
Universal Design M
anikin: Integrative Sim

ulation and Visualization Techniques | M
athew

 Schw
artz

 M
S_DT | 2012

Universal Design Manikin

MS_DT
A. Alfred Taubman College of Architecture
and Urban Planning

Integrative Simulation and Visualization Techniques

Master of Science in Digital Technologies

University of Michigan

Mathew Schwartz

The Master of Science concentration in Digital Technologies (MS_DT)
was initiated in 2011 as a post-professional degree that offers motivated
participants the opportunity to investigate design practices and conduct
independent research in computer-aided-design and advanced fabrication
techniques. Project-based research provides a “testing ground” for new
modes of practice and innovative uses of existing, new and emerging
technologies. The program builds upon a tradition of cutting-edge
technical research at Taubman College, the University of Michigan, and in
the Detroit region. University of Michigan offers unmatched excellence in
digital fabrication and access to world-class lab and production facilities
and regional linkages to industry. Each issue is assembled by the individual
author/architect during their duration at the University of Michigan.

2012

Karl Daubmann
(MS_DT Coordinator)

Mark Meier
Jason Prasad
Mat Schwartz
Ryan Shaban
Fausto Teran

Sonia Tereszczenko
Aaron Willette
Robert Yuen

Universal Design Manikin

by Mathew Schwartz

BFA 2011
University of Michigan

Submitted to the Department of Architecture and Urban Planning
in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Digital Technologies
at the Taubman College of Architecture and Urban Planning

July 2012

©2012 Mathew Schwartz, All rights reserved.

The author hereby grants to the University of Michigan permission
to reproduce and to distribute publicly paper and electronic copies

of this thesis document in whole or in part.

Mathew L. Schwartz

Integrative Simulation and Visualization Techniques

Universal Design Manikin

by Mathew Schwartz

Submitted to the Department of Architecture and Urban Planning
on July 2012 in partial fulfillment of the requirements for the

degree of Masters of Science in Digital Technologies

ABSTRACT

This research demonstrates methods for integrating simulation
and visualization techniques with the current tools used in design
work-flows. The techniques are applied to human factors with
a concentration on disabilities. A tool named Universal Design
Manikin is developed. The tool integrates a virtual manikin and
wheelchair with a coresponding graphical user interface. The
research covers factors from a human scale of reach abilitiy to a large
scale of building navigation. The research presents an opportunity
for seamless collaboration between scientists and designers by
integrating joint analysis tools with design tools. Methods for
simulation and visualization of reach, vision, navigation, and spatial
zones are presented.

Integrative Simulation and Visualization Techniques

Index

1| Preface
 1.1| Vitruvian Design
 1.2| Organic Design
 1.3| Universal Design

2| Introduction
 2.1| Simulation
 2.2| Visualization
 2.3| Collaboration
 2.4| Education

3| Technical Concepts
 3.1| Biomechanics
 3.2| Computation

4| Precedent
 4.1| The Modulor
 4.2| IsoKin
 4.3| Tecnomatix JACK
 4.4| JUSTIN

5| Process
 5.1| Motion Capture
 5.2| Graphical User Interface
 5.3| Python

6| Implementation
 6.1| Reach
 6.2| Vision
 6.3| Naviagtion
 6.4| Zones
 6.5| Analysis

7| Conclusion

8| Acknowledgments

9| References

1 Preface

 This book is a compilation of human based design research. It covers
issues of computation, biomechanics, and overall work-fl ow. Motivation behind
the research into those elements derives from a basic question; What drives
design? While the factors that drive design can vary, the following pages outline
a historical precedent for design based on the human body. The history behind
human design is broken into three time periods; and each of these periods come
with a system in which design has been based on. This consistent use of a system
greatly motivated the work to move past the creation of a specifi c design concept
and onto a larger issue of creating a platform in which collaboration and human
based design can thrive. The following is a brief introduction to some key points
related to the history of human based design.

Image Credit: (Zelnik)

“How could the relation of Man to God be better
expressed, we feel now justifi ed in asking, than
by building the house of God in accordance with
the fundamental geometry of square and circle?”

-Wittkower

1|1 Vitruvian Design

 The start of a human-form centered architectural fi eld can be traced back
to Marcus Vitruvius in 1 BCE. His work entitled De Architectura, was broken
into 10 books dealing with various aspects of architecture. Although many have
seen the Vitruvius man diagram from Leonardo Da-Vinci, few know the history of
that diagram. Vitruvius began the fi rst chapter of his third book stating, “Without
symmetry and proportions there can be no principles in the design of any temple;
that is, if there is no precise relation between its members, as in the case of
those of a well shaped man.”(Pollio). This comparison of members in the temple
to the temple itself is a precedent for the religious work that followed in the
Renaissance. Vitruvius continued to lay the groundwork of what Da-Vinci would
later make infamous through art, by describing the proportional relationship of
man:
“For if a man can be placed fl at on his back, with his hands and feet extended, and
a pair of compasses centered at his navel, the fi ngers and toes of his two hands

Image Credit: (Pollio)

and feet will touch the circumference
of a circle described therefrom. And
just as the human body yields a circular
outline, so too a square fi gure may be
found from it. For if we measure the
distance from the soles of the feet to
the top of the head, and then apply that
measure to the outstretched arms, the
breadth will be found to be the same
as the height, as in the case of plane
surfaces which are completely square.”
(Pollio)
It was not until over a thousand years
later De Architectura was rediscovered.
The book was then popularized and
with the rise of the Renaissance, the
drawings of the Vitruvian man appeared.
It was in this context that Leonardo Da-
Vinci created the well known diagram.
 It is important to note the
comparison between a human-
form centered design, in which the
design revolves around the form of a
human, and an anthropocentric design
in which the design is related to
human ergonomics. This distinction
is important when looking at work
from the Renaissance. The wording
of Vitruvius and many representations
of Renaissance buildings appear to
relate the building to the human, but
at closer look they are truly about the
divine world. The comparison of the
Vitruvius man to architectural works
of the Renaissance is quite simplifi ed.
Alberti’s De re Aedifi catoria outlines
nine geometries that fall in line with the
circle that the Vitruvian man describes
(Figure 1.1). While using the circle as
a base, the proposed geometries are
based off this circle, varying angles
of the geometry based on radius’s
of the circle in which they inscribe.
(Wittkower) This at fi rst may seem

Figure 1.1: (Alberti)

convoluted, but the rhetorical question
posed by Wittkower sheds light on
this situation, “How could the relation
of Man to God be better expressed,
we feel now justifi ed in asking, than by
building the house of God in accordance
with the fundamental geometry of
square and circle?”(Wittkower). So
the comparison of human centered
design from Renaissance to present
day is better explained as human-form
centered design to anthropocentric
design.

“If a man set out without knowledge of planning
concepts but in identifi cation with nature and thus

nature-like, he will always act creatively”.
-Hugo Harring

 In the early 1900’s Le Corbusier began to create a universal measurement
diagram. His work on the Modulor attempted to set a standard for design in
general. Le Corbusier however, was not necessarily looking at a geometric model
that would constrain the designer entirely. Instead, Le Corbusier was looking at
the modernization of manufacturing and its widespread reach. With the basis in
proportion, Le Corbusier began to create a system in which measurements could
unify the different unit systems. Le Corbusier’s goal was to create “a common
measure capable of ordering the dimensions of that which contains and that
which is contained: capable...of offering a solid pledge of satisfaction to supply and
demand” (Le Corbusier). While Le Corbusier followed up with a second book,
Modulor 2, with many examples of his system being used and praised, the work
of the Modulor created controversy in those loyal to free thinking design. The
use of proportions (Figure 1.2) and ergonomic representations (Figure 1.3) gave
the designer a freedom to work within a constraint, and in doing so focusing on
the form rather than trying to understand how the form would function. This

1|2 Organic Design
Image Credit: (Le Corbusier)

led to a different school of thought, the
belief that the use of these constraints
limited the natural fl ow of a design.
 Tangent to Le Corbusier, Hugo
Haring discussed the relationship
between functional and expressive
design. He outlines the way in which
buildings are separated by form and
function. Haring explains that the
design of functional forms will in turn
satisfy the craving for expression,
declaring that our appreciation for
machines, ships, cars, and aircraft are
routed in this satisfaction of functional
forms (Jones). This understanding of
design based on human ergonomics is
a continuous topic of controversy as
designers work through the notion of
form following function. Haring argues
that all forms are based on an internal
path, “even crystals and geometrically-
shaped [forms], which allows each to
develop according to its own inner
plan”. This is contradictory to the
work of the Renaissance in which the
total form is the representation of the
human. At the fi rst level of thought,
this look at design extending outwards
may seem inline with the work of Le
Corbusier as would standardize the
human proportions in relation to chairs,
tables, etc. The split emerges in what
Haring describes as “planning concepts”.
Haring believed, “It is evident that in the
same way, our potency in creating and
building is limited by the potency of
our planning concepts” (Jones). Haring
proposes “If a man set out without
knowledge of planning concepts but
in identifi cation with nature and thus
nature-like, he will always act creatively”.
 This relationship between a
plan and nature draws back to the
problem Le Corbusier was trying to

Figure 1.2: (Le Corbusier)

resolve, the emergence of the meter.
While a design based on the anglo-
saxon measurement of foot and inch
were derived by the person directly, the
meter is an abstract representation of
distance. Le Corbusier himself notes
the beauty in which building created
on personal measurements, the inch
and foot, convey (Le Corbusier). The
design fl ow of the past, using personal
measurements to design ones home,
is inline with the argument made
by Haring, and what Le Corbusier
acknowledged as “infi nitely rich”
(Le Corbusier). However, Haring
makes the case that the creation of a
diagrammed system of measurements
in its very nature hinders the natural
fl ow of a design. He states that the
men who act creatively through natural
understandings are “ in contrast with
the men from geometric cultures, who,
obsessed with order and limited in their
planning concepts, could work fruitfully
on so long as their creative effort was
poured into the forms of geometry,
subordinated to its laws and rules, and
so constrained and destroyed..” (Jones).
 The concepts created through
the work of Le Corbusier and Harring
provided extraordinary platforms
for new waves of design. Within The
Modulor 2 it is clear how drastic the
effect of Le Corbusiers system was on
modern design (Le Corbusier). To this
day the proportions displayed by Le
Corbusier are studied and investigated
in design. However, the Metric system
is widely adopted as the standard unit
of measurement, the relative abstracted
nature of it has faded, and the fi eld of
ergonomics has fl ooded the world with
knowledge of true human proportions.

Figure 1.3: (Le Corbusier)

“There is no such thing as an average user”
-Susanna Laurin

The most recent human based design movement is Universal Design.
While there are many alternative names, the concept stays the same.
Universal Design can be understood through its seven principles:

1) Flexibility in use: The design accomodates a wide
range of individual preferences and abilities
2) Tolerance for error: The design minimizes hazards and the
adverse consequences of accidental or unintended actions
3) Low physical effort: The design can be used effi ciently
and comfortably and with a minimum of fatigue
4) Simple and intuitive: Use of the design is easy to understand, regardless of the
user’s experience, knowledge, language skills, or current concentration level
5) Equitable Use: The design is useful and marketable
to people with diverse abilities

1|3 Universal Design

Image Credit: (Zelnik)

6) Perceptible information: The
design communicates necessary
information effectively to the user,
regardless of ambient conditions
or the user’s sensory abilities
7) Size and space for use: Appropriate
size and space is provided for
approach, reach, manipulation,
and use regardless of user’s body
size, posture, or mobility
(NCSU)
 In contrast with the previous
design platforms, Universal Design
is segmented into functionality,
independent of a specifi c person. By
targeting the principles to function,
Universal Design remains open to
new understandings of the human
body. This openness has helped break
down discrimination against people
with disabilities, and has done so
without idealizing a specifi c situation.
 The Universal Design principles
are not specifi c to disabilities. The
principles are meant to help all people
through design. More importantly,
Universal Design is relevant to all
people since every body is different
and everybody ages. As fast as people
grow out of clothes, so do they grow
out of certain designs, and into new
ones. People also vary based on
ethnicity. For example, the leg length of
the average US black male is 2” longer
than the average Japanese male (Tilley).
Although 2” of leg length while standing
may not matter, a chair designed for a
US black male could result in a Japanese
male not being able to place his feet
on the ground (Figure 1.4). A more
extreme example being a customized
design for an average Northern Nilote
would be far to big for a Pigmie as their
averages are different by 15.4”(Figure

Figure 1.5: (Zelnik)

Figure 1.4: (Tilley)

1.5). Beyond the relevance due
to differences between all people,
universal design can benefi t everyone
in unintended ways. For example,
putting automatic door openers for
wheelchair accessibility has the added
benefi t of making it easier for someone
carrying objects to open the door.
Another example is that by providing
ramps, all rolling objects, from grocery
carts to strollers are easier to use.
 In 1990 the creation of the
American with Disabilities Act (ADA)
made Architects and Employers
legally responsible for accessibility.
Outlined in a series of legal provisions
and diagrams by the Department of
Justice, the ADA set a new standard,
requiring equal access for people with
disabilities. Unlike Universal Design,
the ADA needed to consist of specifi c
examples in order to insure a suitable
implementation. These examples
are considered by the ADA as the
minimum requirements. This raises a
major problem; without understanding
the origin of these examples, how
can one design for something
to be better than the minimum?

Figure 1.6: (ADA)

2 Introduction

 Through the motivation of human centered design the intention of this
work is to use visualization and simulation techniques to aid in the design process.
The result of the research provides a platform for which movement scientists
and designers can collaborate, and design students can explore and learn about
human factors. The platform exists through a tool implemented in a 3D modeling
program. The tool consists of different algorithms for simulating and visualizing
human factors, fi le importation of motion capture data, and plotting functions
to visualize human joint information. The specifi c functionality of the tool and
algorithms is elaborated in later chapters. In this introduction the key components,
simulation, visualization, collaboration, and education are introduced as they relate
to the research.

2|1 Simulation

 The distinction between virtual and physical is increasingly diffi cult
to understand. Through advancements in technology and mathematics we are
constantly increasing our ability to recreate the world into a new, Synthetic world.
This ability, known as Simulation, helps save lives, money, and provides valuable
insight not gained any other way. As a designer, simulation can provide insight as
to how a material will perform under stress, how a light will effect a space, or how
a crowd of people will exit a building. While simulation has many applications, this
book is interested specifi cally with the ability to emulate human factors in relation
to design.
 Within the synthetic world of simulation one can strive to emulate the
real world, or create new worlds. It is this vast ability of simulation that requires
a focused understanding of what a specifi c simulation does. To achieve this
understanding, a series of diagrams can be created to represent the components.
To start, a simulation consists of an input, a function, and an output. (Figure 2.1)

sim·u·la·tion
noun

The imitative representation of the
functioning of one system or process by

means of the functioning of another

. This system can be applied to a wide
spectrum of situations ranging from
the real (physical world) to abstract
(computer simulation) (Figure 2.2).
 The spectrum that human
factors simulation exists within is much
smaller than environmental simulation.
With human factors, the information
is easier to access in the real world,
creating a closer link between the
input and output. This work explores
two types of simulations for human
factors, simulations of the human body
and simulations of the body relative to
an environment. To contextualize the
simulation options the environmental
simulation map of Simulating Future
Worlds (Figure 2.3) is re-appropriated
to the simulation of human factors
(Figure 2.4).
 Not all simulations are good
for all types of information. The
combination of inputs and functions
effects the end output and it is
important to know how. A major
fallback with many commercialized
human simulation models is the closed
access to the functions. Although a
human model may seem correct, there
may be additional factors that have been
left out of the calculation. As such, it can
be dangerous to accept the information
given by a closed simulation product.
The use of a simulation graph creates
an easily traceable result with the inputs
and function properly understood. For
this work, the simulation graph is used
to outline places in which the output
can be improved through different
simulation methods.

Figure 2.1

Figure 2.2

Figure 2.3: (Clipson)

Figure 2.4

 Visualizations are how the information gathered from the simulation
are represented. These visualizations are created by combining the information
given from a simulation, and the purpose of that information relative to human
factors. By this intent, there are many ways of achieving the visualization.
Understanding the different types of visualizations relative to the human body
helps decide how to best display the information. Different fi elds may refer to
their visualizations with different terminology, such as dance referring to it as
notation (Laban). Other terms such as diagramming have a slightly different
intention. While the visualizations used in this book and many others are ways
of representing information, or abstracting the human body into information.
Diagrams however, are meant to explain information over just representing it.
 Early stages of this research investigated the different methods of
diagramming human factors. Through this research, it was clear that the design

2|2 Visualization

vi·su·al·i·za·tion
noun

The act or process of interpreting in visual
terms or of putting into visible form

fi eld had remained stagnant for quite
some time. In order to understand the
reasoning for this lack of innovation in
human representation, two additional
disciplines, Dance and Engineering, were
looked at for methods of diagramming
humans. The research was not limited
to, and is not to be confused with
representation of anthropometric
data. All types of human diagrams
within Dance and Engineering
were studied. It was through this
exploration that the decisions on how
to represent information on human
factors within a tool were made.
 Dance, a fi eld entirely based
around the human body, demonstrates
creative ways of diagramming human
movement. With two of its systems,
Laban Notation and Benesh Movement
Notation, dance is able to diagram the
movements of a dancer on paper (Page).
Using symbols, Laban Notation can
represent the direction of movement
(Figure 2.5), the body part moving (Figure
2.6), the level of movement (Figure
2.7), and the length of time it takes to
do the movement (Figure 2.8). These
two systems are by name, notation, yet
fundamentally diagram the movements
of a dance. This diagram is used to
explain how a body should move in
order to complete the dance sequence.
 The past example demonstrates
a method in which a chain of human
actions can be explained through a
diagram. These diagrams exist as a
set of symbols that can be combined
in a linear fashion corresponding with
the change in time. Alternatively, the
display of human information can be
approached through an abstraction
of humans into machines. The term
machine is used as a way to describe

Figure 2.5: (Hutchinson)

Figure 2.6: (Hutchinson)

Figure 2.7: (Hutchinson)

Figure 2.8: (Hutchinson)

the abstraction of the physical person
into a systematic or mathematical
model that describes a human or a
persons actions. On a singular scale,
a human action can be described
through a mathematical model. As
one example, the psychologist Paul
Fitts proposed a model for human-
computer interaction that predicts the
time required to move from one point
to another (Figure 2.9). Fitts’s model
is used to predict the act of pointing
(Fitts). This sixty year old mathematical
model translated so well to the age of
computers that it profoundly impacted
the design of the Xerox mouse (Card).
The effi cacy of this model is in its
ability to simulate a persons pointing
speed. While the function itself can
be utilized as a diagram for a persons
pointing speed, it is the usefulness of
this function, as part of a system able
to simulate, that makes it so powerful.
 While dance benefi ts from
an entire diagramming system and
engineering has exploited mathematics,
design has found more usefulness in
larger statistical datasets (Figure 2.10),
some translated to graphical form
(Figure 2.11). These graphics are by
nature stagnant pieces of information
in their printed form (Tilley). Stagnant
representations of human factors
evolved from the large collection
of anthropometric data. This data
needed to be represented in a way that
everyone could understand, as well as
repeat. Standardization became key
to people in human factors fi elds as it
provided quick statistical information,
useful for mass production and
design. This anthropometric data
was standardized through a series of
methods in which the human body

Figure 2.9: (MacKenzie)

Figure 2.10: (Zelnik)

Figure 2.11: (Zelnik)

could be measured (FIGURE data
collection tools). It was through the
research of diagramming in fi elds outside
of design that led this work to integrate
more than just large standardized data
sets. The tool developed through this
research combines the methods of the
anthropometric data representation
with the fl exibility of mathematical
functions to create a diverse and
expandable tool useful for simulation as
well as pure visualization of human factors.

Figure 2.12: (Zelnik)

 Creative and innovative solutions are constantly created through
collaborative work. The push for collaboration has been seen through the
increase of multidisciplinary classes and grants. Much of the work in this
book is due to collaborative efforts. The world of knowledge is far to great
for one person to know everything. It would also be foolish to assume that all
of the useful knowledge for a given subject could be mastered by one person.
In this world of human factors, it is clear that a designer must understand
the human body in order to design for it. However, it is diffi cult to know to
what end someone must understand the human body. After all, a designer
must also know about materials, colors, construction, etc.. This is where
collaboration is key, people providing each other with valuable information.
 While in many cases the knowledge a designer has of human factors
may be suffi cient, it is those unique times in which a designer needs additional
information on a human in order to design. A common occurrence of this need

2|3 Collaboration

col·lab·o·rate
verb

To work jointly with others or together
especially in an intellectual endeavor

is within Universal Design. With a
concentration of the ability for a design
to be widely accessible, one must know
what makes a person disabled. Between
diseases, injury, age, and gender the
abilities of humans greatly vary (Tilley).
Not only does the physical ability of
people vary, but so do they instruments
and environments people use.
 Besides the differences among
people, there are times in which the
design location is closely linked to human
factors. This situation is common when
designing for small spaces (Figure 2.13).
One example, military vehicle design,
is a major sector requiring experts in
many different fi elds. Using a submarine
as an example, It is clear that the design
must maintain a balance between
military effi cacy and human comfort. In
a military situation, adaptation should
not be the fallback excuse for the
lack of human usability. The question
now is; what hinders collaboration?
 The problem that most often
hinders collaboration is a lack of a
mutual language. This problem runs
deeper than just the jargon used.
Through the work in this book one
obvious issue came up: the tools
people use are different. While in
design one may use Maya (Autodesk)
or Rhino 3D (Rhino), in kinisiology
one may use OpenSim (Delp) or Visual
3D (C-Motion). The use of different
tools makes the transfer of knowledge
extremely diffi cult. As one side does
not know how the others program
works, it becomes extremely diffi cult to
bridge. By creating a platform that both
disciplines understand, the transfer of
knowledge becomes easily achievable.

Figure 2.13: (NASA)

 Without being exposed to the many situations in which design and human
factors are greatly intertwined it is diffi cult to understand the issues. During the time
of this research a class at the University of Michigan on Universal Design was used
to understand the challenges people have when designing for something they do
not directly experience (Vance). Students learned about different types of disability
through in-class exercises initiated by the professor. These exercises were intended
for students to experience what the effect of various disabilities was on a person and
their environment. In other words, students experienced why someone was disabled.
 Why someone is disabled is not very intuitive. What this means is that
someone is only disabled as long as they are not able to do something. In relation
to design, if a text is too far to read it, it is the text that has dis-abled the reader.
In this case, the solution is obvious, move the text closer. Unfortunately most
situations are not this easy to understand. It is for that reason universal design
classes have physical activities such as putting on goggles to simulate cataracts

2|4 Education

ed·u·ca·tion
noun

The fi eld of study that deals mainly with
methods of teaching and learning in schools

Image Credit: (NCARB)

and old age (Vance). These activities
greatly benefi t students, however, it
requires a great deal of time to prepare
and at worst creates a problem for
students who may want to learn but
do not feel comfortable participating.
 Through simulations of human
factors and useful representations,
much of the information gained from
hands on activities can be learned on
the computer. This is not to say that
the use of a computer is more benefi cial
than hands on research, however it
does provide an alternative that is not
accessible through books. Through the
documentation of students engaged in
activities and the documents submitted
by the students, some important trends
are seen. Many of the visuals created
by the students either showed a human
factor range or showed the passage of
time through multiple and overlay images
(Figure 2.14). These two common
occurrences translate extremely well
to the computer. The ability to interact
and manipulate a virtual person may
not be better than hands on learning
but it does provide a useful alternative.

Figure 2.14: (Vance)

3 Technical Concepts

 Computer simulation models of human movement can be broken into two
subjects, Biomechanics and Computation. Between these two there are numerous
considerations when making a simulation. First, Biomechanics can be understood
as a way to break down organic movement into structured rules. Computation
is then used to translate these structured rules into a function that can take new
inputs and generate a new movement. Additionally, human factors other than
movement can be integrated into a system for simulation. These systems can use
both generic and specifi c functions to create the simulation. When these functions
become complex, the amount of time required to create a simulation can increase.
Through different methods of computation the time required for a simulation can
be changed. The goal in this research was fi nding a balance between computational
complexity, effi cacy of the simulation, and user friendliness. In order to constrain
the variables at large, this research has concentrated on human factors within
a wheelchair. While this narrows many variables it also introduces some very
unique ones.

Image Credit: (Abdel-Malek)

Image Credit: (Abdel-Malek)

2|1 Biomechanics

 Biomechanics of human movement can be described by kinematics. The
two types of kinematic systems used here are Inverse and Forward. The difference
between the two is with the input and output. To relate this to a human, a forward
kinematic model is when the should and elbow joint angles are known, and the
location of the hand is wanted. Conversely, if the location of the hand is desired,
an inverse kinematics model is used to fi nd the angles of the shoulder and elbow
joints. This system of shoulder, elbow, and hand joints is called a chain. A chain
is made up of links and joints with the end of the last link becoming an end
effector (Jazar). In the case of a human arm, the fi rst joint is the shoulder with
a link to the elbow and from there a link to the hand, which is the end effector.
While an inverse kinematic model can be used to fi nd joint angles, it does not
necessarily fi nd good ones. Essentially an inverse kinematic model can fi nd a
range of angles that will result in a specifi c location. The diffi culty is in resolving
the range of solutions to just one. There are a range of techniques that can be

bio·me·chan·ics
noun

The mechanics of biological and
especially muscular activity

used. One common technique that
is often a result of the given condition
includes constraining the angles a joint
can rotate, in turn constraining the
solutions available. These techniques
include constraining the angles a joint
can rotate, in turn constraining the
solutions available. This method was
used at a larger scale, constraining all
movement to a wheelchair, and similarly,
constraining the solutions available.
 Constraining the biomechanical
problem to a person use a wheelchair
creates an interesting dynamic. This
instantly removes the ability to quickly
move from one point to another. It also
introduces the issue of why someone is
in a wheelchair. When looking at spatial
design books or the ADA standards it
may seem like the only difference is that
a person is in a sitting position (Figure
3.1). Unfortunately the problem is much
different. There are many diseases that
can effect a persons movement such as
Multiple sclerosis. The reason Multiple
Sclerosis effects the bodies movement
so much is through infl ammation of the
brain or spinal cord (Owens). As the
spinal cord acts as a carrier of the bodies
nerves, any damage or disruption can
change the bodies ability to function.
Similarly, spinal cord injuries change a
persons ability to move. Hence, broken
bones or old age are only a few reasons
someone may need to use a wheelchair.
To narrow down the problem we look
specifi cally at spinal cord injuries and a
persons ability to reach.
 The spinal cord is made up of
vertebrae, these vertebrae stack up and
are split into four groups. The location
in which a nerve exits the spinal cord
is relational to the body parts it effects
(Figure 3.2). What this ends up meaning

Figure 3.1: (Zelnik)

Figure 3.2: (ASIA)

is that a spinal cord injury may not just
result in the loss of leg usage, but may
change the way other body parts work.
For example, a spinal cord injury that
occurs between the vertebrae T11 to
L1 results in the paralysis and loss of
sensation in the hips and legs. This low
level injury results in biomechanical
movement similar to that shown in the
ADA standards. However, an injury
in the Thoracic mid range between
T5 to T8 results in paralysis from the
lower trunk down as well as a loss of
sensation below the rib cage. Since
the human body is all connected, what
may seem like an injury that only effects
below the ribcage ends up translating
above as well. When looking at the
reach ability physics begins to take a
role. When a diagram shows someone
in a wheelchair leaning forward, it is
assuming the person is able to get back
up (Figure 3.3). In order to counter
act the body weight leaning forward,
muscles in the lower part of the body
need to contract. The problem then is
if a person is either paralyzed or has
limited sensation below the ribcage their
torso muscles are signifi cantly reduced
(Castro). With reduced muscles, the
person does not have the ability to
compensate for their body weight and is
then not able to lean. Some people have
such limeted strength and/or balance
that they need to be mechanically
stabalized (FIgure 3.4). These examples
show a population in which the reach
ability is far different from the average
man. Even further down this road is
the high level spinal cord injuries that
create reduced sensation of the hands
and arms, directly affecting the upper
limb movements. This demonstrates
the need for a more complete model

Figure 3.3: (Tilley)

Figure 3.4: (RehabMart)

relating to human ability.
 Studying human movement
is a different problem than simulating
movement. Modern technology has
allowed researchers to study the
bodies movement in three dimensions
with motion capture. Optical motion
capture is a common way to track
human movement (Moeslund). Using
small refl ective spheres known as
markers, attached to a persons body,
infrared cameras record and triangulate
the markers position (Figure 3.5). This
recording becomes 3D point data on
the computer (Figure 3.6). A computer
skeleton is then created from the point
data. The importance of this creation
is the introduction of angles into the
data. Similar to the inverse kinematics
problem, angular data gives different
information than point data. Together,
point and angular data provide a
complete system in which a researcher
can extrapolate the data.
 A joint is truly a point in which
a rotation occurs. Since rotations are
measured in angles, a study on human
joints would require angles. Additionally,
angles are easily transferable between
research subjects as, unless there
are extenuating circumstances, joint
types between people are all the
same. Location data however, varies
by person because of differences in
marker placement, fat content, and
height. Therefore, in order to study
the speed in which someone stands up,
the angle of the hip over time would
be wanted, whereas just the location of
the hip when standing will greatly vary.
Transferring this knowledge to reach
ability is a critical step in understanding
simulation of human movement. In
order to accurately describe where a

Figure 3.5: (Filho)

Figure 3.6: (Filho)

person can move a limb, it is not the
location of the hand that is important,
it is the angle of the joints. By knowing
that everyone’s shoulder can rotate 10
degrees behind themselves, a computer
skeleton at any desired height can be
created with the arm in the furthest
position backwards (Figure 3.7). From
there the information of where the
hand is can be gathered. This is a basic
example of being able to simulate
human factors.

Figure 3.7

 Simulations of human factors is by no means trivial. On top of the
computation needed for the simulation, 3D visualizations require a way to be
seen and utilized. Two sides to implementation through computation are speed
and user friendliness. On one side are the low level programming languages such
as c++. These programming languages are closer to machine code than others and
are required to be compiled (Ousterhout). This means that the code written must
be reformatted by the computer into a computer readable state before executing
the code. The benefi t of this is the speed that the computer can run the functions.
On the downside, integrating newly written code with pre-compiled code is
diffi cult and the syntax is far more complex. On the other side is programming
languages like Python, which have an easy to use syntax, easily integrated with
other code, yet is painfully slower (Ousterhout). Generally, modern technology is
able to run human simulations relatively quick. For example, character animation

2|2 Computation

com·pu·ta·tion
noun

The action of mathematical calculation

programs using optimized algorithms,
full inverse kinematic systems can
be computed in real-time (Tolani).
 Programs like Maya, which are
more than just character animation
programs as well as other 3D modeling
programs have begun to offer access to
an Application Programming Interface
(API). An API allows people to program
functions while using pre-exisitng ones
from the program itself (Figure 3.8).
Currently many 3D modeling programs
offer access to the API through Python.
This is benefi cial for human simulation
in two ways, most importantly this
allows for quick and easy access to
visualization functionality. Without an
API it would be nearly impossible to
truly integrate simulation techniques in
a designers work-fl ow without creating
an entirely new program. Another
benefi t is the ease in which python is
able to reference additional python
fi les. In Python, these separate fi les
are called modules. The separation of
functions into different modules assists
in the legibility of the code but more
importantly allows for an extremely
portable function. Since different API’s
require specifi c ways of accessing the
internal code, a function using one API
will not work in a different one. This
difference in API’s is where the use of
separate modules for code becomes
useful. By separating the simulation
function from the visualization function,
transferring from one program to
another is much simpler. In addition
to being able to easily transfer
the simulation, creating modules
that exclusively contain universal
code provides a straight forward
display of the simulation technique.
 Although currently many

Figure 3.8

programs designers use have access to
an API, it has not always been this way,
especially with python. The reason
the integration of an API is so valuable
to this research extends beyond the
technical hurdles of programming
a simulation and visualization from
scratch. The integration of Python
programming capabilities within the
tools designers use is also an integration
of additional tools and techniques. The
past twenty years has been fruitful
with human simulation programs.
These include methods for virtual
navigation, kinematic simulation, and
BIM analysis (Boeykens). While these
examples provide legitimate methods
for simulation and/or visualization, they
are all developed in an independent
program. There are a few possible
reasons for this. Either the research
is specifi cally targeted at solving a
problem and is less concerned with
the utilization of the program, or the
creation of an open source program is
used as leverage against the high cost
of the available programs (Eriksson).
The former reason is opposite the goal
of this work, and the latter is in part
agreeable. The high cost of specialized
human simulation programs like JACK
do not make for a very accessible tool.
However, this work focuses on current
designer work-fl ows, which relatively
low cost tools such as Maya, Rhino,
and 3D Studio Max are most common,
and all have Python integrated.
 In addition to the
computational issues with
programming languages and API’s is a
broader issue of algorithm effi ciency.
Although there are some instances in
python that can never be as fast as a
low level programming language, there

are many ways to make python even
slower. Especially when using python
with an API, the balance between
using premade scripts in the API and
custom writing them is important. On
a general note, algorithms themselves
should be implemented in a way
suited to the programming language.

4 Precedent

 In addition to the conceptual research of human centered design are four
precedents that demonstrate a combination of conceptual and technical work as
it relates to human factors. These works come from various fi elds and have been
used as a main source of inspiration and comparison to a greater extent than the
references. Each of these works are linked to a period of time in which many of
the technical challenges vary from those today.

Image Credit: (Blanchonette)

4|1 The Modular

 As discussed in the preface, The Modulor was a system developed by Le
Corbsuier describing the human proportions. These proportions where linked
to the golden ration. The infl uence of The Modulor is from its combination of
visualization and integration with design. By the drawings Le Corbusier created,
buildings were given a direct link to the human proportion. Similar to the Vitruvian
era, The Modulor took a close interpretation of the human proportion and
attributed it to a system in which the human can be represented. From this works
perspective, the main result of The Modulor was a surge in buildings and design
that took 2D human proportions and extruded them (Figure 4.1). Le Corbusier
took compliment to this style as he wrote on the many buildings he had infl uenced
in his second book. It is the intention of this work to bring an understanding that
the human body is in no way two dimensional, and through the understanding of
biomechanics, humans do not simply scale. In fact, through studying the effect
of a spinal cord injury on a person, it is known that human factors are a four

Image Credit: (Le Corbusier)

“These chapters contain no scientifi c argument. It
is simpler that way; I am no scientist.”

-Le Corbusier

dimensional problem involving not
just location but strength of muscles,
introducing velocity.

Figure 4.1: (Seidler)

 In 1993, a few years after the ADA was established, David Lantrip published
a program called Mac IsoKin. With support from NASA and Steelcase, he worked
on a program that displayed the body-motion envelope (Figure 4.2). By taking
video of users performing a task such as the removal of a jacket, Lantrip created
outlines of human extents. This system built upon the currently available sectional
description of ergonomics by incorporating the available technology, such as
video recording and computer GUI’s. MacIsoKin uses a database of body-motion
envelopes and displays them within a space described by sectional computer
drawings. The designer is able to use this as a tool to understand the interior
space in relation to the tasks it is designed for. From the fl oor plan created and
the body motion envelopes selected, quantitative analysis can be run on the space.
Similar to the outlined environmental simulations in this books introduction,

4|2 ISOKIN

“A person’s physical disability is given meaning and
value only when it is found to interfere with some

desired activity.”
-David Lantrip

Image Credit: (Lantrip)

MacIsoKin simulates the perceived
discomfort in an environment. In this
case, the input is a predefi ned envelope
and a fl oor plan (Figure 4.3). The
simulation is a function of the space the
envelope takes up and the surrounding
objects existing within that space.
IsoKin was highly referred to during
the ideation of this research due to its
unique approach to quantifi cation of
design relative to human movement.
 An conversation with Dr.
Lantrip provided insight to the
challenges IsoKin faced, technically as
well as with integration into a designers
work-fl ow. One theory in which Dr.
Lantrip agreed was the limited use
of computers during the time of the
program being written. The focus of
this work in relation to the integration
of a tool within a designers work-fl ow
is attributed to the vast difference in
current computing technology and past
research. New technology provides a
fundamental benefi t, and a different way
in which IsoKin may be approached
if re-done today. Optical motion
capture systems have become widely
accessible and provide highly accurate
and comprehensive information. As
discussed in the Technical Concepts
chapter, motion capture data can be
parsed into angles and positions. In this
case, a modernized version of IsoKin
would be using the position information
to create a body-envelope directly of
a specifi c person. Using this method
would require multiple recording
sessions to get different body-envelopes
of the same motion. Although not all
movements would work this way, such
as taking off a coat, using angular data
from the motion capture instead of
the position data would allow for a fast

Figure 4.2: (Lantrip)

Figure 4.3: (Lantrip)

creation of people of multiple sizes.
 IsoKin is being used here as
the main example, however many other
examples exist in which the program
was developed independently of any
tools used by designers. Some of
these examples are referred to in the
Technical Concepts chapter of this
book. It is the example of IsoKin and
others that demonstrate a continuous
research fi eld of human factor
simulation to benefi t design. However,
they all share the same problem, a
tool is only benefi cial when it is used.

 One of these expensive human model tools describe earlier is
Tecnomatix JACK. Originally developed at the University of Pennsylvania,
JACK is now a commercial product of Siemens targeted to the engineering
fi eld (Blanchonette). JACK provides a human model that can be positioned in
relation to a design (Blanchonette). The model is used to view the reach envelope
and a few other factors such as the fi eld of view. JACK is one of the most
popular human model programs and comes at a signifi cant premium. For this
reason, and the diffi culty in creative modeling, JACK is rarely used by designers.
JACK does however provide a range of analysis tools. These tools include
injury risk, timing, user comfort, reachability, lines-of-sight, energy expenditure,
and fatigue limits. As discussed in the introduction to this book, these various
simulations are diffi cult to trust as the source of the function is unknown.
 JACK has not always been closed source. When JACK was being developed,
many of the algorithms created were openly published. JACK provided signifi cant
advancements in human simulations. The original work is highly referenced to this
day. What JACK did lack, and still does, is a robust model that can be adjusted to
accurately simulate special cases. In previous research, the ability to accurately
describe the capabilities of persons with spinal cord injuries was tested in JACK.
The results showed that an extraordinary amount of work was needed to simulate
the special case reach ability. The number of steps needed to create the simulation
questions the validity. It is known that JACK was never developed for simulating
spinal cord injuries. By not knowing the underlying code in JACK now, along with
the knowledge that it was never designed for special cases suggests that even if the
mannequin can simulate the movements, any of the other analysis may be invalid.
 The biggest problem with JACK is not in the algorithm for simulation but
in the method for visualization. As with many reach ability visualizations JACK

4|3 Technomatix Jack
Image Credit: (Blanchonette)

uses an ISO-Surface (Figure 4.4). Other
research has added layers to the ISO-
Surface to represent multiple extents,
such as the furthest reach or comfort
reach (Figure 4.5). The problem with
this ISO-Surface is that it tends to imply
an inclusive volume. However, human
reach ability is not an inclusive volume.
The combination of joint types, muscle,
fat, tendons, and ligaments create a
complex map of reach ability impossible
to convey in a single ISO-Surface.

Figure 4.4: (Blanchonette)

Figure 4.5: (Yang)

 The humanoid robot JUSTIN demonstrates creative methods for visualizing
reach ability and path planning. In the case of humanoid robotics, biomechanics
plays a pivotal part in the link between human visualization and robotic inverse
kinematics. There is a very interesting dynamic between the way humans are
modeled and the way humanoids are modeled. For a human, the goal is to convert
the joints and bones into a mechanical kinematic system in order to solve for the
angles. Due to the soft tissue and fl exibility of a human, complex chains can be
combined in order to get a higher resolution solution (Sancho-Bru). In the case
of a humanoid, the goal is to translate the human dynamics into a joint system
that will physically be moved like a human, yet may not be the same anatomically.
Franziska Zacharias has demonstrated creative ways of making robots move like
humans. Using the rapid upper limb assessment (RULA) system, Zacharias tests
a position given by the solution of a kinematic solver (Zacharias). The test shows

4|4 JUSTIN Humanoid

“In general, every robot arm is designed differently,
and therefore has different kinematic capabilities.”

-Franziska Zacharias

Image Credit: (Zacharias)

if the position is a good ergonomic
position. This can be abstracted to a
person would be comfortable in this
position, and as such the humanoid can
adjust to the best score (Figure 4.6).
The technique used here can translate
to the many parameters an IK solver
can have. These parameters, adjustable
within Maya, include joint limits, weights,
and best position. These types of inputs
give a solver more information and
reduces the number of solutions (Jazar).
 The strongest reference
to JUSTIN is in the visualization
techniques. Zacharias demonstrates
a spherical reach ability map that can
include approach directions (Figure
4.7). This type of reach ability map
provides a much higher resolution
than a reach envelope. Resolution is
referring to the information on what
places are reachable. In a forward
kinematic system, a resolution would
be the increments of degrees in which
to test the end effectors location . In an
inverse kinematic system the resolution
is the distance between target points
on a grid (Zacharias). Similar to the
technique of this work, Zacharias
uses color gradation to visualize the
reachable areas. However, the opaque
colors present a problem for fast
interpolation. As such, the reach map
must be displayed in sections (Figure
4.8). These sections make understanding
the zones easier on paper, however,
there must be a different method for
3D programs in order to make an easy
to use and understand visualization.

Figure 4.6: (Zacharias)

Figure 4.7: (Zacharias)

Figure 4.8: (Zacharias)

5 Process

 This section discusses some of the overall methodology as well as some
early work that has led to the fi nal research. The chapter is broken into three
sections: recording and analyzing movement, designing a graphical user interface,
and using python for scripting. The early work with motion capture was barely
used in the fi nal research. However, the ideas as to how bio-mechanics could be
incorporated into design tools came from the initial work with motion capture. In
order to present the research in a way that showed its effi cacy being implemented,
a Graphical User Interface (GUI) was developed. QT Designer was used to
translate the interface into python. The code was all written in python. Each
segment of research was developed in a separate python module. These modules
were linked together and with the user interface through one main module.

5|1 Motion Capture

 Motion capture technology was used very early on in the process of
this research. The initial use of the motion capture sessions was to collect data
that would be parsed and analyzed in OpenSim. The movements were simple
interactions with a chair and an initial test on a reach envelope. The virtual
skeleton created from the data was used to drive a character rig of a laser scanned
body (Figure 5.1). From this movement data, different methods of visualizing the
movement were explored. The act of recording the session, translating the data,
and working between programs is what inspired the research to not just look at
visualizing biomechanical data, but create a new work-fl ow and workspace which
assisted in translating movement data.
 The motion capture session was done with an eight camera optical system.
The subject being captured wears a velcro body suit with spherical refl ective
markers attached to it. The markers are placed in strategic areas that allow for
accurate human reconstructions (Crane). The cameras emit infrared light, and
record the refl ections. These refl ections are triangulated to create 3D locations
for each marker. One of the biggest issues with optical systems is that each marker
must be visible to more than one camera at a time (Moeslund). When studying
the movement of sitting in a chair, the chair becomes an object that occludes the
markers, making it impossible to track. With limited time and resources, in order
to have a usable set of data that could be analyzed, a custom chair was made that
made removing parts such as the arm rest easy (Figure 5.2). This customizable
chair enabled a more consistent tracking of the markers as well as offering a
variety of chair confi gurations in which the subject could interact with.
 The markers are recorded at a specifi c frame rate. After the recording,
each frame consists of a set of 3D marker locations. At this time, these marker
locations are all independent. Blade (Vicon), the motion capture software,

attempts to automatically track each
marker and assign it a unique name. At
the fi rst frame, each marker is labeled
with a unique name corresponding to
the location relative to the body. From
this set of names, the software attempts
to follow each marker throughout all of
the frames, and maintain the markers
name. Although this can be completely
resolved, with an eight camera setup,
especially with an action that involves
occluded markers, there are labor
intensive processes required for the
data to be completely processed and
usable.
 After the data cleanup
OpenSim was used to create a
skeleton in which kinematic data could
be extrapolated. This workfl ow is
common in Kinesiology, however, most
designers have never used OpenSim.
Comparitively, the motion capture data
was also brought into Motion Builder
(Autodesk). Motion Builder is easily
integrated with Maya. The constructed
skeelton from MotionBuilder was
imported into Maya and with Python
sciprts, the joint angles were written
into a CSV fi le. These fi les were used
to demonstrate the researches ability
to represent the movement data in a
scientifi c way within Maya.

Figure 5.1

Figure 5.2

 The difference between what someone considers a script, plugin, or
program varies. For this work, the terms are defi ned as such; a script is a series of
coded lines that can be run to perform a specifi c task, a program is a compilation
of algorithms (or scripts) that has an interaction between the code and user, a
plugin is a program developed to interface with a program or takes advantage
of low level concepts used by a program to add functionality with it. The focus
of the user interaction with the research was to create a seamless experience
with their current work-fl ow. This meant, for not just the reasons of using an
API, the tools developed in the research would be best used in an embedded
way. For one, this type of interaction required a representation that moved
past text and click input. This type of input is most often seen in Rhino scripts
(Figure 5.3), especially with the integration of python. In Rhino, the work-fl ow
of a basic script is to have a back and forth interaction with the user. The script
asks something, the user selects some options, selects the object to perform the
operation on, and then resumes the script. This linear work-fl ow is similar to how
a text based interaction ideally works. In a python interpreter, the program is
able to wait for input from the user. This means there is nothing else happening,
and the program will wait until it receives input. For Maya, and many programs
like it, the interaction between the user and program is more complicated.
 When a program loads, almost all of the functionality loads with it. This
allows different parts of the program to interact, as when the user presses a
button, an event happens. Unlike a linear text based system, the program does not
wait for one specifi c input, instead it must be explicitly told ahead of time what
interactions will happen. At fi rst this makes the transition diffi cult, for instance, if
the program is meant to loft two curves, the user must have already selected the
two curves, run the program, and the program can complete the loft operation.

5|2 Graphical User Interface (GUI)

If the user does not select the curves,
the program does not know how to
just wait for that input and will fail.
 This is where graphical
interfaces come into play. The graphical
interface acts as a communicator
between the user and program. By
having this layer, interactions like
clicking buttons, are able to be linked
ahead of time to a portion of the
program. Instead of the program
automatically executing everything, the
program is fi rst told that when a button
is pressed, it should execute a specifi c
part of the code. This is referred to as a
call-back (Rossum), as the button must
call back to a function to be executed.
A call-back setup is then always
running, allowing the user to select
the curves, and then specifi cally click
the button to perform the loft. This
is the basis of the GUI setup used in
the research. Once the approach was
resolved, the physical implementation
and design of the interface was done.
 Maya has internal GUI options
available through the API. The GUI
options can be programmed inside
the Maya Python interpreter with any
code that needs to run. This method
was quick for creating buttons or input
fi elds, but designing the GUI became
a tedious task. The original GUI
creations were long stacks of options
(Figure 5.4) that made interaction with
the GUI diffi cult and confusing. To
expedite the implementation process
a GUI design program, QT Designer,
was used. Through many iterations,
the fi nal design is a setup of layered
windows. The windows are separated
by tabs, allowing the screen space
taken up by the entire program to
remain minimal. Each of the distinct

Figure 5.3

Figure 5.4

areas of research was given its own
window. Although separated, the tabs
consist of a simimilar setup. The top
of the tabbed windows explains some
technical specifi tcations of the tool.
The left side contains the options
for simulating and/or visualizing, with
execution buttons underneath. The
right side of the window displays
information on the subject matter
being worked with (Figure 5.5).
 Once the GUI was designed
and appropriately named, PYQT
(Summerfi eld) was used to translate
the QT File into Python. With the GUI
in Python, a new module was made
that integrated all of the simulations
and visualizations with the GUI objects.
This was done by using Signals and
Slots, which created the callbacks. The
GUI was then able to be implemented
as a custom button in Maya (Figure 5.6).

Figure 5.5

Figure 5.6

 A thorough explanation of python is not in the scope of this process
section, however, since the use of python within Maya was signifi cant, I will go
over a few points. The usage of python can take place in two different ways. First,
python can be used in its raw form, as a portable scripting language. Second,
python can be used as a syntax, in which the commands and algorithms accessed
by the programmer are done so in a python syntax, but are not necessarily
pythonic ways of doing things. When using the Maya Python interpreter it is
easy to see when standard Python is being used (Figure 5.7) and whne Python
is being used to access Maya functionality (Figure 5.8). For a script to be
completely portable it must be completely based on raw python and not rely
on any API. Most likely a custom plugin will need to access an API specifi c to
one program, in this case the core of the plugin, the algorithms and such, can
be written in one module, and the parts specifi c to the API written in another.
 In addition to the computational theory of algorithms, python introduces
additional challenges. As it is not a low level language, and when used as a wrapper
for an API, python can be extremely slow. In Maya, python can be used by itself,
to access Maya scripts, use Maya commands, or to access the Maya API. Each of
these options provides a different level of speed for a given task. While using
python to call pre-made Maya scripts saves time on the programming side, it may
drastically slow down the execution time. For example, an invisible 3D grid of
50x50x50 boxes exists in space. An object with a random start position is moved
by the user and a program should tell the user which box is closest to the object
by making the box visible. Each time the object is moved a new box is visible,
and if the object is moved outside of the volume, no box is made visible. This can
easily be done by using internal Maya commands. For example, there is a Maya
command to create a box, move a box, query a box location, and query an object

5|3 Python

location. The program could fi rst
create a box grid of 50x50x50, then
make them invisible. When the user
moves the object the program can
then query the object, query each box
location and then fi nd the one with the
shortest distance and make it visible.
While from a programming standpoint
this is a quick way to implement the
function (and not very intelligent), the
execution time will be unnecessarily
slow. This is because it is not python
that is handling calculations, but rather
python asking a Maya script to have
the low level program do a calculation
and send it back up. This adds enough
complexity that for an operation to
happen multiple times, like searching
all the boxes in a large volume, the
execution time is slowed down. A
faster and more portable way would
be to handle the calculations in the
code. Instead of creating the volume
and using the API to query the location,
the algorithm can just query the
location of the box, and use that xyz
point to check against an array of xyz
points representing the location of a
box. This eliminates the need to spend
computational power creating all of the
boxes ahead of time, but requires more
math implemented in the algorithm.
 Throughout the research
the algorithms were constantly re-
written to improve effi ciency, capability,
and clarity. The challenge in creating
optimal algorithms is the reliance on
internal Maya structures. The creation
of an indpendent program for effi ciency
is valid, however, useful simulation
and visualizations do not necessarily
need to be built the optimal way. This
research is in a unique position. Python
programming is a major part of the

Figure 5.7

Figure 5.8

research, however, the main objective
is in creating a usable tool. Hence
the algorithms need to only be as
effi cient as a usable tool requires.
This position does not however, mean
none of the algorithms are effi cient.

6 Implementation

 The culmination of the research resulted in a Maya plugin named U.D.
Manikin. The plugin interacts with a human model which for this research, is
sitting in a wheelchair. The GUI is a fi xed size and fl oats on top of the Maya
UI. Each section in this chapter provides examples of the tools functionality.
Currently the human model used with the plugin is rigged with the Maya joint
tool. The arms have an inverse kinematic solver applied. Although the reliance on
the Maya IK solver limits portability, a custom IK solver was beyond the scope of
the research. The Maya IK provides a robust set of options meant for animation,
which makes specifying conditions easy. Although implementing external solvers,
either by writing a custom one or using OpenRave (Diankov), is the next step for
continued research. The implementation started with the reach simulation. After
the reach research was fi nished, additional factors were added to the tool. The
fi nal set of factors is not the end list. More human factors can be added, however,
this research explored a few that would give a clear understanding as to how they
could be implemented and used.

6|1 Reach

 From the early stages of the research human reach ability was the main
focus. Simulating and visualizing reach ability presents a few challenges. For
simulation, kinematic models can be used to recreate the ability of the arm. Early
stages of research resulted in a forward kinematic model that described the
reach ability in relation to maximum reach (Schwartz). This type of simulation
brought up a very specifi c question in what the application of simulating reach is
for. Simulating a persons ability to reach as far as they can is useful for different
situations than simulating the complete reach ability. Although there are situations
in which a full reach ability simulation is needed, the most immediate example for
needing the simulation is when the reach ability is a-typical. A unique reach ability
is frequent on people with a spinal cord injury (Curtis). These unique situations,
as well as the natural bio-mechanics of the body demonstrate that a simulation
of the human reach extent is not all-inclusive. This means that while someone
may be able to reach to a certain distance, they may not be able to reach every

Reach
verb

Make a movement with one’s hand or
arm in an attempt to touch or grasp

point from their body to the extent.
When designing on the human scale,
the knowledge of where someone can
reach is extremely important.
 Simulation of reach ability
is done through a kinematic model.
While the fi rst tests in kinematics
were done with a forward kinematic
model, the preceding tests used
an inverse kinematic model. One
problem with inverse kinematics is
the diffi culty of generating a solution
specifi c to a geometry with reasonable
computation time (Jazar). This diffi culty
stems for a couple of reasons, some
of which can be reduced. There is not
a one size fi ts all model for inverse
kinematics. The number of joints
and length of links requires a unique
kinematic model. Although there are
ways to build up kinematic chains, the
complexity requires large amounts of
computational time. Specifi c models
aim to solve this complexity. In the
case of redundant chains, where
there is more than one way for the
end effector to reach a specifi c point,
multiple kinematic solutions exist
(Figure 6.1). In terms of positioning a
chain, only one of the multiple solutions
can be used. There are many ways for
deciding which solution is used, the
easiest being to use the solution closest
to the previous solution.
 Inverse kinematics are used
mostly in robotics and biomechanics.
The two subjects usually have very
different applications, however, the fi eld
of humanoid robotics blurs the line
between robotics and biomechanics.
Research on humanoid robots strives
to fi nd effi cient inverse kinematic
solutions while fi nding solutions that
mimic the movements of a human.

Figure 6.1: (Diankov)

 When looking at the automotive
industry the current solutions and
research are highly invested in the reach
envelope. This reach envelope is similar
to the body envelopes used in ISOKIN.
These envelopes represent the extents
of the reach ability. Mostly representing
the envelope of furthest reach ability,
they may also represent the envelope
of most comfortable reach ability
(Figure 4.5). For many situations these
envelopes are ideal as the situation
only requires knowledge that someone
is able to reach a specifi c point. For
a more thorough understanding of the
reach ability of a person a full reach
simulation must be completed. These
full reach simulations are much less
common, and only a few papers have
been found on the subject (Rodriguez,
Zacharias).
 As most of this research is
meant to be applied to spinal cord injury
simulation, the use of reach envelopes
may be misleading for a designer. While
good at demonstrating the furthest
reach capabilities, these envelopes give
no indication to the designer of what
the interior reach ability is. When
dealing with a situation in which the
human being simulated has no physical
disability, and there are no movement
limiting factors, an envelope may be
suffi cient and any missed information
may not have many consequences.
However, in the case of a physical
disability, or more broadly any situation
in which the human being simulated
has limited movement capabilities
(Figure 2.13), such as being in a tight
space (airplane, rocket, submarine, car),
understanding the kinematics of the
upper body and its full reach ability are
critical.

 Current product solutions
do not offer a robust enough system
to simulate special case conditions
for spinal cord injuries. In some cases
enormous amounts of time can be
spent attempting to create a simulation
mimicking the special case (Hamameh).
The issue with this is the user must
already have the knowledge of how
the simulation should work. The goal
of this research is to expedite the
users research and understanding by
providing a useful simulation that can
be trusted.
 The inverse kinematic solver
used for this research was through
Maya. The end effector could be
manipulated through the Maya UI or
through scripting. Once moved, the
Maya IK solver moves the joints to
the solved angles. If the end effector
is moved to a position which can
not be solved for, the end effector is
automatically moved to the closest
position that has a solution. Since
Maya will always return one solution,
the issues of multiple solutions are not
addressed here. However, when Maya
moves the end effector to the closest
position, it is really returning a null
solution for the specifi c target. The way
Maya handles the IK solver was deeply
integrated with the logic of the reach
simulation.
 The most important note on
the reach simulation is that only the
shoulder and elbow are creating the
reach map. This is for two reasons.
First, the use of a 3+2 axis chain make
the IK simulation less computationally
expensive by treating the hand as the
end effector instead of the fi ngers.
Second, the research on biomechanics
suggests the reach ability should be

more focused on joint ability in the arm
than the entire body since some people
may not be able to move their torso
freely.
 A voxel grid is used for supplying
location input to the simulation. The
end effector is moved to each voxel
in the grid. If after solving the new
location the end effector is in the
desired location and has not moved, the
voxel is given a value. This is a simple
explanation, the full method is more
involved. Since the IK solver is returning
one solution per location, the number
of solutions at each coordinate can not
be used as values for reach ability. The
IK solver returns a value very close to
the previous value when being moved.
This behavior is in line with techniques
to reduce solutions by eliminating
drastically different solutions from the
previous one. The use of the manikin
as a design tool takes advantage of this
behavior by having the user position
the manikin for simulation (Figure 6.3).
When the user positions the manikin,
the movements to all nearby voxels will
be based on the original position.
 Since the simulation does not
use the wrist as a joint for determining
approach angles, a different method
was created to decide the value of a
voxel. From the starting location, the
end effector moves in all directions
away from the center (Figure 6.4). If
a solution is found, the new location
is added to a queue. Each element of
the queue is accessed, the end effector
moves to the voxel, and then tries to
access the bordering voxels. Each time
the end effector lands inside a voxel, the
voxels value is incremented. Each voxel
can be accessed 27 ways, or from 27 of
the bordering voxels. The advantage of

Figure 6.3

Figure 6.4

Figure 6.5

the user positioning the start location
is the higher probability of accurate
results.
 The voxel array is created with
the center point being the start location
(Figure 6.5). This method makes the
queue stack centrally located so the
solver does not need to compute large
movements that may require path
planning to give realistic joint angles.
The centralized stack also makes
smaller volumes more consistent than
randomized movements.
 Visualization of the reach
simulation is done by representing good
values with green, bad with red, and a
gradient between. To resolve the issue
of required slicing seen in Zacharias,
bad values are transparent while good
values are opaque. Through the logic
of a good value being a voxel accessible
from all sides, the furthest voxels had
somewhat low values (Figure 6.6).
As the low valued voxels are more
transparent, the user is able to see
through the low valued exterior voxels
to the higher valued interior. This
allows the designer to instantly see if an
object is outside the reachable volume,
in a hard to reach volume, or hidden in
the easy to reach volume (Figure 6.7).
 The most important discovery
in this system is the unique areas of
diffi cult reach. Although the reach
envelope is a complete arc based on the
shoulder pivot, there are areas which
are within the envelope that can not
be accessed without torso movement
(Figure 6.8). It is these areas, along with
the many other unique situations with
spinal cord injuries that makes reach
simulation and visualization important.

Figure 6.6

Figure 6.7

Figure 6.8

 Human vision capabilities can vary greatly. Unlike near or far-sighted vision
problems, many other vision issues can not be fi xed with glasses. Constraints on
vision is also not limited to the eyes. Being able to rotate the head and lighting
conditions affect the way humans can see the world. Even with perfect or corrected
vision, the eye is only able to interpret certain information in specifi c zones. These
zones include what is legible text, what is comfortable for eye rotation, what is the
maximum the eyes can rotate, and more. As designers, knowing where someone
is looking is nearly impossible. When designing a space, signs are given specifi c
criteria for where they need to be. However, other than legal signs (ADA), the
placement of visual cue’s can be a challenging task. During the original motion
capture session done for this research there was a surprising fi nd. When tracking
the head movement of someone getting out of a chair, it was noticed that the head
was largely aiming down as the person stood up (Figure 6.9). This fi nding led to
the research done on vision envelopes. By including vision envelopes on a manikin

6|2 Vision

Vision
noun

The faculty or state of being able to see

within the model, the designer is able
to see not only the extent of vision, but
key areas such as the legible text zone.
 The diagrams found in design
books explaining human vision were
overwhelmingly complex (Figure
6.10). The amount of information
being conveyed was much less that
it fi rst seemed. This was partly due
to the need for multiple angles and
sections to describe 3D Zones. To
make an algorithm that could stay
fl exible, some trigonometry was used
to describe the view cones (Algorithm
1). This algorithm can take angles of
extents from top and side view and
create the zone they describe. This
allows for one short algorithm to
be used for creating all of the zones.
 In addition to human
limitations, external sources such as
lights play a key role in vision. Lights
placed within a certain range can
cause glare. Glare can not only cause
discomfort but can also make task
completion diffi cult. If designing an
offi ce space, lights placed in certain
places may make it diffi cult for workers
to see, resulting in a lack of productivity.
 To test for lights in a glare zone
the program searches for objects with
the name “Light” (Code 1). Each light is
then compared against the location and
direction of the manikin (Algorithm 2).
If the light is found to be within the glare
range, a red sphere is placed around
it to notify the user (Figure 6.11).
 Multiple vision cones can
be displayed at once (Figure 6.12),
or individually (Figure 6.13). The
cones are always linked to the
manikins head so the designer can
interactively design with vision in mind.

Figure 6.9

Figure 6.10

Algorithm 1

Code 1

Algorithm 2

Figure 6.11

Figure 6.12

Figure 6.13

 The human factor research conducted here has largely revolved around
disabilities. Specifi cally, the use of a wheelchair constrains many problems with
human factors research and allows for visualizations and simulation methods that
may not be valid when a wheelchair is not being used. To understand the problem
as more than just the human factors while being in a wheelchair, this research
looks at the human and wheelchair as one entity. This brings the scale from local
design to large building design and planning. The idea is to setup a platform for
which placements of elevators and stairs, as well as handicap accessible places can
be strategically and thoughtfully planned. As a general guide, this could be used
to make sure the entrance of the building is not too far from an elevator, or the
elevator is not on the opposite side of the building from a wheelchair accessible
bathroom. This work focuses on wheelchairs, however, there are more complex
situations in which this research could be applied to. When looking at someone

6|3 Wheelchair Navigation

Navigation
noun

The process or activity of accurately ascertaining
one’s position and planning and following a route

using crutches, or a prosthetic, the
energy required to walk up stairs or
take an elevator is much more complex
than the single option of a wheelchair
taking an elevator (Cerny). The decision
for someone at the entrance to walk up
the close set of stairs, or walk further
down the hallway to get to the elevator,
is a common and highly diffi cult problem.
Understanding these issues, with a
simple way of testing them not only
can inform in the design process, but
also provide a statistical understanding
of the building that can inform users of
what the best route for them to take is.
 Way fi nding is a problem for all
people. When dealing with disabilities,
way fi nding becomes a more critical
problem. For someone who is in a
wheelchair, knowing how to get to
the second fl oor, or fi nd the nearest
bathroom suitable for their needs
can become a lengthy process. As a
designer, knowing when these situations
happen may lead to better methods
for creating spaces that help inform
way fi nding. Informing a user with
navigation clues can be anything from
stickers and signs to changes in building
materials. Using search algorithms, a
designer can place a virtual user in their
model and fi nd out what the shortest
path for that user to take is. From
there a designer could either redesign,
knowing that the path is extraordinarily
long, or help put navigational clues that
expedite a person fi nding the path and
minimize the time the user spends
navigating to the desired location.
 There are many different
algorithms for fi nding the shortest path
from one point to another. Different
situations require different algorithms
for various reasons including speed

and complexity. Relative to buildings,
the most common usage of a search
algorithm would be Egress. However,
Egress algorithms are more based
on crowd studies and location based
decisions than strictly a search
algorithm (Kuligowski). Search
algorithms can be useful in a variety
of other situations including design.
The extensive use of the Dijkstra’s
search algorithm in all different fi elds,
led to this work using it as the basis
for a wheelchair search. Dijkstra’s
algorithm, although not as fast as the
A* predecessor, is a robust algorithm
that fi nds the guaranteed shortest
path based on a grid containing nodes
and edges (Dijkstra). This work looks
at the methods in creating the grid
and calculating weights for the edges.
 Dijkstra’s algorithm is
guaranteed to return the shortest
path. For simulation, the most
accurate result is priority, and only
if it is unobtainable should we settle
for less. In many situations Dijkstra’s
algorithm is too slow. When traversing
a large network and updating in real-
time, as is the case in many electronic
games, Dijkstra’s may run too slow and
require the use of A*, which gives a
signifi cant performance boost but does
not guarantee the most accurate result.
 Although Dijkstra’s algorithm
is known, the edge weights and
implementation are a much harder
problem. First we look at creating
the nodes. It may look trivial, but
conducting a search algorithm on a
building in a 3D model can not just
be done. The search algorithm needs
inputs. For a building, these inputs
should be locations, and a value it
takes to go from one location to

another. In a simplifi ed graph, a node
could be placed at each key location,
and a value created to go from each
of those locations (Figure 6.14). This
however, requires a knowledge of the
building, something an algorithm does
not have. To the algorithm this graph
is a Python dictionary. The top level
keys are locations with the values being
another dictionary pair. The secondary
key is a location accessible by the main
key with its value being the edge weight
between the top level key and secondary
key (Code 2). By just giving it the
Cartesian coordinates, the algorithm
can only create a direct distance, with
no knowledge of fl oors or walls, the
algorithm cannot create an accurate
representation of the cost associated
with moving from one point to the next
(Figure 6.15). In order to solve this
problem the algorithm must be given a
version of the building it can understand.
 In order for the algorithm to
be useful in a variety of ways and not
require involvement from the user,
a method for recreating the building
into a graph was developed. Using
the internal capabilities of Maya and
its raytracing functions, a node based
graph is created from a model by
sampling vector intersections (Figure
6.16). The user must defi ne a resolution
they would like to work at. The higher
the resolution, the longer both the
graph creation and search algorithm
take. The former being the most time
consuming, yet needs to be done only
once per building design. When the
user selects a resolution, the location
of the human manikin is used as the
start location for the graph creation.
From this point, a vector is shot down
from the height of the manikin, if the

Figure 6.14

Figure 6.15

Code 2

fi rst object the vector intersects with
is the fl oor, a node is created at that
location. A queue is then formed of all
possible move directions from the valid
point. Additional valid points are added
to a new queue. If a vector does not
intersect the fl oor fi rst it could mean
there is an object, such as a table in the
way, or the point has moved off of that
fl oor and is outside the wall. There
are a few options for increasing the
accuracy of this grid. Each time a node
is created a line can be drawn from
that node to the previous, if the line
intersects a wall then the node is not
valid. This particular example added
more computational complexity than
necessary and was not implemented.
Instead of focusing on representing the
entire building accurately, constructing
a graph based on the intents of the
search allowed for a highly accurate
and faster running search algorithm.
 A wheelchair needs a specifi c
amount of space in order to pass through
a hallway. Additionally, a wheelchair has
a specifi c turning radius required to
turn around. These two requirements
allow the graph to be minimalized for
the search algorithm. If a hallway is
too small for a specifi ed wheelchair
to pass through, the search algorithm
should not take it into consideration
as a possible node to move through.
One method for telling the algorithm
not to pass through the node is to add
information to the node. For example,
if every node has a value of 0 to 1,
with an added value of hallway width,
the algorithm can check the required
hallway width against the nodes hallway
width and if it is too short, the node is
assigned an infi nite value (99999999 for
programming). This method is valid, and

Figure 6.16

may be effective if the wall calculations
where done as well, however, this
research took a different approach. In
order to keep the complexity of the
search algorithm down, the only nodes
in the graph are ones that can be passed
through. This means on creation of the
nodes, a node should only be placed if
the hallway width at that point is large
enough for the specifi ed wheelchair.
This was done using the circumference
of a circle with the diameter matching
the width (or turning radius) of the
wheelchair (Figure 6.17). If a point
passed as valid, multiple extra points
(minimum four) are then checked along
the circumference of the required
width. If a point on that circumference
is not valid, the original point is not
considered a valid node. The additional
check on each point slightly changes the
algorithm by adding an additional queue
set. This reduces the nodes in the graph
and speeds up the search algorithm.
 The edges that connect each
node determine what the shortest path
is. For human movement, the shortest
path is not always the best path. Best is
decided as the optimal balance between
distance and ability. For example,
although the stairs uses a shorter path
than an elevator, a wheelchair is not able
to use the stairs, so the shortest path is
not the best. Dijkstra’s algorithm is not
designed for these cases, however, the
information can be calculated before
Dijkstra’s algorithm analyzes the paths.
For this, more factors than only node
distance were used to calculate edge
connections. Instead of separating
the distance of each node and the
diffi culty to move to each node, every
edge value is calculated individually.
Although the actual numbers used

Figure 6.17

are not ideal, further research on this
specifi c issue will provide insight to the
most accurate confi guration while still
utilizing this method. The edge values
are considered a combination of the
distance and angle from the nodes
(Code 4). Additional factors such as
fl oor material could be factored in as
well to give a more robust assessment.
For this base system the 3D distance
between the nodes is calculated, then
the angle from the start node to the
end node is calculated and factored in.
As a starting point, the angle factor is
the natural log of the angle, added to the
distance. For angles that are negative,
meaning the edge is going downhill, half
of the angle calculation is added to the
distance. This is for the ease of moving
down hill, yet the still present energy
requirement to prevent a wheelchair
from rolling down hill, making it more
diffi cult than moving on level ground.
 Previous research has found
a dramatic increase in the energy
needed to move a wheelchair across
a fl oor with a compound angle
(Brubaker), further research into this
can be factored in to the edge values.
Currently this extra energy is only
visualized through the color coding of
nodes (Figure 6.18). Compound angles
mean the node has a higher value on
each of its edge connections, when
these are added together, the higher
value means that the node is on an area
that has multiple angles. This higher
value is represented when the user
visualizes the graph, but is currently
left out of the edge calculations as it
drastically increases the computation.
 In addition to returning the time
required to move from one point to
another, the user is able to visualize the

Code 4

Figure 6.18

graph. The visualization is based on the
value of each node, which is calculated
by adding all of its edge values together.
The nodes are then normalized from
zero to one. The value dictates the
translucency and color. High values
are more costly and are opaque red,
while low values are less costly and
a translucent green (Figure 6.19).
 When dealing with
requirements and standards these
methods of calculating edge weights
are very useful. When dealing with
wheelchair ramps, one can set the
algorithm to create an extremely high
value for any edge with a slope higher
than 12:1. The combination of the
slope value and research on energy
expenditure allows for a tool to not
just analyze a design, but interactively
help a designer understand the energy
needed to navigate their design. This
can be used for instance, in designing a
wheelchair ramp. If a wheelchair ramp
can be placed on two different sides
of a building, one with a longer ramp,
and one with a shorter ramp, the best
choice is not necessarily known (Figure
6.20). A longer ramp will allow for a
smaller incline, yet extends the amount
of time needed to fi nish the ramp. By
incorporating more research on the
subject, this type of algorithm provides
a great way for designers to improve
their design in a quantifi able manner.

Figure 6.19

Figure 6.20

 The amount of space someone takes up depends on not just their weight
and height, but the tools they use in everyday life. These tools can range from
a backpack full of books, to a wheelchair, crutches, or walking stick. There are
many references for designers on the size people take up, including references for
disabilities and clothes (Figure 6.21). In fact, the references vary from general sizes
to extremely specifi c, taking into account winter sized clothes, personal space,
touch-zones, and on. Knowledge of the size required of someone is useful in a
variety of situations, even more benefi cial is a quick way of seeing this requirement
in the design. Just having the knowledge of the size required can not last through the
entire design process. At some point the space needs to be measured against the
required space for a person. This is especially true in bathroom settings that have
strict laws on accessibility. Less in the realm of simulation and more towards pure
visualization is the ability to view these zones right inside the design. Additionally,

6|4 Zones

Zone
noun

An area or stretch of land having a
particular characteristic, purpose, or use,

or subject to particular restrictions

this collection of zones provides a
reminder to designers as to what is not
just the minimum, but what is the real
situation in which design should aim for.
For example, although the ADA specifi es
a turning radius for a wheelchair,
it does not include the situation in
which the person in a wheelchair has
an assistant that must be included in
the turning radius. Additionally, while
the space required for a wheelchair to
pass through a hallway may be known,
the designer must remember that
in a long hallway, leaving just enough
room for a wheelchair to pass may
cause a problem when a wheelchair
is passing and another person is
walking in the opposite direction, let
alone two wheelchairs passing each
other. These additional cases make
memorization of size requirements
an extremely diffi cult thing to do.
 The space taken up by someone
can be represented in different
ways. The physical space taken up by
someone is different than the space
needed for an action to occur. A main
infl uence in this part of the research
was the dissertation by David Lantrip
on quantifying space design (Lantrip).
His research consisted of cataloging
different movements through video.
These movements turned into a body
envelope that was integrated into a
program called IsoKin. The program
itself is interesting in comparison to
the current research as a reference to
how technology and workfl ows have
changed over twenty years. What
has not changed is the relevance of
understanding how a desired human
action results in the perceived comfort
of the space. The answer is not always
as simple as making something bigger.

Figure 6.21

Figure 6.22

Besides for the obvious fact that making
everything bigger requires more space
and money, it also means everything
is further apart and takes more time
to go from one place to another.
Although this distance may make the
environment seem less cramped, it
does not necessarily make the space
more comfortable as discomfort may
arise from aggravation in the length
of time required to complete a task.
 There are many types of
wheelchairs. Unfortunately the
knowledge of these wheelchairs and
how they function is not known by most
designers. Besides the legal standards,
there are various wheelchair sizes, and
just as important, various sized people
that use wheelchairs. At a local hospital,
three different wheelchairs were being
used. With low-cost technology the
chairs were 3D scanned to database
different sizes (Figure 6.22). The
turning radius of a wheelchair is not
just a calculation of wheelbase and
length, but must also include the foot
length of the user, and the users arm.
When an assistant is needed to push
the wheelchair, the turning radius is
drastically increased. Simulation comes
into this section when looking at the
vast array of wheelchairs. A designer
working for either a health center that
uses a few types of wheelchairs, or
designing for a single client with one
wheelchair type, benefi ts from being
able to simulate the wheelchairs space.
With memorization of the entire legal
standards for accessibility a designer
is still not able to provide an optimal
design for a client if the wheelchair
is different than the standard. Most
drastically is a client with a motorized
chair compared with the wheelchair

Figure 6.23

Figure 6.24

used for legal standards. Everything
from the turning radius to seat height
is different and must be designed for.
There are two ways of adding the
various wheelchairs in a visualization/
simulation program, fi rst is to have
a catalog of various wheelchairs and
the designer chooses the appropriate
one. Second, the designer could enter
basic information about the wheelchair
and have the simulations done after
entering the information. These
methods are not mutually exclusive
and could provide an incentive for
community based data sharing. As
specifi c wheelchairs are measured, they
could be added to a larger database
in which designers pull the premade
simulation data for visualization in their
designs. Additionally, the database is
not restricted to designers, meaning
manufacturers and user of wheelchairs
can enter the data to contribute to a
growing collection of wheelchair data.
 Using a similar technique as the
vision visualizations, a single algorithm
was implemented so different zones
could be easily added. The zones are
based around the manikin and can be
visualized individually (Figure 2.23) or
in multiples (Figure 6.24). Although
the manikin uses a wheelchair, standing
zones are also implemented. These
zones, represented in design books as
a way to design space for numerous
people (Figure 6.25), are used to remind
the user of how much space a wheelchair
needs in comparison (Figure 6.26).

Figure 6.25

Figure 6.26

 Creating a way for designers and scientists to work together was a priority
of this research. Through the motion capture work done at the beginning of the
research it was clear that many of the methods and techniques scientists used
could be integrated in design programs. The fi rst obstacle was that not all modeling
programs have character animation built in. Although this work was developed
in Maya, which did have character animation, the goal was to create a system that
could be ported to any modeling program with scripting capabilities. The lack of
animation capabilities was resolved by reading and writing .CSV fi les. This concept
came from the way in which movement science software packages already play
animation. The fi les containing motion capture data are usually a spreadsheet of
markers and xyz locations throughout time. Instead of using xyz marker locations
the fi les in this research use joint angles. This can be done on either the movement
science or 3d modeling side. In movement science someone can use a program

6|5 Analysis

Analysis
noun

Detailed examination of the elements
or structure of something, typically as a
basis for discussion or interpretation

such as Visual3D to read mocap fi les,
construct a skeleton and export the
joint angles. On the 3d modeling side
Motion Builder can be used to take
motion capture data and attach it to a
skeleton. The skeleton can be brought
into Maya and the angles recorded.
Either way, the joint angle information
can be analyzed through plot graphs.
 A key part to this research
was in fi nding existing libraries with
functionality that would benefi t the
design practice. One of these examples
is a matlab style plotting library called
matplotlib (Hunter). This library has
a plethora of plotting styles that can
take data and compare it in ways from
line graphs to animated 3D graphs.
The library was successfully imported
within Maya. Integration with the
manikin tool provides a quick way
to compare joint angles over time.

7 Conclusion

 This work demonstrates a variety of functions, algorithms, and user layouts
that can better integrate human factors with the design workfl ow. There are many
ways to continue this work both by the author and readers. Each of the algorithms
has potential to be both improved with speed and expanded on for functionality.
The current works sets a groundwork for how to integrate the new functions that
may become useful to designers and architects. With the continuation of work
involving BIM, factors such as the human body and the relationship it holds to the
building will hopefully become an integral feature of future BIM applications. As
discussed in the work, the functions presented are not limited to BIM applications.
By bringing human factors to the forethought of designers and architects, the way
and style in which designs are created can be greatly infl uenced, while also being
more user friendly.
 The goal of this work is to continue refi nement within the algorithms and
create the most portable library for designers to integrate with their own work.
Some additional work and side projects have been inspired by going through this

work. For one, a library that takes
basic python functions used in a variety
of different programs and extrapolates
them to a module to act as a wrapper
for cross platform building would be
very useful. By adding a module that
handles the communication with the
program, such as Maya or Rhino, the
UD Manikin could be built with simple
functions abstracted from program
specifi c language, and with a simple
variable switch the library could output
to the program either Maya or Rhino
style python.
 If at the very least, this work
should help people think more about
the human experience of their designs,
not just for the average user, but for
people that have physical disabilities
that the designer may not have thought
of, such as a different reach ability. This
extends not only to the design process,
but building information that could be
displayed and known by the occupants
that can assist in someone attempting
to navigate or use the current facilities.

8 Acknowledgments

Many people have helped in this work in a variety of ways. From helping with
technical problems with programming to guidance on the overall work. I could
not have done it without these people. A few names that I would like to mention
have had a strong direct impact on the work:

Karl Daubmann
Forest Darling
Melissa Gross
Steffen Heise
David Lantrip
John Marshall

Josh Marshbanks
Mojtaba Navvab

Sean Vance

I would like to give a special thanks to Patrick Slater, who set me on the right path
many years ago.

9 References
‘2010 ADA Standards for Accessible Design, Title II (28 CFR part 35) and
Title III (28 CFR part 36)’, Department of Justice.

Abdel-Malek, K.; D, P.; Yang, J.; Brand, R. & Vannier, M. (2001), ‘Towards
Understanding the Workspace of The Upper Extremities’.

Alberti, L.; Rykwert, J.; Leach, N. & Tavernor, R. (1991), On the Art of Building
in Ten Books, MIT Press.

ASIA, ‘Standards for Neurological Classifi cation of SCI Worksheet’, Technical
report, American Spinal Injury Association.
Autodesk www.autodesk.com

Blanchonette, P. (2010), ‘Jack Human Modelling Tool: A Review.’, .

Boeykens, S. (2011), Using 3D Design software, BIM and game engines for
architectural historical reconstruction’Designing Together - CAADfutures
2011’, Les Editions de l’Université de Liège, .

C-Motion www.c-motion.com

Card, S. K., ‘user interface research’, PARC.

Castro, M. J.; David F. Apple, J.; Staron, R. S.; Campos, G. E. R. & Dudley, G. A.
(1999), ‘Infl uence of complete spinal cord injury on skeletal muscle within 6
mo of injury’, Journal of Applied Physiology 68, 350-358.

Cerny, K.; Waters, R.; Hislop, H. & Perry, J. (1980), ‘Walking and wheelchair
energetics in persons with paraplegia’, Journal of the American Physical
Therapy Association 60, 1133-1139.

Clipson, C. & of Michigan. Architectural Research Laboratory, U. (1988),
Simulating future worlds: a review of simulation techniques for research
planning and design, Architecture and Planning Research Laboratory, College
of Architecture and Urban Planning, University of Michigan.

Corbusier, L. (2004), The Modulor and Modulor 2, Birkhäuser Basel.

Crane, E.; Gross, M. & Rothman, E. (2009), Methods for Quantifying Emotion-
Related Gait Kinematics, in Randall Shumaker, ed., ‘Virtual and Mixed Reality’,
Springer Berlin / Heidelberg, , pp. 23-31.

Curtis, K. A.; Kindlin, C. M.; Reich, K. M. & White, D. E. (1995), ‘Functional reach in
wheelchair users: The effects of trunk and lower extremity stabilization’, Archives
of Physical Medicine and Rehabilitation 76(4), 360 - 367.

Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E,
Thelen DG (in press). (2007). OpenSim: Open-source Software to Create and
Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical
Engineering.

Diankov, R. & Kuffner, J. (2008), ‘OpenRAVE: A Planning Architecture for
Autonomous Robotics’, Technical report, Robotics Institute, Carnegie Mellon
University.

Dijkstra, E. W. (1997), A Discipline of Programming, Prentice Hall PTR, Upper
Saddle River, NJ, USA.

Eriksson, J. (1998), ‘Planning of Environments for People with Physical Disabilities
Using Computer Aided Design’, PhD thesis, Lund Institute of Tech.

fi lho, G. B. G. (2005), ‘Optical motion capture: Theory and implementation’,
Journal of Theoretical and Applied Informatics (RITA 12, 61--89.
Hamameh, R. (2010), ‘Digital Human Models Of People With Disabilities’,
Master’s thesis, Wayne State University.

Hunter, J. D. (2007), ‘Matplotlib: A 2D Graphics Environment’, Computing in
Science and Engineering 9, 90-95.

Hutchinson, A.; Guest, A.; Balanchine, G. & Laban, R. (1987), Labanotation: The
System of Analyzing and Recording Movement, Taylor & Francis.

Jazar, R. N. (2010), Theory of Applied Robotics, Springer New York Dordrecht
Heidelberg London.

Jones, P. (1999), Hugo Haring: The Organic Versus the Geometric, Ed. Axel
Menges.

Kuligowski, E. D. & Peacock, R. D. (2005), ‘A Review of Building Evacuation
Models’, Technical report, National Institute of Standards and Technology.

von Laban, R. & Lange, R. (1975), Laban’s principles of dance and movement
notation, Macdonald & Evans.

Lantrip, D. B. (1999), Measuring Constraints to Inhabitant Activities, in Edward
Steinfeld; G. Scott Danford; Michael Feuerstein & Anthony J. Goreczny, ed.,

‘Enabling Environments’, Springer US, , pp. 139-164.

MacKenzie, I. S. (1992), ‘Fitts’ law as a research and design tool in human-
computer interaction’, Hum.-Comput. Interact. 7(1), 91--139.

Moeslund, T. B. & Granum, E. (2001), ‘A Survey of Computer Vision-Based Human
Motion Capture’, Computer Vision and Image Understanding 81(3), 231 - 268.

NASA (1978), ‘Anthropometric Source Book Volume I: Anthropometry for
Designers’(NASA RP-1024), NASA.

NCARB, ‘Schematic Design Study Guide’.

Ousterhout, J. K. (1998), ‘Scripting: Higher-Level Programming for the 21st
Century’, Computer 31(3), 23--30.

Owens, T. (2003), ‘The enigma of multiple sclerosis: infl ammation and
neurodegeneration cause heterogeneous dysfunction and damage’, Current
Opinion in Neurology 16, 259-265.

Page, J. (1990), A Comparative Study of Two Movement Writing Systems: Laban
and Benesh Notations, University of Sydney.

Panero, J. & Zelnik, M. (1979), Human dimension & interior space: a source book
of design reference standards, Whitney Library of Design.

Pollio, V.; Morgan, M. & Warren, H. (1914), Vitruvius, the Ten Books on
Architecture, Harvard University Press.

RehabMart www.rehabmart.com.

Rhino3D www.rehabmart.com.

Rodriguez, I.; Peinado, M.; Boulic, R. & Meziat, D. (2003), Reaching volumes
generated by means of octal trees and Cartesian constraints, in ‘Computer
Graphics International, 2003. Proceedings’, pp. 324 - 329.

Rossum, G. (1995), ‘Python tutorial’, CWI (Centre for Mathematics and
Computer Science), Amsterdam, The Netherlands, The Netherlands.

Sancho-Bru, J. L.; Pe?rez-Gonza?lez, A.; Mora, M. C.; Leo?n, B. E.; Vergara, M.; Iserte,
J. L.; Rodri?guez-Cervantes, P. J. & Morales, A.Klika, D. V., ed. (2011), Towards
a Realistic and Self-Contained Biomechanical Model of the Hand, Theoretical
Biomechanics.

Schwartz, M. & Viswanathan, J. (2012), ‘A Framework for Visualizing Biomechanical
Movement for Designers Within 3D Modeling Programs’’36th Annual Meeting of
the American Society of Biomechanics’.

Seidler, H. (1975), ‘Convent of La Tourette’.

Summerfi eld, M. (2008), Rapid GUI Programming with Python and Qt: The
Defi nitive Guide to PyQt Programming, Prentice Hall.

Summerfi eld, M. (2008), Rapid GUI Programming with Python and Qt: The
Defi nitive Guide to PyQt Programming, Prentice Hall.

Tilley, A. & Associates, H. D. (2001), The Measure of Man and Woman: Human
Factors in Design, Wiley.

Tolani, D.; Goswami, A. & Badler, N. I. (2000), ‘Real-Time Inverse Kinematics
Techniques for Anthropomorphic Limbs’, Graphical Models 62(5), 353 - 388.

University, N. S. (2010), What Is Universal Design, North Carolina State
University College of Design.

Vance, U. S. (2012), equilibrium Universal Design Primer, University of Michigan
Taubman College of Architecture and Urban Planning.

Vicon www.vicon.com

Wittkower, R. (1971), Architectural Principles in the Age of Humanism, W. W.
Norton.

Yang, J. & Abdel-Malek, K. (2008), ‘Human Reach Envelope and Zone
Differentiationfor Ergonomic Design’, Human Factors and Ergonomics 19, 15-34.

Zacharias, F. (2012), Knowledge Representations for Planning Manipulation Tasks,
Springer.

