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[11 A sound understanding of the sustainability of terrestrial carbon (C) sequestration is
critical for the success of any policies geared toward stabilizing atmospheric greenhouse
concentrations. This includes the Kyoto Protocol and/or other greenhouse strategies
implemented by individual countries. However, the sustainability of C sinks and pools
has not been carefully studied with either empirical or theoretical approaches. This
study was intended to develop a conceptual framework to define the sustainability
based on C influx and residence time (7). The latter T quantifies the capacity for C
storage in various plant and soil pools. We estimated T via inverse analysis of multiple
data sets from a Free-Air CO, Enrichment (FACE) experiment in Duke Forest,
North Carolina, United States. This study suggested that estimated residence times at
elevated CO, decreased for plant C pools and increased for litter and soil pools in
comparison to those at ambient CO,. The ensemble of the residence times from all the
pools at elevated CO,, however, was well correlated with that at ambient CO,. We then
used the estimated residence times, combined with C influx, to simulate C sequestration
rates in response to a gradual increase in atmospheric CO, concentration (C,). The
simulated C sequestration rate gradually increased from 69 g m~2 yr ' in 2000 when
C, was 378 ppm to 201 g m 2 yr ' in 2100 when C, was at 710 ppm. Thus, the
current evidence from both experimental observations and inverse analysis suggested
that C sequestration in the forest ecosystem was likely to increase gradually as C,
gradually increases. The model projection of the C sequestration will improve as more
data on long-term processes become available in coming years. In addition, such a
modeled increase in terrestrial C sequestration is too small to balance the anthropogenic
C emission. INDEX TERMS: 1615 Global Change: Biogeochemical processes (4805); 1620 Global

Change: Climate dynamics (3309); 9350 Information Related to Geographic Region: North America;
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1. Introduction

[2] Significant advances have recently been made in our
understanding of the current role of terrestrial ecosystems in
the global C cycle by the uses of eddy covariance techni-
ques [Valentini et al., 2000], inversion of atmospheric
signals [Fan et al., 1998], forest inventory [Brown and
Schroeder, 1999; Pacala et al., 2001], and simulation
models [Schimel et al., 2000]. Estimation from those
various approaches suggests that current C sink in global
terrestrial ecosystems ranges from 0.5 to 3.9 Gt C per year
[Schimel et al., 2001]. This current sink is responsible for
removing from the atmosphere up to one third of the CO,
emitted from fossil fuel combustion and tropical deforesta-
tion. By sequestering that amount of C, the terrestrial
ecosystems help decrease the rate of accumulation of
anthropogenic CO, in the atmosphere, and its associated
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climate change. As international efforts are implemented to
stabilize atmospheric CO, concentration (C,) and climate
change [Wigley et al., 1996; Azar and Rodhe, 1997], it is
imperative to assess the sustainability of terrestrial C
sequestration.

[3] The latest report by the Intergovernmental Panel of
Climate Change (IPCC) predicts that the terrestrial C sink
will continue to sequester up to 5—10 Gt C yr~' by the end
of the twenty-first century [Houghton et al., 2001]. The
predicted increase in the current terrestrial sink is largely
based on biosphere models, which primarily respond to
gradually rising C,. However, several physiological and
ecological processes could alter such model predictions
and potentially result in the saturation of the terrestrial C
sink. For example, increased C storage in plant and soil
pools under elevated CO, may result in immobilization of
nutrients in plant biomass and soil organic matter, progres-
sively leading to lower nutrient availability for plant uptake
[Gill et al., 2002]. Limited nutrient availability, in return,
constrains C sequestration in terrestrial ecosystems. Photo-
synthetic responses to rising C, are also diminishing at high
levels of CO, concentration. Moreover, incorporation of the
effects of warming on terrestrial C processes into global
models predicts that terrestrial ecosystems will switch from
C sinks to C sources in the middle of this century [Cox et
al., 2000; Cramer et al., 2001; McGuire et al., 2001] due to
temperature stimulation of C releases from soil and plant
pools.

[4] In addition to global change, the current C sink may
be driven by other factors, including forest regrowth, woody
plant encroachment, atmospheric nitrogen deposition, and C
burial in sediment [Pacala et al., 2001]. Some of the sink
mechanisms will saturate while other sinks will quickly
disappear. The C sink due to forest regrowth in regions of
the eastern United States, for example, may decline quickly
as forests reach maturity in coming decades [Caspersen et
al., 2000]. Thus, it is critical to understand the sustainability
of (1) individual sink factors and (2) net sink resulting from
the combined effects of multiple factors. If the expected
increase in sink strength is not realized or current sinks
disappear, atmospheric CO, growth will take place at a
much faster pace than currently predicted, and policies
devised to stabilize CO, concentrations will fall short in
meeting their targets.

[5s] To assess the sustainability of the current C sink, we
need to evaluate how it varies with environmental forcing
over time. This issue can be addressed by improving bio-
sphere models via examination of model structure and
estimation of parameter values because the future rates of
C sequestration are ultimately predicted by those models. In
the past decades, dozens of biogeochemical models have
been developed to predict future terrestrial C sequestration
[e.g., Parton et al., 1987; Luo and Reynolds, 1999; Cramer
et al., 2001; McGuire et al., 2001]. Most of the models
share a similar structure that partitions photosynthetically
fixed C into plant and soil pools. The model structure is
robust and supported by experimental evidence. Variation in
the predicted future C sinks among models largely results
from differences in canopy C influx and transfer coefficients
between pools as well as their responses to environmental
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variables. The transfer coefficients are inversely correlated
with the C residence times (7) in plant and soil pools. The
latter T, in turn, determines the capacity for C storage in
terrestrial ecosystems. For a given canopy C influx rate, the
longer 7 is, the larger the capacity of the ecosystem to
sequester C. For a given set of 7 in plant and soil C pools,
the larger the canopy photosynthetic C influx, the more C an
ecosystem will sequester. Thus, to assess the sustainability
of terrestrial C sequestration, we have to quantify both
canopy photosynthesis and 7 in future scenarios.

[6] This study was designed to address the issue of C sink
sustainability. Since research on this subject is in its infancy,
we intended to first establish a general framework for
evaluating the sustainability based on C influx and 1. We
then applied an inversion approach to the estimation of T and
its adjustments to global change. We evaluated the sustain-
ability in reference to rising C, because it is essential to
understand individual factors before we can evaluate all the
sink factors together. Specifically, we estimated parameter
values of T via an inverse analysis of six data sets collected
from the Duke Forest in North Carolina, United States,
where a Free-Air CO, Enrichment (FACE) experiment has
been in progress since August 1996 [Hendrey et al., 1999].
The estimated 7, in combination with photosynthetic C
influx, was used to predict C sequestration rates in response
to a gradual C, increase as happening in the real world.

2. Conceptual Framework

[7] Many factors contribute to C sinks in terrestrial
ecosystems, including CO, fertilization, nitrogen (N) dep-
osition, climate change, forest regrowth, woody plant
encroachment, accumulations of durable products and land-
fills, and burial in sediments [Holland et al., 1999; Archer et
al., 2001; McGuire et al., 2001; Schimel et al., 2001]. These
factors influence terrestrial C sequestration by altering either
C influx into an ecosystem or its residence time (T) or both.
For instance, CO, and nitrogen fertilizations mainly stim-
ulate C influx into ecosystems, whereas C burial in sedi-
ments and accumulations of durable products primarily
extend 7. Woody encroachment may alter both C influx
and 1. Thus, C influx and residence time are the two key
parameters for quantifying the capacity of an ecosystem to
sequester C.

[8] C influx and residence time are not only useful for
assessing how various factors influence C sequestration, but
these parameters also represent the fundamental nature of
ecosystem C processes [Luo and Reynolds, 1999; Taylor
and Lloyd, 1992]. Since any C atom that enters an ecosys-
tem from the atmosphere is eventually cycled back to the
atmosphere, terrestrial ecosystems only have dynamic C
storage. That is, the C-storage pools are transient. The
transient C storage is determined by the duration of
C atoms from the entrance to exit (i.e., their residence
times, 7). The longer T is, the higher the capacity of an
ecosystem to store C. Note that the C-storage capacity
defined by T is not a concept of static pool sizes (e.g., a
maximum amount of C an ecosystem can store) but a
dynamic measure of transit time of C atoms from the
entrance to the exit in the ecosystem. Even if the C-storage
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capacity is the same in two environments (e.g., ambient and
elevated CO,) with identical transit times of C atoms, the
amount of C that an ecosystem can store could be different
due to different C influx. If elevated CO, increases C influx
into an ecosystem but does not change C transit times, for
example, the C sequestration rate of the ecosystem increases
purely due to the fact that more C stays in the ecosystem for
the same length of time. Thus, C sequestration in terrestrial
ecosystems is determined by both the amounts of C entering
an ecosystem and their residence times (7). To evaluate the
sustainability of terrestrial C sequestration, we need to
examine the dynamics of both C influx and T over time.

[v] The sustainability of photosynthetic C influx can be
quantified according to sensitivity and acclimation [Farqu-
har et al., 1980; Luo et al., 1996]. Photosynthetic sensitivity
is independent of growth environments and interspecific
variation, and varies only with CO, concentration and
temperature [Luo, 1999]. Photosynthetic acclimation (i.e.,
adjustment in photosynthetic capacity) may be caused by
many factors [Luo et al., 1994; Mooney et al., 1999; Norby
et al., 1999], frequently related to nitrogen supply [Peterson
et al., 1999; Sims et al., 1998]. Although there is no
universal rule to predict acclimation, we can quantify
adjustments in the photosynthetic capacity (i.e., upregula-
tion, downregulation, or no change) under different growth
environments when we measure photosynthetic responses to
light and CO, concentration.

[10] In contrast to C influx, our ability to measure T and
its adjustments to global change is extremely limited
[Balesdent et al., 1988; Bird et al., 1996; Trumbore,
2000]. To the best of our knowledge, no report has been
published on T adjustments in response to rising atmos-
pheric CO,. In this study, we employed an inversion
approach to an analysis of multiple data sets obtained from
the Duke FACE experiment to estimate T at ambient and
elevated CO, (i.e., 74 and T respectively). Since the
residence time measures the capacity of an ecosystem to
store C, a comparison between T, and T is indicative of
adjustments in the C-storage capacity in response to ele-
vated CO,. The C-storage capacity is sustainable if the
residence time at elevated CO, is equal to that at ambient
CO, (i.e., T4 = Tg ). When the residence time at elevated
CO, decreases (i.e., Tz < T4), the C-storage capacity
becomes lower at elevated than at ambient CO,. If the
residence time at elevated CO, increases (i.e., Tz > T,), the
C-storage capacity increases in a high-CO, world.

[11] As discussed above, the capacity of an ecosystem to
sequester C is determined by both the photosynthetic
capacity and the C-storage capacity. In an ecosystem where
neither the photosynthetic capacity nor the C-storage
capacity changes at elevated CO,, the C-sequestration
capacity of that ecosystem is not altered by rising atmos-
pheric CO,. Thus, the amount of C sequestered by the
ecosystem is primarily regulated by the forcing function
(i.e., how fast C, is rising). If either the photosynthetic
capacity or the C-storage capacity or both decreases (i.e.,
down-regulated) at elevated CO,, the ecosystem becomes
less responsive to rising C, and consequently sequesters less
C than it would without down-regulation. If either the
photosynthetic capacity or the C-storage capacity or both
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increases (i.e., up-regulation) at elevated CO,, the ecosys-
tem sequesters more C than it would without up-regulation.

3. Materials and Methods
3.1. Data Sources

[12] The data sets used in this inverse analysis are foliage
biomass growth, woody biomass growth, litterfall, C con-
tent in the litter layers, C content in mineral soil, and soil
respiration at the Duke FACE site in North Carolina, United
States. The FACE experiment started in 1996 on a 15-year-
old loblolly pine (Pinus taeda L.) plantation [Hendrey et al.,
1999] with six plots, each 30 m in diameter. The CO,
concentration in the three treatment plots has been main-
tained at 200 ppm above ambient since August 1996, while
three control plots have been fumigated with ambient air
only. Soils at the site are of the Enon Series, a low-fertility
Ultic Alfisol that is typical of many upland areas in the
southeast United States. Mean annual temperature is 15.5°C
and precipitation is 1140 mm.

[13] Biomass of foliage and wood were estimated using
an indirect method. Diameters at the breast height (DBH) of
203 canopy pine trees in the ambient and elevated CO, plots
were measured once a month since March 1996. Starting in
1997, 112 subcanopy hardwood trees were also measured
for DBH. We calculated the total biomass of the dominant
pine trees (including woody roots, bole, branches, and
foliage) from the measured DBH using a site-specific
allometric equation [Naidu et al., 1998]. Equations from
the literature were used to convert the measured DBH to the
total biomass for the subcanopy hardwoods [DeLucia et al.,
1999]. According to the site-specific allometric relation-
ships, approximately 92.3% of the total biomass is woody
biomass and the rest is foliage biomass. It was assumed that
elevated CO, does not change the allometrical relationship
[DeLucia et al., 2002].

[14] Aboveground litter was collected from 12 replicate
40 x 40 cm baskets in each plot once per month between
January and August and twice per month between Septem-
ber and December to avoid leaching leaf litter during the
period of peak litterfall [Finzi et al., 2001]. The collected
litter was dried at 65°C for 4 days and weighed. Measured
litterfall in an individual period varied due to extremely
windy events. Since this modeling study did not simulate
wind effects on litterfall, we lumped data to calculate the
annual litterfall for inverse analysis.

[15] Measurements of C content in the forest floor and
mineral soil were described by Schlesinger and Lichter
[2001]. In each plot, we collected 16 soil samples in 1996
before CO, treatments and 12 samples in October 1999.
Undecomposed plant materials on the soil surface in each of
the samples were separated for measurement of C content in
the surface litter layers. Mineral soil from 0 to 15 cm and from
15 to 30 cm depths were sieved to remove coarse roots and
stored before measurement of C content using Dumas com-
bustion of samples in a C and N analyzer (NA 1500 Series,
Carlo Erba Instrumentazione, Milan, Italy). In this modeling
analysis, we lumped soil C from the two layers together.

[16] Soil respiration was measured, approximately once a
month, using a portable infrared gas analyzer (EGM-1, PP
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Figure 1. Schematic diagram of structure of C cycling
processes in terrestrial ecosystems, from which we derived
a matrix model of C transfer (i.e., equation (1)). The model
includes seven pools, so the matrix 4 in equation (1) has
7 x 7 dimensions and the vectors X and B have 7
dimensions. SOM stands for soil organic matter.

Systems, Inc., Haverhill, Mass.) equipped with soil respi-
ration chambers (SRC-1) [Andrews and Schlesinger, 2001].
Measurements were taken during a 1-2 min interval
between 1200 and 1500 local time. Meanwhile, we meas-
ured soil moisture with four probes in each plot, integrating
the upper 30-cm soil layer with a water-content reflectom-
eter (CS615 Campbell Scientific, Logan, Utah) and soil
temperature with thermocouples.

3.2. Mathematical Formulation

[17] To quantify T, we first defined a C-transfer coef-
ficient matrix, which measures the efficiency of C delivery
to and storage in various plant and soil pools. In reference
to the Duke Forest, we characterized the structure of C-
cycling processes in the ecosystem as illustrated in Figure
1. Carbon enters into the ecosystem via photosynthesis.
Part of the photosynthate is consumed by plant respiration.
The rest is partitioned into the growth of nonwoody (i.c.,
leaf and fine roots) and woody biomass. Dead plant
material goes to litter pools. Nonwoody litter has meta-
bolic and structural components according to their lignin
content and C/N ratio and is decomposed by microbes.
Part of the litter C is respired and part of it is converted to
soil organic matter (SOM) in slow and passive soil C
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pools. The C processes were mathematically converted to
a matrix form,

dx
= EAX + Bu, (1)

where X is a vector of C pool sizes (Figure 1), 4 is a matrix
of transfer coefficients, & is an environmental scaler
representing effects of soil temperature and moisture on C
transfer between compartments [Luo et al., 2001b], u is
ecosystem C influx, B is a vector of partitioning coefficients
of C to growth of woody and nonwoody tissues, and dt is a
time step which was set to be 1 day in this analysis. In the
model, we lumped fine roots and leaves together as one
nonwoody pool because they have similar residence times
and this allowed us to reduce the number of parameter
values to be estimated.

[18] The critical parameter in equation (1) for evaluating
the sustainability of the C sink is the transfer matrix A that
quantifies the capacity of C delivery to and storage in each
of the pools. Variation in 4 in response to global change
represents adjustments in the C-storage capacity. Values of
A were determined by inverse analysis of data from the
Duke FACE experiment.

3.3. Constraints and Parameterization

[19] Results of inverse analysis depend on initial values,
constraints, prior information, and optimal criteria [7aran-
tola, 1987]. Since the Duke FACE experiment provided
comprehensive data sets for most ecosystem C processes,
estimation of C-transfer coefficients can be relatively well
constrained. The initial values of C pool sizes of nonwoody
biomass, woody biomass, metabolic litter, structural litter,
microbes, slow SOM, and passive SOM were expressed in
vector X, as

Xo = (469 4100 64 694 123 1385 923),
where prime (') is a mathematical symbol for transposition
to a column vector. These initial values were selected
according to newly collected data at the Duke FACE site,
particularly for the C content in foliage, and wood [DeLucia
et al., 1999; Naidu et al., 1998], fine roots [Matamala and
Schlesinger, 2000], microbes [Allen et al., 2000], above-
ground litter and soil C in mineral layers [Finzi et al., 2001;
Schlesinger and Lichter, 2001]. The matrix A4 in equation
(1) has non-zero elements for those connections between
pools as illustrated in Figure 1 and zero for all the other
elements, which were

—al, 1 0 0 0 0 0 0
0 —a2,2 0 0 0 0 0
0.712al, 1 0 —a3,3 0 0 0 0
A= 0288l,1 1.0a2,2 0 —a4,4 0 0 0
0 0 045a3,3 0275a4,4 —a5,5 0.42a6,6 0.45a7,7
0 0 0 0.275a4,4 0.296a5,5 —a6,6 0
0 0 0 0 0.004a5,5 0.03a6,6 —a7,7

)
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The diagonal elements (a;;, i = 1, 2, ..., 7) quantify the
fraction of C left in its own pool after each time step. The
off-diagonal, non-zero elements quantify C transfer from
one pool to another, varying with lignin and nitrogen (N)
content [Parton et al., 1987]. Since lignin and N content in
litter were not affected by elevated CO, in the Duke Forest
[Finzi et al., 2001], those elements were assumed to be the
same between the two CO, treatments. Their values were
estimated according to lignin and N content [Luo and
Reynolds, 1999; Luo et al., 2001b].

[20] Variable u in equation (1) is the canopy photosyn-
thetic rate. The annual photosynthetic C influx into the
ecosystem was estimated by a mechanistic canopy model
MAESTRA as described by Luo et al. [2001a]. Vector B
determines C partitioning between nonwoody and woody
tissues according to a N-production relationship [Luo and
Reynolds, 1999]. Since the N content in leaves, fine roots,
and wood was hardly affected by elevated CO, in the Duke
Forest [Ellsworth, 2000; Matamala and Schlesinger, 2000]
and had little seasonal variation [Myers et al., 1999], the C
partitioning was assumed to be identical between the two
CO, treatments. The vector B was

B=(025 030 0 0 0 0 0).

The partitioning vector indicates that 25% of canopy
photosynthate (i.e., ) was allocated for nonwoody tissue
growth and 30% for woody tissue growth. The remaining 45%
ofu was not incorporated into plant and soil C pools, but rather
consumed by plant respiration. The portion for plant
respiration was chosen according to the estimates for the
study site [DeLucia et al., 1999; Lai et al., 2002; Luo et al.,
2001a]. Overall, available data from the Duke FACE experi-
ment helped constrain the inverse problem of equation (1)
into a search for only seven diagonal elements in the matrix A4.

3.4. Observation Operator and Optimization
Procedure

[21] This study used six data sets to search for 4. The six
data sets are measured woody biomass, C content in the
forest floor, C content in mineral soil, foliage biomass,
litterfall, and soil respiration at ambient and elevated CO,,
respectively. Each of the data sets was denoted by O/,
where j =1, 2,., 6 and ¢ indicates time dependence. For each
0/ (1), we defined an observation operator Q”/(4) as

Woody « 1 0 0 0 0 0)
biomass

C in forest (0 0 075 075 0 0 0)
floor

Cin « 0 0 0 1 1 1)
mineral
soil

Foliage 0.75 0 0 0 0 0 0)
biomass

Litterfall (0.75a;1 0.75a,, 0 0 0 0 0)

Soil (0.25a;,; 0.25a,, 0.55a330.45a4 4 0.7as5 0.55a6 0.55a7 7).
respiration

The observation operator maps modeled pool size X(4)(¢) to
compare with data set Q,/(¢) as expressed in a cost function
J(4),

J=3y
=

nj

Y (XA (n,) - 0(n,)| @

i=1

21-5

where ¢; ;, fori=1, 2, ..., n;, represent observation times for
the jth data set; n; is the number of data points, equal to 58,
2, 2,58, 5, and 56 for woody biomass, C content in the
forest floor and mineral soil, foliage biomass, litterfall, and
soil respiration, respectively; m is the number of data sets,
equaling 6; v; is a weighing factor for data set j toward the
evaluation criteria,

v =2 ! - 3
where p;is a proportional value of data set j contributing to the
overall evaluation, V' (Q,/) is the variance of the observation
data set Q. In this study, we assumed p; = 1 for all six data
sets.

[22] We used the Levenburg-Marquardt minimization
method in combination with a quasi-Monte Carlo algorithm
to search for the diagonal elements of the matrix A [Dennis
and Schnabel, 1983; White and Luo, 2002]. The Levenburg-
Marquardt minimization method was used for the funda-
mental decent step. However, because of the apparent shape
of the function, we couple this method with a quasi-Monte
Carlo search. The algorithm proceeded by using the
Levenburg-Marqurdt method to reduce the cost function
until the reduction was smaller than a prescribed tolerance.
A quasi-Monte Carlo method was then used to generate
points within the neighborhood of the current point. If the
function was sufficiently reduced by a generated point, it
was taken to the new point. The algorithm then repeated. If,
after a prescribed number of generated points, the function
was not reduced, then the algorithm terminated.

3.5. Photosynthetic Carbon Influx in the Forward
Model Simulations

[23] To simulate the long-term terrestrial C sequestration
in response to a gradual increase in C,, we quantified
photosynthetic sensitivity (¢) to rising C, as

1 0.7C, —35.7
"k 0.7C, + ky “)
where k; and k, are coefficients that were chosen to be
0.2176 and 540.34 so that / = 1 when C, = 280 ppm and
(6560 — 6360)/6360 x 100 = 40, where 6360 and 6560 are the
relative photosynthetic sensitivity at 360 and 560 ppm of
C.. The modeled 40% increase in photosynthesis at elevated
CO, in comparison with that at ambient CO, was a match
with the observations [Ellsworth, 2000]. The equation is a
modified form of the Farquhar photosynthesis model
[Farquhar et al., 1980] and quantifies the sensitivity
component of photosynthetic responses to rising C, [see
Luo et al., 1996]. The sensitivity £ was multiplied by 1436 g
C m 2 yr ' to compute annual gross primary productivity,
which was used as input for the forward model simulation
of ecosystem C sequestration.

4. Results and Discussion
4.1. Gross Primary Productivity and Model Inputs

[24] Ecosystem C processes in the model were driven by
canopy C influx. We used the mechanistic model MAES-
TRA [Luo et al., 2001a] to estimate canopy photosynthesis.
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Figure 2. Canopy photosynthetic carbon influx at ambient and elevated CO, from 1996 to 2000. The
carbon influx was estimated with a mechanistic model MEASTRA and amounted to around 1800 g C
m 2 yr ' at ambient CO, and 2500 g C m 2 yr ' at elevated CO,. The estimated C influx was used as
input into the model for the inverse analysis. Letters W, S, S, and F on X axis stand for winter, spring,

summer, and fall, respectively.

The latter varied from 0 g C m 2 d~" in the winter when the
temperature was normally below 5°C to 12 gCm 2 d ™' in
the summer at ambient CO, and 18 g C m™2 d~" at elevated
CO,. (Figure 2). The annual gross primary productivity
(GPP), which is the sum of daily canopy photosynthesis,
was approximately 1800 g C m 2 yr~ ' at ambient CO, and
2500 g C m 2 yr ! at elevated CO,. The modeled GPP was
similar to that estimated by Lai et al. [2002] at ambient
CO,, lower than the estimate of Hamilton et al. [2002], and
higher than that estimated by Luo et al. [2001a]. The
estimated GPP was used as model inputs for the inverse
estimation of residence times.

4.2. Data-Model Comparisons

[25] Data-model comparisons help illustrate how well
the model represents ecosystem C processes and therefore
how effectively the existing data constrain the parameter

estimation. Results in Figure 3 indicate that our matrix
model adequately simulated C fluxes in the forest ecosys-
tem. Modeled woody biomass and soil C were highly
correlated with observations at both ambient and elevated
CO,, with determinant coefficients R’ being more than
0.99 for both data sets (Figures 3a and 3b). In both the
cases, the modeled and observed data were distributed
tightly to their 1:1 lines, indicating that our model accu-
rately reproduced observed biomass growth and soil C
accumulation. The high precision of the model’s reproduc-
tion of the observed biomass was largely due to an
extremely low variation in biomass estimates using the
allometric relationship [DeLucia et al., 1999; Hamilton et
al., 2002; Naidu et al., 1998]. The precise reproduction of
observed soil C by the model was partly because we had
data of only two points in time (one before the CO,
fumigation and the other at 3 years after the fumigation)
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Figure 3. Comparison of measured and modeled (a) woody biomass, (b) C in the forest floor and in
mineral soil, (c) foliage biomass, (d) litterfall, and (e) soil respiration at ambient and elevated CO, at the
Duke FACE site. The solid circles represent data at ambient CO, and the open circles represent data at
elevated CO,. In Figure 3b, circles represent C in mineral soil and triangles represent C in the forest floor.
Data points in each panel equal numbers of observations at ambient plus those at elevated CO,. Litterfall
was observed approximately at a monthly interval but is represented in Figure 3d by yearly values from
1996 to 2000 to avoid extreme data points due to episodic events (e.g., windy weather). We used mean
values, for all the six data sets, averaged from the three control rings for ambient CO, and the three

fumigated rings for elevated CO,.

for the C content in the forest floor and in the mineral soil
[Schlesinger and Lichter, 2001].

[26] Both observed and modeled woody biomass
increased from approximately 4400 g C m 2 before the
CO, treatment in August 1996 to nearly 6000 g C m 2 at
ambient CO, and to ~6500 g C m~~ at elevated CO, by the
end of 2000 (Figure 3a). Elevated CO, resulted in 20—25%

increases in biomass growth rates from 1997 to 2000
[DeLucia et al., 1999; Hamilton et al., 2002]. Observed C
content in the forest floor litter layers was 183 g C m 2
higher at elevated CO, than that at ambient CO, after 3 years
of CO, fumigation from 1996 to 1999 [Schlesinger and
Lichter,2001]. During the same period, the forest floor in the
ambient CO, plots likely accumulated about 44 g C m*
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Table 1. Estimated Exit Rates of Carbon From and Residence Times in Seven Pools at Ambient and Elevated CO, at

Duke Forest®

Exit Rate, g kg™ d”!

Residence Time, Years

Elevated CO,

Ambient CO, Elevated CO,

Pool Ambient CO,
Nonwoody biomass 1.7600
Woody biomass 0.1001
Metabolic litter 21.4680
Structural litter 0.8450
Microbial biomass 8.5340
Slow soil organic matter 0.0898
Passive soil organic matter 0.0031

2.1700 1.557 1.263
0.1410 27.369 19.429
22.6800 0.128 0.121
0.9650 3.242 2.839
2.5340 0.321 1.081
0.0558 30.523 49.134
0.0027 885.027 1031.368

*The seven pools are defined in Figure 1.

yr~!, leading to the total C accumulation of 132 g C m 2

over 3 years. Thus, the C accumulation in the forest floor
was nearly 140% higher at elevated than at ambient CO,
(Figure 3b). The observed C content in the mineral soil was
397 g C m™? higher at elevated than ambient CO, over 3
years. However, this difference was not statistically signifi-
cant due to high variability [Schlesinger and Lichter, 2001].

[27] The modeled foliage biomass appeared to deviate
systematically from the observed values largely due to the
discrepancy between the model assumption of a faster
turnover of leaves than wood and the indirect estimation
of foliage biomass from DBH. Based on prior knowledge,
the model assumed that the longevity of leaves (together
with fine roots) was on a scale of years. Consequently, we
only allowed the model to search for a C transfer coefficient
within a range from 0.00137 t0 0.0137 g g ' d~' (i.e.,, 0.5 to
5.0 years of residence time) for the nonwoody tissue pool.
The estimated transfer coefficient stabilized the modeled
foliage biomass at 480—500 g C m 2 at ambient CO, and
540-570 g C m~2 at elevated CO,, after an initial biomass
increase in 1996 and 1997. On the other hand, the observed
foliage biomass that was estimated indirectly from DBH
showed a steady increase in tree biomass, an expected
increase because the trees in the Duke Forest were growing.
Accordingly, the foliage biomass indirectly derived from the
DBH data showed continuous increases from 390 g C m >
in July 1996 to 570 g C m 2 at ambient CO, and to ~610 g
C m 2 at elevated CO, by the end of 2000 [Hamilton et al.,
2002]. Thus, the modeled transient increases followed by
stabilized foliage biomass resulted in a systematic deviation
from the observed continuous biomass increases (Figure
3c¢). In addition to the indirect method of estimating foliage
biomass from DBH, we also estimated it from canopy light
interception (D. Ellsworth, unpublished data, 2001) and
litter fall [Finzi et al., 2001]. The light interception method
showed a year-to-year change in foliage biomass that was
similar to modeling results. The seasonal variability in
estimated foliage biomass from canopy light interception
was extremely high so that it could not be accurately
represented by the present model. Incorporation of foliage
phenology into the model may help reproduce the seasonal
variability but complicates the inverse analysis. The litter
fall method estimated a much higher foliage biomass than
either the DBH or light interception method. To improve the
fit between the modeled and observed foliage biomass, it is
essential not only to modify the model, but also to develop
better methods for measuring foliage biomass.

[28] Observed litterfall ranged from 540 to 600 g Cm?
yr~ ! at ambient CO, and from 500 to 840 g C m ™~ yr ' at
elevated CO, (Figure 3d) [Finzi et al., 2001]. Observed soil
respiration varied from 0.23 to 4.5 g C m > d™' at ambient
CO; and from 0.29 to 4.79 g C m 2 d! at elevated CO,
(Figure 3e) [Andrews and Schlesinger, 2001]. Modeled soil
respiration and litterfall were less well correlated with
observed data than woody biomass and soil carbon, largely
because of high variability in the measurements. This
variability resulted from scattered points in the original data.

4.3. Estimation of Carbon Residence Times as Affected
by Elevated CO,

[29] The six data sets in Figure 3 were used to estimate
one set of the seven diagonal elements of matrix 4, each at
ambient and elevated CO,. The diagonal elements (ay,
k=1,2,...7) are related to exit rates of C from individual
pools as 1 — a;, which in turn are inversely proportional to
C residence times in individual pools [i.e., 7, = 1/(1 — az)].
The ensemble of (hereinafter denoted by T for simplicity)
for all the C pools represents the capacity of an ecosystem to
retain C in plant and soil pools. A comparison of Tz at
elevated CO, with 7, at ambient CO, enabled us to assess
how the C-storage capacity in the ecosystem was affected
by elevated CO,.

[30] The estimated C exit rates were the highest from
metabolic litter pools at both ambient and elevated CO,
(Table 1), being 21.5 and 22.7 g kg~ ' d™', respectively.
They were the lowest from passive soil organic matter
(SOM) pools, being 0.0031 and 0.0027 g kg~ ' d',
respectively, at ambient and elevated CO,. The estimated
74 ranges from 0.13 years for the metabolic litter pool to
885 years for the passive SOM pool at ambient CO, (Table
1). It ranges from 0.12 years for the metabolic litter pools to
1031 years for the passive SOM pool at elevated CO,. The
estimated T was longer than 74 for soil C pools, largely due
to soil C accumulation at elevated CO, that was propor-
tionally larger than that at ambient CO, over the first 3 years
of the CO, experiment (Figure 3b) [Schlesinger and Lichter,
2001]. The time course of soil respiration was also sugges-
tive of a higher C accumulation in soil pools at elevated
than ambient CO, [Luo et al., 2001b]. In contrast, the
estimated T, for the foliage biomass pool was 1.26 years,
nearly 0.3 years shorter than 7,. This result was supported
by the observation that elevated CO, had little effect on
standing leaf biomass (1.1% in 1998) [Hamilton et al.,
2002], but increased litterfall by 25% [Finzi et al., 2001],
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y = 0.966x +0.215
r2=0969

Residence time at elevated CO,
[Infyear)]
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Figure 4. Comparison of the estimated residence times at
elevated CO, (7z) with those at ambient CO, (7). The
seven data points represent residence times for each of the
seven C pools as defined in Figure 1. The estimated
residence times were well correlated between the two CO,
treatments with a regression line In(tz) = 0.966 In(t,) +
0.215 and a determinant coefficient R* = 0.969. This result
indicated that elevated CO, scarcely induced adjustments in
residence times, suggesting a sustainable capacity of the
ecosystem to store additional C.

leading to an increased leaf turnover rate. Tz for the woody
biomass pool was 19.4 years, 7.7 years shorter than T,
attributable to proportionally less stimulation in biomass
growth than in C fluxes at elevated CO,. Plotting estimated
T from the seven plant and soil C pools against 74 in a
natural logarithmic scale yielded a close relationship with
In(tg) = 0.966 In(t,) + 0.215 with R* = 0.969 (Figure 4). It
suggests that the C-transit time (i.e., overall C-storage
capacity) in the Duke Forest ecosystem was similar between
ambient and elevated CO,. More C flowing into the forest at
elevated CO, resulted in more C respired and more C stored
in plant and soil pools, proportionally.

[31] Overall, we observed sustained photosynthetic stim-
ulation at leaf and canopy levels [Ellsworth, 2000; Lai et al.,
2002; Luo et al., 2001a; Myers et al., 1999], which resulted
in sustained stimulation of wood biomass increment [Ham-
ilton et al., 2002] and a larger C accumulation in the forest
floor at elevated CO, than at ambient CO, [Schlesinger and
Lichter, 2001]. Greater C influx in the elevated CO, plots,
with little change in T, resulted in an approximately propor-
tional distribution of additional C among the plant and soil
pools in the Duke Forest.

[32] The inversion method focused on the time courses of
the six observed variables, whereas the study by Schlesinger
and Lichter [2001] emphasized whether measured C con-
tents in the forest floor and mineral soil were statistically
significant. Due to high variation in soil C data, the
measured C content in the mineral soil was not statistically
different between ambient and elevated CO, after 3 years of
treatments. However, the large increments in C contents in
litter layers and mineral soil at elevated CO, became signals
that were picked up by the inverse analysis, leading to the
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inference that elevated CO, slightly increased T in soil
pools. In a future study, we may employ the Bayesian
approach to incorporate statistical variability in measured
soil C into the inverse analysis for assessment of variation in
estimated T values.

[33] Inverse analysis provides an effective method to
evaluate CO,-induced adjustments in 7 (i.e., the C-storage
capacity) in plant and soil pools. Plant physiological ecol-
ogists have long developed a method for evaluating photo-
synthetic adjustment (i.e., acclimation) to elevated CO,. In
response to rising C,, instantaneous photosynthetic rate
usually increases. But long-term growth under elevated
CO, may lead to acclimation of photosynthetic capacity
upward or downward (i.e., up- or down-regulation). The
down-regulation of the photosynthetic capacity is usually
associated with limitation by N or other resources, whereas
the up-regulation generally results from enhanced leaf
morphological growth [Luo et al., 1994]. In contrast, soil
scientists did not have any measures to quantify adjustments
in the C-storage capacity in response to elevated CO,.
Estimation of 7 at ambient and elevated CO,, using the
inversion approaches, offers a way to do so. In this study,
for example, we found that the C-storage capacity at
elevated CO, decreased in plant pools but increased in litter
and soil pools in comparison to that at ambient CO,. The
overall C-storage capacity in the whole ecosystem was
scarcely altered at elevated CO,.

[34] By combining the estimated T in various pools with
estimates of photosynthetic acclimation, we were able to
examine adjustments of the full ecosystem C cycle in
response to elevated CO,. At the Duke Forest FACE site,
experimental data suggested little photosynthetic acclima-
tion at elevated CO, [Myers et al., 1999; Ellsworth, 2000].
This study suggested that the ensemble of T from all the
plant and soil pool at elevated CO, was similar to that at
ambient CO,. Thus, the C-sequestration capacity through
the entire C cycle at the Duke Forest FACE site was
scarcely adjusted to elevated CO,. The change in environ-
mental forcing via rising C, led to increased photosynthetic
C influx into the ecosystem. A small portion of the
increased C influx at elevated CO, was proportionally
stored in various plant and soil pools.

4.4. Carbon Sequestration in Response to Rising
Atmospheric CO, Concentration

[35] One of the primary goals of the FACE study is to
extrapolate results from a step CO, increase experiment to
predict C sequestration in the real world where C, is
gradually increasing. The FACE experiment in the Duke
Forest imposed a step increase in CO, concentration, lead-
ing to a step increase in ecosystem C influx [Luo, 2001].
Photosynthetically fixed C passes through the processes of
plant respiration, biomass growth, litter fall and decompo-
sition before being released back to the atmosphere. Thus,
respiratory C release is gradually increasing in response to
the step increase in CO, concentration. The contrasting
pattern between the step increase in C influx and the gradual
increase in C release [Luo, 2001] results in a spike of C
sequestration immediately after the initiation of a FACE
experiment followed by a gradual decline. Such a time
course of C sequestration under FACE is different from that
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Figure 5. [Illustration of the inverse-forward modeling approach used in this study in comparison with
the conventional approach of forward modeling. The conventional approach to prediction of C
sequestration is usually based on prescribed parameter values whereas the inverse-forward approach first
estimates parameter values of gross primary productivity (GPP) and residence times from experimental
results and then assesses effects of elevated CO, on the C-storage capacity before simulates C

sequestration in the forest ecosystem.

in the real world, where atmospheric CO, concentration is
gradually increasing [Luo and Reynolds, 1999]. As a con-
sequence, measured C pool changes at elevated CO, cannot
be directly extrapolated to predict C sequestration rates in
the real world.

[36] However, various data sets from FACE experiments
can be used to derive parameter values that are then
incorporated into models to simulate future C sequestration
rates in terrestrial ecosystems (Figure 5). Specifically, the
simulation of C sequestration requires two sets of param-
eters: C influx and residence times. The short-term, step
CO, increase in FACE experiments can exert an effect on
either C influx or residence times that is different from the
long-term, gradual CO, increase in the real world. The way
in which the effect of the step CO, increase on C influx
differs from that of the gradual CO, increase is on the
acclimation component of the photosynthetic processes,
whereas the sensitivity component of the photosynthesis
is independent of CO, growth environments [Luo et al.,
1996]. Since photosynthetic acclimation in the Duke FACE
experiment was not observed so far, we can extrapolate the
observed photosynthetic sensitivity directly from the FACE
experiment to simulate C influx in response to a gradual
CO, increase using equation (4). The difference in the
effect of the step CO, increase on residence times versus
that of the gradual CO, increase is through changes in C

allocation to different pools and/or changes in C exit rates
from individual pools. Analysis in this study indicated that
neither C allocation nor exit rates were altered much in the
Duke FACE experiment (Table 1 and Figure 4). Thus, the
estimated residence times can be directly used to simulate
forest C sequestration in response to a gradual CO,
increase.

[37] To illustrate the general nature of C dynamics in
response to a gradual C, increase, we simplified our matrix
model (equation (1)) by using a time step of 1 year without
considering temperature and moisture effects on C pro-
cesses. The sole driving variable in the model was C, that
was based on the IS92a scenario from 2000 to 2100
[Houghton et al., 1992] (Figure 6a). We chose parameter
values in equation (4) so as to increase photosynthetic C
influx by 40% at 560 ppm CO, relative to that at 360 ppm
as observed in the FACE experiment (Figure 6b). Using
estimated T, we calculated the steady state pool sizes in the
7 compartments for simulating the rate of C sequestration in
response to a gradual C, increase [Luo et al., 2001b].

[38] The time courses in Figure 6¢ show C sequestration
rates that were purely caused by rising C,. A comparison
between the two lines indicates the effect of residence
times (between T, and Tz). Using 7,4, the C sequestration
rate increased from 69 ¢ m > yr ' in 2000 when C, was
378 ppm to 201 g m ? yr ' in 2100 when C, was at
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Figure 6. Time courses of (a) atmospheric CO, concen-
tration, (b) projected canopy photosynthesis, and (c) C
sequestration rates in the Duke Forest using estimated
residence times at ambient (74, solid line) and elevated CO,
(Tz, dashed line) from 2000 to 2100. The minor decrease in
the estimated T at elevated CO,, particularly in the plant C
pools, resulted in a slightly lower C sequestration rate than
that at ambient CO,. The projected C sequestration resulted
only from rising C, while observed C sequestration in the
Duke Forest may be caused by multiple factors, including
rising C,, forest regrowth, and nitrogen deposition.
Although this analysis simulated C sequestration for 100
years, the model assumes the tree longevity (i.e., residence
time for the woody tissue) averages 20—30 years.

710 ppm. Since the ensemble of Tz at elevated CO, was
slightly lower than that at ambient CO,, the C sequestration
rate in response to the gradual increase in C, by using Tg
was also slightly lower than that by using 7.

[39] The trend of C sequestration in this study was similar
to that projected by six dynamic global vegetation models
from 2000 to 2100 [Cramer et al., 2001]. However, the
traditional ecosystem models usually use prescribed param-
eter values (Figure 5). This study derived parameter values
from a multiple data set at the specific forest site, which
were then used to simulate C sequestration in response to
rising C,. If we can derive parameter values for T and C
influxes at a variety of sites in different vegetation and soil
types, we may have the potential to improve predictions of
regional and global C sinks [Barrett, 2003].
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[40] It is noteworthy that the modeled C sequestration
rates in Figure 6c are subject to uncertainties from a few
sources. First, we used five years of data for estimation of T
that varies from a few months to hundreds of years. In
general, the accuracy of estimated parameters values is high
for those fast turnover pools but relatively low for the slow
turnover pools. As more data become available, the uncer-
tainty in the estimated 7 for the long-term pools may
decrease. Second, the simulated trend of C sequestration
rates was based on C emission scenario IS92a. The third
IPCC report presents seven emission scenarios. In the
emission scenarios under which C, growth decelerates in
the future, C sequestration rates are expected to be lower.
Third, this modeling analysis assumed that stimulation of
photosynthetic C influx by elevated CO, was maintained at
a level of 40%, according to recent experimental observa-
tions [Ellsworth, 2000]. If N limitation as observed in the
prototype ring in the Duke Forest [Oren et al., 2001] results
in photosynthetic down-regulation, the predicted C seques-
tration would decrease. Nonetheless, the current trajectory
in the Duke FACE experiment showed little sign of photo-
synthetic down-regulation.

5. Summary

[41] To assess the sustainability of terrestrial C sink, we
need to quantify three capacities and their adjustments to
environmental forcing. Those capacities are canopy photo-
synthetic capacity, C-storage capacity, and C-sequestration
capacity. The canopy photosynthetic capacity is deter-
mined by leaf photosynthetic capacity and leaf area index.
The C-storage capacity can be quantified by ecosystem
residence times (7). The C-sequestration capacity in an
ecosystem is jointly determined by the canopy photo-
synthetic capacity and the C-storage capacity. The C-
sequestration capacity is maintained in a future global
change scenario only if neither the canopy photosynthetic
capacity nor the C-storage capacity is up-or down-regu-
lated. In that case, the future rate of terrestrial C seques-
tration is primarily determined by environmental forcing
functions. Possible forcing functions are the rising of
atmospheric CO, concentration, forest regrowth, woody
plant encroachment, and nitrogen deposition.

[42] While plant physiological ecologists have examined
the canopy photosynthetic capacity under various global
change scenarios, this study focused on quantification of T
and its adjustment to elevated CO, in Duke Forest using an
inversion approach. Our analysis of multiple data sets from
the FACE experiment suggested that C sequestration in the
Duke Forest would continue to increase as C, gradually
increases. That continuous increase in C sequestration
resulted partly from sustained canopy photosynthetic
capacity and a steady growth of C, as predicted in emission
scenario [S92a. The steady C, growth overcompensated for
a C,-induced decrease in photosynthetic sensitivity, so that
stimulated C influx into the ecosystem led to increased C
sequestration. In addition, the predicted increase in C
sequestration in the Duke Forest was associated with little
changes in 7. The latter conclusion was consistent with our
observations that biomass growth and soil C accumulation



21-12

steadily increased at elevated CO, compared to that at
ambient CO, from 1996 to 2000.

[43] While the estimated parameter values of T were
relatively well constrained by comprehensive data sets for
most of the ecosystem C processes in the Duke Forest, our
projection of the future C-storage capacity improves as
more data on long-term processes, particularly SOM for-
mation and decomposition, become available in coming
years. If elevated CO, induces reduction in T in long-term
C pools, the C-storage capacity would be down-regulated.
Nonetheless, current evidence suggests that the forest eco-
system would continue to sequester C from the atmosphere,
as C, is gradually increasing.

[44] By addressing the sustainability issue, we also illus-
trated that inverse analysis of multiple data sets from FACE
experiments could facilitate extrapolation of results from a
step CO, experiment to predict ecosystem responses to a
gradual CO, increase in the real world and assist evaluation
of CO,-induced adjustments in C transfers among plant and
soil pools.
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