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BACKGROUND

At the University of Michigan, qualified first-year students who place out of
the first-semester calculus course may enroll in either the regular second-
semester calculus course or Applied Honors Calculus II. Students who enroll
in Applied Honors Calculus II show higher academic performance than stu-
dents enrolling in the Regular Calculus II.

PURPOSE (HYPOTHESIS)
The study addressed the question: does enrollment in Applied Honors
Calculus II have a positive causal impact on subsequent academic performance
for engineering students at the University of Michigan?

DESIGN/METHOD

We acquired seven years of institutional data for engineering students who
entered the University of Michigan from 1996 through 2003 and who quali-
fied to enroll in Applied Honors Calculus II. Using regression analyses, we
tested a causal model of impact of Applied Honors Calculus II on four
measures of subsequent academic performance: grade in Physics II and
average grade in all subsequent physics, mathematics, and engineering courses.

RESULTS

After controlling for students’ personal characteristics and prior academic
achievement, the impact of Applied Honors Calculus II on students’ academic
performance was not statistically significant. In particular Advanced
Placement scores accounted for the higher performance observed in Applied
Honors Calculus II students.

CONCLUSIONS

We recommend including Advanced Placement scores in models that predict
academic performance. Future research should also include measures of
socioeconomic status (SES) and explore interactions between SES and acade-
mic background. Finally, in evaluations of specific curricula, the treatment
effect—measured as treatment group mean minus control group mean, after
controlling for covariates—is unlikely to be large if the control group receives
high quality instruction.
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I. INTRODUCTION

What is the impact of the individual courses that comprise a
college curriculum on students’ subsequent academic performance?
The engineering education literature has partially addressed the
question with studies of the relationship between enrollment in
engineering courses in which teaching has been modified in some
way and performance variables (such as course grades, grade point
average (GPA), persistence, and retention) while accounting for
non-cognitive variables (such as learning styles, motivation, or
study skills). It is common for studies of this type to present both
longitudinal and cross-sectional student data from three sources:
(1) course grades and students’ GPA (Budny, LeBold, and
Bjedov, 1998; Felder, Felder, and Dietz, 1998; French, Immekus,
and Oakes, 2003; French, Immekus, and Oakes, 2005; Hoit and
Ohland, 1998) (2) institutional data (e.g., students’ prior academic
characteristics, retention, graduation status), and (3) surveys that
collect information on learning styles (e.g., Kolb, 1986) or study
skills (e.g., the Learning and Study Strategies Inventory, LASSI).
The analyses typically presented in these studies include reporting
frequencies and correlations, as well as linear or logistic regressions
(Bernold, Spurlin, and Anson, 2007; Budny, LeBold, and Bjedov,
1998; Felder, Felder, and Dietz, 1998). Studies that use measures
of learning (usually with diagnostic tools such as concept invento-
ries) that are not tied to course grades are less common in engi-
neering (e.g., Martin, Mitchell, and Newell, 2004; Wage et al.,
2005), though they are more widespread in physics and mathe-
matics education (Epstein, 2005; Hestenes, Wells, and
Swackhamer, 1992).

The current literature suggests that changes in instruction that
engage students with the course material (thus matching a wider
range of learning styles) are positively related with both higher
students’ grades (course and GPA) and increased retention
(usually after three years in the program) (Burtner, 2005; Hoit and
Ohland, 1998). However, the robustness of these findings is not
obvious for several reasons. Most studies do not randomly assign
students to different programs or do not include controls to isolate
effects of the intervention (Bernold et al., 2000; Hoit and Ohland,
1998), the samples are small relative to the length of the surveys
administered (Burtner, 2005), or key information—such as the
size of the sample or the specific intervention that is used—is
missing (Budny, LeBold, and Bjedov, 1998; French, Immekus,
and Oakes, 2005).

Felder and colleagues (Felder, 1995; Felder, Felder, and Dietz,
1998; Felder et al., 1995, 1993, 1994) have reported the most
prominent series of correlational studies in the engineering educa-
tion literature. The studies show that when compared to students
who take a series of traditionally taught courses (control), stu-
dents who take the same courses using a teaching approach that
includes active and cooperative learning have more positive per-
ceptions about their level of preparation and about the quality of
their education, better retention, and higher graduation rates than
the control group (Felder, Felder, and Dietz, 1998). These studies
have concentrated on establishing the significance of the association
between the changes in instruction and student performance, and
they differ from studies attempting to measure a causal effect.
Correlational designs describe the strength of the relationship
between an outcome variable and a treatment variable, whereas



causal designs describe the strength of the relationship between
an outcome variable and a treatment variable after controlling for
all other variables (both observable and unobservable) that are
potentially correlated with both the outcome variable and the
treatment variable.

In contrast, our study attempts to establish a causal relation-
ship by comparing the subsequent academic performance of
students who enrolled in Applied Honors Calculus II, with
those who were eligible for the course but did not enroll. Our
study is different from previous work in two ways. First, the
data we analyze comprise seven years of data and include infor-
mation about all courses students took while enrolled at the
university. Most other reported studies employ shorter time
spans, ranging from one term to up to three years of data.
Second we propose a theoretical model to explain the way in
which taking the course might affect students’ achievement,
and we test the model to determine causality, while previous
work has typically not used a model and/or has established the
relationships without exploring causality.

A. Background
The typical engineering curriculum at the University of

Michigan (U-M) includes a series of four regular calculus classes
(Calculus I, Calculus II, Calculus III, and Introduction to
Differential Equations), taken in order beginning with the stu-
dent’s first semester. Many engineering students who enter U-M
place out of Calculus I, and they have two options for their first-
semester math course. In general, they enroll in Math 116:
Regular Calculus II, but if they earned a 4 or 5 on any Advanced
Placement (AP) calculus exam in high school, they may enroll in
Math 156: Applied Honors Calculus II (AHCII).

Math 116 is part of the regular calculus sequence
(115/116/215/216) at U-M which was revised in the early
1990s during the national calculus reform movement (Ganter,
1999). The reform-oriented model employs many small (20–25
students), team-based sections that involve extensive student
interaction rather than the traditional model with a large lec-
ture and several small recitation sections. The emphasis of the
course is on solving applied problems from a range of disci-
plines using geometric, numerical, symbolic, and verbal repre-
sentations for explaining the solutions. A central coordinator
ensures that all sections of the course maintain the same pace,
makes lesson plans available to instructors, maintains a bank of
problems for quizzes, and organizes a week-long training pro-
gram for new instructors that emphasizes active and coopera-
tive learning. The subsequent course (Math 215: Regular
Calculus III) is taught in a large lecture (~100 students per sec-
tion), with multiple accompanying small recitation and lab sec-
tions (~25 students each).

On the other hand, Math 156 is part of the applied honors
calculus sequence (156/255/256). It was created in 1994 in
response to a request from the College of Engineering for an
alternative to Math 116 for students with strong math ability and
with interest in science and engineering fields. Like Math 116,
the course employs small sections, it is overseen by a course coor-
dinator to ensure uniformity, and it is focused on applications.
However, unlike Math 116, Math 156 sections are lecture based,
the material includes science and engineering applications only,
and the presentation is theoretical (instructors provide proofs to

theorems, and students are expected to understand the proofs
intuitively but not reproduce them). After completing Math 156,
a student may enroll in either Math 215: Regular Calculus III or
Math 255: Applied Honors Calculus III. Table 1 summarizes the
main characteristics of Math 116 and Math 156.

Opinion surveys conducted in 2005 and 2006 with two cohorts
of freshmen who scored a 4 or 5 in the AP calculus exam (and
thus were eligible to enroll in Math 156 in their first semester),
and who enrolled either in Math 116 or in Math 156 highlighted
differences the students perceived between the two courses offered
(Krasny and Mesa, 2005, 2006). Students who enrolled in Math
116 appreciated the small class size and the team-based problem
solving, whereas students in Math 156 appreciated the complexity
of the material and praised the high quality of instruction. Because
the survey data were collected anonymously, it was not possible to
conduct a more fine-tuned analysis that would allow the
researchers to establish the real impact of the course on students’
performance.

However, for the present study, the authors were able to
obtain course data for all College of Engineering students who
entered the university since 1997 (one year after the inception of
Math 156), and we conjectured that such longitudinal data could
give us more information regarding the impact of the course on
students’ subsequent performance in the university. The specific
question that we investigated was: does enrollment in Math 156:
Applied Honors Calculus II have a positive causal impact on sub-
sequent academic performance for College of Engineering
students at U-M?

B. The Model
The theoretical model that we used to guide our inquiry is

presented in Figure 1. The model includes three types of
variables: (1) independent variables, (2) the treatment vari-
able, and (3) dependent variables. Independent variables
include students’ personal characteristics (gender and ethnicity),
pre-college academic characteristics (SAT/ACT and AP
scores), and college characteristics (cohort or year enrolled as
first-term students). The treatment variable corresponds to
enrollment in Math 156: Applied Honors Calculus II—
enrollment in Math 116: Regular Calculus II is considered
the control. Dependent variables include measures of students’
subsequent academic performance in physics, mathematics,
and engineering courses taken after the treatment.

We propose three ways in which the variables can affect
the outcomes. First, because some student variables (e.g., AP
score) determine the type of course students will be eligible to
take, there is clearly an interaction between the independent
and treatment variables (Arrow A). Our sample consists only
of students who were eligible to take Math 156, that is,
students who scored a 4 or 5 on any AP calculus exam.
Second, we assume that student variables have an impact on
the dependent variables (Arrow B). The purpose of this
research is to determine the impact of the treatment on the
dependent variables, thus exploring the third effect (Arrow
C). We hypothesize that the treatment (taking Math 156)
would have some effect on students’ subsequent academic
performance in three areas (physics, mathematics, and engi-
neering courses), and we designed our analysis to measure
that effect.
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Table 1. Main characteristics of the Regular and Applied Honors Calculus II courses for first-semester students. 

Figure 1. Model of hypothesized influences of taking a special mathematics course and other variables on engineering students’ subsequent
academic performance. 



II. METHOD

To answer our question (Does enrollment in Math 156:
Applied Honors Calculus II have a positive causal impact on sub-
sequent academic performance for College of Engineering students
at U-M?) we employed longitudinal student-level data.
Specifically, our dataset consisted of all U-M College of
Engineering students who took a Calculus II course (Math 116 or
Math 156) from the Fall 1997 until Fall 2003 and who scored 4 or
5 on any AP calculus test (i.e., who were eligible to enroll in Math
156). We collected gender, ethnicity, SAT score, and AP score, as
well as course-level performance data (course grades) for each stu-
dent from the term of first enrollment until the Fall 2006 term. By
choosing this cut-off, all cohorts have comparable numbers of
credits for computing the outcome variables, except for the 2003
Cohort, which had about 13 fewer credits (three to four courses)
than the other six cohorts. This difference did not affect the final
results of the analysis.

A. Variables
Our model includes 16 independent variables describing students’

gender, ethnicity, SAT score, AP score, and cohort; our treatment
variable is student enrollment in Math 156: Applied Honors
Calculus II and we study four dependent variables. The fundamen-
tal principle employed in constructing our dependent variables
(students’ subsequent academic performance) is that the treatment
must occur before the outcome measured by the variable, so the
dependent variables in our study include data from the second and
subsequent terms of each student’s academic career only (by
design, all students in the study enrolled in the math class during
their first semester). The variables also include only courses stu-
dents took at U-M. The first dependent variable, students’ grades
in Physics 240 (PHYS240GRADE), represents the closest
approximation to a post-test because at U-M, Physics 240 is the
only class that has Calculus II as a prerequisite and that must be
taken by all College of Engineering students regardless of engi-
neering major. The other three dependent variables include
GPA (calculated on a scale of 0 to 4.0) in physics courses
(PHYSGPA, excluding Physics 240), GPA in math courses
(MATHGPA) taken after the treatment, and GPA in engi-
neering courses (ENGRGPA) taken after the treatment.
Because Math 156 focuses on science and engineering applica-
tions of calculus, these courses were the most likely to capture
the effect of a single calculus course, and therefore grades in
these courses are the best variable choices. In our design we
measured the effect of the treatment on students’ academic
performance after controlling for the effect of each
independent variable, so these 16 variables are included as
covariates. Our variable set is described in Table 2.

B. Sample
After acquiring approval for human subjects research from the

U-M Institutional Review Board for Behavioral Sciences, we
received data from the College of Engineering for all students who
enrolled in an engineering program since Fall 1997 through Fall
2006. Our sample consisted of first-year College of Engineering
students who took either Math 116 or Math 156, with an AP
calculus score of 4 or 5, without missing SAT scores, and who first
enrolled at U-M between Fall 1997 and Fall 2003. Of all the

5,756 students in the original sample, only 1,761 qualified in this
sample. Of these 1,761 students, 1, 345 (77 percent) took Math
116 and 407 (23 percent) took Math 156.

Table 3 shows that we had missing dependent variables in our
analysis sample. The missing observations for PHYS240GRADE
represent students who never took the course at U-M. The missing
observations for PHYSGPA, ENGRGPA, and MATHGPA
represent students who either did not take a course in physics,
engineering, or math at U-M in a semester after taking Calculus II
or took those courses concurrently with the treatment. Students with
missing dependent variables might have left the College of
Engineering by transferring to other programs (e.g., business,
science, and education), they might have discontinued the program,
they might not have taken the course at U-M yet, or they might
have graduated (without taking the class at U-M). Because percent-
ages of missing data are relatively small, we can assume there is no
significant bias in the samples that will be used for our analysis.

C. Data Analysis
We chose regression modeling for testing the causal relation-

ship between the independent variables, the treatment variable,
and the dependent variables; and we planned three steps for our
analysis. First, we calculated descriptive statistics in order to estab-
lish potential relationships and trends among the variables.
Second, we conducted simple multivariate regression analyses
accounting for all of the variables we were able to measure in our
dataset (i.e., the “observable” variables). Third, in case of finding a
significant treatment effect on our dependent variables in the
second step, we planned to analyze the “unobservable variables” by
using more sophisticated modeling techniques—for example,
propensity score matching (Morgan and Harding, 2006) or
bivariate normal selection models (Heckman, 1979)—to account
for potential non-random selection into the treatment (Math 156)
group that was not accounted for by the observable variables.

III. RESULTS

We organize the presentation of results according to the steps
of our analysis: Descriptive Statistics, Multivariate Regression
Analysis, and Analysis of Unobservables.

A. Step 1: Descriptive Statistics
In Table 4 we present a summary of the characteristics of the

sample by gender, ethnicity, and cohort. Twenty-five percent of all
students in the analysis sample are female, 26 percent of students
in the Math 116: Regular Calculus II group are female and 22
percent of students in the Math 156: Applied Honors Calculus II
group are female. The proportion of White students is the same in
each group; in general, no ethnicity group is over-represented or
under-represented in the groups relative to their representation in
the total analysis sample. Relative to each course, the cohorts got
larger over time, but the percentage of each cohort in the Math
156 group, although larger prior to 2000, declined over time rela-
tive to the Math 116 cohorts.

The descriptive statistics for SAT and AP scores (see Table 5)
suggest that the groups differ with regard to these two attributes.
The SAT score for the Math 116 group was statistically
significantly lower than the SAT score of the Math 156 group 
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(t � 4.62, p � 0.001); and similarly, the mean AP calculus test
score for the Math 116 group was statistically significantly lower
than the AP calculus test score for the Math 156 group (t � 6.11,
p � 0.001). These differences point to the need for using these
variables as covariates in the analysis.

Table 6 shows the sample size, mean value, and standard
deviation for each of the four dependent variables for our

analysis sample and by sub-group. Two trends are apparent.
First, mean scores are lowest for Physics 240 and highest for
engineering GPA. Second, for each variable, Math 116 means
are lower than Math 156 means, and the differences are statis-
tically significant (independent t-tests for the differences of
the means produced values for t that ranged from 1.69 to
3.05.).
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Table 2. Name and description of variables used in the study. 

Table 3. Number and percent of students in the analysis sample (N � 1,761) with valid dependent variables. 



Comparisons within the Math 116 group and within the Math
156 group reveal that mean scores for the dependent variable vary
substantially by AP calculus score, showing higher scores for students
with the higher AP score (Table 7). For example, within the Math
116 group, students with an AP score of 4 have a mean
PHYS240GRADE of 2.69 and students with an AP score of 5 have
a mean PHYS240GRADE of 3.04 (a statistically significant differ-
ence of 0.35, t (886) � 6.23, p � 0.001). Within the Math 156
group, students with an AP score of 4 have a mean
PHYS240GRADE of 2.78 and students with an AP score of 5 have
a mean PHYS240GRADE of 3.09 (a statistically significant differ-
ence of 0.31, t (234) � 2.98, p � 0.01). Thus an important question
is whether the differences between the Math 156 group and the
Math 116 group are maintained once the effects of the covariates are
taken into account. This is the purpose of the regression analysis.

Table 8 shows the mean number of post-treatment credits
attempted at U-M in physics, engineering, and math, respectively,
which includes all courses for which students earned a grade.
Because three of the dependent variables, PHYSGPA, ENGRGPA,
and MATHGPA, are only calculated for courses taken in semes-
ters after the student has taken Calculus II, we include this table to
be clear about how many credits are being counted towards these
average grades.

B. Step 2: Multivariate Regression Results
Table 9 shows multivariate ordinary least-squared (OLS)

regression results for each of our dependent variables
PHYS240GRADE, PHYSGPA, ENGRGPA, and MATHGPA.
As seen from the table, the effect of the treatment variable on the
dependent variables is negligible; that is, relative to taking Math
116: Regular Calculus II course, taking Math 156: Applied
Honors Calculus II results in increases in the dependent variables
that are not significant (� ranges from 0.008 to 0.029, with p rang-
ing from 0.209 to 0.780). Thus when controlling for other aspects
such as SAT or AP score, the differences observed in the raw data
are not significant.

The table also shows that holding other variables constant,
being female compared to being male is associated with a statisti-
cally significant reduction of 0.059 in the grade in Physics 240 but
is associated with a significant increase of 0.074 in the Math
GPA. Independent of the treatment, Black and Hispanic students
have significantly lower GPAs than their White peers in physics
and engineering courses (the decreases range from 0.049 to 0.146);
Black students also have significantly lower GPAs in math than
white students (a decrease of 0.103). In practical terms, however,
these differences may not be significant.

The SAT and AP scores have a significant conditional correla-
tion with all of the dependent variables, independent of the
treatment. A change of one standard deviation in the SAT score
(105 points) will result in grade increases that range from 0.057
(MATHGPA) to 0.145 (PHYSGPA). The conditional correla-
tion with AP scores is more dramatic. An increase of one standard
deviation in the AP score (0.5 points) increases the grade in
Physics 240 and the GPAs in physics, engineering, and mathe-
matics by at least 0.11; such increases have a recognizable impact
on students’ grades.

Finally, Table 9 shows that, independent of the treatment,
students in the 2003 Cohort had statistically significantly lower
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Table 4. Frequency and proportion of students in the sample by gender, ethnicity, and cohort for the entire sample and by sub-group. 

Table 5. Mean and standard deviation for SAT and AP
Scores for the entire sample and by subgroup. 



grades in Physics 240 and in physics courses relative to the stu-
dents in the 1997 Cohort (decreases of 0.147 and 0.104, respec-
tively). Overall, the variables included in the models, explained
between 7 percent and 11 percent of the variance observed in the
dependent variables.

C. Step 3: Analysis of Unobservables
Although raw descriptive statistics show that students who

enroll in Math 156 have higher levels of academic performance
than students who enroll in Math 116, the effect disappears in
all four measures of academic performance once we use regres-
sion modeling to control for the effect of other variables. Thus,
we did not investigate whether there were unobservable
variables that could explain the effect observed due to the
treatment.

IV. DISCUSSION

Before discussing our results, we highlight two limitations of
the study. First, the goal of both Math 116: Regular Calculus II
and Math 116: Applied Honors Calculus II is to provide students
with the calculus they will need for subsequent work in their dis-
cipline. Math 116 does this by using applications from a wide
range of disciplines and presenting the concepts of calculus from
four points of view: geometric, numerical, symbolic, and verbal.
Math 156 presents calculus in the context of engineering and
science applications from a theoretical point of view that includes
understanding some proofs intuitively. In an ideal design to test
causality, all students enrolled in either course would respond to a
pre- and a post-test measuring their ability to solve real-life engi-
neering and science problems that would employ the competencies
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Table 6. Mean and standard deviation for dependent variables for entire sample and by  subgroup. 

Table 7. Mean and standard deviation for dependent variables by AP score and by subgroup. 

Table 8. Mean number and standard deviation of post-treatment credits taken in physics, engineering, and math for the entire sample
and by subgroup. 



learned in Calculus II with tests that would not be biased in favor
or against any particular course. Furthermore, it would be prudent
to have multiple post-tests over time because the effect of the
treatment would be expected to diminish as time passes (Shadish,
Cook, and Campbell, 2002). These designs would provide us
with measures of students’ competencies both as they take the
courses and after they finished taking the courses, allowing us to
tease out effects from courses taken and from students’ matura-
tion. Unfortunately, these ideal dependent variables were not
available. Another ideal dependent variable would measure com-
petency in workplace activities that require the calculus learned in
the class. Because of the time span between when students take
the class and when they have the opportunity to apply their learn-
ing, these types of tests are impractical.

A second limitation regards the assignment of students to
conditions. Regression allows us to establish the relationship
between a particular independent variable and the dependent
variable controlling for the effect of other variables. An ideal situ-
ation for modeling effects is that of a random assignment of indi-
viduals to conditions. With random assignment it can be assumed
that if differences between the control group and the treatment
group are observed, the differences result exclusively from the
treatment. In addition, it is assumed that when the randomiza-
tion is properly done, individuals with particular attributes are
equally likely to be in either condition, thus reducing the likeli-
hood of having biased samples, and therefore increasing the
robustness of the effects found. Our assignment was not random-
ized because individuals had the option of selecting the type of

course in which they wanted to enroll. Thus, our samples are sus-
ceptible to having individuals with particular characteristics asso-
ciated with the dependent variable that are distributed unequally
between the two groups. We attempted to control these possible
biases in the sample by including as many measures of individual
characteristics as possible. In addition, some characteristics associ-
ated with the treatment and the outcome could not be measured
(i.e., unobservables such as individuals’ preference for group work,
who may be more likely to enroll in Math 116). Given that we
did not find a significant treatment effect after controlling for the
set of observable characteristics, we did not attempt to control for
unobservable variables. 

In light of the results of the analysis, we answer our research
question negatively; we did not detect a (statistically significant)
positive, causal impact of enrollment in Applied Honors Calculus II
(Math 156) on subsequent academic performance of U-M College
of Engineering students, here measured with students’ grades in
different courses. The large grade differences that we observe for
students in each group disappear once we account for student
characteristics such as SAT and AP score. There are (at least) two
possibilities for this—either there is no effect resulting from taking
Math 156: Applied Honors Calculus II and it really does not mat-
ter which calculus course students take as freshmen, or there is an
effect but we have not been able to detect it.

The first possibility is plausible given the sample of students we
have considered. Students who enroll in a Calculus II course
(whether the Regular course or Applied Honors Calculus II) as
first year students may have different characteristics from other
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Table 9. Standardized regression coefficients for the four dependent variables for students whose AP Score is 4 or 5. 



students (e.g., they chose to take AP courses offered in their
schools), and a particular teaching method experienced in one par-
ticular course may have little impact on their subsequent perfor-
mance. It is possible that these students will be high achievers inde-
pendently of the opportunities we offer them. It would be impor-
tant to study this possibility even further by including students’
socioeconomic status (SES) in the model, because it is known that
this variable has an impact on students’ college academic perfor-
mance (DesJardins, Ahlburgh, and McCall, 2002; Ishitani and
DesJardins, 2002). If the impact of AP scores on subsequent per-
formance is significant, then we could say that scores on AP cours-
es are measuring attributes of students who will perform similarly
no matter what instructional intervention is given to them, and
therefore it might be a good predictor of how students will do in
college. If, on the other hand, the impact of AP scores disappears,
then SES is a confounding variable; it would indicate that schools
which offer AP courses might be attended by wealthier families
who can also afford paying the AP fees: for the 2007–2008 year,
the fees per exam were $86. Students with demonstrated financial
need could pay $56, and some states have further assistance to
encourage students’ participation in the program, but AP courses
are not offered uniformly across public schools (Solorzano and
Ornelas, 2004). Thus, AP scores would measure the privilege the
students have had, rather than their ability or mathematical readi-
ness for college. This is likely to be an undesirable outcome if the
university is to serve a purpose of advancing the education of all in
the society, and it needs empirical testing. The variables that we
chose explained less than 10 percent of the variance in the depen-
dent variables, which suggests that there might be other variables
that need to be considered as well. Another possibility lies in the
progressive pedagogy—group work, conceptual work, and small
class sizes—employed by the control group. Perhaps we would
have found a significant treatment effect if the control group
employed the more traditional lectures and large class sizes. We are
unable to test this possibility given the conditions under which the
calculus programs are run at U-M; but there might be other
settings in which it would be possible to test it.

Perhaps the second possible explanation is valid, namely that
there is an effect, but that we have not been able to measure it. It is
possible that our dependent variables (created by using institution-
al data from student grades) do not adequately capture the effects of
the course. When we use grades as a measure of student learning,
we make a gross reduction of what students have actually gained—
a single course grade encompasses a complex array of knowledge
and skills and may not be assigned with uniformity. Better depen-
dent variables would be in the form of valid and reliable tests that
compare the ability of students to complete real-life science and
engineering applications that build on the skills for individual and
group work supported by both courses. An independent measure
of concept understanding, such as those provided by concept
inventories (Epstein, 2005; Hestenes, Wells, and Swackhamer,
1992) could be useful in terms of overcoming some of these diffi-
culties with course grades. The Calculus Concept Inventory
(Epstein, 2005) has proven adequate for measuring students’
learning of understanding of a first course of calculus (functions,
limits, derivation, and growth). However, it would not provide an
appropriate learning assessment for Calculus II.

Although both Math 116 and Math 156 have similar con-
tent, the style of instruction for the two is quite different.

Whereas Math 116 emphasizes teacher-student and student-
student interactions in every class, teacher-student interactions
in Math 156 are promoted in the form of students asking ques-
tions, but student-student interactions are less frequent.
Students in the Regular Calculus II are required to work in
groups both inside and outside the class whereas students in
Applied Honor Calculus II are encouraged to work in groups
outside of the class as needed. In addition, in Math 116 there is
strong emphasis on using multiple representations of concepts
(geometric, numerical, symbolic, and verbal) in all solutions
whereas in Math 156 instructors spend substantial time present-
ing proofs of theorems, emphasizing the main ideas behind the
proof rather than the technical details, and discussing the rela-
tion between applications and the theorems. Yet student grades
(our only current institutional measures) do not target any of
these differences.

V. IMPLICATIONS

We suggest two practical implications of this work. First we
highlight the importance of including AP scores in models that
predict college students’ academic performance. Our initial
analyses included some models without this variable, and those
models showed a statistically significant effect (stronger than
other prior performance measures) of the treatment in our
dependent variables. Once the AP score was included in the
model, though, the effects disappeared; students who scored 5
on the AP test might indeed have a stronger preparation in cal-
culus, and either course might be simply a refresher for them.
The students, as a group, may also share other characteristics
that might be captured by this variable (e.g., higher income that
allows them to go to better schools, an inclination for doing
challenging work, or a genuine interest in engineering). Thus
we encourage other researchers to consider including this vari-
able in their analyses as it might prove useful in better estimat-
ing the impact of students’ pre-college characteristics in their
college experiences, as we did not locate studies that used this
variable in their prediction models.

A second implication is that the study of the impact of a single
course on subsequent student performance is problematic.
Instead, sustained exposure to the treatment, under very well con-
trolled settings, might be needed if institutional data are to be
used to establish a causal link between mode of instruction and
student performance. In addition there is a need for parallel lon-
gitudinal studies that focus on specific aspects of instruction (e.g.,
instructors posing questions that require different formats of
interaction) under different conditions, using both independent
measures of learning and institutional data to accurately measure
the learning that happens and its effects on students’ perfor-
mance. Such a strategy will allow researchers to make sound
claims about impact of instruction on learning and student
performance.
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