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[1] We consider the reflection of a plane electromagnetic wave incident obliquely in a
right-angled corner region with impedance walls. The surface impedances are taken in
their most general tensor form. We determine the conditions under which the sum of
incident, singly and doubly reflected waves provides an exact solution of the problem and
report several new explicitly solvable cases.
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1. Introduction

[2] The impedance boundary condition [Senior and
Volakis, 1995] is a convenient tool for simulating the
material properties of a surface. For most materials the
surface impedance is a scalar, but there are materials
whose properties are anisotropic for which a tensor
impedance is required. The simplest cases are those for
which the tensors are diagonal but recent work with
metamaterials has made possible the creation of very
general materials for which the tensor may be non-
diagonal. These are the focus of the present study.
[3] The problem considered is a plane electromagnetic

wave incident on the interior of a right-angled imped-
ance wedge. This is a geometry that is relevant to the
analysis of finitely conducting waveguides and resona-
tors as well as to the propagation of radio waves inside
buildings. In general the solution consists of plane
waves reflected off the two faces of the wedge and a
diffracted field associated with the vertex, but if the
surface impedances satisfy certain restrictions the dif-
fracted field disappears. The exact solution is then the
sum of four plane waves, one of which is the incident
field. We seek the restrictions on the impedances for
which this is so, and follow a procedure similar to that
by Senior [1978].

2. Formulation

[4] The geometry is shown in Figure 1. The tensor
impedance boundary condition is

n̂� �E ¼ h � n̂� n̂� Z �Hð Þ ð1Þ

where h is the normalized tensor surface impedance, n̂ is
the outward unit vector normal to the surface and Z is the
intrinsic impedance of the free space. On the horizontal
surface (y = 0) the tensor impedance is

h ¼ h1x̂x̂þ h2x̂ẑþ h3ẑx̂þ h4ẑẑ ð2Þ

and the boundary conditions derived from (1) are

Ez ¼ �h1ZHx � h2ZHz;

Ex ¼ h3ZHx þ h4ZHz:
ð3Þ

[5] Similarly, on the vertical face (x = 0),

h ¼ h0 ¼ h01ŷŷþ h02ŷẑþ h03ẑŷþ h04ẑẑ ð4Þ

and

Ez ¼ h01ZHy þ h02ZHz;

Ey ¼ �h03ZHy � h04ZHz:

For the boundary conditions to ensure a unique solution it
is necessary that Reh1 	 0, Reh4 	 0 and 4Reh1Reh4 	
jh2 + h3*j2 where the asterisk denotes the complex
conjugate, with similar restrictions on the primed
quantities [see Senior and Volakis, 1995, p. 43].
[6] In terms of the single component Hertz vectors

�Pe ¼ ẑU x; yð Þe�ikz cosb;

�Ph ¼ ẑV x; yð Þe�ikz cos b
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where a time factor exp(�iwt) has been assumed and
suppressed, we have

Ex ¼ �ih
@U

@x
þ ik

@V

@y
;

ZHx ¼ �ih
@V

@x
� ik

@U

@y
;

Ey ¼ �ih
@U

@y
� ik

@V

@x
; ð5Þ

ZHy ¼ �ih
@V

@y
þ ik

@U

@x
;

Ez ¼ l2U ; ZHz ¼ l2V

where h = k cosb and l = k sinb so that

h2 þ l2 ¼ k2:

Substituting (5) into (3), the boundary conditions on
y = 0 can be written as

1þ h1
k

il2

@

@y

� �
U þ h2 þ h1

h

il2

@

@x

� �
V ¼ 0; ð6Þ

h4 þ
k

il2

@

@y
þ h3

h

il2

@

@x

� �
V

þ � h

il2

@

@x
þ h3

k

il2

@

@y

� �
U ¼ 0; ð7Þ

and similarly the boundary conditions on x = 0 are

1þ h01
k

il2

@

@x

� �
U � h02 þ h01

h

il2

@

@y

� �
V ¼ 0; ð8Þ

h04 þ
k

il2

@

@x
þ h03

h

il2

@

@y

� �
V

þ h

il2

@

@y
� h03

k

il2

@

@x

� �
U ¼ 0: ð9Þ

[7] The incident field is a plane wave with z components

Einc
z ¼ l2Aei

�k��r; ZH inc
z ¼ l2Bei

�k��r

and direction of propagation

�k ¼ �l x̂ cosaþ ŷ sinað Þ � hẑ

for 0 � a � p/2. We seek a plane wave solution

U

V

� �
¼

A

B

� �
e�il xcþysð Þ þ

A1

B1

� �
e�il xc�ysð Þ

þ
A2

B2

� �
eil xc�ysð Þ þ

A3

B3

� �
eil xcþysð Þ ð10Þ

where, for brevity, c = cosa and s = sina. The second
and third terms in the right-hand side of (10) represent
the single reflections of the incident plane wave (first
term) off the two faces of the wedge and the fourth term
is the doubly reflected wave. When (10) is substituted
into the boundary conditions (6) and (7) on y = 0, the
coefficients of exp(±ilxc) give

1þ h1
k

l
s

� �
A1 þ h2 � h1

h

l
c

� �
B1 ¼

� 1� h1
k

l
s

� �
A� h2 � h1

h

l
c

� �
B; ð11Þ

1þ h1
k

l
s

� �
A3 þ h2 þ h1

h

l
c

� �
B3 ¼

� 1� h1
k

l
s

� �
A2 � h2 þ h1

h

l
c

� �
B2; ð12Þ

h

l
cþ h3

k

l
s

� �
A1 þ h4 � h3

h

l
cþ k

l
s

� �
B1 ¼

� h

l
cþ h3

k

l
s

� �
A� h4 � h3

h

l
c� k

l
s

� �
B; ð13Þ

� h

l
cþ h3

k

l
s

� �
A3 þ h4 þ h3

h

l
cþ k

l
s

� �
B3 ¼

h

l
cþ h3

k

l
s

� �
A2 � h4 þ h3

h

l
c� k

l
s

� �
B2; ð14Þ

and from the boundary conditions (8) and (9) we obtain

1þ h01
k

l
c

� �
A2 � h02 � h01

h

l
s

� �
B2 ¼

� 1� h01
k

l
c

� �
Aþ h02 � h01

h

l
s

� �
B; ð15Þ

1þ h01
k

l
c

� �
A3 � h02 þ h01

h

l
s

� �
B3 ¼

� 1� h01
k

l
c

� �
A1 þ h02 þ h01

h

l
s

� �
B1; ð16Þ

Figure 1. Geometry.
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h

l
sþ h03

k

l
c

� �
A2 � h04 � h03

h

l
sþ k

l
c

� �
B2 ¼

� h

l
sþ h03

k

l
c

� �
Aþ h04 � h03

h

l
s� k

l
c

� �
B; ð17Þ

� h

l
sþ h03

k

l
c

� �
A3 � h04 þ h03

h

l
sþ k

l
c

� �
B3 ¼

h

l
sþ h03

k

l
c

� �
A1 þ h04 þ h03

h

l
s� k

l
c

� �
B1: ð18Þ

[8] Equations (11) and (13) can be used to express A1

and B1 in terms of A and B. The elimination of B1

gives

A1 ¼
1

G1

G2 � 2 h4 þ
k

l
sþ h1

h2

l2
c2

� �� �
A

�

� 2s
k

l
h2 � h1

h

l
c

� �
B

�
ð19Þ

where

G1;2 ¼ h4 þ 1þ det h
� � k

l
s� h2 þ h3ð Þ h

l
c

þ h1
1

l2
k2s2 þ h2c2
� �

with

det h ¼ h1h4 � h2h3;

and similarly, by eliminating A1, we find

B1 ¼
1

G1

2s
k

l
h3 � h1

h

l
c

� �
A

�

� G1 � 2s
k

l
1þ h1

k

l
s

� �� �
B

�
: ð20Þ

We can also use (12) and (14) to express A3 and B3 in
terms of A2 and B2, and since the equations differ from
(11) and (13) only in the sign of h, we have

A3 ¼
1

G2

G1 � 2 h4 þ
k

l
sþ h1

h2

l2
c2

� �� �
A2

�

� 2 s
k

l
h2 þ h1

h

l
c

� �
B2

�
; ð21Þ

B3 ¼
1

G2

2s
k

l
h3 þ h1

h

l
c

� �
A2

�

� G2 � 2s
k

l
1þ h1

k

l
s

� �� �
B2

�
: ð22Þ

Taking next the 4 equations derived from the boundary
conditions on x = 0, (15) and (17) specify A2 and B2 in
terms of A and B as

A2 ¼
1

G0
1

G0
2 � 2 h04 þ

k

l
cþ h01

h2

l2
s2

� �� �
A

�

þ 2c
k

l
h02 � h01

h

l
s

� �
B

�
; ð23Þ

B2 ¼
1

G0
1

�2c
k

l
h03 � h01

h

l
s

� �
A

�

� G0
1 � 2c

k

l
1þ h01

k

l
c

� �� �
B

�
ð24Þ

where

G0
1;2 ¼ h04 þ 1þ det h0

	 
 k

l
c� h02 þ h03

� � h
l
s

þ h01
1

l2
k2c2 þ h2s2
� �

with

det h0 ¼ h01h
0
4 � h02h

0
3;

and from (16) and (18)

A3 ¼
1

G0
2

G0
1 � 2 h04 þ

k

l
cþ h01

h2

l2
s2

� �� �
A1

�

þ 2c
k

l
h02 þ h01

h

l
s

� �
B1

�
; ð25Þ

B3 ¼
1

G0
2

�2c
k

l
h03 þ h01

h

l
s

� �
A1

�

� G0
2 � 2c

k

l
1þ h01

k

l
c

� �� �
B1

�
:

[9] We now have 8 equations linking the 4 pairs of
coefficients A, B, A1, B1, A2, B2 and A3, B3. By substi-
tuting (23) and (24) into (21) we can express A3 in terms
of A and B as

A3 ¼ G1 � 2 h4 þ
k

l
sþ h1

h2

l2
c2

� �� ��

� G0
2 � 2 h04 þ

k

l
cþ h01

h2

l2
s2

� �� �

þ 4
k2

l2
sc h2 þ h1

h

l
c

� �
h03 � h01

h

l
s

� ��
A

G2G0
1

þ c h02 � h01
h

l
s

� �
G1 � 2 h4 þ

k

l
sþ h1

h2

l2
c2

� �� ��

þ G0
1 � 2

k

l
c 1þ h01

k

l
c

� �� �

� s h2 þ h1
h

l
c

� ��
2kB

lG2G0
1

; ð26Þ
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and the substitution of (19) and (20) into (25) gives

A3 ¼ G2 � 2 h4 þ
k

l
sþ h1

h2

l2
c2

� �� ��

� G0
1 � 2 h04 þ

k

l
cþ h01

h2

l2
s2

� �� �

þ 4
k2

l2
sc h3 � h1

h

l
c

� �
h02 þ h01

h

l
s

� ��
A

G1G0
2

� c h02 þ h01
h

l
s

� �
G1 � 2

k

l
s 1þ h1

k

l
s

� �� ��

þ G0
1 � 2 h04 þ

k

l
cþ h01

h2

l2
s2

� �� �

� s h2 � h1
h

l
c

� ��
2kB

lG1G0
2

: ð27Þ

[10] The analogous expressions for B3 are

B3 ¼ s h3 þ h1
h

l
c

� ��

� G0
2 � 2 h04 þ

k

l
cþ h01

h2

l2
s2

� �� �

þ G2 � 2
k

l
s 1þ h1

k

l
s

� �� �

� c h03 � h01
h

l
s

� ��
2kA

lG2G0
1

þ G2 � 2
k

l
s 1þ h1

k

l
s

� �� ��

� G0
1 � 2

k

l
c 1þ h01

k

l
c

� �� �

þ 4
k2

l2
sc h3 þ h1

h

l
c

� �
h02 � h01

h

l
s

� ��
B

G2G0
1

; ð28Þ

B3 ¼ � s h3 � h1
h

l
c

� ��

� G0
2 � 2

k

l
c 1þ h01

k

l
c

� �� �

þ G2 � 2 h4 þ
k

l
sþ h1

h2

l2
c2

� �� �

� c h03 þ h01
h

l
s

� ��
2kA

lG1G0
2

þ G1 � 2
k

l
s 1þ h1

k

l
s

� �� ��

� G0
2 � 2

k

l
c 1þ h01

k

l
c

� �� �

þ 4
k2

l2
sc h2 � h1

h

l
c

� �
h03 þ h01

h

l
s

� ��
B

G1G0
2

: ð29Þ

[11] If the field inside the wedge is to consist of the
4 plane waves shown in (10), the above expressions for
A3 must be identical, as must those for B3. We now seek
the restrictions on h and h0 to make this so, and start with
the simple case of normal incidence.

3. Normal Incidence

[12] If the plane wave is incident in a plane perpen-
dicular to the edge, b = p/2 implying h = 0 and therefore
l = k. Then

G2 ¼ G1 ¼ h4 þ 1þ det h
� �

sþ h1s
2;

G0
2 ¼ G0

1 ¼ h04 þ 1þ det h0
	 


cþ h01c
2

and (26) and (27) become

A3 ¼ G1 � 2 h4 þ sð Þ½ � G0
1 � 2 h04 þ c

� �� �

þ 4h2h

0
3sc

� A

G1G0
1

þ h02c G1 � 2 h4 þ sð Þ½ �



þ h2s G0
1 � 2c 1þ h01c

� �� �� 2B

G1G0
1

; ð30Þ

A3 ¼ G1 � 2 h4 þ sð Þ½ � G0
1 � 2 h04 þ c

� �� �

þ 4h3h

0
2sc

� A

G1G0
1

� h02c G1 � 2s 1þ h1sð Þ½ �



þ h2s G0
1 � 2 h04 þ c

� �� �� 2B

G1G0
1

: ð31Þ

[13] Similarly, from (28) and (29),

B3 ¼ h3s G0
1 � 2 h04 þ c

� �� �
þ h03c



� G1 � 2s 1þ h1sð Þ½ �g 2A

G1G0
1

þ G1 � 2s 1þ h1sð Þ½ �f

� G0
1 � 2c 1þ h01c

� �� �
þ 4h3h

0
2sc

� B

G1G0
1

; ð32Þ

B3 ¼ � h3s G0
1 � 2c 1þ h01c

� �� �
þ h03c



� G1 � 2 h4 þ sð Þ½ �g 2A

G1G0
1

þ G1 � 2s 1þ h1sð Þ½ �f

� G0
1 � 2c 1þ h01c

� �� �
þ 4h2h

0
3sc

� B

G1G0
1

: ð33Þ

[14] Comparing (30) and (31), the coefficients of A are
the same if

sc h2h
0
3 � h3h

0
2

� �
¼ 0 ð34Þ
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and those of B are the same if

sc h2 1� det h0
	 


þ h02 1� det h
� �h i

¼ 0:

[15] For (32) and (33) the coefficients of A are the
same if

sc h3 1� det h0
	 


þ h03 1� det h
� �h i

¼ 0

and (34) is sufficient to make the coefficients of B
identical. Hence for a plane wave having any angle of
incidence a, i.e., arbitrary c and s, the requirements for
the existence of a plane wave solution are

h2h
0
3 � h3h

0
2 ¼ 0; ð35Þ

h2 1� det h0
	 


þ h02 1� det h
� �

¼ 0; ð36Þ

h3 1� det h0
	 


þ h03 1� det h
� �

¼ 0: ð37Þ

[16] In view of (35) the condition (36) implies (37) and
vice versa, so that (35) and (36) are sufficient. We now
have two relations connecting the 8 quantities h1,2,3,4 and
h01,2,3,4. This allows us to freely choose 6 of them, e.g.,
h1,2,3,4 and h01,2, with the other two specified as

h03 ¼ h3
h02
h2

;

h04 ¼
1

h01
1þ h02

h2
h2h

0
3 þ 1� det h

� �� �
:

[17] A few special cases are worthy of note. If the
impedance tensors are diagonal (h2 = h3 = h2

0 = h3
0 = 0),

the problem is easily solved using Maliuzhinets’ tech-
nique [Maliuzhinets, 1958], and since the angular spectra
are 2p-periodic functions, the diffracted field is clearly
zero. The conditions are also satisfied by polarization-
independent surfaces whose impedances are such that
h2 = h3 and det h = 1, and if h2 = h3 = 0 with det h = 1, a
plane wave solutions exists regardless of the impedance
of the other face.
[18] The plots in Figures 2 and 3 are sample distribu-

tions of total electric and magnetic fields in a right-
angled interior wedge with tensor impedances compliant
with (35) and (36). The patterns in the field distributions
are explained by the analytical structure of expression
(10), which is a continuous function of x and y whose
magnitude is periodic in the x and y directions with

Figure 2. Total field distribution jEz(x, y)j for an
E-polarized plane wave of unit amplitude (jEz

incj = 1,
jHz

incj = 0) incident from direction a = 3p/8, b = p/2 in a
sector 0� x, y� 4l0 with h1 = 2, h2 = 0.5, h3 =�0.5, h4 =
0.5, h1

0 = 1, h2
0 = i, h3

0 = �i, h4
0 = 2 � 0.5i. The field level

varies between the following minimum (black) and
maximum (white) values: min jEzj = 0.222, max jEzj =
2.169.

Figure 3. Same as in Figure 2 but for jZHz(x, y)j,
min jZHzj = 0.003, max jZHzj = 0.610.
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periods dx = l0/(2cosa sinb) and dy = l0/(2sina sinb),
respectively (l0 is the wavelength).

4. Arbitrary Incidence

[19] This is the most general case and the analysis is more
laborious, primarily because G1 and G2 differ in the sign
of h2 + h3 = D (say), as do G1

0 and G2
0 in the sign of

h2
0 + h3

0 = D0.
[20] If the expressions for A3 in (26) and (27) are

labeled A3
(1) and A3

(2) respectively, we have

G1G0
1G2G0

2 A
1ð Þ
3 � A

2ð Þ
3

	 

¼ d1Aþ d2B ð38Þ

where

d1 ¼ G1 G1 � 2 h4 þ
k

l
sþ h1

h2

l2
c2

� �� �

� G0
2 G0

2 � 2 h04 þ
k

l
cþ h01

h2

l2
s2

� �� �

� G2 G2 � 2 h4 þ
k

l
sþ h1

h2

l2
c2

� �� �

� G0
1 G0

1 � 2 h04 þ
k

l
cþ h01

h2

l2
s2

� �� �

þ 4
k2

l2
sc h2 þ h1

h

l
c

� �
h03 � h01

h

l
s

� �
G1G0

2

�

� h3 � h1
h

l
c

� �
h02 þ h01

h

l
s

� �
G2G0

1

�

¼ k

l
s det hþ h1

k

l
s

� �
�D

h

l
c

� �2(

� h4 þ
k

l
sþ h1

h2

l2
c2

� �2)

� k

l
c det h0 þ h01

k

l
c

� �
þD0 h

l
s

� �2(

� h04 þ
k

l
cþ h01

h2

l2
s2

� �2)

� k

l
s det hþ h1

k

l
s

� �
þD

h

l
c

� �2(

� h4 þ
k

l
sþ h1

h2

l2
c2

� �2)

� k

l
c det h0 þ h01

k

l
c

� �
�D0 h

l
s

� �2(

� h04 þ
k

l
cþ h01

h2

l2
s2

� �2)
þ 4

k2

l2
sc

� h2 þ h1
h

l
c

� �
h02 þ h01

h

l
s

� �
G2G0

1 � G1G0
2

� ��

þ h2 þ h1
h

l
c

� �
D0G1G0

2 � h02 þ h01
h

l
s

� �
DG2G0

1

�
:

[21] When multiplied out this is found to be the sum of
sixth power polynomials in s multiplied by s and c, and
while the coefficients of the highest power turn out to be
zero, the coefficients of the next (and all subsequent)
powers vanish only if D = D0 = 0.
[22] This greatly simplifies the analysis. Since G2 = G1

and G0
2 = G0

1 the coefficients of A in the expressions for A3

are clearly equal, and from (26), (27) and (38),

d2 ¼ 4G1G0
1

k

l

� h02c G1 � h4 � 2
k

l
s� h1

1

l2
k2s2 þ h2c2
� �� ��

þ h

l
h01cs h4 þ h1

1

l2
h2c2 � k2s2
� �� �

þ h2s G0
1 � h04 � 2

k

l
c� h01

1

l2
k2c2 þ h2s2
� �� �

þ h

l
h1cs h04 þ h01

1

l2
h2s2 � k2c2
� �� ��

¼ 4G1G0
1

k

l
sc h h1h

0
4 þ h4h

0
1 � h1h

0
1

� ��
�kh2 1� det h0

	 

� kh02 1� det h

� �i
which vanishes for all angles of incidence if (36) is
satisfied and

h4
h1

þ h04
h01

¼ 1: ð39Þ

[23] This is the standard impedance compatibility con-
dition [Dybdal et al., 1971]. In the case of B3 the
coefficients of B are equal and those of A agree if (37)
and (39) are satisfied.
[24] Thus, for arbitrary angles of incidence, the

requirements for a plane wave solution are

h2 þ h3 ¼ 0; h02 þ h03 ¼ 0 ð40Þ

plus (36), (37) and (39). We note that (40) implies (35)
but not the reverse and that (36) in conjunction with (40)
implies (37). A sufficient set of conditions is therefore
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(36), (39) and (40) and this allows the free choice of 4
elements of the impedance tensors. If, for example, we
choose h1, h2, h4 and h2

0 , the remaining elements are

h3 ¼ �h2; h03 ¼ �h02;

h04 ¼ h01 1� h4
h1

� �
;

h01 ¼ �
1þ h02 1� det h

� �
=h2 � h02

� �2
1� h4=h1

" #1
2

:

[25] Either sign of the square root is permissible
subject, of course, to the requirements of physical
realizability [Senior and Volakis, 1995].
[26] Figures 4 and 5 present sample field distributions

for a configuration with tensor impedances which are in
agreement with conditions (36), (39), and (40).
[27] A case of special interest is a wedge having one

side, e.g., the vertical, perfectly conducting (h01 = h02 =
h03 = h04 = 0) with the other having a diagonal impedance
tensor (h2 = h3 = 0). A plane wave solution then exists for
arbitrary h1 and h4.

5. Conclusions

[28] For a plane wave incident on the interior of a
right-angled wedge with impedance walls we have
established the conditions for the existence of a solution

consisting only of four plane waves without any dif-
fracted field. In general, a diffracted field is necessary to
compensate for the discontinuity in the plane waves
doubly reflected off the vertical and horizontal and
horizontal and vertical faces of the wedge. The discon-
tinuity exists across the plane f (= arctan y/x) = a, but
when the conditions that we have derived are satisfied,
there is no discontinuity and, hence, no diffracted field.
The results are an extension of those previously found
[Senior, 1978] for diagonal impedance tensors.
[29] An immediate consequence is that in a rectangular

waveguide whose neighboring walls have the surface
impedances (2) and (4), the conditions (36), (39) and
(40) are necessary to ensure the existence of a separable
modal solution. In other words, the conditions guarantee
that the modal spectrum is discrete with no continuous
component.
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p
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Figure 5. Same as in Figure 4 but for jZHz(x, y)j with
0.107 � jZHzj � 1.035.
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