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CHAPTER I

Introduction

Given its potentially severe consequences, including an increase in extreme weather

events, rising sea levels and accompanying displacement of people, climate change is

one of the largest challenges facing mankind. The leading cause of anthropogenic

climate change is the increasing concentration of carbon dioxide (CO2) in the at-

mosphere resulting from anthropogenic CO2 emissions [e.g. American Meteorological

Society , 2012; Solomon et al., 2007], which have been steadily rising since the Indus-

trial Revolution [e.g. Olivier et al., 2012; Peters et al., 2011]. A mitigating factor

has been the fact that less than half of these emissions have remained in the atmo-

sphere, with the majority of the CO2 released from anthropogenic emissions being

taken up again by physical and biogeochemical processes partaking in the carbon

cycle [e.g. Field et al., 2007; Peters et al., 2011]. Were it not for these uptake mech-

anisms, the concentrations of atmospheric CO2 in the atmosphere would have risen

even faster, and subsequently the effects of climate change would be much more severe

[e.g. Denman et al., 2007]. There are, however, some indications that these uptake

mechanisms might be weakening and a higher percentage of emitted CO2 might be

remaining in the atmosphere [Canadell et al., 2007b; Le Quéré et al., 2009]. We lack

detailed quantitative information of where uptake of carbon takes place, what the

relative contribution of different processes to the carbon exchange is, and how sus-
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tainable uptake processes will be in the future. This lack of quantitative knowledge

of carbon exchange processes, of their future functioning and their climate feedbacks,

is one of the main sources of uncertainty in future climate projections [e.g. Friedling-

stein et al., 2006] and limits our ability to optimally manage and mitigate climate

change. This dissertation presents arguments and methodologies, which establish how

high resolution geostatistical mapping of newly available satellite CO2 observations

can enhance our knowledge of global atmospheric CO2 concentrations, and how this

enhanced characterization of the concentration fields can indirectly contribute to a

better understanding of the underlying carbon fluxes which give rise to the gradients

in atmospheric CO2 concentrations.

Current approaches to infer carbon sources and uptake (“sinks”), and hence quan-

tify carbon exchange processes, include inverse modeling (“top-down”), process-based

surface modeling and inventory based calculations (“bottom-up”). Inverse modeling

describes procedures where atmospheric CO2 observations are used in combination

with atmospheric transport models to infer carbon fluxes, whereas process-based mod-

els are models that are based on our understanding of carbon exchange processes [e.g.

Field et al., 2007; Huntzinger et al., 2012]. There are large differences in the modeled

flux distribution between top-down and bottom-up approaches and also among mod-

els using the same approach [Battin et al., 2009; Gurney et al., 2008]. The carbon

cycle is a highly complex, dynamical system, consisting of a broad variety of processes

[e.g. King et al., 2007]. Many of these processes occur at widely different temporal

and spatial scales, and partially compensate each other in terms of overall carbon

fluxes [e.g. King et al., 2007]. These scale discrepancies and the potential compensat-

ing effect of fluxes from different processes, contribute to the challenge of quantifying

carbon fluxes, which is reflected in the spread of modeling results mentioned above.

Another cause for these discrepancies is a lack of observational data that would allow

us to better constrain these models and improve the underlying model formulation and

2



parameterization [Nisbet and Weiss , 2010]. While the ground-based atmospheric CO2

measuring network has been growing, it is still rather limited and heavily weighted

towards measurement locations in developed countries [Tans and Conway , 2005].

Space-based observations of CO2 offer the prospect of providing observations at

much higher global density than the ground-based network. To provide such observa-

tions, Japan and the United States have commissioned the first two satellite missions

specifically designed for the measurement of greenhouse gases including CO2. A

defining feature of these two missions is their sensitivity to the near-surface CO2 con-

centrations, where most of the carbon exchange processes take place. The Japanese

Greenhouse Gas Observing Satellite (GOSAT) was successfully launched in January

2009, while NASA’s Orbiting Carbon Observatory (OCO) [Crisp et al., 2004] experi-

enced a launch failure in 2009 and will be re-launched as OCO-2 in 2015.

A future mission, which is in planning stage, is the Active Sensing of CO2 Emis-

sions over Nights, Days and Seasons (ASCENDS) mission. The term “active” refers

to the measurement technology employed, which is based on lidar technology, where

the instrument itself emits and receives light. Passive missions such as GOSAT and

OCO-2, on the other hand, infer the amount of CO2 in the atmosphere by means

of reflected sunlight. This eliminates the opportunity to observe at night, in cloudy

regions and at low solar zenith angles, i.e. at high latitudes; circumstances in which

active missions will in principle still be able to observe. The mission goals of AS-

CENDS are hence linked to contributing insights to open carbon cycle questions that

will specifically benefit from the lidar measurement technology. These questions in-

clude changes in the Northern High Latitude and the Southern Ocean [ASCENDS

Workshop Steering Committee, 2008], which are both are among the largest and most

vulnerable carbon pools. More broadly, it is anticipated that ASCENDS, and other

active missions, will provide a more comprehensive set of global observations and

might improve inversion results [Hungershoefer et al., 2010].
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The current and future availability of satellite observations of CO2, however, is

no panacea for pinning down the carbon cycle. One aspect is that, while the spatial

coverage of satellite data is large compared to the land-based CO2 monitoring net-

work, the daily spatial coverage is still relatively sparse [e.g. Buchwitz et al., 2007;

Schneising et al., 2008] with gaps due to orbit configuration and measurement lim-

itations such as clouds and aerosols. In a recent article on the role of OCO and

GOSAT, the potential of monthly atmospheric CO2 maps to serve as benchmarks for

models and to provide insights in seasonal carbon cycle dynamics has been pointed

out [Heimann, 2009]. Monthly atmospheric CO2 maps, compared to, for example,

weekly or daily maps, were mentioned by Heimann [2009], as a temporal resolution

of one month is considered the achievable status quo due to gaps in the satellite data.

Some characteristics of satellite observations, namely that they are instantaneous in

time without frequently reoccurring measurements at the same location, and that

they often occur in clusters and have high measurement errors, have further proven

challenging for inversions [Hungershoefer et al., 2010].

This dissertation presents a novel and complementary approach to capitalize on

CO2 satellite observations; the satellite observations are employed to map global

atmospheric CO2 concentration fields with associated uncertainties at high spatial and

temporal resolution. Temporal resolution is a critical factor as it determines which

types of insights can be gained from, and what types of subsequent studies can be

conducted with, the inferred concentration fields. Ideally, the inferred concentration

fields feature a temporal resolution similar to the dynamics of atmospheric CO2,

which is on the order of a few days. If such high resolution concentration fields can

be inferred, they can be used in a wide variety of subsequent studies to gain direct

knowledge about the atmospheric CO2 concentration fields at synoptic time scales,

as well as indirectly to gain knowledge about carbon sources and sinks. Examples

demonstrated in this dissertation include model comparison and carbon flux signal
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detection studies. In this context, model comparison refers to studies that assess

the degree to which transport and flux models are consistent with observation-based

CO2 concentration fields. Signal detection refers to studies that assess the ability

of observing systems to detect gradients in atmospheric CO2 concentrations, which

result from carbon flux perturbations.

The mapping approach presented in this thesis has certain advantages compared

to the mapping approaches that are currently in use and that are described in detail

in section 2.5.1. The current mapping approaches do not use the information con-

tent of the satellite observations to their full potential by either applying averaging

procedures in binning approaches that eliminate high resolution information or by

combining the information content of the satellite observations with flux and trans-

port modeling assumptions, which render it difficult to distinguish the origins of the

signals contained in the resulting products. This in turn limits the ability to use these

products as validation data sets or in model comparisons.

The approach taken in this dissertation is to conceptualize and model global at-

mospheric CO2 concentrations as a realization of a stochastic process or random field

[e.g. Cressie, 1993; Gelfand , 2010]. A stochastic process is characterized by the pres-

ence of statistical correlation. In the application to CO2 concentration fields, this

translates to spatial correlation. The basic idea is to leverage the fact that spatial

correlation is present in the CO2 concentration field, and hence in the observations, to

infer, and map, global concentration fields using a geostatistical framework without

invoking flux estimates or transport modeling assumptions. Using a geostatistical

framework also naturally leads to uncertainties along with the concentration fields.

Geostatistical mapping draws a balance between using only the observations on

one hand and modeling approaches that invoke flux and transport assumptions on

the other hand; it infers observation-derived mapping products based on spatial cor-

relation. The main challenges associated with using individual satellite observations
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directly in, for example, model comparison studies are that they contain large gaps

and their measurement noise levels are very high. The existence of large gaps implies

that comparisons can not be conducted in a spatially comprehensive way using the ob-

servations directly. The high measurement errors lead to uncertainties associated with

individual observations that are often so large that they preclude meaningful compar-

isons that could provide new insights. Geostatistical mapping has the advantage that

it can leverage the information content from many observations simultaneously and

can thereby provide spatially continuous concentration fields with uncertainties that

are often lower than those of the observations, which in turn facilitates potentially

more insightful comparisons.

In summary the goal of the method developed in this dissertation is to obtain

atmospheric CO2 concentration maps that are not based on flux estimates or atmo-

spheric transport models, can be created at synoptic time scales and provide un-

certainties. Once derived, these maps and their uncertainties can be used to gain

insights in the carbon cycle through a variety of subsequent studies. To this end, this

thesis has three main objectives: 1) Developing and evaluating a mapping methodol-

ogy for deriving global atmospheric CO2 concentrations and uncertainties from satel-

lite observations, 2) Deriving high resolution CO2 concentration maps from GOSAT

observations and using the mapped products for model comparison studies and 3)

Evaluating the ability of the ASCENDS mission to detect signals in atmospheric CO2

concentrations resulting from changes in carbon fluxes.

Objective 1: High resolution mapping of CO2

The objective is to develop a methodology to infer CO2 concentrations, and as-

sociated uncertainties, at high spatial and temporal resolution without invoking flux

or atmospheric transport assumptions. The conceptual idea is to leverage the spatial

correlation present in the atmospheric CO2 concentration field by employing a spatial
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statistical framework to infer atmospheric CO2 concentration maps and uncertainties

at high spatial and temporal resolution. This objective also addresses the specific

question of the optimal temporal resolution to create such maps, which is explored

by means of a simulation study. The simulation study uses highly realistic OCO-2-

like observations, which will represent an interesting challenge as their precision will

be relatively high, but the spatial coverage for a given day will be limited. So making

optimal use of future OCO-2 observations requires a careful evaluation of the choice of

temporal resolution. In addition to addressing the question of optimal temporal res-

olution, the simulation study assesses the performance of the mapping methodology

for a range of conditions, such as varying levels of measurement noise and seasonal

variations in the spatial and temporal heterogeneity of the CO2 concentration fields.

Objective 2: Global GOSAT CO2 maps and model comparison

The objective is to derive the global GOSAT CO2 concentration maps at high

spatial and temporal resolution with uncertainties to gain knowledge about the syn-

optic scale changes in the CO2 concentration field and to assess to which degree

the GOSAT-derived concentration fields are consistent with a state-of-the-art cou-

pled carbon flux and transport model. The time period considered is the second

half of 2009, the first time period for which GOSAT observations are available. The

model used in the model comparison is the PCTM/GEOS-5/CASA-GFED model and

the methodology developed in objective 1 is used to infer the global concentration

fields. The comparison is conducted using a probabilistic framework, which takes the

spatially and temporally varying uncertainties of the GOSAT-derived mapped con-

centrations into consideration. In addition to assessing the consistency between the

PCTM/GEOS-5/CASA-GFED model with the mapped GOSAT products, the ob-

jective is to also provide a prototype application of a probabilistic comparison study

using mapping products.
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Objective 3: Signal detection for the ASCENDS mission

The objective is to assess the capability of the ASCENDS mission to detect gra-

dients in atmospheric CO2 concentrations resulting from changes in carbon fluxes

whose detection is of high scientific and societal relevance. The specific proto-typical

scenarios investigated are: carbon release from the melting of permafrost in the high

Northern latitudes, the shifting of fossil fuel emissions from Europe to China and El

Nino Southern Oscillation (ENSO) related changes in the sources/sink characteris-

tics in the Southern Ocean. These scenarios fall within the key ASCENDS mission

goals and can specifically benefit from the ASCENDS measurement technology. The

detection study applies the methodology developed in objective 1 to create mapping

products that are then used in a probabilistic comparison framework for signal de-

tection. Using mapping products in a signal detection setting can potentially lead

to better detection performance than using individual high noise observations as the

information content of many observations can be leveraged concurrently. Besides in-

vestigating to which degree the ASCENDS mission can detect changes in gradients

in the atmospheric CO2 concentration field stemming from changes in carbon fluxes,

this objective also provides an illustration how mapping can be advantageously used

for signal detection.
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CHAPTER II

Background

2.1 Anthropogenic climate change

Our climate is changing; it is getting warmer, and quickly so. The global tempera-

ture of the Earth has increased by 0.8 degrees in the last century, with more than half

of the increase occuring in the last thirty years [Blunden and Arndt , 2012]. Further

observational evidence of a changing climate includes an increase in global averaged

ocean temperature, rising global averaged sea levels and decreasing global volumes of

snow and ice [American Meteorological Society , 2012].

Along with an increase in global temperature, other characteristics of our climate,

such as weather patterns and the occurences of extreme events, as well as circula-

tion patterns in the atmosphere and in the oceans are also showing signs of change

[Trenberth et al., 2007]. Some of the consequences, we are already seeing evidence

for, are more frequent extreme events such as severe storms and droughts [e.g. Amer-

ican Meteorological Society , 2012; Trenberth et al., 2007]. Another example includes

changes in snow accumulation in mountainous areas. Although there are regional

variations, in most locations freezing elevations have gone up and the onset of spring

melting occurs earlier, leading to lower levels of winter snow pack and subsequently

less spring runoff, which affects downstream water supplies [American Meteorological

Society , 2012; Lemke et al., 2007]. The polar regions are some of the areas most
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affected by climate changes [American Meteorological Society , 2012]. Arctic sea ice

extent has been shrinking for the last few decades [Lemke et al., 2007], setting a new

record low in 2012 (http://nsidc.org/arcticseaicenews/2012/08/arctic-sea-ice-breaks-

2007-record-extent/). The Greenland and Antarctica ice sheets have lost a significant

portion of their volumes [American Meteorological Society , 2012]. In addition, most of

the world’s glaciers are retreating [e.g. American Meteorological Society , 2012; Lemke

et al., 2007]. This melting of snow and ice has contributed to about half of the sea

level rise over the last decades, with the other half due to thermal expansion of the

water in the oceans [American Meteorological Society , 2012]. Sea level rise has severe

impacts on coastal areas, where the majority of the world’s population lives [Nicholls

et al., 2007].

While there is natural variability in the Earth’s climate, there is broad consensus

in the scientific community that the climate change we are experiencing now is, at

least in part, brought about by human actions [e.g. American Meteorological Society ,

2012; Denman et al., 2007]. The key drivers of anthropogenic climate change are

the increasing concentrations of greenhouse gases in the atmosphere. The Fourth

Assessment of the Intergovernmental Panel on Climate Change specifically states

that ”most of the observed increase in global average temperatures since the mid-

20th century is very likely due to the observed increase in anthropogenic emissions”

[IPCC , 2007]. The anthropogenic greenhouse gases include carbon dioxide, methane,

nitrous oxides, among others. Of these, carbon dioxide and methane are the largest

contributors to climate change and their concentrations are increasing due to human

activities, mainly the burning of fossil fuels and land use changes (e.g. deforestation)

[e.g. Peters et al., 2011]. Their increasing concentrations cause a higher percentage

of the earth’s outgoing thermal radiation to be absorbed and re-radiated, which leads

to an increase in global temperature [e.g. Forster et al., 2007].

Of all the greenhouse gases in the atmosphere, carbon dioxide (CO2) is the most
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important anthropogenic greenhouse gas contributing to climate change [e.g. Forster

et al., 2007]. In addition to its role as a greenhouse gases, atmospheric CO2 is in

exchange with, and influences, other components of the Earth System. For example,

higher atmospheric concentrations of CO2 have led to increased absorption of CO2

by the oceans, which subsequently causes ocean acidification [e.g. Field et al., 2011].

Ocean acidification refers to a reduction in the pH of the oceans over an extended

period. The rapidly evolving field of ocean acidification research is just starting to at-

tribute the effects of increasing atmospheric CO2 concentrations on ocean chemistry,

and the subsequent impact on biological processes and ecosystems in the oceans such

as coral-reef systems [e.g. Field et al., 2011]. Ocean organisms that form their shells

using aragonite, a form of calcium carbonate, might be at the risk of extinction, as

projections indicate that they will be unable to form their shells in a more acidic

ocean [e.g. Field et al., 2011]. Furthermore, more acidic oceans can put ecosystem

services, such as fisheries and tourism, at risk. Another example of a direct influence

of increasing atmospheric CO2 concentrations is carbon fertilization, defined as the

enhancement of the growth of plants as a result of increased atmospheric CO2 con-

centrations [e.g. Canadell et al., 2007a]. One of the effects of carbon fertilization is

a change in the relative competitive advantage of plants species [e.g. Michalak et al.,

2011], which could have a variety of consequences ranging from effects on the world’s

food supply to loss of species.

While anthropogenic CO2 emissions have been rising since the Industrial Revo-

lution [e.g. Peters et al., 2011], only about half of these emissions have remained in

the atmosphere [e.g. Denman et al., 2007]. The remainder of the anthropogenic CO2

emissions have historically been taken up again by so-called carbon sinks; mainly the

oceans and the land biosphere [e.g. Peters et al., 2011]. This uptake, however, varies

significantly from year to year, and our understanding is limited to what causes these

inter-annual variations [e.g. Field et al., 2007; King et al., 2004]. Some of the factors
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that contribute to the interannual variability include changes in fossil fuel emissions,

natural variability in climate and weather patterns, fires and volcanic eruptions. For

example, it has been shown that interannual variability is correlated with the oc-

curence of El Nino/Southern Oscillation (ENSO) [Gurney et al., 2008]. However,

many fundamental questions about the driving mechanisms and the resulting carbon

fluxes remain open [e.g. Michalak et al., 2011; Pacala et al., 2007b]. We do not know

in enough detail what the driving mechanisms are, how large the resulting carbon

fluxes are, and how they vary, on regional scales. Our lack of detailed understanding

of the driving mechanisms is reflected in the fact that one of the largest factors con-

tributing to the uncertainty in the prediction of future climate is the future of carbon

sinks [e.g. Friedlingstein et al., 2006]. Given our limited mechanistic and quantitative

understanding, it is not certain how these uptake mechanisms will function in the

future, and most importanly, if they will continue to provide the removal service they

currently do [e.g. Pacala et al., 2007b]. If these removal services became less efficient,

climate change would be accelerated and its effects much more severe [e.g. Denman

et al., 2007].

Carbon sinks are but one component in the complex dynamical system of exchange

and transformation of carbon within the Earth System referred to as the carbon cycle,

which is discussed in the following section. The behavior of carbon sinks can only be

fully understood, and quantified, in the larger context of a quantitative understanding

of the carbon cycle within the Earth system.

2.2 The Global Carbon Cycle and its characterization

The global carbon cycle is the biogeochemical cycle by which carbon is exchanged

and transformed among different carbon reservoirs, namely the atmosphere, bio-

sphere, geosphere, hydrosphere, pedosphere, and human systems of the Earth [King

et al., 2007]. The global carbon cycle is a highly complex dynamical system consist-
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ing of many components. The quantitatively largest exchanges occur between the

atmosphere and the oceans and between the atmosphere and the terrestrial biosphere

[e.g. King et al., 2004, 2007].

The oceans constitute, after the lithosphere, the second largest reservoir of carbon

in the Earth System, holding about 50 times as much carbon as the atmosphere [e.g.

Denman et al., 2007; King et al., 2004; Prentice et al., 2001]. Both physical and bio-

geochemical processes, mainly ocean circulation and carbonate chemistry, contribute

to the ocean carbon exchange [e.g. Prentice et al., 2001]. Carbon enters the ocean

primarily through dissolution of atmospheric CO2 in the top layer of the ocean, with

a much smaller contribution from dissolved organic carbon that enters the ocean

through river discharge [e.g. Prentice et al., 2001].

The physical carbon exchange is driven, among other factors, by the partial pres-

sure difference of CO2 between air and water and the solubility of CO2, which is a

function of ocean temperature [e.g. Prentice et al., 2001]. Ocean phytoplankton con-

verts dissolved inorganic CO2 to organic matter via photosynthesis [Prentice et al.,

2001]. Some of the dissolved carbon is also converted to calcium carbonate shells

[e.g. King et al., 2007]. When these organisms die, they sink and decay, during which

most of the carbon is redissolved, but a small fraction reaches the sediments of the

deeper oceans, thereby sequestering carbon for long time periods [e.g. King et al.,

2007]. This process is referred to as the biological pump [Prentice et al., 2001].

The oceans have acted as a net carbon sink since the increase of atmospheric

CO2 concentrations in the last two and a half centuries, as the rate of exchange with

the top layer of the ocean is driven by the atmosphere-ocean difference in partial

pressure of CO2 [e.g. Denman et al., 2007; Prentice et al., 2001]. With increasing

CO2 concentrations, however, the fractional rate of uptake declines due to a reduced

buffer capacity of the ocean carbonate system and the limited rate of mixing between

deep ocean and surface water [Prentice et al., 2001]. Increasing ocean water temper-
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atures further contribute to a reduction in uptake due to lower solubility of CO2 with

increasing temperature [Prentice et al., 2001].

The key processes that characterize the carbon exchange in the terrestrial bio-

sphere are related to vegetation and microbial organisms. Through photosynthesis,

plants convert atmospheric carbon into organic carbon. About half of this organic

carbon is stored in wood and other plant tissue [e.g. King et al., 2007], while the other

half is converted back to atmospheric CO2 during plant respiration. When plants die

and decay, most of the stored carbon is released again to the atmosphere [e.g. Den-

man et al., 2007]. A very small fraction is converted to inert forms and amasses in

the soil [e.g. King et al., 2007; Prentice et al., 2001]. Fires and the transfer of soil

carbon back to the atmosphere through heterotrophic respiration, i.e. the mineral-

ization of organic carbon to CO2 by microbes [e.g. Canadell et al., 2007a], further

influence the carbon exchange between the terrestrial biosphere and the atmosphere

[e.g. Denman et al., 2007]. A range of human-influenced processes modify the nat-

ural terrestrial biospheric exchange processes. Key such modifications include CO2

fertilization, woody encroachment, reforestation, change in agricultural practices,the

melting of permafrost and the subsequent release of carbon, drainage of peatlands,

deforestation and fires [Canadell et al., 2007a; Field et al., 2007; King et al., 2007].

They can be roughly categorized in processes directly influenced by human activ-

ities such as land use change related processes, and those indirectly influenced by

humans via the effects of climate change such as CO2 fertilization and the melting of

permafrost.

While the mechanisms of some of terrestrial carbon exchange processes are rea-

sonably well known, it is not clear what the relative contributions of these processes

are to carbon exchange in a given region [e.g. Field et al., 2007]. Having a quanti-

tative understanding of the processes contributing to carbon exchange is especially

important when evaluating the future direction of carbon exchange in the region. For
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example, the sink contribution of reforestation is limited in space and time and will

eventually taper off, which needs to be accounted for accordingly when assessing fu-

ture sinks [e.g. Pacala et al., 2007b]. Hence, understanding the relative importance of

these driving processes, and evaluating their future functioning, are key objectives in

carbon cycle science. One aspect that makes a quantitative description of the individ-

ual processes contributing to the carbon cycle difficult is that only the net difference

in fluxes can be observed. So even though the gross carbon flux associated with a

given carbon exchange mechanism might be large, the net difference in fluxes from

all processes contributing to carbon exchange combined is small in many ecosystems

as the fluxes partially compensate each other. This renders it difficult to assess the

contributions of individual flux processes.

In addition to human activities that modify natural carbon exchange processes,

anthropogenic emissions, mainly from the burning of fossil fuels, play an important

role in the carbon cycle. The flux associated with fossil fuel emissions is relatively

small compared to the gross fluxes associated with natural oceanic and terrestrial

exchange processes, approximately 9 Pg carbon per year compared to approximately

90 Pg and 57 Pg associated with oceanic and terrestrial exchange [e.g. Field et al.,

2007]. However, the net contribution of fossil fuel emissions is large and fossil fuel

emissions are the main driver for increasing CO2 concentrations in the atmosphere

[e.g. Solomon et al., 2007]. Fossil fuel emissions have been rising since the onset of the

Industrial Revolution reaching their highest level yet in 2011 with global emissions of

approximately 9.3 Pg of carbon [Olivier et al., 2012]. While fossil fuel emissions vary

to some degree in response to economic conditions [e.g. Olivier et al., 2012; Peters

et al., 2011], their average annual increase over the last two decades was 3% [Olivier

et al., 2012]. Were this trend to continue, achieving the widely cited target of limiting

maximum global warming to 2 degrees, seems unattainable [Olivier et al., 2012].

The carbon cycle is also inter-related with the nitrogen and the hydrological cy-
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cles, the Earth system’s two other main cycles. A climate-relevant example of an

interaction between the carbon and the hydrological cycle is that observations now

indicate that rising atmospheric CO2 concentrations have led to increased globally av-

eraged water vapor in the atmosphere, which in turn amplifies warming of the earth

[American Meteorological Society , 2012]. One factor that adds to the complexity of

the carbon cycle is that different carbon exchange processes happen at vastly varying

scales [e.g. Denman et al., 2007]; spatial scales range from the oceans to individual

small organisms, temporal scales from millions of years to quasi-instantaneous. Scale

also plays a role in assessing how well-understood components of the carbon cycle are.

Carbon fluxes of individual entities, such as trees, might be well understood, but how

to use this understanding to upscale to local and regional scales remains challenging

[Canadell et al., 2007a]. Eddy covariance towers, which infer CO2 fluxes, have led

to much progress in the understanding of the role and seasonal behavior of different

ecosystems [e.g. Pacala et al., 2007a]. However, the spatial range of fluxes that can

be observed by eddy covariance towers is limited, and, analogous to process-based

understanding, it has been challenging to upscale the findings to larger regional scale

[Field et al., 2007].

Complementary to direct carbon flux measurements, other approaches to assess

the carbon exchange include inventory calculations, inverse or top-down modeling us-

ing atmospheric CO2 concentrations and process-understanding based models. [Field

et al., 2007]. Inventory calculations are based on assessments of carbon stocks con-

tained in various carbon reservoirs, such as forest inventories and measurements of

carbon in the oceans, and their change over time. Inverse modeling uses atmospheric

CO2 observations in conjunction with a transport model to estimate carbon fluxes.

Process-based models are numerial models that are based on our understanding of

carbon exchange processes. They vary widely with respect to the number of pro-

cesses incorporated, their level of detail and resolution, and the use of observational
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constraints [e.g. Huntzinger et al., 2012]. In residual calculations a flux component is

calculated as the difference between estimated total net flux and estimates of other

flux components [e.g. Field et al., 2007]. Reconciling the findings using different ap-

proaches has proven challenging. This challenge is manifested in the large differences

of regional flux estimates that exist between process-understanding based models and

those using atmospheric CO2 observations to infer carbon fluxes [e.g. Battin et al.,

2009]. Even using only the top-down modeling approaches, where observations of

atmospheric CO2 concentrations are used to infer carbon fluxes, results show wide

spreads [e.g. Baker et al., 2006; Gurney et al., 2008].

In addition to uncertainties associated with the contribution of individual driving

mechanisms to carbon exchange, the state of knowledge of fluxes over larger regions

varies by region. Carbon exchange between the oceans and the atmosphere is generally

known fairly accurately, with the exception of the Southern Ocean [e.g. Gruber et al.,

2009]. The large uncertainties in the Southern Ocean, primarily caused by a lack of

observations, have led to large differences in the assessment of the temporal trend

of the carbon sink in the Southern Ocean, and subsequently in its future projection

[Gruber et al., 2009; Le Quéré et al., 2007]. Land areas where carbon flux estimates

have very large uncertainties are the tropics and the Northern hemisphere extra-

tropics [Baker et al., 2006; Gurney et al., 2003]. The coastal regions, where land and

oceans interface, are also areas where large uncertainties remain in our understanding

of carbon exchange [e.g. Pacala et al., 2007b].

Besides direct flux measurements, in a complex, interlinked dynamical system such

as the carbon cycle many different types of observations can contribute to further our

understanding of the system. Observations that can directly or indirectly contribute

to improving our understanding of the carbon cycle cover a broad range and include

observations of the oceans, of atmospheric constituents, properties and dynamics,

earth surface characteristics and their interactions, characteristics of the terrestrial
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biosphere such as leaf area index (LAI) and other vegetation indices, properties of

the hydrological cycle as well as variables describing solar dynamics and subsequent

changes in incoming radiation [e.g. Solomon et al., 2007]. Observing these properties

can help improve our process-understanding by characterizing the variability of the

observed system component and their effect on carbon fluxes. To successfully do

that, the observations need to be made at a temporal and spatial resolution that is

high enough to capture the variability of the component in time and space. For some

processes this is most effectively done as part of field campaigns where a variety of

observations are taken for a limited duration with the goal of improving our process

understanding of the system component. The final goal is to advance scientific un-

derstanding and potentially incorporate the improved characterization of a system

component in models.

2.3 Observations of atmospheric CO2

Observations of atmospheric CO2 hold a unique position among all the indirect ob-

servations of carbon fluxes; they reflect the net result of all carbon exchange processes

with the atmosphere. For instance, the global net sum of all the carbon exchange

processes with the atmosphere over a time period is captured in the change of the

global mean in concentrations over the same time period. It is not the mean, but

the spatial and temporal gradients in the atmospheric CO2 concentrations, however,

that contain the information that enables inference on the spatial and temporal dis-

tribution of the carbon fluxes. Inferring carbon fluxes at high spatial and temporal

resolution, i.e. knowing how carbon fluxes vary over small regions and time periods, is

an important step towards disentangling the relative contributions of various carbon

exchange processes. Ideally, inventory-based and process-based methods work in con-

junction with methods based on atmospheric concentrations, where the atmospheric

methods provide a constraint and verification tool for the other methods [e.g. Pacala
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et al., 2007b]. The ultimate goal is to understand carbon exchange processes at scales

that will enable us to assess the future contribution of these exchange processes, and

to make carbon cycle management decisions.

The following sections discuss atmospheric CO2 observations, and their use to

enhance our understanding of the carbon cycle, in more detail. Given the subject

of this dissertation, the discussion will be geared towards satellite observations of

atmospheric CO2 concentrations.

Observations of atmospheric CO2 exist in many forms including discrete flask,

continuous tower, aircraft, ship, and satellite observations. The most iconic obser-

vations are arguably those from the Mauna Loa observatory in Hawaii, which were

started by C. David Keeling in 1958 and constitute the longest record of direct mea-

surements of CO2 in the atmosphere [Keeling et al., 1976]. These various types of

observations all have their unique characteristics, which often suggest in which type

of subsequent study they are used.

2.3.1 Ground-based and airborne observations of atmospheric CO2

One feature that is common to all the atmospheric CO2 observations described

in this section is that they are accurate and precise, especially compared to satel-

lite observations of atmospheric CO2 [e.g. Chevallier et al., 2009; Nassar et al., 2011].

While the number of ground-based and airborne observation sites has been steadingly

increasing, the global spatial coverage of these observations is still sparse. In addi-

tion, the distribution of the observation locations is far from uniform. Most of the

observation sites are located in North America and Europe, and coverage is limited

in the Southern hemisphere, and is especially sparse in South America and Africa

(for a summary of observation locations see the webpage of the World Data Center

for Greenhouse Gases: http://ds.data.jma.go.jp/gmd/wdcgg/).

The longest-operating of the ground-base networks is the Carbon-Cycle Green-
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house Gases (CCGG) cooperative air sampling network, which is directed by the

National Oceanic and Atmospheric Administration (NOAA). It was started in 1967

and today represents an international network which includes regular discrete samples

from the NOAA baseline observatories, cooperative fixed sites, and commercial ships

(http://www.esrl.noaa.gov/gmd/ccgg/flask.html). Other in situ tower networks of

atmopsheric CO2 observations have since emerged in North America, Brazil, Europe,

Japan and Australia and are operated by various entities (an overview of most of

these networks and their data products is available at the World Data Center for

Greenhouse Gases: http://ds.data.jma.go.jp/gmd/wdcgg/). These networks provide

continuous observations of atmospheric CO2.

Atmospheric CO2 measurements are also obtained from aircrafts. An example is

the Comprehensive Observation Network for Trace Gases by Airliner (CONTRAIL)

[e.g. Machida et al., 2008]. The CONTRAIL project measures atmospheric CO2

concentrations covering altitudes between the earths surface to the lower stratosphere

at latitudes between the boreal high latitudes to the austral mid-latitudes [Machida

et al., 2008]. NOAA also conducts aircraft observations at different sites in North

American at regular intervals. Aircraft observations have been used in numerous

studies of vertical variation and transport of CO2 [e.g. Stephens et al., 2007], and for

the validation of inverse and carbon cycling modeling results [e.g. Tiwari et al., 2006]

as well as the validation of satellite observations [e.g. Chevallier et al., 2009].

Another observing network is the Total Carbon Column Observing Network (TC-

CON), a network of ground-based Fourier Transform Spectrometers (FTS) that record

direct solar spectra in the near-infrared. From these spectra, column-averaged abun-

dances of a variety of atmospheric constituents including CO2 are retrieved. FTS

are remote-sensing instruments, and therefore fundamentally different than the other

observations described in this section. Satellite observations of atmospheric CO2 also

observe column averages and, for that reason, FTS observations are well suited for
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the validation and calibration of satellite observations. The limited extent of the

network (there are currently 18 stations worldwide) has led to very few studies using

the TCCON observations directly to characterize global carbon fluxes or atmospheric

concentrations [Chevallier et al., 2011], while most published research utilizes the

TCCON observations of CO2 for the validation of satellite observations [e.g. Crisp

et al., 2012; Thompson et al., 2012].

2.3.2 Satellite observations of atmospheric CO2

The measurement of atmospheric CO2 concentrations by satellites is a fairly re-

cent endeavor. The first two satellite missions dedicated to measuring greenhouse

gases, including CO2, were the Greenhouse Gas Observatory (GOSAT) launched in

January 2009 [e.g. Yokota et al., 2009] and the Orbiting Carbon Observatory (OCO)

[e.g. Crisp et al., 2004], which failed at launch in February 2009. In addition, at-

mospheric CO2 distributions are inferred from satellite measurements that were not

originally intended to measure CO2. These include the Scanning Absorption Spec-

trometer for Atmospheric Chartography (SCIAMACHY), the Atmospheric Infrared

Sounder (AIRS), the Tropospheric Emission Spectrometer (TES) and the Infrared At-

mospheric Sounding Interferometer (IASI). CO2 satellite missions in planning stages

include OCO-2 [e.g. Boland et al., 2009], the replacement satellite for OCO, and

the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS)

mission, among others.

Satellite observations of CO2 are based on the fact that CO2 molecules absorb

energy at known frequencies of the electro-magnetic spectrum. The amount and

spectral characteristics of the energy being absorbed can be used to estimate the

abundance of CO2 molecules in the atmopsheric column. Measurements using near

infrared (NIR) spectral absorbance have high sensitivity near the surface while mea-

surements using the thermal infrared have the highest sensitivity in the mid to upper
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troposphere. OCO-2, GOSAT, ASCENDS and SCIAMACHY are all missions with

near-surface sensitivity, while AIRS, IASI and TES use the thermal infrared and are

hence most sensitive to higher layers of the atmosphere. With the exception of air

traffic, all notable sources and sinks for CO2 are located at the surface; therefore

measurements with near-surface sensitivity are of most interest to the carbon cycle

science community.

The following sections list some of the satellite missions in order of their launch

date and provide some basic operational characteristics. Unless noted otherwise, the

missions are still operational and delivering CO2 observational products.

2.3.2.1 Current and past missions

SCIAMACHY is an imaging spectrometer on the European Space Agency’s EN-

VISAT satellite [e.g. Buchwitz et al., 2007]. ENVISAT was launched in March 2002.

Its mission was declared ended in April 2012 after the contact with the satellite was

permanently lost (http://www.esa.int/esaCP/SEM1SXSWT1H index 0.html). EN-

VISAT operated in a sun-synchronous mode orbit with an equator crossing time of

10:00am local time, a repeat-cycle of 35 days and a swath width of 960 km. Single

measurements have a resolution of 60km across track and 30km along track [e.g. Buch-

witz et al., 2007]. Full longitudinal coverage at the equator was reached within six

days, and faster at higher latitudes [e.g. Buchwitz et al., 2007]. Single measurement

retrieval precision was approximately 1.5% [e.g. Schneising et al., 2008].

AIRS is an instrument on the NASA Aqua satellite [e.g. Aumann and Gaiser ,

2005], which was launched in May 2002. TES is one of four science instruments

aboard NASA’s Aura satellite, which was launched in July 2004 [e.g. Kulawik et al.,

2010]. Both AIRS and TES are part of NASA’s Earth Observing System (EOS)

and operate in sun-synchronous orbits with equator crossing times of approximately

1:30pm and 1:45pm, respectively, and have a repeat-cycle of 16 days. AIRS has a
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swath width of approximately 1650km. while the TES swath width varies depending

on operating mode [e.g. Kulawik et al., 2010]. The horizontal resolution of AIRS

measurements is 90km × 90km at nadir. AIRS measurements provide almost global

coverage every day and the reported accuracy is better than 2ppm [e.g. Chahine et al.,

2008]. TES measurements have a much smaller horizontal resolution of approximately

5km × 8km. TES delivers 2000− 3000 observations every other day, and its coverage

is limited to ±40◦ latitude as the retrieval algorithm is based on the thermal contrast

between the surface and the atmosphere, which is too low for successful retrievals

outside of this range [e.g. Kulawik et al., 2010; Nassar et al., 2011].

IASI was launched on the European MetOp satellite in October 2006 [e.g. Crevoisier

et al., 2009]. It flies in sun-synchronous orbit with a 9:30am equator crossing time

and has a repeat-cycle of 29 days. The swath width is about 2000km and the single

measurement horizontal resolution is 12km2. The estimated precision is about 2ppm

for a 5◦ × 5◦ spatial resolution, and the number of observations within each 5◦ × 5◦

grid box varies between 10 and 400 depending on cloud coverage Crevoisier et al.

[2009].

The GOSAT project is a joint effort of the Japanese Ministry of the Environ-

ment, the Japanese National Institute for Environmental Studies, and the Japanese

Aerospace Exploration Agency. GOSAT was successfully launched on January 23,

2009, and is thereby the first operational satellite mission dedicated to measuring

Greenhouse gases, specifically CO2 and CH4 [e.g. Yokota et al., 2009]. GOSAT flies

in a sun-synchronous orbit with an approximate 1pm equator-crossing time and has a

three-day repeat-cycle. For each three-day repeat-cycle there approximately success-

fully retrieved 900 observations. The footprint size at nadir is a 10.5 km circle and

the swath width is approximately 800km [e.g. Crisp et al., 2012]. A more detailed

description of the GOSAT mission is given in sections 4.1 and 4.2.
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2.3.2.2 Future missions

The Orbiting Carbon Observatory 2 (OCO-2) is NASA’s first mission dedicated

to observing atmospheric CO2 [e.g. Crisp et al., 2004]. OCO-2 is a replacement for

the first Orbiting Carbon Observatory (OCO) that failed upon launch in February

2009. The instrument design of OCO-2 is almost identical to OCO allowing for a

quick schedule to launch with an anticipated launch date as early as November 2014.

The characteristic features of OCO-2 measurements are its near-surface sensitivity,

a very small footprint of about 3 km2, and an anticipated precision of 0.3% (1ppm)

on regional scales [Crisp et al., 2004]. OCO-2 will fly in a sun-synchronous orbit as

part of NASA’s Earth Observing System Afternoon Constellation (A-Train) with an

approximate 1:15pm equator-crossing time. OCO-2 will have a repeat-cycle of 16

days and will collect approximately 500,000 samples a day leading to very large data

sets with detailed, but sparse global coverage for individual days. A more detailed

description of the OCO-2 mission is given in chapter III.

The ASCENDS mission is an active CO2 sensing mission in planning stage with a

launch date of 2022 or later [e.g. Abshire et al., 2010]. Notable features of this mission

include the ability to sample at night and at extreme latitudes, conditions which

are prohibitive to passive missions due to their reliance on reflected sunlight. The

lidar measurement technique proposed for the ASCENDS mission will further enable

observing through some clouds and aerosols, which represent obstacles to passive

missions due the impact of cloud and aerosol scattering [e.g. Abshire et al., 2010;

Kawa et al., 2010]. Proof of concept and validation studies indicate that ASCENDS

will be able to provide unbiased observations with improved spatial coverage compared

to active missions [e.g. Abshire et al., 2010; Kawa et al., 2010; Spiers et al., 2011]. A

more detailed description of the ASCENDS mission is provided in chapter V.
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2.4 Inversion modeling using atmospheric CO2 observations

2.4.1 Inverse modeling using ground-based atmospheric CO2 observa-

tions

Inversions are the most frequently applied methodology to gain knowledge about

carbon flux distributions from atmospheric CO2 observations. In inversions, atmo-

spheric CO2 observations are used in combination with an atmospheric transport

model to infer carbon fluxes [e.g. Enting , 2002; Tarantola, 1987] and, in most recent

applications, also the uncertainties associated with these fluxes [e.g. Gourdji et al.,

2012; Gurney et al., 2008]. There are a variety of different approaches used to con-

duct CO2 inversion studies, most of which employ a Bayesian setup where atmospheric

CO2 observations are used, in combination with an atmospheric transport model and

a prior flux distribution, to infer CO2 fluxes by updating the prior flux distribution

[e.g. Baker et al., 2006; Gurney et al., 2008, 2003]. A modification to the Bayesian

setup are geostatistical inversions where the atmospheric observations are used to

infer a spatial and/or temporal dependence structure among the fluxes[e.g. Michalak

et al., 2004]. This eliminates the requirement for explicit prior flux estimates [e.g.

Gourdji et al., 2012; Michalak et al., 2004]. Inversion studies are conducted both

regionally and globally, where regional inversions typically provide flux estimates at

finer spatial scales [e.g. Gourdji et al., 2012]. While inversion setups have become

more sophisticated over time [e.g. Gourdji et al., 2012; Schuh et al., 2010], there are

still large differences remaining among estimates, and estimated uncertainties, from

different studies [e.g. Baker et al., 2006; Gourdji et al., 2012; Gurney et al., 2008,

2003]. Factors that have been cited as leading to these differences include the spar-

sity of the observational network, the transport model employed, and implementation

details of the inversion such as the choice of priors [e.g. Engelen et al., 2002].

Despite these differences, inversions have led to important insights on carbon
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fluxes. It has been consistently shown among a multitude of models that the oceans

have provided a net carbon sink [e.g. Gruber et al., 2009; Gurney et al., 2008] over

the last two decades. Inversions have also highlighted that the interannual variability

is larger on the land than on the oceans, and that climatic modes (e.g. El Nino)

influence carbon fluxes [e.g. Gurney et al., 2008]. It has further been substantiated

that the damped atmospheric CO2 growth rate following large volcanic eruptions can

be detected in inversions [e.g. Gurney et al., 2008].

2.4.2 Inverse modeling using atmospheric CO2 satellite observations

The unique characteristics of satellite observations of CO2 are their high spatial

density and global coverage compared to the ground-based network. These features

will ideally give rise to CO2 flux fields at high spatial and temporal resolution obtained

through inverse modeling. While the spatial coverage is a highly attractive feature,

some of the other features of satellite observations can lead to challenges in inver-

sions. These features include that satellite observations of CO2 have comparatively

high measurement errors [e.g. Crisp et al., 2012; Kulawik et al., 2010], often an order

of magnitude higher than the measurement errors of ground-based observations, and

that these measurement errors can be strongly correlated [e.g. Hungershoefer et al.,

2010]. These characteristics of satellite observations have proven challenging for in-

versions, whose current setups are geared towards using observations from the surface

network [Hungershoefer et al., 2010]. In addition, atmospheric CO2 inversions are in

general highly dependent on the choice of the atmospheric transport model used in

the inversion [e.g. Baker et al., 2006]. This has recently also been shown to be an im-

portant consideration in the case of satellite data based inversions [Houweling et al.,

2010].

Most published inversion studies using satellite CO2 observation are based on

synthetic data [e.g. Baker et al., 2010; Feng et al., 2009], while very few studies have
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employed actual satellite CO2 observations in inversions so far. This can partially be

attributed to the fact that observing CO2 from space is still a new field, so limited

data are available, and retrieval algorithms of satellite observations of CO2 are still in

development. It is likely that most satellite observations still contain regional biases

[e.g. Crisp et al., 2012; Nassar et al., 2011; Yokota et al., 2009]. How these regional

biases might translate into errors in the flux estimates is not readily apparent, and

could lead to difficulties in the interpretation of these estimates [e.g. Yokota et al.,

2009].

One fact that underlines the statement made above is that only one inversion study

using GOSAT CO2 observations has been published during the more than three and

a half year period since the launch of the GOSAT satellite in early 2009 [Yokota

et al., 2009]. The primary goal of this study was to evaluate to which degree the

GOSAT observations can reduce the uncertainty in the flux estimates obtained from

inversions using the ground-based network. To this end, the study compared the flux

uncertainties obtained from an inversion using only the ground-based network and

an inversion using the ground-based network and the GOSAT observations jointly.

The GOSAT observations stemmed from the first year of available GOSAT data,

ranging from June 2009 to May 2010. The inversion used 64 regions globally and a

temporal resolution of one month. Before the use in the inversion, the GOSAT data

was averaged to a 5◦ × 5◦ monthly grid. The results found uncertainty reductions of

up to 50%, with the highest reductions in Africa, Asia and South America, where the

ground-based network is sparse. The study, however, cautions regarding potential

biases in the data, which were not specifically evaluated in this study [Yokota et al.,

2009].

Another study that has been published so far has used AIRS CO2 observations in

an inversion setup. Chevallier et al. [2009] compare the results of an inversion using

AIRS CO2 measurements to independent aircraft measurements by transporting the
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fluxes obtained in the inversion to the location of the aircraft measurements. As a

relative measure, they performed the same comparison for two other inversion setups,

namely one based on the atmospheric CO2 measurements from the surface network

and the other one using only on a simple global trend of the annual increase in

atmospheric CO2. The AIRS-based inversion showed improved results in comparison

to the prior estimates, but performed worse than the other two inversion setups

[Chevallier et al., 2009].

Nassar et al. [2011] investigated using satellite observations from TES and the

surface flask measurements jointly in a time-independent Bayesian inversion for 40

regions for 2006. Due to certain aspects of the retrieval methodology, TES CO2

observations were limited to 40◦N–40◦S. The study found accordingly that the TES

observations provided the highest incremental benefit over a flask-only inversion in

the tropics. However, the constraint provided by the satellite observations was still

limited such that the uncertainties of the fluxes estimates for the tropical forest of

South America and Africa were too large to identify whether this regions were sources

or sinks.

Overall, satellite-based inversions of atmospheric CO2 show significant promise,

but have not yet lead to significant advances in our understanding of the carbon cycle.

2.5 Mapping of atmospheric CO2 satellite observations

The mapping of atmospheric CO2 concentration fields is a rather direct way of

interpreting and making use of satellite CO2 observations. In this context, the goal

of mapping is typically to obtain a continous global concentration field from noisy

satellite observations, which enables identifying the structure of the global CO2 con-

centration field and to analyze trends with time. Maps can further serve as validation

and comparison tools for atmospheric CO2 concentration fields derived from trans-

ported process-based and inventory based flux estimates. For these types of applica-
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tions, maps are ideally created at high spatial and temporal resolution to allow for

detailed comparisons. CO2 mapping products should also contain uncertainty mea-

sures to identify if differences are indeed indicative of true differences, which exceed

the uncertainty inherent in the mapping products. Another situation where mapping

is a well-suited approach is in the early stages of a satellite mission, where retrieval

algorithms are typically still being improved and biases might exist [e.g. Crisp et al.,

2012; Nassar et al., 2011; Yokota et al., 2009]. At these early stages, comparison and

validation studies are often mainly targeted at assessing the retrieval algorithm. In

these early stages, it is prudent to use observations only in studies where the effect of

potential errors in the retrievals is easily perceptible and traceable, which is the case

for mapping products.

2.5.1 Current mapping approaches and findings from mapping

The current approaches to mapping of CO2 satellite observations can be summa-

rized in two broad categories: 1) spatial and temporal averaging/smoothing and 2)

data assimilation. Spatial and temporal averaging means defining spatial and tem-

poral bins and averaging all the measurements falling within the bin resulting in, for

example, monthly maps with a 5◦ × 5◦ latitude/longitude resolution [e.g. Crevoisier

et al., 2009]. The resulting averages are sometimes further smoothed by applying

a kernel smoothing function such as a boxcar or Gaussian function [e.g. Schneising

et al., 2008]. Variants of this approach have been applied in the majority of stud-

ies deriving and comparing atmospheric CO2 concentrations (e.g. [Crevoisier et al.,

2004; Tiwari et al., 2006, for AIRS], [Crevoisier et al., 2009, for IASI], [Schneising

et al., 2008, for SCIAMACHY]). While these averaged maps allow for the detection

of long-term and large-scale features such as the annual increase in atmospheric CO2

concentration and the seasonal cycle for each hemisphere, they cannot be used to gain

insights in the short-term dynamics of the carbon cycle. These monthly or seasonally
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averaged maps are also not well suited to serve as detailed validation and parameter

tuning tools for forward and atmospheric models, which operate at much shorter time

scales.

The challenges with data assimilation derived mapping approaches are of a some-

what different nature. Data assimilation in the context of satellite CO2 observations

refers to methods that incorporate satellite CO2 measurements within the framework

of often highly sophisticated atmospheric models [e.g. Baker et al., 2010; Engelen

et al., 2009; Feng et al., 2009]. The CO2 measurements are used to update the

model-derived prior state of the CO2 concentration or to derive CO2 flux estimates.

Data assimilation methods can incorporate and merge a variety of measurements

from different sources, such as other satellite measurements, to derive the state of the

atmosphere, which makes them potentially very powerful. They do, however, rely

on atmospheric transport models as the core of their model formulation. That fact

implies that the CO2 concentration maps created by data assimilation approaches

are not only based on the CO2 measurements, but also on the atmospheric transport

model. This makes it difficult to use these CO2 maps as independent comparison

and improvement tools for process-based and atmospheric transport models. As an

illustrative example: if atmospheric CO2 concentration fields resulting from two dif-

ferent process-based models were to be compared to atmospheric CO2 maps derived

from data assimilation methods, the results might be influenced by the similarity, or

lack thereof, of the model formulation of atmospheric transport models used in the

process-based model and the data assimilation model.

Findings from studies using mapping of satellite CO2 observations include those

from global comparisons of monthly or bi-monthly averaged maps of AIRS obser-

vations with model data [e.g. Chahine et al., 2008; Tiwari et al., 2006]. These

comparisons generally indicated higher variability in the AIRS-derived CO2 distri-

butions than in the CO2 distributions calculated by the models, possibly indicating

30



incorrectly-modeled vertical transport of CO2 [Chahine et al., 2008]. The coarse tem-

poral and spatial averaging of the AIRS CO2 concentrations used in these studies,

however, made it difficult to pin-point the exact causes for these differences. In a

different study, Tiwari et al. [2006], using zonally and monthly averaged AIRS CO2

concentration, could not detect the annual increase in the global atmospheric CO2

concentrations for 2003. The AIRS CO2 concentrations, sampled at the location of

high altitude tower measurements, did, however, exhibit an annual increase and a

good match to the trend of the tower measurements [Tiwari et al., 2006]. Tiwari

et al. [2006] specifically mention that their temporal and zonal averaging procedure

may hide some of the information contained in the retrievals that would show the

annual increase in global CO2 concentrations.

Mapping approaches have also been applied to evaluate SCIAMACHY CO2 ob-

servations. While large-scale features such as the annual increase in CO2 could be

verified through SCIAMACHY satellite measurements [Buchwitz et al., 2007], sea-

sonal and monthly maps indicate discrepancies with model data that might at least

be partially the result of retrieval algorithm problems [Schneising et al., 2008]. Cur-

rently, the only mapping study using IASI CO2 measurements is limited to ocean

surfaces in the tropics. The maps shown in this study are seasonal and show good

agreement with seasonally averaged aircraft measurements [Crevoisier et al., 2009].

Overall, mapping of satellite observations has served to assess the quality of CO2

satellite products, but has not yet been employed in a manner to use satellite obser-

vations of atmospheric CO2 to enhance knowledge of the processes driving the carbon

cycle. An improved mapping approach that can optimally use the information con-

tent of the satellite observations to map CO2 concentration fields at high spatial and

temporal resolution with uncertainties could achieve that through, for example, prob-

abilistic comparisons of the satellite observation-based mapping products with CO2

concentrations from process-understanding based models.
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2.5.2 Geostatistical approach to mapping of atmospheric CO2

The goal of an alternative mapping method is to provide atmospheric CO2 con-

centration maps that are not based on any process-based or atmospheric transport

models, but can still be created at temporal and spatial resolutions that are much

higher than those typically required for binning approaches (described in Section

2.5.1). Maps of atmospheric CO2 are ideally created at a temporal resolution of a few

days, i.e. synoptic time scales, so they can be used to gain insights in the short-term

dynamics of atmospheric CO2 distributions, can serve as data-driven independent

validation datasets for atmospheric and carbon cycle models, and can be used in a

variety of other studies discussed in subsequent chapters of this dissertation.

One approach to achieve this goal is to conceptualize and model global atmospheric

CO2 concentrations as a realization of a stochastic process or random field. This view-

point implies the assumption of the existence of spatial correlation in the atmospheric

CO2 concentration field, which is an assumption independent of any process-based or

atmospheric transport model. Once derived, the spatial correlation structure of the

CO2 concentration field can be used to obtain maps of the global CO2 concentration

field. The framework of geostatistics is a common toolset to estimate properties of

random fields for geolocated data [e.g. Chiles and Delfiner , 1999; Cressie, 1993]. At-

tractive features of a geostatistical approach include the ability to use only the data

itself to derive the correlation structure, to incorporate measurement noise informa-

tion, and to provide location-dependent best estimates and associated uncertainties.

The following paragraphs provide an overview of geostatistical concepts, with a focus

on aspects of geostatistics relevant to the mapping of atmospheric CO2 concentra-

tions. Details of the methodology developed and employed in this dissertation are

discussed in section 3.2.
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2.5.2.1 Introduction to geostatistics and basic definitions

In a broad sense, the term geostatistics describes statistical methods to conduct

inference and prediction for spatially-referenced data [e.g. Chiles and Delfiner , 1999;

Cressie, 1993]. Geostatistical methods have developed somewhat independently in

several fields ranging from meteorology to mining (see Chapter 1 in Gelfand [2010] for

a historical overview). With the growing maturity of the field various applications in

different areas have merged into the by now well-established framework of geostatistics

[e.g. Chiles and Delfiner , 1999; Kitanidis , 1997], which is itself a subdomain of the

field of spatial statistics [Gelfand , 2010].

In its most general form, the underlying statistical model is a random field

{Y (s) : s ∈ D}; (2.1)

where Y (s) is a random variable at spatial locations s, which vary over the index

set D ⊂ Rd [e.g. Cressie, 1993]. If s vary continuously over D, the resulting data

are referred to as point-referenced, or geostatistical, data [e.g. Cressie, 1993]. The

associated random field or process {Y (s) : s ∈ D} is then referred to as a stochastic

or spatial process [e.g. Cressie, 1993]. In this dissertation, the global CO2 concentra-

tions are represented by a spatial process. In principle the spatial locations s vary

continuously over D. In real applications, however, data (such as satellite observa-

tions of CO2) are collected at a finite number of locations. Hence, the observations

constitute a partial realization of the spatial process, i.e. of the global CO2 concen-

tration field, plus any noise. This partial realization is denoted as {y(s) : s ∈ D}

[e.g. Cressie, 1993]. The goal of geostatistical methods is to infer the spatial process

Y (s) and predict the best estimate of process values at new locations based upon this

partial realization [e.g. Cressie, 1993]. In this dissertation, the goal is hence to infer

the global CO2 concentration field from the satellite observations.
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2.5.2.2 Stationarity, semivariogram and covariance functions

In order to allow for inference based on a partial realization of the process, i.e.

the satellite observations of CO2, some additional assumptions on the spatial process

need to be made. A very strong assumption is strict stationarity, which states that

the joint distribution function is invariant to translation [e.g. Banerjee et al., 2004].

Formally, a process is strictly stationary if for any subset {s1, . . . , sn} and any h ∈ D,

the probability distribution of (Y (s1), . . . , Y (sn)) is equal to the distribution of

(Y (s1+h), . . . , Y (sn+h)) [e.g. Banerjee et al., 2004]; here h represents the separation

vector between two locations in D. A weaker assumption is second-order stationarity

which states that Cov(Y (s1), Y (s2)) = C(s1 − s2), implying that the covariance

between values at two locations depends only on their separation vector [e.g. Banerjee

et al., 2004]. A special case of a second-order stationary process is an isotropic process

where the covariance between values at two locations is a function of their separation

distance, so Cov(Y (s1), Y (s2)) = C(‖s1 − s2‖) [e.g. Banerjee et al., 2004].

Another form of stationarity is intrinsic stationarity which is defined through

differences. The assumptions are E(Y (s+h)−Y (s)) = 0 and V ar(Y (s+h)−Y (s)) =

2γ(h), where the function γ(·) is called the semivariogram [e.g. Cressie, 1993]. A

distinguishing feature of intrinsic stationarity compared to second-order stationary is

that the mean throughout the field is assumed constant, but not known [e.g. Cressie,

1993]. This difference is important for practical applications, where the mean value

is often unknown, but the assumption of a constant mean is reasonable. Second-

order stationarity implies intrinsic stationarity. If the semivariogram, which is defined

as γ(Y (s1), Y (s2)) = 1
2
V ar(Y (s1) − Y (s2)), is only a function of the distance, so

γ(·) can be written as γ(‖h‖), the process is called homogeneous [Banerjee et al.,

2004]. The physical interpretation of homogeneity is that the correlation structure is

the same throughout the field irrespective of direction and location within the field.

Atmospheric CO2 concentration fields are not homogeneous globally [Alkhaled et al.,
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2008], but, as is shown in Chapter III, can be successfully modeled assuming local

homogeneity. As such, classical geostatistical estimation tools, which are based on

the assumption of a homogeneous process and which are outlined below, form the

base methodology used in this dissertation. These tools are then further developed

to infer global CO2 concentration fields from satellite observations (see Chapter III).

Under the assumption of a homogeneous process, the semivariogram γ(·) char-

acterizes the random field and needs to be determined for the subsequent modeling

steps [e.g. Cressie, 1993]. The conceptual idea is to define parametric functions as

candidates to represent the semivariogram γ(·). The parametric function, which is

referred to as the theoretical semivariogram function, is typically chosen based on

process knowledge or based on characteristics of the data [e.g. Chiles and Delfiner ,

1999; Kitanidis , 1997]. An overview of variogram functions is given in Gelfand [2010].

The variogram function used in this work, based on prior findings [Alkhaled et al.,

2008] and analysis of the data used in this dissertation, is the exponential variogram

function defined as:

γ(h) = σ2

[
1− exp

(
−h
l

)]
, (2.2)

where the parameters l and σ2 are referred to as the range and variance parameters

and where h is the distance between two locations [e.g. Chiles and Delfiner , 1999].

A modified version of this approach is applied in this dissertation and described in

Section 3.2.

One approach to determine the parameters of the theoretical semivariogram func-

tion is to use the raw semivariogram of the data, defined as:

γ(h) =
1

2
[Y (si)− Y (sj)]

2; (2.3)

for all pairs of measurement values Y (si), Y (sj), where h is the distance between si

and sj [e.g. Chiles and Delfiner , 1999].
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Second-order stationary processes have a covariance function C(·) corresponding

to the semivariogram γ(·) function [e.g. Chiles and Delfiner , 1999]. For these pro-

cesses, the covariance function can be derived from from the semivariogram function

based on the following relationship: C(h) = C(0) − γ(h) [e.g. Chiles and Delfiner ,

1999]. The covariance function for the exponential model used in this disseration is:

C(h) = σ2 exp

(
−h
l

)
. (2.4)

For a covariance function to be valid, it needs to be positive-definite for the corre-

sponding dimension of the random process (see Stein [1999] for a detailed discussion),

which is an important modeling consideration. The atmospheric CO2 concentrations

considered in this thesis are measured globally, and require therefore a covariance

function that is valid on the sphere. The exponential covariance function applied in

this thesis has proven to be valid on the sphere [Huang et al., 2009].

2.5.2.3 Kriging

Kriging refers to predicting the process value at a specified location s0 in the

domain D of the spatial process [e.g. Cressie, 1993]. Here, kriging refers to predicting

global CO2 concentration fields. The classic geostatistical derivation is based on

finding the best linear unbiased estimator given the data under the assumption of

intrinsic stationarity [e.g. Cressie, 1993]. A best linear unbiased estimator is an

estimator that minimizes the squared error, is linear in the data values and has an

expected value identical to the true value to be estimated [e.g. Cressie, 1993]. In

the case of an unbiased estimator, minimizing the squared error of the estimator

corresponds to minimizing the variance of the estimator [e.g. Cressie, 1993]. The

unbiasedness condition leads to a constrained optimization problem. The solution to

this optimization problem (using for example the technique of Lagrange multipliers)
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provides the so-called ordinary kriging estimates and uncertainties [e.g. Chiles and

Delfiner , 1999; Cressie, 1993]. No distributional assumptions other than intrinsic

stationary are required. An example of such a linear kriging system is shown in

equation 3.5.

2.5.2.4 Nonstationarity

Nonstationary means that the spatial dependence structure, which describes the

correlation among values as a function of their locations, is not constant through-

out the random field. In the case of nonstationarity, the covariance function is not

only a function of the separation vector h or the distance ‖h‖ between two locations

as assumed in stationary and isotropic models, respectively, but a function of the

locations themselves [e.g. Gelfand , 2010]. Formally, Cov(Y (s1), Y (s2)) = C(s1, s2)

where C(·, ·) is symmetric in its arguments and a positive definite function. Many

geophysical phenomena, including atmospheric CO2 concentrations [Alkhaled et al.,

2008], measured over large areas or globally exhibit nonstationarity, which needs to be

accounted for in the modeling procedure for proper inference. The presence of nonsta-

tionarity invalidates the use of classical variogram fitting to estimate the covariance

structure, which is based on the assumption of a homogeneous process, where spatial

dependence is only a function of distance, but not location. However, to allow for

inference, some assumptions on the process or the structure of the covariance need to

be made [e.g. Gelfand , 2010]. The following paragraphs provide an overview of mod-

eling approaches for nonstationary spatial processes, with a focus on computational

feasibility for large data sets such as satellite observations of CO2.

A straight-forward approach is the moving window covariance estimation and

kriging methodology using the assumption of local stationarity [Haas , 1990]. The

covariance parameters are derived and prediction is performed using only data points

within a window of specified size around each estimation location using the classical
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estimation and prediction procedure outlined in the previous sections. While this

method is computationally efficient and accounts for nonstationarity, it does not lead

to a globally valid positive definite covariance matrix over all sites [e.g. Clark and

Gelfand , 2006], which implies that the underlying model is only point-wise valid. A

modified version of the moving window covariance estimation and kriging method-

ology specifically targeted to satellite observations of CO2 has been developed and

applied in this dissertation and is described in detail in Chapter III.

More complex approaches, falling in the category of dimension-reduction tech-

niques, model the process through a low-dimensional random vector, and introduce

spatial dependency through the covariance matrix of the random vector. One exam-

ple of this approach is Fixed Rank Kriging [Cressie and Johannesson, 2008], where

the random vector used for incorporating the spatial dependency is of much lower

dimension than the data. In an alternative approach, Stein [2005] parameterizes

the covariance matrix as a function of latitude and achieves computational efficiency

through the use of Fast Fourier Transforms. This approach, however, requires mea-

surement data on a regular grid, which is not the case for satellite CO2 data.

Mathematically more involved approaches include transformation and kernel con-

volution. Transformation, also called deformation, is based on the idea to transform

the model region D to a new region where the process becomes stationary [Sampson

and Guttorp, 1992]. The main limitation of the transformation approach is that the

implementation requires independent repeated measurements at the same location,

which are often not attainable [Banerjee et al., 2004]. Kernel convolution methods are

based on the fact that a Gaussian process can be constructed through the convolution

of independent random variables and a kernel function [e.g. Higdon et al., 1998] for a

detailed description of the approach). Nonstationarity can be introduced by defining

the kernel function through location-dependent parameters [e.g. Zhu and Wu, 2010].

The main limitation of this approach is that the derived covariance function is, apart
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from special cases, in the form of an integral expression that does not have a closed

form solution and needs to be evaluated numerically. This numerical evaluation is

computationally very intensive and, considering the size of satellite CO2 data sets, in

its current form not feasible.
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CHAPTER III

High resolution mapping of CO2

3.1 Introduction

Atmospheric carbon dioxide (CO2) is the most important anthropogenic green-

house gas [Solomon et al., 2007]. While data from the existing CO2 monitoring

network have been crucial to gaining important insights into the functioning of the

carbon cycle, the mechanisms controlling the inter-annual variability and the spatial

distribution of carbon uptake and emissions are still not fully understood [e.g. Feng

et al., 2009; Heimann, 2009; Nevison et al., 2008; Yang et al., 2007]. The accurate

prediction and mitigation of climate change requires a better understanding of these

processes and the carbon cycle in general [Friedlingstein et al., 2006].

Satellite observations of CO2, because of their global coverage and high measure-

ment density, offer new opportunities to improve this understanding. Observations

from several satellites are already being used to infer atmospheric CO2 concentrations,

including the Japanese Greenhouse Gases Observing Satellite (GOSAT) [Hamazaki

et al., 2004], which is the first satellite dedicated to the measurement of greenhouse

gases. NASA’s Orbiting Carbon Observatory 2 (OCO-2) is the first American mis-

sion designed specifically for making high precision measurement of CO2 [Crisp et al.,

2004], and is expected to be launched in 2015.

Despite their high measurement density, however, satellite CO2 observations have
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gaps due to their orbit configurations and due to geophysical limitations such as cloud

cover and are subject to substantially higher measurement uncertainties relative to

in situ observations. Using statistical techniques to leverage the spatial correlation

in the CO2 concentration field and to predict full-coverage global CO2 concentration

distributions from satellite observations (i.e. creating Level 3 data products) is one

way to gain new information about the carbon cycle.

Once derived, such maps can be used for comparison studies with carbon flux

estimates coupled with an atmospheric transport model to generate modeled CO2

fields, or with other available atmospheric measurements. If the satellite-derived

Level 3 products were to include rigorous uncertainty measures, such comparisons

could be conducted probabilistically, making it possible to assess whether and where,

for example, a given set of flux estimates coupled with a specific transport model

differ significantly from the satellite-derived Level 3 maps. Such Level 3 products

are not intended to be used in inversion studies directly, but instead provide a useful

complement to such studies. Beyond point-wise comparisons with individual obser-

vations, comparisons with global CO2 concentration distributions make it possible

to identify spatially continuous areas of mismatch, providing indicators for potential

discrepancies with other datasets and their dependence on the atmospheric or surface

characteristics. Ideally, such comparison studies should be done at high temporal

resolution, so that mismatches are not missed through temporal averaging and so

that the underlying causes for any mismatches can be tracked in detail. Such com-

parison studies could, among other applications, inform the growing need to verify

and track reported CO2 emissions [Committee on Methods for Estimating Greenhouse

Gas Emissions, National Research Council , 2010; Nisbet and Weiss , 2010].

There are currently several approaches for creating Level 3 products from CO2

satellite observations, ranging from simple methods such as spatial and temporal

averaging [e.g. Crevoisier et al., 2009; Kulawik et al., 2010; Tiwari et al., 2006] to
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sophisticated data assimilation approaches [Engelen et al., 2009]. Spatial and tem-

poral averaging entails binning and averaging the data to relatively coarse spatial

and temporal grids to obtain smoother maps and to average out the measurement

errors. Temporal averaging over months or seasons is commonly applied to satellite

data representing properties that vary on seasonal or interannual timescales, such as

land cover and phenology. The impact of such temporal averaging on atmospheric

CO2 concentrations, which vary on synoptic timescales, has not been explored. It

is obvious, however, that any of the dynamic information, operating at time scales

shorter than the temporal averaging time step, is lost. The same applies to spatial

variability at scales smaller than the resolution of the spatial averaging grid. Another

disadvantage of binning and averaging the data is that the uncertainties associated

with the binned data are typically not quantified, which eliminates the option of

making probabilistic comparisons.

Data assimilation approaches, on the other hand, require boundary conditions

such as carbon flux estimates and transport models to obtain full-coverage global

atmospheric CO2 concentrations. While incorporating this additional information can

be powerful, it also implies that the assimilated atmospheric CO2 fields are sensitive

to any misspecification in these prior assumptions. This strong dependence on prior

assumptions can especially affect comparison studies: it can be difficult to establish

the degree to which apparent similarities or differences between the data-assimilation-

derived CO2 distributions and, for example, coupled biospheric- and atmospheric-

transport-model derived CO2 concentrations are based on similar or dissimilar prior

assumptions.

In this chapter we present and evaluate an alternative method for generating

global Level 3 CO2 products from satellite observations (this is based on [Hammerling

et al., 2012]). The method leverages the fact that atmospheric CO2 concentrations

exhibit spatial correlation, by characterizing this spatial correlation and using this
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information to statistically derive global CO2 concentrations and their associated

uncertainties. This proposed geostatistical approach accounts for measurement errors

and does not require estimates of fluxes or an atmospheric transport model, which

is advantageous for comparison studies because the Level 3 products can serve as

independent validation data sets.

We use OCO-2 as a prototypical example application for evaluating the method,

because making the best use of future OCO-2 observations will represent an important

challenge. While the observations will have high precision and a small field of view,

their spatial coverage for a given day will be limited. As a result, the length of the

time period over which observations are aggregated represents a trade-off between the

spatial coverage that the observations can provide and the loss of any information

about temporal variability that is masked by combining observations over longer

periods. Finding a balance between these effects, and being aware of the consequences

of the choice of the length of the aggregation time period, is critical to creating

and interpreting global CO2 maps based on the anticipated data from OCO-2. The

presented sample application therefore quantifies the quality of global CO2 Level 3

products based on simulated OCO-2 observations for time periods ranging from 1 to

16 days.

3.2 Mapping Methodology

The geostatistical mapping method applied here accounts for and exploits the

spatial correlation of CO2 between different locations [e.g. Chiles and Delfiner , 1999;

Cressie, 1993; Gelfand , 2010]. First, it infers the spatial covariance structure of

the CO2 concentrations. Second, CO2 concentrations and associated uncertainties

are predicted globally, using the available observations and the spatial covariance

structure inferred in the first step. Note that here prediction specifically refers to

spatial interpolation of available data, not to temporal prediction.
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Alkhaled et al. [2008] showed that global CO2 concentrations exhibit spatial non-

stationarity, such that the expected degree of spatial variability in the CO2 field itself

varies across the globe. For example, CO2 concentrations over oceans are generally

correlated over longer distances than over land. Exploratory analysis of the modeled

CO2 concentrations used here further supports this conclusion, and, as a result, the

approach presented here uses a non-stationary statistical framework. The framework

chosen is similar to moving window kriging [Haas , 1990], which is, among spatial

statistical methods to treat non-stationarity, a rather simple and straightforward

approach. From a theoretical point of view, a drawback of moving window kriging is

that it does not enforce a globally valid spatial model [e.g. Chen et al., 2006; Zhu and

Wu, 2010], but is based on covariance functions that are only valid locally. From a

computational point of view, the chosen framework is efficient, as both the estimation

of the covariance structure and the prediction of the CO2 concentrations and their

associated uncertainties is executed locally and can be implemented using parallel

computing approaches.

3.2.1 Estimation of non-stationary covariance structure

We estimate the global non-stationary covariance structure by using a local semi-

variogram analysis based on the assumption of local stationarity. The method is sim-

ilar to the approach taken by Alkhaled et al. [2008]. The spatial covariance structure

specific to each location is estimated by using observations in a local neighborhood

surrounding this location. The local neighborhood is defined here as a region within

2000-km of each location, as in Alkhaled et al. [2008], who found such areas to be

large enough to capture most of the variability, while being small enough to preserve

local phenomena. Further analysis of the neighborhood size conducted in our study

confirmed these findings.

Variogram analysis is a tool for quantifying spatial variability as a function of
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the separation distance between observations. As a first step the raw variogram is

calculated:

y(h) =
1

2

[
y(xi)− y(xj)

]2
, (3.1)

where h is the separation distance between locations xi and xj, defined as the great-

circle distance

h(xi, xj) = r cos−1

(
sinϕi sinϕj + cosϕi cosϕj cos(λi − λj)

)
, (3.2)

where r is the radius of the Earth, ϕi and λi are the latitude and longitude of location

xi, and y(xi) is the CO2 value at location xi. The local variogram analysis is imple-

mented by including all the pairs of observations, where both observations fall within

2000-km of a given location, and a subset of the pairs for which one observation is

within 2000-km and the other is further away. The number of pairs in the subset was

chosen such that the number of outside observations was a quarter of the number

of inside observations. This number is based on a sensitivity analysis for the effect

of the selection of outside observations to ensure that the variogram parameters are

robustly estimated and do not vary as a function of the randomly selected subset of

outside points.

In the second step, a parametric function, the theoretical variogram, is fitted to the

raw variogram using non-linear least squares. The function fitted was the exponential

variogram function combined with a nugget-effect variogram model given by:

γ(h) =


0 for h = 0

σ2

(
1− exp

(
−h
l

))
+ σ2

nug for h > 0

 , (3.3)

where σ2 and l are the variance and correlation length parameters of the exponen-

tial variogram, and σ2
nug is the nugget variance, which is representative of the re-

trieval/measurement errors. The choice of the exponential variogram was based on
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earlier analysis by Alkhaled et al. [2008]. The nugget-effect component accounts for

the random noise added to the observations in this synthetic-data study to repre-

sent the measurement noise (see section 3.3.1). This variance component is fixed to

the variance of the noise added to the observations, and represents the variance of

retrieval errors for real data applications. Variogram parameters were estimated for

each location on a 1◦ × 1.25◦ global grid to match the resolution of the model data

used in the analysis (section 3.3.1), but any convenient resolution could be used with

real data from OCO-2 as long as the resolution was sufficiently fine to capture the

variability of the data.

The exponential variogram parameters can be used to define an exponential co-

variance function:

C(h) = σ2 exp

(
−h
l

)
, (3.4)

where the parameters σ2 and l are as defined previously, such that the estimated

parameters of the variogram specify the covariance function.

3.2.2 Local kriging

Kriging is a minimum variance linear unbiased prediction method for spatial data.

Linear refers to the fact that the predicted value at a given location is expressed as a

linear combination of the values observed at sampled locations. A notable feature of

kriging, differentiating it from simpler interpolation methods such as inverse distance

weighting, is that an observation is not only weighted as a function of its distance to

the prediction location, but also as a function of its location relative to those of other

observations. As such, clustered observations that provide redundant information

receive comparatively less weight. Another attractive feature of kriging is that it

can account for measurement error. Finally, kriging quantifies the uncertainty in the

predicted value.

The linear system that is solved to obtain the weights λ for a single prediction
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location given observations at n locations is

 Q + R 1

1T 0


 λ

ν

 =

 q

1

 , (3.5)

where Q is an n×n covariance matrix among the n observation locations, as defined

in equation (3.4), R is an n × n measurement error covariance matrix among the n

observation locations, λ is a n× 1 vector of weights, ν is a Lagrange multiplier and q

is the n×1 vector of the spatial covariances between an individual prediction location

and the observation locations, also defined using equation (3.4). If the measurement

errors are assumed independent between observation locations, as is the case in this

work, then R is a diagonal matrix with the measurement error variance σ2
nug on the

diagonal. The predicted value, ŷ , and the prediction uncertainty, σ2
ŷ, at the location

are:

ŷ = λTy (3.6)

σ2
ŷ = σ2 − λTq− ν, (3.7)

where y are the observations at the n locations and σ2 is the variance as shown in

equation (3.4).

‘Local’ refers to the fact that the covariance parameters used to calculate the

spatial covariances are specific to each prediction location, and that only observations

within a given neighborhood of the prediction location are considered [e.g. Haas ,

1990; Kitanidis , 1997]. As described in section 3.2.1, the covariance parameters are

derived at each prediction location. Only observations within 2000-km were used in

the kriging step, motivated by the shielding effect [Wackernagel , 2003]. The validity

of the assumption that observations at more than 2000 km have a negligible influence

on the predicted value was verified by comparing the predicted values for increasingly

larger neighborhoods (results not shown).
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In a small number of cases (less than 0.1% of the prediction locations on average),

no observations were available within 2000 km, and the kriging procedure could not be

applied. In these cases a simple imputation technique was applied using the predicted

value and uncertainty of the closest location where the local kriging procedure could

be executed.

3.3 Study Design and Data

Our study was designed to evaluate how well global CO2 concentrations can be

reconstructed from satellite observations using a geostatistical mapping method. The

specific emphasis was on recreating global CO2 concentrations based on future OCO-

2 observations for short time periods ranging from 1 day to one repeat cycle (i.e.

16 days). OCO-2 is scheduled for launch in 2015, and is a replacement for OCO,

which failed upon launch, and was to be NASA’s first satellite mission dedicated

to observing atmospheric CO2. Some of the most noteworthy features of OCO-2

are the sensitivity to the near-surface CO2 abundance, the measurement footprint

of about 3 km2, and an anticipated measurement precision of 1 ppm once soundings

are averaged over regional scales [Crisp et al., 2004]. OCO-2 will be part of NASA

EOS Afternoon constellation (A-train) [L’Ecuyer and Jiang , 2010], which flies in a

sun-synchronous polar orbit with a 16-day repeat-cycle.

3.3.1 Simulated OCO-2 CO2 observations

The atmospheric CO2 field is simulated using the PCTM/GEOS-4/CASA-GFED

(referred to simply as PCTM in the discussion that follows) atmospheric model cou-

pled with biospheric, biomass burning, oceanic, and anthropogenic CO2 flux estimates

[Kawa et al., 2004, 2010]. This model uses analyzed meteorological fields to drive both

the biospheric flux and atmospheric transport. The model grid is 1◦× 1.25◦× 28 ver-

tical levels with hourly output. The PCTM/GEOS-4 model has been widely tested,
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and has shown good results in carbon cycling comparison studies [e.g. Kawa et al.,

2004; Law et al., 2008b; Parazoo et al., 2008]. CO2 mixing ratios in the lowest 20

vertical layers of the model (up to 40 mbar) were pressure-averaged to simulate the

vertical sensitivity of OCO-2. Prospective OCO-2 sounding locations were determined

by overlaying the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) [Winker et al., 2003] track on the CO2 field for each day within a given

repeat-cycle. The CALIPSO track was used because this satellite is also part of

NASA’s A-train constellation, and CALIPSO flies only minutes apart from the orbit

planned for OCO-2. Differences in the OCO-2 slant path and glint location offset

were not accounted for, so the CALIPSO track is only a close approximation to the

true OCO-2 track.

The presence of clouds and aerosols will impede the retrieval of atmospheric CO2

concentrations, leading to gaps in the OCO-2 observations along the satellite track.

To represent the presence of these gaps in a realistic manner, the combined cloud and

aerosol optical depth (532nm) from the version 2.01 5-km CALIPSO data was used

to identify locations on the track where the total cloud and aerosol optical depth was

below 0.3, which is a conservative estimate of the maximum optical depth that will

allow for the successful retrieval of CO2 [D. M. O’Brien, personal communication].

Using this approach to account for clouds and aerosols has the advantage of matching

the CALIPSO data with the PCTM output in time, which allows for a more realis-

tic representation of the cloud-aerosol-CO2 distribution relative to using probabilistic

cloud and aerosol masks based on seasonal averages. The CALIPSO along-track hor-

izontal resolution of 5 km was matched with the coarser PCTM 1◦× 1.25◦ horizontal

resolution by considering a model grid box visible if at least one CALIPSO measure-

ment with a combined optical depth of less than 0.3 fell within the grid box. The

second row in Figures 3.1d–3.1f show typical patterns and amounts of visible locations

(at the PCTM grid resolution) for 1-day, 4-day and 16-day time periods.
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OCO-2’s footprint of approximately 3 km2 will be much finer than the PCTM

horizontal resolution used in this study, and the simulated OCO-2 observations used

here therefore most closely resemble a setup where the true observations would be pre-

averaged to the PCTM/GEOS resolution of 1◦ × 1.25◦. This setup has implications

for the measurement error characteristics. Having multiple OCO-2 soundings within

a PCTM gridbox reduces the measurement error associated with the average CO2

value in the gridbox relative to the uncertainty of a single sounding. The relative

reduction of the measurement error is a function of the number, spatial configuration,

and measurement error correlation of the soundings within a gridbox. The procedure

and the assumptions made to account for multiple soundings within a gridbox and

characterize the measurement error associated with a grid box are described in detail

in section 3.3.2.

Some other features associated with the finer resolution of the true OCO-2 ob-

servations are not directly assessed in this study; namely, the computational aspects

associated with the number of OCO-2 observations, and the possibility of capturing

CO2 variability on very fine scales. OCO-2’s fine resolution leads to a large total

number of observations, up to hundreds of thousands each day, which could cause

computational problems for traditional geostatistical gap-filling methods. The local

covariance estimation and kriging setup described here (section 3.2), however, are

well suited to handling a large amount of observations, and have been specifically

designed to do so.

3.3.2 Experimental setup

The primary goals of the experiment were to evaluate (1) the overall performance

of the proposed approach, and (2) how the temporal resolution, which is the length

of the time period over which observations are accumulated to make a single map,

affected the quality of the resulting map. The quality of the obtained maps was
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Figure 3.1: PCTM/GEOS-4 CO2 model output (“Truth”), simulated OCO-2 obser-
vations (“Observations”), gap-filled predictions (“Prediction”) and estimated predic-
tion uncertainties (“Uncertainty”) expressed as a standard deviation for a 1-day, a
4-day and a 16-day time period in April 2006. The observation locations and val-
ues are derived by overlaying CALIPSO track and cloud and aerosol information on
PCTM/GEOS-4 CO2 from individual days in the repeat cycle. The gap-filled pre-
dictions are shown for the medium measurement noise scenario with the covariance
estimated from observations.
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evaluated by comparing these maps and their inferred uncertainties to the full model

data, which were time-averaged over to the period of the observations used to create

the maps. The details of the comparison measures are discussed in sections 3.4.2 and

3.4.2. The experiment was specifically designed to assemble observations in a manner

that is realistic for satellite observations: the simulated observations were not taken

from a time-averaged CO2 concentration field, but were sampled from individual days

at the hour nearest the local overpass time (approximately 1330 h). For example,

the observations shown in Figure 3.4f are sampled from 16 different days of PCTM

output, corresponding to the actual day for each sounding. This way of simulating

observations results in a field that represents an aggregation of observations from

different days rather than temporally-averaged observations. The true field, however,

is the full 3-D model output time-averaged over the aggregation period. Figures 3.1a,

3.1b, 3.1c provide an example of the 1-day, 4-day and 16-day true fields.

In addition to the temporal resolution, the season, measurement noise level, and

data used in the covariance estimation were also varied to evaluate the approach.

The temporal resolutions evaluated were 16-day, 8-day, 4-day, 2-day and 1-day

intervals. These lengths were chosen to (1) identify the shortest time period for

which meaningful global CO2 maps can be obtained from OCO-2 observations and

to (2) quantify the effect of temporal resolution, and thereby the amount of data and

temporal variability within the time period, on prediction performance.

To explore the impact of seasonality on the heterogeneity of the atmospheric CO2,

cloud and aerosol distributions, one month was used as representative of each season

(January, April, July, September). For example, April and July featured higher

variability in the CO2 concentration field than January and September.

A range of assumed measurement error levels was selected based on the expected

performance of OCO-2. The levels of measurement noise are based on a single sound-

ing expected OCO-2 measurement error standard deviation of 1.5ppm [D. M. O’Brien,
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personal communication; Crisp et al., 2004]), but accounting for the fact that a sin-

gle model grid box may contain multiple OCO-2 soundings. Because nearby OCO-2

observations will likely have correlated errors, the effective measurement error at the

grid scale will be higher relative to a case with independent measurement errors. The

effective measurement error standard deviation at the grid scale is a function of the

number of soundings and their spatial configuration within the grid cell, as well as

the spatial scale over which the measurement errors are correlated. The number and

spatial configuration of OCO-2 soundings was estimated by examining the range of

the number, and the spatial configuration, of CALIPSO measurements with optical

depths of less than 0.3 falling within a PCTM grid box. Simulated OCO-2 obser-

vations and measurement error correlation ranges from a few kilometers to a few

hundred kilometers were used in a side study to determine the effective measurement

noise at the scale of the PCTM model. Based on these results (not shown), a range of

grid-scale measurement error standard deviations was applied, which were 0.2 ppm for

the low level, 0.5 ppm for the medium level and 1 ppm for the high level. For all noise

levels, the measurement errors were assumed to be independent zero-mean and nor-

mally distributed when applied at the scale of the model (1◦ × 1.25◦), and a random

sample of such errors was added to the observations drawn from PCTM/GEOS-4.

The nugget variance σ2
nug, and therefore the diagonal elements of the matrix R, de-

fined in section 3.2.1 was thereby equal to the variances of these measurement errors

(i.e., (0.2 ppm)2, (0.5 ppm)2 and (1 ppm)2).

The fourth factor in the experimental setup was the data used in the covariance

estimation (see section 3.2.1). Two cases were investigated. In the first case, the

time-averaged full model data (e.g. Figures 3.1a–3.1c), i.e. the “truth”, were used to

derive the covariance parameters. In the second case, only the available observations

(e.g. Figures 3.1d–3.1f) were used. Using the time-averaged full-model data repre-

sents an idealized, but not possible scenario, where the covariance structure could
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be derived from the full time-averaged CO2 concentrations. Clearly, having the true

concentrations available to estimate the covariance structure for gap-filling CO2 is not

feasible and would defy the need to gap-fill, but this choice has been made to serve as

an upper bound for any possible improvement over the observation-based covariance

structure. The idea is that any alternative to using the observations themselves to

quantify the covariance structure would be at best as good as having the “truth”.

3.4 Results and Discussion

3.4.1 Qualitative features of the spatial predictions

The characteristics of the Level 3 maps as a function of the length of the examined

time period, amount of measurement noise, and data used in the covariance estimation

were similar across seasons (Figure 3.2). As expected, seasons with smoother CO2

fields yielded better Level 2 maps. The large-scale features of the global CO2 fields

could be reproduced for all examined scenarios. It is surprising and encouraging that,

even for the 1-day periods, the information content of the observations is sufficient to

recover the main characteristics of the CO2 field (Figure 3.1).

The third row in Figure 3.1 provides an example of gap-filled estimates for 1-day,

4-day and 16-day periods in April, which was the season with the most heterogeneous

CO2 field. As expected, some small-scale features are lost, especially in the 1-day

maps, if they are not captured by observations. For example, the area of high CO2

values over the northern part of South America is not well portrayed in the 1-day Level

3 map (Figure 3.1g). However, as is discussed in detail in section 3.4.3, the prediction

uncertainties for the shorter time periods adequately reflect the true uncertainty of

these predictions. So, while the predictions cannot recreate the small-scale features

in areas missing observations, the associated prediction uncertainties are higher in

these areas, and therefore reflect this lack of information.
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The smoothness of the predicted fields varies as a function of the length of the

examined time period. The 1-day and 2-day predictions are generally smoother than

the truth, whereas for the longer time periods, most notably the 16-day periods, the

predictions are less smooth than the truth. This can be seen in the undulating struc-

ture of the 16-day prediction map for April (Figure 3.1i). There are two different

causes for this change of smoothness with temporal resolution. The reason for which

the 1-day and 2-day maps appear smoother than the true fields is a general conse-

quence of interpolating sparse data. The reason for which prediction maps for longer

time periods appear less smooth than the truth is a consequence of unaccounted-for

temporal variability in the CO2 field, as reflected in the available observations. For

the longer time periods, this effect dominates because the data density is relatively

high, as is the amount of temporal variability that is captured by these observations.

This temporal variability is introduced into the gap-filled maps because they com-

bine observations from different days (see section 3.3.2). The amount of temporal

variability that is captured by the observations increases with the time span over

which observations are combined, and its effect therefore becomes more pronounced

for longer time periods. In a spatial-only (compared to a spatio-temporal) geostatisti-

cal setup such as the one used here, the temporal variability translates to a perceived

spatial variability on small-scales (Figure 3.1h and 3.1i). In contrast, the correspond-

ing true fields shown in Figures 3.1b and 3.1c represent the temporal average over the

examined time period and are smoother. The strength of this effect is further affected

by the degree of measurement noise: the undulating structure is less pronounced in

high measurement noise scenarios, where the measurement noise masks the temporal

variability (see section 3.4.2).
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3.4.2 Prediction accuracy

Figure 3.2 presents the Root Mean Square Prediction Error (RMSPE) for all

modeled scenarios. RMSPE is a measure of the difference between the true and

predicted CO2 values. The overall range of RMSPE was 0.20 to 0.63 ppm CO2;

the lowest value resulted from a 16-day period in September and the highest from

a 1-day period in July. Longer time periods and seasons with lower CO2 variability

generally had better prediction accuracies, i.e. lower RMSPE. These overall trends,

however, depend on the level of measurement noise. For the 1-day periods, prediction

accuracies improve as the measurement noise decreases. This ordered relationship is

less evident in the 2-day periods, where the low and medium noise scenarios have

similar prediction accuracies. For the 4-day periods, the medium measurement noise

cases have the best prediction accuracies, but the differences are less pronounced

than for other temporal resolutions. For the 8-day periods, the relationship between

measurement noise and prediction accuracies starts to reverse: lower measurement

noise is associated with worse prediction accuracies. This effect becomes fully evident

in the 16-day periods, where higher measurement noise scenarios consistently feature

the best prediction accuracies for all seasons, because temporal variability dominates

the error. Overall, higher measurement noise decreases the prediction accuracies for

shorter time periods, but, counter-intuitively, improves them for longer time periods.

This effect is due to the presence of temporal variability in the observations. As

discussed in sections 3.3.2 and 3.4.1, temporal variability in the CO2 distribution is

captured by the observations by combining measurements from multiple days. This

variability, however, is not accounted for directly by the spatial mapping approach

presented here, which treats observations from different days as if they had been

sampled from a static field. As a result, predictions may follow observations too

closely to accurately represent the averaged field. This effect is alleviated in cases

with high measurement noise, because the geostatistical modeling framework provides
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leeway for the predictions to deviate from the observations to a degree consistent with

the measurement error. In this way, accounting for high measurement noise implicitly

also allows the method to cope with observed temporal variability. There is also

an interaction between measurement error and the heterogeneity of the CO2 field.

Seasons with more spatial heterogeneity also exhibited more temporal variability. As

a result, seasons with smoother CO2 fields also yielded better prediction accuracies

for longer time periods and lower measurement noise, relative to more heterogeneous

seasons.

A second measure of prediction accuracy is the percentage of locations where

the predicted values deviate from the truth by more than 1 ppm, with results (Fig-

ure 3.3) consistent with the RMSPE results. The lowest percentage was observed for

the 16-day period with high measurement error in September, where only 0.2% of the

predicted CO2 values deviate from the truth by more than 1 ppm, and the highest

percentage was for a 1-day period with high measurement error in July, where 9%

of the predicted values deviated from the truth by more than 1 ppm. As seen previ-

ously, lower measurement noise improved the prediction accuracy for short periods,

whereas higher measurement noise improved accuracies for long periods. For all cases,

however, the percentages are quite low, indicating high accuracy predictions by the

proposed method.

Surprisingly and encouragingly, whether the covariance structure was derived from

the model data averaged over the examined time period, i.e. the truth that we are try-

ing to estimate (e.g. row 1 of Figure 3.1), or from the available observations (e.g. row

2 of Figure 3.1), had little impact on the prediction accuracies (see Figure 3.2). This

indicates that good predictions can be obtained without the need for prior information

about the covariance structure of the underlying field. This was surprising especially

for the shorter time periods, which had more limited observations, and indicated that

data over short periods still contain enough information about the spatial variabil-
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Figure 3.2: Root mean square prediction error (RMSPE) for 1-day, 2-day, 4-day, 8-day
and 16-day gap-filled maps for January, April, July and September 2006. Symbols
of different colors and shapes represent different seasons. The different measure-
ment noise levels as discussed in section 3.3.2 are represented by different symbol
sizes,whereas the filled and empty variations represent the two ways of calculating
the covariance structure as detailed in the same section.

ity of the underlying field to yield accurate predictions. The only scenarios where

deriving the covariance structure from the full model output (i.e. from prior infor-

mation other than the observations) improved the prediction accuracies were some

of the longer time periods; namely the 8-day and 16-day time periods for July and

September. As described in detail in section 3.3.2, the averaged field over the time

period investigated was defined as the truth, while the observations were aggregated

from individual days, and thus did not come from an averaged field. Therefore, the

observations come from a more variable field than the truth, and that variability is

reflected in the estimated covariance structures, which translates into somewhat less

accurate prediction accuracies for the longer time periods.
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Figure 3.3: Percentage of locations where the predicted values deviate from the truth
by more than 1ppm for 1-day, 2-day, 4-day, 8-day and 16-day time periods for January,
April, July and September 2006. Symbols of different colors and shapes represent dif-
ferent seasons. The different measurement noise levels as discussed in section 3.3.2
are represented by different symbol sizes,whereas the filled and empty variations rep-
resent the two ways of calculating the covariance structure as detailed in the same
section.
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3.4.3 Prediction uncertainty

An attractive feature of geostatistical mapping is that each predicted CO2 value

is accompanied by a prediction uncertainty that is quantified without knowledge of

the true distribution. The prediction uncertainty for a given location is a function of

the location and number of observations surrounding the location, and the degree of

spatial variability in the CO2 field in the vicinity of the estimation location (equations

(3.5) and (3.7)). In general, more homogeneous areas with dense observations will

have lower prediction uncertainty.

The fourth row in Figure 3.1(j, k, and m) provides an example of the prediction

uncertainties, as obtained from the approach implemented here, for the 1-day, 4-day

and 16-day periods for April. The 1-day prediction uncertainties show clear evidence

of the dependence of the prediction uncertainties on the location of observations.

Locations that lie close to the satellite orbit path feature low uncertainties, while

areas further away from the satellite paths have increasingly larger uncertainties. The

16-day period, which has a large number of observations distributed over the globe,

features overall lower prediction uncertainties compared to the shorter time periods.

Even for a temporal resolution of 16-days, however, some areas with few observations,

such as West Africa and the polar regions, have higher prediction uncertainties.

Accurately assessing the uncertainty associated with predictions is valuable re-

gardless of the ultimate use of the maps, but it is especially critical when the global

gap-filled CO2 predictions are compared to data from other sources such as model

predictions. Realistic prediction uncertainties allow for probabilistic comparisons in

addition to evaluating the best estimates. In order to assess how representative the

prediction uncertainties were of the true uncertainty, the percentage of estimation lo-

cations where the truth fell outside of the estimated value ±3 standard deviations (as

calculated from the prediction uncertainty) was evaluated. The optimal percentage

for this measure depends on assumptions about the underlying statistical distribution
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of the data. As a guiding value, under the assumption of a normal distribution, this

percentage should be approximately 0.3%. While achieving this exact value is not

the goal, because the approach does not assume that the underlying distribution is

Gaussian, we have assessed whether the percentage outside of ±3 standard deviations

is reasonably low.

Figure 3.4 shows the percentage of locations falling outside of ±3 standard devi-

ations of the prediction uncertainty for all investigated scenarios. The most striking

feature of this figure is how the percentage dramatically increases with the length

of the examined time period for low-noise scenarios, while the percentage stays low

for high-noise scenarios. This feature is in accordance with the finding, discussed in

detail in section 3.4.2, that high measurement noise can mask the temporal variabil-

ity that is not otherwise accounted for by the spatial mapping. The 1-day scenarios,

where temporal variability is minimal, have their lowest percentages for the low mea-

surement noise cases. Starting with the 2-day temporal resolution, however, low

measurement noise results in increasingly higher percentages of true values falling

outside of ±3 standard deviations. For the high measurement error cases, accounting

for the noise implicitly also accounts for the temporal variability and the percentages

falling outside of ±3 standard deviations remain low.

The effect of the method used for deriving the covariance on the prediction un-

certainty depends on the averaging time, but is overall small. For the 1-day periods,

using only the observations to derive the covariance structure is clearly suboptimal.

This is reflected in the higher percentage of locations falling outside of ±3 standard

deviations (Figure 3.4). This is not such a clear-cut case, however, for the longer

time-periods. While the truth-derived covariance structure still has the advantage of

being based on a full field without gaps, it is possible that the observation-derived

covariance results in improved prediction uncertainties by capturing some of the tem-

poral variability present in the observations. This is indeed the case for some of the
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Figure 3.4: Percentage of locations where the predicted values deviate from the truth
by more than ±3 standard deviations of the prediction uncertainty (eqn. (3.7)) for 1-
day, 2-day, 4-day, 8-day and 16-day time periods for January, April, July and Septem-
ber 2006. Symbols of different colors and shapes represent different seasons. The
different measurement noise levels as discussed in section 3.3.2 are represented by
different symbol sizes,whereas the filled and empty variations represent the two ways
of calculating the covariance structure as detailed in the same section.

8-day and 16-day. These improvements, however, were rather small compared to the

differences caused by the varying degrees of measurement noise.

Overall, the prediction uncertainties are able to describe the true uncertainty ac-

curately. This is an especially encouraging finding for the short time periods, because

it indicates that satellite observations can be used to derive global CO2 distributions

with accurate uncertainties for time periods as short as one day. For longer time pe-

riods and low measurement noise scenarios, it is important to assess and incorporate

the temporal variability resulting from the aggregation of observations to avoid an

underestimation of the uncertainty. This could be achieved by either calculating the

temporal variability and explicitly accounting for it in a geostatistical model, or by

developing a spatio-temporal mapping approach.
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3.4.4 Implications for the generation of Level 3 maps

It is challenging to construct Level 3 CO2 maps that represent an average over a

given time period using observations obtained on individual days, because CO2 fields

change with time. Ideally, the temporal resolution at which maps are obtained opti-

mizes the mapping performance and provides maps that are representative over the

shortest time period possible so as to capture the dynamics of the CO2 distribution.

The choice of temporal resolution thus defines a trade-off between having sufficient

observations for adequate spatial coverage, while minimizing the impact of tempo-

ral variability. The findings described in sections 3.4.1 to 3.4.3 quantify this trade-off

and provide guidance for choosing a temporal resolution for creating Level 3 products

from satellite CO2 observations from OCO-2.

When choosing a temporal resolution, results show that a key question is how

the measurement noise compares to the temporal variability present in the estimated

field. As a general guideline, the larger the measurement noise, the more advantageous

it is to combine observations over a longer time period. For observations with low

measurement noise, however, choosing a temporal resolution coarser than four days

leads to decreased overall prediction performance.

Choosing a high temporal resolution, and thereby sacrificing spatial coverage by

observations in favor of minimal temporal variability, can lead to surprisingly benign

consequences in prediction performance. Even for the 1-day and 2-day periods, the

RMSPE are on only the order of 0.5 ppm and 0.4 ppm, respectively. Furthermore,

the accompanying prediction uncertainties accurately reflect the true uncertainty of

the predictions.

Overall, for OCO-2 like observations, a temporal resolution of 4-days has the

most robust prediction performance for varying seasons and measurement noise levels.

Higher measurement noise shifts the optimal prediction performance towards lower

temporal resolutions (i.e. longer time periods), while lower measurement noise shifts
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it towards higher temporal resolutions (i.e. shorter time periods).

Whether the covariance structure is derived from the model data averaged over

the examined time period (i.e. the truth that we are trying to estimate) or from

the observations had very little impact on the quality of the Level 3 prediction and

uncertainty maps. This finding strongly supports the use of observations for deriving

the covariance structure, thereby avoiding the need for prior assumptions about the

spatial structure of the CO2 field.

3.5 Conclusions

High spatiotemporal resolution global Level 3 CO2 products obtained from satel-

lite observations offer new opportunities for gaining a better understanding of the dis-

tribution and dynamic behavior of atmospheric CO2. Ideally, these Level 3 products

should cover time periods that are short enough to preserve the synoptic dynamics

of atmospheric CO2concentrations. Knowledge of the uncertainties associated with

statistically-derived Level 3 maps makes it possible to probabilistically evaluate CO2

flux and atmospheric transport models, which can to help identify potential areas for

improvement in model formulation and parameterization.

A common method for the generation of Level 3 maps is to obtain an aggre-

gated field by spatial binning and averaging over long periods, which results in a

loss of spatial resolution and dynamic information. While making monthly or sea-

sonal maps might be adequate for more static properties (e.g. land cover, phenology),

creating CO2 maps over these long time periods hides the dynamics of the global

CO2 concentration field, which are critical to improving our understanding of the

carbon cycle. Such averaged fields also typically lack quantitative uncertainty mea-

sures. The method presented in this study makes it possible to map CO2 for time

scales more consistent with the synoptic dynamics of CO2, and provides a measure of

the uncertainty associated with predictions. This proposed method makes minimal
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assumptions, namely that the atmospheric CO2 concentration exhibit spatial correla-

tion, and that the statistical characteristics of this correlation can be inferred from the

observations. Using only the observations themselves to infer the covariance structure

eliminates the need to introduce any a priori assumptions about the distribution of

atmospheric CO2 concentrations, which in turn renders the methodology more useful

for comparison purposes.

The methodology was used to evaluate Level 3 products derived from OCO-2-like

data for time periods ranging from 1 to 16 days, with the dual goal of verifying the

proposed method’s performance and of identifying the optimal temporal resolution

for Level 3 CO2 products. The results indicate that global CO2 concentrations can

be predicted from OCO-2 satellite observations for time periods much shorter than a

full repeat cycle. Even one-day prediction maps reproduce the large-scale features of

the atmospheric CO2 distribution and have realistic uncertainty bounds. Temporal

resolutions of 2 to 4 days proved to have the most robust prediction performances over

a wide variety of tested scenarios. The aggregation of observations over longer time

periods introduces temporal variability that limits prediction performance, especially

for scenarios where the measurement noise is low compared to the degree of temporal

variability in the underlying CO2 field.
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CHAPTER IV

Global GOSAT CO2 maps and model comparison

4.1 Introduction

The Greenhouse Gases Observing Satellite “Ibuki” (GOSAT) launched on Jan-

uary 23, 2009, and is the first space-based mission to reach orbit that was designed

specifically for making high-precision measurements of carbon dioxide (CO2) and

methane (CH4) with sensitivity in the lower troposphere [Kuze et al., 2009; Yokota

et al., 2009]. After the launch failure of the Orbiting Carbon Observatory (OCO)

mission [e.g. Crisp et al., 2004], the OCO team was invited to join the GOSAT team

in analyzing GOSAT observations, under the auspices of the NASA Atmospheric

CO2Observations from Space (ACOS) task. The ACOS GOSAT column CO2 (XCO2)

retrieval algorithm has now reached a level of maturity that makes it possible to

use its estimates for informing carbon cycle science [Crisp et al., 2012; O’Dell et al.,

2012]. Version 2.9 of the Level 2 data product, which represents geo-referenced XCO2

observations, includes approximately 900 successful retrievals per three-day repeat

cycle during the second half of 2009, the first period for which data are available.

The majority of these observations are over land.

Although these data are useful in their own right, they have large gaps (e.g.

Figure 4.1a and Figure A.1 in the auxiliary materials) and substantial retrieval un-

certainties [O’Dell et al., 2012], which makes it difficult to interpret their scientific
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significance without further analysis. Hammerling et al. [2012] (see Chapter III)

recently developed a statistical mapping approach that makes it possible to create

full-coverage (i.e. Level 3) maps from satellite XCO2 observations at high spatial and

temporal resolutions. Unlike commonly used spatial and temporal binning and av-

eraging procedures [e.g. Crevoisier et al., 2009; Kulawik et al., 2010; Tiwari et al.,

2006]), this approach exploits the spatial correlation among the Level 2 observations

and the resulting Level 3 product describes the XCO2 concentrations as a stochastic

field characterized by its mean (“Level 3 estimates”) and variance (“Level 3 uncer-

tainties”) structure.

Furthermore, unlike maps derived from inverse modeling or data assimilation stud-

ies [e.g. Engelen et al., 2009], the Hammerling et al. [2012] approach draws information

about the degree of spatial variability of XCO2 directly from the XCO2 observations,

without additional information introduced from an atmospheric transport model or

CO2 flux estimates. As such, because no information from atmospheric transport

models or CO2 flux estimates is incorporated, the resulting Level 3 maps are a more

direct representation of the information content of the retrievals. Rather than being

intended as inputs to inverse modeling studies, these Level 3 XCO2 products enable

direct independent comparisons with existing models of carbon flux and atmospheric

transport. The uncertainty measures provided by the approach make it possible to

conduct these comparisons in a probabilistic framework.

Here we present global Level 3 XCO2 products over land derived from the GOSAT

ACOS XCO2 retrievals, covering the second half of 2009. The Level 3 estimates and

their associated uncertainties are compared to predictions for the same period from a

combined CO2 flux and atmospheric transport model using a probabilistic framework.
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Figure 4.1: ACOS XCO2 Level 2 data (“Observations”), ACOS XCO2 Level 3 product
(“Estimates”) and estimated prediction uncertainties (“Uncertainty”) expressed as a
standard deviation for August 7–12 2009.

4.2 Data and Methods

4.2.1 GOSAT ACOS XCO2 Level 2 data

GOSAT flies in a sun-synchronous orbit with an approximate 1pm equator-crossing

time and has a three-day repeat-cycle. Version 2.9 of the GOSAT ACOS XCO2 Level

2 data product is used in this study; only high (H) gain data were used as recom-

mended in [Crisp et al., 2012]. Figure 4.1a shows an example of six days (i.e., two

repeat cycles) of ACOS L2 data for August 2009.

4.2.2 Method for creating global GOSAT ACOS XCO2 Level 3 maps

The geostatistical methodology applied for creating Level 3 maps exploits the

spatial correlation of the XCO2 observations and consists of two major steps. In the

first step, the spatial covariance structure of the XCO2 observations is inferred from
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these observations. In the second step, the inferred spatial covariance structure and

the observations are used to estimate the XCO2 field. The approach is described in

detail by Hammerling et al. [2012] (see Chapter IV), and only key implementation

details are presented here. Due to the currently limited availability of GOSAT ACOS

XCO2 observations over the oceans, the estimation has been restricted to land areas.

The mapping is implemented on a 1◦ latitude × 1.25◦ longitude grid, to inform

regional variability and to correspond with that of the model used for comparison in

Section 4.2.1.

Based on previous work [Alkhaled et al., 2008], an exponential covariance function

is used to represent the XCO2 spatial correlation:

C(h) = σ2 exp

(
−h
l

)
, (4.1)

where the covariance C is a function of the separation distance between locations (h),

and spatially-variable variance (σ2) and range (l) parameters that are inferred at each

estimation location from the Level 2 data.

A local kriging procedure is then applied to create full-coverage maps, using a

weighted average of available observations by solving the following linear system of

equations once for each location on the Level 3 map:

 Q + R 1

1T 0


 λ

ν

 =

 q

1

 , (4.2)

where Q is an n×n covariance matrix among the n observation locations, as defined in

equation (4.1), R is an n×n diagonal matrix with the retrieval error variance specific

to each observation on the diagonal, λ is a n × 1 vector of weights, ν is a Lagrange

multiplier and q is the n× 1 vector of the spatial covariances between an individual

estimation location and the observation locations, also defined using equation (4.1).
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In our study, the measurement error variances are the squares of the reported

ACOS Level 2 measurement error standard deviations adjusted by a factor of 2.1

as derived by O’Dell et al. [2012]. The predicted XCO2 value, ŷ, and the prediction

uncertainty, σ2
ŷ , at each Level 3 location are:

ŷ = λTy (4.3)

σ2
ŷ = σ2 − λTq− ν, (4.4)

where y are the observations at the n Level 2 locations and σ2 is the variance as

shown in (4.1).

Based on previous work, a 2000 km neighborhood is required for assessing the

local spatial variability ((4.1), also see Hammerling et al. [2012] (Chapter III) for

details), and estimates can therefore only be obtained if there is a minimum of three

observations within this distance of each estimation location. Estimation locations

not meeting this requirement are shown as white in Figures 4.1b and A.2. It is the

uncertainties in (4.4) however, that should be used as the criterion for limiting the

coverage of Level 3 maps to regions where they are interpretable for a given scientific

application (e.g. Figure 4.2), and one of the advantages of the method is the flexibility

to dynamically define this uncertainty tolerance.

4.2.3 PCTM/GEOS-5/CASA-GFED model data

The modeled XCO2 data used in the intercomparison are based on the God-

dard Space Flight Center parameterized chemistry and transport model, which is

driven by real-time analyzed meteorological fields from the Goddard Global Modeling

and Assimilation Office, version GEOS-5, and uses biospheric fluxes produced from

the Carnegie-Ames-Stanford-Approach, which incorporate biomass burning from the

Global Fire Emissions Database (PCTM/GEOS-5/CASA-GFED), as well as oceanic,
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Figure 4.2: ACOS Level 3 XCO2 map for August 7–12 (Figure 4.1b) filtered for loca-
tions where the standard deviations of the prediction uncertainties (Figure 4.1c) are
less than 2.5ppm, less than 2ppm and less than 1ppm, respectively.

71



and anthropogenic CO2 flux estimates, as described by Kawa et al. [2004, 2010]. The

model resolution is 1◦ × 1.25◦ with 28 vertical levels and hourly output. CO2 mixing

ratios were pressure-averaged to simulate the vertical sensitivity of the GOSAT obser-

vations. The PCTM/GEOS-5/CASA-GFED model has been widely tested, and has

shown favorable results in carbon cycle comparison studies [e.g. Kawa et al., 2010,

and references therein].

4.3 ACOS GOSAT XCO2
Level 3 maps

The choice of the temporal resolution, meaning the time period over which obser-

vations are aggregated, is an important decision in the creation of a Level 3 product

[Hammerling et al., 2012]. Ideally Level 3 products are created for the shortest time

period possible to preserve as much of the short-term dynamical information as pos-

sible. However, this needs to be balanced with a minimum requirement for spatial

coverage by the GOSAT observations. Based on initial investigations of temporal res-

olutions ranging from three days to one month, a resolution of six-days fulfilled both

these objectives for all 30 six-day periods investigated from July to December 2009.

Figure 4.1 provides an example of one of the investigated periods, August 7–12 2009.

The Level 3 map (Figure 4.1b) for this period shows comparatively low XCO2 in the

Northern latitudes consistent with the knowledge of the effect of the seasonal cycle

on CO2 concentrations. The fact that the seasonal cycle in the Northern hemisphere

is captured well in the GOSAT ACOS Level 3 maps becomes further evident from

results from the full examined period (see Figure A.2 in auxiliary materials), which

show a pronounced increase in CO2 concentrations in the Northern latitudes in the

winter months as well as a more subtle increase in the overall CO2 concentrations.

The comparatively high XCO2 over South America visible in the Level 3 map for Au-

gust 7–12 (Figure 4.1b) are a fairly persistent feature throughout the summer months

(Figure A.2) and are further discussed in Section 4.4. An advantage of the mapping
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method used in our study is that each estimate has an associated uncertainty measure

(Figure 4.1c), which reflects the number of observations surrounding an estimation

location, their retrieval errors, and the spatial variability in the XCO2 field. Locations

where the prediction uncertainties are below specific cut-off values are illustrated in

Figure 4.2. For this six-day period, the predictions uncertainties are low for Aus-

tralia, the southern part of Africa and eastern South America, whereas they are high

for Southeast Asia, parts of India and the eastern United States and Canada. Analyz-

ing these prediction uncertainties over extended time periods highlights the degree to

which ACOS GOSAT retrievals constrain the XCO2 distribution for different regions.

Figure 4.3 summarizes this analysis for the 30 investigated six-day periods in 2009,

identifying Australia, Southern Africa and a region in South America covering ap-

proximately eastern Brazil, Paraguay, Uruguay and central and northern Argentina

and northern Chile as well-observed regions. Regions with the weakest constraint

are the Sahara Desert and the high Northern Latitudes including Alaska, northern

Canada, Greenland, Scandinavia and northern Russia. The interplay of how the num-

ber of observations, their retrieval errors, and the spatial variability in the XCO2 field

contribute to the uncertainty at each location renders it difficult to completely sepa-

rate the effect of these contributing factors. The spatial coverage over the larger land

masses in the Southern hemisphere, namely Australia, southern Africa and southern

South America, is generally good. The number of observations decreases somewhat

towards the end of the year, but these observations have lower retrieval errors and

are supplemented by nearby ocean observations, which shift southwards in the second

half of year as a function of the solar zenith angle. Southeast Asia and central and

eastern China, on the other hand, have very poor coverage during July to October

due to persistent cloudiness, but notably better coverage in November and December,

leading to the mapping uncertainties being seasonally variable. The United States

have generally good coverage, but the XCO2 spatial variability over the Northern
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Figure 4.3: Summary of the analysis of prediction uncertainties from 30 6-day periods
from July through December 2009. For each location, the number of 6-day prediction
periods with prediction uncertainties below (a) 2.5 ppm, (b) 1.5 ppm and (c) 1 ppm,
respectively, is shown. Lighter colors indicated regions which are better constrained
by the GOSAT observations.

hemisphere land masses is rather high, yielding somewhat higher uncertainties for

North America than for areas with comparable spatial coverage but less spatial vari-

ability such as Australia. There are no observations over the Sahara Desert, due to

our exclusion of the GOSAT M-gain data (see [Crisp et al., 2012] for details). The

high Northern latitudes lack observations in November and December due to solar

zenith angle restrictions; and the observations in July to October have comparatively

high retrieval errors. This, coupled with the high XCO2 spatial variability in the high

Northern latitudes, leads to high mapping uncertainties even when data are present.
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4.4 Comparison of Level 3 maps to modeled XCO2

The ACOS GOSAT XCO2 Level 3 products can be used to conduct intercompar-

isons with models, by using the Level 3 data and their associated uncertainties to prob-

abilistically identify areas where model outputs differ significantly from the Level 3

maps. Figure 4.4 shows an example of such an intercomparison to the PCTM/GEOS-

5/CASA-GFED model for August 7–12 2009. The difference plot (Figure 4.4b) shows

large differences in North America, the Amazon Region, and in a region covering

the Northeastern part of India and Bangladesh. The standardized differences (Fig-

ure 4.4c), on the other hand, incorporate the Level 3 uncertainties, and can therefore

be used to assess the significance of these differences given the information content

of the satellite observations. For example, while the difference in North America and

Southeast Asia might appear large in Figure 4.4b, they are not highly significant,

as shown in Figure 4.4c. This is due to the comparatively large Level 3 uncertain-

ties in these regions for this period. Figure 4.5 summarizes the intercomparison for

July to December 2009, and reveals that discrepancies are most pronounced over

South America for the Northern hemisphere summer months and shift to Asia in

the Northern hemisphere fall. Although these results likely point to areas where the

PCTM/GEOS-5/CASA-GFED model flux and transport processes need to be re-

examined, Level 2 retrieval biases and, in the case of the sparsely-sampled Amazon

region, underestimation of the Level 3 uncertainties due to low XCO2 variability in

surrounding well-sampled regions cannot be absolutely eliminated at this stage. It is

also interesting to note that certain regions exhibit few or no limited significant differ-

ences over the entire examined period, including the high Northern latitudes, North

America, Northern Africa, the Arabian Peninsula and Australia. The conclusion one

can draw from an absence of statistically significant discrepancies depends on how

well constrained a region is. For example, the high Northern latitudes are weakly

constrained and have high mapping uncertainties. This implies that even large dis-
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Figure 4.4: (a) PCTM model predictions for the same 6-day period as shown in
Figure 4.1, (b) difference and (c) discretized standardized difference between the
ACOS Level 3 map and the PCTM model. In the difference plot, values in the
copper range indicate areas where the ACOS Level 3 values exceed the PCTM model
predictions, values in the blue range areas where the PCTM model exceed the ACOS
Level 3 values. The standardized difference is the absolute difference divided by the
standard deviation of the prediction uncertainty at each location. The values are
discretized to improve the visualization. Areas in yellow represent differences larger
than one standard deviation of the prediction uncertainty, areas in orange larger than
two standard deviations and areas in dark red larger than three standard deviations.
The PCTM data has been mean-adjusted to the ACOS Level 3 predictions so that
the global spatial average of the PCTM data and the ACOS Level 3 is equal.

crepancies are not conclusive because the power to detect a difference is low for that

region. For Australia, on the other hand, the Level 3 uncertainties are rather low,

so an absence of detectable discrepancies indicates that the Level 3 maps are indeed

consistent with the model outputs.
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Figure 4.5: Percentage of 6-day periods within each month where the standardized
differences exceed two prediction uncertainties. Given that there are only five 6-day
periods in each month, a discretized color scale to visualize percentages has been
chosen.
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4.5 Conclusions

This section presents global XCO2 Level 3 products over land based on the ACOS

GOSAT XCO2 data. The implemented approach [Hammerling et al., 2012] yields

maps at high spatial and temporal resolutions, using information derived directly

from the Level 2 observations, without invoking an atmospheric transport model or

estimates of CO2 uptake and emissions. One limitation of such a purely observation-

driven approach is that local enhancement phenomena that are not observed by the

satellite cannot be fully captured. This results in Level 3 maps with smoother features

than expected in the real XCO2 concentration fields, but with uncertainty bounds

that are wide enough to capture the range of likely variability. Level 3 maps for

July to December 2009 at six-day resolution capture much of the synoptic scale and

regional variability of XCO2 , in addition to the overall seasonality. Results include

robust uncertainty estimates, which reflect local data coverage, XCO2 variability, and

retrieval errors. Uncertainties are generally highest in the northern hemisphere in

July and August, during the height of the growing season (Figure A.3), and lowest in

areas with good data coverage and low CO2 variability in the Southern Hemisphere

(Figure A.3). A probabilistic comparison to a state-of-the-art model reveals that the

most significant discrepancies captured by the ACOS GOSAT Level 3 maps are in

the South America in July and August, and central Asia in September to December

(Figure 4.5). The differences in South America are significant in part because the

Level 3 uncertainties are low in this region, and may reveal inaccuracies in carbon

flux estimates for this region that is poorly constrained by in situ atmospheric CO2

observations, although problems with the Level 2 retrievals and with identifying local

phenomena in the Amazon region in the Level 3 products cannot be ruled out at this

stage. Similarly, the significant differences in Asia appear during months when the

Level 3 mapping uncertainties are lowest in this region (Figure A.3). These early

results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level
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3 data product with uncertainty measures. Such a Level 3 data product can be used

for direct interpretation of satellite observations, including those of highly dynamic

parameters such as atmospheric CO2, and for probabilistic comparison studies.
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CHAPTER V

Signal detection for the ASCENDS mission

5.1 Introduction

The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS)

mission is an active CO2 sensing mission with an anticipated launch date of 2022.

The term “active” refers to the measurement technology employed, which is based

on lidar technology, where the instrument itself constitutes the light source. Passive

missions such as GOSAT (see Section 2.3.2.2) and OCO-2 (see Section 2.3.2.1), on

the other hand, require reflected sunlight. Notable features of this mission include

the ability to sample at night and at high latitudes, conditions which are prohibitive

to passive missions due to their reliance on reflected sunlight. The lidar measurement

technique proposed for the ASCENDS mission further enables observing through some

clouds and aerosols [e.g. Ehret et al., 2008; Mao and Kawa, 2004], which represent

obstacles for passive missions. Extensive instrument design research and development

has already taken place and proof of concept and validation studies indicate that

ASCENDS will be able to provide unbiased observations, i.e. observations without

an offset based on atmospheric or land surface characteristics, with improved spatial

coverage compared to active missions [e.g. Abshire et al., 2010; Kawa et al., 2010;

Spiers et al., 2011].

The primary goals of the ASCENDS mission as stated in ”Earth Science and
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Applications from Space: National Imperatives for the Next Decade” [National Re-

search Council , 2007] (from hereon referred to as the decadal survey), cover some of

the most relevant questions for understanding the carbon cycle, and are well aligned

with the unique and advantageous capabilities of the lidar instrument CO2 measure-

ment technique. These goals have subsequently been refined in an ASCENDS mission

NASA Science Definition and Planning Workshop [ASCENDS Workshop Steering

Committee, 2008] and address open questions in carbon cycle science that pertain

to potentially changing source/sink characteristics, which are difficult to constrain

with other current or anticipated observations. These include changes in the North-

ern High Latitude sources and sinks, in Southern Ocean source/sink characteristics

and in biospheric respiration processes [ASCENDS Workshop Steering Committee,

2008]. The Northern High Latitudes and the Southern Ocean are among the largest

and most vulnerable carbon pools in the earth system, and it is crucial to detect

and attribute changes in carbon fluxes from these pools quickly as they could lead to

large increases in atmospheric CO2 concentrations and subsequent shifts in climate

dynamics [Canadell et al., 2010]. Identification of human-generated CO2 sources and

sinks was also identified in the decadal survey as one of the potential benefits of the

ASCENDS mission [National Research Council , 2007].

Guided by these stated goals, this study explores the extent to which the AS-

CENDS mission can indeed contribute to these pertinent carbon cycle science ques-

tions. The approach taken is to define scenarios that represent plausible changes

in carbon fluxes within the time frame of the ASCENDS mission, i.e. about ten

years from now, and investigate if the ASCENDS mission could detect the associated

changes in atmospheric CO2 concentrations. The scenarios are chosen to be repre-

sentative of some of the key anticipated contribution areas of the ASCENDS mission.

Three such prototypical scenarios have been identified: the melting of permafrost

in the high northern latitudes, the shifting of fossil fuel emissions from Europe to
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the P. R. of China and El Nino Southern Oscillation (ENSO) related changes in the

sources/sink characteristics in the Southern Ocean. For each of these scenarios sets of

fluxes have been specified by subject matter experts, which represent realistic path-

ways of how changes in carbon fluxes could unfold. For the remainder of this thesis

these fluxes are referred to as perturbation fluxes. They are added to a set of baseline

fluxes, which represent a perturbation-free scenario. The baseline fluxes are common

to all three perturbation scenarios.

These three scenarios are used to design Observing System Simulations Exper-

iments (OSSEs) to investigate if the ASCENDS mission, once operational, has the

ability to corroborate the predicted unfolding of these scenarios. The approach used

in this work falls under the framework of signal detection studies, i.e. experiments

that investigate if the signature of the perturbation fluxes corresponding to the three

investigated scenarios can be detected in the ASCENDS observations of atmospheric

CO2 concentrations. This is a two-fold approach, where the strength and location

of the gradients in the atmospheric CO2 concentrations resulting from the changes

in carbon fluxes is first investigated. The presence of gradients in the atmospheric

CO2 concentrations is what carries information about the changes in carbon fluxes.

Secondly, it is investigated to which degree future ASCENDS observations can detect

the signal, i.e. the differences in atmospheric CO2 concentrations between the baseline

and the perturbation runs.

A signal detection study for the ASCENDS mission has been conducted previously

by Kawa et al. [2010], who investigated the ability of the ASCENDS mission to detect

differences between the day and night-time CO2 concentrations. The objective of the

Kawa et al. [2010] study was similar, namely to investigate if changes in atmospheric

CO2 concentrations resulting from variations in fluxes can be detected via ASCENDS

observations. The scope of the investigated scenarios and the detection methodology,

however, differ notably between the studies. Kawa et al. [2010] found that the de-
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tection of the diurnal differences proved difficult due to the small magnitude of the

signal. This is a feature that all three scenarios investigated in this work also have in

common: the magnitude of the signal, i.e. the change in atmospheric CO2 concentra-

tions corresponding to the perturbation fluxes, is small; it is approximately one tenth

of a percent, or less, of the background concentration. The signal detection method-

ology applied in this study is based on geostatistical mapping, which can leverage the

information content of several observations concurrently, which potentially enhances

the ability to detects signals.

5.2 Study design, data and mapping methodology

The study is designed to evaluate the ability of the ASCENDS mission to detect

plausible CO2 flux perturbations in the atmospheric CO2 signal. The evaluation is

conducted by obtaining ASCENDS-like observations globally from a baseline model

run (without the flux perturbation) and from a model run with the flux perturbation

and identifying if and where the resulting global CO2 concentrations are significantly

different using a geostatistical mapping and probabilistic comparison methodology.

5.2.1 Simulated ASCENDS CO2 observations

The parameterized chemistry and transport model (PCTM) is used to produce a

simulated distribution of atmospheric CO2 variability in space and time [Kawa et al.,

2004]. Model transport is driven by real-time analyzed meteorology from the GEOS-5

MERRA data assimilation [Rienecker et al., 2011]. CO2 surface fluxes for the baseline

run include terrestrial vegetation physiological processes and biomass burning from

CASA-GFED3 [Randerson et al., 1996; van der Werf et al., 2010], ocean fluxes from

Takahashi et al. [2002], and fossil fuel burning from the CDIAC database [Andres

et al., 2009]. CASA fluxes are driven by MERRA data and modulated 3-hourly in

the method of Olsen and Randerson [2004]. PCTM CO2 output has been extensively
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compared to in situ and remote sensing observations at a wide variety of sites, and

in most cases the model simulates diurnal to synoptic to seasonal variability with a

high degree of fidelity [e.g. Bian et al., 2006; Kawa et al., 2004; Law et al., 2008b;

Parazoo et al., 2008].

For the simulations here, the model is run on a 1◦ × 1.25◦ latitude/longitude grid

with 56 vertical levels and hourly output using 2007 meteorology and flux settings.

Perturbation flux scenarios are described below in Section 5.3.1. Pseudo-data obser-

vations are extracted from the model output at the nearest time and interpolated in

latitude/longitude to the ASCENDS sample locations (see below). A vertical weight-

ing function, appropriate to the ASCENDS lidar wavelength, is applied to the model

pseudo-data profile to produce column average mixing ratio values.

Prospective ASCENDS sampling and measurement error characteristics are de-

rived from model output and observations in a method similar to that of Kawa et al.

[2010] for a laser instrument operating near 1.57 um. The CALIPSO orbital track

is used to simulate the ASCENDS orbit, and the CALIPSO measurements of total

cloud and aerosol optical depth (OD) are used to calculate the ASCENDS laser at-

tenuation. CALIPSO travels in the so-called ’A-train’ orbit, which is a likely orbit

placement for ASCENDS as well. CALIPSO OD data are reported every 5 km along

track and this forms our basic ASCENDS sample set. As stated above, the synthetic

CO2 value is then derived by interpolating the model output in latitude/longitude to

the ASCENDS sample locations.

Surface lidar backscatter (β), also needed for error estimation, follows from MODIS

measured spectral reflectance over land and the glint formulation of Hu et al. [2008]

over water using daily MERRA 10-m wind speeds. Surface reflectivity over land is in-

terpolated from MODIS (Terra + Aqua) 5-km, 16-d composite nadir BRDF-adjusted

reflectance data at 1.64 µm (band 6), which are available every 8 days [Schaaf et al.,

2002]. Land reflectance is scaled by a factor of 1.23 to account for the land hot spot
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backscatter effect [Disney et al., 2009], i.e., β/sr = 1.23 · α/π. Backscatter values

of 0.08 and 0.01 are used to fill missing areas of MODIS data over land and over

snow/ice, respectively, where ice and snow cover are determined from MERRA data.

In order to make the study method applicable for a range of possible CO2 laser

sounder instrument implementations, the errors are scaled globally to a nominal error

value for clear-air conditions at Railroad Valley, NV (β = 0.176) and a 10-s sample

integration. 10 seconds is the nominal averaging time of the CO2 laser sounder [e.g.

Abshire et al., 2010; Kawa et al., 2010]. Thus, a given instrument model can be

characterized by its random error at this reference point and the global distribution

of errors estimated from OD and beta. The individual sounding errors at the 5 km

CALIPSO resolution are calculated using:

σ5km =
3.667 · σref(
β · T 2 · sdf

0.176

)1/2
, (5.1)

where σref is the 10 second reference instrument random error at Rail Road Valley,

β is the backscatter, T the transmittance, sdf the surface detection frequency and

0.176 the Rail Road Valley clear air transmittance and backscatter reference value

at 1.57 µm, which corresponds to one of the potential ASCENDS instrument designs

[Abshire et al., 2010]. The transmittance is calculated from the optical depth (OD)

using T = e−OD.

Soundings with an optical depth greater than 0.3 or where the surface detection

frequency equals 0 are filtered out and considered ‘not retrieved’ based on the limited

performance of the retrievel algorithm at high optical depth values. For this study a

10-s along-track average is used as the pseudo-data measurement granule [Kawa et al.,

2010]. The 10 second observation errors are then calculated by summing all the 5 km

errors corresponding to each 10 second time interval and dividing this sum by the

square root of the number of retrieved soundings, which implies the assumption of
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independence of errors between individual soundings. Using this setup the maximum

number of soundings constituting one observation is 14. For the medium and high

noise scenario, the reference instrument random errors (σref) are 0.5 and 1 ppm,

respectively. Once the measurement error has been determined for each location

following the procedure described above, a random sample from a normal distribution

with a standard deviation corresponding to the measurement error is drawn and added

to the PCTM model CO2 value to define an observation. Figure 5.1b provides an

example of four days of global observations.

5.2.2 Mapping methodology

Geostatistically-derived global mapped (“Level 3”) data products are used for the

comparison. Individual observations contain large gaps and high measurement errors

such that meaningful spatially-comprehensive comparisons at synoptic timescales are

often precluded. Advantages of using mapping products compared to the observations

directly include that the comparisons can be conducted globally at synoptic time

scales and that the uncertainties of the mapped products are often lower by leveraging

the information content of many observations concurrently, which in turn improves

detectability. The geostatistical mapping methodology described in Chapter III is

applied to derive global CO2 maps with uncertainties from the simulated observations.

The mapping methodology is described in detail in Chapter III and only aspects

specific to this study are discussed here.

Specific to this study, the observations used in the analysis are filtered to those

with a measurement error standard deviation below a certain threshold motivated

by improved robustness in the covariance estimation procedures and computational

efficiency in the overall procedure. Applying a measurement error threshold is analo-

gous to imposing a quality criterion when delivering remote sensing products instead

of making all retrievals available and results in improved robustness in the estima-
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tion procedure and computational efficiency. For the medium (high) measurement

error setup this threshold is 1.5 (3) ppm, so the same set of observation locations

is used for both setups. This choice represents an balance between spatial coverage

and robustness of the covariance estimation procedure and was determined in a side

study (results not shown). In addition to the medium and high noise setups, there is

also a ”no error” setup, which is only used as a theoretical best case. In this setup,

observations at the same locations as for the medium/high measurement setup are

used, but without any noise added. This case is included to be able to isolate poten-

tial limitations of the methodology and the spatial coverage from those related to the

instrument capabilities.

As discussed in Chapter III and Chapter IV, ideal mapping periods are at synoptic

time scales between two and six days depending on measurement noise and other

mission details. One of the challenges in mapping CO2 satellite observations is that

observations capture a specific instant in time whereas the mapped products are

ideally representative of the average concentrations over a time period. Based on

preliminary studies evaluating mapping performance for different time periods, 4-day

periods have been found to lead to optimal mapping performance for ASCENDS

observations. Figure 5.1 shows an example of a 4-day (August 1–4 2007) period. The

full model is just shown for reference; only the observations are used in the mapping

procedure. Each 4-day period is mapped independently. For January only six 4-day

periods were mapped due to missing CALIPSO data, for all other months seven 4-day

periods were mapped for a total of 83 4-day mapping products for each of the baseline

and perturbation cases. These mapping products were then used as input data in the

subsequent comparison analysis described in Section 5.3.2.
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Figure 5.1: (a) Modeled CO2 concentrations (“Model”), (b) simulated ASCENDS
observations (“Observations”), (c) mapped CO2 concentrations (“Mapped”) and (d)
mapping uncertainties (“Uncertainty”) expressed as a standard deviation for August
1–4 2007.
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5.3 Perturbation flux scenarios and comparison methodology

5.3.1 Perturbation flux scenarios

The perturbation flux scenarios are based on pertinent questions in carbon cycle

science, which are connected to the ASCENDS mission goals. They represent quan-

titatively plausible scenarios of changes in carbon fluxes that could occur around the

year 2022 based on current understanding. We use them as prototypical examples of

flux patterns that give rise to the types of signals the ASCENDS mission endeavors

to detect. Details on the choice of the perturbation fluxes are discussed in the indi-

vidual sections below. From a methodological point of view, the perturbation fluxes

represent the source of the signal we are trying to detect. They were added to the

baseline fluxes described in Section 5.2 and transported analogous to the baseline

fluxes using the PCTM/GEOS5 modeling framework. The atmospheric CO2 concen-

trations resulting from these perturbation fluxes are the signal to be detected, i.e. the

to-be-detected signal is the difference in atmospheric CO2 concentrations between the

baseline and the perturbation runs.

5.3.1.1 Permafrost carbon release

The carbon currently stored and immobilized in the permafrost soils of the high

Northern latitudes represents one of the largest and the most vulnerable carbon reser-

voirs [e.g. Canadell et al., 2010; Lemke et al., 2007; Schaeffer et al., 2011]. A melting

of the permafrost and subsequent release of carbon could lead to large increases in

atmospheric CO2 concentrations and an abrupt shift in climate dynamics [Canadell

et al., 2010]. The permafrost carbon release experiment uses the fluxes described by

Schaeffer et al. [2011]. The permafrost carbon release is based on anticipated melting

of permafrost as a result of increasing temperatures in the high Northern latitudes

caused by climate change [Schaeffer et al., 2011]. The fluxes for the year 2022 have
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been used as the perturbation fluxes, with the 2020 and 2021 fluxes used for two spin

up years. A spin up period has been used to avoid an abrupt increase in fluxes and

work with distribution patterns that are based on more realistic gradual increases

in carbon fluxes. According to [Schaeffer et al., 2011] 2020 marks the year when

the tundra melting fluxes surpass the background noise; and they increase from then

onwards.

Figures 5.2a and 5.2c show the average perturbation fluxes for May through July

and the whole year, respectively. A year-round time series plots of the monthly flux is

provided in the left panel of Figure A.4. As can be observed in Figures 5.2a, 5.2c and

A.4, the sign of the perturbation fluxes is strictly positive, corresponding to the release

of carbon from permafrost. The magnitude of the release picks up in June, peaks in

September and ebbs down again towards the end of the year in correspondance with

the seasonal change in temperature.

5.3.1.2 Fossil fuel emissions

The fossil fuel flux perturbation scenario consists of a shift of fossil fuel emissions

from Europe to the P.R. of China. A shift that is in directional agreement with

recent trends in these regions. Fossil fuel emissions from the P.R. of China have

been increasing rapidly over the last decades, with the P.R. of China now being

the largest emitter of fossil fuels worldwide [Olivier et al., 2012; Peters et al., 2011],

whereas fossil fuel emissions from Europe have seen a 3% decrease in 2011 and an

overall downward trend over the last two decades [Olivier et al., 2012]. Two different

settings for the emission shift were used, from here on referred to as the “lower” and

“higher” signal. The lower signal represents a 20% decrease of European emissions

which equates approximately to a 12% increase in China. The higher signal, a 2.5-fold

amplification of the lower signal, represents a 50% decrease of emissions in Europe

which corresponds approximately to a 25% increase in China. All the percentage
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Figure 5.2: (a) 3-month average CO2 flux(“3-month flux”), (b) 3-month average CO2

concentration (“3-month signal”), (c) yearly average CO2 flux (“Yearly flux”) and
(d) yearly average CO2 concentration (“Yearly signal”) for the permafrost carbon
release experiment. The 3-month period is May through July. The flux is modeled
for 2022. The negative concentration values in the Southern hemisphere are a result
of the global mean adjustment.
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changes are in reference to 2007 emission levels. The two settings represent two points

on a continuum of possible emission changes around the year 2022 and we use them

as examples to draw broader conclusions on the detectability of these types of signals

as characterized by their the spatial and temporal patterns and their magnitudes.

The calculations are based on the v2011 2007 fossil fuel emissions from the CDIAC

data base [Andres et al., 2011]. So, for example for the lower signal case, the European

fluxes are reduced by 20% for each month and the total flux amount corresponding

to this decrease is added to Chinese fluxes. The decrease and increase is conducted

proportionally to the existing spatial pattern of the fluxes for each month, thereby

preserving the spatial and temporal patterns within the European and Chinese fluxes.

The setup is designed to be flux neutral globally, i.e. the difference in the global

atmospheric CO2 concentrations is zero. So the signal to be detected is a difference in

the global spatial distribution of CO2 concentrations, while the global mean remains

unchanged. Figures 5.3a and 5.3c show the average higher fossil fuel perturbation

fluxes for August through October and the year, respectively. Figures 5.4a and 5.4c

show the analogous fluxes for the lower signal case. Year-round time series plots of

the monthly fluxes for the strong and weak signal cases are provided in the left panels

of Figures A.5 and A.6, respectively. In these figures, it can be seen that the fluxes

vary little from month to month. They also exemplify that the strong signal is simply

an amplification of the weak signal.

5.3.1.3 Southern Ocean

The Southern Ocean is a region of special interest to carbon cycle science; it is a

region where carbon fluxes are highly uncertain [Gruber et al., 2009], while also being

a region with apparent high sensitivity to climate change [Le Quéré et al., 2007] and

the potential to substantially affect the carbon cycle given half of the annual ocean

uptake of anthropogenic emissions occurs in the Southern Ocean [e.g. Le Quéré et al.,
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Figure 5.3: (a) 3-month average CO2 flux (“3-month flux”), (b) 3-month average
CO2 concentration (“3-month signal”), (c) yearly average CO2 flux (“Yearly flux”)
and (d) yearly average CO2 concentration (“Yearly signal”) for the higher fossil fuel
experiment. The 3-month period is August through September.
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Figure 5.4: (a) 3-month average CO2 flux (“3-month flux”), (b) 3-month average
CO2 concentration (“3-month signal”), (c) yearly average CO2 flux (“Yearly flux”)
and (d) yearly average CO2 concentration (“Yearly signal”) for the lower fossil fuel
experiment. The 3-month period is August through September.
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2007; Meredith et al., 2012]. It is also a very sparsely sampled region, where the ability

of the ASCENDS mission to observe at high latitudes could provide valuable insights.

Such insights can not be provided by satellites that rely on reflected sunlight, and

are hence limited in their ability to observe at high latitudes. It is currently not

known if the Southern Ocean is a source or sink region [Gruber et al., 2009] and there

is disagreement on the current and future trend of the carbon flux in the Southern

Ocean [Law et al., 2008a; Le Quéré et al., 2007].

Variations in climatic modes are one of the key drivers of interannual variability in

ocean carbon exchange [Field et al., 2007]. Before attempting to address questions of

a potential change in sink/source characteristics of the Southern Ocean using satellite

observations, it is sensible to evaluate to which extend interannual variability due to

variations in climatic modes can be detected. A natural first step is to assess if

ASCENDS can detect changes in carbon flux associated with the El Nino Southern

Oscillation (ENSO) mode. To that end, the years 1977 and 1979 were chosen as they

represent a large difference in the ENSO phase.

The Southern ocean fluxes used for this scenario are based on a hind cast simula-

tion of the Community Climate System Model ocean Biogeochemical Elemental Cycle

model as described by Doney et al. [2009]. The fluxes were obtained at 1◦ × 1◦ spa-

tial and monthly temporal resolution. The monthly differences between the Southern

ocean flux anomalies for 1977 and 1979 are considered the perturbation fluxes for this

scenario. A year-round time series of these monthly perturbation fluxes is shown in

the left panel of Figure A.7. Figures 5.5a and 5.5c show the average fluxes for April

through June and the year, respectively. It can be observed that the magnitude of

the yearly perturbation flux is very low. One other feature that distinguishes the

Southern Ocean experiment from the other two experiments is that the magnitude,

and even the sign, of the perturbation flux varies by month and by sub-region (see

Figure A.7).
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Figure 5.5: (a) 3-month average CO2 flux (“3-month flux”), (b) 3-month average
CO2 concentration (“3-month signal”), (c) yearly average CO2 flux (“Yearly flux”)
and (d) yearly average CO2 concentration (“Yearly signal”) for the Southern Ocean
experiment. The 3-month period is April through June.
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5.3.2 Comparison methodology

The detectability of a signal is determined by identifying if and where the mapped

concentrations from the baseline run are significantly different to those from the

perturbation run. First, the difference between the mapped concentrations from

the baseline run and the perturbation run is calculated. Then the uncertainty of

the difference is calculated; expressed as a standard deviation this uncertainty is the

square root of the sum of the estimation variances of the baseline and the perturbation

mapped products as shown in the following equation:

σdiff =
(
σ2
ŷbase

+ σ2
ŷper

)1/2
. (5.2)

The significance of a difference is determined by comparing the size of the difference

to the uncertainty of the difference. There is considerable measurement error noise

induced variability in individual 4-day mapping products, which can be reduced by

averaging the mapped concentrations from multiple 4-day periods and using the re-

sulting average in the comparison. It is important to conduct the mapping at 4-day

resolution to capture synoptic scale variability rather than agglomerating observa-

tions over longer periods and mapping them than directly, which would preclude the

ability to capture short-term variability. Hence, when conducting this comparison

over multiple periods, the means over multiple 4-day periods of the mapped baseline

concentrations and of the mapped perturbation concentrations, and their respective

uncertainties are used in the comparison. Under the assumption of temporal inde-

pendence the uncertainty of the temporal mean (expressed as a variance) is the mean

mapping variance of the individual periods divided by the number of periods:

σ2

ŷ
=
σ2
ŷi

n
, (5.3)
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where i = 1, . . . , n is the index for the time periods included in the mean. The as-

sumption of temporal independence was evaluated by conducting temporal variogram

analyses for sets of mapping errors at randomly selected locations, and no compelling

indication to contradict this assumption was found. For the permafrost carbon re-

lease scenario the concentrations of the baseline run were mean-adjusted to the mean

of the perturbation run by applying a multiplicative adjustment. This adjustment

preserves the spatial patterns of the baseline run, while creating a setup where the

global difference in concentrations between the baseline and perturbation run is zero,

so a flux neutral scenario. This has been done to avoid simply detecting the overall

increase in CO2 concentrations as a result of the strictly positive perturbation fluxes

over the two years of model spin-up and over the investigated year. Without a mean

adjustment, a signal corresponding to the increase in global mean would be detected

globally and overshadow other differences in gradients.

5.4 Results and Discussion

On a high level, one can view the query of detecting flux perturbations as two

distinct if connected questions. The first question is to which degree characteristics

of the flux perturbations are translated to, and preserved in, the atmospheric CO2

concentrations, i.e. what is the signature (or signal) of a set of flux perturbations of

interest in the atmospheric CO2 concentrations. The second question is how well a

given observing system, in our case the ASCENDS mission, can capture the presence

of this flux perturbation signal. Both of these aspects are discussed in the following

sections, which are organized by the three investigated scenarios.

5.4.1 Detectability of permafrost carbon release

The detectability of the presence of a significant signal per se is relatively straight

forward in the case of the anticipated permafrost carbon release (Figure 5.2). The
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interesting challenge is to devise a signal detection strategy that enables detection of

longitudinal and latitudinal gradients compared to just detecting a signal manifested

as a zonal increase. The spatial gradients in the atmospheric CO2 concentrations

carry information about the magnitude and location of the carbon fluxes. While

signal detection is not directly targeted at quantifying carbon fluxes, insights on

the detectability of spatial gradients are highly relevant for studies targeting flux

detections, e.g. inversions. With this informational purpose in mind, signal detection

is ideally done in a manner to optimally preserve the spatial gradients. One way to

achieve this is through judicious choice of the temporal aggregation periods over which

the comparisons are conducted. As descibed in Section 5.3.2, temporal aggregations

of 4-day maps are used in the comparison. Surprisingly, gradient-preserving signal

detection for the permafrost scenario is more easily achieved by using a shorter rather

than longer aggregation period and choosing the right season as will be described

below.

The year-round monthly time series plots of the permafrost carbon release con-

centration signal shown in the right panel of Figure A.7 provide a visual explanation

for this phenomenon. The concentration signal is at its height around September, or

even later in the year, when most of the melting has occurred. Interestingly though,

the concentration signals most indicative of the spatial pattern of the tundra melting

fluxes occur in the late spring/early summer months before the effects of atmospheric

mixing take over. By August, atmospheric mixing, which occurs rapidly in the Arc-

tic, causes the spatial signature of the tundra melting fluxes to be replaced by the

dominating signal of a zonal increase. Some further evidence of this phenomenon can

be observed by comparing Figures 5.2b and 5.2d: the 3-month signal retains more

of the spatial characteristics of the source flux, whereas the yearly signal represents

a zonal increase where the elevated concentrations have spread towards the pole.

This phenomenon is caused by the specific combination of the temporal pattern of
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the permafrost carbon release and rapid atmospheric mixing in the High Northern

Latitudes.

Figure 5.6 shows a summary of the detection results for the permafrost carbon

release scenario. Rows one and two show the mapped concentrations and the sig-

nificance of the difference to the baseline run for May through July, respectively.

Rows three and four show the analogous results for the year. While the 3-months

results feature comparatively more noise, the recognition of the spatial pattern in the

significance plots is also improved. Even for the high noise scenario, the pattern in

the 3-months significance plot indicates that the origin of the signal is land-based

compared to the purely zonal increase visible in the yearly plots. The results for

the different noise levels are as expected; lower noise provides a more accurate and

less noisy mapped concentration field. In summary, the permafrost melting is de-

tectable for both levels of measurement noise considered, where spatial gradients are

best detected using two to three month aggregation periods in the late spring/early

summer.

5.4.2 Detectability of changes in fossil fuel emissions

Figures 5.3b and 5.3d show the atmospheric CO2 concentration signal for August

through October as well as the yearly average for the higher fossil fuel signal exper-

iment. Figures 5.4b and 5.4d show the analogous concentrations for the lower fossil

fuel signal experiment. The right panels in Figures A.5 (higher signal) and A.6 (lower

signal) show year-round time series plots of the monthly atmospheric CO2 signal. As

can be seen in these figures, atmospheric transport leads to some variations in the

monthly patterns of the atmospheric concentrations, but overall the nature of the

European and Chinese emission signals is still local with a pronounced spatial sig-

nature even in the yearly average. This is a result of the fluxes being comparatively

localized.
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Figure 5.6: Results for the permafrost carbon release experiment. First row: 3-
month mapped CO2 signal (“3-month mapped”). Second row: Significance of the
3-month mapped CO2 signal (“3-month signific.”). Third row: Yearly mapped CO2

signal (“Yearly mapped”). Fourth row: Significance of the yearly mapped CO2 sig-
nal (“Yearly signific.”). The mapped signal is the difference between the mapped
perturbation CO2 concentration and the mapped baseline CO2 concentration. The
significance is the mapped signal divided by the uncertainty of the mapped signal.
The values are discretized for improved visualization. Yellow, orange and dark red
(light, medium and dark blue) represent areas where the mapped perturbation con-
centration is larger (smaller) than the mapped baseline concentration by more than
one, two or three standard deviations, respectively, of the uncertainty of the mapped
signal.
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This is in contrast to the other two experiments (see Figures 5.2d and 5.5d)

where the detailed spatial signatures are largely lost and the yearly signals represent

primarily zonal increases. Another feature that these plots illustrate is that the

magnitude of the weak fossil fuel perturbation signal is very low. The low magnitude,

combined with its small spatial extent, renders the weak fossil fuel signal the most

difficult to detect among the investigated scenarios, which exemplifies the challenge

of detecting small and localized concentration changes from satellite observations.

Figure 5.7 shows a summary of the detection results for the higher fossil fuel sce-

nario. Rows one and two show the mapped concentrations and the significance of the

difference to the baseline run for August through October, respectively. Rows three

and four show the analogous results for the year. Figure 5.8 shows the same results

for the lower fossil fuel scenario. One aspect that these results highlight, and which

makes intuitive sense given the nature of the fossil fuel signal, is that averaging over

longer time periods improves detectability. Compared to the other two investigated

scenarios, the fossil fuel signal is fairly steady in space and time. Although atmo-

spheric transport clearly plays a role, the atmospheric signal remains indicative of the

source region of the perturbation flux throughout the seasons. Figures 5.7k and 5.7l,

for example, show evidence that areas are being detected as significant other than the

source regions of the emissions. However, given the higher significance of the source

region and the characteristic patterns, this does not obscure the source region of the

perturbation fluxes.

The effect of varying measurement noise levels on the detectability is as expected;

increasing measurement noise leads to higher noise and decreased significance in the

results and requires in turn longer averaging periods. For the higher signal all three

noise levels capture the signal in the yearly results, which is not the case for the

lower signal, where only the no error case clearly captures the signal. There is some

evidence that a significant signal is starting to emerge in the yearly medium and high
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Figure 5.7: Results for the higher fossil fuel experiment. First row: 3-month mapped
CO2 signal (“3-month mapped”). Second row: Significance of the 3-month mapped
CO2 signal (“3-month signific.”). Third row: Yearly mapped CO2 signal (“Yearly
mapped”). Fourth row: Significance of the yearly mapped CO2 signal (“Yearly sig-
nific.”). The mapped signal is the difference between the mapped perturbation CO2

concentration and the mapped baseline CO2 concentration. The significance is the
mapped signal divided by the uncertainty of the mapped signal. The values are dis-
cretized for improved visualization. Yellow, orange and dark red (light, medium and
dark blue) represent areas where the mapped perturbation concentration is larger
(smaller) than the mapped baseline concentration by more than one, two or three
standard deviations, respectively, of the uncertainty of the mapped signal.

error measurement noise cases, and given the nature of the signal discussed above,

the signal is expected to appear more clearly when averaging over periods exceeding

the one year period considered in this study. Overall, these findings imply that

ASCENDS can in principle detect anthropogenic signal components, but depending

on the strength of the signal, detection might require multiple years. It is hence

feasible that ASCENDS can serve to validate anthropogenic emission changes over

the course of its mission, but is likely not ideal as the primary monitoring device of

such signals.
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Figure 5.8: Results for the lower fossil fuel experiment. First row: 3-month mapped
CO2 signal (“3-month mapped”). Second row: Significance of the 3-month mapped
CO2 signal (“3-month signific.”). Third row: Yearly mapped CO2 signal (“Yearly
mapped”). Fourth row: Significance of the yearly mapped CO2 signal (“Yearly sig-
nific.”). The mapped signal is the difference between the mapped perturbation CO2

concentration and the mapped baseline CO2 concentration. The significance is the
mapped signal divided by the uncertainty of the mapped signal. The values are dis-
cretized for improved visualization. Yellow, orange and dark red (light, medium and
dark blue) represent areas where the mapped perturbation concentration is larger
(smaller) than the mapped baseline concentration by more than one, two or three
standard deviations, respectively, of the uncertainty of the mapped signal.
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5.4.3 Detectability of changes in Southern Ocean source/sink character-

istics

Of all the investigated scenarios, the approach to detect changes in the Southern

Ocean source/sink characteristics is the least obvious. This is caused by a confluence

of different factors. The overall magnitude of the signal in the Southern Oceans

is rather weak, with the absolute value of the signal never exceeding 0.4ppm. In

addition to a seasonal pattern in the fluxes and concentrations, there is a spatial and

temporal high-frequency change in the anomaly fluxes (and in a damped version in

the concentration fields), which adds a component of variability that is not present

in the fairly consistent (fossil fuels) or gradually changing (tundra melting) flux or

concentration patterns of the other two experiments (Figure A.7).

Atmospheric mixing also plays a role insofar as it obscures the origin of the signal

being the Southern Oceans compared to a zonal increase ranging all the way to the

pole. This occurrence is analogous to the phenomenon described in Section 5.4.1

regarding the effects of atmospheric mixing on the detectability of the spatial pattern

of the permafrost carbon release. However, applying the remedy of using a shorter

averaging period before atmospheric mixing hides the origin of the signal, is not as

clear-cut for the Southern Ocean scenario as it is for the permafrost carbon release,

where the magnitude of the signal is stronger. As can be seen in Figure A.7, which

shows year-round time series plots of the monthly flux and atmospheric CO2 signal,

the months, which preserve the origin of the perturbation fluxes best, are the spring

and early summer month. Later in the year, although the concentration signal is

stronger, the concentration increase has spread pole wards and is less indicative of

the origin being the Southern Ocean.

Figure 9 shows a summary of the detection results for the Southern Ocean scenario.

For all measurement noise setups, the yearly results clearly indicate a zonal increase

in the High Southern Latitudes. However, it is less clear if the pattern is indicative
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of the Southern Ocean being the source region within the zonal band. An argument

could be made that the spatial pattern of the 3-month results (Figures 5.9d, 5.9e,

5.9f) is more indicative of the Southern Ocean as the source region compared to

a zonal increase. The 5-month results (not shown) for April through August are

even more indicative of the Southern Oceans being the source region. Conducting

analyses over periods of multiple lengths, and drawing conclusions from the joint

picture emerging from these analyses, appears to be the most beneficial approach for

the Southern Ocean scenario. In summary, ASCENDS can detect a Southern Ocean

signal representative of differences due to natural variability in the ENSO climatic

mode. Due to the low magnitude and internal small scale variability within the fluxes

giving rise to the signal, however, the primary detection is a zonal increase.

5.4.4 Limitations of the study

This study has some important limitations. For each scenario, the only flux com-

ponent that is varied is the flux component under investigation. All other fluxes are

assumed to be known. We introduce some additional variability by adding random

noise to both the baseline and perturbation cases, but that might not be adequate

compensation for the potential lack of knowledge of the other flux components. In

addition to considering all flux components other than the one under investigation

known, in the scenarios we only look at the signal from one changing flux component

in isolation. In reality, many changes might occur simultaneously and the resulting

CO2 concentration signal patterns might overlap, which makes signal detection more

challenging. This could impact the conclusions of this study insofar that it would be

more difficult to link detectable signals with the underlying change in fluxes.
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Figure 5.9: Results for the Southern Ocean experiment. First row: 3-month mapped
CO2 signal (“3-month mapped”). Second row: Significance of the 3-month mapped
CO2 signal (“3-month signific.”). Third row: Yearly mapped CO2 signal (“Yearly
mapped”). Fourth row: Significance of the yearly mapped CO2 signal (“Yearly sig-
nific.”). The mapped signal is the difference between the mapped perturbation CO2

concentration and the mapped baseline CO2 concentration. The significance is the
mapped signal divided by the uncertainty of the mapped signal. The values are dis-
cretized for improved visualization. Yellow, orange and dark red (light, medium and
dark blue) represent areas where the mapped perturbation concentration is larger
(smaller) than the mapped baseline concentration by more than one, two or three
standard deviations, respectively, of the uncertainty of the mapped signal.
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5.5 Conclusions

ASCENDS is a planned lidar CO2 satellite mission which is expected to contribute

to improving our understanding of the carbon cycle. To assess some of these expected

contributions, three prototypical scenarios of scientific and societal relevance were

investigated: the release of carbon due to the melting of permafrost in the high

Northern latitudes, the shifting of fossil fuel emissions from Europe to the P.R. of

China, and ENSO related changes in the sources/sink characteristics in the Southern

Ocean. A common feature of these scenarios is that the CO2 signal is small; in

terms of absolute magnitude the signals strength is approximately one tenth of a

percent of the background concentrations. These three scenarios were used to design

OSSEs for signal detection studies to investigate if the ASCENDS mission has the

ability to detect the unfolding of these scenarios compared to a baseline scenario.

Two different levels of measurement noise and a no measurement noise reference case

were investigated. The specific signal detection approach applied in this study uses

a geostatistical mapping methodology that can leverage the information content of

nearby observations, thereby potentially facilitating enhanced signal detection.

The results indicate that the ASCENDS mission can in principle detect the types

of signals investigated in this study. The permafrost melting was quite easily de-

tectable in the form of a zonal increase. Spatial gradients were best detected using

two or three month aggregation periods in the late spring/early summer. For the

Southern Ocean scenario, differences due to the natural variability in the ENSO cli-

matic mode were also detectable as a zonal increase. The magnitude of the signal,

however, is much smaller than the permafrost melting signal. Spatial and temporal

high-frequency changes in the Southern Ocean anomaly fluxes add an additional com-

ponent of variability to the signal. Detecting more detailed gradients than a zonal

increase proved hence challenging for the Southern Ocean scenario; conducting anal-

yses over periods of multiple lengths and analyzing them jointly provides a possible
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strategy to capture them. The fossil fuel emission detectability is directly related

to the strength of the signal and the level of measurement noise. As is true for all

scenarios, the effect of varying measurement noise levels is as expected: increasing

measurement noise levels lead to decreased significance in the results and require in

turn longer averaging periods. For the higher fossil fuel emission signal all three noise

levels capture the signal, which is not the case for the lower signal, where only the no

error case clearly captures the signal. The emergence of a detectable signal, however,

indicates that averaging over periods longer than the one-year period considered in

this study would also render signals of the magnitude of the lower fossil fuel emission

signal detectable.
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CHAPTER VI

Conclusions

6.1 Conclusions

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas con-

tributing to climate change, which has numerous, and potentially grave, impacts for

life on earth. With anthropogenic CO2 emissions and accumulation rates in the at-

mosphere still on the rise, understanding the processes that drive the carbon cycle,

and their future functioning, is a more important scientific and societal challenge than

ever. The advent of satellite observations of CO2 offers novel and distinctive oppor-

tunities for gaining an improved quantitative understanding of the processes driving

the carbon cycle. This dissertation contributes to realizing these opportunities.

This dissertation had three specific objectives: 1) Developing and evaluating a

mapping methodology for deriving global atmospheric CO2 concentrations and un-

certainties from satellite observations, 2) Deriving high resolution CO2 concentration

maps from GOSAT observations and using the mapped products for model compari-

son studies and 3) Evaluating the ability of the ASCENDS mission to detect signals

in atmospheric CO2 concentrations resulting from changes in carbon fluxes. The key

findings from these three objectives are summarized in the next paragraphs.

The high-level conclusions for objective 1 are that the method developed in this

dissertation makes it possible to map CO2 for time scales consistent with the syn-
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optic dynamics of CO2, and can provide uncertainties that correctly reflect the true

uncertainty of the mapped concentrations. The method makes minimal assumptions,

namely that the atmospheric CO2 concentrations exhibit spatial correlation, and that

the statistical characteristics of this correlation can be inferred from the observations.

The method is hence highly suitable to create observation-based CO2 mapping prod-

ucts which are independent of carbon flux and transport assumptions. The results

of the simulation study indicate that for OCO-2 even one-day maps reproduce the

large-scale features of the atmospheric CO2 concentration field and have realistic

uncertainty bounds. Temporal resolutions of two to four days proved to have the

most robust prediction performances, assessed in terms of prediction accuracies and

uncertainties, over a wide variety of tested scenarios.

The conclusions for objective 2 include that GOSAT-based CO2 concentration

maps for July to December 2009 at six-day resolution capture much of the synoptic

scale and regional variability of CO2, in addition to the overall seasonality. Uncer-

tainties are generally highest in the northern hemisphere in July and August, during

the height of the growing season, and lowest in areas with good data coverage and

low CO2 variability in the Southern Hemisphere. A probabilistic comparison to the

PCTM/GEOS-5/CASA-GFED model, a state-of-the-art coupled carbon flux and at-

mospheric transport model, revealed that the most significant discrepancies captured

by the GOSAT maps occur in South America in July and August, and central Asia in

September to December. The results illustrate how the mapping products developed

in this dissertation can be used for direct interpretation of CO2 satellite observations

through probabilistic model comparison studies.

A key conclusion for objective 3 is that the signals associated with all three inves-

tigated scenarios can in principal be detected by the ASCENDS mission. The ability

to detect these signals, and the strategy to do so, is intrinsically linked to how the

carbon flux perturbations translate into atmospheric CO2 concentrations, and this
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translation is highly dependent on the specific characteristics of the perturbations.

Permafrost melting and Southern Ocean flux perturbations both resulted in spatially-

dispersed zonal increases due to rapid atmospheric mixing in the high latitudes. These

zonal increase are fairly easily detectable. The spatial gradients in the atmospheric

CO2 concentrations are what contains the information about the fluxes, so in these

cases, the challenge is to detect the signal in such a manner that the spatial gradients

of the signal are preserved in addition to a zonal increase. This is best done by using

an investigation period of a few months in the spring and early summer rather than

an entire year. Applying this strategy, the permafrost carbon release is comparatively

easy to detect, while the Southern Ocean perturbation is more difficult. The fossil

fuel emissions scenario investigated, a shift from emissions from Europe to the P.R.

of China, resulted in locally elevated CO2 concentrations with little seasonal changes.

This due to the fact that the seasonal variations in the perturbation fluxes themselves

are comparatively small and the atmospheric mixing is slower in the midlatitudes. In

this case the optimal detection strategy is more straightforward: longer averaging

periods improve the detectability. A shift of fossil fuel emissions from Europe to

China corresponding to a 50% decrease in Europe is clearly captured by ASCENDS

observations, a smaller shift corresponding to a 20% decrease in Europe requires an

averaging period longer than one year to become detectable. The overall findings are

that the ASCENDS will be able to contribute to detecting changes in carbon fluxes

in the extreme latitudes and can also potentially corroborate fossil fuel shifts, but

such detection will require observations over extended time periods.

Overall, this dissertation has developed a geostatistical mapping method for CO2

satellite observations and shown that maps of atmospheric CO2 concentrations from

satellite observations can be generated at high spatial and temporal resolution. These

maps represent the atmospheric CO2 concentrations accurately at synoptic time scales

and have uncertainties that correctly describe the true uncertainty of the mapped
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concentrations. This represents a significant improvement over current mapping ap-

proaches that rely on binning, which typically have monthly or lower temporal res-

olutions and lack uncertainties. Geostatistical mapping infers observation-derived

mapping products based on spatial correlation without invoking carbon flux and at-

mospheric transport model assumptions. Given the large gaps and high measurement

errors of the satellite observations, the choice of carbon flux and atmospheric trans-

port model can easily dominate the resulting products in approaches that use such

assumptions, and render them hence dependent on these choices. The geostatistical

mapping products developed here are independent of any carbon flux and atmospheric

transport assumptions, which is critical if the mapping products are used to validate,

and conduct comparisons with, such models.

The resulting high resolution mapping products are a direct way to utilize the in-

formation content of the satellite observations to address some of the open questions

in carbon cycle science. The mapping products can be used directly to understand

the structure and regional and temporal variations of the atmospheric CO2 concentra-

tion field and they can be used in intercomparison studies with carbon-cycle models

to assess the consistency of these models with the satellite observations. The in-

tercomparison conducted using GOSAT observations has shown that the mapping

products provide some constraint to inform where and in which seasons models are

not consistent with the information contained in the GOSAT observations. Such a

comparison could not have been done in a spatially comprehensive way using the

GOSAT observations directly, as individual GOSAT CO2 observations feature many

gaps and have very large uncertainties, which essentially preclude comparisons that

could provide new insights. The developed mapping methodology has the ability

to leverage the information content of many observations concurrently and to use

the noisy gap-ridden observations to derive spatially continuous global concentration

fields with comparatively lower uncertainties, which in turn enables more meaningful
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comparisons. This ability was also vital to conduct the study to assess the expected

contributions to carbon cycle science of the ASCENDS mission. More broadly, the

ability to map at high spatial and temporal resolution is beneficial in a wide variety

of studies, where independent data-driven high resolution CO2 mapping products are

of essence to gain new insights into the carbon cycle.

6.2 Future Work

The following paragraphs describe directions for future work resulting from the

research conducted as part of this dissertation.

6.2.1 Extending GOSAT mapping and model comparison

Immediate future work includes extending the analysis of comparing the mapped

GOSAT CO2 observations to the PCTM/GEOS-5/CASA-GFED model presented in

chapter III to three years by analyzing observations from July 2009 through June

2012. This a direct way to capitalize on the information content of the GOSAT CO2

observations to inform carbon cycle science while doing so in a way that potential

remaining problems in the retrieval algorithm such as regional biases [e.g. Butz et al.,

2011] will be noticeable. The proposed analysis uses the information from the satellite

observations by assessing if the atmospheric CO2 concentrations as predicted by the

PCTM/GEOS-5/CASA-GFED model are consistent with the satellite observations.

Conducting this analysis will make it possible to investigate if and where seasonal

areas of discrepancies are persistent over the three-year investigation period, or why

the might vary due to interannual variabilities not fully captured in the model. The

idea is that once these areas of discrepancies are identified, the potential sources of

these discrepancies can be investigated and traced to their root causes by identifying

which aspect of the model or retrieval algorithms leads to the discrepancies. These

root causes could be on the retrieval or the modeling side. To correctly identify these
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causes, this study should be conducted in collaboration with members of the modeling

and the retrieval algorithm teams by getting input from both sides at progressing

stages of the analysis. If the root causes are found to be on the retrieval side, this

knowledge can be used to improve the underlying retrieval algorithm. On the model

side, areas of discrepancies can point towards incorrectly modeled transport or carbon

exchange processes that might be specified incorrectly in the model based on a lack

of knowledge about the flux contribution of these processes.

There are many open question in carbon cycle science on the locations and mag-

nitudes of carbon fluxes, and the underlying exchange processes driving them [e.g.

Michalak et al., 2011]. For example, the distribution of carbon sinks in the terres-

trial biosphere has large uncertainties, and through a comparison study, such as the

one proposed here, the information from the satellite observations can be used to

assess if the carbon fluxes specified in the model result in predictions of atmospheric

CO2 concentrations that are consistent with the satellite observations. Persistent dis-

crepancies and their seasonal evolution, which were identified as stemming from the

model, can then be used to drill deeper and to identify which of the individual carbon

exchange processes in the model of the terrestrial biosphere could have lead to the

discrepancies. This can be approached by testing a range of possible specifications of

the individual carbon exchange processes. This can ultimately result in both a better

understanding of the carbon exchange processes and an improved representation of

these processes in models. Based on the analysis conducted in chapter III, areas of

special interest are the Amazon region and central Asia.

6.2.2 Comparison of CO2 maps from different retrieval algorithms

Future work includes extending the application of the mapping and comparison

methodology to comparisons of different retrievals of the same measurements of at-

mospheric CO2 from GOSAT. The proposed work will provide a regional and seasonal
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analysis of where, and to which degree, the retrieved CO2 values differ. For GOSAT,

there are currently at least three different retrieval algorithms in place [Butz et al.,

2011; Crisp et al., 2012; Yoshida et al., 2011]. They differ in the underlying modeling

assumptions, e.g. which radiative transfer and spectroscopic models are employed,

and lead to different retrieved CO2 values, as well as difference in the spatial dis-

tribution, i.e. at which locations CO2 values are retrieved varies as a function of

the retrieval algorithm. Ultimately the products of these retrieval algorithms, the

retrieved CO2 concentrations, are intended to be used as inputs in further analyses

to improve knowledge about the carbon cycle. Clearly, the findings from further

analyses should be driven by the information content of the observations and ideally

not depend on differences in retrieval algorithms. Comparing these products from

different retrieval algorithms, and quantifying their regional and seasonal differences

in a probabilistic way, is hence important for three main reasons: 1) It can provide

guidance for improvement measures to the retrieval algorithm development teams, 2)

it can guide the user of satellite CO2 observations in their interpretation by identi-

fying in which regions and seasons observations are most dependent on the choice of

retrieval algorithm, and 3) as a further step, it can provide a quantitative measure to

assess the uncertainty resulting from different retrieval algorithms.

By comparing maps, which are based on different retrieval algorithms, using the

comparison methodology developed in Chapter V, regions where the resulting CO2

concentrations differ significanlty can be identified. This can be done over the seasons,

so such a comparison leads to an assessment of seasonally varying regional discrep-

ancies based on different retrieval algorithms, which is crucial knowledge to the users

of retrieved products. Mapping is well suited for such an application as it makes

global comparisons at synoptic scales possible, which is not the case for comparisons

of individual observations. Mapping brings individual observations into a spatially

coherent framework, where the information content of all observations, also the ones
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that are not collocated, is incorporated. It further does so without using any assump-

tions that could bias the comparison towards one retrieval algorithm, e.g. the same

or similar a priori assumptions of the CO2 concentration field. Mapping relies purely

on assumptions about the existence of, and ability to infer, spatial correlation in the

CO2 concentration fields. Once the comparisons have been conducted, the knowledge

of where, and in which seasons, regional discrepancies between retrieval algorithms

exist, can guide the retrieval algorithm teams where to focus their attention to further

develop and improve the retrieval algorithms.

Focusing on the user of retrieved CO2 products, if the application of different

retrieval algorithms leads to large differences in the observed values in certain regions

and/or seasons, that indicates that caution should be used in the interpretation of

observations in these locations and their use in subsequent modeling steps. One of

the key motivations to obtain satellite observations of atmospheric CO2 is to infer

carbon fluxes globally at regional scales [e.g. Crisp et al., 2004] to ultimately gain

a better quantitative understanding of the underlying processes driving carbon ex-

change. To do that, the atmospheric CO2 observations are most commonly used in

inversion models to infer fluxes. In this setup, to account for measurement and other

errors, uncertainties are assigned to each observation. These uncertainties specify

partially to which degree each observation influences the estimated carbon fluxes.

When using satellite observations these uncertainties are typically obtained from in-

ternal measures of uncertainty as obtained from the retrieval algorithm. However,

this measure does not cover the full uncertainty [e.g. O’Dell et al., 2012]. One mean-

ingful (and practical) way to account for a broader range of uncertainties would be

by using systematic adjustments as a function of how consistent observations from

different retrieval algorithms are regionally and seasonally. The analysis proposed

here to compare products of different retrieval algorithm in a probabilistic framework

would aid in defining these adjustments. Applying such adjustments would lead to
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carbon flux estimates from inversion studies that are less sensitive to the choice of

retrieval algorithm.

6.2.3 Mapping using other spatial statistical approaches

The mapping methodology for atmospheric CO2 observations developed in this

dissertation can potentially be improved by using a mapping methodology that can

incorporate temporal covariances to benefit from the information content of satellite

observations from time periods before and after the mapping period, that would al-

low for scaling (i.e. change of spatial support), and would be based on a globally

valid covariance model. These are all limitations of the methodology developed in

this dissertation. The key question is if alleviating some or all of these limitations

would indeed lead to improved CO2 satellite mapping products. Improvement in this

context is defined as resulting in better prediction accuracies and lower, but still re-

alistic, uncertainties. It seems likely that such an improved methodology would still

come from the area of spatial statistics, a field within statistics that has advanced

significantly over the last decade, especially regarding the development of models that

are applicable to large data sets such as satellite observations of CO2. Characteristics

need to include that the methodology is applicable to large data sets and valid glob-

ally, i.e. have support on the sphere. Methodologies with these characteristics have

been developed, among others, by Stein [2008], Jun and Stein [2008], and Cressie and

Johannesson [2008]. One of these spatial statistical models, and different variants of

it, has been specifically applied to map satellite observations of CO2 [e.g. Katzfuss and

Cressie, 2012]. However, these applications were limited to example cases and were

not focused on answering carbon cycle science questions, nor has the mapping per-

formance been assessed for realistic scenarios for different seasons and under varying

conditions.

Future work includes identifying which of existing spatial statistical methodologies
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are best suited for mapping satellite CO2 observations and to adapt, modify or further

develop these methodologies to optimize their mapping performance given the specific

characteristics of satellite CO2 observations. As a next step the mapping performance

of a candidate to represent an improved methodology needs to be assessed rigorously

in terms of prediction accuracies and uncertainties for realistic conditions and for

different satellites. The overall goal is to advance mapping methodologies for satellite

CO2 observations such that the mapping products have improved accuracies and

uncertainties and/or spatial and temporal resolutions, which would make them more

valuable tools to answer carbon cycle questions.
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Auxiliary Figures
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Figure A.1: ACOS XCO2 Level 2 observations for 6-day periods from July through
December 2009.

Figure A.2: ACOS XCO2 Level 3 predictions for 6-day periods from July through
December 2009.
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Figure A.3: ACOS XCO2 Level 3 prediction uncertainties expressed as standard devi-
ation for 6-day periods from July through December 2009.
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Figure A.4: Year-round monthly fluxes and atmospheric CO2 concentrations for the
permafrost carbon release experiment.
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Figure A.5: Year-round monthly fluxes and atmospheric CO2 concentrations for the
higher signal fossil fuel experiment.
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Figure A.6: Year-round monthly fluxes and atmospheric CO2 concentrations for the
lower signal fossil fuel experiment.
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Figure A.7: Year-round monthly fluxes and atmospheric CO2 concentrations for the
Southern Ocean experiment.
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