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Chapter 1 
Neutron Detection for Nuclear Nonproliferation and 

Safeguards Problems 
 

1.1 Introduction 
 

Detection techniques are being developed widely and aggressively to meet 

nonproliferation–safeguard scenarios, especially as developing countries acquire nuclear 

power production capabilities. These techniques are being implemented to (i) identify and 

interdict special nuclear material (SNM) crossing borders, (ii) characterize SNM by 

determining its mass and composition, and (iii) locate the SNM in challenging scenarios, 

such as, in the presence of thick shields or large source–detector distances. A distinct 

characteristic of SNM is that its nuclei undergo fission. Therefore, detection of fission is 

a logical way of detecting SNM.  

1.2 Detection of Fission for Nonproliferation 

  
Uranium–235, primarily from the front end of the nuclear fuel cycle (such as in 

uranium enrichment facilities), and plutonium–239, primarily from the back end of the 

fuel cycle (such as in spent nuclear fuel) are both isotopes of major concern. These 

elements can be used to make thermo–nuclear devices and are therefore the focus of 

nonproliferation detection.  
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Nuclear fission is a major source of neutrons and gamma–rays from both uranium and 

plutonium. In the fission process, a given nuclide splits into two fission fragments, 

neutrons, gamma–rays and other particles. Fission can occur spontaneously for an 

unstable nuclide, or it can be induced with the capture of a neutron (or in some cases with 

the capture of a photon). In nuclear fission, multiple neutrons and gamma–rays are 

released whose directions of flight are correlated [1]. This characteristic of fission is the 

foundation of detection analysis techniques, such as multiplicity measurements and 

cross–correlation measurements; these will be discussed in the subsequent chapters of 

this thesis. 
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Figure 1– 1 A Fission event shown on left, and a typical fission spectrum approximated by 
Watt spectrum on right. 

 

 Special nuclear material (SNM), such as uranium and plutonium, undergo 

spontaneous fission. Each SNM isotope has a unique rate of fission, an average number 

of neutrons emitted per fission, an average number of gamma–rays emitted per fission, 

and other properties, some of which are shown in Table 1–1 [1]. 
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Table 1– 1: Neutron emission properties for prominent SNM material from Ref. 1. 

Isotope Spontaneous fission 
rate (neutrons/s.kg) 

Average Multiplicity for 
Spontaneous Fission 

Average Multiplicity 
for Induced Fission 

235U 3.0 x 10−1 1.7 2.4 

238U 1.4 x 101 2.0 2.3 

240Pu 9.2 x 105 2.2 2.8 

242Pu 1.7 x 106 2.1 2.8 

  

1.2.1 Neutron Detection Applications 
 

Neutron detectors can be used to detect the presence of neutrons from fission, to 

locate the neutron source by finding the distribution of source neutrons in space, and to 

help characterize neutron sources (composition, isotopic ratios, and mass). Fortunately, 

the first task is simplified by the diminutive background neutron population [1]. In fact, 

for the measurements done in the Detection for Nuclear Nonproliferation Group (DNNG) 

lab at the University of Michigan, the measured neutron background population was 

small enough to be ignored. Detection of neutrons can be complicated by introducing 

neutron shields. Methods such as active interrogation systems that can induce nuclear 

reactions in SNM using an external source are being studied for heavily shielded 

scenarios. The remaining tasks (to locate and identify the material) are also challenging, 

and have attracted considerable attention from the scientific community. 

 The ability to locate SNM is complicated by large stand–off distances or by 

shielding. For large stand–off distances (typically greater than 10 m), fast neutrons which 

have greater mean–free–paths in air, O(10 m), than thermal neutrons are more promising 

[1]. For measurements done in the safeguards regime (counting pin–diversion in spent 



4 
 

fuel assemblies), or in the context of the verification regime (counting warheads), the 

source–detector distance can be fixed, but finding relevant data from the superfluity of 

data surrounding the object of interest is a critical but daunting task.      

  When the location of a source has been determined, the next task is to 

characterize and indentify the isotopic compositions, mass, and geometry of the source in 

question. It is here that neutron spectral and multiplicity information measured with 

cross–correlation techniques can provide potent evidence. These techniques can be 

challenging, due to their inherently small efficiencies (thus requiring long measurement 

times) and the presence of competing interactions: induced fission, spontaneous fission, 

and alpha–neutron reactions [1]. 

1.2.2 Neutron Detection Principles 
 

Neutron detectors utilize three main nuclear interactions: elastic scattering, inelastic 

scattering, and neutron capture. In the range of fission energies, elastic scattering with 

detector material is generally the principle energy loss mechanism for neutrons [1]. 

Therefore, neutron detector designs are being developed that utilize materials that have 

large scattering cross–sections (such as scintillation detectors). But large scattering cross–

sections do not suffice, detector materials should be such that energy deposition from 

each scatter is also maximized to achieve greater detector efficiency. The energy 

deposition in a scatter event is maximized when the neutron is left with the least amount 

of energy possible. In elastic scattering, the least amount of energy possible, Emin, is 

simply a fraction of the initial energy E0, This fraction, α, depends on the atomic mass, A 

of the nucleus with which the neutron scatters as [2]:  
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2

2

)1(
)1(

+
−

=
A
Aα            .                                                                    (1) 

Thus, it is clear that smaller value of A (atomic mass of the target) will lead to greater 

energy deposition for detectors based on scatter mechanism. For instance, in the case of a 

neutron elastically scattering with hydrogen, the neutron can be left with no energy as its 

α factor is zero. The average energy loss in the case of hydrogen scatters is half of the 

incident neutron energy [2].  

Large neutron capture cross–sections of isotopes in the thermal neutron energy range 

can be advantageous in neutron detection; however, neutron capture cannot be used with 

fission neutrons, which tend to have significantly higher energies. Nevertheless, using 

effective moderators, fast neutrons from fission can be slowed down to energy regions in 

which they can be captured by target material more easily. In order to slow down fission 

neutrons before they reach the detector (capture) region, moderator material is chosen 

considering Eq. (1), such that the energy loss in each scatter with the moderator is 

maximized (materials with small α are chosen) and neutrons eventually slow down to 

thermal energy regions.   

Lastly, it is important to design durable detectors that can be deployed and used in 

fields easily. Also, a detector that can be made into large sizes is desirable because for a 

given measurement, a larger detector will subtend a larger solid angle, allow more 

particles to enter the detector, and be detected. 
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1.2.3 Helium–3 Detection and Challenges 
 

Proportional counters based on helium–3 are neutron capture detectors that have 

manifold advantages and have thus become the “gold standard” for neutron detection [3]. 

Helium–3 detectors have large thermal neutron capture cross sections while being 

relatively insensitive to gamma–rays. They have intrinsic efficiencies close to 77% 

(efficiency after neutrons have been moderated).  Proportional counters based on He–3 

are simple, mechanically stable, operable in rugged conditions, and last for many years 

[3]. Due to these reasons, He–3 detectors are not only used for homeland security and 

international safeguards applications, but also at nuclear plants, for well–logging in the 

oil and gas industry, for medical applications (MRI lung imaging), and for basic research 

in nuclear and condensed matter physics [3]. The increased demand and acute supply 

shortage of He–3 has necessitated the need to find neutron detection alternatives. Kouzes 

et. al. have estimated that the He–3 demand is approximately 65,000 1itres/y, while the 

supply is only 15,000 1itres/y [3].  

1.2.4 Thermal neutron detection 
 

Thermal neutron detectors, including He–3 detectors, take advantage of the high 

Q–value (amount of energy released in a nuclear reaction) of neutron capture reactions. 

The charged particles emitted from a capture reaction have greater energy than recoil 

protons from elastic scattering (such as in scintillation detectors), and therefore are highly 

capable of discriminating gamma–rays from neutrons; this is an important criterion in 

SNM detection [1].  Helium–3, lithium–6, boron–10, and gadolinium–157 are isotopes 

with large thermal cross–sections for neutron capture. With the shortage of He–3 
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detectors, these other isotopes have emerged as viable candidates for thermal neutron 

detection. Presently, the main thermal neutron detector types are: gaseous detectors, 

water–based Cherenkov detectors, conversion layer detectors, homogeneous compound 

semiconductors, microchannel plates and scintillators [1]. While these detector types 

have their advantages and challenges, they require fission neutrons to become moderated 

before they interact with the detector material, which is an inefficient process. The 

advancement of fast neutron detection technology eliminates the need for this step. 

1.2.5 Fast neutron detection 
 

In this thesis, fast neutrons are defined as neutrons greater than 100 keV. By 

directly measuring the fast neutrons from fission, one can assess their angular distribution 

(directionality), unlike the moderated neutrons which have scattered many times and 

reached the detector at various different angles.  Since fast neutrons have not spent times 

on the order of micro–seconds thermalising in a moderator coupled to a detector, they can 

be measured on the order of nanoseconds after their emission. Thus, techniques taking 

advantage of time–dependent cross–correlation measurements of fission chains can be 

used with fast neutron detectors. 

To maximize neutron scatter with the detector material and energy deposition, the 

typical choice of detector material consists of materials with a high concentration of 

hydrogen. Hydrogen, due to having a similar mass as a neutron, is the best choice for 

momentum and energy transfer in a scatter collision [2]. Therefore, an exclusive choice 

for fast neutron detection is hydrogen. 

Typically, fast neutron detection is based on recording the response of the material 

when the nuclei of the material recoil after scattering with neutrons. There are two main 
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types of fast neutron detection: scintillation detectors and threshold detectors. 

Scintillation detectors convert the energy of the recoil nuclei into light that is generally 

converted into charge using a photo–multiplier tube (PMT) [4]. Organic liquid or solid 

scintillation detectors, and liquid argon scintillation detectors are the major candidates of 

these types of detectors. Threshold detectors only measure the response of neutrons 

above a specific energy. With these, one can exclusively detect fission neutrons by using 

an appropriate detector material with interactions cross–sections that occur at fission 

neutron energies.    

Of the detector types discussed above, scintillation detectors have emerged as a viable 

candidate as they [1]: 

1. Have good intrinsic efficiency for both neutrons and gamma–rays. 

2. Have response times on the order of nanoseconds, which is the same time–

scale as the length of the fission chains. 

3. Can provide detailed energy information. 

4. Allow good discrimination between neutrons and gamma–rays. 

5. Are practical as they are portable, relatively inexpensive, and can be made 

into large sizes. 

1.3 Simulation of Scintillation Detector Response  
 

Scintillation detector response has been directly measured and stored in the form of 

matrices [5–8]. However, the scintillation detector response mechanism is complicated 

and cannot be easily simulated using analytical methods. Scintillation detector response 

requires accurate geometry information, detailed particle–nucleus interactions, and 

event–by–event tracking. Therefore, Monte Carlo codes have been used to simulate 
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scintillation detector response [9–14]. In the two methods that are discussed below 

variance reduction techniques are used to speedup up Monte Carlo speedup. These two 

methods are expected to: 

1. Provide computational speedup (savings in computational time)  

2. Produce accurate results that can be validated by measurements 

3. Be general and applicable to different types of detector response, including 

time–dependent detector response. 

Variance reduction techniques are used to speedup the convergence of mean 

answers estimated by statistical methods, such as Monte Carlo. In an analog Monte Carlo 

simulation, the problem is simulated as close as possible to the physical reality. In a 

nonanalog Monte Carlo simulation, the physics is altered to focus the computation time 

only on those aspects of the phase–space that contribute to the user–desired means. For 

instance, particles that do not contribute to a detector response need not be followed, if 

the user is only interested in estimating the detector response for a given problem. To use 

variance reduction techniques, there is a need to develop appropriate tally mechanisms 

such that the final results are accurate. However, before using variance reduction 

techniques it important to understand the all the physical aspects of the problem such that 

phase–space that contributes to the mean answer is not ignored. There are several 

automated methods that a user may find useful when using variance reduction techniques; 

these are discussed in Ch. 4. 

1.3.1 Response Matrix Methods  

  
In the 1950s and 1960s, extensive work was done on scintillation detector response 

function formulation [6, 7]. Authors have also represented scintillation detector response 
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functions in form of response matrices [8, 9]. In neutron detector problems, response 

matrix decomposition has been used for unfolding neutron spectra [10]. Response 

matrices have also been used to measure the detector response of 3He and 6LiI detectors 

located at the center of polyethylene Bonner spheres [11, 12]. In a recent paper, the      

EJ–309 scintillation detector response was studied for very high energy cosmic neutron 

radiation using MCNPX [13]. However, none of these previous studies was applied to 

give a detailed non–linear scintillation detector response. 

MCNPX–PoliMi and its associated post–processor allow simulation of detailed 

non–linear scintillation detector response specifically for nonproliferation and safeguards 

applications [14]. The MCNPX–PoliMi code is unique because it contains built–in 

correlated fission sources that have multiplicity–dependent energy distributions, and light 

fission fragment direction–dependent neutron flight directions [15]. Also, the code 

provides detailed event–by–event collision information in data files that can be used to 

model scintillation light response to incident radiation [15]. However, MCNPX–PoliMi 

has traditionally been run in analog mode. In this thesis, MCNPX–PoliMi is run with 

traditional MCNP variance reduction techniques, and appropriate post–processing models 

are developed to speed up simulations for neutron scintillation detector response. 

In the first approach developed in the thesis, MCNPX–PoliMi is used in analog 

mode to pre–compute a response matrix for a neutron detector. This matrix is combined 

with incident neutron current (on the face of the detector) to generate neutron pulse 

height distributions. In this method, the response matrix method acts like a variance 

reduction tool in itself. But unlike standard variance reduction techniques, the response 

matrix has a truncation error associated with the finite energy binning. The matrix 
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elements also have a small statistical error due to the use of a finite number of Monte 

Carlo particles to simulate them. The incident neutron current can be estimated using 

existing variance reduction techniques. In fact, it is possible to estimate the incident 

neutron current using a deterministic method, and combine that with the MCNPX–

PoliMi–generated response matrix. 

1.3.2 Direct Monte Carlo  
 

Pulse height tallies provide distributions of detector response (as a function of 

energy deposited, light produced, voltage etc). These tallies are non–Boltzman tallies 

because they cannot be obtained from the standard Boltzman transport equation [16, 17].  

In the past, authors have developed methods to calculate pulse height distribution tallies, 

but they have not included the complete scintillation detector response mechanisms [16, 

17]. For a long time, the neutron pulse height tally in MCNP was not recommended in the 

user’s manual [18]. Recently, MCNPX capabilities were improved to simulate pulse 

height distributions; however, the code does not model scintillation detector mechanisms 

for accurate neutron scintillation detector pulse height response [19].  

In the second approach discussed in this thesis, MCNPX–PoliMi is run directly 

with existing variance reduction techniques to calculate neutron pulse height 

distributions, time–of–flight curves, and cross–correlations. To run MCNPX–PoliMi with 

variance reduction, the nonanalog and the analog parts of the Monte Carlo problem are 

separated. Since the detailed scintillation physics occurs inside the detector, the weight of 

the neutron is kept constant inside the detector by keeping the neutron transport analog. 

Nonanalog techniques are only used outside the detector: in the phase–space with thick 

shields and through large source–detector distances.   
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1.4 Thesis Outline 
 

The content of this thesis is outlined below with short descriptions. Overall, the 

thesis provides background and theory in Chapters 1–4; it then presents new analyses and 

results in Chapters 5–8. The contents of each chapter are described briefly as follows: 

• Chapter 1 provides an introduction and motivation for this thesis work. It 

also provides background on nuclear fission, neutron detection principles, 

neutron detection applications, present challenges, and metrics for new 

detector types.  

• Chapter 2 provides the theory on the scintillation detector mechanism. 

Some sensitivity analysis and results are shown in this chapter because they 

are useful when validating simulations with measurements.  

• Chapter 3 provides a background and discussion of MCNPX–PoliMi and its 

capabilities. This is helpful in understanding why the implementation of 

nonanalog techniques in MCNPX–PoliMi is nontrivial.  

• Chapter 4 provides a background on the concept of weights and 

importances, development of nonanalog Monte Carlo techniques, and other 

variance–reducing techniques are used in this thesis.  

• Chapter 5 discusses the response matrix method (RMM), which is used to 

calculate pulse height distributions. It also provides discussion on a radial 

leakage correction factor, which is necessary to generalize the method for 

cases in which the incident particle direction is not normal to the front face 

of the detector. Finally, nonanalog results are compared with analog results, 
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the computation speedup is discussed, and simulation results are validated 

with laboratory measurement results. 

• Chapter 6 introduces a method that can be used directly with MCNPX–

PoliMi to speed up the Monte Carlo simulations. The method separates the 

nonanalog components of the problems (outside the detector), from the 

analog component (inside the detector). Comparisons between nonanalog 

and analog results are provided for pulse height distributions and time–of–

flight tallies. 

• Chapter 7 furthers the method introduced in Ch. 6 to compute tallies for 

correlated sources, in which multiple neutrons are emitted from a single 

source event. Cross–correlation nonanalog tallies are compared with analog 

tallies for various geometries. Finally, cross–correlation simulations are 

validated with measurement results, and the speedup is calculated. 

• Chapter 8 provides a summary of the thesis work and identifies ways in 

which this work can be progressed in the future. It also discusses provisions 

that can be made in MCNPX–PoliMi for its users to allow an easier and 

more accurate use of nonanalog techniques. 
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Chapter 2 
Scintillation Detectors 

 

2.1 Background 

The scintillation process is one of the oldest and most useful physical processes used 

for the detection and spectroscopy of various forms of radiation [1]. The scintillation 

response to ionizing radiation was first measured by H. Kallman in 1947 [2]. Scintillation 

light in detectors is produced when incident radiation excites the molecules or the 

electrons of the detection material. Upon their de–excitation, light (belonging generally in 

the visible range) is produced. This light can be converted into charge and collected, 

using a photomultiplier tube coupled to the scintillation detector [1].   

2.2 EJ–309 Scintillation Detector 
 

 

Figure 2– 1: An EJ–309 scintillation detector with its photomultiplier tube. 

 

Scintillation 
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The EJ–309 liquid scintillation detector shown in Fig. 2–1 is comprised of hydrogen 

and carbon nuclei with a ratio of 1.25 to 1. Light is produced as gamma–rays Compton 

scatter on electrons, or as neutrons elastically scatter on hydrogen and carbon nuclei. The 

energy deposited by the gamma–ray or the neutron is then converted into light. The light 

produced in a given time window called the pulse–generation–time (PGT) is summed to 

form a pulse. For this study, the PGT is 10 ns long. The light created in the scintillation 

detector is converted into charge in the photomultiplier tube (PMT). Bigger light pulses 

result in greater charge production and collection in the PMT.  A typical pulse is shown 

in Fig.2–2. 

 

Figure 2– 2: An EJ–309 scintillation pulse and its features. 

 

In Fig 2–2, the pulse maximum or the height of the pulse is called the pulse height. A 

distribution of the pulse heights, commonly known as a pulse height distribution (PHD), 

is a common scintillation detector response measureable. The acquisition time window 

shown above is generally 400 ns long. Data is acquired every 4 ns, thus, there are a total 

of 100 points in a typical acquisition time window. Typically the maximum of the pulse 

occurs between 50 ns and 100 ns in the acquisition time window.  The start time of the 
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pulse is marked by T1start, the start time of tail area of the pulse is marked by T2start (this is 

20 ns after the maximum of the pulse occurs), and the end time of the pulse is marked by 

Tend (which is 220 ns after T2start). As marked in Fig.2–2, a pulse has two distinct regions. 

The first region, A1, is the total integral of the pulse or the area under the entire pulse. The 

second region, A2, is the tail integral of the area under the tail of the pulse. A ratio of A2 

to A1, or tail–to total is calculated for each pulse. The ratio of tail–to–total is larger for 

heavier charged particles and can be used to distinguish neutron pulses from gamma–ray 

pulses, as will be shown in Ch 5 and Ch 7 [1]. 

For the case of gamma rays, the energy–to–light conversion is a one–to–one 

conversion process. However, in the case of neutrons this process is more complicated. 

For neutrons, the light produced is not only a function of energy deposited but is also 

dependent on the nucleus on which the collision has occurred. In the case of carbon, it 

has been empirically found that the energy deposited by a neutron, T, is transformed to 

light, L, with a rate of 2% of that for gamma–rays [3]. In the case of hydrogen, it is found 

that energy to light conversion is a nonlinear process and can be given by a quadratic fit 

[4]: 

                                                       L = aT2 + bT + c  .                                             (1) 

Here, a and b are empirically determined constants for the quadratic and the linear terms 

respectively, whereas, c is the empirically determined constant term. Recently, an 

exponential fit for the neutron–hydrogen scatter light conversion process has also been 

found as [5]: 

                                                       L = aT + b(1 – e–cT) .              (2) 

In this chapter, sensitivity studies are performed using the quadratic fit.  
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It has also been found that the order of collisions in the scintillation detector 

matters. In Fig. 2–3 from Ref. 4, we can see that the PHDs are different for different 

permutations of collisions. To take the simplest case where the neutron pulses are created 

only due to two scatters, the plot in the middle, Fig. 2–3 (b) shows: the PHD resulting 

from pulses with the first collision on hydrogen and the second collision on carbon (HC), 

is different from the PHD resulting from pulses with the first collision on carbon and the 

second collision on hydrogen (CH). 

 

Figure 2– 3: Pulse height distributions resulting from different order of collisions from Ref. 4 

 

Time–of–flight (TOF) measurements were used to measure the constants shown in  

Eq. 1 and Eq. 2. In the measurement, a 252Cf neutron source is placed at 100 cm from the 
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face of an EJ–309 scintillation detector [6]. The EJ–309 detector is a cylinder with a 

radius of 6.34 cm and a length of 12.51 cm. The chemical composition of the EJ–309 

liquid is 55.5% hydrogen and 44.5% natural carbon by atom. Because the radius of the 

detector is relatively small compared to the source detector distance, one may assume that 

all neutrons travel nearly the same distance of 100 cm. Having made this assumption, one 

can now divide the TOF into several narrow time bins, such that each time bin, tn, 

corresponds to a particular energy bin, En, of the incident neutron energy spectrum 

through the kinetic energy formula shown in Eq. (3). The mass of the neutron, m, and the 

distance travelled by the neutron until it is detected, d (100 cm in this case), are fixed     

in Eq (3): 
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Thus, several pulse height distributions are created for these time bins. With small 

enough time bins these pulse height distributions correspond to quasi mono–energetic 

neutrons. Theoretically, the pulse heights should have a maximum value, which 

corresponds to the maximum energy deposited. In the presence of hydrogen, this will 

occur when a previously uncollided neutron elastically scatters on a hydrogen nucleus 

and transfers all of its energy. Thus, ideally, the edge of the pulse height distribution 

should correspond to the maximum energy deposited (i.e. the energy of the incident 

neutron). Hence, using the different pulse height distributions for all the time bins, we 

can create pairs of energy deposited (incident energy) and light produced (edge of pulse 

heights). This is shown as a plot in Fig. 2–4.  

However, with experimental data which includes noise, the edge of the pulse height 

distribution is not a distinct feature and needs to be carefully determined from the 
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measured data. For the present fit of energy–to–light conversion, as discussed in the next 

section, 20% of the maximum value of the pulse height distribution is chosen to be ‘the 

edge’. This value agrees with the edge value chosen in Ref. 7 when considering the 

differences in experimental setup. In the subsequent sections, a sensitivity analysis of this 

parameter is shown.  

2.3 Measurement Determined Fits 
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Figure 2– 4: Maximum neutron energy deposition in scatters with hydrogen and the 
subsequent light production curve for EJ–309 scintillation detectors. 

 

The experimental data shown above was fit to a quadratic polynomial as in Eq. 1 to 

yield: 

                         L = 0.03495T2 + 0.1424T –0.0362 .                                           (4) 

The data was also fit to yield an exponential form shown in Eq. 2:     

     L = 0.74787T –2.4077(1 – e–0.29866T) .          (5) 
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The sensitivity analysis presented in the next section is carried out utilizing the 

coefficients given in Eq. 4. 

2.4 Sensitivity Analysis 
 

The determination of the edge of a measured pulse height distribution of a nearly 

monoenergetic case is not simple, since it is distorted by noise and measurement 

uncertainties. In our analysis, a value of 20% of the maximum is chosen as the edge. We 

vary this percentage of the edge value to find the impact on simulated pulse height 

distributions. Furthermore, the total distance travelled by neutrons before they interact 

and deposit their energies (d in Eq. 3) is varied, and the subsequent impact on the pulse 

heights distributions is analyzed. Next, we investigate the impact of changing the 137Cs 

calibration to convert the pulse heights in voltage units to pulse heights in light units. The 

term MeV electron equivalent (MeVee) will be used to quantify light. One MeVee is 

defined as the amount of light produced by one MeV energy deposited by a recoil 

electron (following Compton scattering) [1]. 

2.4.1 Varying Edge Values and Interaction Depth 

We consider energy to light conversion process by studying pulse heights for a 

given TOF bin that corresponds to a quasi–monoenergetic energy bin. The edge values 

are calculated at 20% and 50% of the maximum of the pulse height distribution. Neutron 

flight paths to the face of the detector and including an interaction depth of 4 cm inside 

the detector are considered. There are some noticeable trends: making variations does not 

impact the distribution in the low light output bins as much as for higher light output 

bins. As the edge values are increased from 20% to 50%, for a given interaction depth, 
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the neutron pulse height distributions are reduced for higher light outputs. As the 

interaction depth is increased the pulse heights distribution are also reduced.   
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Figure 2– 5: Pulse height distributions for bare 252Cf for varying edge values and interaction 
depth  

The constants a, b and c as shown in Eq. 1 are provided in Table 2–1 for the cases plotted 

above. Table 2–1 shows that the intercept, c, becomes less negative as we increase the 

edge value to 50% of the maximum. 

Table 2– 1: Coefficients for Varying Depth and Edge Value 

Case a b c 

0 cm – 20% 0.048448 0.17849 –0.061007 

0 cm – 50% 0.042940 0.13635 –0.043883 

4 cm – 20% 0.045067 0.14741 –0.043161 

4 cm – 50% 0.037450 0.12096 –0.036679 
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2.4.2 Varying 137Cs Calibration to Determine Light Output  

A 137Cs calibration is performed to convert the charge recorded into light produced 

(volts–MeVee conversion). This is done by estimating the Compton edge of the 137Cs 

spectrum as a feature that occurs at 75% of the maximum. Other studies have also 

considered this value, which typically falls within the range of 60% to 90% [8].  
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Figure 2– 6: Pulse height distributions for bare 252Cf by varying the Compton edge in 137Cs 
calibration 

 

If we move the estimated Compton edge to the right or to the higher voltages, the 

volts–MeVee conversion would yield more light produced at a given energy; similarly, 

shifting the edge to the left indicates less light produced. This can be understood from the 

comparisons in Fig. 2–6 and coefficients listed in Table 2–2 for the quadratic Eq. 1. The 

coefficients in Table 2–2 correspond to the case of 90% of maximum taken for 137Cs 

calibration. In the 90% case, the volts–MeVee conversion would lead to greater light 
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production despite the slightly more negative intercept. Therefore, in Fig. 2–6 the 

simulation of pulse height distribution using 90% of maximum as the Compton edge has 

higher counts than the simulation using 60% of maximum. 

Table 2– 2 Coefficients for varying Cs Edge 

Case a b c 

60 % max Compton edge 0.0326 0.1335 –0.0337 

90 % max Compton edge 0.0368 0.1506 –0.0380 

 

2.5 Validity of Assumptions  

We have made some assumptions in the process of evaluating energy deposited and 

light produced. Consider the energy distributions are simulated using MCNPX–PoliMi 

data file, as shown in Fig.2–7 and 2–8.  

 

Figure 2– 7: Distribution of contributing energies for the time window corresponding to     
1.95 MeV – 2.05 MeV energy bin. 

 



27 
 

 

When narrow TOF bins are taken to correspond to certain energies, the TOF bins may 

also capture some of the neutrons from adjacent energy bins. For instance, a given time–

bin corresponding to a certain energy bin can get a contribution from a higher energy 

neutron that interacts deep in the detector and thus travels a greater distance than the 

assumed TOF distance. Therefore, in Fig. 2–7, although the expected energy window is 

between 1.95 MeV and 2.05 MeV, we observed contributions from neutrons between   

1.8 MeV and 2.5 MeV. Similarly, in Fig. 2–8, for the expected energy window between 

3.95 MeV and 4.05 MeV, the actual distribution lies between 3.5 MeV and 4.7 MeV.    

 

Figure 2– 8:  Distribution of contributing energies for the time window corresponding to               
3.95 MeV – 4.05 MeV energy bin. 
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2.6 Conclusion 
 

Scintillation detectors are a reliable and practical means of measuring radiation. 

The scintillation detector response is nonlinear for neutrons in the case of EJ–309 

detectors. It is important to accurately measure and characterize this response with 

laboratory measurements, to be able to simulate scintillation detector response accurately. 

This response characterization is impacted by several quantities as discussed in the 

sensitivity analysis. MCNPX–PoliMi is capable of including this detector response in the 

form of light output coefficients to accurately simulate scintillation detector response. In 

the next chapter, MCNPX–PoliMi and its capabilities and features for nonproliferation 

detection are discussed. 
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Chapter 3 
MCNPX–PoliMi Capabilities and Features 

 

3.1 Background 
 

The MCNPX–PoliMi Monte Carlo code was developed to perform enhanced 

simulations of the physical behavior of SNM [1, 2].  It has built–in multiplicity 

distributions for neutrons, photons, and correlated photon production to neutron 

interactions. Its salient features are: i) built–in cross–correlations for fission events from 

different isotopes, ii) event–by–event particle tracking that can be printed and post–

processed by the user to calculate the tallies of interest, and iii) conservation of energy 

and momentum. As a result of these features, MCNPX–PoliMi is able to accurately 

simulate laboratory measurement of SNM [3, 4]. The present version of MCNPX–PoliMi 

runs with analog tracking to keep the tallying process of the complicated detector 

response simple. This chapter will elaborate on the above features. 

3.2 Source treatment in MCNPX–PoliMi 
 

MCNPX–PoliMi models neutron fission events by utilizing available nuclear data [5]. 

For a fission event, the multiplicity of the neutrons and photons is dependent on the 

isotope. In MCNPX–PoliMi, the multiplicities are available for 252Cf, 238U,  238Pu, 240Pu, 

 242Pu, 242Cm, 244Cm and others [6].
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 For fission source events in MCNPX–PoliMi, first the isotope dependent multiplicity 

is sampled, then the energies of the neutrons and the photons are sampled depending on 

the multiplicity of the source event. As the multiplicity increases, the spectrum for the 

neutrons becomes softer. This is plausible because, when the same excitation energy gets 

distributed among more neutrons, each neutron will carry less energy as compared to a 

case in which fewer neutrons are emitted. It is also known that the prompt neutrons carry 

some of the momentum of the fission fragments from which they are produced, and their 

direction of flight is correlated to the fission fragment’s direction of flight [5]. Thus, in 

addition to modeling the multiplicity–dependent energy distribution, MCNPX–PoliMi 

also models fission fragment correlated flight directions for neutrons. It is shown in    

Ref. 5 that neutrons are more likely to travel along, or opposite to the direction of the 

lighter fission fragment. The lighter fission fragment’s flight direction is isotropically 

sampled [6].  

Furthermore, MCNPX–PoliMi can be used to output event–by–event details as shown 

in Table 3–1. The data in Table 3–1 can be treated individually to simulate a detailed 

detector response, such as nuclide–dependent energy–deposition to light–conversion for 

all collisions in the detector. 

3.3 Explicit Modeling and Energy Conservation 
 

In standard MCNP/MCNPX, secondary photons are released independent of the type 

of neutron collision [6]. For instance, in the case of an inelastic neutron–carbon collision, 

the carbon nuclide can be left in any one of its several excitation states. The photon 

released subsequently will depend on the excitation level of the carbon nuclide.
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In standard MCNP/MCNPX, the photon produced from the inelastic scatter is determined 

always by only one of its excited states [6]. 

In MCNPX–PoliMi, secondary photon production is related to the type of collision 

and the corresponding energy conservation models. The photon–production subroutine is 

called after the collision type has been determined [6]. The possible neutron–nucleus 

interaction types modeled are capture, inelastic, elastic, fission, (n, xn), charged particle 

production reactions, neutron and charged particle production reactions. 

Since the objective of this thesis is to speedup simulations of neutron detector 

response a detailed discussion of photon production will not be given here. Nonetheless, 

the interested reader is encouraged to see Ref. 6 for further details. 

3.4 Event–by–Event Particle Tracking 
 

In addition to performing detailed modeling and conservation of energy at each type of 

neutron collision, MCNPX–PoliMi also tracks every particle as a whole (analog mode) 

and prints its associated collision information in a data file for user specified cells 

(geometric regions) of interest. An example of the data file information is shown in 

Table. 3–1. It is evident from the table that MCNPX–PoliMi keeps a record of all 

collisions, their types, the nuclides involved in collisions, the energy deposited, the time 

of collisions, the location of collisions, the weight of the particles, the generation of the 

particles, etc. All this information is provided for each collision. In traditional 

MCNP/MCNPX, an average quantity is reported to the user in the tallies. With MCNPX–

PoliMi, a user can post–process the data file using MPPost and obtain individual event–

by–event detector response for SNM [7]. In the case of scintillation detectors, as 
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discussed in Ch. 2, it is important to convert energy deposited into light emitted by the 

scintillation detector for each neutron scatter. This is not feasible with a mean energy 

deposition reporting as in the MCNP/MCNPX pulse height (F8) tally [8].  

As discussed in Ch. 2, the energy–to–light conversion is a nonlinear process for 

neutron–hydrogen scatters. Particles scatter to produce light–flashes, and those occurring 

in a PGT (a time–window which is typically 10 ns long) are summed to produce a pulse. 

Furthermore, it was also shown in Ch. 2 that light conversion is nuclide–dependent, and 

the order of collisions to produce a light pulse is important in determining the amplitude 

or the pulse height (Fig. 2–3). Due to these reasons, it is important for the user to treat 

each individual collision and its energy deposition in order. Additionally, it is important 

to track the timing of the collisions because light pulses are the sum of light outputs from 

energy depositions that occur within the PGT. Only if the user knows the timing of these 

light outputs can s/he determine if the collision and it associated light output will fall 

within the PGT for a given pulse. All these features of nuclide dependent and time 

characterized energy–to–light conversion is feasible with MCNPX–PoliMi. 

3.5 Conclusion 
 

In the above discussion, we have seen that MCNPX–PoliMi is capable of simulating 

correlated fission sources, performing detailed energy–to–light conservations of various 

interactions, and tracking each particle interaction–by–interaction. However, for 

simplicity when performing detailed simulation and tracking, MCNPX–PoliMi has 

avoided the use of nonanalog techniques. In this thesis, ways of implementing nonanalog 

techniques with MCNPX–PoliMi have been developed. The next chapter provides some 
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background on nonanalog or variance reduction techniques that can be helpful for 

speeding up MCNPX–PoliMi simulations. 
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Chapter 4 
Variance Reduction  

  

4.1 Introduction 
 

Monte Carlo simulations stochastically model physical scenarios by repeated 

random sampling from appropriate distributions to find an estimate of a mean [1]. This 

calculated mean has a statistical uncertainty; smaller uncertainty provides greater 

confidence in the result. A simple way to decrease the uncertainty is to increase the 

sample size; however, this can result in excessively long computational times for 

complicated configurations. Variance reduction techniques can reduce the statistical 

uncertainty in the mean for Monte Carlo simulations by increasing the likelihood of 

scoring events that are infrequent, but meaningfully contribute to the desired result. 

4.2 Figure–of–Merit 
 

The figure–of–merit (FOM), defined in the following way, is used to measure 

how efficiently a Monte Carlo simulation is performed [2]: 

FOM ≡ 1/ (R2T)    .                                              (1) 
 
Here, R is the sample relative standard deviation of the mean, and T is the computation 

time. A high FOM value indicates an efficient use of computational resources, whereas a 

small FOM value indicates an inefficient use. The FOM, as it is defined in Eq. (1) is a 

way to perform a cost– (increased computational time) benefit (reduced uncertainty) 
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analysis by a user. For a given Monte Carlo simulation, if the number of source particles 

is increased such the statistical uncertainty in the mean is reduced (reduce R2), then the 

computer must perform more work for a greater number of source particles, that is the 

computation time is increased (increase T). Trade–off occurs in a way such that the FOM 

for a given simulation stays approximately constant as the number of source particles is 

increased or decreased. The Central Limit Theorem gives that R2 is inversely proportional 

to the sample size (in this case the number of tallied particles), N [2]. Also, there is a 

direction relation between T and N. If these definitions of N are applied to Eq. 1, it is 

clear that the FOM remains constant if only the number of Monte Carlo source particles 

is changed.    

There are ways to modify the Monte Carlo simulation using variance reduction 

techniques such that computation time is focused on those particles that will 

meaningfully contribute to a desired system response. By using these techniques, it is 

possible to reduce the statistical uncertainty in the mean without significantly increasing 

the computation time. Variance reduction techniques, when used appropriately, help 

increase the FOM for a Monte Carlo simulation. If variance reduction techniques are 

chosen without much thought or understanding, it is possible that the computation time 

will be focused on particles not contributing to the detector response of interest. This will 

decrease the FOM, or make the simulation slower! 

In MCNP, there are four main types of variance reduction techniques: truncation 

methods, population control methods, modified sampling methods, and partially 

deterministic methods [2]. Truncation methods simply truncate parts of phase–space not 

important to the problem. Population–control methods use splitting or Russian roulette to 
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control the sample size from different regions of phase–space (energy, space, direction). 

Modified sampling methods are used to sample from modified statistical models with 

appropriate weights such that the final answer is unbiased. Partially deterministic 

methods combine deterministic and stochastic methods to reduce variance; these are 

often referred to as “hybrid” methods.  

4.3 Particle Weight and Importance 
 

The weight of a particle is a concept that can be related to the importance of a particle 

to the desired system response. The concept of weight is used to let simulated particles 

represent a different number of physical particles, as the simulated particle is transported 

in the phase–space. Mathematically, weights allow accurate accounting of particles to 

yield an unbiased system response or tally for stochastic methods. In analog Monte Carlo 

simulations, the particle weight is always unity. In nonanalog Monte Carlo simulations, 

the particle weight can change such that the nonanalog particle represents a quantity of 

particles different from unity (a fraction or a multiple of particles).  

The basis for the weight of a particle is its importance to a user–desired system 

response or tally. Particles that are more likely to contribute to the system response have 

higher importances than those less likely to contribute. This is because particles that 

contribute to a system response will increase confidence in the desired statistical mean 

(by decreasing statistical uncertainty), whereas unimportant particles consume 

computational time without any impact on the confidence in the given mean [3].  

Nonanalog techniques or variance reduction techniques may be applied to change the 

actual particle distribution based on their importances. The importances help guide the 
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particles towards regions of phase–space important to the tally. As particles are guided 

and their population is modified, particle weights must be changed simultaneously such 

that the modified particle distribution and the modified weight together preserve the 

physics of the problem and yield an unbiased answer (discussed in Subsection 4.4.2).  

Much work has been done to determine the biasing parameters efficiently [4–14]. 

Early work was done by Dwivedi [4] and Gupta [5] using the zero–variance methods. 

Adjoint fluxes commonly referred to as “importance functions” have been used to 

develop several other production–level methods such as MCBEND [6], TRIPOLI [7], 

AVATAR [8], LIFT [9], Cooper’s weight window [10], and FW–CADIS [11–14]. 

4.4 Variance Reduction Techniques Used  
 

MCNP provides several different variance reduction options [2]. In this thesis, two 

techniques are used to show that MCNPX–PoliMi can be run using variance reduction 

techniques. These techniques are source biasing and geometry splitting with Russian 

roulette.  

4.4.1 Geometry Splitting with Russian Roulette 
 

In geometry splitting with Russian roulette, the simulated geometry is divided into 

several different regions or cells. Each cell is given an importance by the user. It is the 

responsibility of the user to define importances for the problem, but this process can be 

helped by the automated methods listed in the previous section. As the particle moves 

from a region of lower importance, impL, to region of higher importance, impH, it splits 

into daughters determined by the ratio impH /impL. Conversely, if the particle moves from 

a region of higher importance to lower importance it survives with a probability of 
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impL/impH [2]. Figure 4–1 illustrates geometry splitting. In Fig. 4–1(a), no variance 

reduction is used, the importance of the particle remains one as it travels through space, 

thus the weight of the particle remains one. However, in Fig. 4–1(b), geometry splitting is 

used to split the particle when the importance of the space changes beyond the splitting 

plane in the middle. After splitting, the weights of the two daughter are divided by two 

(in a way described above), such that if both particles scored towards a tally, the sum of 

their weights ( ½ + ½ ) will still yield one.  

  

             

 

Figure 4– 1: Analog Monte Carlo transport shown on the left. Geometry splitting in space 
shown on the right. 

 

Geometry splitting with Russian roulette can improve the FOM by increasing the 

population of particles in phase–space, after the particle distribution decreases due to 

reasons such as thick shielding. In such a case, computational work will be done for an 

increased number of particles only in certain parts of the phase–space (in Fig. 4–1 (b), 

beyond the splitting plane). Geometry splitting with Russian roulette (will be referred to 

as simply geometry splitting from here onward) is used in Ch. 6 and Ch. 7. 

 

(a) (b) 

imp =1  imp =1  impL =1  impH =2  
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4.4.2  Source Biasing 
 

Source biasing works by modifying the original distribution of particles in 

energies, space, or directions specified by the user, when the particles are born. In this 

method, the user specifies the desired probability distribution of source neutrons, p̂  or 

the biases. Based on these biases, weights ŵ  are calculated such that the product of 

original weight w0 = 1, and original probability p0 are preserved [2]: 

pwpw ˆˆ00 ⋅=⋅  .                                                  (2) 

Source biasing can improve the FOM for cases in which the neutron source introduces a 

large number of particles into the system that have relatively low importance. By biasing 

the source so that higher–importance source particles are preferentially born, more Monte 

Carlo particles are likely to score in the detector, and the variance in the detector response 

is reduced. This technique is used in Ch. 5, 6, and 7 to distribute source particles equally 

in all energy bins. 
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Chapter 5 
Simulation of Neutron Pulse Height Distributions with a Response 

Matrix Method  
 

5.1 Introduction 
 

Valuable information regarding the spectrum can be obtained from PHDs 

measured with organic scintillation detectors. Unfortunately, standard Monte Carlo codes 

(such as MCNP) do not have the ability to estimate PHDs from organic liquid 

scintillation detectors, as we discussed in Ch. 3. Firstly, standard Monte Carlo codes do 

not incorporate nonlinear detector response needed to generate PHDs as detailed in Ch. 2 

and Ch. 3. Secondly, they do not correctly simulate individual collisions and the 

subsequent correlated light production, such as in organic liquid scintillation        

detectors [1, 2]. 

The method proposed in this chapter utilizes a single pre–computed detector 

response matrix that operates on the energy–dependent neutron current incident on the 

detector (estimated by Monte Carlo) to calculate the PHD. This method is general and 

can be applied to any source–detector configuration, including the presence of shielding: 

after the response matrix for the detector has been obtained, one only needs to calculate 

the neutron energy spectrum incident on the detector face. Any standard MCNP variance 

reduction technique may be applied to calculate this incident neutron energy spectrum. In 

this chapter, the response matrix method (RMM) is applied as a variance reduction 
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technique to shielded neutron sources; these results are compared to analog MCNPX–

PoliMi results and to measured data. 

5.2 Numerical Method 
  

 The RMM makes use of an MCNPX–PoliMi calculated response matrix to 

estimate the neutron PHD in an organic liquid scintillation detector. To use the response 

matrix, the neutron energy spectrum incident on the detector must be known. This 

spectrum may be estimated using Monte Carlo with any standard variance reduction 

technique applicable to the problem. The formulation of the method is described below. 

5.2.1 MCNPX–PoliMi Response Matrix 

 
The response matrix used in the RMM calculation contains information 

concerning the intrinsic efficiency of the organic liquid scintillation detector, which is 

sensitive only to gamma–rays and fast neutrons [3]. One MeVee is defined as the amount 

of light produced by one MeV energy deposited by a recoil electron (following Compton 

scattering) [4]. The rows of the response matrix correspond to incident neutron energies, 

ranging from 0.2 MeV to 15 MeV, with increments of 20 keV (741 energies), while the 

columns correspond to light output, ranging from 0.01 MeVee to 9.85 MeVee with 

increments of 10 keVee (985 light output bins). The energies and light bins are user–

specified and can be different from the values discussed here. The sum of all light outputs 

(or columns) for a given energy (row) gives the total intrinsic detection efficiency at that 

energy. Thus, for m energy rows and n light output columns, the response matrix is: 
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      This response matrix was obtained using analog MCNPX–PoliMi simulations that 

calculated the energy deposited by each neutron collision; this energy was converted to 

light at each collision using appropriate coefficients. A separate MCNPX–PoliMi 

simulation was performed for each incident energy, corresponding to a single row in the 

matrix. The simulated neutrons were monoenergetic, monodirectional, and normally 

incident on the detector face. The neutrons started from a circular surface source placed 

30 cm away from the EJ–309 detector. The EJ–309 detector is a cylinder with a radius of 

6.34 cm and a length of 12.51 cm. The chemical composition of the EJ–309 liquid is 

55.5% hydrogen and 44.5% natural carbon by atom. The simplified models of the 

photomultiplier tube, the Pyrex window, and the aluminum casing were also included.  

 

Figure 5– 1: EJ–309 liquid scintillation detector response matrix as a function of energy and 
light output. 
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The response matrix is created by simulating neutrons entering the detector one at 

a time; therefore, a key assumption is that only one neutron contributes to a pulse. If two 

or more neutrons arrive close in time (within the same PGT) they may contribute to the 

same pulse. The assumption of a pulse formed by a single neutron is only valid if less 

than 2×108 neutrons are incident on the detector per second (based on the characteristic 

response time of this detector). This value is orders of magnitude higher than typically 

encountered nonproliferation and safeguards measurements; the source used for the 

measurements discussed in this chapter emitted approximately 3.3×105 neutrons per 

second. 

A 2.0 GHz, 2.0 GB RAM Intel Celeron single processor computer was used to 

perform the response matrix simulations. Nearly 29.5 hours were required to simulate all 

the 741 MCNPX–PoliMi simulations and another 14.5 hrs to post–process them. Thus, 

the total time to calculate the response matrix was nearly 44 hours. This time was not 

included in the figure of merit (FOM) calculations because the response matrix was 

created only once for a detector and does not need to change for different source–

shielding configurations. The individual elements of the response matrix have statistical 

uncertainties ranging from 0.5% to 20%. The response matrix elements that are of 

practical interest to us measure the fission neutron energy spectrum (less than 2 MeVee), 

and have statistical uncertainties ranging from 0.5% to 5%. These uncertainties have been 

included in calculating the statistical uncertainties in PHDs as discussed in Subsection 

5.5.2.  
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5.2.2 Pulse Height Distribution Formulation 

 
A response matrix element represents the intrinsic efficiency for an incident 

energy E at light output L, i.e., its product with the number of incident neutrons at a given 

energy E yields the total number of neutrons detected for that E, at light output L. 

Summing these products over all incident energies as in Eq. (1), one obtains the total 

number of counts for the light output bin L. Similarly, counts can be obtained for all light 

output bins, yielding a complete pulse height distribution. The formula governing this 

method using MCNP is given as follows: 

                                                                                                         .                       (1) 
 

 
N(L) = total counts for a given light   
            output L 
L     = a given light output bin 
Ei      = ith energy bin   
n̂      = vector normal to the detector face 
J+    = partial current towards detector  

 A           =  area of the detector 
),( LER i =  response matrix element at Ei    

                  and L  
 iE∆          = energy bin width about Ei

 
The F1 tally in MCNP counts the number of particles crossing a user–specified 

surface. Thus, the number of particles entering the detector face is calculated by the F1 

tally and satisfies [5]:                       

                                                  .                          (2) 

Substituting Eq. (2) into Eq. (1), we obtain the following relationship for counts in a light 

output bin:  

  
      .                      (3)  
 
Equation (3) is used in the RMM to calculate the neutron PHD. The MCNP F1 tally used 

in this result can be calculated using MCNP5, MCNPX or MCNPX–PoliMi. The F1 tally 
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also does not need to be simulated in analog mode and can make use of applicable 

variance reduction techniques. In fact, the neutron current could also be solved with a 

deterministic code, but we are only considering Monte Carlo simulations in this chapter. 

5.2.3 Radial Leakage Correction Factor 

 
As mentioned in Subsection 5.2.1, the response matrix has been constructed for 

monoenergetic neutrons that travel monodirectionally, normal (perpendicular) to the 

detector face as shown in Fig. 5–2 (a). In Figs. 5–2 (a) and (b), the blue lines depict the 

approximate path taken by the neutrons in the cylindrical detector. In reality, neutrons are 

rarely monodirectional or normal to the detector face. In Fig 5–2 (b), a setup with an 

isotropic point source is shown, in which the neutrons enter the detector at different 

angles.  As shown in Fig. 5–2 (b), the non–normal neutrons have a greater chance of 

leaking out of the sides of the detector, and in general will have a shorter pathlength 

(have a smaller likelihood to scatter) in the detector, and thus a smaller probability of 

being detected. As a result, the PHD calculated with the previously described RMM will 

be an overestimate as in Fig. 5–3. When the detector is directly pointed towards the 

source, for large source–detector distances this effect will be minimal because the angle 

subtended between the source and the detector will be small, thus the incident particle 

directions will be closer to perpendicular. However, as the source moves closer to the 

detector, the spread of the incident direction of a particle with respect to the detector face 

increases, and this effect becomes more important. Figure 5–3 illustrates this effect for a 

bare point 252Cf source placed 10 cm away from the detector.  
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Figure 5– 2: On left source neutrons enter the detector parallel to the detector face. On 
right source neutrons from an isotropic point source enter the detector at various angles. 
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Figure 5– 3: Analog PHD and response matrix PHD without radial leakage correction. 

 

In Fig. 5–3, the discrepancy is significant between the RMM PHD and the MCNPX–

PoliMi analog PHD, which correctly models the incident angle of the neutron and the 

subsequent interactions. To correct for this discrepancy, we formulate a radial leakage 

correction factor:  

                                                                  ζ ≡ Φtrue / Φnormal   .                                                   (4) 
 

(a) (b) 
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Figure 5– 4: Analog PHD and response matrix PHD with radial leakage correction.

  

              The radial leakage correction factor is a ratio of the volume averaged flux (rate 

of pathlength creation in a given volume [5]) for the given setup with unmodified particle 

direction, Φtrue, to the case where the particles in the setup are made monodirectionally 

incident on the detector face, Φnormal. Thus, ζ is problem–specific; however, there is no 

need to perform additional Monte Carlo simulations to calculate ζ. The desired 

parameter, Φnormal can be calculated at the time of obtaining the response matrix, whereas 

Φtrue can be calculated in the problem–specific Monte Carlo simulation used to calculate 

the incident current on the detector face. In the problems discussed in this thesis, the 

correction factor accounts for greater leakage from the detector sides to reduce the 

intrinsic efficiency, and the overall counts. The ratio given in Eq. (4) is calculated for 

each energy group. The intrinsic efficiency, ε, of each light output in an energy group is 

multiplied by its corresponding ζ to yield the corrected intrinsic efficiency as:  
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                                               εcorrected (Em, Ln) =  εnormal (Em, Ln) ζ(Em)  .                          (5) 
 
The radial leakage correction factor was incorporated by modifying Eq. 3 as:     

                                                         

                                                                                                                  .                       (6)   

After this modification, the agreement between the RMM and the analog MCNPX PoliMi 

PHDs is significantly improved, as shown in Fig. 5–4. The radial leakage correction 

factor for the problems discussed in this thesis is less than unity; however, there may be 

cases where the factor can be greater than unity.  

5.2.4 Variance Reduction Techniques 

 
It is important to choose the variance reduction options that efficiently reduce 

uncertainty, while minimizing simulation run–times [5].   A typical fission spectrum has 

fewer high energy neutrons (beyond a few MeVs), so an F1 tally will tend to have greater 

uncertainty in these regions. Therefore, it is important to reduce the uncertainty in the F1 

tally for higher energies. To do this, we applied a source biasing technique to calculate 

the F1 tally.     

To obtain a uniform energy distribution throughout the spectrum, a flat 

distribution is chosen as the desired probability density distribution, and the weights are 

then calculated according to Eq. (2) in Ch. 4. Thus, given that w0 =1, it can be gleaned 

from that ŵ  must follow the spectral shape of p0 (if p̂  is a flat distribution) such that the 

product pw ˆˆ ⋅  is preserved as shown in Eq (2) of Ch. 4. The success of these choices is 

demonstrated using MCNP results, as discussed later in Section 5.5. 
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5.3 Laboratory Measurement 

 
Measurements were performed to validate simulation results; the experimental 

setup is shown in Fig. 5–5 through Fig. 5–7. A 252Cf source emitting approximately 

3.3×105 neutrons per second, placed 30 cm from detector was shielded with different 

thicknesses of polyethylene and lead. The measurements were performed in the Detection 

for Nuclear Nonproliferation Group Laboratory (DNNG) at the University of Michigan.  

 

Figure 5– 5: Laboratory setup with a 252Cf source, 20.64 cm thick polyethylene shield and 
an EJ–309 detector. 

 

Figure 5– 6: Laboratory setup with a 252Cf source, 20.64 cm thick lead shield and an EJ–309 
detector. 

252Cf 

252Cf 
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A 1–µCi 137Cs source was used for calibration, and a 12–bit, 250 MHz waveform 

digitizer was used for data acquisition.  The MCNP simulation geometry is depicted in 

Fig. 5–7. 

    

Detector

Pyrex
Window

Photo Multiplier 
Tube 

Nickel 
Case

Air

252Cf
30 cm

Shield

Polyethylene Shield = 5.08, 10.16, 15.24 and 20.32 cm
Lead Shield              = 5.08, 10.16, 15.24 and 20.32 cm  

Figure 5– 7: Shielded 252Cf setup with an EJ–309 liquid scintillation detector. 

 

The threshold for detection was determined to be 70 keVee (equivalent of 650 

keV of neutron energy deposited on hydrogen). The acquisition window was 100 points 

long, with each point 4 ns. The pulses were discriminated between neutrons and gamma–

rays using a standard charge integration method [6]. The pulse shape discrimination 

(PSD) results are shown in Fig. 5–8.  Neutrons interact with the nuclei in the scintillation 

detector and result in larger tails compared to gamma–rays, which interact with electrons. 

In Fig. 5–8, points corresponding to higher tail integral values for the same total integral 

value of the pulse are from neutrons; those points are found above the discrimination line.  

In Fig. 5–8 the 137Cs data have been overlaid to verify that the pulses below are indeed 

gamma–rays. 
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Figure 5– 8 Pulse shape discrimination between neutrons (above line) and gamma–rays 
(below line) for the setup with no shielding. 

 
 

5.4 Monte Carlo Simulations 

 
The measurement setup depicted in Fig. 5–7 contains an isotropic point–like 252Cf 

source placed 30 cm from the face of an EJ–309 liquid scintillation detector. In addition 

to the features shown in Fig. 5–7, the iron table on which the detector rests and the 

concrete floor are also modeled. The source is shielded by lead or polyethylene 

rectangular blocks that are 5.08 cm, 10.16 cm, 15.24 cm and 20.32 cm thick. The 

composition and the dimensions of the detector have been specified in Subsection 5.2.1. 

The point 252Cf source is modeled only to emit the fission spectrum neutrons simulated 

by the Watt spectrum (shown on the right in Fig. 1–1) using coefficients defined in     
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Ref. 19. This Watt spectrum is in good agreement with the Watt spectrum given by       

MCNP–DSP [8]. 

As discussed in the previous section, source biasing requires the user to input a 

desired distribution of source neutrons, p̂ . This desired distribution in our case is a 

uniform distribution of source neutrons throughout the spectrum such that a uniform 

uncertainty distribution is obtained in the F1 tally throughout the energy spectrum. Based 

on these biased probabilities, weights ŵ  are calculated such that the product of original 

weight w0 and probability p0 are preserved as given by Eq. (2) of Ch. 4. In Fig. 5–9, both 

the MCNP new weights ŵ  and those calculated independently using Eq. (2) are in good 

agreement. Since p̂ is a flat distribution, it is expected that the spectral shape of ŵ  will be 

that of a Watt spectrum (Fig. 5–9), in order to preserve the original assumed probability 

distribution p0 of the Watt spectrum. 
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Figure 5– 9: Source biased new weights and biased new probability. 
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5.5 Results and Analysis 

 
This section is divided in four subsections. Subsection 5.5.1 presents the source–

biased F1 tally results that give the neutron energy spectrum entering the detector. This 

spectrum is combined with response matrix to yield pulse height distributions. 

Subsections 5.5.2 and 5.5.3 discuss the RMM results and their statistical uncertainties 

respectively. Finally, in Subsection 5.5.4, comparisons of the simulation results with the 

measurement data are given.   

5.5.1 Incident Current on Detector Face Using Source Biasing 

   
The F1 tally in MCNP was used to tally the neutron spectrum entering the 

detector face after leaving the 10.16–cm thick polyethylene or lead shields. These cases, 

depicted in Fig. 5–10, were simulated for 107 source particles and have been normalized 

to the source strength in the laboratory measurements. The neutron distribution from the 

polyethylene shield in Fig. 5–10 has been heavily moderated and has lost its original 

Watt spectrum shape, but the neutron distribution from the lead shield has still retained 

its basic Watt spectrum shape. The reason for the results in Fig. 5–10 is that polyethylene 

is a hydrogenous material and is very effective in moderating neutrons, while lead, as a 

heavy nucleus, is a less effective moderator. Lead also has several resonances in its 

elastic scatter cross–sections, contributing to the fluctuations seen in the peak of the 

distribution in Fig. 5–10 [9]. 
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Figure 5– 10: 252Cf neutron distributions out of 10.16 cm of polyethylene and lead shields 
incident on detector face. 
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Figure 5– 11: Percent uncertainty in neutron energy distribution entering detector. 
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The MCNP simulations were performed with and without variance reduction techniques. 

The MCNP simulation with variance reduction utilized source biasing to produce 

uniform uncertainty throughout the energy distribution, as shown in Fig. 5–11. 

5.5.2 Pulse Height Distribution Comparison 

 
The current of neutrons entering the detector is combined with the response 

matrix as shown by Eq. 3 to yield pulse height distributions as shown in Figs. 5–12 and  

5–13 for 10.16–cm thick polyethylene and lead shields. These figures show that the 

analog pulse height distribution obtained from MCNPX–PoliMi has large variances. 

However, in the case of the RMM, and the RMM with source biasing, the pulse height 

distributions have reduced variances because all neutrons incident on the detector face 

contribute to each of the light output bins of the solution.  
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Figure 5– 12: Simulated 252Cf neutron PHDs from 10.16 cm of polyethylene shielding 
(RMM and RMM with source biasing are indistinguishable to the eye in this figure).    
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The figures are shown only up to 2 MeVee because the measurement data were measured 

only up to 2 MeVee. For this light output range, both the response matrix PHD methods, 

with and without source biasing have small uncertainty and are difficult to differentiate. 

The differences between these methods are better illustrated by Figs. 5–14 and 5–15. 

Figures 5–12 and 5–13 show that the lead–shielded neutron PHD has higher 

counts than the polyethylene–shielded neutron PHD, which is expected given the two 

energy distribution shown in Fig. 5–11 (the lead–shielded neutron PHD is less moderated 

than the polyethylene–shielded neutron PHD). 
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Figure 5– 13: Simulated 252Cf neutron PHDs from 10.16 cm of lead shielding (RMM and 
RMM with source biasing are indistinguishable to the eye in this figure.

 

5.5.3 Pulse Height Distribution Uncertainty Comparison 

 
The statistical uncertainty in the PHD for 10.16 cm thick polyethylene or lead 

shield was obtained using three methods: analog MCNPX–PoliMi, the RMM, and the 
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RMM with source biasing. The results in Figs. 5–14 and 5–15 include the statistical 

uncertainties in the incident neutron spectrum, the radial leakage correction factors, and 

the response matrix elements. The advantage of using the RMM is evident from these 

graphs. The analog PHD results in uncertainty over 10% at approximately 500 keVee and 

reaches nearly 100% at approximately 2 MeVee. The RMM PHD method is a significant 

improvement over the analog case: in this case, the uncertainty shows a gradually 

increasing trend, which crosses 10% around 5 MeVee.  

However, the RMM with source biasing provides the best improvement: for this 

method the uncertainty remains constant between 1% and 2% up to 8 MeVee. This is 

nearly a three order–of–magnitude improvement for light output greater than 1 MeVee 

for the same number of source particles and slightly reduced simulation time in MCNP. 
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Figure 5– 14: Uncertainty in simulated 252Cf PHDs from 10.16 cm of polyethylene shielding.  
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Figure 5– 15: Uncertainty in simulated 252Cf PHDs from 10.16 cm of lead shielding. 

 

A figure of merit (FOM) is calculated using the standard MCNP convention: 
 
                                                                FOM ≡ 1/ (R2T)    ,                                            (7) 
 
where R is the sample relative standard deviation of the mean and T is the computational 

time [5]. The FOM factor of improvement, I, is then calculated as 

                                                    I = FOMRMM source biased / FOM analog        .                                   (8) 

In Fig. 5–16, I factors are shown as a function of light output for 10.16 cm of 

polyethylene and lead–shielded cases. For individual low light output bins these factors 

are small; but as we move towards higher light output bins, I increases by greater than 

three orders of magnitude. For polyethylene shielding, the I factors are significantly 

higher than lead. This is because the number of neutrons exiting the polyethylene shield 

is significantly lower than the number of neutrons exiting the lead shield. Thus, for 

analog simulations, the relative error in the polyethylene–shielded case is higher for the
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same number of source particles, resulting in a low FOM. With the RMM, the 

improvement in the FOM is more effective and noticeable for the heavily shielded 

scenarios.  
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Figure 5– 16: Factors of improvement versus light output for 10.16 cm of lead and 
polyethylene shielding. 

 

In Table I, average factors of improvement in the FOM, Iavg (average of I over all 

light bins), for different shield types and thicknesses are shown. The factor Iavg can be 

understood as the saving in computation time if the user is equally interested in counts 

from all light output bins. For lead–shielded cases, on average the user will save a factor 

of about 300 in computational time, but for polyethylene–shielded cases the saving is 

approximately 600. As discussed in Subsection 5.2.1, the simulation time for the response 

matrix is not included in the FOM since the response matrix only needs to be created 

once for a detector and does not change with different source–shielding configurations. 
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Table 5– 1 Average FOM Improvement with RMM. 

Shielding 
Material 

5.08 cm 
 

10.16 cm 
 

15.24 cm 
 

20.32 cm 
 

Polyethylene 479 660 765 605 
Lead 282 329 339 327 

 
 

The RMM differs from the MCNPX–PoliMi analog method in that processing an 

additional data bank is not needed for RMM; the detector response is already contained in 

the MCNPX–PoliMi calculated response matrix. Furthermore, because the response 

matrix has fixed dimensions (m by n), the number of floating point operations performed 

to process the data (Eq. 3) is independent of the number of source particles: it is always  

2mn – n. Given 741 energies and 985 light bins for cases discussed here, there are less 

than 1.5 million floating point operations performed for any number of source particles 

using the RMM. However, in the analog PHD case, even the post processor will do more 

work and run for longer times for a greater number of source particles, since there will be 

more collisions to follow. Additionally, the analog case will use greater storage space to 

save the data bank as the number of source particles is increased.  

5.5.4 Comparison of Response Matrix PHD with Measured Data 

 
The computational advantage of the RMM with and without standard MCNP 

variance reduction techniques has been verified above by comparing the results with 

MCNPX–PoliMi analog cases. In this section, the RMM is validated with measured data 

to assess its ability to simulate physical reality. The measurement technique has been 

discussed in Section 5.3; here we discuss the results. 
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Figure 5– 17: Measured and simulated 252Cf neutron PHDs from 10.16 cm of lead shielding. 
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Figure 5– 18: Measured and simulated 252Cf neutron PHDs from 10.16 cm of 
polyethylene shielding. 

 

The RMM results for a lead–shielded 252Cf source shown in Fig. 5–17 are within 

20% of the measured data. The simulated RMM counts are slightly lower than the 
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measurement for light output greater than 0.80 MeVee. Measurements with polyethylene 

shields are shown in Fig. 5–18. The agreement in the case of polyethylene is generally 

good and within 20%. The simulated counts are lower than the measured values for light 

output below 0.2 MeVee. The disagreement in this low region is likely due to the 

misclassification of neutrons in the PSD process, as shown in Fig 5–8 and discussed in 

Ref. 18. For low light outputs, gamma–rays and neutrons can overlap in the PSD plot. 

This overlap becomes more important when the shield becomes increasingly moderating, 

in which case there are fewer neutrons, and even infrequent misclassifications can yield 

erroneous results. A more general reason for the discrepancy between the measured and 

the simulated could be the measured light conversion coefficients (Eq. 4 in Ch. 2) that 

convert the energy deposited in the detector into the light output [10]. The pulse height 

distributions are very sensitive to the measured coefficients used for converting energy 

deposited in an interaction into the pulse height in light units (MeVee). The detailed 

sensitivity analyses and discussions can be found in Ch. 2. 

5.6 Conclusion 
 

Standard Monte Carlo codes such as MCNP cannot calculate neutron pulse height 

distributions for organic scintillation detectors. MCNPX–PoliMi and its associated post 

processor can calculate pulse height distributions, but these calculations can be done only 

in analog mode, resulting in time–consuming simulations and post processing. The RMM 

utilizes a single detector response matrix, which operates on the incident neutron energy 

to calculate the detector pulse height distribution. This method allows the use of variance 

reduction techniques to estimate the neutron current incident on the detector face. The 

RMM also includes a radial leakage correction factor to correct for neutrons not normally 
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incident on the detector face. This correction factor is problem–specific, but it can be 

calculated using Monte Carlo calculations already employed.  

A comparison of the analog method, the RMM, and the RMM with source biasing 

is made for 107 source neutrons. It is shown that the RMM greatly reduces the variance 

throughout the pulse height distribution. For RMM with source biasing, a FOM 

improvement (savings in computation time) of a factor of 600 is achieved in the case of 

polyethylene shields and a factor of 300 is achieved in the case of lead shields over the 

entire PHD, on average. Using the RMM with source biasing decreases the variance and 

keeps it nearly constant throughout the distribution. The statistical uncertainty in the 

RMM simulation with source biasing is usually constant between 1–2%, whereas in the 

analog simulation the uncertainty exceeds 10% at only 0.5 MeVee. Furthermore, the 

analog simulation requires storage of large data files and time consuming post processing 

of these files.  

Comparisons with measured data for polyethylene and lead shields are promising 

and show good agreement in general. In the future, work can be done to further 

generalize this method by creating a response matrix solely to calculate the radial leakage 

correction factor. In conclusion, we note that the response matrix method as described in 

here is not limited to organic liquid scintillation detectors, but is applicable to other 

detector types as well.     

Although RMM has provided good speedup and results validated by 

measurements, it is difficult to extend it to time–dependent problems. Thus, we proceed 

with the direct nonanalog MCNPX–PoliMi approach to develop a method which is 

efficient, accurate and applicable to time–dependent problems.  
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Chapter 6 
Nonanalog MCNPX–PoliMi for Uncorrelated Sources 

 

6.1 Introduction 

MCNPX–PoliMi simulates detailed scintillation detector response in analog mode as 

discussed in Ch. 3 [1, 2]. In the previous chapter, it was shown that it is possible to 

capture detailed scintillation detector response as a response matrix, combine it with 

neutron current incident on the detector face, and produce a neutron pulse height 

distribution. This response matrix method (RMM) was shown to speed up PHD 

simulations. The method could employ variance reduction techniques to calculate the 

neutron current incident on the detector face. The MCNPX–PoliMi simulations to 

calculate the response matrix; however, were still performed in analog mode.  

In this chapter, simulations of neutron detector response for liquid scintillation 

detectors using MCNPX–PoliMi are performed in the nonanalog mode; that is, traditional 

MCNP variance reduction techniques are used. The post–processing algorithm for 

nonanalog MCNPX–PoliMi, called VRPost, weighs the pulses to produce unbiased 

tallies. To test the method, uncorrelated sources are used, that is, only one neutron is 

emitted from a source event. The VRPost method is tested using a polyethylene shielded 

252Cf source for three different nonanalog MCNPX–PoliMi runs. This method is 

developed further in the next chapter for correlated sources (Ch. 7). 
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6.2 Nonanalog MCNPX–PoliMi  
 

This section discusses: i) the reasons and circumstances in which variance reduction 

techniques can be applied to MCNPX–PoliMi enabling simulations in nonanalog mode, 

ii) quantification of improvement in computation time for nonanalog cases, and iii) 

development and implementation of the VRPost post–processing method that allows the 

use of nonanalog MCNPX–PoliMi. Detailed discussion of MCNPX–PoliMi code, the 

physics it simulates, and its present detection module can be found in Ch.3. 

 

6.2.1 Separation of Phase–space for Direct Nonanalog MCNPX–PoliMi 
 

In the analog MCNPX–PoliMi mode, each particle is explicitly tracked, thereby 

preserving the physics as though in an actual laboratory experiment. However, for the 

phase–space in which the source particle travels after it is born, but before the detector 

region, one may apply nonanalog Monte Carlo techniques as shown in Fig.6–1. Inside the 

detector region the particle is not allowed to change its weight because this is where it 

contributes to scintillation pulses based on energy deposition, nuclide of scatter and 

energy–to–light conversion coefficients.  

For simulation methods that record the mean behavior of particles, such as the PHD 

and TOF, modifying the sample population of particles in a region of interest (in energy 

or in space) can still preserve the analog results while minimizing variance [3]. It is 

required, however, to appropriately adjust the weights to compensate for the unphysical 

modifications made to the sample population of particles.  Thus, MCNPX-PoliMi is run 
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in nonanalog mode using applicable variance reduction techniques available in the 

standard MCNP code and as discussed in Ch. 4. 

 

Figure 6– 1: Nonanalog MCNPX–PoliMi region after particle is born followed by analog 
MCNPX–PoliMi region once particle enters the scintillation detector. 

 

6.2.2 Improvement Factors 
 

The goal of using variance reduction techniques or performing nonanalog Monte 

Carlo simulations using MCNPX–PoliMi is to reduce simulation run times. Improvement 

factors are computed to quantify speedup, as in the RMM–PHD case (Ch.5), but here 

speedup is evaluated in comparison to the nonanalog cases by defining:  

                                               
ogana

ognonana

FOM

FOM
I

l

l≡  .                                                (1) 

This improvement factor, I, is the factor by which computation run–time is reduced for 

the same relative error obtained for a tally. 
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6.2.3 Implementation of Nonanalog MCNPX–PoliMi  

It is important to note that for the nonanalog MCNPX–PoliMi calculations 

introduced and discussed here, the particle weight can only change outside the detector, 

where particle collisions do not contribute to the scintillation detector pulses. The 

scintillation detector pulse for an incoming particle results from the energy depositions 

that occur during its collisions inside the detector. The total energy deposited by the 

particle is converted into total light produced by the particle, as discussed in Ch 3. For 

neutron–hydrogen collisions the light emitted is nonlinearly dependent on energy 

deposited. The light produced from collisions within a PGT is summed as pulse, and then 

compared to the detection threshold. If the pulse height or the light produced is greater 

than the threshold, the pulse is binned in the appropriate light output bin. The arrival time 

(given by the time of first scatter) and the particle type for each pulse are also stored. 

During this process, when light is produced, the entire pulse gets a weight equivalent to 

that of the incoming particle weight. Therefore, the weight of the particle must remain 

constant inside the detector [3]. The nonanalog MCNPX–PoliMi postprocessor, VRPost 

tallies the detected particle in the respective tally bin (light or time) by adding the weight. 

In a fully–analog case the tallies can only increment by one as a particle is followed 

without any change to its weight.  

Detector

wout = w0win = w0

 

Figure 6– 2: Weight of the neutron remains constant inside the detector region. 
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The present MCNPX–PoliMi release version is not designed to run in nonanalog 

mode. Therefore, the data file output by MCNPX–PoliMi does not indicate the daughter 

number for particles. In Table 3–1 of Ch.3, for each collision the data file provides 

information on history number, particle number, scatter number and other interaction 

details. Therefore, when implementing the post–processing method or the detector 

module, the number of scatters is used to differentiate one daughter from another. As a 

particle scatters inside the detector, the number of scatters increases after each collision, 

as is shown in the data file (Table 3–1). However, for nonanalog cases, for a given 

particle one can observe the pattern shown in Table 6–1. 

Table 6– 1: Discontinuous scatter numbers indicates the start of a new daughter. 

 

History No. Particle No. Weight Scatter No. 

389678 12 0.5 7 

389678 12 0.5 8 

389678 12 0.5 0 

389678 12 0.5 1 

   

 Table 6–1 shows only a part of the information given in a typical MCNPX–PoliMi 

data file. It can be seen that for the same history and same particle, the number of scatters 

first increases from 7 to 8 and then reduces to 0. Additionally, as seen from the weights in 

the above table, the particle has been split into two. We make the assumption that 

discontinuous scatter number indicates the start of another daughter. This assumption 

should be generally correct, except if the particle can leave the detector, scatter with a 

different object (e.g. a shield or another detector), and return to the detector. In this case, 
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there will be an error introduced. However, given the present limitation that the daughter 

number is not listed in the data file, we proceed with the present assumption to test the 

VRPost method.   

6.3 Monte Carlo Simulation 
 

This section describes the simulation cases, their MCNPX–PoliMi setup, and the 

variance reduction techniques used. The results obtained for these simulations will be 

discussed in Section 6.4. 

6.3.1 Geometry Setup 
 

The MCNPX–PoliMi model is shown in Fig.6–2. It contains an isotropic 252Cf point 

source placed 15 cm from the face of an EJ–309 liquid scintillation detector. The source 

is shielded by 10.16 cm (4 inches) thick polyethylene rectangular blocks. The detector is 

a cylinder with a radius of 6.34 cm and a length of 12.51 cm.  

 

Figure 6– 3: Shielded 252Cf setup with an EJ–309 liquid scintillation detector 
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The chemical composition of the EJ–309 liquid is 55.5% hydrogen and 45.5% natural 

carbon by atom. The 252Cf source is modeled as a pure neutron source with energies 

sampled from a Watt spectrum using coefficients defined in Ref. 8 [7, 8].  For simplicity 

and ease of testing variance reduction techniques, the photomultiplier tube and detector 

casing have not been included. 

6.3.2 Source Biasing in Energy 
 

High energy fission neutrons are important because higher energies deposited result in 

larger light pulses. These pulses have a greater probability of being above the detection 

threshold than those generated by the more–abundant low–energy neutrons. Also, higher 

energy neutrons are more likely to leak through a thick polyethylene shield and reach the 

detector. Hence, we have applied the source biasing technique to obtain a uniform variance 

throughout the source distribution. The biasing function discussed in Ch. 5 has been used. 

 

6.3.3 Geometry Splitting with Russian Roulette 
 

Geometry splitting is a population control method which uses a particle’s importance 

in space to determine its new weights for scoring. As a particle moves from a region in 

space of low importance (where it is less likely to score in the detector) to a region of 

high importance, it is split in more particles, based on user–specified importance ratios. 

The particle’s weight is adjusted accordingly to preserve physics. Similarly, as a particle 

moves from a region of high importance to low importance it may be killed in an 

unbiased manner to avoid wasting computational time on particles that may not score in 

the detector [5].  
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For our case, the 10.16–cm of polyethylene shield was divided into three sub–regions 

to determine the importance of the neutrons as they move through the shield and towards 

the detector region. Based on their population it was observed that the population of 

neutrons dropped by a factor of two almost half–way through the shield, it had dropped 

by a factor of almost four ¾ of the way through the shield. Therefore, for the geometry 

splitting case, the importance of neutrons in the region until 5.08 cm in to the shield was 

one, between 5.08 cm and between 7.62 cm it was two, and beyond 7.62 cm in the shield 

it was four.  Thus, neutrons would double in number after 5.08 cm and then double again 

after 7.62 cm in the shield. 

6.4 Results and Analysis 
 

This section first provides a comparison of PHDs and TOFs for the source biasing 

case, the geometry splitting case, and the source biasing with geometry splitting case, all 

with the analog MCNPX–PoliMi case. It then discusses the improvement factor; this is 

the factor by which a user can reduce the MCNPX–PoliMi simulation runtime.   

6.4.1 Comparison of Pulse Heights Distributions and Time–of–Flights 
 

To motivate the need of developing a separate post–processing algorithm for nonanalog 

MCNPX–PoliMi, comparisons of simulations between analog and nonanalog PHD have 

been made using MPPost which does not account for particle weights.  
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Figure 6– 4: Pulse height distributions for MCNPX–PoliMi analog, source bias and 
geometry split using MPPost. 

 

As seen in Fig. 6–4, the nonanalog MCNPX–PoliMi data post–processing using 

the traditional MPPost inaccurately calculates the PHD because it does not tally using the 

appropriate weights. The MPPost tallies by adding unity for each score instead of the 

correct weight.  

Next, comparisons of the VRPost post–processed nonanalog MCNPX–PoliMi 

case with the analog MCNPX–PoliMi case are presented. For each particle detected, its 

pulse height is first compared with the liquid scintillation detector threshold, which was 

70 keVee for this case. Following this, if the pulse height is greater than the threshold, the 

pulse scores in its respective pulse height bin. The time of the first scatter in a pulse 

marks the TOF, the corresponding TOF bin is scored. In the analog case, the bin tally 

increases by one, whereas in the nonanalog case the bin tally increases by the weight of 

the pulse. The resulting analog and nonanalog results are shown in Fig. 6–5 through       

Fig. 6–10.  
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Figure 6– 5: Source bias and analog MCNPX–PoliMi PHDs post–processed with VRPost 
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Figure 6– 6: Source bias and analog MCNPX–PoliMi TOF curves post–processed with 
VRPost 

 

The weight distribution of particles has been shown in Fig. 5–9. As expected, in the given 

energy range from 0 to 15 MeV most high–energy neutrons (greater than 5 MeV) are 

produced with an increased biased probability and thus have smaller weights. These high 

energy neutrons are also more likely to pass through the polyethylene shield and enter the 

detector. Larger weights generally correspond to lower energy neutrons, which have a 

much lower distribution in the nonanalog case (as compared to the analog case). Due to 
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their low energies, few high weight neutrons leak through the shield; as a result, the 

likelihood of their detection is small. 

In Fig. 6–5 and Fig. 6–6, the PHD and TOF plots obtained using source biasing 

show good agreement with the analog case. Furthermore, the nonanalog case using 

source biasing in the PHD plot converges to the analog results and has reduced stochastic 

errors. Due to the source biasing technique, which is sampled from modified flat particle 

distribution (Fig. 5–9), the convergence is good throughout the PHD for the nonanalog 

case, whereas for the analog case, the convergence is faster for the lower light–output 

bins than for the higher light–output bins (corresponding to higher energies). 
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Figure 6– 7: Geometry split and analog MCNPX–PoliMi PHDs post–processed with VRPost 

 

In Fig. 6–7 and Fig. 6–8, there is good agreement between the analog and the 

geometry split MCNPX–PoliMi simulations. However, comparing the PHD in Fig. 6–7 

with that in Fig. 6–5, we can infer that geometry splitting does not lead to a uniform 

convergence throughout the pulse height spectrum. Nonetheless, it is shown in Fig. 6–11 

that geometry splitting does lead to some improvement in the desired simulation run time. 
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Figure 6– 8: Geometry split and analog MCNPX–PoliMi TOF curves post–processed with 
VRPost 

In Fig. 6–9 and Fig. 6–10, results for the case which combined both the variance 

reduction techniques (source biasing and geometry splitting) are shown. The nonanalog 

PHD plot shows good agreement with the analog simulation. The TOF plot also shows 

good agreement. Due to the inclusion of the source biasing technique, we see that the 

PHD plot in Fig. 6–9 shows a faster convergence than the analog case for higher light 

outputs. The same trend is seen in the source biasing only case in Fig. 6–5. 
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Figure 6– 9: Combined source bias and geometry split case with analog MCNPX–PoliMi 
post–processed using VRPost 
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Figure 6– 10: Combined source bias and geometry split TOF curve with analog MCNPX–
PoliMi post–processed with VRPost. 

 

6.4.2 Speedup Determined by Improvement Factors 
 

As discussed in Section 6.2, improvement factors are calculated for all bins for both 

the PHDs and the TOF curves for the three nonanalog cases discussed above. These 

results are shown in Fig. 6–11 and Fig. 6–12.  
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       Figure 6– 11: Improvement factors for the nonanalog PHD simulations. 
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Figure 6– 12: Improvement factors for the nonanalog TOF simulations. 

 

Figures 6–11 and 6–12 show that the best speedup is attained by combining the 

source biasing and geometry splitting techniques. For this case, the factors of 

improvement range from 5 at lower light outputs to greater than 25 at higher light 

outputs. From the improvement factor of the PHDs in Fig. 6–11, it is evident that source 

biasing provides faster convergence for higher light output bins (from faster neutrons). 

The geometry splitting method, in Fig. 6–11,  changes the particle population based on 

their spatial importance only (as particles move in one direction, from the source towards 

the detector), with no regard to the energy of neutrons. Hence, the flat distribution of I 

(factor of approximately 2) as a function of light output (dependent on the energy 

variable) is seen. The combination of both techniques changes the particle distribution 

based on energy (source biasing) and spatial importance (geometry splitting), thus, gives 

the best results. 
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6.5 Conclusion 
 

Liquid scintillation detectors are helpful in giving pulse height and time–of–flight 

information; however, MCNPX–PoliMi simulations of these need to be performed in 

fully analog mode and thus cannot utilize traditional MCNP variance reduction 

techniques. In this chapter it is shown that MCNPX–PoliMi simulations can be 

performed in nonanalog mode using variance reduction techniques to produce neutron 

detector response, but with the condition that the particle weight does not change inside 

the detector. The nonanalog MCNPX–PoliMi postprocessor, VRPost, tallies the pulses by 

their weights.  

Comparisons of pulse height distributions and time–of–flight curves are made for 

nonanalog and analog MCNPX–PoliMi simulations. For the nonanalog cases: source 

biasing, geometry splitting with Russian roulette, and a combination of both are 

simulated. It is found that nonanalog results agree well with the analog cases. 

Furthermore, improvement factors are calculated to analyze the speedup in simulation 

time. It is found that source biasing and geometry splitting combination simulation 

provides the best results. Source biasing helps in modifying particle distributions for 

higher energies to obtain more scores, whereas geometry splitting maintains the same 

population of Monte Carlo neutrons throughout the shield. Neutron weights are adjusted 

as the neutron population is modified.  

In the next chapter, multi–detector problems using MCNPX–PoliMi simulations 

run in nonanalog mode for correlated fission sources are discussed. These results are 

verified by laboratory measurements. 
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Chapter 7 
Nonanalog MCNPX–PoliMi for Correlated Sources 

 

7.1 Introduction 

In the previous chapter, uncorrelated responses such as pulse height distributions 

and time–of–flight were studied. We showed that nonproliferation problems can be 

divided into parts that must be run in analog MCNPX–PoliMi mode, and parts that can 

use variance reduction techniques. Such a targeted approach can lead to significantly 

reduced computation times for complex problems.  

In this chapter, a time–dependent correlated response with nonanalog MCNPX–

PoliMi is studied. In the case of correlated response such as cross–correlations, the 

efficiency of detection is extremely low. The likelihood of recording a cross–correlation 

event is extremely small, even after accounting for the solid angle of the problem 

geometry and the intrinsic efficiency of the detector. If the probability, p, that one 

neutron from a detector will score is small, then the probability that two particles will 

score is on the order of p2, which is much smaller than p. For this reason, Monte Carlo 

simulations of these events will be costly; only a very small percentage (on the order of 

p2) of Monte Carlo fission events will lead to two neutrons scoring in detectors.  In this 

chapter, a time–dependent neutron cross–correlation response for liquid scintillation 

detectors, utilizing traditional MCNP variance reduction techniques, is studied. These 

techniques are used to mitigate the reduced efficiency due to small solid angles subtended 
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by the detector with respect to the source. Variance reduction techniques in MCNPX–

PoliMi increase the neutron population closer to the detector. The method is tested using 

a bare 252Cf source and a polyethylene shielded 252Cf source. 

7.2 Time Cross–Correlation with Nonanalog MCNPX–PoliMi  
 

Cross–correlation measurements give a distribution of the differences in the times of 

detection of two or more different particles that reach two different detectors. An 

example setup for a cross–correlation detector response, in which a shield hiding a fission 

source is shown with two detectors, is shown in Fig. 7–1. The detection times of the three 

pulses generated in the detectors are given by t1, t2, and t3 (t1 < t2 < t3). 

detector 2 detector 1

source

n1n2

shield

t1

t2
t3

 

Figure 7– 1: An example setup for a cross–correlation scintillation detector response. 

 

The order of subtraction is fixed, which can lead to negative times. For instance, if 

detector 2 pulses are being subtracted from detector 1 pulses, the difference between t1 

and t3 will give a negative answer if t1 occurs before t3. Cross–correlation distributions 

are unique to the fission process, as they require multiple correlated particles emitted 

from an event. Only neutron–neutron cross–correlation measurement simulations will be 
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the focus of this discussion, since the neutron scintillation detector response is nonlinear, 

as discussed in Ch. 2. 

7.2.1 Cross–Correlation Calculation 

 

As explained in Ch. 3, MCNPX–PoliMi simulates nuclear nonproliferation 

measurements problems for complex scenarios. It models spontaneous and induced 

fission events in detail for different isotopes [5]. It has built–in source correlations for 

multiplicity–dependent energy distribution and light fission fragment dependent particle 

flight direction [5]. 

When we apply variance reduction techniques, we must ensure that the final answer 

remains unbiased. This is done by ensuring that the product of the true population, p0 and 

the original weight w0 (which is simply unity) is preserved by the new user–specified 

population, p̂   and the corresponding weights ŵ : 

                                                                          pwpw ˆˆ00 ⋅=⋅    .          (1) 

For cross correlation measurements, two or more detectors are needed. In this study, only 

problems with two detectors are studied (but the method can be extended to more 

detectors with a similar approach). A count is produced when neutron pulses from the 

same fission event are recorded by both detectors. 

In MCNPX–PoliMi, the energy distribution of neutrons from a fission event is 

dependent on the fission–multiplicity (the number of neutrons released in the fission 

event). Once the multiplicity has been sampled, the energy of the neutrons is sampled 

independently (from each another) from a distribution which is isotopic and multiplicity 

dependent [5]. Furthermore, the distribution of the flight directions of neutrons emitted 
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from a fission event depends on the flight direction of the lighter fission fragment 

emitted. Once the lighter fission fragment’s flight direction has been sampled 

isotropically, the flight directions of the neutrons from that fission event are sampled 

independently of one–another, but dependent on the direction of the lighter fission 

fragment.  As the sampling is done independently (there are no conditional probabilities), 

the following relationship in Fig. 7–2 can be shown:  

 

                                                    

 

 

 

Figure 7– 2: An illustration of neutron probabilities from the same fission being detected by 
two detectors.  

 
If we apply the relationship shown in Eq.(1) to the individual probabilities PA and PB, we 

can rewrite Eq. (2) as: 

 PAB  = PA  × PB  

    = )ˆˆ( AA pw ⋅ )ˆˆ( BB pw ⋅ = )ˆˆ)(ˆˆ( BABA ppww ⋅⋅ .     (3) 

Thus, the product of the individual modified probabilities for the detectors is simply the 

combined modified probability. This modified combined probability should be weighed 

by the product of the weights of the neutrons reaching each detector. Thus each time 

cross correlation count will be incremented by the combined weight: 

Probability that a 
neutron from a 
fission event 

reaches detector A 

PA 

PAB  = Probability that a neutron from a fission  
          reaches detector A and another neutron            
          from the same event reaches detector B.  
       = PA  × PB.  

Probability that a 
neutron from the 

same fission event 
reaches detector B 

PB 

   (2) 

PAB 



91 
 

)ˆˆ(ˆ BA wwW ⋅= .       (4) 

This technique will only work if each neutron pulse is produced due to contributions from 

a single neutron. For a simple case we proceed with this assumption because the 

probability that two or more neutrons from the same fission will enter the same detector 

is much smaller than the likelihood of a single neutron contributing to a pulse (given the 

small solid angles subtended by the detectors in the problems considered here). This 

assumption will be violated in the event of a high splitting ratio, in which case it becomes 

more likely for daughters from different particles to enter the same detector within the 

same PGT. 

7.2.2 Symmetric Case with Geometry Splitting  
 

We test the above proposed methodology for the simple case in which the source–

detector distance on each side of the source is 30 cm. The source and the detector are 

unshielded and contained in vacuum space as shown in Fig.7–3. 

 

EJ-309EJ-309
L11

L12
L21

detector 2
30  cm 30  cm

Splitting Planes

 

Figure 7– 3: An illustration of nonanalog cross–correlated tally setup in MCNPX–PoliMi 
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In the above case, as particles travel half–way towards the detector (15 cm), they 

split into four daughter particles. On the right hand side, two of the four split daughter 

particles enter detector 1. On the left hand side, only one of the four split daughter 

particles enters detector 2. Thus, the following pulses are formed. 

Table 7– 1: List of pulses contributing to the tally for the example case in Fig. 7–3. 

#  Pulse Heights [MeVee]  Weight  
1  L

11
  w

11
  

2  L
12

  w
12

  

3  L
21

  w
21

  

 

In Table 7–1, we can see that there are two light pulses formed in detector 1, L11 

and L12, whereas only one pulse formed in detector 2, L21.  The times of detection of 

these pulses are t11, t12, and t21 respectively. Each of the detector 1 pulses can be paired 

with the detector 2 pulse to form the following cross–correlated pairs shown in         

Table 7–2.  

Table 7– 2: Cross–correlated events for the example case in Fig. 7–3. 

#  Delta–Time [ns]  Weight  
1  t

11
 – t

21
  w

11
 × w

21
  

2  t
12

 – t
21

  w
12

 × w
21

  

 

Each of the pairs is given a product of the weights as explained by Eq. 4. 

MCNPX–PoliMi simulations are performed to test this methodology. The MCNPX–

PoliMi model for a symmetric bare and shielded 252Cf source is shown in Fig. 7–4 and 

Fig. 7–5. The 252Cf point source is an MCNPX–PoliMi built–in anisotropic spontaneous 

fission  source (IPOL 1). The detector is a cylinder with a radius of 6.34 cm and a length 

of 12.51 cm. The chemical composition of the EJ–309 liquid is 54.8% hydrogen and 
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45.2% natural carbon by atom. The 252Cf source is modeled as a pure neutron source. The 

photomultiplier tube and the detector casing have not been included for simplicity and 

ease of testing variance reduction techniques. The EJ–309 liquid scintillation detectors 

are placed at 30 cm on both sides of the source as shown in Fig. 7–4. The source and the 

detectors are surrounded by vacuum. In Fig. 7–4, the bare 252Cf source is on the left, and 

the 252Cf shielded by 10.16–cm–thick polyethylene on each side (20.32 cm or 8 inches 

total shielding thickness) is on the right. 

 

Figure 7– 4: Bare 252Cf (left) and Polyethylene shielded (right) correlated 252Cf fission source 
with two EJ–309 liquid scintillation detectors. 

  

The cross–correlation simulation results for the above setup are presented for the 

analog and the geometry split cases of MCNPX–PoliMi in Fig. 7–5 and Fig. 7–6. The 

polyethylene–shielded case is normalized to the number of source particles run for the 

bare case. In Figs. 7–5 and 7–6, the y–axis scales indicating the counts differ by an order 

of magnitude. This is expected, since polyethylene is an effective moderator, which slows 

fission neutrons to energies below the detector threshold. For the case shown in Fig. 7–6, 
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a very thick polyethylene shield of 10.16–cm has been modeled on each side. The peak of 

the cross–correlation simulation curve for the bare 252Cf occurs at about 15,000 counts; in 

contrast to 500 counts in the case of polyethylene shielded 252Cf. This is a difference of a 

factor of approximately 30 between the two cases. Speedup factors were calculated using 

the same improvement factors as discussed in Ch. 5 and Ch. 6. 
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Figure 7– 5: Bare 252Cf cross–correlation comparison for analog and geometry split 
simulations with MCNPX–PoliMi. Speedup factor 11. 

 

As seen from Fig. 7–5 and 7–6, there is good agreement between analog and geometry 

split (nonanalog) MCNPX–PoliMi simulations. The average speedup for both of these 

cases was calculated by taking the ratio of the figure–of–merits [10]. The average 

speedup for the case of bare 252Cf source is a factor of 11, whereas for the polyethylene 

shielded 252Cf, the speedup is a factor of 4.6. 
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Figure 7– 6: Polyethylene–shielded 252Cf  cross–correlation comparison for analog and 
geometry split simulations with MCNPX–PoliMi. Speedup factor 4.6.  

 

This difference in computational speedup can be explained by the splitting plane 

positions shown in  Fig. 7–4. In the bare 252Cf case, the splitting planes are simply placed 

in a vacuum space, thus after splitting are transported to the detector where they interact. 

In the the polyethylene–shielded case, the splitting plane is placed inside the shield, thus 

after splitting the daughter particles first interact in the thick shield and are then 

transported to the detector.  It is shown above that the nonanalog Monte Carlo as tested 

by geometry splitting with MCNPX–PoliMi can be used to simulate neutron cross–

correlation simulations for a symmetric case. 

7.2.3 Symmetric Case with Source Biasing 
 

Next, we implement the same source biasing technique as illustrated in Fig. 5–9 to 

check its compatibility with MCNPX–PoliMi. The cross–correlation curve is presented in      

Fig. 7–7. 
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Figure 7– 7: Cross–correlation curves for analog and nonanalog MCNPX–PoliMi cases. 

 

As seen above, the nonanalog MCNPX–PoliMi simulations do not converge to 

the correct answer given by the analog MCNPX–PoliMi simulation. The nonanalog curve 

was calculated using the same methodology as given in Table 7–2. Upon examination of 

the MCNPX–PoliMi data file it was found that the source–biasing method did not assign 

weights as expected (as shown in Fig. 5–9) when used with built–in correlated sources . 

This is because the developers of MCNPX–PoliMi did not intend the use of variance 

reduction techniques with simulations.  

When using source–biasing in MCNP, each particle is assigned a weight 

depending on the specified biasing function. However, when specified in MCNPX–

PoliMi for the built–in sources, source–biasing assigns the same weight to all the 

particles emitted in a fission event on an unknown basis. Furthermore, MCNPX–PoliMi 

weighs the entire fission event and not the individual particles. Thus, the methodology 

shown by Eq. 4 and in Table 7–2 will fail. In this scenario, all particles inherit the weight 

of the source event. This is because, once the fission event has been sampled with a given 
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probability and weight, it is certain (with a probability of unity) that all the particles 

emitted from that fission will exist.  

Thus, the probability that a particle will exist is simply given by the probability 

that the fission will occur. Therefore, the probability that a cross–correlated pair will 

occur is simply given by the probability that the fission will occur (not by the 

probabilities of individual particles). Hence, the cross–correlated tally for the source–

biasing case, as it is presently functioning in MCNPX–PoliMi, should only be weighed 

by a single weight (not the product of weights as shown in Eq.4) which is the weight of 

the source or fission event. The cross–correlation tally was modified to include this 

methodology for source–biasing, the results are shown in Fig. 7–8. 
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Figure 7– 8: Cross–correlation curves for analog and nonanalog MCNPX–PoliMi cases 
using a modified tallying technique. 

 

As is evident from the above figure, the modified methodology proposed above 

regarding weighing cross–correlated pairs by the source or fission event gives a much 
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better agreement.  However, source–biasing and its modified methodology will not be 

further discussed in this thesis since the weight of the source events is being determined 

on an unknown basis. In this thesis, we are interested in modifying the transport of the 

individual particles in a way such that the figure–of–merit for the cross–correlation tally 

is increased. This goal is unachievable given the present limitation of source–biasing in 

MCNPX–PoliMi. The MCNPX–PoliMi developers have been informed about this 

limitation, and they may find it helpful to implement source–biasing in MCNPX–PoliMi 

such that it is able to correctly bias individual particles. 

7.2.4  Asymmetric Case with Geometry Splitting  
 

Next, a bare 252Cf source is placed with detector 2 much closer than detector 1, as shown 

in Fig. 7–9. Additionally, after going through the splitting planes the particles will split 

into 8 daughter particles. It is evident from Fig. 7–10, that the analog curve is being 

under–predicted by the geometry–split simulation. 

 

Figure 7– 9: Asymmetric setup with a 252Cf source and two detectors using 1:8 splitting 
ratio at splitting planes. 

15 cm 45 cm 
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Figure 7– 10: Cross–correlation tally shown for the asymmetric setup utilizing analog and 
nonanalog MCNPX–PoliMi simulations. The splitting ration was greatly increased but the 
tally mechanism was kept simplified. 

 

The disagreement in the above figure can be explained by the simplified tally 

mechanism that was developed in Section 7.2.1. An assumption was made that only one 

neutron from a fission event can contribute to a pulse formed in the detector. This 

assumption is violated when the splitting ratio increases: it becomes increasingly likely 

that daughters from two different neutrons of a fission event will enter the same detector 

within the same PGT (time–window), as shown in Fig. 7–10.  This erroneous tally 

mechanism is modified to accommodate for the multi–particle behavior in the next 

section. 
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7.3 Multiple Particle Pulses in Nonanalog MCNPX–PoliMi 
 

A method to correctly account for daughters from different neutrons, of the same 

fission event, entering the same detector, at similar times (within the same PGT) is 

formulated below. Consider an example case shown in Fig. 7–11. 

7.3.1 Incorporating Multiple Particles 
 

w11 = 0.5

w12 = 0.5
w21 = 0.33

w22 = 0.33

L11

L12

L21

L23
w23 = 0.33

L22

 

Figure 7– 11: An example case of split daughters from two different neutrons entering the 
same detector within the same PGT. 

 

In Fig. 7–11, two different neutrons (red and blue) from the same fission event 

have split and entered the detector at the same time. The blue neutron has split into two 

different daughters (each with a weight of 1/2), and the red neutron has split into three 

different daughters (each with a weight of  1/3).  Each daughter of a neutron will create its 

own independent track in the detector to represent a possible path that the original 

daughter could have taken. The daughters represent the different possibilities of the 

original neutron; therefore, it is clear that their tracks are mutually exclusive: that is, both 

daughters from the same neutron cannot occur at the same time. Hence, daughters from 

the same neutron cannot contribute to the same pulse. However, daughters from different 
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neutrons that also enter the same detector can contribute to the same pulse. Therefore, in 

Table 7–3, L11 and L12 cannot occur together, similarly, L21, L22 and L23 cannot occur 

together. But, they can occur with the daughters of other neutrons, as shown below:   

Table 7– 3: List of pulse formed in the detector for the example case. 

#  Case  Pulse Height  Pulse Weight  
1  w

11
 and w

21
  L

11
 + L

21
  p

1 = w11
 × w

21 = 0.167  

2  w
12

 and w
21

  L
12

 + L
21

  p
2  = w12

 × w
21 = 0.167 

3  w
11

 and w
22

  L
11

 + L
22

  p
3 = 

w
11

 × w
22 = 0.167   

4  w
12

 and w
22

  L
12

 + L
22

  p
4 = 

w
12

 × w
22 = 0.167   

5  w
11

 and w
23

  L
11

 + L
23

  p
5 = 

w
11

 × w
23

 = 0.167 

6  w
12

 and w
23

  L
12

 + L
23

  p
6 = 

w
12

 × w
23 = 0.167   

 

In the above table the light pulses can only combine if they fall within the same 

PGT (time–window). The pulse–weights for all six cases add up to unity to yield an 

unbiased tally. In general, the number of cases or the possibilities of pulses from daughter 

of different neutrons of the same fission event, N is simple given as: 

∏
=

=
P

p
pdN

1
.                                                      (5) 

Here,  P is the number of neutrons of the same fission event that enter the same detector. 

The number of daughters for each neutron entering the detector is represented by dp. 

Once the cases have been formed, a pulse will be formed only for those collisions of the 

daughters that occur within the PGT of that pulse (time window). The pulses are finally 

checked against the detector threshold to determine if they can contribute to the tally. The 

algorithm is summarized in Fig.7–11. It was implemented to modify the original version 

of the code. The new results are discussed in the following section. 
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For each history: read all columns of data file

For each detector, find no. of particles, no. of 
daughters for each particle (start index, stop 
index)

For each detector: form a case depending on 
number of particles 1, or 2. 
Only one daughter for each particle allowed.

For each case: find smallest time, find all 
scatters within PGT, convert into light. 
Record height, time, calculate combined weight 
(if pulse-height is greater than threshold)

Repeat by finding the next smallest time (not 
already accounted for)

 

Figure 7– 12: Algorithm for incorporating multiple particle contribution in the pulses for 2 
or more neutron entering the same detector. 

 

The modified algorithm only includes up to two particles from the same fission event 

entering a detector, in the same pulse (if particles arrive within the same PGT). This is 

not exact: the algorithm will need to be modified to include more particles from a fission 

event for simulations in which large solid angles are subtended by detectors. However, 

the above algorithm is easy to modify to include the effect of more than two particles 

from a fission event entering the detector. In the simulations discussed in this thesis, the 

likelihood of three particles entering a detector within the same PGT is much smaller than 

one percent.    

7.3.2 Asymmetric Case with Geometry Splitting 

  
The MCNPX–PoliMi simulation for the setup shown in Fig.7–9 was re–tallied using 

the above modified algorithm to yield the results shown in Fig. 7–13. 
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Figure 7– 13: Cross–correlation tally shown for the asymmetric setup utilizing analog and 
nonanalog MCNPX–PoliMi simulations. The splitting ration was greatly increased thus the 
tally mechanism was modified to incorporate the multi–particle behavior. 

 

The results in Fig. 7–13 are a significant improvement over the results shown in 

Fig. 7–10. The nonanalog results agree with the analog results for most of the peak, 

except for the left side of the tail in which the nonanalog results greatly over–predict the 

analog solution. This error is a limitation of the post–processing methodology, in which 

the exact daughter numbers are not written in the data file. Therefore, the post–processing 

methodology determines the daughter number based on the number of scatters. If the 

number of scatters abruptly changes (by more than one scatter) the algorithm determines 

the following lines as belonging to the next daughter. The reader may look back at Table 

3–1 to understand how the data is being written by MCNPX–PoliMi.  

 The above approximation will give erroneous answers when there is a highly 

scattering medium outside the detector. In this situation, a neutron can leave the detector, 
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scatter outside the detector, and return to the detector. Upon returning to the detector, the 

neutron will be incorrectly classified as a different daughter.  This approximation will 

also not work where there is significant cross–talk between the detectors. That is, a 

neutron can enter one detector, deposit some energy, then leave that detector and enter 

the second detector. In the setup shown in Fig. 7–9, cross–talk is likely to occur, 

especially for neutrons entering detector 2 and then entering detector 1. These neutrons 

are incorrectly accounted for and will hence cause an error.  

To eliminate the errors indicated above, it is necessary to add a column in the 

MCNPX–PoliMi data file that will indicate each daughter number explicitly. For cross 

talk events, the pulses created in the second detector should always be given a weight of 

unity, as their original weight has already been accounted for in the first detector.    

In this section, a method was developed for tallying cross–correlation simulation 

that incorporated for multiple particle behavior. Next, we proceed to validate laboratory 

measurements with simulations and quantify speedup due to nonanalog techniques.  

7.4 Speedup of Nonanalog MCNPX–PoliMi Simulation of 
Laboratory Measurements  

 

Measurements were performed to validate simulation results for the setup shown in 

Fig. 7–14. The measurements were performed in the Detection for Nuclear 

Nonproliferation Group Laboratory (DNNG) at the University of Michigan.  

7.4.1 Measurement Setup 
 

A 252Cf source emitting approximately 2.5×105 neutrons per second (67,000 fissions 

per second), placed 30 cm from each detector was shielded with 5.08 cm (2 inches) of 
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lead and polyethylene shielding. A 1–µCi 137Cs source was used for calibration, and a 

12–bit, 250 MHz waveform digitizer was used for data acquisition. 

252Cf

 

Figure 7– 14: Laboratory setup for the polyethylene–shielded 252Cf and EJ–309 detectors. 

 

The threshold for detection was determined to be 70 keVee (equivalent of 650 

keV of neutron energy deposited on hydrogen). The acquisition window was 120 points 

long, with each point 4 ns. The pulses were discriminated between neutrons and gamma–

rays using a standard charge integration method discussed in Ch. 2. The pulse shape 

discrimination (PSD) results are shown in Fig. 7–15.  Neutrons interact with the nuclei in 

the scintillation detector and result in larger tails compared to gamma–rays, which 

interact with electrons. In Fig. 7–15, points corresponding to higher tail integral values 

for the same total integral value of the pulse are from neutrons; those points are found 

above the discrimination line.  In Fig. 7–15 the 137Cs data have been overlaid to verify 

that the pulses below are indeed gamma–rays. 
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Figure 7– 15: Pulse shape discrimination between neutrons (blue dots above discrimination 
line) and gamma–rays (red dots below discrimination line) 

 

7.4.2 Measurement Results 
 

The cross–correlation results are shown in Fig. 7–16 through Fig. 7–18 for bare, lead–

shielded, and polyethylene shielded cases. The neutron–neutron, neutron–photon, 

photon–neutron, and photon–photon time differences are shown. Bare and lead shielded 

measurements were taken for nearly one hour each, whereas the polyethylene 

measurement was taken for four hours. Therefore, the counts cannot be directly 

compared. As seen in Fig. 7–16, the photon–photon cross–correlation peak for a bare 

252Cf source is more than an order of magnitude greater than the neutron–neutron peak. 

This is because on average more gamma–rays come out of the 252Cf fission event than 

neutrons. For a fission event, there may be 7 to 8 gammas–rays emitted on average, 

where as there may be only 3 to 4 neutrons emitted on average [11]. 
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Figure 7– 16: Cross–correlation measurements with no shielding between the source and 
the EJ–309 detectors. 
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Figure 7– 17: Cross–correlation measurements with 5.08 cm thick lead shielding on both 
sides of the source and the EJ–309 detectors. 
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In Fig. 7–17, where the 252Cf source is shielded by 5.08 cm of lead on both sides, 

the neutron–neutron peak is nearly an order of magnitude greater than the photon–photon 

peak. This is because lead, due to its high atomic number, is a very effective shield for 

gamma–rays, thereby causing the decrease in the magnitude of the photon–photon peak. 
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Figure 7– 18: Cross–correlation measurements with 5.08 cm of polyethylene shielding on 
both sides of the source and the EJ–309 detectors. 

 

In Fig. 7–18, the cross–correlation curves from the 5.08–cm–thick polyethylene–

shielded case are presented.  Since polyethylene is a very good moderator of neutrons, the 

neutron–neutron peak is greatly reduced. In fact, this peak is nearly three orders of 

magnitude smaller than the photon–photon peak.  In the next, subsection we simulate the 

measured results using nonanalog and analog MCNPX–PoliMi simulations. 
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7.4.3 MCNPX–PoliMi Nonanalog Setup  
 

The measurement setup depicted in Fig. 7–19 contains an anisotropic point–like 252Cf 

source placed 30 cm from the faces of each of the EJ–309 liquid scintillation detectors. In 

addition to the features shown in Fig. 7–19, the iron table on which the detectors rest, and 

the concrete floor are also modeled. The source is shielded by lead or polyethylene 

rectangular blocks that are 5.08 cm thick. The composition and the dimensions of the 

detectors are specified in Subsection 7.2.2. In addition to the detector, the detector casing 

and the PMTs have also been modeled. The energy–to–light conversion coefficients have 

been described in Eq. 5 of Ch 2. The orange boxes surrounding the detectors in Fig. 7–19 

are lateral views of the cylinders containing the EJ–309 detectors. These cylinders merely 

serve the purpose of splitting particles as they enter the cylinder. For bare and lead 

shielded simulation the particles split 1:4, and for polyethylene shielded–case particles 

split 1:2.   

Concrete Floor

Table Level 3

Table Level 2

Detector-2 Detector-1

Table Level 1

252Cf

Poly Shields

 

Figure 7– 19: MCNPX–PoliMi simulation setup for the polyethylene–shielded 252Cf 
measurement.  
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7.4.4  Convergence and Speedup Results 
 

In this subsection the speedup using geometry splitting is assessed by the same 

improvement factors, I, as discussed in Ch.6. 
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Figure 7– 20: Geometry split and analog MCNPX–PoliMi simulations compared with 
measurement data for the case of bare 252Cf. 

  

 In Fig. 7–20, the bare cross–correlation comparison is shown. The simulations are 

within 17% of the measured data points (when averaged point–by–point from –15 ns to 

15 ns range). There was an average speedup of a factor of 3.4 for the nonanalog case 

when compared to the analog case. 
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Figure 7– 21: Geometry split and analog MCNPX–PoliMi simulations compared with 
measurement data for the case of lead–shielded 252Cf. 

 

In Fig. 7–21, the lead–shielded cross–correlation comparison is shown. The 

simulations are within 7% of the measured data points. There was an average speedup of 

a factor of 16 for the nonanalog case when compared to the analog case.  

In Fig. 7–22, the polyethylene–shielded cross–correlation comparison is shown. The 

simulations are within 11% of the measured data points. There was an average speedup 

of a factor of 2.3 for the nonanalog case when compared to the analog case. In the 

polyethylene case the speedup was limited due to the 1:2 splitting. The splitting ratio was 

reduced to decrease the misclassification of daughter particles as discussed previously in 

Subsection 7.3.2. With greater splitting it become more likely for neutrons to leave, 

scatter in polyethylene, and return to the detector leading to their misclassification.  
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Figure 7– 22: Geometry split and analog MCNPX–PoliMi simulations compared with 
measurement data for the case of polyethylene–shielded 252Cf. 

 

7.5 Conclusion 
 

In this chapter we have shown that MCNPX–PoliMi simulations can be performed 

in nonanalog mode using variance reduction techniques to produce neutron detector 

response for correlated sources with the condition that the particle weight does not 

change inside the detector. The nonanalog MCNPX–PoliMi postprocessor tallies the 

time–dependent cross–correlated counts by a combined weight product, Ŵ. The improved 

nonanalog MCNPX–PoliMi tally mechanism also incorporated the multiple particle 

contribution to a pulse.  

Comparisons of time–dependent cross–correlation distributions were made for 

nonanalog and analog MCNPX–PoliMi simulations for different configurations. 
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Simulations were also done to validate the laboratory measurements. For the nonanalog 

cases, geometry splitting with Russian roulette was performed. It was found that the 

nonanalog results agree well with the analog results. The average speedup in the 

computation time for the case of bare 252Cf was a factor of 3.4, and for the lead–shielded 

case it was a factor of 16, whereas for the polyethylene–shielded it was only a factor a 

2.6. The polyethylene case speedup was limited due to the 1:2 splitting ratio; a greater 

ratio causes misclassification of particles, which is a limitation of the MCNPX–PoliMi 

data file and not the method. The bare case simulation results were within 17% of the 

measurement, the lead–shielded comparisons were within 7% of the measurement, and 

the polyethylene–shielded were within 11% of the measurement.  

Thus, direct nonanalog MCNPX–PoliMi can be used to speedup the simulation of 

results, produce results that can be validated by measurements, and simulate different 

types of scintillation detector response (including time–dependent detector responses).  
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Chapter 8 
Summary and Future Work 

 

8.1 Summary 

In this thesis, we have developed methods to simulate neutron scintillation 

detector response using the Monte Carlo code MCNPX–PoliMi. We have shown that 

MCNPX–PoliMi is compatible with the traditional variance reduction techniques, if 

appropriate methods are used.  First, a response matrix method (RMM) was formulated in 

Ch. 5 to compute neutron pulse height distributions for scintillation detectors. Next, in 

Ch. 6 and Ch. 7, tally mechanisms were formulated for direct nonanalog MCNPX–

PoliMi simulations of pulse height distributions, time–of–flight curves, and cross–

correlation tallies. 

 As discussed in Ch. 5, the RMM utilizes a single detector response matrix, which 

is combined with the incident neutron energy to calculate the detector pulse height 

distribution (PHD). It is seen that the RMM acts like a variance reduction tool in itself; 

however, it is not exact because the elements of the matrix are obtained by a finite 

number of tallies and contain statistical errors. Traditional variance reduction methods 

exactly preserve the mean. Nonetheless, the PHDs computed with the RMM for a given 

number of source particles are better converged than the analog MCNPX–PoliMi PHDs 

for the same number of source particles. The RMM also allows the use of variance 

reduction techniques to estimate the neutron current incident on the detector face. In fact, 

one could make use of deterministic methods to calculate the incident neutron current. As 
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noted in Ch. 5, the user must invest time to pre–compute the response matrix. However, 

once the response matrix has been computed for a given detector type, it can be used for 

any simulation involving the same detector type.   

To correctly compute the PHDs for sources not incident normally on the detector 

face, RMM includes a radial leakage correction factor. This factor is the ratio of the 

volume averaged flux for the given setup to the volume averaged flux of the setup in 

which source particles are normally incident on the detector face.  The radial leakage 

correction factor is problem–specific, but it can be determined using Monte Carlo 

calculations already employed in the simulation of the incident neutron current.  

In Ch. 5, a comparison of the analog method, the RMM, and the RMM with 

source biasing is made. It is shown that the RMM significantly reduces the variance 

throughout the PHD. For RMM with source biasing, an average FOM improvement 

(savings in computation time) of a factor of 600 is achieved in the case of polyethylene 

shields, and a factor of 300 is achieved in the case of lead shields over the entire PHD. 

Using the RMM with source biasing decreases the variance and keeps it nearly constant 

throughout the distribution.   

Another advantage of the RMM is that it does not require MCNPX–PoliMi data 

files to be stored and post–processed. The analog simulation requires storage of large data 

files and requires time consuming post–processing of these files. If the user chooses to 

improve the convergence using an analog MCNPX–PoliMi simulation, not only does the 

Monte Carlo simulation take longer, but the size of the data file produced also increases 

such that the post–processing of the data file also takes longer. The RMM takes the same 

amount of time to calculate a PHD, regardless of the number of source particles used to 
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calculate the incident current. The floating point operations for the RMM is fixed and 

determined by the size of the response matrix. 

In Ch. 5, the RMM PHDs for a polyethylene– and lead–shielded 252Cf source are 

validated by measurements. Good agreement is seen between the simulated and measured 

PHDs. As discussed, the RMM provides good speedup in the simulation of these shielded 

cases. However, it is challenging to extend the RMM to speedup simulation of time–

dependent response. Thus, a method to directly run MCNPX–PoliMi with variance 

reduction techniques to simulate PHDs and time–dependent response is developed in   

Ch. 6 and Ch. 7.     

In Ch. 6, MCNPX–PoliMi simulations are performed in nonanalog mode to 

calculate PHDs and time–of–flight curves for uncorrelated sources (one neutron per 

source event). It is possible to simulate scintillation detector response using nonanalog 

MCNPX–PoliMi if the Monte Carlo problem is separated into nonanalog and analog 

components. The nonanalog component of the problem is the exterior of the detector, 

where the particle is allowed to acquire and change weights based on importances 

specified by the user. The interior of the detector is the analog part of the Monte Carlo 

problem. The particle weight is kept constant inside the detector, where it produces light 

pulses. A pulse formed by the particle is given the weight of the particle contributing to 

it. All pulses are checked against the detector threshold to determine if they contribute to 

the detector response.    

For the nonanalog cases in Ch. 6, source biasing, geometry splitting with Russian 

roulette, and a combination of both are simulated. These techniques are described in 

detail in Ch. 4. It is found that nonanalog results agree well with the analog cases. 
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Furthermore, improvement factors are calculated to analyze the speedup in the simulation 

time. It is found that the best results are obtained with source biasing and geometry 

splitting combined. Source biasing helps in modifying particle distributions for higher 

energies to obtain more scores, whereas geometry splitting is implemented to maintain 

the same population of neutrons throughout the shield (as neutrons move in one direction 

from the source towards the detector). Neutron weights are adjusted as the neutron 

population is modified. 

In Ch.7, the method introduced in Ch. 6 is extended to correlated sources. For 

correlated sources in MCNPX–PoliMi, multiple neutrons are emitted from the same 

source (fission) event. These neutrons are independently sampled in energy and in 

direction of flight. The energy distribution from which neutrons of a fission event are 

sampled depends on the multiplicity of the fission event. The flight direction of the 

neutrons depends on the flight direction of the lighter fission fragment. It is important to 

understand the above physics models and their roles, such as in cases in which a given 

detector can receive contributions by the split daughters of different neutrons from the 

same fission event. 

In Ch. 7, the nonanalog MCNPX–PoliMi postprocessor tallies the time–dependent 

cross–correlated counts by a combined weight product, Ŵ.  This combined weight is 

given by the product of the individual weights of the pulses in each of the detectors. 

Comparisons of time–dependent cross–correlation distributions are made for nonanalog 

and analog MCNPX–PoliMi simulations for different configurations. Good agreement is 

seen for the symmetric cases with and without polyethylene shielding, and with 1:4 

splitting ratio. However, for the case in which the source is placed asymmetrically 
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between two detectors, the nonanalog case with a 1:8 splitting ratio does not agree well 

with analog results. As mentioned earlier, this is because with increased splitting, a single 

pulse may receive contributions by split daughters of different neutrons. Therefore, the 

algorithm is modified to incorporate contributions of multiple particles to the same pulse 

within the same PGT. The number of pulses formed when the split daughters from 

different neutrons enter the same detector within the same PGT is given by the number of 

combinations of the daughter particles, as detailed in Ch. 7. Better agreement is seen 

between the analog and the nonanalog results after making the above improvements. 

Simulations were also done to validate laboratory measurements. To validate 

measurements with nonanalog simulations, geometry splitting with Russian roulette was 

used. It was found that nonanalog results agree well with the analog cases. The average 

speedup in the computation time for the case of bare 252Cf was a factor of 3.4, for the 

lead–shielded case it was a factor of 16, and for the polyethylene–shielded it was a factor 

of 2.6. The polyethylene case speedup was limited due to the 1:2 splitting ratio. Greater 

ratios cause misclassification of particles, which is a limitation of the MCNPX–PoliMi 

data file and not the method. The bare case simulation results were within 17% of the 

measurement, the lead–shielded comparisons were within 7% of the measurement, and 

the polyethylene–shielded were within 11% of the measurement. Thus, it is seen that the 

nonanalog MCNPX–PoliMi simulations with the proper tally mechanisms help preserve 

the physics of detector response, and are capable of providing accurate answers in shorter 

simulation times. The direct nonanalog MCNPX–PoliMi approach is also general: it can 

simulate PHDs, TOF, and cross–correlation responses.  

In the next section some thoughts on future work are provided.  
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8.2 Future Work 

For the work done on RMM formulation and simulations, the following 

suggestions for future work are made: 

1) Generalization of the RMM by creating a response matrix solely to calculate the 

radial leakage correction factor would be more efficient. This would eliminate the 

need of performing an additional simulation to calculate the volume averaged flux 

for the case where neutrons are not normally incident on the detector face.  

2) The neutron current in the RMM problems is calculated using separate Monte 

Carlo simulations from the ones that are used to pre–compute the response matrix 

itself. Thus, it may be feasible to use spatial decomposition such that certain 

nodes of a cluster can compute the response matrix, while the others can be used 

to calculate the neutron incident on the detector face. Such a method would easily 

allow changing detector characteristics or performing sensitivity analysis on 

scintillation detector response. 

The next few recommendations are regarding the nonanalog MCNPX–PoliMi 

simulations. 

1) It is recommended to add a column in MCNPX–PoliMi data file that indicates the 

daughter number of a particle. This would allow the user to increase the splitting 

ratio even in the presence of highly scattering material (such as polyethylene) just 

outside the detector. 
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2) Presently, source biasing does not correctly bias particles if the built–in MCNPX–

PoliMi correlated sources are invoked. This is because the developers of 

MCNPX–PoliMi had not originally intended the use of variance reduction 

techniques with the code. But source biasing could be easily included in 

MCNPX–PoliMi so that users can take advantage of source biasing even for 

correlated sources. The tally mechanism should remain the same as shown with 

the geometry split simulations in Ch 7. 

3) To optimize the use of nonanalog problems, it is recommended to make use of 

adjoint methods (such as those discussed in Ch. 4). This will be most useful to 

reduce simulation times, and will not require trial and error from the user. 

A different approach to speedup MCNPX–PoliMi may be to investigate ways of 

convolving time–dependent neutron current to yield time–dependent cross–

correlation scintillation detector response.  
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Appendix A 
 

This appendix provides the code that was written in Matlab to compute PHDs using the 

RMM as detailed in Ch. 5. Error propagation has also been included. 

clear all; 
tic 
 
% INITIALIZATION 
load ('CtoolsMatrix.mat'); % Andreas coeff 
R = CtoolsMatrix; 
load('ErrorMatrix.mat');% Contains relative error 
E = Err; 
NPS = 1e7; % *****NPS**** 
rows = 741; 
cols = 1007; 
start = 0.01; 
 
%  THIS CHANGES 
load ('pPb4a.mat'); 
F = pPb4a; 
load ('r30pb4.mat'); 
L = r30pb4;  
 
RF = zeros(rows,cols);%Multiple of R and F 
Var = zeros(rows,cols);% Standard deviation 
N = zeros(cols,2); 
F(:,1)= F(:,1)*NPS; 
 
% Set threshold 
s = 1; 
for t = 0.01:0.01:0.06 % Change this to change THRESH–HOLD, last no. is 1 set 
less than thresh–hold  
    R(:,s) = 0; 
    s = s+1; 
end 
     
for i = 1:rows 
    RF (i,:) = F(i,1)*R(i,:);%creates i_th row in matrix RF 
    % Pnl(i) = ((1–L(i,1))*1e8)/(F(i,1)*NPS); 
    RF (i,:) = (L(i,1))*RF(i,:);  
    for j = 1:cols 
        if ((E(i,j)==Inf)) 
            E(i,j)=0; 
        end 
        % 1st term is var in current, 2nd in P_nonleakage, 3rd in response 
        % matrix element (in any term first var is the relative errors) 
        Var(i,j) = ((F(i,2)^2*F(i,1)^2*L(i,1)^2) + 
(L(i,2)^2*F(i,1)^2*L(i,1)^2) + (E(i,j)^2*F(i,1)^2*L(i,1)^2))*R(i,j)^2; 
    end 
end 
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N(:,1) = start:0.01:10.07; 
for i = 1:cols  
    N(i,2) = sum(RF(:,i)); 
    N(i,3) = sqrt(sum(Var(:,i))); 
end 
toc     
 
% scale the pulse height to the big source strength 
load ('BIGsource.mat'); 
Spol = 329902; 
Spb = 328249; 
N(:,2) = N(:,2)*Spb/(2*NPS); 
N(:,3) = N(:,3)*Spb/(2*NPS); 
% plot(N(:,1), N(:,2)) 
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Appendix B 
 

The C++ code used to generate results in Ch. 6 is provided here.  

#ifndef _POSTPROCESS_ 
#define _POSTPROCESS_ 
 
#include <iostream> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <vector> 
#include <time.h> 
 
using namespace std; 
 
class PostProcess { 
 
   // Filename 
   char fileName[256]; 
   FILE * pfile; 
   FILE * xfile; 
   FILE * pulsefile; 
   FILE * tallyfile;   
   FILE * readweightsfile; 
    
   vector<double> read_weights; 
   //History items  
   vector<int> history_no; 
   vector<int> particle_no; 
   vector<int> particle_type; 
   vector<int> interaction; 
   vector<int> nuclei; 
   vector<int> cell; 
   vector<double> energy_dep; 
   vector<double> time; 
   vector<double> x, y, z; 
   vector<double> weight; 
   vector<int> gen_no; 
   vector<int> scatter_no; 
   vector<int> un; 
   vector<double> energy_inc; 
 
   //Pulse item 
 
   //Tally item 
   double phd_hi, phd_lo, phd_binsz, tof_hi, tof_lo, tof_binsz; 
   double xcorrel_hi, xcorrel_lo, xcorrel_binsz; 
   double phd[1000][5]; 
   double tof[100][5]; 
   double xcorrel[201][3]; 
   int det1, det2; 
   int pmax, tmax, xmax, xmin, count; 
 
   public: 
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     PostProcess(char *fileName); 
     ~PostProcess(); 
     bool read_history(); 
     void clear_history(); 
     void form_pulse(); 
     void write_tally(); 
     int psum; 
     int isum; 
}; 
#endif //_POSTPROCESS_ 
 

#include "PostProcess.h" 
 
//Constructor 
PostProcess::PostProcess(char *name) 
{ 
  pfile = fopen("/home/shikhap/nonanalog/ES/Po4sb.d", "r"); 
   
  if(pfile == NULL) 
  { 
   printf("Error\n"); 
   exit(0); 
  } 
 
  // filling arrays for tallying 
  phd_hi = 10; 
  phd_lo = 0; 
  phd_binsz= 0.01; 
 
  tof_hi = 100; 
  tof_lo = 0; 
  tof_binsz= 1; 
 
  pmax = (int) ceil((phd_hi – phd_lo)/phd_binsz); 
  tmax = (int) ceil((tof_hi – tof_lo)/tof_binsz); 
  count = 0;  
  
  for (int n=0; n<pmax ;n++) 
  { 
    phd[n][0]= phd_lo + n*phd_binsz; 
    phd[n][1]= 0; 
    phd[n][2]= 0; 
    phd[n][3]= 0; 
    phd[n][4]= 0; 
  } 
         
  for (int n=0; n<tmax ;n++) 
  { 
    tof[n][0]= tof_lo + n*tof_binsz; 
    tof[n][1]= 0; 
    tof[n][2]= 0; 
    tof[n][3]= 0; 
    tof[n][4]= 0;   
  } 
   
  pulsefile = fopen("pulses.txt", "w");  
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} 
 
//Destructor 
PostProcess::~PostProcess() 
{ 
fclose(pfile); 
fclose(pulsefile); 
} 
 
bool PostProcess::read_history() 
{ 
  bool ret=true; 
  long size; 
  int line=0; 
  /* line keeps track of vector row */ 
  do{ 
 fscanf(pfile, " "); 
         
        int int_var; 
        double float_var; 
  
 fscanf(pfile, "%d", &int_var); 
        history_no.push_back(int_var); 
   
        if (line > 0) 
 { 
                if ((history_no[line])!= (history_no[(line–1)])) 
  {    
              form_pulse(); 
        clear_history();   
 
        line = 0; 
        history_no.push_back(int_var); 
                } 
 } 
        
        fscanf(pfile, " "); 
        fscanf (pfile, "%d", &int_var); 
  particle_no.push_back(int_var); 
 
        fscanf(pfile, " "); 
        fscanf(pfile, "%d", &int_var); 
  particle_type.push_back(int_var);         
        
        fscanf(pfile, " "); 
        fscanf(pfile, "%d", &int_var); 
  interaction.push_back(int_var); 
        int interact = int_var; 
 
       fscanf(pfile, " "); 
       fscanf(pfile, "%d", &int_var); 
  nuclei.push_back(int_var); 
         
       fscanf(pfile, " "); 
       fscanf(pfile, "%d", &int_var); 
 cell.push_back(int_var); 
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 fscanf(pfile, " "); 
       fscanf(pfile, "%lf", &float_var); 
 energy_dep.push_back(float_var); 
  
       fscanf(pfile, " "); 
       fscanf(pfile, "%lf", &float_var); 
 time.push_back(float_var); 
 
 fscanf(pfile, " "); 
       fscanf(pfile, "%lf", &float_var); 
 x.push_back(float_var); 
 
 fscanf(pfile, " "); 
       fscanf(pfile, "%lf", &float_var); 
 y.push_back(float_var); 
 
 fscanf(pfile, " "); 
       fscanf(pfile, "%lf", &float_var); 
 z.push_back(float_var); 
 
 fscanf(pfile, " "); 
       fscanf(pfile, "%lf", &float_var); 
 weight.push_back(float_var); 
 
 fscanf(pfile, " "); 
       fscanf(pfile, "%d", &int_var); 
 gen_no.push_back(int_var); 
 
       fscanf(pfile, " "); 
       fscanf (pfile, "%d", &int_var); 
 scatter_no.push_back(int_var);  
        
 fscanf(pfile, " "); 
       fscanf(pfile, "%d", &int_var); 
 un.push_back(int_var); 
 
 fscanf(pfile, " "); 
       fscanf(pfile, "%lf", &float_var); 
 energy_inc.push_back(float_var); 
 
    if (feof(pfile)) 
 { 
  form_pulse(); 
  clear_history(); 
                cout<<"File ended\n";         
  return(false); 
 } 
        else if ((interact != –99)&&(interact != –1)) 
        { 
  form_pulse(); 
  clear_history(); 
  line = 0; 
 }  
 else 
 {  
         line++;  
 } 
      } while(ret); 
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  return (ret); 
} 
 
void PostProcess::clear_history() 
{ 
   history_no.clear(); 
   particle_no.clear(); 
   particle_type.clear(); 
   interaction.clear(); 
   nuclei.clear(); 
   cell.clear(); 
   energy_dep.clear(); 
   time.clear();                         
   x.clear(); y.clear(); z.clear(); 
   weight.clear(); 
   gen_no.clear(); 
   scatter_no.clear(); 
   un.clear(); 
   energy_inc.clear(); 
} 
 
void PostProcess::form_pulse() 
{ 
 double pgt = 10.0 ; /* pulse generation time in [ns] */ 
       const double thresh_hold = 0.07;// MeVee set thresh–hold seen in 
measurements 
 
       const double coef_C = 0.02;     //light conversion for carbon 
 const double coef_aH = 0.03495; //light conversion for hydorgen, quadratic 
 const double coef_bH = 0.1424;  //light conversion for hydrogen, linear 
 const double coef_cH = –0.0362; //light conversion for hgydrogen, intercept 
 
        double temp_time, temp_weight, temp_height; // of a pulse 
        double temp_energy, l; 
  int daughter=1; 
        int diff=0; 
        int diff_particle; 
 
        int sz = (history_no.size() – 1);//for a new history or a capture event 
length of vectors are bigger by 1 
 for (int i=0; i<sz; i++) 
 { 
                double t_stop = (10 * time[i] + pgt); 
                double t = 10*time[i]; 
                double light = 0; 
                temp_time = 10*time[i]; 
                temp_weight= weight[i]; 
                int k; 
                do{ 
                       temp_energy = energy_dep[i]; 
   if (nuclei[i]==1001) 
           l = coef_aH*temp_energy*temp_energy + 
coef_bH*temp_energy + coef_cH; 
                        else if(nuclei[i]==6000) 
     l = coef_C*temp_energy; 
                         
   light = light+l; 
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       i++; 
                        t = 10*time[i]; //this is grabbing the time for next line 
                        diff = scatter_no[i]–scatter_no[i–1]; 
                        diff_particle = particle_no[i]–particle_no[i–1]; 
                } while((t<t_stop) && (i<sz) && ( ((interaction[i–1]==–
1)&&(diff==0)) || ((interaction[i–1]==–99)&&(diff==1)))); 
                
                i––;  
                temp_height=light; 
           
                if (history_no[i]==33973) 
                cout<<light<<" temp_time "<<temp_time<<" scatter 
"<<scatter_no[i]<<endl;  
                 
  int bin_phd = (int) ceil((temp_height–phd_lo)/phd_binsz); 
              int bin_tof = (int) ceil((temp_time–tof_lo)/tof_binsz);  
                 
  if ((temp_height > thresh_hold) && (bin_phd < pmax) && (bin_tof 
<tmax)) 
  {      
    int bin_phd = (int) ceil((temp_height–phd_lo)/phd_binsz);   
                    int bin_tof = (int) ceil((temp_time–tof_lo)/tof_binsz); 
                 
                        phd[bin_phd][1] = phd[bin_phd][1] + temp_weight; 
                    tof[bin_tof][1] = tof[bin_tof][1] + temp_weight; 
                        phd[bin_phd][2] = phd[bin_phd][2] + 1; 
   tof[bin_tof][2] = tof[bin_tof][2] + 1; 
   fprintf(pulsefile, "%d %lf %lf %lf %d\n",history_no[i], 
temp_height, temp_time, temp_weight, daughter);   
 
                } 
          
                 if (((interaction[i]==–1)&&(scatter_no[i+1]!=scatter_no[i])) || 
((interaction[i]==–99)&&(scatter_no[i+1]<=scatter_no[i]))) 
                {     daughter++; 
                      if (history_no[i]==33973) 
                      cout<<daughter<<" temp_time "<<temp_time<<" scatter 
"<<scatter_no[i]<<endl; 
                } 
 
 } 
} 
 
void PostProcess::write_tally() 
{ 
 FILE * wpfile; 
 FILE * wtfile; 
          
         
        cout<<"making files\n"; 
        wpfile = fopen("phd.txt", "w"); 
        wtfile = fopen("tof.txt", "w"); 
 
        //fclose (pulsefile);  
        tallyfile = fopen ("pulses.txt","r"); // rem to remove fromconstructor 
also 
        int hist; 
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        double hyt, tym, wt; 
        bool ret=true; 
 do 
        { 
  fscanf (tallyfile, "%d", &hist); 
  fscanf (tallyfile, " "); 
  fscanf (tallyfile, "%lf", &hyt); 
  fscanf (tallyfile, " "); 
  fscanf (tallyfile, "%lf", &tym); 
  fscanf (tallyfile, " "); 
  fscanf (tallyfile, "%lf", &wt); 
  fscanf (tallyfile, " "); 
  fscanf (tallyfile, "%d"); 
                      
                int phd_bin = (int) ceil((hyt–phd_lo)/phd_binsz); 
                phd[phd_bin][3] = phd[phd_bin][3] + wt; 
                phd[phd_bin][4] = phd[phd_bin][4] + 1; 
 
                int tof_bin = (int) ceil((tym–tof_lo)/tof_binsz); 
                tof[tof_bin][3] = tof[tof_bin][3] + wt; //also remove the extra 
column here & in header 
                tof[tof_bin][4] = tof[tof_bin][4] + 1;    
              
    if (feof(tallyfile)) 
   ret = false;  
 
   } while (ret);        
 
        fclose(tallyfile); 
         
   int p = 1000; 
  int t = 100; 
 
        for (int i =0; i<=p; i++) 
  fprintf(wpfile, "%lf %lf %lf\n", phd[i][0], phd[i][1], phd[i][2]); 
   
   for (int j = 0; j<=t; j++) 
  fprintf(wtfile, "%lf %lf %lf\n", tof[j][0], tof[j][1], tof[j][2]); 
  
 fclose(wpfile); 
 fclose(wtfile); 
        cout<<count<<endl; 
} 
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Appendix C 
 

The C++ code used to generate the results in Ch. 7 is provided below. 

#ifndef _POSTPROCESS_ 
#define _POSTPROCESS_ 
 
#include <iostream> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <vector> 
#include <time.h> 
 
using namespace std; 
 
// Detector cell no.s 
int first_detector = 1; 
int second_detector = 2; 
 
struct Daughter_info  
{ 
   int num_daughters;  
   vector<int> start_index;  
   vector<int> stop_index; 
}; 
typedef Daughter_info Daughter_info_t; 
 
class PostProcess { 
 
   // Filename 
   char fileName[256]; 
   FILE * pfile; 
   FILE * xfile; 
   FILE * pulsefile; 
   FILE * tallyfile;   
   FILE * readweightsfile; 
 
   vector<double> read_weights; 
  
  //History items  
   vector<int> history_no; 
   vector<int> particle_no; 
   vector<int> particle_type; 
   vector<int> interaction; 
   vector<int> nuclei; 
   vector<int> cell; 
   vector<double> energy_dep; 
   vector<double> time; 
   vector<double> x, y, z; 
   vector<double> weight; 
   vector<int> gen_no; 
   vector<int> scatter_no; 
   vector<int> un; 
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   vector<double> energy_inc; 
 
   //Particle items 
   vector<Daughter_info_t> det1_particle_daughters; 
   vector<Daughter_info_t> det2_particle_daughters; 
   vector<int> particle_id; 
 
   //Tally item 
   double phd_hi, phd_lo, phd_binsz, tof_hi, tof_lo, tof_binsz; 
   double xcorrel_hi, xcorrel_lo, xcorrel_binsz; 
   double phd[1000][5]; 
   double tof[100][5]; 
   double xcorrel[201][3]; 
   int det1, det2; 
   int pmax, tmax, xmax, xmin, count; 
 
   // For tracking time to calculate time–x–correlation 
   vector<double> time_det1, time_det2, weight_det1, weight_det2, height_det1, 
height_det2; 
 
   // case items 
   vector <int> case_particle; 
   vector <int> case_interaction; 
   vector <int> case_nuclei; 
   vector <double> case_energy; 
   vector <double> case_time; 
   vector <double> case_weight; 
 
   public: 
     PostProcess(char *fileName); 
     ~PostProcess(); 
     bool read_history(); 
     void clear_history(); 
     void form_pulse(int detector); 
     void write_tally(); 
 
     // new for correlated VR 
     void calculate_XCorrelation();  
     void find_particles(); 
     void form_numParticle1(int detector_no); 
     void form_numParticle2(int detector_no); 
     void form_numParticle3(int detector_no); 
}; 
#endif //_POSTPROCESS_ 
 
// March 5th 2012 
// Changing PostProcess.cpp to include nonanalog X–correlation, PHD and TOF 
#include "PostProcessVR.h" 
 
 
//Constructor 
PostProcess::PostProcess(char *name) 
{ 
  //pfile = fopen("/home/shikhap/nonanalog/correl/10pol30–1b.d", "r"); 
  pfile = fopen("/nobackup/shikhap/xcorrel/gs8asbare/asGSBare80.d", "r"); 
  if(pfile == NULL) 
  { 
   printf("Error opening file.\n"); 
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   exit(0); 
  } 
 
  // filling arrays for tallying 
  phd_hi = 10; 
  phd_lo = 0; 
  phd_binsz= 0.01; 
 
  tof_hi = 100; 
  tof_lo = 0; 
  tof_binsz= 1; 
 
  xcorrel_hi = 100; 
  xcorrel_lo = –100; 
  xcorrel_binsz = 1; 
 
  pmax = (int) ceil((phd_hi – phd_lo)/phd_binsz); 
  tmax = (int) ceil((tof_hi – tof_lo)/tof_binsz); 
  xmax = (int) ceil((xcorrel_hi – xcorrel_lo)/xcorrel_binsz); 
  count = 0;  
  
  for (int n=0; n<pmax ;n++) 
  { 
    phd[n][0]= phd_lo + n*phd_binsz; 
    phd[n][1]= 0; 
    phd[n][2]= 0; 
    phd[n][3]= 0; 
    phd[n][4]= 0; 
  } 
         
  for (int n=0; n<tmax ;n++) 
  { 
    tof[n][0]= tof_lo + n*tof_binsz; 
    tof[n][1]= 0; 
    tof[n][2]= 0; 
    tof[n][3]= 0; 
    tof[n][4]= 0;   
  } 
  
  for (int n=0; n<xmax; n++) 
  { 
    xcorrel[n][0] = xcorrel_lo + n*xcorrel_binsz; 
    xcorrel[n][1] = 0; 
    xcorrel[n][2] = 0; 
  } 
 
  det1 = 1; 
  det2 = 2;  
  pulsefile = fopen("pulses.txt", "w");  
} 
 
//Destructor 
PostProcess::~PostProcess() 
{ 
fclose(pfile); 
fclose(pulsefile); 
} 
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bool PostProcess::read_history() 
{ 
  bool ret=true; 
  int line=0; 
  /* line keeps track of vector row */ 
  do{ 
 fscanf(pfile, " "); 
         
        int int_var; 
        double float_var; 
  
 fscanf(pfile, "%d", &int_var); 
        history_no.push_back(int_var); 
   
        if (line > 0) 
 { 
                if ((history_no[line])!= (history_no[(line–1)])) 
  { 
   cout<<"history"<<history_no[line–1]<<endl; 
              find_particles(); 
        clear_history();   
 
        line = 0; 
        history_no.push_back(int_var); 
                } 
 } 
        
        fscanf(pfile, " "); 
        fscanf (pfile, "%d", &int_var); 
 particle_no.push_back(int_var); 
 
        fscanf(pfile, " "); 
        fscanf(pfile, "%d", &int_var); 
 particle_type.push_back(int_var);         
        
        fscanf(pfile, " "); 
        fscanf(pfile, "%d", &int_var); 
 interaction.push_back(int_var); 
 
        fscanf(pfile, " "); 
        fscanf(pfile, "%d", &int_var); 
  nuclei.push_back(int_var); 
         
        fscanf(pfile, " "); 
        fscanf(pfile, "%d", &int_var); 
 cell.push_back(int_var); 
 
 fscanf(pfile, " "); 
        fscanf(pfile, "%lf", &float_var); 
 energy_dep.push_back(float_var); 
  
        fscanf(pfile, " "); 
        fscanf(pfile, "%lf", &float_var); 
 time.push_back(float_var); 
 
 fscanf(pfile, " "); 
        fscanf(pfile, "%lf", &float_var); 
 x.push_back(float_var); 



136 
 

 
 fscanf(pfile, " "); 
        fscanf(pfile, "%lf", &float_var); 
 y.push_back(float_var); 
 
 fscanf(pfile, " "); 
        fscanf(pfile, "%lf", &float_var); 
 z.push_back(float_var); 
 
 fscanf(pfile, " "); 
        fscanf(pfile, "%lf", &float_var); 
 weight.push_back(float_var); 
 
 fscanf(pfile, " "); 
        fscanf(pfile, "%d", &int_var); 
 gen_no.push_back(int_var); 
 
        fscanf(pfile, " "); 
        fscanf (pfile, "%d", &int_var); 
 scatter_no.push_back(int_var);  
        
 fscanf(pfile, " "); 
        fscanf(pfile, "%d", &int_var); 
 un.push_back(int_var); 
 
 fscanf(pfile, " "); 
        fscanf(pfile, "%lf", &float_var); 
 energy_inc.push_back(float_var); 
 
    if (feof(pfile)) 
 {        
  find_particles(); 
  clear_history(); 
                cout<<"File ended\n";         
  return(false); 
 } 
 else 
 {  
         line++;  
 } 
      } while(ret); 
 
  return (ret); 
} 
 
void PostProcess::clear_history() 
{ 
   history_no.clear(); 
   particle_no.clear(); 
   particle_type.clear(); 
   interaction.clear(); 
   nuclei.clear(); 
   cell.clear(); 
   energy_dep.clear(); 
   time.clear();                         
   x.clear(); y.clear(); z.clear(); 
   weight.clear(); 
   gen_no.clear(); 
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   scatter_no.clear(); 
   un.clear(); 
   energy_inc.clear(); 
} 
 
void PostProcess::find_particles() 
{ 
 cout<<"in find_particles"<<endl; 
        Daughter_info_t particle_temp; // this is only a temp struct as defined in 
header file 
         
 int sz = (history_no.size()–1);  
 int diff, diff_particle; 
 
 int daughter = 1; 
 particle_id.push_back(particle_no[0]); 
 particle_temp.num_daughters = daughter; // why was this pushback when it 
isn't a vector 
 particle_temp.start_index.push_back(0); 
 
 for (int i=1; i<sz; i++) 
        { 
  //if (interaction[i] ==0) // do this to skip the capture interaction 
  // i++; 
  diff = scatter_no[i]–scatter_no[i–1]; 
                diff_particle = abs(particle_no[i]–particle_no[i–1]); 
  int len = particle_id.size(); 
 
  if (i==(sz–1)) 
                { 
 
   if ((diff_particle >= 1) || (cell[i]!=cell[i–1])) 
   { 
     particle_temp.stop_index.push_back(i–1); 
 
     // Check to see which detector the particle belongs to 
                         if (cell[i–1]==first_detector) 
                                det1_particle_daughters.push_back(particle_temp); 
                         else if (cell[i–1]==second_detector) 
                                det2_particle_daughters.push_back(particle_temp); 
                         
                         particle_temp.start_index.clear(); 
                         particle_temp.stop_index.clear(); 
 
    // Start new temp struct 
                         daughter = 1; 
                         particle_id.push_back(particle_no[i]); 
                         particle_temp.num_daughters = daughter;  
                         particle_temp.start_index.push_back(i); 
     
   } 
 
   else if ( ((interaction[i]==–1) && (diff!=0)) || 
((interaction[i]==–99) && (diff!=1)) ) 
   { 
     particle_temp.stop_index.push_back(i–1); 
     daughter++; 
     particle_temp.num_daughters=daughter; 
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     particle_temp.start_index.push_back(i); 
                         
   } 
                         
                        particle_temp.stop_index.push_back(i); 
 
                        // Check to see which detector the particle belongs to 
                        if (cell[i]==first_detector) 
                                det1_particle_daughters.push_back(particle_temp); 
                        else if (cell[i]==second_detector) 
                                det2_particle_daughters.push_back(particle_temp); 
 
                        particle_temp.start_index.clear(); 
                        particle_temp.stop_index.clear(); 
 
                } 
 
                // IF THE LINE CORRESPONDS TO A DIFFERENT PARTICLE 
          else if ((diff_particle >= 1) || (cell[i]!=cell[i–1])) 
  {  
   // Record the stop index of previous 
   // Push the temporary struct in appropriate detector struct, 
   // and clear the old one        
   particle_temp.stop_index.push_back(i–1); 
 
   // Check to see which detector the particle belongs to     
                        if (cell[i–1]==first_detector)  
                         det1_particle_daughters.push_back(particle_temp); 
   else if (cell[i–1]==second_detector) 
    det2_particle_daughters.push_back(particle_temp);  
    
   particle_temp.start_index.clear(); 
                        particle_temp.stop_index.clear();  
 
   cout<<"num of daughters"<<particle_temp.num_daughters<<endl; 
    
                        // Start new temp struct  
   daughter = 1; 
                        particle_id.push_back(particle_no[i]); 

particle_temp.num_daughters = daughter;                        
particle_temp.start_index.push_back(i); 

   
   cout<<"different particle at "<<i<<endl; 
   cout<<"critical cell no is "<< cell[i–1]<<endl; 
  } 
 
  // IF LINE CORREPONDS TO A DIFFERENT DAUGHTER 
  else if  ( ((interaction[i]==–1) && (diff!=0)) || 
((interaction[i]==–99) && (diff!=1)) ) 
  { 
   daughter++; 
   particle_temp.num_daughters=daughter; 
                        particle_temp.stop_index.push_back(i–1); 
   particle_temp.start_index.push_back(i); 
    
   cout<<"different daughter at "<<i<<endl; 
  } 
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 } 
 
           
 int len1 = det1_particle_daughters.size();  
        int len2 = det2_particle_daughters.size(); 
 cout<<"len2"<<len2<<endl; 
       //Check for all the particles and daughters 
 for (int p = 0 ; p < det1_particle_daughters.size(); p++) 
  for (int d = 0 ; d < det1_particle_daughters[p].num_daughters ; d++) 
   cout<<"Particle "<<p<<"and daughter "<<d<<"starts at 
"<<det1_particle_daughters[p].start_index[d]<<" and ends at 
"<<det1_particle_daughters[p].stop_index[d]<<endl; 
   
  if (len1 >1) 
  form_numParticle2(first_detector); 
 else  
                form_numParticle1(first_detector); 
        //else if (len1==3) 
 // form_numParticle3(first_detector); 
       
 if (len2 >1) 
                form_numParticle2(second_detector); 
 
        else 
  form_numParticle1(second_detector); 
 
 
        //else if (len2==3) 
        //        form_numParticle3(second_detector); 
    
        // Call X–correlation function here 
 calculate_XCorrelation(); 
       det1_particle_daughters.clear(); 
 det2_particle_daughters.clear(); 
   
        // HAVE ALREADY CLEARED THIS IN FOR–LOOP, REDUNDANT?    
 particle_temp.num_daughters=0; 
 particle_temp.start_index.clear(); 
 particle_temp.stop_index.clear(); 
} 
 
void PostProcess::form_pulse(int detector) 
{ 
 double pgt = 10.0 ; /* pulse generation time in [ns] */ 
       const double thresh_hold = 0.07;// MeVee set thresh–hold seen in 
measurements 
 
       const double coef_C = 0.02;     //light conversion for carbon 
 const double coef_aH = 0.03495; //light conversion for hydorgen, quadratic 
 const double coef_bH = 0.1424;  //light conversion for hydrogen, linear 
 const double coef_cH = –0.0362; //light conversion for hgydrogen, intercept 
 
 
       double temp_time, temp_weight, temp_height, temp_energy, l; // of a pulse 
         
        // THIS SECTION WILL READ ALL LINES OF A GIVEN CASE AND CONVERT TO PULSES 
        // 
______________________________________________________________________________  
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        int size = (case_particle.size()); 
        vector<int> case_check(size,0); 
        int case_sum = 0;  //case_check.sum(); 
  double t_start, t_stop;         
  
// This case_check is a vector contains elements that will turn from 0 to 1 once 
in a pulse 
        while (case_sum<size){ 
 
  // FIND t_start AND t_stop 
                // find the smallest time that hasn't been included  yet 
              t_start = 1e6; // times should not be bigger than 1e6 
  cout<<case_check.size()<<endl; 
    for( int q=0; q<size; q++) 
  { 
   if ((case_check[q]==0) && (case_time[q]*10 < t_start)) 
    t_start = case_time[q]*10; 
  }  
              t_stop = t_start+10; 
  temp_height = 0; 
 
 // FOR ALL LINES, CHECK FOR THE ONES THAT FALL B/W t_start AND t_stop, MAKE PULSE  
                temp_weight = 1; 
                int current_particle = –1; 
                int pulse_len = 0; 
           for (int r=0; r<size; r++) 
     { 
    
                 double t = 10*case_time[r]; 
//IF THE NEW COLLISION FALLS WITHIN THE TIME OF THE PULSE 
                 if ((t<t_stop) && (t>=t_start) && (case_check[r]==0)) 
   { 
    pulse_len++; 
 
    //CALCULATE WEIGHT CHANGE AFTER EACH PARTICLE 
                                if ( (pulse_len == 1) || ((pulse_len > 1) && 
(case_particle[r]!=current_particle)) )  
     { 
     temp_weight *= case_weight[r]; 
     current_particle = case_particle[r]; 
     } 
 
                        temp_energy = case_energy[r]; 
    if (case_nuclei[r]==1001) 
            l = coef_aH*temp_energy*temp_energy + 
coef_bH*temp_energy + coef_cH; 
                         else if(case_nuclei[r]==6000) 
      l = coef_C*temp_energy; 
                         
                         temp_height = temp_height+l; 
    case_check[r] = 1; 
                                case_sum++; 
     
   } 
   
  } 
 
                int bin_phd = (int) ceil((temp_height–phd_lo)/phd_binsz); 
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             int bin_tof = (int) ceil((temp_time–tof_lo)/tof_binsz); 
                 
  if ((temp_height > thresh_hold) && (bin_phd < pmax) && (bin_tof 
<tmax)) 
  {  
   cout<<"inside threshold loop"<<temp_weight<<endl;     
     
                 
                     phd[bin_phd][1] = phd[bin_phd][1] + temp_weight; 
                    tof[bin_tof][1] = tof[bin_tof][1] + temp_weight; 
                     phd[bin_phd][2] = phd[bin_phd][2] + 1; 
   tof[bin_tof][2] = tof[bin_tof][2] + 1; 
   fprintf(pulsefile, "%d %lf %lf %lf\n", history_no[0], 
temp_height, temp_time, temp_weight);   
                        if (detector == first_detector) 
   { 
    cout<<"first detector"<<endl; 
                                 time_det1.push_back(temp_time); 
    cout<<"time"<<endl; 
                                 weight_det1.push_back(temp_weight);  
    cout<<"weight"<<endl; 
      height_det1.push_back(temp_height); 
    cout<<"height"<<endl; 
   } 
   else if (detector == second_detector) 
                        { 
     
                                time_det2.push_back(temp_time); 
                                weight_det2.push_back(temp_weight); 
                                height_det2.push_back(temp_height);    
                        } 
                } 
                  
 } 
      cout<<"outside while loop"<<endl;  
}  
 
void PostProcess::calculate_XCorrelation() 
{ 
 cout<<"inside Xcorrelation"<<endl; 
        //THIS SECTION WILL CALCULATE TIME–CROSS–CORRELATIONS, after reading all 
of history 
        // 
________________________________________________________________________________  
        double time_delt, weight_delt; 
        for (int i=0; i<time_det1.size(); i++) 
        { 
  for (int j=0; j<time_det2.size(); j++) 
  { 
              
   time_delt = time_det1[i]–time_det2[j]; 
                        weight_delt = weight_det1[i]*weight_det2[j]; 
 
   int bin_xcorrel = (int) ceil((time_delt–
xcorrel_lo)/xcorrel_binsz); 
   xcorrel[bin_xcorrel][1] = xcorrel[bin_xcorrel][1] + 
weight_delt; 
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                        xcorrel[bin_xcorrel][2] =  xcorrel[bin_xcorrel][2] + 1; 
  
  } 
 } 
 
        time_det1.clear(); time_det2.clear(); weight_det1.clear(); 
weight_det2.clear();  
        height_det1.clear(); height_det2.clear(); 
  
} 
 
void PostProcess::write_tally() 
{ 
 FILE * wpfile; 
 FILE * wtfile; 
       FILE * wxfile;  
         
        cout<<"making files\n"; 
        wpfile = fopen("phd.txt", "w"); 
        wtfile = fopen("tof.txt", "w"); 
  wxfile = fopen("xcorrel.txt", "w"); 
 
   int p = 1000; 
  int t = 100; 
       int x = 201; 
       for (int i =0; i<=p; i++) 
  fprintf(wpfile, "%lf %lf %lf\n", phd[i][0], phd[i][1], phd[i][2]); 
   
   for (int j = 0; j<=t; j++) 
  fprintf(wtfile, "%lf %lf %lf\n", tof[j][0], tof[j][1], tof[j][2]); 
  
 for (int k = 0; k<=x; k++) 
                fprintf(wxfile, "%lf %lf %lf\n", xcorrel[k][0], xcorrel[k][1], 
xcorrel[k][2]); 
 
 fclose(wpfile); 
 fclose(wtfile); 
 fclose(wxfile); 
} 
 
void PostProcess::form_numParticle1 ( int detector_no ) 
{ 
 cout<<"form_num1 for det no"<<detector_no<<endl; 
 vector<Daughter_info_t> temp_particle_daughters; 
 
        // COPY PARTICLE INTO A TEMP VARIABLE FOR PROCESSING 
        if (detector_no == first_detector) 
                temp_particle_daughters = det1_particle_daughters; 
        else if (detector_no == second_detector) 
                temp_particle_daughters = det2_particle_daughters; 
  
 int sz = (history_no.size() – 1);//for a new history length of vectors are 
bigger by 1 
        // EACH OF THE THREE NESTED LOOPS IS FOR EACH DAUGHHTER OF A PARTICLE 
        // TOGETHER, THEY GIVE ALL POSSIBLE COMBINATION OF DAUGHTERS FOR THREE 
PARTICLE 
        // 
______________________________________________________________________________ 
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 daughter_info_t temp_struct; 
 temp_struct = temp_particle_daughters[0]; 
 int ch = temp_struct.num_daughters; 
 cout<<ch<<"num of daughters....next start index"<<endl; 
         
  //for (int a = 0; a<temp_particle_daughters[0].num_daughters; a++) 
        for (int a = 0; a<ch; a++) 
  { 
    int case_len = 0; 
                                for (int s=0; s<sz; s++) 
                                { 
                                        //FOR EACH LINE OF HISTORY CHECK TO SEE IF 
IT BELONGS TO DAUGHTER GIVEN BY "a" 
                                        if ((temp_struct.start_index[a] <= s) && 
(s <= temp_struct.stop_index[a]))  
                                        { 
                                                // ALREADY DECLARED IN HEADER 

                                               
case_particle.push_back(particle_no[s]); 
                                                           
case_interaction.push_back(interaction[s]); 

                                   case_nuclei.push_back(nuclei[s]); 
                                               
case_energy.push_back(energy_dep[s]); 

                                  case_time.push_back(time[s]); 
                                  case_weight.push_back(weight[s]); 
                                  case_len++; 
 
                                        } 
 
                                } 
    form_pulse( detector_no); 

case_particle.clear(); case_interaction.clear(); 
case_nuclei.clear(); 
case_energy.clear(); case_time.clear(); 
case_weight.clear();                         

 }         
 temp_particle_daughters.clear(); 
} 
 
void PostProcess::form_numParticle2(int detector_no) 
{ 
        cout<<"form_num2"<<endl; 
 vector<Daughter_info_t> temp_particle_daughters; 
 
        // COPY PARTICLE INTO A TEMP VARIABLE FOR PROCESSING 
        if (detector_no == first_detector) 
                temp_particle_daughters = det1_particle_daughters; 
        else if (detector_no == second_detector) 
                temp_particle_daughters = det2_particle_daughters; 
 
        int sz = (history_no.size() – 1);//for a new history length of vectors are 
bigger by 1 
 
        // EACH OF THE TWO NESTED LOOPS IS FOR EACH DAUGHTER OF A PARTICLE "a" AND 
"b" 
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        // TOGETHER, THEY GIVE ALL POSSIBLE COMBINATION OF DAUGHTERS FOR TWO 
PARTICLE 
        // 
______________________________________________________________________________ 
        for (int a = 0; a<temp_particle_daughters[0].num_daughters; a++) 
        { 
                for (int b=0; b<temp_particle_daughters[1].num_daughters; b++) 
                { 
    int case_len = 0; 
                                for (int s=0; s<sz; s++) 
                                { 
                                        //FOR EACH LINE OF HISTORY CHECK TO SEE IF 
IT FITS IN THIS COMBO 
 
                                        if 
(((temp_particle_daughters[0].start_index[a] <= s) && (s <= 
temp_particle_daughters[0].stop_index[a]))  ||  
((temp_particle_daughters[1].start_index[b] <= s) && (s <= 
temp_particle_daughters[1].stop_index[b]))) 
                                        { 
                                                // ALREADY DECLARED IN HEADER 

                                                
case_particle.push_back(particle_no[s]); 
                                                
case_interaction.push_back(interaction[s]); 

                                  case_nuclei.push_back(nuclei[s]); 
                                  case_energy.push_back(energy_dep[s]); 
                                  case_time.push_back(time[s]); 
                                  case_weight.push_back(weight[s]); 
                                  case_len++; 
 
                                        } 
 
                                } 
    form_pulse( detector_no); 

case_particle.clear(); case_interaction.clear(); 
case_nuclei.clear(); 
case_energy.clear(); case_time.clear(); 
case_weight.clear(); 

                         
                }        
  }         
 temp_particle_daughters.clear(); 
} 
 
void PostProcess::form_numParticle3( int detector_no) 
{ 
 vector<Daughter_info_t> temp_particle_daughters; 
 
        // COPY PARTICLE INTO A TEMP VARIABLE FOR PROCESSING 
        if (detector_no == first_detector) 
  temp_particle_daughters = det1_particle_daughters; 
 else if (detector_no == second_detector) 
                temp_particle_daughters = det2_particle_daughters; 
  
 int sz = (history_no.size() – 1);//for a new history length of vectors are 
bigger by 1 
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 // EACH OF THE THREE NESTED LOOPS IS FOR EACH DAUGHTER OF PARTICLES "a","b" 
AND "c" 
 // TOGETHER, THEY GIVE ALL POSSIBLE COMBINATION OF DAUGHTERS FOR THREE 
PARTICLE 
 // 
______________________________________________________________________________ 
 for (int a = 0; a<temp_particle_daughters[0].num_daughters; a++)  
 { 
  for (int b=0; b<temp_particle_daughters[1].num_daughters; b++) 
  { 
   for (int c=0; c<temp_particle_daughters[2].num_daughters; c++) 
   { 
    int case_len = 0; 
    for (int s=0; s<sz; s++) 
    { 
     //FOR EACH LINE OF HISTORY CHECK TO SEE IF IT 
FITS IN THIS COMBO 
 
     if (((temp_particle_daughters[0].start_index[a] 
<= s) && (s <= temp_particle_daughters[0].stop_index[a]))  ||  
((temp_particle_daughters[1].start_index[b] <= s) && (s <= 
temp_particle_daughters[1].stop_index[b]))  ||  
((temp_particle_daughters[2].start_index[c] <= s) && (s <= 
temp_particle_daughters[2].stop_index[c])))  
     { 
      // ALREADY DECLARED IN HEADER 
      case_particle.push_back(particle_no[s]); 
         

case_interaction.push_back(interaction[s]); 
      case_nuclei.push_back(nuclei[s]); 
      case_energy.push_back(energy_dep[s]); 
      case_time.push_back(time[s]); 
      case_weight.push_back(weight[s]); 
      case_len++; 
      
     }     
 
    } 
                  form_pulse( detector_no); 

case_particle.clear(); case_interaction.clear();  
case_nuclei.clear(); 

                             case_energy.clear(); case_time.clear();  
                             case_weight.clear();  
   } 
  } 
 } 
 temp_particle_daughters.clear(); 
 
  
} 
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