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[11 This paper describes the coupling of BATS-R-US (Block Adaptive Tree Solar-wind
Roe-type Upwind Scheme), a magnetohydrodynamics (MHD) code representing the
Earth’s global magnetosphere and its coupling to the ionosphere and solar wind, and the
Rice Convection Model (RCM), which represents the inner magnetosphere and its
coupling to the ionosphere. The MHD code provides a time-evolving magnetic field
model for the RCM as well as continuously updated boundary conditions for the electric
potential and plasma. The RCM computes the distribution functions of inner
magnetospheric particles, including transport of inner plasmasheet and ring current
particles by gradient/curvature drifts; it thus calculates more accurate inner
magnetospheric pressures, which are frequently passed to the MHD model and used to
nudge the MHD values. Results are presented for an initial run with the coupled code for
the case of uniform ionospheric conductance with steady solar wind and southward
interplanetary magnetic field (IMF). The results are compared with those for a run of the
MHD code alone. The coupled-code run shows significantly higher inner magnetospheric
particle pressures. It also exhibits several well-established characteristics of inner
magnetospheric electrodynamics, including strong region-2 Birkeland currents and partial
shielding of the inner magnetosphere from the main force of the convection electric
field. A sudden northward turning of the IMF causes the ring current to become more
nearly symmetric. The inner magnetosphere exhibits an overshielding (dusk-to-dawn)
electric field that begins about 10 min after the northward turning reaches the
magnetopause and lasts just over an hour.  INDEX TERMS: 2730 Magnetospheric Physics:
Magnetosphere—inner; 2753 Magnetospheric Physics: Numerical modeling; 2778 Magnetospheric Physics:
Ring current; 2708 Magnetospheric Physics: Current systems (2409); KEYWORDS: magnetohydrodynamics,
space weather, model coupling, global magnetosphere, inner magnetosphere
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1. Introduction acceleration, but these occur in limited regions. Though

. . . other techniques are being developed [e.g., Nishikawa,
. [2] From the viewpoint of 1a}rge.—s.cale ¢ heoretical model- 2001; Delan?ere et al. 20%1] globgl Mg{]% codes repre-
1ng, the Earfch § Magnetosp herge is divided info two parts. The sent the state-of-the-art in theoretical representation of the
inner part includes all field lines that extend to geocentric outer magnetosphere [e.g., Ogino and Walker, 1984; Lyon
distances less than ~8 Ry in the equatorial plane. The outer ot al 19g86' W?nglee 1%9’ 4- %?ae der et al 1§95_ Tézn é} ka

magnetosphere may be reasonably described by single-fluid 1995- Janhunen. 1996: White et al.. 1998: Powell et al
magnetohydrodynamics (MHD), which is capable of 1999i ’ ’ ” ’ ”

spanning the huge region (hundreds of thousands of R})
computationally. Small-scale, non-MHD plasma processes
play an important role in the dynamics of the region,
notably by magnetic reconnection and auroral particle

[3] Standard single-fluid MHD cannot provide adequate
description of the inner magnetosphere, however, because
the main pressure-bearing particles in that region are the
1-200 keV ions of the inner plasma sheet and ring
current. For these particles, E x B drift, which provides
Copyright 2004 by the American Geophysical Union. all cross-B transport in ideal MHD, is often slower than
0148-0227/04/2003JA010366 gradient and curvature drift. In fact, since the gradient/
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curvature drift speed is proportional to particle energy,
there is little hope that any single-fluid representation can
describe inner-magnetospheric particle transport with rea-
sonable accuracy.

[4] Theoretical models treating the main pressure-bearing
particles of the inner magnetosphere, which typically keep
separate account of tens or hundreds of components of the
plasma, have traditionally fallen in two categories: “‘ring
current models” and “convection models.”” Traditional ring
current models follow particles with different values of the
first and second adiabatic invariants and calculate energy
and pitch angle distributions in some detail, carefully
considering loss by charge exchange and precipitation.
These ring current models [e.g., Chen et al., 2000; Liemohn
et al., 2002; Fok et al., 1999; Jordanova et al., 2001] take
the electric and magnetic fields as input models rather than
computing them self-consistently. Convection models [e.g.,
Peymirat et al., 2002; Sazykin et al., 2002; Ridley and
Liemohn, 2002] calculate inner magnetospheric electric
fields self-consistently with the particles but use input
magnetic fields that are not calculated self-consistently.
These convection models generally assume an isotropic
pitch angle distribution, do not treat H™ and O separately,
and either neglect loss or calculate it in less detail than the
ring current models.

[5] In recent years, some attempts have been made at
inner magnetosphere models that are more comprehensive
and self-consistent. Fok et al. [2001] combined the Rice
Convection Model with a ring current model, calculating
potential electric fields self-consistently and computing
pitch angle distributions and charge exchange loss in detail.
Toffoletto et al. [1996, 2000, 2001] coupled a friction code
equilibrium solver to the Rice Convection Model to com-
pute the magnetic fields self-consistently with the particle
distribution, within the assumption of isotropic pitch angles;
much of the magnetotail is formally included in the
modeling region, but this model cannot represent the
physics of reconnection, and it uses arbitrary conditions
on the tail boundaries rather than representing solar wind/
magnetosphere interactions. Until now, there has been no
model that self-consistently represent the solar wind driven
magnetosphere with accurate particle treatment.

[6] There are strong reasons for developing models that
physically couple the inner and outer magnetospheres. For
one thing, the magnetospheric substorm, a central dynamic
process of the magnetosphere, is centered near the boundary
between the inner and outer magnetospheres. Magnetic
storms involve coupled changes in both the inner and outer
magnetosphere. Even some processes that seem to be
clearly in the inner or outer magnetosphere actually turn
out to involve both regions. For example, ring current
inflation of the inner magnetospheric magnetic field signif-
icantly affects magnetic field mapping between ionosphere
and the tail [Siscoe, 1979]. Siscoe et al. [2002] have
suggested that polar cap potential drop depends on inner
magnetospheric region-2 Birkeland currents. The penetra-
tion of the magnetospheric electric field to the innermost
part of the magnetosphere and the equatorial ionosphere
depends on the magnetic flux in the tail [Fejer et al., 1990].
The overall conclusion is that it is not possible to treat the
inner magnetosphere accurately without an accurate repre-
sentation of the outer magnetosphere, and vice versa.
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[7] This paper reports a successful effort to join a global
MHD model, the Block Adaptive Tree Solar-wind Roe-type
Upwind Scheme (BATS-R-US), with the Rice Convection
Model (RCM). The MHD model, which has its inner
boundary at 2.5 Ry, provides the RCM with values for the
potential and plasma bulk parameters at the RCM outer
boundary, defined by field lines that have equatorial cross-
ing points on an ellipse that extends to approximately 8 Ry
at local noon, 7 Ry at dawn and dusk, and 10 Ry at midnight
(the exact boundary location changes due to the evolution of
the open/closed field region boundary). The MHD code also
provides the RCM with an initial pressure and density
distribution. More importantly, MHD calculates the mag-
netic field inside the RCM’s modeling region. The RCM
provides corrected pressure values for the inner magneto-
sphere, which are used to nudge the MHD values.

[8] Coupling these two models was a substantial compu-
tational challenge because the two codes speak different
languages. MHD employs a fluid formalism and works on a
three-dimensional (3-D) grid. The RCM treats its particles
with an adiabatic particle drift formalism, treats each flux
tube as a unit, and uses a 2-D grid. A major computational
challenge lay in efficient exchange of information between
the two codes because every exchange requires tracing a
very large number of field lines.

2. Description of BATS-R-US

[9] The Block-Adaptive-Tree Solar-wind Roe-type Up-
wind Scheme (BATS-R-US) code solves the governing
equations of magnetohydrodynamics. All terms describing
deviations from ideal MHD are included through appropri-
ate source terms. An overview of BATS-R-US can be found
in Appendix A. A more detailed description of the code can
be found in the work of Powell et al. [1999] and in the work
of De Zeeuw et al. [2000].

[10] The governing equations for an ideal, nonrelativistic,
compressible plasma may be written in a number of
different forms. In primitive variables, the governing equa-
tions, which represent a combination of the Euler equations
of gasdynamics and the Maxwell equations of electromag-
netics, may be written as

%-}—u'Vp—ﬁ—me:O
Ou .
pE—l—pqu—Q—Vp—JxB:O
()
8—B—Q—V><E:O
ot
0,
§+u~Vp+vpV~u:0,

where the current density j and the electric field vector E are
related to the magnetic field B by Ampeére’s law and Ohm'’s
law, respectively:

j= iV x B
Ho (2)
E = —u xB.
BATS-R-US solves the MHD equations with a finite

volume discretization using the conservative variables:
density p, momentum density pu, magnetic field B, and
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the total energy density e, which is the sum of the thermal,
kinetic, and magnetic energy densities.

[11] The state of the magnetosphere is controlled by
conditions in the solar wind and in the ionosphere. Solar
wind conditions are imposed as boundary conditions at the
upwind boundary of the simulation domain.

3. Description of the RCM

[12] The Rice Convection Model (RCM), a large numerical
computer code developed over 30 years at Rice University,
offers a self-consistent description of the electrodynamics
of the coupled inner magnetosphere-ionosphere system.
The code solves the time-dependent coupled equations of
plasma motion in the magnetosphere and of conservation
of current in the ionosphere. Descriptions of the algorithms
and numerical details have been provided by Harel et al.
[1981a], Sazykin [2000], and Toffoletto et al. [2003].

[13] The RCM modeling region in the magnetosphere
typically extends from just inside the magnetopause on the
dayside of Earth to the middle plasma sheet (=25 Ry) on the
nightside. In this region, which is characterized by closed
magnetic field lines, the plasma is assumed to undergo slow
flow [Wolf, 1983]. The model represents the particle distri-
bution function by a number (typically on the order of 100)
of isotropic “fluids.” Each fluid is characterized by an
energy invariant A, flux tube content v, and charge ¢,
which are related to the kinetic energy W, and number
density n, through the flux tube volume V' = [ ds/B:

=WV o =n 3)

(index s specifies a given energy invariant and chemical
species). Under these approximations, the RCM advects
each fluid using

N 7-2/3
871\‘ BXV<¢’+(I)C+%V >

ot + B2

® is the electric potential in the ionosphere where the
induction electric field is negligible, expressed in a
coordinate system that rotates with the planet; ®. is the
corotation potential, which converts the potential to a frame
that does not rotate with the Earth; the symbol L represents
explicit losses (typically due to charge exchange and
precipitation; outflow through the dayside magnetopause
is implicit in the RCM solution of the advection equations).
The Vasyliunas [1970] equation is used to calculate the
field-aligned current:

1.

where J); is the current density into the northern
ionosphere, b is a unit magnetic field vector, and the
right side is evaluated at the ionosphere. The pressure P is
given by (2/3)V L \m,. The factor of 1/2 comes from
the assumption of symmetry between northern and southern
ionospheres. The potential distribution is computed from the
condition for current conservation at the ionosphere:

V- [-5.90 4| = Jsin(h), 6)
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where the operator V acts on the two-dimensional iono-
spheric spherical shell, 3 is a 2 x 2 conductance tensor, and
1 is the dip angle of the magnetic field below the horizontal
plane. The j,, term represents ionospheric current driven by
neutral winds and involves field line integrals of products of
wind velocities and conductances. The elements of the
conductance tensor are expressed through the field line
integrals of Pedersen (op) and Hall (o) conductivities with
integration extending from the bottom (90 km) to the top
(1000 km) of the ionosphere:
Yoo
; ()
Lo

~ 2oy
y =
- 29(})

where Zee = f ds O'p/SiIl I, Ecbo = Sil’l]f ds op, Zegp = —Z¢e =
[ ds o7 The components of j,, can be similarly expressed in
terms of field line integrals.

[14] The boundary conditions for the particle density in
(4) are usually taken from statistical plasma sheet models or
from data from a geosynchronous particle detector if the
boundary is set at L = 6.6 [Sazykin et al., 2002]. Given
initial conditions, (4) is integrated in time with a short time
step (typically 1 to 5 s). Updated solutions to (4) are used to
compute the updated particle pressure distribution, which
provides the right-hand side of the elliptical equation (6),
using (5). Equation (6) is solved everywhere in the iono-
sphere from near the equator (L = 1.03) to the poleward
boundary. The magnitude of the electric potential on the
poleward boundary is controlled by solar wind conditions.

[15] For most RCM runs, the conductance 3 is computed
from an IRI-90 ionospheric model and auroral enhancement
computed assuming 30% of the strong pitch angle scattering
limit and using the Robinson et al. [1987] formula to
calculate conductances; field-aligned potential drops are
usually neglected. However, for these first runs in which
the RCM is coupled to MHD, both codes assume simply
zero Hall conductance and a uniform Pedersen conductance
of 4 S in each hemisphere. Neutral winds are set to zero for
the present run, as are field-aligned potential drops.

[16] The RCM’s treatment of the equatorial electrojet
follows the approach of Blanc and Richmond [1980] using
the thin-band approximation, in which the zonal electric
field is assumed independent of latitude in the band and the
meridional current is assumed to be much less intense than
the zonal current. The new potential found from (6) is used
to advance the advection equations (4), closing the logical
loop. The RCM thus steps along in time, self-consistently
calculating the particle distribution and electric fields and
currents, driven by several inputs: the magnetic field con-
figuration and the potential drop and inflowing particle
fluxes on the high-latitude boundary.

[17] The RCM has successfully been used to explicate
major magnetospheric phenomena such as the development
of region-2 Birkeland currents which shield the magneto-
sphere [e.g., Jaggi and Wolf, 1973; Harel et al., 1981b], the
buildup and evolution of the storm-time ring current [e.g.,
Wolf et al., 1982; Spiro and Wolf, 1984; Sazykin et al., 2002,
Fok et al., 2003; Garner, 2003], formation and evolution of
the plasmasphere and plasmapause [e.g., Spiro et al., 1981;
Wolf et al., 1986], the penetration of convection electric
fields to low ionospheric latitudes [e.g., Spiro et al., 1988;
Fejer et al., 1990; Sazykin, 2000], the Harang discontinuity
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Global Magnetosphere-lonosphere Model (MHD)

Inner Magnetosphere Model (RCM)

Figure 1.
Upwind Scheme) and RCM (Rice Convection Model) models.

[Erickson et al., 1991], and coupling to the thermosphere
[e.g., Forbes and Harel, 1989; Wolf et al., 1986].

4. Coupling of Models

[18] The major scientific aim of this coupling of two
numerical codes was to allow the MHD model to better
represent the gradient/curvature drift physics in the inner
magnetosphere and therefore to produce more realistic
region-2 field-aligned currents. Technically, this is a chal-
lenging task, given the fact that the two models must be
coupled in an overlapping three-dimensional region of the
inner magnetosphere. Three-dimensional MHD solutions
obtained on a computational grid that consists of self-similar
cartesian blocks of varying resolution need to be translated
to two-dimensional RCM quantities that are averages along
magnetic fields lines anchored on a two-dimensional RCM
ionospheric grid. A further complication is that both RCM
and BATS-R-US contain an ionospheric module that returns
two-dimensional electric field by solving either (A1) or (6)
on different grids and with generally different models of
ionospheric conductances.

[19] The most essential, and computationally difficult,
part of the coupling process is 3-D to 2-D and inverse
transformations that rely on tracing magnetic field lines.
The coupling process implemented consists of running
BATS-R-US with RCM being a module in the global
MHD code and information being exchanged at regular
intervals (Figure 1). Underlying this information exchange
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Map RCM superthermal pressure
to magnetosphere grid (assuming
that pressure is constant along
magnetic field lines)

Calculate fieldline volume,
fieldline mass, fieldline pressure,
and equatorial plane temperature

Calculate equatorial crossing of
magnetic field lines originating
from RCM ionospheric grid points

Interpolate ionospheric
potential to RCM grid

Map open-closed field line
boundary to RCM grid

Exchange of information between BATS-R-US (Block Adaptive Tree Solar-wind Roe-type

is tracing of magnetic fields lines. A novel way of comput-
ing these transformations implemented in the coupled code
is described in Appendix B.

[20] As previously mentioned, the RCM is driven by
several inputs that are typically estimated using statistical
models. In this case, all these quantities will be provided
through coupling with BATS-R-US. Conceptually, RCM
solves equations (6) and (4) on the ionospheric polar grid.
Both equations require knowledge of flux tube volume
quantities V' = [ ds/B in the modeling region, which must
contain only closed field lines. In the RCM, the grid extends
from the pole to 9.86 degrees invariant magnetic latitude,
but the outer (poleward) boundary of the modeling region is
determined dynamically throughout a simulation and can be
placed anywhere on the grid. Equation (6) is an elliptic
partial differential equation and requires specification of the
potential on the high-latitude boundary, which is taken from
the MHD code. Ionospheric conductances used in (6) are
the same ones used in the MHD ionospheric module. We
note that in principle, it is not necessary in the coupled code
for the RCM to solve (6), since the RCM can use the
electrostatic potential calculated by the MHD ionospheric
module. However, given the higher-resolution grid of the
RCM in the inner magnetosphere, we implemented both
options in the coupled code.

[21] Equation (4), in addition to the flux tube volume
distribution, requires initial and boundary conditions for the
plasma flux tube contents 1. These are determined by taking
MHD-computed p (mass density) and P (pressure) and
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treating them as moments of the distribution function of an
assumed shape (typically, a maxwellian or a kappa-shaped
function) in the RCM. A set (typically, 150) of ns represent-
ing both electrons and protons is thus computed everywhere
in the RCM modeling region (for the initial condition at the
beginning of the calculation) or only along the outer RCM
boundary (as a boundary condition, throughout a simula-
tion). We use the MHD temperature of the plasma sheet
(which we take to be kT' = Pm,/p, where m,, is the proton
mass) to set the temperature for the protons in the RCM to
be (7.8/8.8)kT, and we set the electron temperature in the
RCM to be (1/8.8)kT, in accordance with plasma sheet
observations. Since it is possible that as the magnetic field
inflates, the RCM outer boundary moves outward in the
magnetosphere, and therefore the RCM modeling region
acquires new grid points that do not have a solution, a
mechanism is implemented to assign initial solutions to
these newly acquired points by the same conversion as for
the initial conditions.

[22] In the coupling framework (Figure 1), the MHD code
(upper left box) typically is run for a short time (we have
experimented with times from 10 s to 10 min), followed by
the field line tracing module. Field line tracing is done
globally (see below), and it returns either field line inte-
grated quantities on the RCM grid points that anchor closed
field lines or an indicator that field lines are open. In the
same module, interpolations are performed, as necessary for
transforming from the MHD grid to the RCM grid. Using
results from the field line tracing, MHD-to-RCM conver-
sions described above are performed, and a high-latitude
RCM boundary location is determined. These calculations
are depicted by the upper black arrow and the red composite
box on the right side of Figure 1. The RCM (lower left box
of Figure 1) is then run for the same time interval. The
particle pressure obtained by the RCM is integrated over the
distribution function (lower left-to-right black arrow on
Figure 1) and is sent back to the MHD. Using results of
the field-line tracing, pressure in the MHD code is cor-
rected by the RCM solutions, assuming that RCM pressure
is constant along magnetic field lines (blue right-to-left
arrow of Figure 1). This loop is then repeated as long as
necessary during a simulation. The optimal coupling
frequency is a balance between the increasing time to
couple more often and the minimal neccessary coupling
for the models to drive each other, which depends on the
event being simulated.

5. Initial Results
5.1. Input Conditions and Run Setup

[23] The run results described below were carried out
under idealized conditions. The Earth’s dipole was assumed
to be perpendicular to the solar wind velocity and also
parallel to the rotation axis; thus GSM and SM coordinates
are identical for this simulation. The solar wind conditions
were held constant with a density of 5 cm >, velocity of
400 km/s, and Mach number of 8 throughout the run. The
interplanetary magnetic field (IMF) was held constant at
5 nT south for 8 hours and then sharply flipped to 5 nT north
for another 8 hours. The temperature resulting from these
conditions was 181,712 K, or 15.66 eV. First a steady state
result was obtained without coupling to the RCM. Results
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of this initial calculation were also used as an indication of
the solutions that the MHD alone would produce for the
same conditions. Then the full 16-hour, time-accurate, fully
coupled run was completed and will be described below.
For simplicity and to better understand initial results, in this
first calculation, uniform ionospheric conductances (field-
line integrated conductivities) were assumed with 4 S per
hemisphere for the Pedersen conductance and 0 for Hall
term. The ionospheric module in the MHD code was used to
solve for the electric field and field-aligned currents, and the
corresponding RCM module was not used, although RCM
still calculated its own field-aligned currents and recorded
them for comparison purposes.

5.2. Results for Steady Southward IMF

[24] The first part of the calculation, with the coupled
code run for 8 hours under steady solar wind conditions,
shows the effects of code coupling on the inner magneto-
spheric pressure, field-aligned currents, and the overall
magnetic field configuration. As was mentioned before, in
the coupled code, both MHD and RCM record physical
quantities such as pressure, electrostatic potential, field-
aligned currents, etc., at regular time intervals. There are
advantages in looking at essentially the same quantities
recorded by both models: first, some errors are introduced in
translating RCM-computed quantities onto the MHD grid
and vice versa due to interpolation; second, the different
grid resolutions add to the errors independent of the
interpolation algorithms.

5.2.1. Particle Pressure and Magnetic Field

[25] Figure 2 shows a comparison of pressures on the
logarithmic scale (LOGo(P), where P is in nPa) in the
magnetospheric equatorial plane, computed in two different
ways for three different times (0, 4, and 8 hours) in a period
of steady southward IMF. The upper left panel is a plot of the
MHD pressure that would result in the absence of the RCM
coupling. Owing to the inclusion of gradient/curvature drifts
and adiabatic particle transport in the RCM in the inner
magnetosphere, the pressures in the region L < 10 Ry are
substantially higher than those computed with MHD alone.
Both pressures are displayed on the RCM grid mapped from
the ionosphere to the equatorial plane. Note that the RCM
pressure is not set beyond the RCM modeling region, which
can be seen by deep blue color outside the region roughly
10 Rg in size. The MHD pressures, on the other hand, are
displayed on all closed field lines.

[26] Before coupling, the peak pressure in the MHD code
is close to 1 nPa on the nightside. After running the coupled
code for 8 hours, the pressure in the MHD code reaches peak
values of 15 nPa, and in the RCM the peak pressure exceeds
18 nPa. One reason that there is a modest difference between
the two columns of Figure 2 is that the MHD pressures are
gradually nudged toward the RCM values but are never
forced into instantaneous agreement to avoid potential
numerical instabilities; another reason is that the numerical
diffusion is greater and the grid resolution is lower in the
MHD code so that the MHD pressure is smoother. The
inner edge of the plasma sheet pressure is a bit closer to
Earth in the MHD distribution than in the RCM, again
because of numerical diffusion. The MHD-computed inner
magnetospheric pressures affect the RCM-computed parti-
cle populations in two ways: (1) through their effect on the
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T=08:00:00 hrs

XGSM
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Figure 2. Comparisons of LOG, of plasma pressures computed with the coupled code at 0, 4, and
8 hours during a long period with interplanetary magnetic field (IMF) B, = —5 nT. (top) Pressure
computed by BATS-R-US for coupled run. (bottom) RCM pressure for coupled run; both are plotted on
the RCM grid mapped to the equatorial plane. Top left panel 7= 0 also represents the noncoupled result

or the instant before the coupling begins.

magnetic field and (2) through their indirect effect on the
MHD-computed Birkeland currents and ionospheric poten-
tial. The differences in the pressure in the MHD code for
the cases of coupling with the RCM and no coupling are
made more quantitative in Figure 3, which shows a line
plot of MHD pressures for the two runs along the negative
X-axis.

[27] The dramatic effect that the buildup of the inner
magnetospheric pressure has on the magnetic field solutions
in the MHD code can be clearly seen in Figure 4, which
shows MHD-computed pressures displayed in false colors
on the linear scale in the ¥ = 0 plane. Superimposed are
approximate magnetic field lines in white colors. Before
coupling (upper panel 7" = 0), the characteristic region on
the nightside where closed field lines meet those with both
ends connected to the interplanetary magnetic field in the
tail lobes (resembling an “X-line”) is located at 12 R. With
the RCM coupled (right panel), the particle pressure built up
in the inner magnetosphere causes overall inflation of the
magnetic field, with the interconnection region moving well
beyond 30 Rg in the magnetotail.

[28] The inner-magnetospheric pressure distribution
shows a strong day-night asymmetry, with average pres-
sures on the nightside exceeding those on the dayside. That
characteristic was pointed out in early RCM runs by Wolf

[1974] and has been a feature of essentially all runs since
then. The same qualitative tendency exists in the observed
particle pressure [e.g., De Michelis et al., 1999]. There is a
corresponding asymmetry in the cross-field currents, with

Pressure along the tail for southward IMF
with and w_itho_ut RCM coupling.

p InPa]

-10
X [R]

Figure 3. Comparison of MHD pressure computed along
the tail axis using the MHD code with and without coupling
to the RCM, for # = 8 hours.
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T=08:00:00 hrs

Figure 4. MHD pressure for 0, 4, and 8 hours during IMF B, = —5 nT, color-coded on the linear scale in
the noon-midnight plane. White lines are approximate magnetic field lines (B, is very small). Black lines
delineate grid block boundaries. Color scale saturates beyond 4 nPa. Time 7 = 0 also represents the
noncoupled result or the instant before the coupling begins.

more westward ring current passing midnight than noon
[e.g., De Michelis et al., 1999].

[20] Figure 2 shows only a modest dawn-dusk pressure
asymmetry. That asymmetry has been a matter of con-
troversy recently. Whereas statistical analysis of in situ
spacecraft measurements [Lui, 2003] indicate that the
pressure peak is well before midnight in active times,
energetic neutral atom images indicate that it is frequently
past midnight in the main phase [Brandt et al., 2002].
Some runs with the Comprehensive Ring Current Model
have also showed peaks past midnight [Fok et al., 2003].
The present runs, as exemplified by Figure 2, cannot
contribute to resolving the controversy because (1) they
assume uniform ionospheric conductance, and Fok et al.
[2003] have argued that conductance gradients signifi-
cantly affect the location of the ring current peak; (2) in

T=08:00:00 hrs

-10

LOG  (Eta) for ALAM=399

YGSM

0
XGSM

the run shown in Figure 2, the high-energy tail of the
plasma-sheet-ion energy distribution was artificially trun-
cated; the highest-energy channel for the run was X\ =
3995 eV (Ry/mT)*?, which corresponds to about 25 keV
at L = 6.6.

[30] Figure 5 compares the RCM-computed distribution
functions for ions with X = 3995 and 270 eV (Rz/nT)>?,
corresponding to about 25 and 1.6 keV at synchronous orbit.
Superimposed on the color plots of the flux tube content m
(logarithmic scale) are contours of constant ‘“‘effective
potential”

A
b = 4+ b+ =V,

s

(®)

which are, according to equation (4), instantaneous flow
paths for particles of a given \. Note that the drift paths for

T=08:00:00 hrs LOG,(Eta) for ALAM=270

YGSM

'
(=}

Figure 5. Plots of RCM flux tube content 1 at 0800 UT for particles with X\ = 3995 (left) and X\ = 270
(right), color-coded, in units of eV (Rz/nT)*>. Superimposed are contours of constant “effective
potential” (see text), which are instantaneous flow lines.
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Figure 6. Birkeland currents for three times in a period of southward IMF, computed by the MHD (top)
and RCM (bottom), for the Northern Hemisphere. Red (positive) is down into and blue (negative) is up
from the ionosphere. In the bottom row, only currents computed by the RCM in its modeling region
(region-2 currents) are shown, while the MHD-computed currents are global (both region-2 and region-1
systems.) In the calculation, only MHD currents were used.

X = 3995 ions curve toward the duskside the Earth, as
expected.
5.2.2. Field-Aligned Currents and Electric Fields

[31] Figure 6 shows Birkeland current displayed in a
format similar to Figure 2. The RCM-computed currents
(bottom row of Figure 6) are shown only in the RCM
modeling region and are region-2 currents. They were not
used in the calculation. The MHD-computed currents
display initially (7 = 0) mostly the region-1 system, with
only traces of region-2 currents due to the above-
mentioned lack of inner magnetospheric pressure (in the
inner magnetosphere, field-aligned currents are related to
pressure gradients through equation (5).) It is clear that the
region-2 current (up from Earth on the dawnside and down
to Earth on the duskside) is much stronger in the coupled
code than in pure MHD. The RCM values (second column)
were computed from the Vasyliunas equation using the
MHD magnetic field and RCM pressures. The MHD
values were computed by taking the field-aligned compo-
nent of V X B on a sphere of radius 3.5 Ry and mapping
to ionospheric altitude to estimate the field-aligned current
into the ionosphere.

[32] Note that the RCM-computed currents are stronger
and sharper. One reason for this is that the equatorial
currents in the RCM are mapped perfectly to the iono-
sphere, while in the MHD code, the currents are self-
consistently driven down to the inner boundary, where
they are mapped to the ionosphere. In order for the field-
aligned currents generated near the equator to get to the
body, the grid resolution must scale as the magnetic field.

If it does not (which is the case here), some field-aligned
currents will diffuse off the field lines. Improved resolu-
tion near the body would both sharpen and strengthen the
field-aligned currents.

[33] Figure 7 shows MHD-computed convection equipo-
tentials in the ionospheric (corotating) frame for three times
in the period of southward IMF, with superimposed MHD-
computed field-aligned currents. Initially, equipotentials
extend to subauroral latitudes. However, formation of
region-2 currents at 4 hours results in shielding of lower
(subauroral) latitudes from the full strength of the sunward
convection. As can be seen, the region equatorward of the
region-2 currents becomes significantly shielded by 8 hours.
5.2.3. Polar Cap Potential Drop

[34] Figure 8 shows the total northern polar cap potential
drop computed by the coupled code in the course of 8 hours.
In calculating Figure 8, we defined the polar cap potential as
the difference between the maximum and minimum poten-
tials in the entire Northern Hemisphere pattern. The initial
value for the potential drop, 69 kV, is for the pure MHD
simulation. However, the MHD simulation has not quite
reached its steady state, and the potential in the MHD
simulation increases to a constant value of 80 kV when
run longer. This 80 kV potential drop is what the pure MHD
code predicts for the chosen IMF and ionospheric param-
eters. After 8 hours of running the coupled code, the
potential drop reaches 74 kV, an 8% deficit from the pure
MHD result. This trend is in agreement with Siscoe et al.
[2002], who predicted that the polar cap potential would be
significantly decreased by the inclusion of realistic region-2
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Ionospheric equipotentials (black lines) computed for three times in the period of southward

IMF. The corotation electric field is not included in the plot. Contour step is 4 kV. Birkeland currents are
also shown as color-coded plots. Dashed circles are drawn at 60, 70, and 80 degrees magnetic latitude.

Birkeland currents, which increase the effective ionospheric
Pedersen conductance.

5.3. Response to a Northward Turning of the IMF

[35] At 0800 UT in the simulation, the IMF was
suddenly turned to 5 nT north to analyze the response
of the magnetosphere to an idealized change in the IMF
conditions for the coupled MHD-RCM code. Figure 9
shows pressures computed by the coupled code at
0800 UT and then subsequently at 0820, 0830, 0840,
0850, and 0900 UT. Pressures were computed by the
MHD code and are displayed in the equatorial plane. The
color scale saturates at the maximum value of 4 nPa. As
discussed in the previous section, at 0800 UT, there is a
well-formed partial ring current characteristic of inner
magnetospheric convection for southward IMF conditions.
As the IMF B. turned northward, Figure 9 shows how the
magnetopause moves out in response. This is the
expected response, the opposite of the erosion that occurs
in response to a southward turning. Note also that the
ring current becomes more and more symmetric owing to
the fact that drift trajectories for the particles near the
inner edge of the plasma sheet that were previously open
now become closed. This is also an expected response; it
has been recently observed by the HENA instrument on
IMAGE spacecraft.

[36] Figure 10 shows the response of the inner magne-
tospheric potential distribution over the same 1-hour time

Cross Polar Cap Potential With RCM

75

Potential (kV)

60 I I I

Simulation Time (Hours)

period. The potential is shown in the rotating ionospheric
frame for nine times between 0800 and 0920 UT. Equi-
potentials are spaced at 1 kV and they are color-coded with
the values according to the color legend on the right side
of the figure. Equipotentials with absolute values larger
than 27 kV are not shown to emphasize the subauroral
features. Note that the potential at 0810 UT is about the
same as at 0800 UT. The northward turning of the IMF
has had no effect, probably due to the time for the change
to be advected from the sunward boundary of the calcu-
lation to the nose of the magnetosphere. Overshielding,
characterized by a dusk-dawn electric field across much of
the magnetosphere, is evident from 0820 to 0910. This can
be seen as formation of secondary potential “vortices” on
the duskside and dawnside equatorward of the region of
antisunward flow.

[37] Overshielding was originally discovered and inter-
preted by Kelley et al. [1979] in observations by the Jica-
marca incoherent backscatter radar. It has been extensively
studied observationally by B. G. Fejer and collaborators
[e.g., Scherliess and Fejer, 1997] and also theoretically using
the RCM [Spiro et al., 1988; Fejer et al., 1990]. However, the
results presented in Figure 10 represent the first full computer
simulation of the overshielding effect, including both the
inner magnetospheric electrodynamics and the solar wind/
magnetosphere coupling.

[38] Kelley et al. [1979] originally associated the over-
shielding phenomenon with a reduction in the potential drop.

Cross Polar Cap Potential Without RCM
T T T

82

Potential (kV)

68L I I I

Simulation Time (Hours)

Figure 8. Polar cap potential drop versus time for the southward IMF period, for the coupled-code run
(left) and the non-coupled-code run (right). The non-coupled-code run reaches steady state within an hour

at about an 80 kV potential.
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T=08:50:00 hrs

X[R]

T=08:30:00 hrs

X®]
T=09:00:00 hrs

Xm]

Figure 9. Changes in the equatorial pressure distribution in response to the northward turning of the
IMF at 0800 UT for six times. To better show the global pressure distribution, the color scale saturates at

4 nPa; the peak values are higher.

However, RCM computer experiments in which the polar
cap potential was suddenly decreased but the magnetic field
configuration was kept constant in time produced over-
shielding that was of quite short duration, too short to be

08:00 08:10

09:00 09:10

consistent with the observed duration (typically 1—2 hours)
[Spiro et al., 1988]. Fejer et al. [1990] suggested that the
magnetic reconfiguration of the magnetosphere due to a
northward turning and the associated shrinkage of the polar

v
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260000

25000

09:20

Figure 10. Ionospheric equipotentials after the northward turning of the IMF at 0800. Equipotential
spacing is 1 kV. Contours with absolute values >27 kV are not shown.
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Figure 11.
equatorial pressure distribution.

cap, also play a role in overshielding. Figure 11 illustrates
the degree of magnetic reconfiguration that occurs when the
IMF turns north. Sazykin [2000] confirmed the effect of
magnetic reconfiguration on overshielding using RCM runs
with time-dependent Hilmer-Voigt [Hilmer and Voigt, 1995]
semiempirical magnetic field models. However, the present
run is the first self-consistent theoretical calculation of the
response of the inner magnetospheric electric field to a
northward turning of the IMF. It is encouraging that it
indicates overshielding with a duration that is comparable
to the observations. Of course, detailed quantitative compar-
isons of coupled code simulations with observations of
overshielding await coupled code simulations with a realistic
ionospheric conductance distribution.

6. Summary

[39] We have presented a first report on the successful
coupling of the Rice Convection Model of Earth’s inner
magnetosphere to the BATS-R-US global MHD model. The
method of coupling has been described, including an inno-
vative and efficient approach to tracing magnetic field lines.

[40] Run for steady southward IMF, the coupled code
exhibits the classic characteristics of inner magnetospheric
electrodynamics, including the formation of strong region-2
Birkeland currents that shield the inner magnetosphere from
the dawn-dusk convection electric field. Inner magneto-
spheric particle pressures are much higher when computed
with the coupled code than with the MHD code running
alone. In response to the pressure increase, the MHD code
predicts much more inflated magnetic field in the inner and
central plasma sheet region.

[41] Beyond demonstrating consistency with established
characteristics, we have also applied the coupled code to an
issue that has not been computationally accessible before.
Namely, the coupled code was run through a sudden north-
ward turning of the IMF from Bz = —5 nT to +5 nT. The
inner magnetospheric electric field temporarily exhibited an
overshielding (dusk to dawn) electric field, which is a well-
established observational and theoretical feature. However,
the coupled code can also address an interesting question
related to the time response that could not be attacked
computationally before. The subauroral ionospheric electric
field begins to respond to the northward turning quickly,

Last closed field lines just before northward turning and 2 hours after. The colors show the

about 10 min after the northward IMF reaches the dayside
magnetopause. The overshielding effect peaks about 20 min
later and lasts just over an hour. These timescales involve the
physics of both the outer and inner magnetosphere. We are
therefore making a tentative prediction that can be checked
against observations. These new physical conclusions
concerning the polar cap potential and the time delay
involved in the inner magnetospheric response to northward
turning are tentative because they are based on runs carried
out for a uniform conductance ionosphere.

Appendix A: BATS-R-US Overview

[42] BATS-R-US solves the MHD equations with a finite
volume discretization using the conservative variables:
density p, momentum density pu, magnetic field B, and
the total energy density e which is the sum of the thermal,
kinetic, and magnetic energy densities. Using the conserva-
tive variables is necessary to obtain correct jump conditions
across shock waves, e.g., the bow shock. Away from the
shock it may be advantageous to use the nonconservative
equations. In BATS-R-US there is an option of using the
pressure equation (last line of equation (1)) instead of the
energy conservation equation near the Earth inside the bow
shock, which results in a more robust numerical scheme.

[43] The MHD equations also contain the constraint
that V - B = 0. Enforcing this constraint numerically,
particularly in shock-capturing codes, can be done in a
number of ways [see Toth, 2000, and references therein].
In BATS-R-US, four types of divergence control schemes
are implemented: the eight-wave scheme [Powell, 1994;
Powell et al., 1995], the diffusive/parabolic approach
[Dedner et al., 2003], the projection scheme [Brackbill
and Barnes, 1980], and a conservative form of the
constrained transport scheme extended to adaptive grids
[T6th and Roe, 1996]. For magnetospheric applications all
these schemes produce very similar results, but there are
differences in efficiency and robustness. In the calcula-
tions presented in this paper the most efficient and robust
eight-wave scheme is used.

[44] In the eight-wave scheme the MHD equations are
written in a symmetrizable form [Godunov, 1972] which
contains extra terms proportional to V - B = 0. This equation
leads to eight eigenvalue/eigenvector pairs: an entropy wave,
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two Alfvén waves, two magnetofast waves, two magneto-
slow waves, and an eighth eigenvalue/eigenvector pair
associated with the jump of the normal component of the
magnetic field. The eight-wave scheme advects the errors
associated with the divergence of the magnetic field and
thus keeps the error at the truncation level. The expressions
and scaling of the eigenvectors are more intricate than in
gasdynamics [Roe and Balsara, 1996].

[45] Adaptive mesh refinement (AMR) techniques [e.g.,
Berger and Colella, 1989; Quirk, 1991] that automatically
adapt the computational grid to the solution of the govern-
ing PDEs can be very effective in treating problems with
disparate length scales. Methods of this type avoid under-
resolving the solution in regions deemed of interest (e.g.,
high-gradient regions) and, conversely, avoid overresolving
the solution in other less interesting regions (low-gradient
regions), thereby saving orders of magnitude in computing
resources for many problems.

[46] Keeping in mind the desire for high performance on
massively parallel computer architectures, a relatively sim-
ple yet effective block-based AMR technique has been
developed [Stout et al., 1997]. The computational cells
are embedded in regular structured blocks of equal sized
cells. Typically, blocks consisting of anywhere between
4 x4 x 4=064and 12 x 12 x 12 = 1728 cells are
used. Computational grids are composed of many self-
similar blocks. Although each block within a grid has the
same data storage requirements, blocks may be of different
sizes in terms of the volume of physical space that they
occupy. Starting with an initial mesh consisting of blocks of
equal size (i.e., equal resolution), adaptation is accomplished
by the dividing and coarsening of appropriate solution
blocks. In regions requiring increased cell resolution, a
“parent” block is refined by dividing itself into eight
“children.” Each of the eight octants of a parent block
becomes a new block having the same number of cells as
the parent and thereby doubling the cell resolution in the
region of interest. Conversely, in regions that are deemed
overresolved, the refinement process is reversed, and eight
children are coarsened and coalesced into a single parent
block. In this way, the cell resolution is reduced by a factor of
2. Standard multigrid-type restriction and prolongation oper-
ators are used to evaluate the solution on all blocks created
by the coarsening and division processes, respectively.

[47] In order that the update scheme for a given iteration or
time step can be applied directly to all blocks in an
independent manner, some additional solution information
is shared between adjacent blocks having common interfa-
ces. This information is stored in an additional two layers of
overlapping “ghost cells” associated with each block. The
block adaptation readily enables domain decomposition and
effective load balancing and leads to low communication
overhead between solution cells within the same block.

[48] As noted above, each level of refinement in the grid
introduces cells that are smaller by a factor of 2 in each
dimension from those one level higher in the grid. Typically,
calculations may have 10—20 levels of refinement. In the
case of 20 levels of refinement, the finest cells on the mesh
are more than one million times (2°) smaller in each
dimension than the coarsest cells.

[49] The state of the magnetosphere is controlled by
conditions in the solar wind and in the ionosphere. Solar
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wind conditions are imposed as boundary conditions at the
upwind boundary of the simulation domain. These bound-
aries are put far enough away that they do not influence the
solution.

[s0] The ionosphere-magnetosphere (I-M) coupling, on
the other hand, is a highly nonlinear two-way interaction
which strongly affects the large-scale behavior of both
domains [Ridley et al., 2004]. Self-consistent global
magnetosphere models include some kind of dynamic
ionosphere model which interacts with the magnetosphere
and provides ionospheric boundary conditions actively
responding to changing magnetospheric conditions.

[s1] While mass exchange between the ionosphere
and the magnetosphere is undoubtedly of major impor-
tance, the dominant component of I-M coupling is a
system of field-aligned currents (FACs) connecting the
magnetosphere and the high-latitude ionosphere. These
FACs carry momentum (electromagnetic stress) and
energy (Poynting flux) along stretched magnetic field
lines connecting the ionosphere and the magnetosphere.
Self-consistent global magnetosphere models need to
describe the generation and closure of these FACs through
appropriate boundary conditions and embedded non-MHD
models.

[s2] BATS-R-US has been coupled to two ionosphere
models to provide ionospheric current closure (the user can
choose from the two available models) and a drift model
to account for the generation and closure of FACs. The
simplest [-M coupling procedure involves a height-integrated
electrostatic ionosphere model. In this case the MHD
code has an inner boundary at a radius of Ry (for explicit
time-stepping we typically use Rz = 2.5 Rg). At this inner
boundary, the plasma density, temperature, and velocity are
specified. In addition, the magnetic field is allowed to float
(zero gradient of the normal component), so currents can
flow along the boundary. The velocities which are imposed
on the boundary are calculated in the ionosphere in a three
step process [Goodman, 1995]:

[53] 1. Field-aligned currents are calculated from the curl
of the magnetic field at Rz + 1 Rp, and these are mapped
down to the ionosphere.

[s4] 2. A height-integrated ionospheric conductance pat-
tern is generated and the ionospheric potential is calculated
from the equation:

jR(RE) = [VL : (2 ) Vﬂ))L]R:RE’ (Al)
which describes the relationship between the height-
integrated conductance tensor, Y, the ionospheric potential,
1\, and the radial component of the current, j.

[ss] 3. Finally, the electric potential is mapped out along
field lines to the inner boundary at Rz where electric fields
and velocities are generated. The corotation velocity field is
added to the ionosphere generated velocity field.

[s6] The details of our conductance model as well as
some simulation results using this method are given by
Ridley et al. [2001, 2002, 2004].

Appendix B: Ray Tracing

[57] In order to compute the necessary quantities to send
to the RCM and in turn to use the RCM pressures back in
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the MHD model, we need to accurately and efficiently trace
magnetic field lines. Complicating this procedure is the fact
that BATS-R-US is a massively parallel code that distributes
different portions of the grid (blocks) to different proces-
sors. Assuming that all the magnetic field information were
to reside on one processor, a “brute force” approach to trace
each line would take a significant amount of time. However,
since our magnetic field data is distributed across many
processors in the adaptive block structure of the MHD
model, a different and much more efficient method was
designed for this coupled code.

[s8] As described earlier, each processor contains many
blocks of data, which together fill the simulation domain.
Each block contains all that is necessary to advance the
MHD solution in its region of space. Each block knows who
its neighboring blocks are and how to exchange information
with them, as they may reside on other processors. This
exchange is handled through two shells of ghost cells which
surround the block and are filled with neighboring block
information. The ray tracer begins by tracing the magnetic
field within each block, with a grid of points on the outer
surface of the block storing the two end points of the
magnetic field line which pass through that point. Each
point on the block surface then knows the mapping of that
small subset of field lines. The next step is a recursive
exchange of information between neighboring blocks and
their shared faces. Tracing information is matched up at the
faces such that both blocks sharing the face now know the
tracing information of magnetic field lines in a larger
volume. This iterative process continues until there are no
changes to any tracing information, in which case the
information about magnetic field tracing has propagated
throughout the domain. Traces that have both ends on the
ionosphere are then deemed to be closed field lines and will
be considered for coupling to the RCM. Each cell now only
needs to trace to the outer edge of its block and interpolate
to determine the exact latitude and longitude mapping of its
magnetic field line.

[59] This parallel tracing method is several orders of
magnitude faster than a serial “brute force” approach, and
efficiency improves with more processors and blocks. Con-
ceptually, the numerical algorithm is equivalent to solving a
large system of linear equations and is bound to converge to
the solution. In practice, however, we have to distinguish
between different types of magnetic field lines (e.g., open,
closed and anchored to the ionosphere, loops). When
implemented in the computer code, these different
“clauses” introduce nonlinearity, and convergence is not
guaranteed. While we have not performed a rigorous
mathematical analysis of the algorithm, our experience
and testing showed that convergence is always achieved
and to the right solution in the closed field line region.

[60] This tracing procedure can have any number of uses,
but coupling to the RCM requires that we integrate mag-
netic field volumes as well as average field pressures and
densities. In order to compute these terms, we simply
compute the fraction of the field volume that exists in each
block for each latitude/longitude pair desired and a parallel
global sum of these pieces. When the RCM is ready to
provide a pressure back to the MHD model, each cell
already knows where it maps to from the ray tracing and
can easily interpolate its RCM pressure.
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