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ABSTRACT

Machine Learning Methods for Magnetic Resonance Imaging Analysis

by

Cen Guo

Co-Chairs: Tailen Hsing and Long Nguyen

The study of the brain and its connection to human activities has been of interest

to scientists for centuries. However, it is only in recent years that medical imaging

methods have been developed to allow a visualization of the brain. Magnetic Reso-

nance Imaging (MRI) is such a technique that provides a noninvasive way to view the

structure of the brain. Functional MRI (fMRI) is a special type of MRI, measuring

the neural activity in human brain. The aim of this dissertation is to apply machine

learning methods to functional and anatomical MRI data to study the connection

between brain regions and their functions.

The dissertation is divided into two parts. The first part is devoted to the analysis

of fMRI. A standard fMRI study produces massive amount of noisy data with strong

spatio-temporal correlation. Existing methods include a model-based approach which

assumes spatio-temporal independence and a data-driven method which fails to ex-

ploit the experimental design. In this work we propose a Gaussian process model to

incorporate the temporal correlation through a model-based approach. We validate

the method on simulated data and compare the results to other methods through real

ix



data analysis.

The second part covers the analysis of anatomical MRI. Anatomical MRI provides

a detailed map of brain structure, especially useful for detecting small anatomical

changes as a result of disease process. The goal of anatomical MRI analysis is to

train an automated classifier that can identify the patients from healthy controls. We

propose a multiple kernel learning classifier which will build classifiers in small regions

in the segregating step and then group them in the integrating step. We study the

performance of the new method using simulated data and demonstrate the power of

our classifier on disease-related data.
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CHAPTER I

Introduction
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The brain is the most complex organ in the human body with billions of nerve cells.

It controls every aspect of our daily lives, such as perception and cognition, movement

and regulation, memory and thoughts. For centuries, scientists and philosophers have

tried to unravel the complex networks of the brain and its connection to human activi-

ties. In the 17th century, people discovered that various areas of the brain had specific

functions. Since then understanding the functional regions of the brain becomes a

major research area and presents great challenges to the neuroscientists. Before the

brain imaging techniques, the studies of the brain function were mainly down by the

stimulation of animal brains using electrical currents or the observation of the pa-

tients with neurological disorders. However the results showed many inconsistencies

and very limited regions could be identified using these methods.

Modern imaging techniques brought a technological breakthrough to the neuro-

science, leading to a wave of innovation and enthusiasm in brain studies. These brain

imaging methods provide a direct visualization of the structure of the brain, making

the studies of living healthy subjects possible. Among them Magnetic Resonance

Imaging (MRI) has dominated the neuroscience literature for the current decade be-

cause of its high temporal and spatial resolution.

Functional MRI (fMRI) is a special type of MRI. A typical fMRI experiment in-

volves presenting a sequence of stimuli to the subjects while recording the subject’s

neural activities. It produces a series of scans during one session with temporal reso-

lution varying from 500 ms to 3s. fMRI is particularly useful in cognitive neuroscience

research. The fMRI analysis finds the relation between the neural activities and the

time course of stimuli. Usually, the main goal of the fMRI analysis is to identify the

regions that respond to the stimuli, connecting the regions to the functions.

Structural or anatomical MRI, in general, is used for viewing the structure of the

brain. Unlike fMRI, structural MRI acquires only one scan of each subject with high

spatial resolution. It provides a good contrast between different tissues, especially
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useful for detecting small anatomical changes in the brain. It is known that the

neurodegenerative diseases will cause loss of the gray matter which can be discovered

by comparing the structural images between the patients and healthy controls. As

a result, structural MRI not only becomes popular in brain research but also shows

promising results in clinical diagnosis. The goal of the structural MRI analysis is to

build a classifier that can distinguish two groups.

Besides brain image’s success, it also presents a lot of challenges for the physicists,

neuroscientists, psychologists, statisticians, anatomists who involved in the MRI anal-

ysis. In the rest of this chapter, we present those issues and discuss different methods

to solve them.

1.1 fMRI

fMRI provides a non-invasive way to study the neural activities in human brain

with. It works by detecting the changes in blood oxygenation level that occur in

response to the local neural activities.

Active neurons consume oxygen. Increases in the local neuronal activities lead to

an increase in the local blood flow, carrying more oxygen to the regions with increased

activities Roy and Sherrington (1890). Oxygen is delivered by haemoglobin in blood

cells, which is diamagnetic when oxygenated but paramagnetic when deoxygenated.

The small difference in magnetic properties leads to a stronger fMRI signals. Since

the blood oxygenation level changes according to the regional neural activities, it can

be measured as an indicator of brain activities.

When neuronal activity increases there is an increased demand for oxygen and

the local response is an increase in blood flow. This local increase is known as blood

oxygenation level dependent (BOLD) signal Ogawa et al. (1990). fMRI uses BOLD

contrast to study the neural activities in the brainHuettel et al. (2009). During

a typically fMRI experiment, subjects are asked to perform a certain task while
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been scanned repeatedly, giving a series of 3D images. Each voxel in the image is

represented by a time series of the signal. Usually the main goal of fMRI analysis is

to find the area of the brain activated by the task during the experiment.

The most intuitive solution is to compute the correlation between the recorded

signals and the time course of the stimuli and pick the voxels with the highest cor-

relation scores. However brain is a complex network and there are many sources of

noises contributing to the signals. The actual analysis is a more sophisticated process

than simply computing the correlation scores.

1.1.1 Statistical Parametric Mapping

Statistical parametric mapping (SPM) is a method designed for brain image anal-

ysis Friston et al. (2007). It builds statistical models to find the regionally specific

effects in neuroimaging data, giving a statistical significance map of the investigated

regions. SPM is a voxel-based approach which maps all the scans to a template space,

reducing any anatomical differences among different subjects. The observations and

inferences are made by comparing the same voxels across multiple subjects. In order

for the comparison to be valid, all the scans should be mapped into the same space.

This is done in the preprocessing steps which include realignment, spatial normaliza-

tion and spatial smoothing Friston et al. (1995a), Ashburner et al. (1997), Friston

et al. (1996a). The preprocessing steps are carried out before the analysis to make

the statistical assumptions valid.

General Linear Model

Different statistical analyses of the fMRI are actually different ways to partition

the signals into different sources, such as activated signal, confounds and errors ac-

cording to some assumptions. General linear model is such a method that assumes

the signal of interest is a linear function of the haemodynamic response function and
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the errors follow an independent Gaussian distributions Friston et al. (1995b). There

are two concerns about these assumptions. First, the precise mechanism of neu-

ronal activities causing haemodynamic response function is unknown and the shape

of the haemodynamic response function may be different across different regions of

the brain. Several methods are proposed to model the haemodynamic response func-

tion. Second, the errors are not independent for different voxels. Brain images have

both strong temporal and spatial correlations which need to be taken into consider-

ation before make any inferences. In general linear model, the temporal correlation

is modeled by an autocorrelation model Woolrich et al. (2001). The result of general

linear model is a map of p-values for the brain regions. However, due to the spatial

correlation in the fMRI data, a correction for multiple comparisons is necessary. The

theory of random fields provides a way to draw conclusions on those p-values taking

the spatial correlation effect into consideration Worsley et al. (1996).

1.1.2 Independent Component Analysis

Independent component analysis (ICA) is another way to decompose the fRMI

signals (Calhoun et al., 2003). ICA is a dimension reduction technique separating

linearly mixed sources into statistical independent components. For fMRI data, it as-

sumes that the observed signals consist of several underlying sources. Calhoun (Cal-

houn et al., 2003) divided the sources into two groups: signals of interest and signals

not of interest where the signals of interest include task-related, function-related and

transiently task-related signals and signals not of interest include physiology-related,

motion-related and scanner-related signals. All these signals are independent from

each other. One advantage of ICA is that it doesn’t rely on the connection between

neuronal activities and haemodynamic response function. The only assumption ICA

needs is that signals are linear mixtures of independent Non-Gaussian components

Hyvärinen and Oja (2000). And intuitively, the task-related signals should be inde-

5



pendent from signals not related to tasks, say physiology-related signals. The results

of the ICA are brain maps corresponding to each independent component and the

activation areas are found by matching the time courses of the components to the

design of the experiments. The challenge of the ICA approach is the interpretation

of the resulting maps. Unlike the easy interpretation of the parametric map from

general linear mode, it is hard to draw convincing conclusions for every component.

1.1.3 Gaussian Process

Gaussian process is a stochastic process that every finite collection of random

variables has a multivariate normal distribution. It is widely used to model the tem-

poral and spatial dependent data Rasmussen and Williams (2006). The popularity of

such processes comes from several reasons (Davis , 2001). First, the Gaussian process

is completely determined by the its mean and covariance matrix which facilitate the

estimation as only the first and second order moments need to be specify. Second, the

prediction is easy once given the mean and covariance matrix of the Gaussian process.

Third, Gaussian process is a kernel method which is very flexible for various of kinds

of correlated data. In this study, we proposed a new method applying the Gaussian

process to model the fMRI data. For each voxel, the time series is decomposed into a

linear function of the haemodynamic response function, a Gaussian process carrying

the temporal dependence information and an independent error terms.

1.2 Structural MRI

MRI (structural MRI or anatomical MRI) uses the phenomena of Nuclear Mag-

netic Resonance of the nuclei of the hydrogen atom within water. It provides a

non-invasive way to visualize the brain. The advantage of MRI over other brain

imaging techniques is its superior spatial resolution, providing a detailed map of the

brain. Structural MRI has become a powerful tool in both brain research and clinical
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neurology. The usual structural MRI experiments scan two groups of different sub-

jects, such as patients vs healthy controls. The main goal of structural MRI studies

is to identify the regional changes in the brain that are caused by certain conditions.

1.2.1 Univariate Analysis

The traditional technique of identifying structural changes in the brain is a vol-

umetric measurement method, involving manually drawing regions of interest (ROI)

and visually assessing any morphological changes in those regions (Chan et al., 2001),

(Keller and Roberts , 2009). However, as MRI scans become a standard procedure

for both clinical diagnosis and brain research, automated tools are desired to save

time and energy from time-consuming manual measurements and subjective assess-

ment. Voxel-based morphometry (VBM) is such a technique proposed by Wright in

1995 (Wright et al., 1995). This method first maps all the scans to a brain template

and then constructs a statistical test for every voxel to identify the regional differ-

ences between the two groups. It is the counterpart of the GLM in the fMRI analysis

and quite successful in distinguishing neurodegenerative diseases (Whitwell and Jack ,

2005).

Statistical Testing As in the fMRI case, several preprocessing steps are carried

out including registration, segmentation and smoothing. After preprocessing step, a

statistical test between two group means is applied to every voxel in the image. This

involves applying a t-test or a F-test taking any covariates into consideration. The

result is a statistical parameter map of the whole brain with a p-value for each voxel.

The clusters of voxels with small p-values may be regions that are associated with

the disease and need further inspection. Since the statistical parametric map contains

the p-values of correlated voxels, multiple test correlation is needed when assessing

the significance in any voxels Friston et al. (2007).
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Application VBM is such an automated method that has been widely used since

its first introduction Ashburner and Friston (2000). One key reason is that it does

not refer explicitly to the brain anatomy and can suit for any MRI analysis. Its

application ranges from the studies of brain learning patterns to age-related changes.

In particular, it has been successful in characterizing neuroanatomical changes in the

brain for various neurodegenerative diseases such as Parkinson’s disease (Price et al.,

2004), Huntington’s disease (Thieben et al., 2002) and Alzheimer’s disease (Karas

et al., 2003) and mental disorder diseases such as schizophrenia (Kubicki et al., 2002)

and bipolar disorders (Lyoo et al., 2004). These works take the VBM approach to

identify the significant regions and compare the results to the traditional manual

examination method showing that the VBM can detect the regions confirmed by

visual assessment method.

Further studies also extend to the healthy subjects, examining the impact of learn-

ing and practice on the brain structure. VBM detects the posterior hippocampi region

in the brain of the people with extensive navigation experience are significantly larger

than the ones of the control group (Maguire et al., 2000). This result is consistent

with the idea that the posterior hippocampi region stores a spatial representation of

the environment. Another study compares the brain scans of the people before and

after learning juggling routine (Draganski et al., 2004). This study shows the expan-

sion in gray matter in bilateral mid-temporal area and left posterior intra-parietal

sulcus after the learning process. These regions are shown associated with distance-

perception function, visual attention and eye movement. The automatic VBM tool

helps to confirm the idea that experience can change the anatomy structure of the

brain.
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1.2.2 Multivariate Analysis

Although VBM can identify regions that are generally consistent with traditional

volumetric method, it does not consider the interrelationship among different voxels

and different regions. Recently, machine learning techniques have been playing an

increasingly important role in brain image studies. These multivariate techniques

are proposed to learn the brain networks. The focus of the new methods shifts from

detecting the pathological changes in the brain anatomy to building a classifier that

automatically classify the subjects into patient and healthy groups.

Most multivariate methods involve three components (Fan et al., 2007), feature

extraction, dimension reduction and classification method. The feature extraction is

the key step that determines the quality of the final classifier. One popular feature

is the voxel-wise signals of the whole scan as in the VBM (Asllani et al., 2007).

The benefit of using the voxel-wise density is that it can achieve the same spatial

resolution as the original data. However, there are two problems with this method.

One is that the voxel-wise method is very sensitive to the registration error. Another

issue lies in the computation efficiency. In order to model the interaction between the

voxels, the multivariate methods function in a batch mode, taking the whole scans

at one time. Sophisticated machine learning methods can not optimize an objection

function with all the voxels in the scan. One solution is to use only the voxels in pre-

defined regions (Cox and Savoy , 2003). But this method might have selective bias

excluding some disease related regions unknown to the scientists before. A better

feature will be a one representing the regions other than the voxels. Since the brain

images usually have strong spatial correlation and the neighboring voxels share similar

values, researchers are more interested in identifying the region effects other than the

voxel effects. However, in practice, a prior knowledge about the exact regions is not

available. Fan (Fan et al., 2005) computed the correlation between the voxel density

and the class label and used it as an indicator of the discriminative power to cluster
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the brain into different regions. Tzourlo-Mazoyer provided an anatomical parcellation

of the brain through manually drawn regions (Tzourio-Mazoyer et al., 2002).

After defining the regions, one can extract features from each region. In each

region, a mixture of Gaussians is applied to model the density function (Magnin

et al., 2009). The proposed model is

p(x) = α1N(x|µ1, σ
2
1) + α2N(x|µ2, σ

2
2) + α3N(x|µ3, σ

2
3), (1.1)

where p(x) is the density function of a region and α1, α2 and α3 are the proportion

of CSF, gray matter and white matter in the brain, α1 + α2 + α3 = 1. Parameter α2

representing the gray matter probability is chosen for each region to train a classifier

between patients and healthy controls. The benefit of using region-based features is

that it is very robust. By summarizing a few features to represent the regions, it

reduces the effect of noise from preprocessing steps and individual variation.

Different machine learning methods have been proposed to classify the two groups.

Robin Wolz (Wolz et al., 2011) compared linear discriminant analysis method with

support vector machine. The results showed that linear discriminant had better speci-

ficity while support vector achieved better sensitivity. Phillips (Phillips et al., 2011)

applied relevance vector machine to vegetative state patients. Deanna Greenstein

(Greenstein et al., 2012) used a random forest algorithm to the children with on-

set schizophrenia. The accuracy of those classifiers largely depends on the extracted

features in the previous step.

1.2.3 SVM and multiple kernel analysis SVM

Support vector machine (SVM) proposed by Vapnik (Vapnik , 1995) is a kernel-

based classification method which achieves great success especially in high-dimension

problem. Several reasons lead to its popularity. First, the formulation of SVM is
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intuitive and easy to understand. Second it is a kernel-based method which is flexible

with a broad range of problems. Third it suits small sample and high dimension

problems well. As in the VBM case, SVM was used in the function MRI to predict

the state of the scans during a block design experiment (LaConte et al., 2005). Then

it was proposed for structural MRI, achieving good results in various kinds of data.

Lao (Lao et al., 2004) first applied the SVM to the structural MRI to determine the

gender of the subjects. The study showed that SVM could easily distinguish the two

groups, achieving a classification accuracy of 97%. Kawasaki (Kawasaki et al., 2007)

applied SVM to classify the schizophrenia patients from the healthy controls. Klöppel

(Klöppel et al., 2008) successfully distinguished the Alzheimer’s patients from normal

people with an accuracy of 89%.

The performance of SVM relies on the kernel which is determined before seeing

the data. Selecting a kernel and its parameters is an important issue in training. The

classical way is to use cross-validation procedure which requires an extra validation

set. However, in a small sample problem, extra data are usually hard to acquire.

Multiple kernel learning (MKL) is proposed to automatically select the best kernel.

It takes a weighted sum of different kernels instead of using a single one (Lanckriet

et al., 2004), (Sonnenburg et al., 2006). Since the weight of each kernel is automat-

ically determined by the MKL algorithm, it does not need extra data to select the

best kernels. There are two uses of MKL (Gönen and Alpaydin, 2011). First one is

to get a kernel as a combination of pre-defined kernels. Different kernels correspond

to the similarity between two subjects in different spaces and MKL finds the best

combination of all these spaces instead of just picking one. Second one is to get a

kernel as a combination of different sources. Different variables can have different

measures and can be best represented through different features. In such a case de-

signing different kernels for different variables and combining the kernels later are a

way of using multiple information sources. This means that different variables may
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contribute to the classifier in different ways. This is intermediate combination (com-

bining kernels taken different data), different from early combination (combining the

data at feature extracting step, single kernel SVM) and late combination (combining

different classifiers taken different data) (Noble, 2004).

The latter usage can be used in the classification problem of the brain image

data. Human brain exhibits both segregation and integration properties (Kinser

and Grobstein (2000)). Segregation means that different aspects of the behaviors are

usually performed by anatomically and functionally distinct areas. Integration means

that these functionally specialized areas need to communicate with each other to

complete any tasks. These localization and globalization property of the brain can fit

in the framework of MKL method which extracts information from different local areas

and then combines them together to get a better result. In this work, we present and

evaluate a classification method based on MKL SVM. The purpose is to distinguish

the patients with a certain disease from the healthy control subjects through the

analysis of their anatomical brain images. In addition, we are also interested in the

identification of significant regions associated with a particular disease.

1.3 Overview

The material presented in this thesis covers both the fMRI analysis and structural

MRI analysis, including theoretical and practical backgrounds, simulation and real

data analysis.

Chapter II devotes to the fMRI analysis. Section 2.1 listed some characters of

fMRI data and define the purpose of fMRI studies. We also presented several chal-

lenges fMRI data bring to the statistical analysis in this section. Section 2.3 reviews

the general linear method with its ways of modeling the haemodynamic response

function and dealing with temporal and spatial correlation in the data. In section

2.4 we first explain the intuition of ICA and then dig into the details of its algorithm
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and application. Section 2.5 gives a description of Gaussian process and the decom-

position model that we proposed to model the temporal dependent data. We applied

the proposed method to a simulated data and the results show that the estimates of

the parameters are stable around the truth. In section 2.6, we apply our model to an

auditory stimulation data set and compare our results to GLM and ICA.

Chapter III covers the analysis of structural MRI. In section 3.2, we describe

the voxel-based method, along with its preprocessing steps and statistical tests. In

section 3.3, we focus on the mathematical formulation of MKL SVM. We introduce

both the primal and dual forms of the problem which can show the benefits of these

segregating and integrating procedures. In section 3.4, we compare the results of

traditional SVM and MKL SVM in simulated data. The simulation results show that

MKL SVM can achieve a better classifier and identify the informative variables from

the noise variables. In the section 3.5, We propose a two-step MKL procedure to deal

with highly correlated areas in the brain. We apply the method to four data sets,

showing that the MKL SVM can outperform the traditional SVM in some conditions.

We also discuss some common feature selection and tuning selection issues in the real

data analysis.
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CHAPTER II

Functional MRI Analysis
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2.1 Introduction

Functional Magnetic Resonance Imaging (fMRI) provides a non-invasive way to

study neural activity in human brain. It is known when local nerve cells are active,

there is an increase of local blood flow after an approximately 1-5 second delay (Roy

and Sherrington, 1890). This leads to local changes in blood oxygen level which are

reflected as an increase of magnetic resonance signals (Ogawa et al., 1990). fMRI

uses this blood oxygenation level dependent (BOLD) contrast to study local neural

activity in the brain. During a typically fMRI experiment, subjects are asked to

perform a certain task while been scanned repeatedly. Each scan is a 3-D image of

the whole or a part of the brain. A typical fMRI scan has a spatial resolution of

about several millimeters (usually 3× 3× 3 mm3) and time resolution of about a few

seconds (usually 2 seconds). It is known that different areas of brain are associated

with different functions, such as analyzing sensory data, performing memory functions

and making decisions. The goal of activation analysis is to find the activated area of

the brain when the subject is performing a certain task.

The most widely used statistical method is the general linear model (Friston et al.,

1995b) which builds a linear model between the recorded signal and the expected

activation signal. Since the local blood flow usually does not synchronize with the

stimuli, the expected activation signal is represented by a convolution model between

the time course of the stimuli and the HRF. The general linear model method assumes

the observed signal is a linear function of the expected signal plus some random noise.

Then a statistical test is applied to every voxel to test whether the linear association is

significant or not. The significant regions are the active areas invoked by the stimuli.

The statistical analysis of fMRI data is challenging due to several reasons. First,

the precise mechanism linking BOLD signal and neural activity is not clear, which

means the shape of HRF is not known. Second a standard fMRI study produces

massive amounts of data, with strong temporal and spatial correlation. Further, the
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signal we are interested in is weak in comparison to the noise which can come from

several sources, like head movement, equipment, effect of respiration and heartbeat.

The signal intensity in a given voxel typically varies by approximately 5% around the

mean during cortical task activation.

One solution to avoid the use of HRF is independent component analysis (Bell

and Sejnowski , 1995) which decomposes the recorded signal into several independent

components. This method does not assume any relation between the observed sig-

nal and the activation signal in the model estimation step. Instead, it assumes the

recorded signals are a linear combination of independent components and the goal

is to retrieve the original sources. The components with high correlations with the

stimuli are the activation sources. And the regions relies mostly on the activation

sources are the active regions invoked by the stimuli. The difficulty with this method

lies in the interpretation of the independent components and the activation regions.

In general linear model, the temporal correlation of the signal is usually modeled

by an autoregressive model for every voxel. The order of the autoregressive is fixed

for all the voxels across the brain. However, the strength of the temporal correla-

tion varies for different regions. Gaussian process is a good method to model the

stochastic process with temporal correlation. Gaussian process is a stochastic process

for which any collection of finite variables follow a multivariate Gaussian distribution

(Rasmussen and Williams , 2006). One advantage of Gaussian process is its flexibil-

ity in designing the level and the structure of the correlation through the covariance

matrix. We explore this advantage and design a Gaussian process model to model

the fMRI signal.

The rest of this chapter provides more details of statistical methods on fMRI data.

We first describe the preprocessing steps that are part of standard procedure now.

We review two popular methods, general linear model and independent component

analysis. Then we propose a new decomposition method using Gaussian process. We
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show that our model can recover the activation signal, the temporal correlated signal

and the random noise in a simulated study. We then compare our model to other

methods in a real data analysis.
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2.2 Preprocessing

Most brain image analyses are voxel-based, relying on the voxel-wise signals to

find the regional effects in the data. This requires all the scans to be in the same

space with same voxel indicating same location across multiple scans. To meet this

requirement, a series of preprocessing steps, including realignment, spatial normal-

ization and spatial smoothing, are usually carried out before the analysis to make the

statistical assumptions valid.

Realignment Signal changes in one voxel of one session can arise from head motion

of the subject. In extreme cases, the movement can account for up to 90% of the total

noise (Friston et al., 1996b). A typical fMRI scan has a spatial resolution of 2mm but

the subjects usually show displacements of up to several millimeters. The time series

of voxel i may be contaminated by voxel j, a few millimeters away. So before dealing

with the variability between different sessions and different subjects, a realignment

procedure is applied to all the scans to eliminate the within session variability. The

Realignment involves a rigid-body transformation, minimizing the differences between

each successive scan and a reference scan. Then the transformation is applied to each

scan and a re-sampling scheme is carried out to get the signal on the grid. The results

are a series of scans aligned to the same space. Sometimes, non-linear transformation

is applied to account for non-linear effects.

Spatial Normalization Realignment reduces the within-session differences among

a series of scans. But different subjects have different brain morphometries which

must be taken into consideration before statistical analysis. Spatial normalization is

the step that maps all the scans to a same template image (Friston et al., 1995a). After

the realignment step, a mean image of the series or a structural image is used to esti-

mated the warping function that maps it onto a template (Talairach and Tournoux ,
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1988). In practice, most people use a spatial basis function to minimize the difference

between the two images. After spatial normalization step, all the scans in the study

are in the same space in which voxels lie in the same location across different scans.

Spatial Smoothing After the spatial normalization steps, images are usually smoothed

by convolving with a Gaussian kernel. For fMRI data, the signal of interests is usually

very weak comparing to the noise. Smoothing reduces the noise, improving the signal

to noise ratio. Another reason is that smoothing makes the errors more Gaussian, an

assumption in the statistical analysis.

2.3 General Linear Model

Friston et al. (1995b) used the general linear model (GLM) for activation analysis.

In their work the time series of each individual voxel is modeled independently as a

linear combination of the experiment-related signals and white noise. Let X(t) be

the time series at any voxel, then

X(t) = β0 + β1g1(t) + β2g2(t) + . . .+ βKgK(t) + ε(t), (2.1)

where gk is the explanatory variable relating to the k-th experiment condition. Putting

equation (2.1) in matrix form

X = Gβ + ε, (2.2)

where X is the observed time series at a specific voxel. Matrix G is the design matrix

with columns gk. ε is the white noise ε ∼ N (0, σ2I).

The covariate gk(t) is the expected BOLD signal corresponding to the k-th exper-

imental condition. The BOLD signal evoked by a single stimulus is referred to as the

haemodynamic response function (HRF). Due to the sluggish nature of the HRF, the

BOLD signal is not a linear function of stimulus function. A common way to model
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BOLD signal is through a linear time-invariant model.

Let uk(t) be the time series of stimulus of condition k and h(t) be the HRF,

linear time-invariant model expresses BOLD signal as the convolution of the stimulus

function and HRF (Boynton et al., 1996).

gk(t) = uk(t)⊗ h(t) =

∫
uk(t− τ)h(τ)dτ. (2.3)

There are usually two types of experimental design, epoch and event-related, which

lead to different expressions of function u(t). In epoch model, uk(t) is a boxcar

function, with value 1 at the time when condition k is on and 0 otherwise,

u(t) =
J∑
j=2

I(tj−1,tj)(t),

where I(t) is an indicator function and (tj−1, tj) is the j-th block when the stimulus

is on. Although block design is efficient in detecting the activated area, it only

measures the magnitude of BOLD signal. In event-related design, uk(t) is a stick

function (Zarahn et al., 1997):

u(t) =
J∑
j=1

δ(t− tj), (2.4)

where (t1, . . . , tJ) is the time series of J stimuli and δ(t) is the Dirac delta func-

tion. Event-related design is usually used to characterize transient haemodynamic

responses to brief stimuli (Josephs and Henson, 1999). It facilitates an evaluation of

the exact form of the HRF.

GLM is a massive univariate model which involves two-step analysis. First linear

model (2.2) is applied to each time series separately. Then a test statistic (usually T-

statistic or F-statistic) of the null hypothesis that there is no activation for condition
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k is computed for each voxel,

H0 : βk = 0 H1 : βk > 0.

This creates a statistical image with each voxel represented by its corresponding test

statistic. At the second level of analysis, a threshold for test statistic is chosen based

on some multiple testing correction techniques such as random field theory (RFT)

and false discovery rate method (FDR).

GLM is the dominant method to analyze fMRI data mainly due to its compu-

tational simplicity. There are several issues about this method. First it fails to

accommodate the spatio-temporal correlation in the data. The temporal correlation

is due to the sluggish nature of BOLD. The spatial correlation can come from several

sources, like image reconstruction and preprocessing steps. Second, it performs a

extremely large number of tests simultaneously (usually on the scale of 100000) with

multiple comparison issues. Third, the power of GLM strongly depends on the form

of the HRF. It has been observed that the exact form of the HRF varies across dif-

ferent regions of the brain. Fixing the form of the HRF largely reduces the flexibility

of the model. New methods have been proposed to deal with above issues.

2.3.1 HRF

The mechanism between neural activity and BOLD signal is complicated and only

partially understood. A typical HRF, the BOLD response to a single stimulus, usually

peaks approximately 5s after stimulation, and is followed by an undershoot that lasts

as long as 30s, as showed in Figure 2.1.

This canonical HRF is widely used as a basis function in (2.3). Empirical studies

show that the shape of the HRF is similar across sensory regions in brain, for example

motor cortex (Aguirre et al., 1998), visual cortex (Boynton et al., 1996) and auditory
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Figure 2.1: Canonical hemodynamic response function h(t)

cortex (Josephs et al., 1997). However, the precise shape of the HRF is unknown and

still an active research area. Parametric methods focus on modeling the characters

of the HRF such as amplitude, onset latency, peak latency and dispersion (Rajapakse

et al., 1998).

Basis Function

The precise shape of the HRF is different in different regions in the brain. Using

one canonical basis function can not accommodate this variability. One way to in-

crease the flexibility of the model is to expand to I basis functions, f1(τ), . . . , fI(τ),

and express the HRF as a linear combination of these K basis functions, h(τ) =∑I
i=1 γifi(τ). In this case the BOLD signal evoked by a single condition is

g(t) = u(t)⊗
I∑
i=1

γifi(τ) =
I∑
i=1

J∑
j=1

γifi(t− tj),
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where u(t) is an event-related design and takes the form of (2.4). Having specified

the form of stimulus and the HRF, equation (2.1) can be written as

X(t) =
K∑
k=1

βkgk(t) + ε(t)

=
K∑
k=1

βk

I∑
i=1

J∑
j=1

γifi(t− tkj) + ε(t)

=
K∑
k=1

I∑
i=1

J∑
j=1

αkifi(t− tkj) + ε(t),

where αki = βkγi and (tk1, . . . , tkJ) is the time series of stimulus function for the k-th

condition. A common choice for function (f1(t), . . . , fI(t)) is based on the canonical

HRF and its partial derivatives. The canonical HRF can be characterized by the

difference between two gamma functions, one modeling the peak and the other mod-

eling the undershoot. Derivative function can capture the difference in onset latency

among different brain regions.

Another popular set of basis functions is three gamma density functions with mean

and variance both setting to 2i (i = 2, 3 and 4). They can be seen as functions peaking

during the early, intermediate and late components of the anticipated haemodynamic

response. And also derivatives of these three basis functions are used in the case when

there is temporal delay effect. Figure 2.2 plots the basis functions.
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Figure 2.2: Basis function fk(t) and its derivatives
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2.3.2 Temporal Correlation

Purdon and Weisskoff (1998) investigated the temporal correlation in fMRI data.

A simulation study demonstrated that the false-positive rate can be biased far above

or below the significant level if the actual autocorrelation was ignored. Instead of

assuming independence along the time series, they proposed a new method using

first-order autoregressive (AR(1)) model to accommodate the temporal correlation

in noise term. The error term ε(t) in (2.1) is modeled as a sum of AR(1) series and

white noise,

ε(t) = z(t) + δε(t)

z(t) = az(t− 1) + δz(t),

where δε(t) and δz(t) are independent Gaussian, δε(t) ∼ N (0, σ2
ε ), δz(t) ∼ N (0, σ2

z).

a is the AR(1) coefficient. Then the resulting covariance matrix is

E(εεT ) = σ2
z(I− A)−1(I− A)−T + σ2

ε I,

where A is a matrix with all elements of the first lower off-diagonal set to a and zero

elsewhere. I is the identity matrix of dimension T .

2.3.3 Multiple Testing Correction

Correction for multiple testing is crucial for the interpretation of activation anal-

ysis. A typical fMRI experiment produces massive amounts of voxels with strong

spatial correlations. The reasons for spatial correlation come from different sources,

such as image reconstruction, physiological signal and spatial preprocessing. Since

the BOLD signal is relatively low comparing to noise, the standard preprocessing step

involves smoothing along the spatial direction, usually with a Gaussian kernel of full
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width at half maximum (FWHM) of 8 pixels. At the modeling level, GLM assumes

independence among voxels and fits each time series individually. This spatial corre-

lation is addressed in inference step through multiple testing correction technique.

Bonferroni Correction

There are several methods to address the multiple comparison issue. One way is to

control the family-wise error rate (PFWE) using Bonferroni correction. The significant

level α for an individual test is then

α = PFWE/N,

where N is the number of individual tests (number of voxels in brain). However, in

standard fMRI experiment, we deal with about 100000 multiple tests simultaneously.

The Bonferroni correction is too conservative. Further scans have spatial correlation

which makes the effective degree of test statistics much smaller. Usually Bonferroni

correction does not lead to correct family-wise error rate.

Random Field Theory

This spatial dependence problem can be corrected using random field theory

(RFT) (?). The way that RFT solves this problem is through expected value of

Euler Characteristic (EC) for a smooth statistical map. Euler Characteristic is de-

fined as the number of clusters of voxels that exceed a given threshold in the brain

volume (Worsley et al., 1996).

False positive rate is the probability of at least one voxel activated which is equiv-

alent to the largest Z value in one region is above some threshold. This is the same

as the probability of finding at least one region above the threshold. And at high

thresholds the EC is either is zero or one. so we have the probability of a family-wise
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error is approximately equivalent to the expected Euler characteristic:

PFWE = P(Zmax > Zα) = P(EC ≥ 1) ≤ E(EC).

False Discovery Rate

Instead of controlling type I error, false discovery rate (FDR) approach tries to

control the expected proportion of false positives among those tests detected as pos-

itive (Benjamini and Hochberg , 1995). The algorithm is to calculate the p-value for

each individual voxels and order them, p1 ≤ p2 ≤ . . . ≤ pN . To control FDR at

level α, the largest k which satisfies pk < αk/N was found. Then tests associated

with p1, . . . , pk are considered as positive. FDR approach shows higher power than

Bonferroni correction in fMRI data set (Genovese et al., 2002). The resulting thresh-

old chosen by FDR depends on the amount of significant signals in the data set not

on the number of voxels or the smoothness in the data. So unlike single choice of

threshold across data sets, FDR method adapts its threshold to the features of the

data. On the other hand, ignoring the smoothness in the data sets, FDR tends to be

more conservative as the spatial correlation increases. Hence, it has higher power for

unsmoothed data while RFT typically has higher power for smoothed data.

2.4 Independent Component Analysis

GLM requires a priori knowledge about the exact form of the HRF. In the brain

regions where the HRF is quite different from the canonical form, GLM can not detect

the activation area. McKeown et al. (1998) proposed a novel approach which does

not specify the shape of the HRF. The method is based on independent component

analysis (ICA) (Bell and Sejnowski , 1995). Like PCA, ICA decomposes a time series

of scans into a linear combination of several sources and associated weights. But

unlike PCA which tries to find the best solution in terms of minimizing the mean-
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square error, ICA decomposes the original signals into components as independent as

possible.

2.4.1 Definition of ICA

Let X1, . . . , XJ be J random variables. ICA assumes that each random variable

can be decomposed into a sum of independent random variables. The mixture Xj is

a weighted linear combination of K independent components S1, S2, . . . , SK :

Xj = aj1S1 + aj2S2 + . . .+ ajKSK . (2.5)

Let X = (X1, . . . , XJ)T be the random vector of mixtures and S = (S1, S2, . . . , SK)T

be the random vector of independent components and A be the mixing matrix with

elements ajk with j ∈ {1, 2, . . . , J} and k ∈ {1, 2, . . . , K}. Then (2.5) can be written

in matrix form:

X = AS. (2.6)

All we observed is the mixtures X. Both the hidden variables S and the mixing

matrix A need to be estimated. Assuming A is a square matrix which means we

have same number of mixing signals and independent components, we can write (2.6)

the following way:

S = WX,

where W = A−1 is the inverse of the the mixing matrix. ICA estimates the inverse

of mixing matrix by maximizing some measure of independence of (S1, S2, . . . , SK)T .

2.4.2 ICA for fMRI

There are two types of ICA methods applied to fMRI data, spatial ICA (sICA)

and temporal ICA (tICA). sICA assumes the brain areas activated by performance

of a certain task should be unrelated to the brain areas whose signals are affected by
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artifacts, such as physiological pulsations, subtle head movements and machine noise.

At each time point t, sICA decomposes images of the brain X(t) = (x1(t), . . . , xN(t))

into K independent components

X(t) = a1(t)S1 + a2(t)S2 + . . .+ aK(t)SK , (2.7)

where Sk = (sk1, . . . , skN) is a N-dimension brain image. The coefficients, ak(t)

t = 1, . . . , T , are considered as the activation time series associated with the k-th

component. Equation 2.7 implies the change of the observed signal X(t) results from

a change in the relative contribution from each component other than from component

itself. Activation component is found by computing the correlation between the time

series of independent components and a reference function, usually the time course

of stimuli and or the expected BOLD signal. The underlying argument is the same:

the activated voxels share a similar time course as neural activity.

The activated map is the component whose associated time course has the highest

correlation. The voxels with the highest weights on the activated map are considered

as activated regions. McKeown et al. (1998) first applied sICA to fMRI data and

argued that there were spatial independence among consistently task-related fMRI

activation (the components that were highly correlated with the reference function),

transiently task-related fMRI activation (the components that were correlated with

the reference function during part of the trial), slowly varying components (regions

of ventricular system), head movement (the components that have abrupt changes in

their time courses), quasiperiodic components (signals might be caused by aliased car-

diac and respiratory rhythms) and noise components. It also argued that maps of the

activated voxels for task-related components contained areas of activation resembling

those produced by computing the correlation between observed signal and reference

function. In addition, ICA method detected other area that have not detected by the
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correlation method.

tICA assumes that the time series of each individual voxel can be decomposed

into linear combination of independent times series. For each voxel n, tICA mod-

els the time series Xn = (Xn(1), . . . , Xn(T )) as a linear mixture of K independent

components (S1, . . . , SK)

Xn = an1S1 + an2S2 + . . .+ anKSK ,

where Sk = (sk(1), . . . , sk(T )) is a T -dimension time series. The coefficients, ank,

n = 1, . . . , N is the brain map associated with the k-th component. The activation

component is the one with the highest correlation with the reference function. Then

activation area can be found by inference about the brain map associated with the ac-

tivation component. Biswal and Ulmer (1999) used tICA to decompose the observed

signals into different identifiable individual sources, such as task-related components,

cardiac and respiratory pulsations.

Assuming spatial or temporal independence of fMRI data yields two different

interpretation of the ICA method. sICA has dominated the application of fMRI.

One possible explanation is that standard ICA algorithm needs whitening the data

first which projects the mixed signals onto a much smaller K-dimension space. Since

in fMRI data set, the spatial dimension (about 100000 voxels) is much larger than

temporal dimension (usually 200-300 scans), the preprocessing step for tICA loses

too much information about the original data. Calhoun et al. (2001) examined these

two different approaches. Results showed that sICA and tICA tended to have similar

results given components were independent in both space and time and diverged if

the components were highly correlated in space or time. It was shown that if there

was one single experimental design, both sICA and tICA can separate the BOLD

signal from other sources (Petersen et al., 2000). So whether applying sICA or tICA
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should depend on the question whether the expected BOLD signals or hypothesized

activated areas are heavily dependent.

Several questions need to be addressed before applying ICA. First, the number

of independent components we want to extract has to specify before. The results

depend heavily on the choice of K and there is no natural ordering of independent

components. The standard algorithm sets the number of independent components

the same as the number of observed signals. Second, the interpretation of other

independent components is not clear. Third, there are several algorithms proposed to

find independent components based on different contrast functions. Applying different

algorithm might lead to different activation areas. Several popular algorithms are

explained briefly in the following sections.

2.4.3 Identifiability Issues

Comon (1994) addressed the identifiability issue of ICA. First, the number of

observed mixture signals must be at least as large as the number of independent

components. To identify A and S, we have to put a further constraint that var(Sk) =

1. Since any orthogonal transformation of independent Gaussian variables is also

independent, another fundamental assumption in ICA model is that independent

components should be non-Gaussian. In order to uniquely determine the independent

components, we need the following conditions:

• Sk for k = 1, 2, . . . , K are non-Gaussian, with possible exception of at most one

component.

• var(Sk) = 1 for k = 1, 2, . . . , K.

• The number of mixing signals should be no less than the number of independent

components, J ≥ K.
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With these constraints, the mixing matrix A and the hidden variables S can be

identified up to a permutation matrix (Hyvärinen and Oja, 2000).

2.4.4 Measures of Independence

All ICA algorithms are based on the optimization of some measures of indepen-

dence of S. Popular algorithms used in fMRI data analysis are Infomax (Bell and

Sejnowski , 1995), JADE (Cardoso and Souloumiac, 1993) and FastICA (Hyvärinen

and Oja, 2000). The performance of different algorithms depends on how well the

data’s high order structure matches the assumptions of the algorithm. Infomax al-

gorithm works well for sICA (McKeown et al., 1998). However, when the Infomax

algorithm looked for temporally independent waveforms, it was less efficient because

the boxcar design of the experiment doesn’t match its implicit assumption about the

underlying distribution. (McKeown et al., 2003).

Maximum Likelihood Approach

One possible way to estimate both independent sources S and mixing matrix A is

to take a maximum likelihood approach Pham and Garat (1997). Under model 2.5,

the likelihood of the observed signal can be written as

L(A,x) =
N∑
n=1

K∑
k=1

log pk(wkxn) +N log | det(W)|

=
N∑
n=1

K∑
k=1

log pk(e
T
kA−1xn) +N log | det(A−1)|.

The likelihood estimate of A is the value that maximizes L(A,x).

Information Maximization

Bell and Sejnowski (1995) took an information-maximization (Infomax) approach.

This approach is based on maximizing the entropy of a non-linear function of the inde-
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pendent sources, Let H be the entropy function, a direct computation of H(S1, S2 . . . , SK)

gives

H(S) = −
∫

P(S) log P(S)dS

= −
∫

P(X) log
P(X)

| det W|
dX

= H(X) + log | det W|.

So without any regulation, H(S) diverges to infinity for an arbitrary large W.

Thus, Infomax approach considers entropy of some contrast function g, which is

usually an increasing function mapping from R to [0, 1]. The algorithm finds the

estimates of S that maximize H(g(S1),g(S2), . . . ,g(SK)).

Let random variable Vi be a random variable whose cumulative distribution func-

tion is g. Let V = (V1, V2, . . . , VK) and U ∼ Unif [0, 1]K . Then the entropy of the

contrast function of hidden components is:

H(g(S)) = −Eg(S) log P(g(S)) (2.8)

= KL(g(S)||U)

= KL(S||g−1(U))

= KL(S||V).

This shows the Infomax approach is equivalent to the minimization of the Kullback-

Leibler (KL) distance between the independent resources S and the distribution

associated with g. A popular choice of contrast function g is logistic function,

g(s) = (1 + e−s)−1 (Bell and Sejnowski , 1995).

Cardoso (1997) shows if the contrast function g is chosen as the cumulative distri-

bution function of S, infomax is equivalent to maximum likelihood estimation. The

maximum likelihood approach can be written as a KL distance between two distri-
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butions:

arg maxL(A,x) =
1

N
arg max

A

N∑
n=1

log P(Xn|A)

= arg max
A

∫
P∗X log P(X|A)dX

= arg max
A
−KL(P∗X||P(X|A))−H(P∗X)

= arg min
A

KL(P∗(S|A)||P(S)),

where P∗X is the empirical distribution of X and P∗(S|A) is the empirical distribution

of S given mixing matrix A. So, if the contrast function g in (2.8) is chosen to be

the cumulative distribution function of S, then the maximum likelihood method is

the same as Infomax approach. In the infomax approach, any contrast function g

mapping from R to [0, 1] is chosen as the cumulative distribution function of the

independent sources which need to be estimated in the maximum likelihood method.

Mutual Information and Kullback-Leibler divergence

Comon (1994) used mutual information as a measure of dependence. The mutual

information I of K random variables Y = (Y1, Y2, . . . , YK) is defined by the following

equation:

I(Y1, Y2, . . . , YK) =
K∑
k=1

H(Yk)−H(Y).

Mutual information can be interpreted as the a measure of the information that

Y1, Y2, . . . , YT share. It is always non-negative and is zero if and only if (Y1, Y2, . . . , YT )

are independent. So the ICA estimate of the problem 2.6 using the mutual information

is:

arg min
A

I(eT1 A−1X, eT2 A−1X, . . . , eTKA−1X).

Since the entropy depends on the unknown distribution of S, the maximization

of the mutual information needs the approximation of the density function. Comon
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(1994) used Gram-Charlier expansion which is a polynomial density expansion based

on higher-order cumulants. For random variable Y of zero mean and unit variance,

the Gram-Charlier expansion is

P(y) ≈ φ(y)(1 + κ3(Y )h3(y)/6 + κ4(Y )h4(y)/24 + . . .),

where φ is the Gaussian density function. κi(Y ) is the i-th cumulants of the random

variable Y and hi(y) are Hermite polynomials defined recursively:

h0(y) = 1

h1(y) = y

hn+1(y) = yhn(y)− h′n(y)

Plugging the estimate of the density function, we get the mutual information of

S = (s1, s2, . . . , sK), under the constraint that (s1, s2, . . . , sK) are uncorrelated. We

have:

I(S) = C +
1

48

K∑
k=1

(4κ3(sk)
2 + κ4(sk)

2 + 7κ4(sk)
4 − 6κ3(sk)

2κ4(sk)), (2.9)

where C is a constant and κi(sk) is the i-th cumulant of empirical distribution P∗k of

sk.

Since the Gram-Charlier expansion is based on Taylor expansion of density func-

tion at the point of Gaussian density function, the approximation is valid if the true

distribution is not far from Gaussian. Then the estimate achieves the minimum of

(2.9).
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Kurtosis

One-contrast function method allows the estimation of one independent compo-

nent at each time. Instead of maximizing some measures of mutual independence,

one-contrast function method tries to maximize the measure of non-Gaussianity for

each component Sk. In many applications, we are only interested in a few compo-

nents. So it is not necessary to extract K independent components at the same time

(Hyvärinen, 1999). And estimation of one component at one time greatly reduces the

computation complexity.

From the projection pursuit point of view, the decomposition of J signals into a

weighted sum of K components is to project high dimension data onto a lower space.

It has been argued that Gaussian distribution is the least interesting structure in

terms of the information it carries. So the projection should be in the least Gaussian

direction. One-contrast function method uses the same idea trying to find the least

Gaussian projection at each time.

The classical measure of non-Gaussianity is kurtosis. The kurtosis of random

variable Y is the fourth cumulant:

Kurt(Y ) = E(Y 4)− 3(E(Y 2))2.

If Y has unit variance, then Kurt(Y ) = E(Y 4) − 3 is a normalized version of the

fourth moment. For standard Gaussian variable z, Kurt(z) = 0. For most non-

Gaussian variables kurtosis is nonzero. Kurtosis is widely used as a measure of non-

Gaussianity. The main reason is its linearity property which makes both theoretical

and computational analyses easier. For independent variables Y1 and Y2 with zeros

means and unit variances,

Kurt(c1Y1 + c2Y2) = c41Kurt(Y1) + c42Kurt(Y2).
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Let w be a row vector in the inverse mixing matrix W. Then wX is the estimate of

one component. The kurtosis approach tries to maximize the kurtosis of the estimated

component,

max
w
|Kurt(wX)| = max

w
|Kurt(wAS)|

= max
c
|Kurt(cS)|

= max
c
|
K∑
k=1

c4kKurt(Sk)|,

where c = wA. Since we assume that var(Sk) = 1 for k = 1, 2, . . . , K, we get∑K
k=1 c

2
kvar(Sk) =

∑K
k=1 c

2
k = 1. So the optimization problem becomes

max
c
|
K∑
k=1

c4kKurt(Sk)| with the constraint
K∑
k=1

c2k = 1, (2.10)

If we assume there is at least one component whose kurtosis is negative and at

least one whose kurtosis is positive, the maximum in (2.10) is achieved at c = ±eTj ,

where ej is a column vector with 1 on the j-th row and 0 elsewhere (Delfosse and

Loubaton, 1995). Then wX = ±eTj A−1X = ±eTj S. This means maximizing the

contrast function gives us the independent component Sj up to a sign difference.

Since the measure of non-Gaussianity is based on the fourth cumulant, the kurtosis

approach is very sensitive to outliers.

Negentropy

Negentropy is a natural choice to assess the distance between Gaussian distribu-

tion and any other distribution. Let J be the negentropy of any random vector S,

negentory of J is defined as

J(S) = H(Sgauss)−H(S),
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where Sgauss is a Gaussian random vector which has the same mean and covariance

matrix as S. Negentropy is non-negative and achieves 0 if and only if S is Gaussian.

It is invariant to any linear transformation.

There is a natural link between negentropy and independence through mutual

information. The Mutual information can be expressed in terms of negentropy,

I(S1, S2, . . . , SK) = J(S)−
K∑
k=1

J(Sk) +
1

2
log

∏K
k=1 Σkk

det(Σ)|
, (2.11)

where Σ is the covariance matrix of S and Σkk is its k-th diagonal element. If

(S1, S2, . . . , SK) are uncorrelated then (2.11) becomes

I(S1, S2, . . . , SK) = J(S)−
K∑
k=1

J(Sk).

In the ICA model (2.6), the negentropy of S is the same as the negentropy of

X which does not depend on W. Maximizing independence is the same as mini-

mizing mutual information and also the same as maximizing the sum of negentropy.

Assuming S1, S2, . . . , SK are uncorrelated,

arg min
A

I(S) = arg max
w1,...,wK

K∑
k=1

J(Sk)

= arg max
w1,...,wK

K∑
k=1

J(wkX),

with the constraint that (w1,w2, . . . ,wK) are linearly independent where wk is the

k-th row in the inverse mixing matrix W. Negentropy of S depends on the un-

known distribution of S. Different approximations were proposed based on different

assumptions of the underlying distribution. Jones and Sibson (1987) used Gram-

Charlier expansion as an approximation of density function to compute negentropy.
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Given S is of zero mean and unit variance, the negentropy has the following form:

J(S) ≈ 1

12
κ3(S)2 +

1

48
κ4(S)2,

where κ3 and κ4 are the third and fourth cumulants of S. This approximation is also

a polynomial function of cumulants. It has been argued that these cumulant-based

methods often provide a poor approximation of entropy since higher order cumulants

are quite sensitive to outliers.

Hyvärinen (1998) proposed a different approximation of negentropy. Given S has

zero mean and unit variance.

P(S) ≈ φ(S)(1 +
n∑
1

ciGi(S)),

where P(S) is the density function of S, φ is the standard Gaussian density function

and Gi are some regulation functions which satisfy

∫
P(S)Gi(S)dS = ci for i = 1, 2, . . . , n

∫
φ(S)Gi(S)Gj(S)dS =

 1 if i = j

0 if i 6= j
.

Then using Taylor approximation to the logarithmic function (1 + P(S)) log(1 +

P(S)) = P(S) + P(S)2/2, the approximation to negentropy is:

J(S) ≈
n∑
i=1

ki[E(Gi(S))− E(Gi(z))]2, (2.12)

where ki are constants and z follows a standard Gaussian distribution.

Theoretically, Gi can be any orthogonal function with respect to Gaussian distri-

bution. But in practice, the expectation of Gi(S) should be easy to compute. And

38



in order to get more robust estimate than cumulant approach, Gi(S) must not grow

faster than quadratically. Hyvärinen and Oja (2000) considered the simplest case

when n = 1. Then (2.12) becomes

J(S) ≈ [E(G(S))− E(G(z))]2.

Two possible choices for G are given, (Hyvärinen and Oja, 2000)

G1(S) =
1

a
log cosh aS G2(S) = − exp(−S2/2),

where a is some suitable constant, usually 1 ≤ a ≤ 2.

2.5 Gaussian Process

At the modeling level, GLM assumes spatio-temporal independence in fMRI data

which is generally not a reasonable assumption. Spatial correlation is addressed

indirectly by smoothing the data using a Gaussian kernel in the preprocessing step

and then applying Gaussian RFT to the map of test statistics. The difference in

the assumptions of two-level analysis makes standard model diagnosis not feasible.

Models that incorporate the spatio-temporal dependences are desirable. AR(1) plus

white noise model takes the temporal correlation into consideration by specifying

the first order correlation for all voxels. However, the order of temporal correlation

depends on several factors which can vary across different regions in brain. We propose

a model using the Gaussian process to accommodate this variability in temporal

correlation.
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2.5.1 Gaussian Process for fMRI

A Gaussian process is a collection of random variables, any finite number of which

have a joint Gaussian distribution. A Gaussian process can be completely specified

by its mean function m(t) and the covariance function k(t, t′). Let f(t) be a Gaussian

process with mean function m(t) and covariance function k(t, t′),

m(t) = Ef(t)

k(t, t′) = E(f(t)−m(t))(f(t′)−m(t′)).

Then Gaussian process f(t) denotes as

f(t) ∼ GP(m(t), k(t, t′))

Neal (1998) used the Gaussian process model for both regression and classification

showing that it is a very flexible method to define prior distributions over functions.

He argued that the there are several reasons for its popularity. First, a variety choices

of covariance functions can give functions in different degrees of smoothness. Second

Gaussian process is suited for modeling of large number of correlated variables. Be-

cause of the explicit form of conditional gaussian distribution, the estimation is much

easier than other distributions. Third, it is easy to incorporate the prior information

into the Gaussian process. These advantages make Gaussian process a useful tool

for the fMRI analysis. So In our model, we proposed a different way to decompose

the signal into a long drift signal, an activation signal, a temporal correlated signal

and an independent noise. The variation in the signal were divided into the Gaussian

process and the pure noise.

Let X(t) be the time series for a specific voxel, the signal can be decomposed into

a linear combination of mean function m(t), a zero mean Gaussian process G(t) and
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a white noise term ε(t)

X(t) = β0 + β1I(t) + β2g(t) +G(t) + ε(t). (2.13)

β0 is the parameter of the scale of time series. The intensity of fMRI image depends

on the type of tissue it measures, ranging from 0 (area outside of brain) to about

1600 (cerebrospinal fluid area). I(t) is a centered linear function which characterizes

the linear trend usually observed in fMRI signals. g(t) is the expected BOLD signal

evoked by the experimental stimulation, modeled as a convolution of stimulus function

and the canonical HRF. ε(t) is the white noise, ε(t) ∼ N (0, σ2
ε I).

The termG(t) is a zero mean Gaussian process, which characterizes the temporally

correlated component in X(t), such as physiological effect and random drift due to

instability of scanner. The temporal correlation should decrease as the time lag

increases. Further it is reasonable to assume the effect of series correlation only exits

in a relative short-range and the order of this correlation varies across the different

regions of the brain. Based on the above assumption, we use an exponential covariance

matrix with two parameters σ2 and φ to characterize the Gaussian process.

G(t) ∼ GP(0, σ2 exp(
−|t− t′|

φ
)),

where σ2, the variance of Gaussian process, measures the amount of fluctuation.

Parameter φ controls the order of time correlation. As φ decreases, the temporal

dependence goes to 0 at a very fast rate.

The mean function of Gaussian process model (2.13) is similar to the one in

GLM. The covariance function of Gaussian process addresses the non sphericity in

fMRI data set. It decomposes the noise term in equation (2.1) into two zero mean

Gaussian components. One is a temporally independent component which is just

random noise. The other is a temporally dependent signal which can reveal some
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information of functional regions of the brain. Since there is a parameter φ in the

covariance matrix, the estimation needs some iterative fitting techniques or sampling

methods. A simulation study is done applying both Metropolis-in-Gibbs sampler and

Expectation-Maximization (EM) method to examine whether Gaussian process can

be separated from noise term.

2.5.2 Simulation Study

Time series with a length of 240 is generated from (2.13) with six parameters

chosen to match the real data. The scale parameter, β0 = 600, reflects the intensity

of signals of grey matter in the brain. The linear trend parameter, β1, is set to 0.01.

The activation parameter, β2 = 20, characterizes strong activation. Total variance

is set to be σ2 + σ2
ε = 100. The simulation study shows that the performance of

evaluation of the model depends mainly on the values of two quantities, temporal

correlation parameter, φ, and ratio of two variance, κ = σ2
ε

σ2 . Different combination

is investigated. φ is set at three different levels, little correlation φ = 0.1, modest

correlation φ = 1 and high correlation φ = 4.5. And κ is investigated at three levels,

noise variance dominating, κ = 4, equal variance κ = 1 and Gaussian process variance

dominating, κ = 0.25.

Metropolis-in-Gibbs sampler

For Bayesian sampler method, non-informative priors were put for all six param-

eters. Three parameters β0, β1 and β2 in the mean function are sampled by Gibbs

algorithm and three parameters φ, σ2 and σ2
ε in the covariance function are sampled

by Metroplis-Hasting algorithm. Figure 2.3 shows the posterior distribution for three

mean parameters. From left to right the posterior distribution of β0, β1, β2

For φ = 1, σ2 = 50, σ2
ε = 50, the posterior distributions of parameters, β0, β1 and

β2, peak around the true value. Figure 2.4 shows the posterior distribution for three
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covariance parameters. From left to right the posterior distribution of σ2, σ2
ε , φ. The

posterior distribution of parameters show reasonable estimation. From left to right

the posterior distribution of σ2, σ2
ε , φ

But for small φ (φ = 0.1) the loglikelihood is a function of (σ2+σ2
ε ). The algorithm

can not differentiate Gaussian process and white noise. Figure 2.5 shows the posterior

distribution of σ2 = 80 and σ2
ε = 20 when φ = 0.1. From left to right the posterior

distribution of σ2, σ2
ε , φ
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Figure 2.3: The posterior distribution of β0, β1, β2
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Figure 2.4: The posterior distribution of σ2, σ2
ε , φ
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Figure 2.5: The posterior distribution of σ2, σ2
ε , φ
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σ2 σ2
ε φ σ̂2 σ̂2

ε φ̂ β̂0 β̂1 β̂2
20 80 0.1 47.46 51.55 0.45 600.97 0.0267 20.28
80 20 0.1 46.78 59.86 0.03 600.84 0.0102 20.24
20 80 1.0 39.47 49.02 0.55 599.83 0.0125 19.53
80 20 1.0 87.67 6.98 0.97 599.70 0.0229 23.30
20 80 4.5 30.75 83.62 3.24 598.69 0.0173 21.58
80 20 4.5 69.13 25.34 5.00 604.86 0.0287 18.13

Table 2.1: Estimation of parameters for different σ2
ε and σ2

Expectation-Maximization Algorithm

Fixing the parameters of mean function, β0 = 600, β1 = 0.01 and β2 = 20 and also

the total variance σ2 + σ2
ε = 100, EM algorithm is applied to time series generated

from different values of κ = σ2
ε/σ

2 and φ. where σ2, σ2
ε and φ are true values which

generate the data and σ̂2,σ̂2
ε and φ̂ are the estimated values by EM algorithm. The

results show that the EM algorithm can get good estimate of mean function in all the

cases. When φ is small which means there is little correlation in Gaussian process,

G(t) behaves like white noise term ε(t). Estimation technique based on distribution

can not separate these two terms well. As in the case φ = 0.1, the algorithm tends

to decompose the variance equally between σ2 and σ2
ε . In the case that κ is large,

which means the variance of noise dominates, the estimation of φ becomes worse.

This could due to the reason if the strength of the Gaussian process is small, the data

can be corrupted by the noise term which leads to inaccurate estimation.

2.6 Real Data Analysis

Before statistical analysis, there are several preprocessing steps that try to reduce

noise from different sources. The major steps involved in fMRI preprocessing are slice

timing correction, realignment, coregistration of structural and functional images,

normalization and smoothing. It is typically assumed in statistical analysis that all the

voxels are collect at the same time. But the slices of brain are sampled sequentially.
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Therefore time series of voxels in different slices are shifted relative to each other.

Slice timing correction usually uses interpolation method to shift the time series of

each voxel. The largest source of noise in any fMRI study is from head movement of

subject. When movement occurs, the signal from a specific voxel will be contaminated

by signal from neighbors. Motion correction is a rigid body transformation (shifting

and rotation) between one image and a target image (usually the first image or the

mean image). Usually this is done by minimizing some cost function that measures the

similarity between these two images. fMRI images usually sacrifice spatial resolution

to achieve a better temporal resolution. Another preprocessing step, coregistration is

to map the fMRI image to a structural image of the same subject to make inference

about activation. This is typically performed using rigid body transformation or

affine transformation (shifting, rotation and scaling). In multiple subjects analysis, it

is important that each voxel lies in the same function region to compare the results

from different subjects. Normalization attempts to register each subjects structural

image to a template brain image. Usually this is done by a nonlinear transformation

in two steps. The first step is to estimate a continuous mapping between the points in

an input image with those in the target image. Next the mapping is used to resample

the input image so that it is warped into the target image. The last step is to spatially

smooth fMRI data using a Gaussian kernel.

2.6.1 Experiment Paradigm

One data set was used to assess the performance of different methods. The data

was from an auditory stimulation experiment. The experimental paradigm consisted

of 16 blocks alternated between rest and auditory stimulation, starting from rest.

During auditory stimulation block, subject was listened to bi-syllabic words presented

binaurally at a rate of 60 per minute. 6 scans were acquired for each block with one

scan taking 7 seconds. A total 96 acquisition were made from a single subjects with

45



each acquisition with dimension 64× 64× 64. The voxel size is 3× 3× 3 mm3. The

preprocessing steps involve realignment, coregistration, normalization and smoothing.

During preprocessing, interpolation and resampling procedures were applied to each

scan which leads to new voxel size 2 × 2 × 2 mm3. The dimension of preprocessed

scan is 79× 95× 68.

2.6.2 Activation Analysis

Both GLM and ICA were applied to one slice of the auditory data set. GLM

used the canonical HRF with AR(1). Spatial ICA was used to detect the activation

area for ICA approach. Figure 2.6 shows the activation area map. The left figure

is the activation area detected by GLM with Gaussian random field correction at

5% significant level. The right figure is activation area detected by sICA. After ap-

plying sICA 95% quantile of activated map was set as the threshold to define the

activation area. These figures show a consistency between GLM and sICA. Figure

2.7 shows the area that are mostly related to the experiment. The left figure is the

area where the GLM-estimated parameters exceed the 95% quantile of the parame-

ter map. The right figure is the area where Gaussian-process-estimated parameters

exceed the 95% quantile of parameter map. The area detected through estimation of

parameters matches the activation area. Since the Gaussian process models a higher

order temporal correlation, the area detected by Gaussian process is smoother than

GLM.

Figure 2.6: Activation maps of GLM and sICA
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Figure 2.7: Map of β1 parameter

2.6.3 Gaussian Process Results

One activated voxel and one inactivated voxel are chosen from this slice. Gaussian

process is applied to both time series separately. There are three components in

the mean function which are estimated by β0, β1 and β2. There are two random

components, Gaussian process (G(t)) and white noise (ε(t)). The estimated Gaussian

process and white noise shown in the Figure 2.8 are the conditional expectation given

all the parameters and observed signal of the activated voxels and Figure 2.9 are the

conditional expectation of E(G|X, β0, β1, β2, σ2, σ2
ε , φ) and E(ε|X, β0, β1, β2, σ2σ2

ε , φ).

Figure 2.8 and Figure 2.9 illustrate the ratio between Gaussian process and white

noise. In both cases, the activation parameter β2 is well estimated.
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Figure 2.8: Fitted components of an activated voxel. Left figure: estimated mean
function. Right figure: estimated random components

The figure illustrates the ratio between Gaussian process and white noise. In both

cases, the activation parameter β2 is well estimated.
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Figure 2.9: Fitted components of an inactivated voxel. Left figure: estimated mean
functions. Right figure: estimated random components

2.6.4 Parameter Maps

EM algorithm is applied to the whole slice to assess the performance of the model.

The resulting maps of six parameters are imposed on a structure image.

Figure 2.10: Maps of β0, β1, β2, imposed on structure image

The scale map (β0) (left figure in Figure 2.10) matches the structure image well

which captures the scale of different tissue. The linear trend map (β1) shows there

exits a linear trend across the whole slice. It tends to be positive outside the brain

and negative inside the brain. The standard way of dealing with this linear trend is

to subtract the mean of the whole scan at each time point. This can introduce other

confounding factor in the following analysis since this linear trend is not uniform

across the brain. The activation map (β2) shows a smooth image of activation area

which is similar to the results of GLM.

The temporal correlation map φ (left figure in 2.11) shows that most regions

have temporal correlation at order below 4. (Most φ are smaller than 2 which give
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Figure 2.11: Maps of φ, σ2 and σ2
ε , imposed on structure image

correlation exp(−4/2) = 0.1352 at order 4.) There are several regions showing high

temporal correlation which need further interpretation.

The model divides total variance into Gaussian process variance and white noise

variance. The white noise variance is relatively uniform across the whole slice. The

Gaussian process variance tends to be higher for voxels inside the brain than the

ones outside the brain. This suggests that the main source for temporal correlation

is related to cerebral blood flow.

2.7 Discussion

This chapter proposes a Gaussian process method to model the fMRI signals.

The method decomposes the observed signals into the stimulus-related components,

a Gaussian process and a white noise. The temporal correlation is modeled by the

nonspherical structure of the Gaussian process.

The parameters can be estimated either through the EM algorithm or the Metropolis-

Hasting algorithm. The simulation study shows that the model is well-defined and

the mean functions can be estimated well in all the scenarios in the simulation study.

However when the temporal correlation in the Gaussian process is weak, the Gaussian

process can not be separated from the noise. Then the estimates of parameters of

variance become unstable.

In the real data analysis, the estimates of the mean function are comparable

to the results of the GLM. The scale parameter matches the brain tissue type and
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the activation parameter detects the same regions as GLM. Moreover, the regions

identified by Gaussian process model has smoother boundaries than GLM.

The estimates of the variance parameters show that the correlation levels vary

across the whole brain. Using the autocorrelation model with the same order for the

every voxel may not capture the temporal correlation well. The voxels with high

correlation are clustered together in the brain. Those regions need further interpre-

tation.
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CHAPTER III

Structural MRI Analysis
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3.1 Introduction

Structural MRI provides physicians and researchers a noninvasive method to pro-

duce high-resolution images of the brain’s anatomical structure. The pathological

changes associated with neurological and psychiatric diseases may cause loss of brain

tissue or atrophy in the brain. Structural MRI offers a way of visualization of these

brain changes in vivo by measuring the tissue density at a very fine grid. Different

methods have been proposed to analyze the structural MRI and a number of studies

have already demonstrated that MRI scans can provide biological plausible results in

various diseases (Kopelman et al., 2001), (Bottino et al., 2002) and (Shenton et al.,

1991).

In the following sections, we presented two popular methods, voxel-based method

(Wright et al., 1995) and support vector machine (SVM) (Klöppel et al., 2008) in more

details for structural MRI analysis. We discovered each method’s advantages and

limitations. Then we proposed a new method for structural MRI based on multiple

kernel SVM (Sonnenburg et al., 2006). Theoretically multiple kernel SVM is an

extension from single kernel SVM but the this extension gives more flexibility to the

method leading to a better classifier in many cases. We then study the new method

on both simulated data and real data. The performance of the method is discussed

under different scenarios.

3.2 Voxel-based Method

The traditional technique of identifying structural changes in the brain is a volu-

metric measurement method, involving manually drawing regions of interests (ROI)

and visually assessing any morphological changes in those regions (Chan et al., 2001),

(Keller and Roberts , 2009). However, as MRI scans become a standard procedure for

both clinical diagnosis and brain research, automated tools are desired to save time
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and energy from time-consuming manual measurements and subjective assessment.

Voxel-based morphometry (VBM) is such a technique proposed by Wright in 1995

(Wright et al., 1995). This method first maps all the scans to a brain template and

then constructs a statistical test for every voxel to identify the regional differences

between the two groups. It is the counterpart of the GLM in the functional MRI

analysis and quite successful in distinguishing neurodegenerative diseases (Whitwell

and Jack , 2005).

Registeration VBM is a univariate method, comparing the values of one voxel

across multiple scans at one time. In order for the statistical tests to be valid, all

brain scans have to be registered to the same space. Then one voxel from one scan

will mean the same voxel of other scans. This step is called spatial registration which

involves a rigid body transformation (Friston et al., 1995a) and a non-linear warping

(Ashburner and Friston, 1999). The rigid body transformation optimizes an affine

transformation that maps the individual MRI scan to a template. This corrects for

the head movement of different subjects. The non-linear warping involves mapping

images of individuals into the same template through a set of basis functions. This

reduces the variability of different shapes of the brains. After registration, the scans

are aligned to the same template and a location in one scan corresponds to the

same location in another scan. However, registration also reduces the disease-related

morphometric differences between two groups which are the signals that we want to

detect in VBM.

Segmentation Some neuro-related diseases will cause the shrinkage in the volume

of gray matter and the expansion of the white matter in local regions of the brain.

Segmenting the brain into different tissues will facilitate the detection of the affected

regions and minimize the partial volume effects. One popular procedure before statis-

tical analysis is segmenting the brain into gray matter, white matter and cerebrospinal
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fluid (Fischl et al., 2002). One way is to use K mixtures of Gaussian to model the

voxel density while building the voxel location information into the prior information

(Ashburner and Friston, 2005). This method is explained below.

Let µk and σ2
k be the mean and the variance of the k-th Gaussian of the whole

brain. Let ci be the class label of voxel i, ci ∈ {1, . . . , K}. yi is the value of the i-th

voxel. Then the conditional probability of voxel i given that the voxel belongs to the

k-th Gaussian is

P (yi|ci = k, µk, σ
2
k) =

1

(2πσ2
k)

1
2

exp

(
−(yi − µk)2

2σ2
k

)
.

Let γk be the mixture proportion for the k-th Gaussian,
∑K

k=1 γk = 1. Rather than

assuming a stationary prior probability across the whole brain, the prior takes the

voxel location into consideration:

P (ci = k|γk, α) =
γkbik(α)∑K
j=1 γjbij(α)

,

where bik is a function incorporating the tissue probability for class k at voxel i. α is

the deformation parameters of a set of spatial basis functions. Then the log-likelihood

function for a single voxel i can be written as

L(yi|µ, σ2, γ, α) = log

(
K∑
k=1

P (yi, ci = k|µ, σ2, γ, α)

)

= log

(
K∑
k=1

P (yi|ci = k, µk, σ
2
k)P (ci = k|γk, α)

)

= − log

(
1∑K

k=1 γkbik(α)

K∑
k=1

γkbik(α)

(2πσ2
k)

1
2

exp(−(yi − µk)2

2σ2
k

)
.

The parameter estimates of µ, σ2, γ, α are the MLE of the joint log-likelihood of the
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all the voxels which maximize the following log-likelihood function L

L(−→y |µ, σ2, γ, α) =
V∑
i=1

L(yi|µ, σ2, γ, α),

where −→y = {y1, . . . , yV } The probability P (ci = k) serves as an indicator of the

portion of the tissue k in the voxel i which can be used as the features in the further

analysis. After segmentation step, a gray matter image and a white matter image is

produced with the values of the probabilities.

Smoothing After the segmentation step, the gray and white images are smoothed

by convolving with a three dimensional Gaussian kernel. The smoothing step helps

to reduce the effect of the noise in the original image. It also compensates for the

inexact nature of the spatial registration and segmentation in previous step.

Statistical Test After preprocessing step, a statistical test between two group

means is applied to every voxel in the image (Friston et al., 1995b). This involves

applying a t-test or a F-test, taking any covariates into consideration. The result is

a statistical parameter map of the whole brain with a p-value for each voxel. The

clusters of voxels with small p-values may be regions that are associated with the

disease and need further inspection. Since the statistical parametric map contains

the p-values of correlated voxels, multiple test correlation is needed when assessing

the significance in any voxel.

Although the voxel-based methods had been widely used to study the morpholog-

ical changes in the brain, some scholars discussed its limitations, suggesting to use it

with great caution (Mechelli et al., 2005). First, the voxel-based method is a univari-

ate method, which means it considers one voxel at a time and predicts the voxel as

significant or not only based on the signals at that voxel. So the VBM is more likely

to discover the changes that are localized in space, overlooking the differences in brain
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networks (Davatzikos , 2004). Second, VBM depends on the t-test or the F-test. The

validation of these statistical tests rely on the assumption that the residuals have

independent Gaussian distributions. The non-normality distribution will attenuate

the power of the tests (Salmond et al., 2002). And finally, the pre-processing steps

of registration and normalization can bring noise to the data (Gitelman et al., 2001).

Mapping a brain containing pathologies changes to a standard template may mask

the true differences between the two groups (Mechelli et al., 2005).
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3.3 Machine Learning Methods

Based on the limitations of univariate methods, multivariate methods are proposed

to take the brain networks into consideration (Lao et al., 2004). Support vector

machine (SVM) (Vapnik , 1995) is one popular classification method that maps the

whole brain into a feature space and then finds a hyperplane in the feature space to

separate the two groups. The feature space is determined by a kernel function which

needs to be defined before the analysis. Selecting the right kernel is critical to the

performance the SVM classifier.

A new method called multiple kernel learning (MKL) has been proposed to com-

bine different kernels together, relaxing the constraint of a single kernel of SVM

(Gönen and Alpaydin, 2011). Different kernels can represent different similarity mea-

sures or can represent different data. The final kernel is a linear combination of several

sub-kernels. The human brain consists of functional regions which may contribute

to the classifier in different ways. The MKL method can design different kernels on

those functional regions and find the best combination of the local kernels.

In this section, we focus on the mathematical formulation of single kernel SVM and

MKL SVM methods. We compare the primal form and the dual form of both methods.

Section 3.3.1 and section 3.3.2 introduce the SVM and MKL SVM separately. Section

3.3.3 uses a two variables example to explain the similarities and differences of these

two methods.

3.3.1 Traditional SVM

SVM was proposed by Vapnik (1995) and since then achieved great successes in

many fields, such as engineering, geometry and biology. It becomes one of the most

popular classifiers in empirical applications. In a classification problem, we are given

n subjects. Let pair (−→xi , yi) be the data of the i-th subject. −→xi ∈ RV represents all

the voxels in the gray matter that are used in the analysis. yi is the class label for the
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subject i, with yi = 1 indicating a patient and yi = −1 indicating a healthy control.

The goal here is to come up with a decision rule D which is a function from the space

of xi to the space of yi, D : RV → {1,−1}. Any new subject can be classified to one

of the two groups using function D.

The SVM method approaches this problem by finding a decision hyperplane in

the feature space. Let g be the feature function that maps the original signal −→x to

a feature space with dimension P , g : RV → RP . Let −→z i be the feature of data

−→x i coming from the feature function g, −→z i = g(−→x i). The kernel function H is the

Euclidean inner product between the features of two subjects in the feature space,

H(−→x i,
−→x j) = 〈−→z i,

−→z j〉 = 〈g(−→xi), g(−→xj)〉. The decision boundary d is a hyperplane in

the feature space, which has the following form:

d(−→z ) = 〈−→w ,−→z 〉+ w0,

where −→w , w0 are the parameters of the hyperplane. The decision function D takes

the sign of the decision boundary plane.

D(−→x ) = sign(d(−→z )).

This means the subjects on the same side of the decision boundary will be classified

in the same class by function D.

SVM finds the decision hyperplane d that can separate the two classes as far as

possible. In order to satisfy that, parameters −→w and w0 need to be the solution of

the following optimization problem

min−→w ,w0

1
2
‖−→w‖2 + C

∑
i ξi (3.1)

subject to yi(〈−→w ,−→z i〉+ w0) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n .
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Figure 3.1: The decision boundary and margins of SVM classifier
.

Let margin be the lines satisfying the equation |d(−→z )| = 1. Minimizing the term

‖−→w‖2 maximizes the distance between the decision boundary and the margin. ξi is

the slack variable which measures the degree of misclassification of data −→x i. If data

−→x i is on the correct side of the decision boundary outside or on the margin, then

|〈−→w ,−→z i〉+ w0| ≥ 1 and 〈−→w ,−→z i〉+ w0 has the same sign as yi which gives ξi = 0. If

data −→xi is on the correct side of the decision boundary but within the margin, then

|〈−→w ,−→zi 〉+w0| < 1 and 〈−→w ,−→zi 〉+w0 has the same sign as yi which leads to 0 < ξi < 1.

If data −→xi is on the wrong side of the decision boundary, then 〈−→w ,−→zi 〉 + w0 has

the opposite sign of yi, ξi > 1. So minimizing
∑

i ξi controls the misclassification

error of the classifier. C is a tuning parameter controlling the trade-off between the

complexity of the decision boundary and the training accuracy. If we put a large

C, we will have a classifier that has a good performance on the training set but

can be over-fitting and not performing well on the testing set. So SVM minimizes

the combination of distance between the margin and the decision boundary and the

training misclassification error. Figure 3.1 shows the decision boundary and margins

of SVM classifier in the feature space. The red dots represent patient and the green

dots represent patients. SVM achieves a good classifier between these two groups.

The optimization problem (3.1) is called the primal problem of SVM which has a

corresponding dual problem that is easier to solve. The dual optimization problem
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has the following form:

max
{αi}ni=1,

∑
i αi −

1
2

∑
i,j αiαjyiyjH(−→xi ,−→xj) (3.2)

subject to H(−→xi ,−→xj) = 〈−→zi ,−→zj 〉 i, j = 1, . . . , n∑
i αiyi = 0, 0 ≤ αi ≤ C i = 1, . . . , n.

The dual problem of SVM is a minimization problem over a set of parameters {αi}ni=1.

The parameters {αi}ni=1 have a close relationship with the decision hyperplane, such

that −→w =
∑

i αiyi
−→z i. The decision boundary can be written in {αi}ni=1:

d(−→z ) = 〈−→w ,−→z 〉+ w0

=
∑
i

αiyi〈−→z i,
−→z 〉+ w0.

There are several algorithms proposed to solve (3.2). Because of the one-to-one

map between the primal and dual problem, the solution of the primal problem (3.1)

can be easily found by the solution of the dual problem (3.2).

3.3.2 Multiple Kernel Learning SVM

The multiple kernel learning (MKL) SVM (Lanckriet et al., 2004) is similar to the

traditional SVM problem except it uses multiple kernels other than a single one. In

multiple kernel analysis, there are M feature functions g1, . . . , gM , each mapping from

the original space of −→x to a feature space. Let −→z m
i ∈ RVm be the m-th feature of

the i-th data from function gm, −→z m
i = gm(−→x i). Then the m-th kernel function Hm is

defined as Hm(−→x i,
−→x j) = 〈−→z m

i ,
−→z m

j 〉. MKL SVM finds the best kernel H as a linear

combination of M kernels. H(−→xi ,−→xj) =
∑M

m=1 ηmHm(−→xi ,−→xj) with the constraint that∑M
m=1 ηm = 1, ηm ≥ 0, m = 1, . . . ,M . {ηm}Mm=1 are the kernel weights that will

be automatically learned by the MKL algorithm. The dual problem of the MKL SVM
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is the following optimization problem:

min
{ηm}Mm=1

max
{αi}ni=1

∑
i αi −

1
2

∑
i,j αiαjyiyjH(−→x i,

−→x j) (3.3)

subject to H =
∑M

m=1 ηmHm, Hm(−→x i,
−→x j) = 〈−→z i,

−→z j〉∑
m ηm = 1, ηm ≥ 0,

∑
i αiyi = 0, 0 ≤ αi ≤ C

i, j = 1, . . . , n, m = 1, . . . ,M,

The dual form of MKL SVM is similar to the dual form of traditional SVM except

it replaces the given kernel H by a weighted sum of M kernels H1, . . . , HM . The

algorithm finds the best weights {ηm}Mm=1 that minimize the maximization problem

of the traditional SVM dual. MKL SVM searches the best classifier in a larger space

which brings more flexibility to the classifier and usually leads to a better performance.

The decision boundary of the MKL SVM also shares a very close relationship to

the form of decision boundary in traditional SVM. Let −→wm =
∑

i αiyi
−→z m

i be the

parameters of the individual decision boundary in the m-th kernel space which takes

the form of boundary parameters in the traditional SVM. It can be shown that the

parameters for the MKL SVM boundary is the alignment of parameters of individual

boundary with kernel weights, −→w = (η1
−→w1, . . . , ηM

−→wM). Then for a new subject

−→z = (−→z 1, . . . ,−→z M) = (g1(
−→x ), . . . , gM(−→x )) the decision boundary is

d(−→z ) = 〈−→w ,−→z 〉+ w0

= 〈(η1−→w1, . . . , ηM
−→wM), (−→z 1, . . . ,−→z M)〉+ w0

=
M∑
m=1

ηm〈−→wm,
−→z m〉+ w0

=
M∑
m=1

ηm
∑
i

αiyi〈−→z m
i ,
−→z m〉+ w0.
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−→wm defines a hyperplane in the m-th feature space. ηm is the kernel weight

representing the contribution of the m-th kernel to the decision boundary. The kernel

weights of the kernels with no information about the class label will be set to 0. This

can be seen from the primal problem of the MKL:

min
{−−→wm}Mm=1,ξ

1
2
(
∑M

m=1 ‖
−→wm‖2)2 + C

∑N
i=1 ξi (3.4)

subject to yi(
∑

m〈
−→wm,

−→z m
i 〉+ w0) ≥ 1− ξi −→wm ∈ RVm , m = 1, . . . ,M

−→z m
i = gm(−→x i), ξi ≥ 0 i = 1, . . . , n.

Optimization problem (3.4) is the primal form of MKL SVM. The optimization

problem minimizes a weighted sum of the penalty term 1
2
(
∑M

m=1 ‖
−→wm‖2)2 and the

training misclassification error
∑N

i=1 ξi. The penalty term has a blocked l1 norm

which means within each kernel, it penalizes the l2 norm of the boundary parameter

−→wm and among different kernels it penalizes the l1 norm which is a linear sum of

all the l2 norms. It is well-known that l1 norm penalty has a nice sparsity property,

which means ηm = 0 for some m ∈ {1, . . . ,M}. If feature m is informative about

the class label, ηm will be strictly positive. If feature m is not informative about

the class label, ηm will be set to 0 which means the final classifier will not use any

information in the kernel m. This sparsity property can be used as a feature selection

tool which will increase the performance of classifier and also identify the informative

local regions for structural MRI data.

Both the traditional SVM and the MKL SVM are multivariate approaches since

both decision boundaries contain the information from multiple variables. There is a

list of similarities between the two methods. We put the notation and the formula of

SVM and MKL SVM in Table 3.1 for comparison.

The difference is that MKL SVM combines the information from different variables
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at the kernel levels through the kernel weights while the traditional SVM combines

the information from different variables at the feature levels through the original data.

The benefit for combining at the kernel level is that it allows the algorithm to search

the optimum classifier over different kernels which may capture different structures

of the data. Moreover, the kernel weights of the uninformative kernels will be set to

0 in MKL case. So MKL can distinguish the informative features from uninformative

ones more efficiently than the traditional SVM. This suits for the high dimensional

data with only few informative variables and lots of noises. This sparsity property

is one of the main reasons that the MKL SVM usually outperforms the traditional

SVM in the analysis of brain image data.

3.3.3 Toy Example

We use a toy example to illustrate the relation between MKL classifier and its

sub-classifiers based on individual kernels. We generate 40 data {(Xi, Yi)}40i=1 where

subjects 1, . . . , 20 are patients with Yi = 1 and subjects 21, . . . , 40 are healthy controls

with Yi = −1. There are two variables Xi = {xi1, xi2}. For subject i = {1, . . . , 10},

the first variable xi1 follows a normal distribution with mean 3 and standard deviation

1 and the second variable xi2 follows a normal distribution with mean−3 and standard

deviation 1. These are the red dots in the lower right of figure 3.2 and figure 3.3. For

subject i = {11, . . . , 20}, the first variable xi1 follows a normal distribution with mean

−3 and standard deviation 1 and the second variable xi2 follows a normal distribution

with mean 3 and standard deviation 1. These are the red dots in the upper left of

figure 3.2 and figure 3.3. For subject i = {21, . . . , 40} in the control group, both

variables follow a normal distribution with mean −3 and standard deviation 1. These

are the green dots in the figure 3.2 and figure 3.3. In this setting, each variable can

only distinguish 10 patients from the healthy controls. So if we design one linear kernel

on a single variable and train a SVM classifier based on that individual variable, we
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can not get a good performance. The second and the third figures in figure 3.2

show the classifier of the SVM on the first and the second variable separately. The

decision boundary for SVM on the first variable is 0.3753 ∗ x1 + 0.1990 = 0 which

is the middle line in the second figure in figure 3.2. The right and left lines are

0.3753 ∗ x1 + 0.1990 = ±1 which are the margins. The decision boundary for SVM

on the second variable is 0.3591 ∗ x2 + 0.2371 = 0 which is the middle line in the

third figure in figure 3.3. The right and left lines are the margins. The classifier

based on first variable only distinguishes the subject i = 1, . . . , 10 while the classifier

based on second variable only distinguishes the subject i = 11, . . . , 20. So SVM on

an individual variable does not perform well. But if we combine the two kernels

together, the MKL algorithm will give none zero weights to both kernels and find

the best classifier as a linear combination of both sub-classifiers. In this way, the

MKL can not information from both variables. The figure 3.3 shows the result of

MKL SVM. The first figure and the second figure show the sub-classifiers based on

the first and the second variable by MKL SVM separately. The parameter of the

decision plane in the space of the first variable is w1 = 0.8118 and the parameter of

the decision plane in the space of the second variable is w2 = 0.7962. The intercept

w0 = 1.2252. So the decision boundary for the first sub-kernel is d1(x1) = w1 ∗

x1 + w0 = 0.8118 ∗ x1 + 1.2252 = 0 and the decision boundary for the second sub-

kernel is d2(x2) = w2 ∗ x2 + w0 = 0.7965 ∗ x + 1.2252 = 0. We can see individually,

these sub-classifiers from the MKL SVM do not perform better than the SVM on

an individual variables. However, the multiple kernel classifier combining the two

sub-classifiers can achieve a clean separation of the two groups. The weights of the

first sub-classifiers are η1 = 0.4767 and η2 = 0.5233. So the final decision plane is

η1∗d1(−→x 1)+η2∗d2(−→x 2)+b = 0.4767∗0.8118∗−→x 1+0.5233∗0.7965∗−→x 2+1.2252 = 0.

This is the blue line in the middle the third figure in figure 3.3. So in this toy example,

we can see the if individual variables only hold part information about the structure of
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the data, MKL can gather the information together by combining the sub-classifiers

based on individual variables. It can learn the kernel weights efficiently to get a

classification performance.

Figure 3.2: Decision boundaries for single kernel SVM

Figure 3.2 shows the decision boundaries for single kernel SVM. The first figure is

the simulated data. The red dots are the patients and the green dots are the healthy

controls. The patients split into two sub-groups, one is in the upper left and another

is in the right bottom of the figure. The second figure and the third figure show

the classifier by SVM on the first variable and the second variable separately. The

blue lines in the middle from both figures are the decision boundary by SVM on each

variable. The right and left lines are the margins for different groups.

Figure 3.3: Decision boundaries for MKL

Figure 3.3 shows the decision boundary for MKL SVM. The first figure is the sub-

classifier of the first variable by MKL SVM. The second figure is the sub-classifier

of the second of the second variable by MKL SVM. The third figure is the final

classifier on both variables by multiple kernel SVM. The final classifier by MKL is

a linear combination of different kernels, in this case different variables. In this toy
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example, each kernel was build on an individual variable, both the MKL SVM and

traditional SVM use a straight line in a two dimension space to separate the two

groups. However, in high dimension problem, especially when individual kernel was

build on several variables, these two methods will show significant difference because

of the sparsity property of the multiple kernel algorithm.

3.4 Simulation

In this section, we test the two-step procedure on simulated data sets. Taking

both the localization and integration properties of the brain, we design several lo-

calized informative regions scattered among some noninformative regions on a two

dimensional image. Informative regions are the ones can distinguish the patients from

the healthy controls while the noninformative regions can not. We put four distant

information regions to see firstly if the multiple kernel learning can pick the signifi-

cant ones from the others and further gain the strength by combining the information

regions together. Also based on the real data, we add spatial correlation in both the

informative and noninformative regions and test how different levels of correlation

can influence the multiple kernel learning results. Another important issue is that

the brain image data is notorious for its lower signal to noise ratio. So different levels

of white noises are tested for multiple kernel learning. We compare the classification

error of the two-step procedure to the individual kernel learning in different settings

to see how different parameters influence the performance.

3.4.1 Simulation Framework

We generate our data as a 50 × 50 image. Let µpat ∈ R50×50 represent the mean

image of the patient group and µcon ∈ R50×50 represent the mean image of the control

group. The mean image is designed to be a weighted sum of a background image

which is the same for both groups and a informative image which is different for two
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groups. The informative image has nonzero values on the informative regions and zero

everywhere else. Let µback ∈ R50×50, µpatinf ∈ R50×50 and µconinf ∈ R50×50 represent the

background image, the informative image of the patient group and the informative

image of the control group separately. Then the mean image can be expressed as

following:

µpat = (I− ω) ∗ µback + ω ∗ µpatinf ,

µcon = (I− ω) ∗ µback + ω ∗ µconinf ,

where I is a 50× 50 matrix with all entries 1.

The background image µback is generated from a Gaussian field with mean 0:

µback ∼ GF(0,Σback).

Σback is a 250 × 250 covariance matrix. For pixels Pi1,j1 and Pi2,j2 ({i1, j1, i2, j2} ⊂

{1, . . . , 50}), the correlation Σback(Pi1,j1 , Pi2,j2) is a function of the distance between

them:

Σback((i1, j1), (i2, j2)) = exp(−
√

(i1 − i2)2 + (j1 − j2)2/Cback),

where Cback is the parameter controlling the level of correlation in the background

image. As Cback decreases, the correlation levels in the background image decreases

exponentially.

The informative images µpatinf and µconinf contain the group information with nonzero

values only on the informative regions and zero everywhere else. The size and the

location of the informative regions are fixed, shown in Figure 3.4. The nonzero values

within each informative regions are generated from Gaussian fields. Let µpatinf,t and

µconinf,t be one of the four informative regions in the mean image for patient and control
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Figure 3.4: The location of informative regions in the mean image. The white regions
near four corners are the informative regions. The black regions are the
noninformative regions.

groups, each region is generated separately:

µpatinf,t ∼ GF(µ0 ∗ I, σ2
inf ∗ Σinf ),

µconinf,t ∼ GF(−µ0 ∗ I, σ2
inf ∗ Σinf ),

where I is a vector with all entries 1. µ0 is the mean value of the Gaussian field used

to generated the informative regions. σ2
inf is the level of fluctuation across different

pixels in the informative regions. Σinf is the correlation matrix of the informative

regions. The correlation between two pixels in the informative regions is also defined

as a function of the distance:

Σinf ((i1, j1), (i2, j2)) = exp(−
√

(i1 − i2)2 + (j1 − j2)2/Cinf ),

where Cinf controls the level of correlation in the informative regions.

ω ∈ R50×50 is the weight matrix, controlling the proportion of the contribution

from the background image and the informative images. To get a smooth boundary

of the informative regions, we use a two dimension parabolic function for ω as shown

69



in the left figure of Figure 3.5. The right figure of Figure 3.5 shows the weight image

ω.

Figure 3.5: Weight function and weight image of ω. Left: the parabolic weight func-
tion. Right: the weight image ω. ω is close to 1 in the center of the
informative regions and decrease as approaching the boundary.

Let Xpat and Xcon represent the data of the patient group and the control group.

Each observation is the mean image of the corresponding group plus white noise ε.

Xpat = µpat + ε,

Xcon = µcon + ε,

where ε ∈ R50×50 is the noise image, εi,j ∼ N (0, σ2
noi) is independent across different

subjects and different pixels. Parameter σ2
noise controls the level of white noise.

In the framework described above, there are five parameters in the model to

simulate the data. Parameters µ0, σinf and σnoise control the signal to noise ratio

in the image. Parameters Cinf and Cback control the correlation level in the image.

We try different values for these parameters to see how they change the classification

error rate.

3.4.2 Two-Step Procedure

30 50× 50 images from each group are generated to fit a two-step multiple kernel

learning classifier. A total of 60 images are split into 36 training images, 12 validation
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images and 12 test images. Every 50 × 50 image is divided into 100 non-overlapped

5× 5 regions. Each informative regions have overlapped pixels with four neighboring

regions. For each generated data set, {xcon1 , . . . , xcon30 , x
pat
1 , . . . , xpat30 }, we leave 12 sub-

jects aside as test data. And then the rest are split into 12 validation data and 36

training data. A single kernel SVM is applied to each individual region on the training

set and test on the validation data. This validation and test splitting are repeated 50

times to get a mean validation error rate for each individual region. At the second

step, we apply a multiple kernel SVM on the top K regions with the lowest validation

error to get a final classifier. This classifier is trained on the training and validation

data and then test on the test data. This testing splits are also repeated 50 times

to get a mean test error rate for the multiple kernel classifier. We test the multiple

kernel classifier under different values of K. And finally we compare the multiple

kernel classifier to the best individual region in terms of their test errors to see if

combining several regions can outperform the individual classifier. The procedure is

put in a flow chart in Figure 3.6.
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Figure 3.6: The float chart of the method. 60 subjects are divided into test set (12
subjects), training set (36 subjects) and validation set (12 subjects). At
the first step, a single kernel SVM is trained on each region of the training
set and tested on the validation set. The training and validation splits
are repeated 50 times to get an average validation error rate for each
region. At the second step, a multiple kernel learning is applied to the
top K regions with the lowest validation errors to get a final classification
error rate. The multipel kernel classifier is trained on the training and
validation sets together and then test on the test sets. The test set splits
are repeated 50 times to get an average error rate for the multiple kernel
learning.
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3.4.3 Result

This section shows the results of multiple kernel learning in different scenarios. We

exam how each parameter can influence the test error of the multiple kernel classifier

and compare the results to the single kernel classifier.

1. σnoise

σnoise is the standard deviation of white noise ε. The larger the σnoise, the

smaller the signal to noise ratio. Figure 3.7 shows the data images of both

patient and healthy control groups under different values of σnoise. From Figure

3.7, we can see that µcon and µpat are smooth images with different values in

the informative regions and same values any where else. When σnoise = 0.1,

the data images are almost the same as mean images. When σnoise goes up to

2, the data images are like random noises and the difference in the informative

regions are masked by white noises. All the other parameters used to generated

the data are fixed µ0 = 0.05, σinf = 0.05, Cback = 2 and Cinf = 1.

Figure 3.7: The mean images and the data image of different σnoise. From left to
right, σnoise = 0, 0.1, 0.7 and 2. The images in the first row are healthy
controls and the lower rows are patients.

The increase in the σnoise has a direct effect on the misclassification error of

single kernel classifiers. Table 3.2 shows the validation error of the best 5 regions
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for different values of σnoise. For σnoise = 0.1, the best individual region can

provide enough information about the two groups and achieve an error rate lower

than 0.01. When σnoise = 2, the best individual region can only get a classifier

with validation error around 0.35. So as σnoise increases, the informative regions

are masked by the white noises and behave more like noninformative regions.

σnoise 1 2 3 4 5
0.1 0.0001 0.0001 0.0001 0.0001 0.0001
0.5 0.18262 0.2214 0.24825 0.26758 0.29445
0.7 0.2727 0.29957 0.32458 0.34242 0.35642

1 0.33575 0.3491 0.36653 0.37777 0.38767
2 0.35413 0.37878 0.38788 0.39303 0.40485

Table 3.2: The validation error of the 5 best regions for different σnoise

We then train the multiple kernel learning classifier on the best regions selected

in the single kernel classification step. Figure 3.8 plots the results of multiple

kernel learning against different values of σnoise. As σnoise increases, the error

rate also increases for all the multiple kernel classifiers. For σnoise = 0.1, the

multiple kernel classifier can achieve a perfect split with 0 misclassification error.

For σnoise = 2, the multiple kernel classifier is like random guess with an error

rate around 0.5. This is may because single kernel SVM can not choose the

right regions for the multiple kernel learning or simply that the multiple kernel

learning can not gain much strength when signal is too weak comparing to

the noise. For a fixed value of σnoise, including more regions gives a better

classifier than not including enough. As the number of regions for multiple

kernel learning exceeds the number of the informative regions, the performance

doesn’t get worse. From Figure 3.8, we can see the misclassification error rate

for N = 30, 50, 70 and 100 are almost the same for different values of σnoise.

This shows the multiple kernel can distinguish the informative regions from the

noninformative regions and put weights on the right ones.
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Figure 3.8: Multiple kernel learning results for different σnoise. Different lines in the
figures represent different numbers of top regions used in the multiple
kernel learning. In the legend from the top to the bottom, the red line,
blue line, green line, magenta line, black line, cyan line, and yellow line
correspond to N = 1, 5, 15, 30, 50, 70 and 100, separately.

Figure 3.9 shows the kernel weights map for multiple kernel learning taking

N = 100. We can see when σnoise = 0.1, there exists a clear difference between

the informative regions and noninformative regions. The multiple kernel weights

are all on the sixteen squares which overlap the informative regions. And when

σnoise = 2, the difference between two types of regions are small comparing to the

noise level and the weights are more uniformly distributed for both informative

and noninformative regions.

Figure 3.9: Region weight map for different σnoise. From the left to right, the figures
are the average region weights for σnoise = 0.1, 0.7 and 2. All the weights
are scaled to be in [0, 1] for each map.
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2. µ0

µ0 is the mean of the Gaussian process used to generate the values in the

informative regions. The larger the µ0, the bigger the difference between two

groups. Figure 3.10 shows the informative regions of both groups for different

values of µ0. As µ0 increases, the difference in the informative regions between

two groups becomes more distinguishable. When µ0 = 0, the informative regions

of both groups come from the same Gaussian distribution. When µ0 = 0.5,

the difference in the informative regions becomes very obvious. All the other

parameters used to generate the data are fixed σnoise = 0.05, σinf = 0.05,

Cback = 2 and Cinf = 1.

Figure 3.10: Images of the informative regions for different µ0. From left to right,
µ0 = 0, 0.07 and 0.5. The first row is the control group and the second
row is the patient group.

Table 3.3 shows the individual validation error rate of the best 5 regions for

different values of µ0. As µ0 increases from 0 to 0.5, the best misclassification

error rate drops from 0.3 to around 0.016. When µ0 = 0, the best individual

regions perform better than random guess.

Figure 3.11 plots the multiple kernel test errors against the different values of
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µ0 1 2 3 4 5
0 0.29535 0.31522 0.33032 0.34652 0.3572

0.02 0.2845 0.3106 0.33137 0.34795 0.35857
0.07 0.26 0.29342 0.32065 0.34005 0.35658
0.1 0.24293 0.28077 0.31225 0.32565 0.3469
0.5 0.01605 0.034925 0.046775 0.066675 0.07645

Table 3.3: The validation error of the 5 best cubes for different µ0

µ0. Different lines in the figure represent different numbers of regions used in

the multiple kernel learning. The test error is a decreasing function of µ0. When

µ0 = 0, the multiple kernel learning error is around 0.42 for N = 1 and 0.25

for N ≥ 30. When µ0 = 0.5, the test error is 0 no matter how many regions

are used. This shows that if single kernels perform well enough, then multiple

kernel classifier does not need to include all the informative regions in the second

step to get a good performance. When individual regions do not perform well

enough, including all the informative regions will result in a lower error rate.

Once N ≥ 30, the error rates stay the same as N increases. This shows when

the multiple kernel classifier has all the informative regions, including more

noninformative regions won’t have much effect on the performance.

Figure 3.12 shows the multiple kernel weights map for different levels of µ0 for

N = 100. We can see when µ0 = 0, the multiple kernel classifier selects some

noninformative regions besides the informative regions. As µ0 increases, the

weights are all on the informative regions. This agrees with the misclassifica-

tion error rate results in Figure 3.11. Less noninformative regions in the final

classifier gives a lower error rate.
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Figure 3.11: Multiple kernel learning results for different µ0. Different lines in the
figures represent different numbers of top regions used in the multiple
kernel learning. In the legend from the top to the bottom, the red line,
blue line, green line, magenta line, black line, cyan line, and yellow line
correspond to N = 1, 5, 15, 30, 50, 70 and 100, separately.

Figure 3.12: Region weight map for different µ0. From left to right, µ0 = 0, 0.07 and
0.5 and all the weights are rescaled between 0 and 1.
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3. σinf

σinf controls the variance level in the informative regions. The larger σinf gets,

the larger the difference between the two groups becomes. Figure 3.13 shows

the informative regions of the both groups for different values of σinf . The figure

shows as σinf increases, the differences between the two groups become more

obvious. All other parameters used to generate the data are fixed σnoise = 0.7,

µ0 = 0.05, Cback = 2 and Cinf = 1.

Figure 3.13: Images of the informative regions for different σinf . The first row are the
images of control group and the second row are the images of patient
group. From left to right σinf = 0.02, 0.1 and 1.

Table 3.4 shows the validation error rate of the 5 best regions for different levels

of σinf . As σinf increases, the error rate goes down. When σinf is 0.02, the best

individual region gives an error rate around 0.33. As σinf increases to 1, the

best error rate goes down lower than 0.01.

Figure 3.14 shows the results of multiple kernel learning against different values

of σinf for N = 100. When σinf is 0.02, the multiple kernel learning error

rates are also very high, around 0.5 for N = 1 and 0.4 for N ≥ 30. The

differences among different number of regions are small. As σinf increases to
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σinf 1 2 3 4 5
0.02 0.33168 0.35352 0.3689 0.37988 0.387
0.05 0.27243 0.30615 0.32195 0.34402 0.3573
0.1 0.19122 0.23598 0.25865 0.28362 0.30625
0.5 0.0171 0.03555 0.05215 0.06735 0.0807

1 0.00025 0.001675 0.006175 0.011675 0.0189

Table 3.4: The validation error of the 5 best regions for different σinf

0.1, the multiple kernel classifier begins to perform significantly better than

the individual one, improving the misclassification error rate by 50% percent.

As σinf goes above 0.5, the multiple kernel classifiers can get almost perfect

splits for all values of N . This shows that when the signal is very weak, both

individual and multiple kernel classifiers can not perform well. The benefit of

combining different kernels is very limited. As the signal to noise ratio becomes

higher, the multiple kernel classifier begins to perform significantly better than

individual one. And when the signal becomes so strong that the individual

kernel classifier can perform well, the misclassification error rates from both

single kernel and multiple kernel classifiers converges to 0.

Figure 3.15 compares the weights map for different levels of σinf . When σinf =

0.01, the multiple kernel learning selects some noninformative regions. As σinf

goes up to 1, the weights are only concentrated on a few informative regions.
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Figure 3.14: Multiple kernel learning results for different σinf . Different lines in the
figures represent different numbers of top regions used in the multiple
kernel learning. In the legend from the top to the bottom, the red line,
blue line, green line, magenta line, black line, cyan line, and yellow line
correspond to N = 1, 5, 15, 30, 50, 70 and 100, separately.

Figure 3.15: Region weight map for different σinf . From the left to right are weight
maps of σinf = 0.02, 0.1 and 1 for N = 100. All the weights are rescaled
between 0 and 1.
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4. Cback

Cback is the parameter controlling the spatial correlation level in the background

image. Figure 3.16 shows the background images for different values of Cback.

As Cback increases, the background images become more smooth with higher

spatial correlation. All other parameters used to generate the data are fixed

σnoise = 0.7, σinf = 0.05, µ0 = 0.05 and Cinf = 1.

Figure 3.16: Background images for different Cback. From left to right Cback = 0.1, 1
and 5.

Table 3.5 shows the individual validation error rates of the 5 top regions for

different values of Cback. Since Cback controls the correlation level in the back-

ground image, it is not directly related to the difference between two groups.

Table 3.5 shows for different levels of correlation, the best individual validation

error rates are about the same level around 0.27.

Cback 1 2 3 4 5
0.1 0.27843 0.3069 0.3241 0.34227 0.35702
0.5 0.2741 0.31152 0.32932 0.33908 0.3543
0.7 0.2737 0.302 0.32475 0.34265 0.35885

1 0.2729 0.305 0.32545 0.34368 0.35627
2 0.2731 0.30065 0.32495 0.34845 0.36175

Table 3.5: The validation error of the 5 best regions for different Cback

Figure 3.17 plots the results of multiple kernel classification error rates against

different levels of Cback. It shows that as Cback increases, the single kernel
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classifier decreases from around 0.39 to 0.36 while the multiple kernel learning

errors increase from 0.21 to 0.27 for N larger than 30. When Cback is small,

little spatial correlation in the background image, the multiple kernel learning

outperforms the single kernel learning by reducing 45% of the classification

rate. As Cback increases, the differences between the multiple kernel learning

and single kernel learning become smaller.

Figure 3.17: Multiple kernel learning results for different Cback. Different lines in the
figures represent different numbers of top regions used in the multiple
kernel learning. In the legend from the top to the bottom, the red line,
blue line, green line, magenta line, black line, cyan line, and yellow line
correspond to N = 1, 5, 15, 30, 50, 70 and 100, separately.

Figure 3.18 compares the weight maps for different levels of Cback for N =

100. When Cback = 0.01, the multiple kernel weights are all on the informative

regions. As Cback increases, the weights are more scattered among both the

informative regions and the noninformative regions. This result is consistent

with the classification error results in Figure 3.17. As Cback increases, it is

harder to distinguish the informative regions from the noninformative regions.
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Figure 3.18: Region weight map for different Cback. From the left to right, Cback =
0.01, 2 and 10 and all the weights are scaled to be in [0, 1].

5. Cinf

Cinf is the parameter controlling the spatial correlation in the informative im-

ages. The larger the Cinf gets, the stronger the spatial correlation in the infor-

mative regions is. Figure 3.19 shows the informative regions of both the control

and patient groups for different values of Cinf . When Cinf = 0.1 the informative

regions are more like independent values while the informative regions in the

last column are more like constants. All other parameters used to generate the

data are fixed σnoise = 0.7, µ = 0.05, σinf = 0.05 and Cback = 2.

Figure 3.19: Images of the informative regions for different Cinf . From left to right
Cinf are 0.1, 1, and 5. The upper row are the images of control group
and the lower row are the images of patient group.
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Table 3.6 shows the validation error rate of the top 5 regions for different values

of Cinf . The individual error rate decreases as Cinf increases. When Cinf = 0.1,

there exists little correlation in the informative region. The best error rate is

around 0.3. As Cinf increases to 5, the error rate goes down to around 0.21.

Cinf 1 2 3 4 5
0.1 0.30427 0.31528 0.33615 0.3502 0.36245
0.5 0.29708 0.31465 0.33422 0.3426 0.35562

1 0.27237 0.30173 0.32223 0.34443 0.35665
2 0.23515 0.28643 0.3154 0.33307 0.35442
5 0.21322 0.25653 0.29278 0.33255 0.34942

Table 3.6: The validation error of the 5 best regions for different Cinf

Figure 3.20 plots the results of multiple kernel classification against different

levels of Cinf . As Cinf increases, the multiple kernel error decreases. For Cback =

0.1, the multiple kernel learning test error rate is 0.43 for N = 1 and 0.27 for

N ≥ 30. As Cback increases to 5, the test error rate is 0.26 for single region and

around 0.2 for more than 30 regions.

Figure 3.21 compares the weight maps for different levels of Cinf for N = 100.

As Cinf increases, the weights are more concentrated on the informative regions

which reduces the multiple kernel error rate. A high value of Cback creates more

correlation in the informative regions and enhances the differences between the

two groups. So a large Cback makes the informative regions more distinguishable

from noninformative regions.
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Figure 3.20: Multiple kernel learning results for different Cinf . Different lines in the
figures represent different numbers of top regions used in the multiple
kernel learning. In the legend from the top to the bottom, the red line,
blue line, green line, magenta line, black line, cyan line, and yellow line
correspond to N = 1, 5, 15, 30, 50, 70 and 100, separately.

Figure 3.21: Region weight map for different Cinf . From left to right Cinf = 0.1, 1
and 5.
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3.5 Real Data Analysis

In this section, we modified our two-step procedure proposed in section 3.4.2 and

tested it on four brain image data sets. The goal was to to classify the patients and

healthy controls using only the whole-brain anatomical magnetic resonance images.

We started from building linear kernel on small regions in the brain and then combin-

ing them in the multiple kernel learning step. Section 3.5.1 introduced four data sets

of different diseases and the preprocessing steps on the scans. Section 3.5.2 explained

the two-step procedure in details, including brain parcellation, training and test split,

first-step single-kernel SVM and the multiple kernel step. Section 3.5.3 presented the

results of the two-step procedure on different levels. We compared the results between

the linear kernel and Gaussian kernel and tried different dimension reduction methods

to achieve a better classifier. In addition to the performance of the classifiers, we also

presented the significant regions using different kernels and features.

3.5.1 Data and Preprocessing

In this work, we used four data sets to test the multiple kernel classifier on dif-

ferent kernels and features. The data sets were Alzheimer’s disease, mild cognitive

impairment, Systemic Lupus Erythematosus disease and chronic pelvic pain disease.

Alzheimer’s disease and Mild Cognitive Impairment Alzheimer’s disease

(AD) is the most common form of dementia and the sixth-leading cause of death in

the United States. It is the leading cause of dementia which usually causes symptoms

such as confusion, irritability and aggression, mood swings, trouble with language,

and long-term memory loss. Mild cognitive impairment associated with an increased

risk of conversion to AD (Petersen et al., 1997) is considered as a prodromal state of

AD (Schroeter et al., 2009). Recently, there are lots of studies showing that besides

neuropsychological examination, structural images of the brain can support the diag-
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nosis of the AD and MCI. We tried to follow this approach, designing a classifier that

could help in the clinical diagnosis. The data used here were from the Alzheimer’s dis-

ease Neuroimaging Initiative (ADNI) database (Mueller et al., 2005) which provided

a generally accessible data repository to assist the research of Alzheimer’s disease and

MCI disease. We obtained 58 healthy subjects, 80 MCI patients and 36 Alzheimer’s

patients from ADNI.

Systemic Lupus Erythematosus Systemic lupus erythematosus disease (SLE)

is an autoimmune disease which presents a wide range of symptoms, such as fever,

malaise, joint pains, myalgias, fatigue, and temporary loss of cognitive abilities. Since

these symptoms are so often seen with other diseases, SLE still presents very difficult

diagnostic challenges. It is reported that subtle changes in regional brain structure

are often observed for SLE patients. Brain image, especially MRI, is frequently used

as a routine investigation. Here, we collected 18 SLE patients along with 19 healthy

controls which were matched to the patients in terms of age, gender and education

levels. None of the patients had Neuropsychiatric systemic lupus erythematosus and

No cerebral atrophy was found in patient brain. A visual assessment of the brain

didn’t reveal any significant differences between two groups. A detailed description

of the data can be found in Cagnoli’s paper (Cagnoli et al., 2012). We applied

machine learning method on SLE data to see if the quantitative method could discover

anything that visual examination failed to find out.

Chronic Pelvic Pain Chronic pelvic pain (CPP) is defined as ”non-cyclic pain of

6 or more months” duration that localizes to the anatomic pelvis, anterior abdominal

wall at or below the umbilicus, the lumbosacral back, or the buttocks, and is of suffi-

cient severity to cause functional disability or lead to medical care (ACOG Committee

on Practice Bulletins–Gynecology., 2004). As in other chronic pain diseases, CPP is

not only associated with the presence of peripheral pathology but also related to the
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Figure 3.22: Preprocessed image

central nervous system which may amplify the pain processing. Therefore, MRI scans

might help in understanding the pathogenesis of CPP (As-Sanie et al., 2012). We ex-

amined changes in the brain image for CPP patients to build the connection between

CPP and pain matrix. The data used here is from department of Obstetrics and Gy-

necology, University of Michigan. A detailed description of the data can be found in

(As-Sanie et al., 2012)In this study, we had 17 women with endometriosis-associated

CPP and 25 healthy controls.

Preprocessing The data used were all T2-weighted images of the whole brain.

Only the first images were used if there were multiple images of the same subject ac-

quired at different times. The preprocessing of the data involved both linear and non-

linear registration, mapping the images to the stereotactic space defined by the Mon-

treal Neurological Institute (MNI; www.loni.ucla.edu/ICBM/ICBM Databases.html).

After registration step, all images were smoothed by convolving with an isotropic

Gaussian kernel of 10 mm full-width at half maximum (FWHM). Figure 3.22 shows

a preprocessed scan of a healthy subject.

3.5.2 Methods and Algorithm

For anatomical image, a single scan usually contains hundreds of millions of voxels.

The amount of noise voxels is much larger than the informative voxels. Traditional

SVM classifier does not perform well since it treats all voxels as a long vector and the
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noise voxels will mask the informative voxels. One solution to this is using features

particular to the problem, such as using voxels in a particular region of interest (ROI)

other than the whole brain or using some model statistics other than the original voxel

values. But this feature selection prior to applying a classification method needs

expertise information about the underlying problem and may be subject to selective

bias. However if we don’t have this extra information, we need a systematic and

automatic way to select the important features. Since the multiple kernel learning

can distinguish the important kernels from the uninformative one through learning

the kernel weights ηm, we can design different kernels on different local regions to

select the significant regions. In addition to a better classifier with high accuracy,

we also can identity the significant regions corresponding to the disease through the

multiple kernel learning method.

In this study, we only used the voxels in the gray matter which were defined as

any voxels with values above 0.1. The ideal situation is to design one kernel on all

voxels that contain similar information about the class label and have different kernels

on regions that demonstrate different aspects of the data structure. The localized

individual kernels gather the information of several similar voxels to enhance the signal

to noise ratio and the multiple kernel learning combines different local information

together to get a better classifier. In reality, it is hard to segment the regions into

local functional regions. As voxels physically close are tend to belong to the same

functional regions, we segmented the gray matter of the whole brain into smaller non-

overlapped regions and built a linear kernel on each region. This segmentation greatly

reduced the dimension of the original problem. Since most regions do not contain

valuable information and the multiple kernel learning can not handle large amount of

kernels, we used individual SVM to select the significant regions for multiple kernel

learning analysis.

We now described the two-step procedure that was applied to the data. We
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were given a classification problem with Np patients and Nc healthy controls. For

evaluation purpose, 15% subjects from each group were left out from each group

to test the final multiple kernel classifier. The remaining data were divided into

individual validation set with 15% subjects from each group and individual training

set with 70% subjects from each group. At the first step, a traditional SVM was

applied to each individual region, trained on the individual training data and testing

on the validation data. This gives us an accuracy map of the whole brain. Then M

significant regions with the lowest error rates were chosen based on their individual

error rates to further break down into smaller cubes of 5× 5× 5. And then a single

SVM was applied to each cube to get a validation error rate for the each cube in those

M regions. At the second step, a multiple kernel learning was applied to the top K

cubes with the lowest error rate, training on the training data and then testing on the

test data set. The test and training split were repeated 300 times to produce a mean

classification error rate of the two-step procedure. In addition to the classifier, we

also had a weight map of the top K cubes in each split. We averaged over 300 splits

to get a weight map of the cubes with lowest individual error rates. This procedure

is explained in figure 3.23.
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Figure 3.23: The float chart of the method. The data are divided into testing set
(15%), validation set (15%) and training set (70%). At the first step, a
single kernel SVM is applied to each individual region, trained on the
training set and tested on the validation set. The training and test splits
are repeated 50 times to get an average of validation error rate for each
region. Then the top M regions with the lowest error rates are divided
into 5 × 5 × 5 cubes. A single kernel SVM procedure is again trained
on each cube to get a validation error rate for all the cubes in the top
regions. At the second step, a multiple kernel SVM is trained on the
top K cubes in those M regions to get a final classifier. The multiple
kernel error rate is found by training on the training and validation sets
together and testing on the test sets.
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3.5.3 Results

In this section, we presents the results of the two-step procedure to the four

data sets. We examined the performance of multiple kernel classifier mostly on two

aspects, the misclassification error rate and the identified significant regions. We

further improve the classifier by considering different challenges of the problems, such

as feature selection, kernel selection and tuning parameter selection.

Regions

At the first step, each scan was first divided into functional regions according to

MNI brain atlas (Tzourio-Mazoyer et al., 2002). Then a single linear kernel SVM was

trained on each regions. The result is a region error map with an error rate for each

region. Figure 3.24 shows the region error map for SLE data.

Figure 3.24: Individual region error map of SLE data. The three figures are 2-
dimensional cross-sections through a voxel in the brain labeled by a
cross in the figures. From left to right are the sagittal view, the coronal
view and the axial view separately. The color represents the misclassifi-
cation error rate on the validation set. The region with the darkest color
and point by the cross is the left thalamus.

From Figure 3.24, we can see most regions have classification error rates around

0.5. Only a few regions show error rates significant lower than random guess. Left

thalamus shows a lower error rate of 0.2851. It is observed that significantly smaller

thalamic volumes happened in SLE patients when compared to healthy controls (Ap-

penzeller et al., 2009). Left supplementary motor area also has a lower error rate
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of 0.2973 and it is shown to be related to the pain caused by the SLE disease.

Parahippocampal and precuneus regions also show lower-than-average classification

error rates comparing to other regions in the brain. Both regions have been reported

in the diagnosis of SLE literature. Parahippocampal regions are found significant in

SLE in the work by (Cagnoli et al., 2012) and precuneus regions are related to the

memory impairment of the SLE patients (Oh et al., 2011).

Figure 3.25: Individual region error map of AD data. The three figures are 2-
dimensional cross-sections through a voxel in the brain labeled by a cross
in the figures. From left to right are the sagittal view, the coronal view
and the axial view separately. The color represents the misclassification
error rate on the validation set. The region labeled by the cross in the
figures is the hippocampal regions. The region with the darkest color
under hippocampal in the first figure is the parahippocampal region.

Figure 3.25 applied the same procedure to the AD data, showing the importance

of each region. For AD, the regions achieving the lowest error rates are left and right

parahippocampal with error rates of 0.2381 and 0.2752. Several studies report the

difference in parahippocampal regions between two groups (Van Hoesen et al., 2000).

And the left and right hippocampal regions also have error rates around 0.3. Change

in hippocampal’s volume is also reported to be a sensitive marker for pathological

AD stage (Gosche et al., 2002).

Figure 3.26 shows the region error map for MCI. For MCI data, some significant

regions are the same as in the AD case, such as parahippocampal regions and hip-

pocampal regions. But the regions’ individual error rates are higher than the ones

in AD, with error rates around 0.35. The right amygdala region shows a lower-than-
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Figure 3.26: Individual region error map of MCI data. The three figures are 2-
dimensional cross-sections through a voxel in the brain labeled by a
cross in the figures. From left to right are the sagittal view, the coronal
view and the axial view separately. The color represents the misclassifi-
cation error rate on the validation set. The region labeled by the cross
is the parahippocampal region.

average classification rate which was observed in other study (Pennanen et al., 2005).

Figure 3.27: Individual region error rate map of CPP. The three figures are 2-
dimensional cross-sections through a voxel in the brain labeled by a
cross in the figures. From left to right are the sagittal view, the coronal
view and the axial view separately. The color represents the misclassifi-
cation error rate on the validation set. The region labeled by the cross
is the left thalamus.

Figure 3.27 shows the regions error rate map for CPP using linear kernel SVM.

For CPP, the region achieving the lowest error rate is cerebellum region with an error

rate of 0.2808. There are several works suggesting the connection between cerebellum

and pain perception (Moulton et al., 2010). Both left and right thalamus regions have

error rates around 0.3. It is long known that the thalamus regions are part of the pain

matrix. These regions are also found to be related to CPP in other works (As-Sanie

et al., 2012).

95



Cubes

The region unit in the above analysis is usually a complicated structure with many

small functional areas. In this step, we segmented the regions further into smaller

cubes to identify finer areas that were associated with the disease. For each training

and validation split, we first trained an individual SVM on each region and then chose

the top K regions with the lowest individual classification errors. Each region was

then segmented into 5 ∗ 5 ∗ 5 mm non-overlapped cubes as described in section 3.5.2

and a single kernel SVM was built on each cube to get an error rate for each cube. All

SVM classifiers were trained on the training set and tested on the validation set. The

result was an error map of individual error rates for cubes in the significant regions.

Figure 3.28 showed the individual cube error maps for four data sets. From top to

bottom are the maps of SLE, AD, MCI and CPP data sets. From those figures we

can tell that the top cubes in the significant regions are clustered together rather than

scattered across the whole brain. This shows that the region error rates are stable

across different training and validation splits. The regions with lower classification

error rates in one training and validation split are more likely to be in the top K in

another split. So these cubes are picked for individual SVM more frequently than

others.

From the cube error maps, we can see that not all the voxels in the cube have

similar classification power. For SLE data, thalamus shows up as a significant region

in different training and validation splits. Most of the cubes in the thalamus are

picked as significant cubes but their average classification error rates range from 0.25

to 0.4. This means not all the parts in thalamus play the same role. In order to

identify significant areas with better spatial resolution, it is better to use a finer

unit than the regions defined by MNI brain atlas. For thalamus in SLE data, the

cube achieving lower classification error is in pulvinar nuclei in thalamus. And for

AD and MCI patients, the most significant cubes are in parahippocampal gyrus in
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parahippocampal region. For CPP, the cubes with the lowest classification error rates

are in putamen and thalamus.
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Figure 3.28: Cube error maps of the top cubes for four data sets. From top to bottom
are the maps of SLE, AD, MCI and CPP data sets. The three figures
are 2-dimensional cross-sections through a voxel in the brain labeled by
a cross in the figures. From left to right are the sagittal view, the coronal
view and the axial view separately. The figures show the top 100 cubes
with the lowest validation error rates in the top regions.
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Classification Error Rate

After the individual cube error maps, we selected the top K cubes with the lowest

classification error rates to build the MKL SVM. Let {−→xn1,−→xn2, . . . ,−−→xnM} be the set

of vectors on the top K cubes for subject n. −→xnk represents the vector of voxels in

the k-th cube of subject n. For MKL SVM, we built a single kernel on each cubes.

The linear kernel for cube k between subject i and j was defined as:

Hk(i, j) =< −→xik,−→xjk >

Then the final multiple kernel H(i, j) =
∑K

k=1 ηkHk(i, j) found the best linear combi-

nation of K kernels to maximize the optimization function (3.3). The multiple kernel

classifier was trained on the training and validation set together and tested on the

test set. The following table reports the classification error rate for four data sets

under different values of M and K. Tuning parameter C for SVM was 10.

Table 3.7 compares the results of traditional SVM method to the two-step proce-

dure. The first row in the Table 3.7 are the error rates of using single kernel SVM on

the whole brain. The rest of the results are the multiple kernel learning error rates

from the two-step procedure with M = 5. The results show that in all the four cases,

two-step procedure achieve an error rate lower than single kernel SVM. This confirms

C=10 SLE AD MCI CPP
SVM 0.516 0.4002 0.4311 0.4444

M = 5 K = 10 0.3995 0.3158 0.3659 0.3735
M = 5 K= 20 0.3935 0.3118 0.3700 0.3737
M = 5 K = 50 0.451 0.3729 0.4293 0.4944
M = 5 K = 100 0.423 0.3676 0.4322 0.4897

Table 3.7: MKL error rates of four data sets, M = 5. The first row is the result of
the traditional SVM, treating all the voxels as a long vector. The number
of top regions to get the small cubes is M = 5. The number of top cubes
in the final classifier is K = 10, 20, 50 and 100. The red color in each
column highlights the lowest classification error rate for each data.
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that the multiple kernel learning SVM can get a better performance by taking the

structural information into consideration.

Moreover, Table 3.7 shows that brain images have different classification power for

different diseases. AD is the easiest to classify with the lowest classification error rate

since it is a neurodegenerative disease which directly relates to the loss of the gray

matter in the brain. MCI is similar to AD but with weaker symptoms and signals.

So it is more difficult than AD. SLE has the highest classification error rate because

for the SLE data we had very few subjects to train the classifier. So it is very hard to

identify the true signal from the noise for such a high-dimension problem. Another

observation is that for a small number of regions (M = 5), adding more cubes in

the final multiple kernel analysis actually leads to a higher error rate. This means

different parts in the region are not the same and selecting the insignificant cubes in

the significant regions won’t improve the classifier.

We then compare the cases of M = 10 and K = 10, 20, 50, 100 to the classifier

of a single cube. Table 3.8 shows the MKL error rate for M = 10 for four data

sets. The first row is the error rate corresponding to M = 1 and K = 1 which

means at each test split, only the cube with the lowest validation error rate is used

for the classifier. Multiple kernel learning achieves a lower classification error than

single kernel classifier for all the four data sets and all the values of M . This shows

combining informative cubes together can give a more informative classifier.
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C=10 SLE AD MCI CPP

M = 1 K = 1 0.4138 0.3577 0.3982 0.4522
M = 10 K = 10 0.3885 0.318 0.3664 0.3633
M = 10 K = 20 0.3875 0.3150 0.3779 0.3622
M = 10 K = 50 0.3575 0.3226 0.3797 0.3764
M = 10 K = 100 0.3482 0.3325 0.3722 0.3811

Table 3.8: MKL error rates of four data sets, M = 10. The number of top regions
to get the small cubes is M = 10. The number of top cubes in the final
classifier is K = 10, 20, 50 and 100. The red color in each column highlights
the lowest classification error rate for each data. The first row is the test
error for single kernel SVM on the top cube with the lowest validation
error.

Dimension Reduction

Selecting top cubes from all the regions in the brain didn’t give a good classifier.

This was because of the high dimensionality of the brain image data and the small

sample size of the problem. The signals were weak comparing to noise and only in

few voxels. So it was very hard to pick up the signals from the whole brain using

only few training subjects. In order to solve this problem, we tried two different

approaches here to reduce the dimensionality of the problem. One was to do feature

selection. Instead of using the original signals, we used a vector as a very coarse

estimation of the density function of each cube. The kernel took the estimates of the

density function not the voxels values. So this method extracted new features from

the original data to reduce the dimension. Another solution was to start from a few

informative regions rather than all the regions in the brain. This method reduced the

dimension by borrowing extra information from expert knowledge. In this study, we

chose six informative regions for different disease according to the literature about

the disease.

Feature Selection For the feature selection method, we used an equally spaced

10-bin histogram to represent each cube. The features for the cube k was a vector
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−→z = {z1, z2, . . . , z10}, with
∑10

i=1 zi = 1. Since all the values were normalized between

0 and 1, zi was the proportion of voxels with signal values between 0.1 ∗ (i− 1) and

0.1 ∗ i. Then the kernels were built on −→z rather than original signal −→x .

Figure 3.29: Cube error maps of three data sets, using density feature. From the
top to the bottom are SLE, AD and MCI separately. First, each region
is represented by a 10-bin histogram of all its voxels and then a single
kernel SVM is trained on each region. Top M regions are selected to
further break down into small 5× 5× 5 cubes. Then each cube is again
represented by a 10-bin histogram of its voxels and an SVM is trained
on each cube. The figure presents the classification error rate of the top
100 cubes with the lowest error rates.

We repeated the two-step procedure taking density estimates as features instead

of original signal to produce another cube error map. Figure 3.29 shows the cube

error maps for the three data sets using density features. From the top to the bottom

are SLE, MCI and AD datasets. Comparing Figure 3.29 to 3.28, we can see there
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are some cubes showing significant in both Figures. Figure 3.29 also confirms the

thalamus regions for SLE data and parahippocampal regions for AD and MCI data

sets. It also reports some regions that are not identified by the classifier taking original

signals, such as the temporal regions in the SLE data. The selected cubes are more

scattered across the whole brain rather than concentrated in few regions as Figure

3.28.

After getting the top cubes, we trained a MKL on the top cubes, taking only the

density estimates. Table 3.9 shows the multiple kernel classification error for three

data sets using density as features. Comparing to Table 3.7, density features doesn’t

achieve a better classifier. For SLE data, the best error rate is around 0.38 while

using the original signal the error rate is around 0.34. For AD data, the best error

rate is around 0.35 for density features and the best error rate is around 0.31 for

signal features. For MCI, the error rate is higher than AD data, with a value around

0.38 for density features and a value around 0.36 for using original signal. This may

suggest that a 10-bin vector can not represent the density function of each kernel

well. AD is still the one with the lowest classification error rates and SLE data was

the one with the highest error rates.
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Density Feature Original Signal
C=10 SLE AD MCI SLE AD MCI

M=10 K=10 0.4455 0.3605 0.4038 0.3885 0.318 0.3664
M=10 K=20 0.4317 0.3658 0.3936 0.3875 0.3150 0.3779
M=10 K=50 0.4307 0.3599 0.3831 0.3575 0.3226 0.3797
M=10 K=100 0.411 0.3692 0.3787 0.3482 0.3325 0.3722

Table 3.9: Multiple kernel classification error rates of three data sets, using density
features. Each region was first represented by a 10-bin histogram and
then trained an SVM classifier to get a validation error rate map of the
regions. The top regions with the lowest error rates were broken down
into small cubes. Then each cube was represented by a 10-bin histogram
to train a single kernel SVM to get validation error map for the cubes.
The MKL SVM takes the 10-bins histogram of the top cubes to train a
classifier. The tables shows the classification error rate for both density
features and original signals. The red color highlights the lowest error rate
of each column.

Region Selection In this part, we focused our analysis on a few regions instead

of the whole brain. We choose six informative regions for each disease according to

the extra knowledge about the disease. The regions selected for SLE is left and right

thalamus ares, left and right supplementary motor areas and left and right precuneus

areas. The regions selected for AD is left and right parahippocampal areas, left and

right lingual areas and left and right precuneus areas. The regions selected for MCI are

left and right parahippocampal areas, left and right hippocampus areas and left and

right precuneus areas. The regions are selected before the analysis. We first applied

a single kernel SVM on each of the six informative regions to get a classification

error for each region. Figure 3.30 shows the region error rate map for informative

individual region using linear kernel. From Figure 3.30, we can see not all the pre-

selected regions have small classification error rates. The thalamus regions in the SLE

and the parahippocampal regions in AD and MCI have relative small classification

error rates.

We then selected the top three regions with the lowest classification error rates for

each training and test split and divided the selected region into small 5 ∗ 5 ∗ 5 cubes.
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Figure 3.30: Region error maps of six informative regions. A single SVM is applied to
each of the six informative regions to get a validation error rate for each
region. The color shows the validation error rates for those informative
regions. From the top to the bottom are SLE, AD and MCI data sets.
The SLE figures show the left thalamus under the cross. The AD figures
show the left hippocampus area under the cross. The MCI figures show
the left hippocampal area under the cross.

And then we applied SVM again on the cubes to get the top cubes. Figure 3.31 shows

the cube error rate map for informative individual regions using linear kernel. From

the top to the bottom are the cube error rate maps of SLE, AD and MCI.

From Figure 3.31, we can see the cubes have different classification error rates.

Comparing Figure 3.31 to Figure 3.28, the significant cubes tend to be stable across

different splits. For AD and MCI, the cubes in the parahippocampal gyrus have small

classification error rates in both figures.
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Figure 3.31: Cube error maps of cubes in informative regions. A single SVM is applied
to all the cubes in the top three regions with the lowest validation error
rates. The figure shows the validation error rates for those cubes. From
the top to the bottom are SLE, AD and MCI data sets.

After getting the cube error rate maps, we applied a multiple kernel analysis on

the top cubes. Table 3.10 shows the multiple kernel error rates for three data sets.

We compare the classification error rate of applying the two-step procedure on only

the informative regions to the method starting from all the regions. Table 3.10 shows

that using a few selected information regions can improve the performance of the

classifier. The classification error rate is around 0.37 for SLE data when using all

the regions in the brain scan with M = 20 and K = 50. But the rate is only 0.32

when using only the informative regions for K = 50. And for AD, the error rates are

around 0.31 when using all the regions and decrease to 0.30 for K = 20. For MCI,
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C = 10 Informative All Regions
M 3 20

SLE
K = 20 0.32375 0.3932
K = 50 0.31925 0.3762

AD
K = 20 0.2991 0.3132
K = 50 0.3234 0.3116

MCI
K = 20 0.34007 0.3849
K = 50 0.34436 0.3840

Table 3.10: MKL error rates of on informative regions. We applied the two-step
procedure on six informative regions that are selected according to the
extra knowledge about the disease. At the first step, A single kernel SVM
is applied to the regions and then three regions with the lowest error rates
are broken down into smaller cubes. Then a single kernel SVM is applied
to all the cubes in the selected regions. The final classifier is built on K
cubes with the lowest error rates. We compare the method of using only
the informative regions with the method starting from the whole brain.

the previous error rates were around 0.38 for all the regions and were around 0.34 for

informative regions. This shows that focusing on the informative regions can reduce

the dimension, making the classification an easier task.

Kernel Selection

For the same features, we can also design different kernels to find the best classifier.

Linear kernel is the simplest one of which the feature space is just the original signal.

And the final classifier is a hyperplane in the original spaces. In this study, we also

tried the Gaussian kernel which produced more complex features than the linear

kernel and could fit any boundaries. The Gaussian kernel taking two vectors −→xi and

−→xj is defined as:

H(−→xi ,−→xj) = exp{||
−→xi −−→xi ||2

Cgauss
}

The complexity of the kernel is controlled by parameter Cgauss. The smaller the Cgauss

gets, the more complex the classifier is. We used cross-validation to find the tuning

parameter Cgauss for Cgauss = 1, 10 and 50. We applied the same procedure to the
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four data sets using a Gaussian kernel. We reported the region error maps, the cube

error maps and the multiple kernel learning error rates.

Region Error Map We applied the two-step procedure to the brain with Gaussian

kernel. At the first step, a single kernel SVM with Gaussian kernel was applied to

each region in the whole brain

Figure 3.32: Region error maps for SLE data, using Gaussian kernel. Color represents
the misclassification error. Figures in each row represent 2-dimensional
cross-sections through the point labeled by a cross. From the left to
right are the sagittal view, the coronal view and the axial view. From
the top to the bottom are the figures corresponding to Cgauss = 1, 10
and 50.

Figure 3.32 shows the individual error rates for each region for SLE data. The

first row is the error rate map for Cgauss = 1. The second row is the error rate map

for Cgauss = 10 and the last row is the error rate map for Cgauss = 50. From Figure
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3.32, we can see that when Cgauss = 1, the classifier is too simple to separate the

two groups. So all the regions have similar error rate, close to 0.5. As Cgauss goes

up, the classifier becomes more complex and able to distinguish the patients from

the healthy controls. When Cgauss = 50, the Gaussian kernel can tell the informative

regions from the non-informative one. Thalamus regions show a better classification

error than other regions in the classifiers using Cgauss = 50.

Cube Error Map After getting the top regions, we also tested the Gaussian kernel

on individual cubes. For each split, we selected the top M regions and divided each

region into 5 ∗ 5 ∗ 5 cubes. A single SVM with Gaussian kernel was applied to each

individual cube. And the cube error rate maps plot the top cubes with their error

rates.

Figure 3.33 shows the cube error rate maps for SLE data set using Gaussian

kernels for different Cgauss values. From the top to the bottom are the Gaussian

kernels with Cgauss = 1, Cgauss = 10 and Cgauss = 50. All three figures have similar

patterns across different values of Cgauss. They all identify the cubes in the thalamus

and the somatosensory cortex. For larger values of Cgauss, the informative cubes are

more clustered together.
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Figure 3.33: Cube error maps for SLE data, using Gaussian kernel. Color represents
the misclassification error. Figures in each row represent 2-dimensional
cross-sections through the point labeled by a cross. From the left to
right are the sagittal view, the coronal view and the axial view. From
the top to the bottom are the figures corresponding to Cgauss = 1, 10
and 50.

Multiple Kernel Error

After getting a cube error rate map, we selected the top regions to build the final

classifier. Multiple kernel error rates were found by applying a single Gaussian kernel

on top cubes and then combining them in the multiple kernel step. The classifier

was trained on the training set and validation set together and tested on the testing

set. We compared the multiple kernel error rates of Gaussian kernel with the linear

kernel. We presented the results for different tuning parameters C and Cgauss.

Table 3.11 shows the multiple kernel learning results for all four data sets, compar-
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C = 10 Gaussian Linear
Cgauss 1 10 50 NA

SLE

M = 5 K = 20 0.476 0.501 0.488 0.393
M = 5 K = 50 0.459 0.482 0.475 0.451
M = 10 K = 20 0.485 0.481 0.466 0.387
M = 10 K = 50 0.468 0.475 0.467 0.357

AD

M = 5 K = 20 0.316 0.359 0.329 0.311
M = 5 K = 50 0.319 0.336 0.312 0.372
M = 10 K = 20 0.280 0.330 0.318 0.315
M = 10 K = 50 0.285 0.325 0.322 0.322

MCI

M = 5 K = 20 0.335 0.367 0.380 0.370
M = 5 K = 50 0.307 0.353 0.366 0.429
M = 10 K = 20 0.330 0.365 0.374 0.377
M = 10 K = 50 0.314 0.362 0.377 0.379

CPP

M = 5 K = 20 0.422 0.477 0.470 0.373
M = 5 K = 50 0.405 0.477 0.479 0.494
M = 10 K = 20 0.400 0.48 0.479 0.362
M = 10 K = 50 0.397 0.488 0.484 0.376

Table 3.11: Multiple kernel learning error rates of four data sets, using Gaussian ker-
nel. We applied the two-step procedure to the whole brain with Gaussian
kernel and compare the results to the results of linear kernel. We tried
different number of regions and cubes for the classifier, M = 5 and 10,
K = 20 and 50.

ing the results between Gaussian kernel and linear kernel. We tried four combinations,

with M = 5, 10 and K = 20, 50. In SLE and CPP cases, the linear kernel perfor-

mances better than the Gaussian kernel. The best error rate of SLE was 0.357 for

linear kernel with M = 10 and K = 50. For the same M and K, the best error rate

of SLE for Gaussian kernel is 0.467 under Cgauss = 50. And for CPP, the linear kernel

can achieve an error rate of 0.362 with M = 10 and K = 20. Gaussian kernel gets

0.4 for the same K and M . Since for both SLE and CPP data, we only have a small

sample size, about 40 subjects in both data sets, so a simple classifier performs better

than a complex one.
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For AD and MCI data sets, the Gaussian kernel performs better than linear kernel.

The best error rate of AD for Gaussian kernel is 0.28 for M = 10 and K = 10 and the

linear kernel gets 0.315 for the same M and K. The best error rate of MCI is 0.307

and the best error rate for linear kernel is 0.37. Because for AD and MCI data sets,

we have much more subjects than in SLE and CPP studies, so the data can support

a more complex classifier than the linear classifier.

In the linear kernel case, if the M = 5, then including more cubes will not enhance

the performance of the classifier. For M = 10, including 20 or 50 cubes give similar

classification error rate. This is not the case in the linear kernel. For Gaussian kernel,

including more cubes will not increase the error rates. So Gaussian kernel can combine

more kernels together, supporting a more complicated classifier.

For the individual region error map, Cgauss = 1 produces a classifier which overfits

the data. But in the MKL case, Cgauss = 1 generally gets better results than Cgauss =

10 and 50. In the MKL cases, we have more information of the class which can be

used to fit a more complicated classifier.

3.6 Discussion

This chapter covers the analysis of structural MRI. VBM and SVM are the most

popular methods in the structural MRI analysis. VBM is a voxel-based method

which takes one voxel at a time and ignores the interaction between the voxels. SVM

is a multivariate method which aligns all the voxels as a long vector and ignores the

physical location of each voxel.

We propose a two-step procedure, taking both the interaction and the location

information into consideration. The new method uses the multiple kernel learning

technique which builds sub-kernels on different variables and then combines them in

the second step. In our two-step procedure, we first select the informative regions

based on the single kernel SVM analysis and then train a multiple kernel SVM to
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combine the informative regions.

We test the performance of the two-step procedure in a simulation study. The

study shows that the performance of the multiple kernel classifier is related to several

factors, such as the strength of the signal, the level of the spatial correlation in the

data and the number of kernels taken by the multiple kernel classifier.

In the real data analysis, we compare the two-step procedure to the traditional

single kernel SVM in four data sets. The two-step procedure can achieve a lower

classification error rate in all four cases. This suggests that using the multiple kernel

SVM to allow a more flexible classifier can improve the performance.

We also test our method on few informative regions that are selected according to

extra knowledge about the disease. Starting from few informative regions can reduce

the misclassification error. Moreover we compare the results of the Gaussian kernel

and the linear kernel. The linear kernel performs better in the cases with small sample

size. As the sample size goes up, the data can support more complicated classifier.
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CHAPTER IV

Conclusion and Future Work
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This thesis discusses both the fMRI analysis and the structural MRI analysis.

The former is a signal decomposition problem, decomposing the observed signals

into different sources to identify the regions activated by the stimuli. The latter is

a classification problem, classifying the subjects into the patients and the healthy

controls to detect the regions affected by a disease. We propose new methods for

both analyses and compare the results to the existing methods. We also discusses

some possible directions for the future works.

4.1 fMRI Analysis

Chapter II covers the fMRI analysis. The fMRI signal is a series of brain scans

recording the neural activities evoked by some stimuli. The purpose of the fMRI

analysis is to identify the regions that respond to the stimuli. One challenge of the

fMRI analysis is the high temporal and spatial correlation in the data. One popular

method, GLM, uses an autoregressive model to model the temporal correlation. The

autoregressive model assumes the same level of temporal correlation across the whole

brain which is not a valid assumption. Instead of assuming a uniform correlation,

we propose a Gaussian process model that allows different levels of correlation for

different voxels. In the Gaussian process model, the observed signal is divided into

three deterministic parts: a constant representing the scale of the time series, a linear

function representing a linear trend usually observed in fMRI signals and a stimuli-

related part measuring the strength of the neural activity and two random processes:

a Gaussian process with Gaussian kernel measuring the temporal correlation of the

signal and a white noise.

The estimation can either use a Bayesian approach, imposing a prior distribution

on the parameters or use a frequentist approach through the EM algorithm. The

simulation study shows that we can obtain reasonable estimates of the parameters

using both methods. The real data analysis shows that different voxels in the brain
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have different levels of temporal correlation. The correlation level is a smooth function

across the whole brain. The activation areas identified by the new method is similar

to the GLM method but with smoother boundaries.

Future Work

Gaussian process approach is a voxel-based method which means it analyzes one

voxel at a time, ignoring the spatial correlation between the voxels. In future works,

we can incorporate the spatial information into the covariance matrix of the Gaussian

process. This means that the neighboring voxels are not modeled independently

anymore. For the signal of voxel vi at time ts and the signal of voxel vj at time tk,

the correlation is

Cor(X{vi,ts}, X{vj ,tk}) = f(vi − vj, ts − tk),

where f(τ, ν) is a decreasing function in both τ and ν. In this case, we not only

capture the temporal correlation but also model the spatial correlation of the fMRI

signals.

GLM and ICA are two widely used methods for fMRI analysis. The popularity of

GLM comes from its easy estimation and simple interpretation. The model specifies

each component and estimates the parameters in explicit forms. However, GLM is

a voxel-based method which does not take the spatial correlation into consideration.

ICA is a multivariate methods which analyzes the whole brain together instead of

one voxel at a time. However, ICA is an unsupervised method, with difficulties in the

interpretation of those independent components.

We desire a multivariate supervised learning method that have the advantages

from both GLM and ICA . Chapter II provides one possible solution, using a Gaussian

process methods, dividing the signals into the deterministic experiment-related part
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and the random Gaussian process part. The experiment-related part captures the

signals of the neural activity and the Gaussian process models the temporal and

spatial correlation in the fMRI scans. So designing a covariance matrix that can

reflect both the temporal and spatial information is the key for the Gaussian process

model.

4.2 Structural MRI Analysis

Chapter III covers the structural MRI analysis. The structural image is one scan

of the whole brain with superb spatial resolution. It provides a detailed map of

the brain, capturing the subtle changes brought by any effects such as diseases. The

purpose of the structural MRI analysis is to classify the subjects into the patients and

the healthy control group and to identify the regions that are affected by the diseases.

One existing method, based on the machine learning technique SVM, treats all the

voxels in the brain as a long vector. It ignores the local structures of the functional

regions and the spatial correlation among the neighboring voxels. We propose a

two-step procedure which takes the regional structure into consideration through the

multiple kernel learning technique. The multiple kernel learning combines different

kernels from different sources, allowing different variables contributing in different

ways.

In the structural MRI analysis, we design the individual kernels on small regions

in the brain. At the first step, the whole brain is divided into functional regions

according to the AAL atlas of the human brain (Fischl et al., 2002). A single kernel

SVM classifier is trained on each region to measure the importance of each region.

Then the top M regions with the lowest classification error rates are selected and

further broken down into small 5 × 5 × 5 cubes. A single kernel SVM is applied to

the individual cubes to select the top K cubes with the lowest classification error

rates. At the second step, the multiple kernel SVM builds a kernel on each cube first

117



and then combine them together. In this segmentation and combination steps, the

multiple kernel learning achieves a more flexible classifier than the traditional SVM

method.

Applying the two-step procedure on the four data sets shows that the new method

can achieve a classifier better than the traditional SVM. For all the four data sets, the

two-step procedure gets a lower error rate than using only the single kernel. Moreover,

it can identify the disease-related regions that are confirmed by other works.

Future Work

For all the four data sets, both the traditional SVM and the multiple kernel SVM

can not achieve a classification error rate good enough for the clinical diagnosis. One

possible explanation lies in the preprocessing steps. The registration step maps all

the brain scans into the same template, reducing the group differences between the

patients and the healthy controls. In the future work, we can test the method on the

unprocessed data.

In our real data analysis, we compare the performances between Gaussian kernel

and the linear kernel. The results show that for small data set, about 40 subjects,

the linear kernel can outperform Gaussian kernel. But for data set with 100 subjects,

Gaussian kernel achieves a lower classification error rate than the linear kernel. The

relation between the performance of different types of kernels and the sample size

need further investigation.

In our method, we choose to select the informative region first and then select the

informative cubes within the informative regions. We use the cubes of size 5× 5× 5

as the smallest unit that our method can detect. There is a trade off between the size

of the unit and the stability of the method. For small unit, such as the individual

voxel, the method can identify very small area but with a lot of false positive voxels.

For large unit, such as using the AAL regions to train the SVM, the method can
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get stable results but very coarse resolution. The size of the unit for multiple kernel

method also is a direction of further research.
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