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ABSTRACT

This research demonstrates methods for integrating simulation 
and visualization techniques with the current tools used in design 
work-flows.  The techniques are applied to human factors with 
a concentration on disabilities.  A tool named Universal Design 
Manikin is developed.  The tool integrates a virtual manikin and 
wheelchair with a coresponding graphical user interface.  The 
research covers factors from a human scale of reach abilitiy to a large 
scale of building navigation.  The research presents an opportunity 
for seamless collaboration between scientists and designers by 
integrating joint analysis tools with design tools.  Methods for 
simulation and visualization of reach, vision, navigation, and spatial 
zones are presented.  
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1 Preface

 This book is a compilation of human based design research.   It covers 
issues of computation, biomechanics, and overall work-fl ow.  Motivation behind 
the research into those elements derives from a basic question; What drives 
design?  While the factors that drive design can vary, the following pages outline 
a historical precedent for design based on the human body.  The history behind 
human design is broken into three time periods;  and each of these periods come 
with a system in which design has been based on.  This consistent use of a system 
greatly motivated the work to move past the creation of a specifi c design concept 
and onto a larger issue of creating a platform in which collaboration and human 
based design can thrive.  The following is a brief introduction to some key points 
related to the history of human based design.

Image Credit: (Zelnik)



“How could the relation of Man to God be better 
expressed, we feel now justifi ed in asking, than 
by building the house of God in accordance with 
the fundamental geometry of square and circle?” 

-Wittkower

1|1 Vitruvian Design

 The start of a human-form centered architectural fi eld can be traced back 
to Marcus Vitruvius in 1 BCE.  His work entitled De Architectura, was broken 
into 10 books dealing with various aspects of architecture.  Although many have 
seen the Vitruvius man diagram from Leonardo Da-Vinci, few know the history of 
that diagram.  Vitruvius began the fi rst chapter of his third book stating, “Without 
symmetry and proportions there can be no principles in the design of any temple; 
that is, if there is no precise relation between its members, as in the case of 
those of a well shaped man.”(Pollio).  This comparison of members in the temple 
to the temple itself is a precedent for the religious work that followed in the 
Renaissance.  Vitruvius continued to lay the groundwork of what Da-Vinci would 
later make infamous through art, by describing the proportional relationship of 
man:
“For if a man can be placed fl at on his back, with his hands and feet extended, and 
a pair of compasses centered at his navel, the fi ngers and toes of his two hands 
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and feet will touch the circumference 
of a circle described therefrom. And 
just as the human body yields a circular 
outline, so too a square fi gure may be 
found from it. For if we measure the 
distance from the soles of the feet to 
the top of the head, and then apply that 
measure to the outstretched arms, the 
breadth will be found to be the same 
as the height, as in the case of plane 
surfaces which are completely square.” 
(Pollio)
It was not until over a thousand years 
later De Architectura was rediscovered.  
The book was then popularized and 
with the rise of the Renaissance, the 
drawings of the Vitruvian man appeared.  
It was in this context that Leonardo Da-
Vinci created the well known diagram.
 It is important to note the 
comparison between a human-
form centered design, in which the 
design revolves around the form of a 
human, and an anthropocentric design 
in which the design is related to 
human ergonomics.  This distinction 
is important when looking at work 
from the Renaissance.  The wording 
of Vitruvius and many representations 
of Renaissance buildings appear to 
relate the building to the human, but 
at closer look they are truly about the 
divine world.  The comparison of the 
Vitruvius man to architectural works 
of the Renaissance is quite simplifi ed.  
Alberti’s De re Aedifi catoria outlines 
nine geometries that fall in line with the 
circle that the Vitruvian man describes 
(Figure 1.1).  While using the circle as 
a base, the proposed geometries are 
based off this circle, varying angles 
of the geometry based on radius’s 
of the circle in which they inscribe.
(Wittkower)  This at fi rst may seem 

Figure 1.1: (Alberti)



convoluted, but the rhetorical question 
posed by Wittkower sheds light on 
this situation, “How could the relation 
of Man to God be better expressed, 
we feel now justifi ed in asking, than by 
building the house of God in accordance 
with the fundamental geometry of 
square and circle?”(Wittkower).  So 
the comparison of human centered 
design from Renaissance to present 
day is better explained as human-form 
centered design to anthropocentric 
design.   



“If a man set out without knowledge of planning 
concepts but in identifi cation with nature and thus 

nature-like, he will always act creatively”.   
-Hugo Harring

 In the early 1900’s Le Corbusier began to create a universal measurement 
diagram.  His work on the Modulor attempted to set a standard for design in 
general.  Le Corbusier however, was not necessarily looking at a geometric model 
that would constrain the designer entirely.  Instead, Le Corbusier was looking at 
the modernization of manufacturing and its widespread reach.  With the basis in 
proportion, Le Corbusier began to create a system in which measurements could 
unify the different unit systems.  Le Corbusier’s goal was to create “a common 
measure capable of ordering the dimensions of that which contains and that 
which is contained: capable...of offering a solid pledge of satisfaction to supply and 
demand” (Le Corbusier).  While Le Corbusier followed up with a second book, 
Modulor 2, with many examples of his system being used and praised, the work 
of the Modulor created controversy in those loyal to free thinking design.   The 
use of proportions (Figure 1.2) and ergonomic representations (Figure 1.3) gave 
the designer a freedom to work within a constraint, and in doing so focusing on 
the form rather than trying to understand how the form would function.  This 

1|2 Organic Design
Image Credit: (Le Corbusier)



led to a different school of thought, the 
belief that the use of these constraints 
limited the natural fl ow of a design.
 Tangent to Le Corbusier, Hugo 
Haring discussed the relationship 
between functional and expressive 
design.  He outlines the way in which 
buildings are separated by form and 
function.  Haring explains that the 
design of functional forms will in turn 
satisfy the craving for expression, 
declaring that our appreciation for 
machines, ships, cars, and aircraft are 
routed in this satisfaction of functional 
forms (Jones). This understanding of 
design based on human ergonomics is 
a continuous topic of controversy as 
designers work through the notion of 
form following function.  Haring argues 
that all forms are based on an internal 
path, “even crystals and geometrically-
shaped [forms], which allows each to 
develop according to its own inner 
plan”.  This is contradictory to the 
work of the Renaissance in which the 
total form is the representation of the 
human.  At the fi rst level of thought, 
this look at design extending outwards 
may seem inline with the work of Le 
Corbusier as would standardize the 
human proportions in relation to chairs, 
tables, etc.  The split emerges in what 
Haring describes as “planning concepts”.  
Haring believed, “It is evident that in the 
same way, our potency in creating and 
building is limited by the potency of 
our planning concepts” (Jones).  Haring 
proposes “If a man set out without 
knowledge of planning concepts but 
in identifi cation with nature and thus 
nature-like, he will always act creatively”.   
 This relationship between a 
plan and nature draws back to the 
problem Le Corbusier was trying to 

Figure 1.2: (Le Corbusier)



resolve, the emergence of the meter.  
While a design based on the anglo-
saxon measurement of foot and inch 
were derived by the person directly, the 
meter is an abstract representation of 
distance.  Le Corbusier himself notes 
the beauty in which building created 
on personal measurements, the inch 
and foot, convey (Le Corbusier).  The 
design fl ow of the past, using personal 
measurements to design ones home, 
is inline with the argument made 
by Haring, and what Le Corbusier 
acknowledged as “infi nitely rich” 
(Le Corbusier).  However, Haring 
makes the case that the creation of a 
diagrammed system of measurements 
in its very nature hinders the natural 
fl ow of a design.  He states that the 
men who act creatively through natural 
understandings are “ in contrast with 
the men from geometric cultures, who, 
obsessed with order and limited in their 
planning concepts, could work fruitfully 
on so long as their creative effort was 
poured into the forms of geometry, 
subordinated to its laws and rules, and 
so constrained and destroyed..” (Jones).
 The concepts created through 
the work of Le Corbusier and Harring 
provided extraordinary platforms 
for new waves of design.  Within The 
Modulor 2 it is clear how drastic the 
effect of Le Corbusiers system was on 
modern design (Le Corbusier).  To this 
day the proportions displayed by Le 
Corbusier are studied and investigated 
in design.  However, the Metric system 
is widely adopted as the standard unit 
of measurement, the relative abstracted 
nature of it has faded, and the fi eld of 
ergonomics has fl ooded the world with 
knowledge of true human proportions.

Figure 1.3: (Le Corbusier)



“There is no such thing as an average user”
-Susanna Laurin

The most recent human based design movement is Universal Design.  
While there are many alternative names, the concept stays the same.  
Universal Design can  be understood through its seven principles: 

1) Flexibility in use:  The design accomodates a wide 
range of individual preferences and abilities
2) Tolerance for error: The design minimizes hazards and the 
adverse consequences of accidental or unintended actions
3) Low physical effort: The design can be used effi ciently 
and comfortably and with a minimum of fatigue
4) Simple and intuitive: Use of the design is easy to understand, regardless of the 
user’s experience, knowledge, language skills, or current concentration level
5) Equitable Use: The design is useful and marketable 
to people with diverse abilities

1|3 Universal Design
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6) Perceptible information: The 
design communicates necessary 
information effectively to the user, 
regardless of ambient conditions 
or the user’s sensory abilities
7) Size and space for use: Appropriate 
size and space is provided for 
approach, reach, manipulation, 
and use regardless of user’s body 
size, posture, or mobility
(NCSU)
 In contrast with the previous 
design platforms, Universal Design 
is segmented into functionality, 
independent of a specifi c person.  By 
targeting the principles to function, 
Universal Design remains open to 
new understandings of the human 
body.  This openness has helped break 
down discrimination against people 
with disabilities, and has done so 
without idealizing a specifi c situation. 
 The Universal Design principles 
are not specifi c to disabilities.  The 
principles are meant to help all people 
through design.  More importantly, 
Universal Design is relevant to all 
people since every body is different 
and everybody ages.  As fast as people 
grow out of clothes, so do they grow 
out of certain designs, and into new 
ones.  People also vary based on 
ethnicity. For example, the leg length of 
the average US black male is 2” longer 
than the average Japanese male (Tilley).  
Although 2” of leg length while standing 
may not matter, a chair designed for a 
US black male could result in a Japanese 
male not being able to place his feet 
on the ground (Figure 1.4).  A more 
extreme example being a customized 
design for an average Northern Nilote 
would be far to big for a Pigmie as their 
averages are different by 15.4”(Figure 

Figure 1.5: (Zelnik)

Figure 1.4: (Tilley)



1.5).  Beyond the relevance due 
to differences between all people, 
universal design can benefi t everyone 
in unintended ways.  For example, 
putting automatic door openers for 
wheelchair accessibility has the added 
benefi t of making it easier for someone 
carrying objects to open the door.  
Another example is that by providing 
ramps, all rolling objects, from grocery 
carts to strollers are easier to use.    
 In 1990 the creation of the 
American with Disabilities Act (ADA) 
made Architects and Employers 
legally responsible for accessibility.  
Outlined in a series of legal provisions 
and diagrams by the Department of 
Justice, the ADA set a new standard,  
requiring equal access for people with 
disabilities.  Unlike Universal Design, 
the ADA needed to consist of specifi c 
examples in order to insure a suitable 
implementation.  These examples 
are considered by the ADA as the 
minimum requirements.  This raises a 
major problem; without understanding 
the origin of these examples, how 
can one design for something 
to be better than the minimum?  

Figure 1.6: (ADA)



2 Introduction

 Through the motivation of human centered design the intention of this 
work is to use visualization and simulation techniques to aid in the design process.  
The result of the research provides a platform for which movement scientists 
and designers can collaborate, and design students can explore and learn about 
human factors.  The platform exists through a tool implemented in a 3D modeling 
program.  The tool consists of different algorithms for simulating and visualizing 
human factors, fi le importation of motion capture data, and plotting functions 
to visualize human joint information.  The specifi c functionality of the tool and 
algorithms is elaborated in later chapters.  In this introduction the key components, 
simulation, visualization, collaboration, and education are introduced as they relate 
to the research.  



2|1 Simulation

 The distinction between virtual and physical is increasingly diffi cult 
to understand.  Through advancements in technology and mathematics we are 
constantly increasing our ability to recreate the world into a new, Synthetic world.  
This ability, known as Simulation, helps save lives, money, and provides valuable 
insight not gained any other way.  As a designer, simulation can provide insight as 
to how a material will perform under stress, how a light will effect a space, or how 
a crowd of people will exit a building.  While simulation has many applications, this 
book is interested specifi cally with the ability to emulate human factors in relation 
to design.  
 Within the synthetic world of simulation one can strive to emulate the 
real world, or create new worlds.  It is this vast ability of simulation that requires 
a focused understanding of what a specifi c simulation does.  To achieve this 
understanding, a series of diagrams can be created to represent the components.  
To start, a simulation consists of  an input, a function, and an output.  (Figure 2.1) 

sim·u·la·tion
noun

The imitative representation of the 
functioning of one system or process by 

means of the functioning of another



.  This system can be applied to a wide 
spectrum of situations ranging from 
the real (physical world) to abstract 
(computer simulation) (Figure 2.2).  
 The spectrum that human 
factors simulation exists within is much 
smaller than environmental simulation.  
With human factors, the information 
is easier to access in the real world, 
creating a closer link between the 
input and output.  This work explores 
two types of simulations for human 
factors, simulations of the human body 
and simulations of the body relative to 
an environment.   To contextualize the 
simulation options the environmental 
simulation map of Simulating Future 
Worlds (Figure 2.3) is re-appropriated 
to the simulation of human factors 
(Figure 2.4). 
 Not all simulations are good 
for all types of information.  The 
combination of inputs and functions 
effects the end output and it is 
important to know how.  A major 
fallback with many commercialized 
human simulation models is the closed 
access to the functions.  Although a 
human model may seem correct, there 
may be additional factors that have been 
left out of the calculation.  As such, it can 
be dangerous to accept the information 
given by a closed simulation product.  
The use of a simulation graph creates 
an easily traceable result with the inputs 
and function properly understood.  For 
this work, the simulation graph is used 
to outline places in which the output 
can be improved through different 
simulation methods.

Figure 2.1

Figure 2.2

Figure 2.3: (Clipson)

Figure 2.4



 Visualizations are how the information gathered from the simulation 
are represented.  These visualizations are created by combining the information 
given from a simulation, and the purpose of that information relative to human 
factors.  By this intent, there are many ways of achieving the visualization.  
Understanding the different types of visualizations relative to the human body 
helps decide how to best display the information.  Different fi elds may refer to 
their visualizations with different terminology, such as dance referring to it as 
notation (Laban).  Other terms such as diagramming have a slightly different 
intention.  While the visualizations used in this book and many others are ways 
of representing information, or abstracting the human body into information.  
Diagrams however, are meant to explain information over just representing it.  
 Early stages of this research investigated the different methods of 
diagramming human factors.  Through this research, it was clear that the design 

2|2 Visualization

vi·su·al·i·za·tion
noun

The act or process of interpreting in visual 
terms or of putting into visible form 



fi eld had remained stagnant for quite 
some time.  In order to understand the 
reasoning for this lack of innovation in 
human representation, two additional 
disciplines, Dance and Engineering, were 
looked at for methods of diagramming 
humans.  The research was not limited 
to, and is not to be confused with 
representation of anthropometric 
data.  All types of human diagrams 
within Dance and Engineering 
were studied.  It was through this 
exploration that the decisions on how 
to represent information on human 
factors within a tool were made. 
 Dance, a fi eld entirely based 
around the human body, demonstrates 
creative ways of diagramming human 
movement.  With two of its systems, 
Laban Notation and Benesh Movement 
Notation, dance is able to diagram the 
movements of a dancer on paper (Page).  
Using symbols, Laban Notation can 
represent the direction of movement  
(Figure 2.5), the body part moving (Figure 
2.6), the level of movement (Figure 
2.7), and the length of time it takes to 
do the movement (Figure 2.8).  These 
two systems are by name, notation, yet 
fundamentally diagram the movements 
of a dance.  This diagram is used to 
explain how a body should move in 
order to complete the dance sequence.  
 The past example demonstrates 
a method in which a chain of human 
actions can be explained through a 
diagram.  These diagrams exist as a 
set of symbols that can be combined 
in a linear fashion corresponding with 
the change in time.  Alternatively, the 
display of human information can be 
approached through an abstraction 
of humans into machines.  The term 
machine is used as a way to describe 

Figure 2.5: (Hutchinson)

Figure 2.6: (Hutchinson)

Figure 2.7: (Hutchinson)

Figure 2.8: (Hutchinson)



the abstraction of the physical person 
into a systematic or mathematical 
model that describes a human or a 
persons actions.  On a singular scale, 
a human action can be described 
through a mathematical model.  As 
one example, the psychologist Paul 
Fitts proposed a model for human-
computer interaction that predicts the 
time required to move from one point 
to another (Figure 2.9).  Fitts’s model 
is used to predict the act of pointing 
(Fitts).  This sixty year old mathematical 
model translated so well to the age of 
computers that it profoundly impacted 
the design of the Xerox mouse (Card).  
The effi cacy of this model is in its 
ability to simulate a persons pointing 
speed.  While the function itself can 
be utilized as a diagram for a persons 
pointing speed, it is the usefulness of 
this function, as part of a system able 
to simulate, that makes it so powerful.   
 While dance benefi ts from 
an entire diagramming system and 
engineering has exploited mathematics, 
design has found more usefulness in 
larger statistical datasets (Figure 2.10), 
some translated to graphical form 
(Figure 2.11).  These graphics are by 
nature stagnant pieces of information 
in their printed form (Tilley).  Stagnant 
representations of human factors 
evolved from the large collection 
of anthropometric data.  This data 
needed to be represented in a way that 
everyone could understand, as well as 
repeat.  Standardization became key 
to people in human factors fi elds as it 
provided quick statistical information, 
useful for mass production and 
design.  This anthropometric data 
was standardized through a series of 
methods in which the human body 

Figure 2.9: (MacKenzie)

Figure 2.10: (Zelnik)

Figure 2.11: (Zelnik)



could be measured (FIGURE data 
collection tools).  It was through the 
research of diagramming in fi elds outside 
of design that led this work to integrate 
more than just large standardized data 
sets.  The tool developed through this 
research combines the methods of the 
anthropometric data representation 
with the fl exibility of mathematical 
functions to create a diverse and 
expandable tool useful for simulation as 
well as pure visualization of human factors.

Figure 2.12: (Zelnik)



 Creative and innovative solutions are constantly created through 
collaborative work.  The push for collaboration has been seen through the 
increase of multidisciplinary classes and grants.  Much of the work in this 
book is due to collaborative efforts.  The world of knowledge is far to great 
for one person to know everything.  It would also be foolish to assume that all 
of the useful knowledge for a given subject could be mastered by one person.  
In this world of human factors, it is clear that a designer must understand 
the human body in order to design for it.  However, it is diffi cult to know to 
what end someone must understand the human body.  After all, a designer 
must also know about materials, colors, construction, etc..  This is where 
collaboration is key, people providing each other with valuable information.
 While in many cases the knowledge a designer has of human factors 
may be suffi cient, it is those unique times in which a designer needs additional 
information on a human in order to design.  A common occurrence of this need 

2|3 Collaboration

col·lab·o·rate
verb

To work jointly with others or together 
especially in an intellectual endeavor 



is within Universal Design.  With a 
concentration of the ability for a design 
to be widely accessible, one must know 
what makes a person disabled.  Between 
diseases, injury, age, and gender the 
abilities of humans greatly vary (Tilley).  
Not only does the physical ability of 
people vary, but so do they instruments 
and environments people use.  
 Besides the differences among 
people, there are times in which the 
design location is closely linked to human 
factors.  This situation is common when 
designing for small spaces (Figure 2.13).  
One example, military vehicle design, 
is a major sector requiring experts in 
many different fi elds.  Using a submarine 
as an example, It is clear that the design 
must maintain a balance between 
military effi cacy and human comfort.  In 
a military situation, adaptation should 
not be the fallback excuse for the 
lack of human usability.  The question  
now is; what hinders collaboration? 
 The problem that most often 
hinders collaboration is a lack of a 
mutual language.  This problem runs 
deeper than just the jargon used.  
Through the work in this book one 
obvious issue came up:  the tools 
people use are different.  While in 
design one may use Maya (Autodesk) 
or Rhino 3D (Rhino), in kinisiology 
one may use OpenSim (Delp) or Visual 
3D (C-Motion).  The use of different 
tools makes the transfer of knowledge 
extremely diffi cult.  As one side does 
not know how the others program 
works, it becomes extremely diffi cult to 
bridge.  By creating a platform that both 
disciplines understand, the transfer of 
knowledge becomes easily achievable.  

Figure 2.13: (NASA)



 Without being exposed to the many situations in which design and human 
factors are greatly intertwined it is diffi cult to understand the issues.  During the time 
of this research a class at the University of Michigan on Universal Design was used 
to understand the challenges people have when designing for something they do 
not directly experience (Vance).  Students learned about different types of disability 
through in-class exercises initiated by the professor.  These exercises were intended 
for students to experience what the effect of various disabilities was on a person and 
their environment.  In other words, students experienced why someone was disabled.  
 Why someone is disabled is not very intuitive.  What this means is that 
someone is only disabled as long as they are not able to do something.  In relation 
to design, if a text is too far to read it, it is the text that has dis-abled the reader.  
In this case, the solution is obvious, move the text closer.  Unfortunately most 
situations are not this easy to understand.  It is for that reason universal design 
classes have physical activities such as putting on goggles to simulate cataracts 

2|4 Education

ed·u·ca·tion
noun

The fi eld of study that deals mainly with 
methods of teaching and learning in schools 

Image Credit: (NCARB)



and old age (Vance).  These activities 
greatly benefi t students, however, it 
requires a great deal of time to prepare 
and at worst creates a problem for 
students who may want to learn but 
do not feel comfortable participating.  
 Through simulations of human 
factors and useful representations, 
much of the information gained from 
hands on activities can be learned on 
the computer.  This is not to say that 
the use of a computer is more benefi cial 
than hands on research, however it 
does provide an alternative that is not 
accessible through books.  Through the 
documentation of students engaged in 
activities and the documents submitted 
by the students, some important trends 
are seen.  Many of the visuals created 
by the students either showed a human 
factor range or showed the passage of 
time through multiple and overlay images 
(Figure 2.14).  These two common 
occurrences translate extremely well 
to the computer.  The ability to interact 
and manipulate a virtual person may 
not be better than hands on learning 
but it does provide a useful alternative.

Figure 2.14: (Vance)



3 Technical Concepts

 Computer simulation models of human movement can be broken into two 
subjects, Biomechanics and Computation.  Between these two there are numerous 
considerations when making a simulation.  First, Biomechanics can be understood 
as a way to break down organic movement into structured rules.  Computation 
is then used to translate these structured rules into a function that can take new 
inputs and generate a new movement.  Additionally, human factors other than 
movement can be integrated into a system for simulation.  These systems can use 
both generic and specifi c functions to create the simulation.  When these functions 
become complex, the amount of time required to create a simulation can increase.  
Through different methods of computation the time required for a simulation can 
be changed.  The goal in this research was fi nding a balance between computational 
complexity, effi cacy of the simulation, and user friendliness.  In order to constrain 
the variables at large, this research has concentrated on human factors within 
a wheelchair.  While this narrows many variables it also introduces some very 
unique ones.  

Image Credit: (Abdel-Malek)
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2|1 Biomechanics

 Biomechanics of human movement can be described by kinematics.  The 
two types of kinematic systems used here are Inverse and Forward.  The difference 
between the two is with the input and output.  To relate this to a human, a forward 
kinematic model is when the should and elbow joint angles are known, and the 
location of the hand is wanted.  Conversely, if the location of the hand is desired, 
an inverse kinematics model is used to fi nd the angles of the shoulder and elbow 
joints.  This system of shoulder, elbow, and hand joints is called a chain.  A chain 
is made up of links and joints with the end of the last link becoming an end 
effector (Jazar).  In the case of a human arm, the fi rst joint is the shoulder with 
a link to the elbow and from there a link to the hand, which is the end effector.  
While an inverse kinematic model can be used to fi nd joint angles, it does not 
necessarily fi nd good ones.  Essentially an inverse kinematic model can fi nd a 
range of angles that will result in a specifi c location.  The diffi culty is in resolving 
the range of solutions to just one.  There are a range of techniques that can be 

bio·me·chan·ics
noun

The mechanics of biological and 
especially muscular activity  



used.   One common technique that 
is often a result of the given condition 
includes constraining the angles a joint 
can rotate, in turn constraining the 
solutions available.  These techniques 
include constraining the angles a joint 
can rotate, in turn constraining the 
solutions available.  This method was 
used at a larger scale, constraining all 
movement to a wheelchair, and similarly, 
constraining the solutions available. 
 Constraining the biomechanical 
problem to a person use a wheelchair 
creates an interesting dynamic.  This 
instantly removes the ability to quickly 
move from one point to another.  It also 
introduces the issue of why someone is 
in a wheelchair.  When looking at spatial 
design books or the ADA standards it 
may seem like the only difference is that 
a person is in a sitting position (Figure 
3.1).  Unfortunately the problem is much 
different.  There are many diseases that 
can effect a persons movement such as 
Multiple sclerosis.  The reason Multiple 
Sclerosis effects the bodies movement 
so much is through infl ammation of the 
brain or spinal cord (Owens).  As the 
spinal cord acts as a carrier of the bodies 
nerves, any damage or disruption can 
change the bodies ability to function.  
Similarly, spinal cord injuries change a 
persons ability to move.  Hence, broken 
bones or old age are only a few reasons 
someone may need to use a wheelchair.  
To narrow down the problem we look 
specifi cally at spinal cord injuries and a 
persons ability to reach.  
 The spinal cord is made up of 
vertebrae, these vertebrae stack up and 
are split into four groups.  The location 
in which a nerve exits the spinal cord  
is relational to the body parts it effects 
(Figure 3.2).  What this ends up meaning 

Figure 3.1: (Zelnik)

Figure 3.2: (ASIA)



is that a spinal cord injury may not just 
result in the loss of leg usage, but may 
change the way other body parts work.  
For example, a spinal cord injury that 
occurs between the vertebrae T11 to 
L1 results in the paralysis and loss of 
sensation in the hips and legs.  This low 
level injury results in biomechanical 
movement similar to that shown in the 
ADA standards.  However, an injury 
in the Thoracic mid range between 
T5 to T8 results in paralysis from the 
lower trunk down as well as a loss of 
sensation below the rib cage.  Since 
the human body is all connected, what 
may seem like an injury that only effects 
below the ribcage ends up translating 
above as well.  When looking at the 
reach ability physics begins to take a 
role.  When a diagram shows someone 
in a wheelchair leaning forward, it is 
assuming the person is able to get back 
up (Figure 3.3).  In order to counter 
act the body weight leaning forward, 
muscles in the lower part of the body 
need to contract.  The problem then is 
if a person is either paralyzed or has 
limited sensation below the ribcage their 
torso muscles are signifi cantly reduced 
(Castro).  With reduced muscles, the 
person does not have the ability to 
compensate for their body weight and is 
then not able to lean.  Some people have 
such limeted strength and/or balance 
that they need to be mechanically 
stabalized (FIgure 3.4).  These examples 
show a population in which the reach 
ability is far different from the average 
man.  Even further down this road is 
the high level spinal cord injuries that 
create reduced sensation of the hands 
and arms, directly affecting the upper 
limb movements.  This demonstrates 
the need for a more complete model 

Figure 3.3: (Tilley)

Figure 3.4: (RehabMart)



relating to human ability.
 Studying human movement 
is a different problem than simulating 
movement.  Modern technology has 
allowed researchers to study the 
bodies movement in three dimensions 
with motion capture.  Optical motion 
capture is a common way to track 
human movement (Moeslund).  Using 
small refl ective spheres known as 
markers, attached to a persons body, 
infrared cameras record and triangulate 
the markers position (Figure 3.5).  This 
recording becomes 3D point data on 
the computer (Figure 3.6).  A computer 
skeleton is then created from the point 
data.  The importance of this creation 
is the introduction of angles into the 
data.  Similar to the inverse kinematics 
problem, angular data gives different 
information than point data.  Together, 
point and angular data provide a 
complete system in which a researcher 
can extrapolate the data.  
 A joint is truly a point in which 
a rotation occurs.  Since rotations are 
measured in angles, a study on human 
joints would require angles.  Additionally, 
angles are easily transferable between 
research subjects as, unless there 
are extenuating circumstances, joint 
types between people are all the 
same.  Location data however, varies 
by person because of differences in 
marker placement, fat content, and 
height.  Therefore, in order to study 
the speed in which someone stands up, 
the angle of the hip over time would 
be wanted, whereas just the location of 
the hip when standing will greatly vary.  
Transferring this knowledge to reach 
ability is a critical step in understanding 
simulation of human movement.  In 
order to accurately describe where a 

Figure 3.5: (Filho)

Figure 3.6: (Filho)



person can move a limb, it is not the 
location of the hand that is important, 
it is the angle of the joints.  By knowing 
that everyone’s shoulder can rotate 10 
degrees behind themselves, a computer 
skeleton at any desired height can be 
created with the arm in the furthest 
position backwards (Figure 3.7).  From 
there the information of where the 
hand is can be gathered.  This is a basic 
example of being able to simulate 
human factors.

Figure 3.7



 Simulations of human factors is by no means trivial.  On top of the 
computation needed for the simulation, 3D visualizations require a way to be 
seen and utilized.  Two sides to implementation through computation are speed 
and user friendliness.  On one side are the low level programming languages such 
as c++.  These programming languages are closer to machine code than others and 
are required to be compiled (Ousterhout).  This means that the code written must 
be reformatted by the computer into a computer readable state before executing 
the code.  The benefi t of this is the speed that the computer can run the functions.  
On the downside, integrating newly written code with pre-compiled code is 
diffi cult and the syntax is far more complex.  On the other side is programming 
languages like Python, which have an easy to use syntax, easily integrated with 
other code, yet is painfully slower (Ousterhout).  Generally, modern technology is 
able to run human simulations relatively quick.  For example, character animation 

2|2 Computation

com·pu·ta·tion
noun

The action of mathematical calculation



programs using optimized algorithms, 
full inverse kinematic systems can 
be computed in real-time (Tolani). 
 Programs like Maya, which are 
more than just character animation 
programs as well as other 3D modeling 
programs have begun to offer access  to 
an Application Programming Interface 
(API).  An API allows people to program 
functions while using pre-exisitng ones 
from the program itself (Figure 3.8).  
Currently many 3D modeling programs 
offer access to the API through Python.  
This is benefi cial for human simulation 
in two ways, most importantly this 
allows for quick and easy access to 
visualization functionality.  Without an 
API it would be nearly impossible to 
truly integrate simulation techniques in 
a designers work-fl ow without creating 
an entirely new program.  Another 
benefi t is the ease in which python is 
able to reference additional python 
fi les.  In Python, these separate fi les 
are called modules.  The separation of 
functions into different modules assists 
in the legibility of the code but more 
importantly allows for an extremely 
portable function.  Since different API’s 
require specifi c ways of accessing the 
internal code, a function using one API 
will not work in a different one.  This 
difference in API’s is where the use of 
separate modules for code becomes 
useful.  By separating the simulation 
function from the visualization function, 
transferring from one program to 
another is much simpler.  In addition 
to being able to easily transfer 
the simulation, creating modules 
that exclusively contain universal 
code provides a straight forward 
display of the simulation technique.  
 Although currently many 

Figure 3.8



programs designers use have access to 
an API, it has not always been this way, 
especially with python.  The reason 
the integration of an API is so valuable 
to this research extends beyond the 
technical hurdles of programming 
a simulation and visualization from 
scratch.  The integration of Python 
programming capabilities within the 
tools designers use is also an integration 
of additional tools and techniques.  The 
past twenty years has been fruitful 
with human simulation programs.  
These include methods for virtual 
navigation, kinematic simulation, and 
BIM analysis (Boeykens).  While these 
examples provide legitimate methods 
for simulation and/or visualization, they 
are all developed in an independent 
program.  There are a few possible 
reasons for this.  Either the research 
is specifi cally targeted at solving a 
problem and is less concerned with 
the utilization of the program, or the 
creation of an open source program is 
used as leverage against the high cost 
of the available programs (Eriksson).  
The former reason is opposite the goal 
of this work, and the latter is in part 
agreeable.  The high cost of specialized 
human simulation programs like JACK 
do not make for a very accessible tool.  
However, this work focuses on current 
designer work-fl ows, which relatively 
low cost tools such as Maya, Rhino, 
and 3D Studio Max are most common, 
and all have Python integrated.
 In addition to the 
computational issues with 
programming languages and API’s is a 
broader issue of algorithm effi ciency.  
Although there are some instances in 
python that can never be as fast as a 
low level programming language, there 

are many ways to make python even 
slower.  Especially when using python 
with an API, the balance between 
using premade scripts in the API and 
custom writing them is important.  On 
a general note, algorithms themselves 
should be implemented in a way 
suited to the programming language.



4 Precedent

 In addition to the conceptual research of human centered design are four 
precedents that demonstrate a combination of conceptual and technical work as 
it relates to human factors.  These works come from various fi elds and have been 
used as a main source of inspiration and comparison to a greater extent than the 
references.  Each of these works are linked to a period of time in which many of 
the technical challenges vary from those today. 

Image Credit: (Blanchonette)



4|1 The Modular

 As discussed in the preface, The Modulor was a system developed by Le 
Corbsuier describing the human proportions.  These proportions where linked 
to the golden ration.  The infl uence of The Modulor is from its combination of 
visualization and integration with design.  By the drawings Le Corbusier created, 
buildings were given a direct link to the human proportion.  Similar to the Vitruvian 
era, The Modulor took a close interpretation of the human proportion and 
attributed it to a system in which the human can be represented.  From this works 
perspective, the main result of The Modulor was a surge in buildings and design 
that took 2D human proportions and extruded them (Figure 4.1).  Le Corbusier 
took compliment to this style as he wrote on the many buildings he had infl uenced 
in his second book.  It is the intention of this work to bring an understanding that 
the human body is in no way two dimensional, and through the understanding of 
biomechanics, humans do not simply scale.  In fact, through studying the effect 
of a spinal cord injury on a person, it is known that human factors are a four 

Image Credit: (Le Corbusier)

“These chapters contain no scientifi c argument.  It 
is simpler that way; I am no scientist.”  

-Le Corbusier



dimensional problem involving not 
just location but strength of muscles, 
introducing velocity.  

Figure 4.1: (Seidler)



 In 1993, a few years after the ADA was established, David Lantrip published 
a program called Mac IsoKin.  With support from NASA and Steelcase, he worked 
on a program that displayed the body-motion envelope (Figure 4.2).  By taking 
video of users performing a task such as the removal of a jacket, Lantrip created 
outlines of human extents.  This system built upon the currently available sectional 
description of ergonomics by incorporating the available technology, such as 
video recording and computer GUI’s.  MacIsoKin uses a database of body-motion 
envelopes and displays them within a space described by sectional computer 
drawings.  The designer is able to use this as a tool to understand the interior 
space in relation to the tasks it is designed for.  From the fl oor plan created and 
the body motion envelopes selected, quantitative analysis can be run on the space.  
Similar to the outlined environmental simulations in this books introduction, 

4|2 ISOKIN

“A person’s physical disability is given meaning and 
value only when it is found to interfere with some 

desired activity.” 
-David Lantrip

Image Credit: (Lantrip)



MacIsoKin simulates the perceived 
discomfort in an environment.  In this 
case, the input is a predefi ned envelope 
and a fl oor plan (Figure 4.3).  The 
simulation is a function of the space the 
envelope takes up and the surrounding 
objects existing within that space.  
IsoKin was highly referred to during 
the ideation of this research due to its 
unique approach to quantifi cation of 
design relative to human movement.  
 An conversation with Dr. 
Lantrip provided insight to the 
challenges IsoKin faced, technically as 
well as with integration into a designers 
work-fl ow.  One theory in which Dr. 
Lantrip agreed was the limited use 
of computers during the time of the 
program being written.  The focus of 
this work in relation to the integration 
of a tool within a designers work-fl ow 
is attributed to the vast difference in 
current computing technology and past 
research.  New technology provides a 
fundamental benefi t, and a different way 
in which IsoKin may be approached 
if re-done today.  Optical motion 
capture systems have become widely 
accessible and provide highly accurate 
and comprehensive information.  As 
discussed in the Technical Concepts 
chapter, motion capture data can be 
parsed into angles and positions.  In this 
case, a modernized version of IsoKin 
would be using the position information 
to create a body-envelope directly of 
a specifi c person.  Using this method 
would require multiple recording 
sessions to get different body-envelopes 
of the same motion.  Although not all 
movements would work this way, such 
as taking off a coat, using angular data 
from the motion capture instead of 
the position data would allow for a fast 

Figure 4.2: (Lantrip)

Figure 4.3: (Lantrip)



creation of people of multiple sizes.  
 IsoKin is being used here as 
the main example, however many other 
examples exist in which the program 
was developed independently of any 
tools used by designers.  Some of 
these examples are referred to in the 
Technical Concepts chapter of this 
book.  It is the example of IsoKin and 
others that demonstrate a continuous 
research fi eld of human factor 
simulation to benefi t design.  However, 
they all share the same problem, a 
tool is only benefi cial when it is used.



 One of these expensive human model tools describe earlier is 
Tecnomatix JACK.  Originally developed at the University of Pennsylvania, 
JACK is now a commercial product of Siemens targeted to the engineering 
fi eld (Blanchonette).  JACK provides a human model that can be positioned  in 
relation to a design (Blanchonette).  The model is used to view the reach envelope 
and a few other factors such as the fi eld of view.  JACK is one of the most 
popular human model programs and comes at a signifi cant premium.  For this 
reason, and the diffi culty in creative modeling, JACK is rarely used by designers. 
JACK does however provide a range of analysis tools.  These tools include 
injury risk, timing, user comfort, reachability, lines-of-sight, energy expenditure, 
and fatigue limits.  As discussed in the introduction to this book, these various 
simulations are diffi cult to trust as the source of the function is unknown.  
 JACK has not always been closed source.  When JACK was being developed, 
many of the algorithms created were openly published.  JACK provided signifi cant 
advancements in human simulations.  The original work is highly referenced to this 
day.  What JACK did lack, and still does, is a robust model that can be adjusted to 
accurately simulate special cases.  In previous research, the ability to accurately 
describe the capabilities of persons with spinal cord injuries was tested in JACK.  
The results showed that an extraordinary amount of work was needed to simulate 
the special case reach ability.  The number of steps needed to create the simulation 
questions the validity.  It is known that JACK was never developed for simulating 
spinal cord injuries.  By not knowing the underlying code in JACK now, along with 
the knowledge that it was never designed for special cases suggests that even if the 
mannequin can simulate the movements, any of the other analysis may be invalid.
 The biggest problem with JACK is not in the algorithm for simulation but 
in the method for visualization.  As with many reach ability visualizations JACK 

4|3 Technomatix Jack
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uses an ISO-Surface (Figure 4.4).  Other 
research has added layers to the ISO-
Surface to represent multiple extents, 
such as the furthest reach or comfort 
reach (Figure 4.5).  The problem with 
this ISO-Surface is that it tends to imply 
an inclusive volume.  However, human 
reach ability is not an inclusive volume.  
The combination of joint types, muscle, 
fat, tendons, and ligaments create a 
complex map of reach ability impossible 
to convey in a single ISO-Surface.  

Figure 4.4: (Blanchonette)

Figure 4.5: (Yang)



 The humanoid robot JUSTIN demonstrates creative methods for visualizing 
reach ability and path planning.  In the case of humanoid robotics, biomechanics 
plays a pivotal part in the link between human visualization and robotic inverse 
kinematics.  There is a very interesting dynamic between the way humans are 
modeled and the way humanoids are modeled.  For a human, the goal is to convert 
the joints and bones into a mechanical kinematic system in order to solve for the 
angles.  Due to the soft tissue and fl exibility of a human, complex chains can be 
combined in order to get a higher resolution solution (Sancho-Bru).  In the case 
of a humanoid, the goal is to translate the human dynamics into a joint system  
that will physically be moved like a human, yet may not be the same anatomically.  
Franziska Zacharias has demonstrated creative ways of making robots move like 
humans.  Using the rapid upper limb assessment (RULA) system, Zacharias tests 
a position given by the solution of a kinematic solver (Zacharias).  The test shows 

4|4 JUSTIN Humanoid

“In general, every robot arm is designed differently, 
and therefore has different kinematic capabilities.”

-Franziska Zacharias

Image Credit: (Zacharias)



if the position is a good ergonomic 
position.  This can be abstracted to a 
person would be comfortable in this 
position, and as such the humanoid can 
adjust to the best score (Figure 4.6).  
The technique used here can translate 
to the many parameters an IK solver 
can have.  These parameters, adjustable 
within Maya, include joint limits, weights, 
and best position.  These types of inputs 
give a solver more information and 
reduces the number of solutions (Jazar).  
 The strongest reference 
to JUSTIN is in the visualization 
techniques.  Zacharias demonstrates 
a spherical reach ability map that can 
include approach directions (Figure 
4.7).  This type of reach ability map 
provides a much higher resolution 
than a reach envelope.  Resolution is 
referring to the information on what 
places are reachable.  In a forward 
kinematic system, a resolution would 
be the increments of degrees in which 
to test the end effectors location .  In an 
inverse kinematic system the resolution 
is the distance between target points 
on a grid (Zacharias).  Similar to the 
technique of this work, Zacharias 
uses color gradation to visualize the 
reachable areas.  However, the opaque 
colors present a problem for fast 
interpolation.  As such, the reach map 
must be displayed in sections (Figure 
4.8).  These sections make understanding 
the zones easier on paper, however, 
there must be a different method for 
3D programs in order to make an easy 
to use and understand visualization.  

Figure 4.6: (Zacharias)

Figure 4.7: (Zacharias)

Figure 4.8: (Zacharias)



5 Process

 This section discusses some of the overall methodology as well as some 
early work that has led to the fi nal research.  The chapter is broken into three 
sections: recording and analyzing movement, designing a graphical user interface, 
and using python for scripting.  The early work with motion capture was barely 
used in the fi nal research.  However, the ideas as to how bio-mechanics could be 
incorporated into design tools came from the initial work with motion capture.  In 
order to present the research in a way that showed its effi cacy being implemented, 
a Graphical User Interface (GUI) was developed.  QT Designer was used to 
translate the interface into python.  The code was all written in python.  Each 
segment of research was developed in a separate python module.  These modules 
were linked together and with the user interface through one main module.  



5|1 Motion Capture

  Motion capture technology was used very early on in the process of 
this research.  The initial use of the motion capture sessions was to collect data 
that would be parsed and analyzed in OpenSim.  The movements were simple 
interactions with a chair and an initial test on a reach envelope.  The virtual 
skeleton created from the data was used to drive a character rig of a laser scanned 
body (Figure 5.1).  From this movement data, different methods of  visualizing the 
movement were explored.  The act of recording the session, translating the data, 
and working between programs is what inspired the research to not just look at 
visualizing biomechanical data, but create a new work-fl ow and workspace which 
assisted in translating movement data.  
 The motion capture session was done with an eight camera optical system.  
The subject being captured wears a velcro body suit with spherical refl ective 
markers attached to it.  The markers are placed in strategic areas that allow for 
accurate human reconstructions (Crane).  The cameras emit infrared light, and 
record the refl ections.  These refl ections are triangulated to create 3D locations 
for each marker.  One of the biggest issues with optical systems is that each marker 
must be visible to more than one camera at a time (Moeslund).  When studying 
the movement of sitting in a chair, the chair becomes an object that occludes the 
markers, making it impossible to track.  With limited time and resources, in order 
to have a usable set of data that could be analyzed, a custom chair was made that 
made removing parts such as the arm rest easy (Figure 5.2).  This customizable 
chair enabled a more consistent tracking of the markers as well as offering a 
variety of chair confi gurations in which the subject could interact with.
 The markers are recorded at a specifi c frame rate.  After the recording, 
each frame consists of a set of 3D marker locations.  At this time, these marker 
locations are all independent.  Blade (Vicon), the motion capture software, 



attempts to automatically track each 
marker and assign it a unique name.  At 
the fi rst frame, each marker is labeled 
with a unique name corresponding to 
the location relative to the body.  From 
this set of names, the software attempts 
to follow each marker throughout all of 
the frames, and maintain the markers 
name.  Although this can be completely 
resolved, with an eight camera setup, 
especially with an action that involves 
occluded markers, there are labor 
intensive processes required for the 
data to be completely processed and 
usable.  
 After the data cleanup 
OpenSim was used to create a 
skeleton in which kinematic data could 
be extrapolated.  This workfl ow is 
common in Kinesiology, however, most 
designers have never used OpenSim.  
Comparitively, the motion capture data 
was also brought into Motion Builder 
(Autodesk).  Motion Builder is easily 
integrated with Maya.  The constructed 
skeelton from MotionBuilder was 
imported into Maya and with Python 
sciprts, the joint angles were written 
into a CSV fi le.  These fi les were used 
to demonstrate the researches ability 
to represent the movement data in a 
scientifi c way within Maya.  

Figure 5.1

Figure 5.2



 The difference between what someone considers a script, plugin, or 
program varies.  For this work, the terms are defi ned as such; a script is a series of 
coded lines that can be run to perform a specifi c task, a program is a compilation 
of algorithms (or scripts) that has an interaction between the code and user, a 
plugin is a program developed to interface with a program or takes advantage 
of low level concepts used by a program to add functionality with it.  The focus 
of the user interaction with the research was to create a seamless experience 
with their current work-fl ow.  This meant, for not just the reasons of using an 
API, the tools developed in the research would be best used in an embedded 
way.  For one, this type of interaction required a representation that moved 
past text and click input.  This type of input is most often seen in Rhino scripts 
(Figure 5.3), especially with the integration of python.  In Rhino, the work-fl ow 
of a basic script is to have a back and forth interaction with the user.  The script 
asks something, the user selects some options, selects the object to perform the 
operation on, and then resumes the script.  This linear work-fl ow is similar to how 
a text based interaction ideally works.  In a  python interpreter, the program is 
able to wait for input from the user.  This means there is nothing else happening, 
and the program will wait until it receives input.  For Maya, and many programs 
like it, the interaction between the user and program is more complicated.
 When a program loads, almost all of the functionality loads with it.  This 
allows different parts of the program to interact, as when the user presses a 
button, an event happens.  Unlike a linear text based system, the program does not 
wait for one specifi c input, instead it must be explicitly told ahead of time what 
interactions will happen.  At fi rst this makes the transition diffi cult, for instance, if 
the program is meant to loft two curves, the user must have already selected the 
two curves, run the program, and the program can complete the loft operation.  

5|2 Graphical User Interface (GUI)



If the user does not select the curves, 
the program does not know how to 
just wait for that input and will fail.  
 This is where graphical 
interfaces come into play.  The graphical 
interface acts as a communicator 
between the user and program.  By 
having this layer, interactions like 
clicking buttons, are able to be linked 
ahead of time to a portion of the 
program.  Instead of the program 
automatically executing everything, the 
program is fi rst told that when a button 
is pressed, it should execute a specifi c 
part of the code.  This is referred to as a 
call-back (Rossum), as the button must 
call back to a function to be executed.  
A call-back setup is then always 
running, allowing the user to select 
the curves, and then specifi cally click 
the button to perform the loft.  This 
is the basis of the GUI setup used in 
the research.  Once the approach was 
resolved, the physical implementation 
and design of the interface was done.
 Maya has internal GUI options 
available through the API.  The GUI 
options can be programmed inside 
the Maya Python interpreter with any 
code that needs to run.  This method 
was quick for creating buttons or input 
fi elds, but designing the GUI became 
a tedious task.  The original GUI 
creations were long stacks of options 
(Figure 5.4) that made interaction with 
the GUI diffi cult and confusing.  To 
expedite the implementation process 
a GUI design program, QT Designer, 
was used.  Through many iterations, 
the fi nal design is a setup of layered 
windows.  The windows are separated 
by tabs, allowing the screen space 
taken up by the entire program to 
remain minimal.  Each of the distinct 

Figure 5.3

Figure 5.4



areas of research was given its own 
window.  Although separated, the tabs 
consist of a simimilar setup.  The top 
of the tabbed windows explains some 
technical specifi tcations of the tool.  
The left side contains the options 
for simulating and/or visualizing, with 
execution buttons underneath.  The 
right side of the window displays 
information on the subject matter 
being worked with (Figure 5.5).  
 Once the GUI was designed 
and appropriately named, PYQT 
(Summerfi eld) was used to translate 
the QT File into Python.  With the GUI 
in Python, a new module was made 
that integrated all of the simulations 
and visualizations with the GUI objects.  
This was done by using Signals and 
Slots, which created the callbacks.  The 
GUI was then able to be implemented 
as a custom button in Maya (Figure 5.6).  

Figure 5.5

Figure 5.6



 A thorough explanation of python is not in the scope of this process 
section, however, since the use of python within Maya was signifi cant, I will go 
over a few points.  The usage of python can take place in two different ways.  First, 
python can be used in its raw form, as a portable scripting language.  Second, 
python can be used as a syntax, in which the commands and algorithms accessed 
by the programmer are done so in a python syntax, but are not necessarily 
pythonic ways of doing things.  When using the Maya Python interpreter it is 
easy to see when standard Python is being used (Figure 5.7) and whne Python 
is being used to access Maya functionality (Figure 5.8).  For a script to be 
completely portable it must be completely based on raw python and not rely 
on any API.  Most likely a custom plugin will need to access an API specifi c to 
one program, in this case the core of the plugin, the algorithms and such, can 
be written in one module, and the parts specifi c to the API written in another.  
 In addition to the computational theory of algorithms, python introduces 
additional challenges.  As it is not a low level language, and when used as a wrapper 
for an API, python can be extremely slow.  In Maya, python can be used by itself, 
to access Maya scripts, use Maya commands, or to access the Maya API.  Each of 
these options provides a different level of speed for a given task.  While using 
python to call pre-made Maya scripts saves time on the programming side, it may 
drastically slow down the execution time.  For example, an invisible 3D grid of 
50x50x50 boxes exists in space.  An object with a random start position is moved 
by the user and a program should tell the user which box is closest to the object 
by making the box visible.  Each time the object is moved a new box is visible, 
and if the object is moved outside of the volume, no box is made visible.  This can 
easily be done by using internal Maya commands.  For example, there is a Maya 
command to create a box, move a box, query a box location, and query an object 

5|3 Python



location.  The program could fi rst 
create a box grid of 50x50x50, then 
make them invisible.  When the user 
moves the object the program can 
then query the object, query each box 
location and then fi nd the one with the 
shortest distance and make it visible.  
While from a programming standpoint 
this is a quick way to implement the 
function (and not very intelligent), the 
execution time will be unnecessarily 
slow.  This is because it is not python 
that is handling calculations, but rather 
python asking a Maya script to have 
the low level program do a calculation 
and send it back up.  This adds enough 
complexity that for an operation to 
happen multiple times, like searching 
all the boxes in a large volume, the 
execution time is slowed down.  A 
faster and more portable way would 
be to handle the calculations in the 
code.  Instead of creating the volume 
and using the API to query the location, 
the algorithm can just query the 
location of the box, and use that xyz 
point to check against an array of xyz 
points representing the location of a 
box.  This eliminates the need to spend 
computational power creating all of the 
boxes ahead of time, but requires more 
math implemented in the algorithm.  
 Throughout the research 
the algorithms were constantly re-
written to improve effi ciency, capability, 
and clarity.  The challenge in creating 
optimal algorithms is the reliance on 
internal Maya structures.  The creation 
of an indpendent program for effi ciency 
is valid, however, useful simulation 
and visualizations do not necessarily 
need to be built the optimal way.  This 
research is in a unique position.  Python 
programming is a major part of the 
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research, however, the main objective 
is in creating a usable tool.  Hence 
the algorithms need to only be as 
effi cient as a usable tool requires.  
This position does not however, mean 
none of the algorithms are effi cient.  



6 Implementation

 The culmination of the research resulted in a  Maya plugin named U.D. 
Manikin.  The plugin interacts with a human model which for this research, is 
sitting in a wheelchair.  The GUI is a fi xed size and fl oats on top of the Maya 
UI.  Each section in this chapter provides examples of the tools functionality.  
Currently the human model used with the plugin is rigged with the Maya joint 
tool.  The arms have an inverse kinematic solver applied.  Although the reliance on 
the Maya IK solver limits portability, a custom IK solver was beyond the scope of 
the research.  The Maya IK provides a robust set of options meant for animation, 
which makes specifying conditions easy.  Although implementing external solvers, 
either by writing a custom one or using OpenRave (Diankov), is the next step for 
continued research.  The implementation started with the reach simulation.  After 
the reach research was fi nished, additional factors were added to the tool.  The 
fi nal set of factors is not the end list.  More human factors can be added, however, 
this research explored a few that would give a clear understanding as to how they 
could be implemented and used.



6|1 Reach

 From the early stages of the research human reach ability was the main 
focus.  Simulating and visualizing reach ability presents a few challenges.  For 
simulation, kinematic models can be used to recreate the ability of the arm.  Early 
stages of research resulted in a forward kinematic model that described the 
reach ability in relation to maximum reach (Schwartz).  This type of simulation 
brought up a very specifi c question in what the application of simulating reach is 
for.  Simulating a persons ability to reach as far as they can is useful for different 
situations than simulating the complete reach ability.  Although there are situations 
in which a full reach ability simulation is needed, the most immediate example for 
needing the simulation is when the reach ability is a-typical.  A unique reach ability 
is frequent on people with a spinal cord injury (Curtis).  These unique situations, 
as well as the natural bio-mechanics of the body demonstrate that a simulation 
of the human reach extent is not all-inclusive.  This means that while someone 
may be able to reach to a certain distance, they may not be able to reach every 

Reach 
verb

Make a movement with one’s hand or 
arm in an attempt to touch or grasp 



point from their body to the extent.  
When designing on the human scale, 
the knowledge of where someone can 
reach is extremely important.  
 Simulation of reach ability 
is done through a kinematic model.  
While the fi rst tests in kinematics 
were done with a forward kinematic 
model, the preceding tests used 
an inverse kinematic model.  One 
problem with inverse kinematics is 
the diffi culty of generating a solution 
specifi c to a geometry with reasonable 
computation time (Jazar).  This diffi culty 
stems for a couple of reasons, some 
of which can be reduced.  There is not 
a one size fi ts all model for inverse 
kinematics.  The number of joints 
and length of links requires a unique 
kinematic model.  Although there are 
ways to build up kinematic chains, the 
complexity requires large amounts of 
computational time.  Specifi c models 
aim to solve this complexity.  In the 
case of redundant chains, where 
there is more than one way for the 
end effector to reach a specifi c point, 
multiple kinematic solutions exist 
(Figure 6.1).  In terms of positioning a 
chain, only one of the multiple solutions 
can be used.  There are many ways for 
deciding which solution is used, the 
easiest being to use the solution closest 
to the previous solution. 
 Inverse kinematics are used 
mostly in robotics and biomechanics.  
The two subjects usually have very 
different applications, however, the fi eld 
of humanoid robotics blurs the line 
between robotics and biomechanics.  
Research on humanoid robots strives 
to fi nd effi cient inverse kinematic 
solutions while fi nding solutions that 
mimic the movements of a human.  

Figure 6.1: (Diankov)



 When looking at the automotive 
industry the current solutions and 
research are highly invested in the reach 
envelope.  This reach envelope is similar 
to the body envelopes used in ISOKIN.  
These envelopes represent the extents 
of the reach ability.  Mostly representing 
the envelope of furthest reach ability, 
they may also represent the envelope 
of most comfortable reach ability 
(Figure 4.5).  For many situations these 
envelopes are ideal as the situation 
only requires knowledge that someone 
is able to reach a specifi c point.  For 
a more thorough understanding of the 
reach ability of a person a full reach 
simulation must be completed.  These 
full reach simulations are much less 
common, and only a few papers have 
been found on the subject (Rodriguez, 
Zacharias).  
 As most of this research is 
meant to be applied to spinal cord injury 
simulation, the use of reach envelopes 
may be misleading for a designer.  While 
good at demonstrating the furthest 
reach capabilities, these envelopes give 
no indication to the designer of what 
the interior reach ability is.  When 
dealing with a situation in which the 
human being simulated has no physical 
disability, and there are no movement 
limiting factors, an envelope may be 
suffi cient and any missed information 
may not have many consequences.  
However, in the case of a physical 
disability, or more broadly any situation 
in which the human being simulated 
has limited movement capabilities 
(Figure 2.13), such as being in a tight 
space (airplane, rocket, submarine, car), 
understanding the kinematics of the 
upper body and its full reach ability are 
critical.  

 Current product solutions 
do not offer a robust enough system 
to simulate special case conditions 
for spinal cord injuries.  In some cases 
enormous amounts of time can be 
spent attempting to create a simulation 
mimicking the special case (Hamameh).  
The issue with this is the user must 
already have the knowledge of how 
the simulation should work.  The goal 
of this research is to expedite the 
users research and understanding by 
providing a useful simulation that  can 
be trusted.  
 The inverse kinematic solver 
used for this research was through 
Maya.  The end effector could be 
manipulated through the Maya UI or 
through scripting.  Once moved, the 
Maya IK solver moves the joints to 
the solved angles.  If the end effector 
is moved to a position which can 
not be solved for, the end effector is 
automatically moved to the closest 
position that has a solution.  Since 
Maya will always return one solution, 
the issues of multiple solutions are not 
addressed here.  However, when Maya 
moves the end effector to the closest 
position, it is really returning a null 
solution for the specifi c target.  The way 
Maya handles the IK solver was deeply 
integrated with the logic of the reach 
simulation.
 The most important note on 
the reach simulation is that only the 
shoulder and elbow are creating the 
reach map.  This is for two reasons.  
First, the use of a 3+2 axis chain make 
the IK simulation less computationally 
expensive by treating the hand as the 
end effector instead of the fi ngers.  
Second, the research on biomechanics 
suggests the reach ability should be 



more focused on joint ability in the arm 
than the entire body since some people 
may not be able to move their torso 
freely.  
 A voxel grid is used for supplying 
location input to the simulation.  The 
end effector is moved to each voxel 
in the grid.  If after solving the new 
location the end effector is in the 
desired location and has not moved, the 
voxel is given a value.  This is a simple 
explanation, the full method is more 
involved.  Since the IK solver is returning 
one solution per location, the number 
of solutions at each coordinate can not 
be used as values for reach ability.  The 
IK solver returns a value very close to 
the previous value when being moved.  
This behavior is in line with techniques 
to reduce solutions by eliminating 
drastically different solutions from the 
previous one.  The use of the manikin 
as a design tool takes advantage of this 
behavior by having the user position 
the manikin for simulation (Figure 6.3).  
When the user positions the manikin, 
the movements to all nearby voxels will 
be based on the original position.
 Since the simulation does not 
use the wrist as a joint for determining 
approach angles, a different method 
was created to decide the value of a 
voxel.  From the starting location, the 
end effector moves in all directions 
away from the center (Figure 6.4).  If 
a solution is found, the new location 
is added to a queue.  Each element of 
the queue is accessed, the end effector 
moves to the voxel, and then tries to 
access the bordering voxels.  Each time 
the end effector lands inside a voxel, the 
voxels value is incremented.  Each voxel 
can be accessed 27 ways, or from 27 of 
the bordering voxels.  The advantage of 
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the user positioning the start location 
is the higher probability of accurate 
results.
 The voxel array is created with 
the center point being the start location 
(Figure 6.5).  This method makes the 
queue stack centrally located so the 
solver does not need to compute large 
movements that may require path 
planning to give realistic joint angles.  
The centralized stack also makes 
smaller volumes more consistent than 
randomized movements.  
 Visualization of the reach 
simulation is done by representing good 
values with green, bad with red, and a 
gradient between.  To resolve the issue 
of required slicing seen in Zacharias, 
bad values are transparent while good 
values are opaque.  Through the logic 
of a good value being a voxel accessible 
from all sides, the furthest voxels had 
somewhat low values (Figure 6.6).  
As the low valued voxels are more 
transparent, the user is able to see 
through the low valued exterior voxels 
to the higher valued interior.  This 
allows the designer to instantly see if an 
object is outside the reachable volume, 
in a hard to reach volume, or hidden in 
the easy to reach volume (Figure 6.7). 
 The most important discovery 
in this system is the unique areas of 
diffi cult reach.  Although the reach 
envelope is a complete arc based on the 
shoulder pivot, there are areas which 
are within the envelope that can not 
be accessed without torso movement 
(Figure 6.8).  It is these areas, along with 
the many other unique situations with 
spinal cord injuries that makes reach 
simulation and visualization important.

Figure 6.6
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 Human vision capabilities can vary greatly.  Unlike near or far-sighted vision 
problems, many other vision issues can not be fi xed with glasses.  Constraints on 
vision is also not limited to the eyes.  Being able to rotate the head and lighting 
conditions affect the way humans can see the world.  Even with perfect or corrected 
vision, the eye is only able to interpret certain information in specifi c zones.  These 
zones include what is legible text, what is comfortable for eye rotation, what is the 
maximum the eyes can rotate, and more.  As designers, knowing where someone 
is looking is nearly impossible.  When designing a space, signs are given specifi c 
criteria for where they need to be.  However, other than legal signs (ADA), the 
placement of visual cue’s can be a challenging task.  During the original motion 
capture session done for this research there was a surprising fi nd.  When tracking 
the head movement of someone getting out of a chair, it was noticed that the head 
was largely aiming down as the person stood up (Figure 6.9).  This fi nding led to 
the research done on vision envelopes.  By including vision envelopes on a manikin 
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Vision
noun

The faculty or state of being able to see 



within the model, the designer is able 
to see not only the extent of vision, but 
key areas such as the legible text zone.
 The diagrams found in design 
books explaining human vision were 
overwhelmingly complex (Figure 
6.10).  The amount of information 
being conveyed was much less that 
it fi rst seemed.  This was partly due 
to the need for multiple angles and 
sections to describe 3D Zones.  To 
make an algorithm that could stay 
fl exible, some trigonometry was used 
to describe the view cones (Algorithm 
1).  This algorithm can take angles of 
extents from  top and side view and 
create the zone they describe.  This 
allows for one short algorithm to 
be used for creating all of the zones.  
 In addition to human 
limitations, external sources such as 
lights play a key role in vision.  Lights 
placed within a certain range can 
cause glare.  Glare can not only cause 
discomfort but can also make task 
completion diffi cult.  If designing an 
offi ce space, lights placed in certain 
places may make it diffi cult for workers 
to see, resulting in a lack of productivity.
 To test for lights in a glare zone 
the program searches for objects with 
the name “Light” (Code 1).  Each light is 
then compared against the location and 
direction of the manikin (Algorithm 2).  
If the light is found to be within the glare 
range, a red sphere is placed around 
it to notify the user (Figure 6.11).  
 Multiple vision cones can 
be displayed at once (Figure 6.12), 
or individually (Figure 6.13).  The 
cones are always linked to the 
manikins head so the designer can 
interactively design with vision in mind.

Figure 6.9
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 The human factor research conducted here has largely revolved around 
disabilities.  Specifi cally, the use of a wheelchair constrains many problems with 
human factors research and allows for visualizations and simulation methods that 
may not be valid when a wheelchair is not being used.  To understand the problem 
as more than just the human factors while being in a wheelchair, this research 
looks at the human and wheelchair as one entity.  This brings the scale from local 
design to large building design and planning.  The idea is to setup a platform for 
which placements of elevators and stairs, as well as handicap accessible places can 
be strategically and thoughtfully planned.  As a general guide, this could be used 
to make sure the entrance of the building is not too far from an elevator, or the 
elevator is not on the opposite side of the building from a wheelchair accessible 
bathroom.  This work focuses on wheelchairs, however, there are more complex 
situations in which this research could be applied to.  When looking at someone 

6|3 Wheelchair Navigation

Navigation
noun

The process or activity of accurately ascertaining 
one’s position and planning and following a route



using crutches, or a prosthetic, the 
energy required to walk up stairs or 
take an elevator is much more complex 
than the single option of a wheelchair 
taking an elevator (Cerny).  The decision 
for someone at the entrance to walk up 
the close set of stairs, or walk further 
down the hallway to get to the elevator, 
is a common and highly diffi cult problem.  
Understanding these issues, with a 
simple way of testing them not only 
can inform in the design process, but 
also provide a statistical understanding 
of the building that can inform users of 
what the best route for them to take is.
 Way fi nding is a problem for all 
people.  When dealing with disabilities, 
way fi nding becomes a more critical 
problem.  For someone who is in a 
wheelchair, knowing how to get to 
the second fl oor, or fi nd the nearest 
bathroom suitable for their needs 
can become a lengthy process.  As a 
designer, knowing when these situations 
happen may lead to better methods 
for creating spaces that help inform 
way fi nding.  Informing a user with 
navigation clues can be anything from 
stickers and signs to changes in building 
materials.  Using search algorithms, a 
designer can place a virtual user in their 
model and fi nd out what the shortest 
path for that user to take is.  From 
there a designer could either redesign, 
knowing that the path is extraordinarily 
long, or help put navigational clues that 
expedite a person fi nding the path and 
minimize the time the user spends 
navigating to the desired location.  
 There are many different 
algorithms for fi nding the shortest path 
from one point to another.  Different 
situations require different algorithms 
for various reasons including speed 

and complexity.  Relative to buildings, 
the most common usage of a search 
algorithm would be Egress.  However, 
Egress algorithms are more based 
on crowd studies and location based 
decisions than strictly a search 
algorithm (Kuligowski).  Search 
algorithms can be useful in a variety 
of other situations including design.  
The extensive use of the Dijkstra’s 
search algorithm in all different fi elds, 
led to this work using it as the basis 
for a wheelchair search.  Dijkstra’s 
algorithm, although not as fast as the 
A* predecessor, is a robust algorithm 
that fi nds the guaranteed shortest 
path based on a grid containing nodes 
and edges (Dijkstra).  This work looks 
at the methods in creating the grid 
and calculating weights for the edges.  
 Dijkstra’s algorithm is 
guaranteed to return the shortest 
path.  For simulation, the most 
accurate result is priority, and only 
if it is unobtainable should we settle 
for less.  In many situations Dijkstra’s 
algorithm is too slow.  When traversing 
a large network and updating in real-
time, as is the case in many electronic 
games, Dijkstra’s may run too slow and 
require the use of A*, which gives a 
signifi cant performance boost but does 
not guarantee the most accurate result.  
 Although Dijkstra’s algorithm 
is known, the edge weights and 
implementation are a much harder 
problem.  First we look at creating 
the nodes.  It may look trivial, but 
conducting a search algorithm on a 
building in a 3D model can not just 
be done.  The search algorithm needs 
inputs.  For a building, these inputs 
should be locations, and a value it 
takes to go from one location to 



another.  In a simplifi ed graph, a node 
could be placed at each key location, 
and a value created to go from each 
of those locations (Figure 6.14).  This 
however, requires a knowledge of the 
building, something an algorithm does 
not have.  To the algorithm this graph 
is a Python dictionary.  The top level 
keys are locations with the values being 
another dictionary pair.  The secondary 
key is a location accessible by the main 
key with its value being the edge weight 
between the top level key and secondary 
key (Code 2).  By just giving it the 
Cartesian coordinates, the algorithm 
can only create a direct distance, with 
no knowledge of fl oors or walls, the 
algorithm cannot create an accurate 
representation of the cost associated 
with moving from one point to the next 
(Figure 6.15).  In order to solve this 
problem the algorithm must be given a 
version of the building it can understand.  
 In order for the algorithm to 
be useful in a variety of ways and not 
require involvement from the user, 
a method for recreating the building 
into a graph was developed.  Using 
the internal capabilities of Maya and 
its raytracing functions, a node based 
graph is created from a model by 
sampling vector intersections (Figure 
6.16).  The user must defi ne a resolution 
they would like to work at.  The higher 
the resolution, the longer both the 
graph creation and search algorithm 
take.  The former being the most time 
consuming, yet needs to be done only 
once per building design.  When the 
user selects a resolution, the location 
of the human manikin is used as the 
start location for the graph creation.  
From this point, a vector is shot down 
from the height of the manikin, if the 
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fi rst object the vector intersects with 
is the fl oor, a node is created at that 
location.  A queue is then formed of all 
possible move directions from the valid 
point.  Additional valid points are added 
to a new queue.  If a vector does not 
intersect the fl oor fi rst it could mean 
there is an object, such as a table in the 
way, or the point has moved off of that 
fl oor and is outside the wall.  There 
are a few options for increasing the 
accuracy of this grid.  Each time a node 
is created a line can be drawn from 
that node to the previous, if the line 
intersects a wall then the node is not 
valid.  This particular example added 
more computational complexity than 
necessary and was not implemented.  
Instead of focusing on representing the 
entire building accurately, constructing 
a graph based on the intents of the 
search allowed for a highly accurate 
and faster running search algorithm. 
 A wheelchair needs a specifi c 
amount of space in order to pass through 
a hallway.  Additionally, a wheelchair has 
a specifi c turning radius required to 
turn around.  These two requirements 
allow the graph to be minimalized for 
the search algorithm.  If a hallway is 
too small for a specifi ed wheelchair 
to pass through, the search algorithm 
should not take it into consideration 
as a possible node to move through.  
One method for telling the algorithm 
not to pass through the node is to add 
information to the node.  For example, 
if every node has a value of 0 to 1, 
with an added value of hallway width, 
the algorithm can check the required 
hallway width against the nodes hallway 
width and if it is too short, the node is 
assigned an infi nite value (99999999 for 
programming).  This method is valid, and 
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may be effective if the wall calculations 
where done as well, however, this 
research took a different approach.  In 
order to keep the complexity of the 
search algorithm down, the only nodes 
in the graph are ones that can be passed 
through.  This means on creation of the 
nodes, a node should only be placed if 
the hallway width at that point is large 
enough for the specifi ed wheelchair.  
This was done using the circumference 
of a circle with the diameter matching 
the width (or turning radius) of the 
wheelchair (Figure 6.17).  If a point 
passed as valid, multiple extra points 
(minimum four) are then checked along 
the circumference of the required  
width.  If a point on that circumference 
is not valid, the original point is not 
considered a valid node.  The additional 
check on each point slightly changes the 
algorithm by adding an additional queue 
set.  This reduces the nodes in the graph 
and speeds up the search algorithm.  
 The edges that connect each 
node determine what the shortest path 
is.  For human movement, the shortest 
path is not always the best path.  Best is 
decided as the optimal balance between 
distance and ability.  For example, 
although the stairs uses a shorter path 
than an elevator, a wheelchair is not able 
to use the stairs, so the shortest path is 
not the best.  Dijkstra’s algorithm is not 
designed for these cases, however, the 
information can be calculated before 
Dijkstra’s algorithm analyzes the paths.  
For this, more factors than only node 
distance were used to calculate edge 
connections.  Instead of separating 
the distance of each node and the 
diffi culty to move to each node, every 
edge value is calculated individually.  
Although the actual numbers used 
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are not ideal, further research on this 
specifi c issue will provide insight to the 
most accurate confi guration while still 
utilizing this method.  The edge values 
are considered a combination of the 
distance and angle from the nodes 
(Code 4).  Additional factors such as 
fl oor material could be factored in as 
well to give a more robust assessment.  
For this base system the 3D distance 
between the nodes is calculated, then 
the angle from the start node to the 
end node is calculated and factored in.  
As a starting point, the angle factor is 
the natural log of the angle, added to the 
distance.  For angles that are negative, 
meaning the edge is going downhill, half 
of the angle calculation is added to the 
distance.  This is for the ease of moving 
down hill, yet the still present energy 
requirement to prevent a wheelchair 
from rolling down hill, making it more 
diffi cult than moving on level ground.  
 Previous research has found 
a dramatic increase in the energy 
needed to move a wheelchair across 
a fl oor with a compound angle 
(Brubaker), further research into this 
can be factored in to the edge values.  
Currently this extra energy is only 
visualized through the color coding of 
nodes (Figure 6.18).  Compound angles 
mean the node has a higher value on 
each of its edge connections, when 
these are added together, the higher 
value means that the node is on an area 
that has multiple angles.  This higher 
value is represented when the user 
visualizes the graph, but is currently 
left out of the edge calculations as it 
drastically increases the computation.  
 In addition to returning the time 
required to move from one point to 
another, the user is able to visualize the 
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graph.  The visualization is based on the 
value of each node, which is calculated 
by adding all of its edge values together.  
The nodes are then normalized from 
zero to one.  The value dictates the 
translucency and color.  High values 
are more costly and are opaque red, 
while low values are less costly and 
a translucent green (Figure 6.19).
 When dealing with 
requirements and standards these 
methods of calculating edge weights 
are very useful.  When dealing with 
wheelchair ramps, one can set the 
algorithm to create an extremely high 
value for any edge with a slope higher 
than 12:1.  The combination of the 
slope value and research on energy 
expenditure allows for a tool to not 
just analyze a design, but interactively 
help a designer understand the energy 
needed to navigate their design.  This 
can be used for instance, in designing a 
wheelchair ramp.  If a wheelchair ramp 
can be placed on two different sides 
of a building, one with a longer ramp, 
and one with a shorter ramp, the best 
choice is not necessarily known (Figure 
6.20).  A longer ramp will allow for a 
smaller incline, yet extends the amount 
of time needed to fi nish the ramp.  By 
incorporating more research on the 
subject, this type of algorithm provides 
a great way for designers to improve 
their design in a quantifi able manner.

Figure 6.19
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 The amount of space someone takes up depends on not just their weight 
and height, but the tools they use in everyday life.  These tools can range from 
a backpack full of books, to a wheelchair, crutches, or walking stick.  There are 
many references for designers on the size people take up, including references for 
disabilities and clothes (Figure 6.21).  In fact, the references vary from general sizes 
to extremely specifi c, taking into account winter sized clothes, personal space, 
touch-zones, and on.  Knowledge of the size required of someone is useful in a 
variety of situations, even more benefi cial is a quick way of seeing this requirement 
in the design.  Just having the knowledge of the size required can not last through the 
entire design process. At some point the space needs to be measured against the 
required space for a person.  This is especially true in bathroom settings that have 
strict laws on accessibility.  Less in the realm of simulation and more towards pure 
visualization is the ability to view these zones right inside the design.  Additionally, 

6|4 Zones

Zone
noun

An area or stretch of land having a 
particular characteristic, purpose, or use, 

or subject to particular restrictions 



this collection of zones provides a 
reminder to designers as to what is not 
just the minimum, but what is the real 
situation in which design should aim for.  
For example, although the ADA specifi es 
a turning radius for a wheelchair, 
it does not include the situation in 
which the person in a wheelchair has 
an assistant that must be included in 
the turning radius.  Additionally, while 
the space required for a wheelchair to 
pass through a hallway may be known, 
the designer must remember that 
in a long hallway, leaving just enough 
room for a wheelchair to pass may 
cause a problem when a wheelchair 
is passing and another person is 
walking in the opposite direction, let 
alone two wheelchairs passing each 
other.  These additional cases make 
memorization of size requirements 
an extremely diffi cult thing to do.  
 The space taken up by someone 
can be represented in different 
ways.  The physical space taken up by 
someone is different than the space 
needed for an action to occur.  A main 
infl uence in this part of the research 
was the dissertation by David Lantrip 
on quantifying space design (Lantrip).  
His research consisted of cataloging 
different movements through video.  
These movements turned into a body 
envelope that was integrated into a 
program called IsoKin.  The program 
itself is interesting in comparison to 
the current research as a reference to 
how technology and workfl ows have 
changed over twenty years.  What 
has not changed is the relevance of 
understanding how a desired human 
action results in the perceived comfort 
of the space.  The answer is not always 
as simple as making something bigger.  

Figure 6.21

Figure 6.22



Besides for the obvious fact that making 
everything bigger requires more space 
and money, it also means everything 
is further apart and takes more time 
to go from one place to another.  
Although this distance may make the 
environment seem less cramped, it 
does not necessarily make the space 
more comfortable as discomfort may 
arise from aggravation in the length 
of time required to complete a task.  
 There are many types of 
wheelchairs.  Unfortunately the 
knowledge of these wheelchairs and 
how they function is not known by most 
designers.  Besides the legal standards, 
there are various wheelchair sizes, and 
just as important, various sized people 
that use wheelchairs.  At a local hospital, 
three different wheelchairs were being 
used.  With low-cost technology the 
chairs were 3D scanned to database 
different sizes (Figure 6.22).  The 
turning radius of a wheelchair is not 
just a calculation of wheelbase and 
length, but must also include the foot 
length of the user, and the users arm.  
When an assistant is needed to push 
the wheelchair, the turning radius is 
drastically increased. Simulation comes 
into this section when looking at the 
vast array of wheelchairs.  A designer 
working for either a health center that 
uses a few types of wheelchairs, or 
designing for a single client with one 
wheelchair type, benefi ts from being 
able to simulate the wheelchairs space.  
With memorization of the entire legal 
standards for accessibility a designer 
is still not able to provide an optimal 
design for a client if the wheelchair 
is different than the standard.  Most 
drastically is a client with a motorized 
chair compared with the wheelchair 

Figure 6.23

Figure 6.24



used for legal standards.  Everything 
from the turning radius to seat height 
is different and must be designed for.  
There are two ways of adding the 
various wheelchairs in a visualization/
simulation program, fi rst is to have 
a catalog of various wheelchairs and 
the designer chooses the appropriate 
one.  Second, the designer could enter 
basic information about the wheelchair 
and have the simulations done after 
entering the information.  These 
methods are not mutually exclusive 
and could provide an incentive for 
community based data sharing.  As 
specifi c wheelchairs are measured, they 
could be added to a larger database 
in which designers pull the premade 
simulation data for visualization in their 
designs.  Additionally, the database is 
not restricted to designers, meaning 
manufacturers and user of wheelchairs 
can enter the data to contribute to a 
growing collection of wheelchair data.
 Using a similar technique as the 
vision visualizations, a single algorithm 
was implemented so different zones 
could be easily added.  The zones are 
based around the manikin and can be 
visualized individually (Figure 2.23) or 
in multiples (Figure 6.24).  Although 
the manikin uses a wheelchair, standing 
zones are also implemented.  These 
zones, represented in design books as 
a way to design space for numerous 
people (Figure 6.25), are used to remind 
the user of how much space a wheelchair 
needs in comparison (Figure 6.26). 

Figure 6.25

Figure 6.26



 Creating a way for designers and scientists to work together was a priority 
of this research.  Through the motion capture work done at the beginning of the 
research it was clear that many of the methods and techniques scientists used 
could be integrated in design programs.  The fi rst obstacle was that not all modeling 
programs have character animation built in.  Although this work was developed 
in Maya, which did have character animation, the goal was to create a system that 
could be ported to any modeling program with scripting capabilities.  The lack of 
animation capabilities was resolved by reading and writing .CSV fi les.  This concept 
came from the way in which movement science software packages already play 
animation.  The fi les containing motion capture data are usually a spreadsheet of 
markers and xyz locations throughout time.  Instead of using xyz marker locations 
the fi les in this research use joint angles.  This can be done on either the movement 
science or 3d modeling side.  In movement science someone can use a program 

6|5 Analysis

Analysis
noun

Detailed examination of the elements 
or structure of something, typically as a 
basis for discussion or interpretation 



such as Visual3D to read mocap fi les, 
construct a skeleton and export the 
joint angles.  On the 3d modeling side 
Motion Builder can be used to take 
motion capture data and attach it to a 
skeleton.  The skeleton can be brought 
into Maya and the angles recorded.  
Either way, the joint angle information 
can be analyzed through plot graphs.  
 A key part to this research 
was in fi nding existing libraries with 
functionality that would benefi t the 
design practice.  One of these examples 
is a matlab style plotting library called 
matplotlib (Hunter).  This library has 
a plethora of plotting styles that can 
take data and compare it in ways from 
line graphs to animated 3D graphs.  
The library was successfully imported 
within Maya.  Integration with the 
manikin tool provides a quick way 
to compare joint angles over time. 



7 Conclusion

 This work demonstrates a variety of functions, algorithms, and user layouts 
that can better integrate human factors with the design workfl ow.  There are many 
ways to continue this work both by the author and readers.  Each of the algorithms 
has potential to be both improved with speed and expanded on for functionality.  
The current works sets a groundwork for how to integrate the new functions that 
may become useful to designers and architects.  With the continuation of work 
involving BIM, factors such as the human body and the relationship it holds to the 
building will hopefully become an integral feature of future BIM applications.  As 
discussed in the work, the functions presented are not limited to BIM applications.  
By bringing human factors to the forethought of designers and architects, the way 
and style in which designs are created can be greatly infl uenced, while also being 
more user friendly.  
 The goal of this work is to continue refi nement within the algorithms and 
create the most portable library for designers to integrate with their own work.  
Some additional work and side projects have been inspired by going through this 



work.  For one, a library that takes 
basic python functions used in a variety 
of different programs and extrapolates 
them to a module to act as a wrapper 
for cross platform building would be 
very useful.  By adding a module that 
handles the communication with the 
program, such as Maya or Rhino, the 
UD Manikin could be built with simple 
functions abstracted from program 
specifi c language, and with a simple 
variable switch the library could output 
to the program either Maya or Rhino 
style python.  
 If at the very least, this work 
should help people think more about 
the human experience of their designs, 
not just for the average user, but for 
people that have physical disabilities 
that the designer may not have thought 
of, such as a different reach ability.  This 
extends not only to the design process, 
but building information that could be 
displayed and known by the occupants 
that can assist in someone attempting 
to navigate or use the current facilities.  
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