights across the scene of interest
(Figure 1b) indicates that CloudSat can be expected to
constrain CTH to within ±1 km. To test the effect of variations
in cloud top and base height, we include CloudSat-observed
top and base height as observations in the MCMC algorithm,
with uncertainty modeled as a Gaussian distribution with

Figure 3. Plots of the marginal PDFs of (a) IWP and (b) effective radius for cases in which cloud base
and top are specified (black line), cloud top is allowed to vary with standard deviation of 2 km (blue line),
cloud base is allowed to vary by 2 km (red line), and cloud top and base are allowed to vary without
constraint (green line). (c) Marginal PDF of the cloud base height for the case in which cloud base is
allowed to vary with standard deviation of 2 km.
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standard deviation of 2 km. The resulting marginal PDFs of
IWP and effective radius (Figures 3a and 3b, respectively)
reveal that uncertainty in cloud top height has a much greater
effect on the distribution than variability in cloud base
height, and has the effect of broadening the distribution of
both IWP and effective radius toward larger values of IWP
and effective radius.
[25] It is interesting to note that, when cloud top height is

fixed and cloud base height is allowed to vary, the shape of
the PDF of both IWP and effective radius is nearly identical
to the PDF that results from fixed cloud top and base, but
the mode shifts toward slightly lower values. Examination
of the posterior marginal PDF of cloud base height
(Figure 3c) explains why this happens. The prior PDF of
cloud base height is a Uniform PDF, but the cloud base is
constrained to lie below the fixed CTH. The PDF of the
observed cloud base height is assumed to be Gaussian. The
conjunction of these two PDFs produces the posterior PDF
of cloud base height, which is Gaussian, truncated near the
height of the cloud top. This effectively means that, while
the mode of the posterior PDF of cloud base height lies at
the observation, more of the mass in the PDF extends to
lower heights (geometrically thicker cloud) because of the
constraint of cloud base lower than cloud top. For a
geometrically thicker cloud to produce the same brightness
temperature, the model requires lower IWP and effective
radius.
[26] We next allow the cloud top and base height to vary

without bounds, as may be the case if no ancillary CloudSat
or CALIPSO observations are available. We only impose
the constraint that cloud top height be greater than cloud
base height and cloud depth be greater than or equal to the
width of a single CloudSat range bin. In comparison to the
results obtained when cloud top and base height observa-
tions were used, both the variance and skewness of the
posterior PDF continue to increase. This indicates that, with
increasing uncertainty in cloud top height, larger values of
IWP and effective radius become more likely (Figure 3). It
should be pointed out that, with removal of the constraint on
cloud top and base height, we have added another free
parameter to the retrieval with no observational information
to constrain it. The fact that the PDFs still exhibit a distinct
mode in the vicinity of the solution obtained from fixed
cloud top and base reflects the fact that information about
cloud top height is present in the brightness temperature
observations. However, the solution is now biased toward
slightly larger values of IWP and effective radius. In
addition, IWP appears to suffer more from the removal of
constraint on cloud top and base height than does the
effective radius. This is due to the fact that the IWP
information is derived primarily from the magnitude of
the cloud top brightness temperature, while effective radius
is sensitive to the brightness temperature difference and
hence more of the information in the observations is
preserved under a change in cloud top height.
[27] As in the marginal PDFs, the joint PDF of IWP and

effective radius for specified cloud top and base shown in
Figure 4a exhibits a well-defined mode. In addition, the
joint PDF also clearly shows a positive correlation between
IWP and effective radius, with nonlinearity in the relation-
ship indicated in the curve of the PDF. The joint skewness
toward larger values of IWP and effective radius reflects the

saturation of information at higher IWP noted by Cooper et
al. [2007]. The relationship between an increase in the
likelihood of higher cloud top and base heights and an
increase in the probability of larger IWP/Re described above
is evident in the remaining joint PDFs in Figure 4; as values
of cloud top and base increase, the PDF spreads in the
direction of greater IWP and effective radius. The form of
the joint PDFs of IWP and effective radius with cloud top and
base height reveals the reason for the selective shift toward
larger IWP/Re: the conjunction of the skewed PDF of
effective radius and IWP with the Gaussian PDF of the cloud
top and base height leads to favoring a higher solution to the
cloud top height at larger values of IWP and effective radius.
[28] The marginal and joint PDFs of the solution contain

valuable information on the relationships between variables,
nonlinearity in the forward model, and error characteristics
of the solution. What is encouraging is that the solution
space is well-behaved for the sources of error examined;
there exists a single most likely solution for a given set of
measurements. The results are not surprising, given the fact
that OE and lookup table split window retrievals have been
extensively used in the case of a fixed ice crystal shape and
well-constrained cloud top and base. What the MCMC
approach provides is the flexibility to examine the effect
of assumptions on the solution. In the case of cloud top
height uncertainty, the relationship between IWP and effec-
tive radius leads to a bias toward large IWP and effective
radius. In addition, skewness in the PDF indicates that
methods that assume Gaussian PDFs and return the condi-
tional mean estimate would be biased, whereas the condi-
tional mode estimate should work well. Examination of the
region immediately around the modes of the marginal PDFs
of IWP and effective radius (Figure 3) indicates a Gaussian
PDF can be assumed locally, indicating that optimal esti-
mation algorithms that return the conditional mode will
produce a reasonable error estimate around the solution,
provided the ice crystal shape is known.

3.2. Variation in Crystal Shape

[29] The results presented in section 3.1 assumed a fixed
ice crystal shape (solid columns). Observational studies
[Heymsfield and Iaquinta, 2000] have shown that a mix
of crystal shapes are typically found in midlatitude cirrus
clouds, and that retrieved IWP and effective radius are
sensitive to the assumed crystal shape [Baum et al.,
2005]. While it is possible to use temperature and humidity
to crudely predict the most probable ice crystal habit or
mixture of habits in a statistical sense, it is not generally
possible to prescribe the precise shape of ice crystals that
comprise any given cloud from infrared radiance measure-
ments alone. To simulate the impact of imprecise prior
knowledge of crystal habit, the MCMC algorithm is allowed
to adaptively choose between four commonly observed
forms: droxtals, solid columns, bullet rosettes and aggre-
gates. The results indicate the relative magnitudes of uncer-
tainty due to changes in crystal shape versus changes in
cloud top and base height as well as identifying the crystal
shape that provides the best fit for this pixel.
[30] Marginal PDFs of IWP and effective radius shown in

Figure 5 reveal that different crystal shapes produce poste-
rior PDFs with very different modes and shapes. Bullet
rosettes exhibit the smallest values of IWP and effective
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Figure 4. Plots of the joint PDFs of (a and b) IWP and effective radius, (c) IWP and cloud top height,
(d) effective radius and cloud top height, (e) IWP and cloud base height, and (f) effective radius and cloud
base height. In Figure 4a, cloud top and base height are fixed, while cloud top and base height are
allowed to vary by ±1 km in Figures 4b–4f.
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radius, with size and ice water content increasing as the
crystal shape is changed to solid columns, droxtals, and
aggregates. Droxtals exhibit a PDF with very similar shape
to solid columns, with a single well-defined mode and
positive skewness. In contrast, the PDF of ice water path
for aggregates has little skewness, but much larger variance,
while the PDF of effective radius for aggregates is skewed
toward large effective radii. The PDF for bullet rosettes is
bimodal in ice water path and has a very long tail in
effective radius. Note that, for this pixel, bullet rosettes
are not a favored crystal shape; the total PDF exhibits little
mass at the IWP and effective radius mode relative to the
other crystal types. Solid columns and droxtals are more
likely, but aggregates provide the best fit to the observed
brightness temperatures. These differences reflect the differ-
ences in radiative properties of the various crystal shapes,
and it is not unexpected that the most likely values of ice
water path and effective radius will differ between them.
[31] When all shapes are considered in a single retrieval

(Figure 6) the joint PDF is bimodal, with a mode at smaller
Re/IWP that corresponds to the combination of solid
columns and droxtals, and a mode at higher values of Re/
IWP that corresponds to aggregates. Examination of the
joint PDF for each individual habit reveals some similari-
ties: there is correlation between IWP and effective radius
for each crystal shape, but the degree of correlation varies
significantly between the different habits. As was noted
above, the joint PDF for solid columns and droxtals
demonstrates a degree of correlation between IWP and
effective radius, but by contrast, the correlation between

IWP and effective radius is very weak for bullet rosettes and
quite strong for aggregates.

3.3. Effect of Changes to Error Assumptions and
Retrieval Characteristics

[32] We now look at the effect of changes to the retrieval
assumptions on the characteristics of the solution space.
This is done in three different ways. First, we examine the
effect of changes to the uncertainty in the observations
themselves. This is designed to simulate an improvement in
either instrument quality, analysis temperature profile, or
both. To do this, we reduce the errors in the observations to
1/2 of their original value, specifying an error of 0.75 K for
the 11-micron brightness temperature, and an error of 0.5 K
for the 11.0� to 13.3-micron brightness temperature differ-
ence. The second change is to the errors on cloud top height.
In the above discussion of the MODIS scene, we noted that
the cloud top height observed by CALIPSO was consis-
tently higher than that observed by CloudSat. Because it is
unlikely that the true (radiative) cloud top height will be
lower than that observed by CloudSat [Weisz et al., 2007], it
is reasonable to model the cloud top height uncertainty
using a distribution that allows for greater likelihood of a
higher cloud top height and relatively smaller likelihood of
a lower cloud top height. To test the effect of such a change,
we include observations of cloud top height from CloudSat
in the retrieval, and model the errors using a lognormal
probability distribution. This introduces a modification to
the objective function used in the MCMC algorithm, and we
shall illustrate this briefly here. For a more detailed dis-
cussion of the properties of the lognormal PDF when used

Figure 5. Marginal PDFs of (a) IWP and (b) effective radius in a single pixel for the case in which
crystal shape is allowed to vary. In each plot, the lines correspond to the sum of all crystal shapes (black
dashed line), solid columns (solid black line), droxtals (blue line), bullet rosettes (green line), and
aggregates (red line).

Figure 6. Joint PDFs of IWP and effective radius in a single pixel for the case in which cloud top and base height are
fixed, and crystal shape is allowed to vary. Plots correspond to cases in which (a) all crystal shapes are considered, (b) only
solid columns are allowed, (c) only droxtals are allowed, (d) only bullet rosettes are allowed, and (e) only aggregates
are allowed. Note that a white line has been added to Figure 6d to highlight the secondary mode in the joint PDF of
bullet rosettes.
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Figure 6
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in inverse problems, the reader is referred to Cohn [1997]
and Fletcher and Zupanski [2006].
[33] The implementation of a lognormal cost function in

the MCMC algorithm starts from the definition of the
(univariate) lognormal PDF

f xð Þ ¼ 1

xs
ffiffiffiffiffiffi
2p

p exp � 1

2

ln x� m
sx

� �2
( )

: ð8Þ

In this case, the error standard deviation sx is defined as the
standar deviation of the log of the normally distributed
error, which can be written

sx ¼ ln 1þ sGx

mx

� �2
 !" #1

2

; ð9Þ

where sGx is the error standard deviation for the
corresponding Gaussian uncertainty, and mx is the mean of
the sample.
[34] Since the lognormal is a geometric distribution,

errors are most properly expressed as a ratio [Cohn, 1997;
Fletcher and Zupanski, 2006]. Hence, for a given observa-
tion y and forward observation F(x), the error distribution
takes the form
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Now, if we assume unbiased errors so that m = 0, we obtain
the cost function as the negative log of the error distribution

F xð Þ ¼ ln y� lnF xð Þ þ 1

2

ln y� lnF xð Þ
sy

� �2

; ð11Þ

where we have neglected the constant scale factor. The
MCMC algorithm then includes equation (11) as a term in
the total misfit function (assuming observation errors are
uncorrelated).
[35] Finally, there is evidence from in situ observations

[Heymsfield and Iaquinta, 2000], and an examination of the
CloudSat reflectivity depicted in Figure 1a bears this out,
that larger particles tend to settle to lower levels within a
midlatitude cirrus cloud. We model this size sorting effect in
the retrieval by allowing layer ice water contents and
effective radii to vary by ±25% between cloud top and base
while holding the IWP of the entire cloud fixed. The
retrieved effective radius is assumed to be characteristic of
the middle of the cloud and to increase toward the cloud
base and decrease toward the cloud top.
[36] Marginal PDFs under these three alternate sets of

error assumptions are collectively presented in Figure 7.
The use of a lognormal PDF for the cloud top height
(Figures 7a and 7b) both shifts the mode of the resulting
IWP and effective radius distributions toward slightly higher
values, and adds mass in the tail of the PDFs, indicating
higher likelihood of larger IWP and effective radius for the
lognormal cloud top versus specified cloud top or Gaussian
error. It is interesting to note that, even with the assumption of

lognormal cloud top height error, the likelihood of obtaining
an ice water path greater than 150 g/m2 is near zero for this
profile, reflecting the constraint of the brightness temperature
observations on the cloud optical thickness. This stands in
contrast to the effective radius, where increased variability in
the cloud top height increases the likelihood of larger
effective radius across the entire range of allowed values.
[37] Effects of decreased observation error and particle

settling are shown in Figures 7c and 7d for IWP and
effective radius, respectively. The full PDF for all shapes
is shown here to illustrate the effects of changes to errors on
the PDFs of IWP and effective radius for different shapes.
The primary effect of increased accuracy in the observations
is a decrease in variance for the solution and a strong
sharpening of the modes associated with solid columns/
droxtals and aggregates. Increased separation in the solution
modes means that it will be easier for iterative solution
methods (e.g., optimal estimation) to get ‘‘stuck’’ in the
secondary mode, and not find an estimate of the true
maximum likelihood solution. In the case of a retrieval that
is based on simple conditional mean estimation, the
retrieved values would lie between the two solution modes
in the true underlying PDF. In addition, error character-
istics that are based on Gaussian statistics will represent
only the sensitivity around the local mode, and hence will
underestimate the true solution variance.
[38] The effects of particle settling are also shown in

Figures 7c and 7d. Under standard error assumptions, the
probability distributions of effective radius and IWP do not
appreciably change, though there is a slight shift in the IWP
PDF toward higher values, consistent with a decrease in
IWP and optical depth at the top of the cloud: the total ice
water path increases so that the brightness temperature
remains the same. When errors are artificially reduced by
50%, settling again causes a slight shift toward higher IWP
and effective radius but there is also notable redistribution
of mass in the PDF. For the reduced error case, the
likelihood of solid columns/droxtals increases relative to
aggregates, and it appears that the increased likelihood of
solid columns and droxtals mirrors the assumed decrease in
the particle size at the top of the cloud.
[39] The most significant implication of the above experi-

ments is that changes to error assumptions produce changes
to the solution space that are not easily predictable, and that
differ across different crystal shapes and in combination
with changes to other error assumptions. The implementa-
tion of particle settling is a key example. It has relatively
little effect on the marginal and joint PDFs when standard
errors are assumed on the observed brightness temperature,
however, when the errors are reduced, the assumption of
settling causes the solution space to change in character so
that solid columns and droxtals become a more preferred
solution in comparison to the case without settling.
[40] The general picture that emerges from a thorough

examination of the statistics of a single pixel is the large
effect that assumptions about crystal shape, particle settling,
and observation error magnitude have on retrievals of IWP
and effective radius. These results imply that a very careful
examination of the effect of new assumptions on the
solution should be performed before any change is imple-
mented so that the solution can be shown to be unique and
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Figure 7. Plots of the marginal PDFs of (a and c) IWP and (b and d) effective radius for various
retrieval uncertainty assumptions. In Figures 7a and 7b, the crystal shape is specified as solid columns.
The solid black line corresponds to the case in which cloud top and base are specified. The blue line
corresponds to the case in which cloud top is allowed to vary according to a Gaussian distribution with
2-km standard deviation. The red line corresponds to the case in which the cloud top is allowed to vary
according to a log-normal distribution with 2-km standard deviation. In Figures 7c and 7d, the results
for all crystal shapes are shown. Here the solid black line corresponds to standard error assumptions
and no assumed particle settling. The blue line corresponds to standard error assumptions and assumed
particle settling. The red line corresponds to an assumption of half of the retrieval error in both
channels. The green line corresponds to an assumption of half of the retrieval error in both channels in
combination with assumed particle settling.
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well-defined, and so that a correct specification of error
statistics can be made.

4. Scene Dependence of Retrieval Error
Characteristics

[41] The MCMC algorithm is now applied to a scene
observed by MODIS to explore variations in solution space
as characteristics of the target clouds such as geometric and
optical thickness change. The scene of interest is depicted in
the box in Figure 1a, and contains cloud that transitions

from brightness temperature of 240 K to 265 K and from
geometric thickness of 4 km to 2 km. Results consist of the
full sample of the PDF for each pixel, from which we can
infer the maximum a posteriori (MAP) estimate for each
crystal shape, the variance of this estimate, the departure of
the solution PDF from Gaussian, i.e., skewness and/or
multiple modes, and the information content, which is
inversely related to the variance in the posterior estimate.
As in the single pixel experiment, IWP, effective radius,
crystal shape, cloud top and base heights are all allowed to

Figure 8. Plots of (a) 11-micronMODIS brightness temperatures, and (b–f) retrieved ice water path (g/m2)
for theMODIS scene outlined in the box in Figures 1a and 1b. IWP corresponds to all crystal shapes (Figure 8b),
solid columns (Figure 8c), droxtals (Figure 8d), bullet rosettes (Figure 8e), and aggregates (Figure 8f).
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vary. Uncertainties of 1.5 K and 1.0 K are specified for
11.0-micron Tb and 11� to 13.3-micron Tb, respectively,
and observations of cloud top and base height from Cloud-
Sat are used to constrain the cloud boundaries. Log-normal
probability distributions are used for cloud boundaries with
±1 km errors assumed for CTH to accommodate the
presence of diffuse cloud near the radiative cloud top. The
uncertainty in cloud base is increased to ±2 km to account
for possible misinterpretation of radar returns in the pres-

ence of virga that may artificially lower the estimated cloud
base height.

4.1. Maximum a Posteriori Estimate

[42] The MAP estimates of IWP and effective radius for
the scene, defined as the mode of the posterior PDF, are
plotted in Figures 8 and 9, respectively. Retrievals employ-
ing all crystal shapes are compared to those that would be
obtained if prior information was available to constrain
crystals to one of the four individual shapes defined above.
The differences in the mode of the PDF for each crystal

Figure 9. As in Figure 8, but for (a) 11- to 13.3-micron MODIS brightness temperatures, and
(b–f) retrieved effective radius.
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shape are striking. With the exception of the region of
largest IWP in the southeast corner of the domain, the
assumption of bullet rosettes (Figure 8e) leads to IWP
estimates that are a factor of three smaller than those
obtained with aggregates (Figure 8f), indicative of the large
uncertainties incurred owing to the specification of crystal
shape in thin ice cloud retrievals. When the crystal shape
assumption is relaxed and the algorithm allowed to choose
the shape that provides the best fit to the observations
(Figure 8a), aggregates appear to make up the bulk of the
solution again, with the exception of the thickest clouds in
the region.
[43] In contrast to IWP, in which the solution tends to be

dominated by aggregates, retrieved effective radii (Figure 9)
tend to exhibit contributions from all crystal shapes and lie
between the larger values that correspond to aggregates
(Figure 9f) and smaller values obtained when solid columns
or droxtals are assumed (Figures 9c and 9d, respectively).
This can be more clearly seen by plotting the fraction of the
MCMC-derived sample for all pixels in the scene that
corresponds to each crystal shape as a function of retrieved
values of IWP and effective radius (Figures 10a and 10b,
respectively). It is clear that the sample consists primarily of
aggregates over most of the range of retrieved IWP and
effective radius, with droxtals the next most common shape
followed by solid columns then bullet rosettes. It is inter-
esting that the fraction of the sample made up of aggregates
decreases with increasing IWP and effective radius, while
the fraction of other crystal shapes increases. With the
exception of bullet rosettes, all crystal shapes are equally
likely at relatively large values of IWP/effective radius. It is
also interesting that, out of the four crystal shapes consid-
ered, bullet rosettes alone exhibit a discontinuity in the
range of most likely values of IWP and effective radius,
reflecting the existence of two distinct sets of solutions.

4.2. Characteristics of the Solution Space

[44] Having thoroughly examined the characteristics of
retrieved PDFs for a pixel containing moderately thick

cloud (section 3), we now examine how the characteristics
of the solution space might differ with respect to changes in
cloud physical and optical thickness. We first examine the
results for three different pixels, which contain thin, mod-
erate, and relatively thick cloud, from the perspective of
split-window retrievals (Figure 11).
[45] Several features of the retrieved PDFs are worth

noting. First, in addition to the shift in MAP estimate to
higher values of IWP and effective radius with increasing
cloud thickness, the distributions broaden. This is especially
true for the effective radius. The fact that there is a relatively
high probability of obtaining an effective radius anywhere
in the range between 30 and 90 microns, combined with the
lack of a well-defined mode indicates the relative lack of
information in observations of effective radius in thicker
clouds. Second, for IWP (Figure 11a), the presence of
multiple modes in the solution is much more likely for thin
and moderate cloud than for relatively thick. For effective
radius (Figure 11b), we can see that none of the pixels has a
multimode solution, though there is a hint of a secondary
mode for the thin and moderate pixels. In the case of the
solution that considers all habits, PDFs are multimodal for
50% of the pixels in the scene. The solution is uniformly
unimodal for solid columns, droxtals, and aggregates, while
bullet rosettes produce a multimodal solution over 57% of
the scene. Further examination reveals that the all-shape
solution is multimodal for thin cloud and unimodal for
thick, while the reverse is true for bullet rosettes.
[46] The nature of the variability in the solution can be

further explored by examining plots of standard deviation
and skewness across the domain (Figure 12). Variance in the
posterior PDF is relatively low for both IWP and effective
radius in regions of relatively thin cloud, and PDFs of IWP
exhibit a larger range of variance across the entire scene
than PDFs of effective radius. It is interesting that the
skewness is much larger for effective radius than for IWP
over much of the domain. It is also interesting to note that
the skewness is at a maximum in regions of thin cloud,

Figure 10. Plots of the percent of the MCMC-derived sample in each pixel that corresponds to solid
columns (black), droxtals (blue), bullet rosettes (green), and aggregates (red) for (a) IWP and (b) effective
radius.
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while distributions for both IWP and effective radius tend
toward symmetry where the cloud is thicker.
[47] An estimate of the uncertainty in the retrieval relative

to the retrieved value can be obtained by dividing the
standard deviation of the retrieved PDF of IWP and effec-
tive radius by their MAP estimates. Plots of the resulting
normalized retrieval error (Figure 13) reveal that the frac-

tional uncertainty decreases with an increase in IWP at low
values of IWP, then increases again as IWP values increase
beyond about 150 g/m2. In contrast, the fractional retrieval
error decreases monotonically over the range of effective
radius values. For reference, the fractional uncertainty
associated with the PDF derived from a single crystal shape,
in this case, aggregates, is also plotted, and it can be seen

Figure 12. Plots of (a and b) standard deviation and (c and d) skewness of the retrieved PDF of IWP
(Figures 12a and 12c) and effective radius (Figure 12b) and over the MODIS scene (Figure 12d).

Figure 11. Plots of the marginal PDF of (a) IWP and (b) effective radius for three pixels containing
relatively thin (blue line), moderate (black line), and thick (red line) cloud.
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that specification of a discrete shape reduces the retrieval
error across the range of values for both IWP and effective
radius.

4.3. Information Content

[48] Another useful diagnostic of retrieval error is the
Shannon information content [Shannon and Weaver, 1949;
Rodgers, 2000; Cooper et al., 2006], which provides a
metric for determining the contribution of observations to a
retrieval solution. The information content of an observation
or set of observations is computed as the reduction in the
entropy of the estimate due to the addition of information
from observations. In discrete form, the entropy of state P is
defined as

S Pð Þ ¼
XN
i¼1

pi log2 pið Þ; ð12Þ

where pi is the discretized PDF and N is the number of
discrete bins the PDF is divided into. Shannon information
content is then defined as the difference between the entropy
of the a priori state and the entropy of the retrieved state

H ¼ S xað Þ � S x̂ð Þ
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which can be interpreted as the extent to which the number of
allowable states is reduced by the addition of information
from the measurements. Because the MCMC algorithm
returns a sample of the full PDF, we may compute H directly
from the above relationship, and infer the types of clouds for
which the retrieval is returning useful information on the
physical scene.
[49] We present plots of the relationship between infor-

mation content and IWP and effective radius in Figures 14a
and 14b, respectively. Since a uniform prior distribution is

assumed, the geographic pattern of information content
across the scene is inversely proportional to that of the
retrieval variance shown in Figures 12a and 12b; for exam-
ple, where retrieval variance is large, information content is
low, and vice versa. The distribution of information content
from the MCMC-derived sample reflects the fact that the split
window retrieval is generally more applicable in regions of
relatively thin cloud. The decrease in information content
with increasing IWP and effective radius is clearly evident,
as is the increase in general information content from
bullet rosettes to solid columns, droxtals, and aggregates.
It is also clear that there is little information on the ef-
fective radius in observations of clouds with effective ra-
dius greater than about 20 microns. What is particularly
interesting is the difference in variability of information
content for each of the different crystal shapes. Bullet ro-
settes exhibit very high information content in thin cloud
regions and much lower information content for thick
clouds. The variability is somewhat lower for solid col-
umns, lower still for droxtals, and lowest for aggregates.
Overall examination of the SIC reinforces the result that
when ice crystal habit is allowed to vary there is very little
effective radius information in observations of thicker clouds.
In contrast, the measurements continue to provide limited
information about IWP up to ice water path values of
approximately 200 g/m2, which corresponds to an optical
depth of approximately 3.

5. Conclusions

[50] In this paper, the MCMC algorithm is shown to
effectively characterize the solution space for a retrieval
of ice cloud properties using the split window technique. It
is found that the shape of the posterior PDF differs for
different assumed crystal shapes, but is generally skewed,
with a tail toward higher values of IWP and effective radius
and a positive correlation between IWP and effective radius.
In typical split-window retrieval conditions where crystal

Figure 13. Fractional uncertainty for retrieved (a) IWP and (b) effective radius as a function of the
retrieved value. The solid black line depicts the result for all crystal shapes while the gray shading
indicates ±1 standard deviation around the fractional uncertainty. The dashed black line depicts the
fractional uncertainty for the case in which the crystal shape is specified to be aggregates.
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shape is difficult to constrain in advance, PDFs of IWP and
effective radius generally exhibit a multimodal structure
with one mode corresponding to droxtals and solid columns
and the other to aggregates. As previous studies have
shown, uncertainty in cloud top and base height also has
a strong effect on the retrieval, but the MCMC algorithm
used here reveals that variations in crystal shape generally
drive the accuracy of retrieved products. Changes in crystal
shape led to changes not only in the relationship between
ice water path and effective radius, but also in the relation-
ship between IWP and effective radius and the cloud
geometry.
[51] Modeling the effects of particle settling is found to

result in lower ice content at the top of the cloud and a
consequent shift in the radiative cloud top downward into
the interior of the cloud. Reducing observation errors by
50% decreases posterior variances but results in more
widely distributed modes. This may be an indication of
why errors have had to be inflated for optimal estimation
type retrievals to converge. When these two effects are
combined, the modes of the IWP and effective radius remain
similar to those under standard error conditions but with
lower error values. Droxtals and solid columns become
more likely relative to aggregates when settling is modeled,
a result that would not be evident with many other retrieval
methods.
[52] Application of the MCMC algorithm to a portion of a

MODIS scene suggests that aggregates consistently provide
the best fit to observed brightness temperatures for thin
clouds while a combination of aggregates, solid columns,
and droxtals made up a nearly equal percentage of the
sample for thick clouds. Characteristics of the PDF changed
with changing cloud ice content; thin clouds exhibit more
highly skewed PDFs with lower variance, i.e., larger infor-
mation content. PDFs in thicker cloud regions exhibited less
skewness, but larger variance, i.e., lower information con-
tent. Normalized retrieval error is found to decrease with
increasing IWP for retrieved IWP values less than about
150 g/m2, then increase again with increasing IWP, while
the fractional error in effective radius decreases monoton-

ically with increasing values of retrieved effective radius.
Plots of information content versus retrieved IWP and
effective radius indicate that, when ice crystal habit is
allowed to vary, there is very little effective radius infor-
mation in observations of thicker clouds, while the measure-
ments continue to provide limited information about IWP
up to optical depths of approximately 3.
[53] The results presented in this paper have implications

for both ice cloud property retrievals and data assimilation
in the presence of clouds. In either case, it would be
convenient to assume a single form for the PDF so that
uncertainty can be assigned to observations and to the
results of the forward model calculation. Comparisons of
pixels from relatively thin, moderate, and thick clouds
indicate that the shape of the PDF changes with changes
in cloud morphology, and it is evident that uncertainty in the
crystal shape dominates retrieval errors for this case. Recall
that the cloud of interest was selected because warm-frontal
stratiform clouds are assumed to be relatively uniform and
well-understood. For other types of ice clouds, in particular
those associated with deep convection, ice crystal shapes are
not as easily characterized. The problem is further compli-
cated by the possibility of multiple cloud layers, for which
the infrared brightness temperature may contain information
from more than one cloud layer.
[54] Our results indicate that there is complexity in

retrievals of ice cloud properties that needs further investi-
gation, and questions that remain to be answered. First
among these is the question of how to determine the
appropriate ice crystal shape. Specifically, in the case of a
cloud that is expected to contain multiple crystal shapes,
which one is most appropriate? It would be reasonable to
select the shape that is typically found near the cloud top,
but this raises questions of the definition of the cloud top
itself. In the case of thick clouds, the radiative cloud top is
close to the physical top of the cloud, which, in and of itself,
is difficult to define, however, the radiative cloud top is
more difficult to define in the case of thin clouds or multiple
cloud layers.

Figure 14. Plots of information content versus retrieved (a) IWP and (b) effective radius for solid
columns (black), droxtals (blue), bullet rosettes (green), and aggregates (red).
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