
Characterization, Control and Compensation of
MEMS Rate and Rate-Integrating Gyroscopes

by

Jeffrey A. Gregory

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
2012

Doctoral Committee:

Professor Khalil Najafi, Chair
Professor Yogesh B. Gianchandani
Professor Noel C. Perkins
Assistant Professor Mina Rais-Zadeh
Assistant Professor David D. Wentzloff

© Jeffrey A. Gregory 2012

All Rights Reserved

For Jishu

ii

ACKNOWLEDGEMENTS

I would like to thank to my wife Jishu for putting up with me, and my family for

raising me. Also, thank you to Dr. Jae Yoong Cho for fabricating the gyroscopes

and his insight, and to all of my group mates for their camaraderie. Thank you to

Robert Gordenker for making our lab space the best in EECS. Thank you to Trasa

Burkhardt for being the best secretary a student could ask for. Thank you to Dr.

Becky Peterson for taking care of all those parts of research that no one wants to deal

with. Thank you to my committee for their helpful comments. And thank you to my

adviser Professor Khalil Najafi for supporting my work and pushing me to make it

the best I can.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

LIST OF APPENDICES . xi

LIST OF ABBREVIATIONS . xii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Review of Gyroscope Control Platforms 6
1.1.1 Rate-integrating gyroscope control systems 8
1.1.2 RIG control methods 13

1.2 Review of characterization and tuning methods 14
1.2.1 Offline Mode Matching 16
1.2.2 On-line tuning . 21

1.3 Thesis Contributions and Organization 23

II. Inertial Sensing . 25

2.1 Gyroscope Model . 26
2.2 Hardware . 32

2.2.1 Sense Electronics 32
2.2.2 Bias Voltage . 37
2.2.3 Control Electronics 39

2.3 CING gyroscope . 42
2.4 Error Parameters . 43

iv

2.5 Summary . 46

III. Characterization and Compensation 48

3.1 Universal Resonator Analysis Tool 50
3.1.1 Swept-frequency Gain-Phase Analysis 52
3.1.2 Impulse Generator and Spectrum Analysis 55
3.1.3 Ringdown Test Tool 58

3.2 Automatic Mode Matching 61
3.3 URAT and Laser Doppler Vibrometry 65
3.4 Summary . 68

IV. Rate Gyroscopes . 69

4.1 Mechanical Noise . 69
4.1.1 Feed Through . 70

4.2 Rate Control . 71
4.2.1 Control Equations 71
4.2.2 Mechanical Requirements 76
4.2.3 Firmware . 77
4.2.4 FPGA Based Rate Control 77
4.2.5 Square versus Sine Wave Drive 80

4.3 Rate Gyroscope Experimental Results 80
4.4 Multiplexed Gyroscope Control 84

4.4.1 Multiplexing Circuit 85
4.5 Summary . 88

V. Rate Integrating Gyroscopes . 89

5.1 Gyroscope Model . 90
5.2 Rate-Integrating Gyroscope Controls 91

5.2.1 Mechanical Requirements 94
5.3 Orientation feed-forward . 94
5.4 Rate Integrating Performance 94

5.4.1 RIG Performance Metrics 94
5.5 Software Control Architecture 99
5.6 Hybrid Control Architecture 101
5.7 Gyroscope Simulation . 103
5.8 Simulation Results . 107
5.9 Measurement Results . 110

5.9.1 Model Verification 115
5.10 Hybrid Mode Rate Gyroscope Control 119
5.11 Summary . 121

VI. Dynamic Mismatch Compensation 122

v

6.1 Novel Compensation Controls 123
6.1.1 Damping Mismatch Compensation Loop 124
6.1.2 Frequency Mismatch Compensation Loop 126

6.2 Simulation Results . 129
6.3 Measurement Results . 136

6.3.1 Tuned Mismatch Compensation 138
6.4 Summary . 144

VII. Conclusion and Contributions 145

7.1 Contributions . 145
7.2 Future Work . 146

APPENDICES . 148

BIBLIOGRAPHY . 177

vi

LIST OF FIGURES

Figure

1.1 A projection of the MEMS gyroscope market size 2
1.2 Progression of MEMS gyroscope bias stability 3
1.3 Diagram of FPGA based control and characterization system 7
1.4 Diagram of a DSP based control system 8
1.5 Diagram of Freely Oscillating rate integrating gyroscope (RIG) Readout 10
1.6 Diagram of PLL based sustaining control for RIG 11
1.7 Diagram of control with quadrature compensation in SIMULINK . . 12
1.8 Simulated behavior of a gyroscope with fixed frequency controls . . 15
1.9 Classification of tuning electrodes for cross-coupling and on-axis tuning 17
1.10 Tuning of a gyroscope without cross-coupling removed 18
1.11 Resonator response using optimized model fit 19
1.12 Resonator response using optimized model fit compared to high res-

olution scan . 20
1.13 Closed-loop tuning using phase-matching 22
2.1 Diagram of forces acting on a moving object in rotating frame . . . 26
2.2 Single mass Coriolis vibratory gyroscope 27
2.3 Single mass Coriolis vibratory gyroscope in rate mode 28
2.4 Single mass Coriolis vibratory gyroscope amplitudes in rate mode . 29
2.5 Single mass Coriolis vibratory gyroscope in rate-integrating mode . 30
2.6 Single mass Coriolis vibratory gyroscope amplitudes in rate-integrating

mode . 31
2.7 Amplifier configurations for charge sensing 33
2.8 Noise model for a single amplifier with arbitrary feedback 35
2.9 Diagram of analog interface board 36
2.10 Diagram of software defined radio hardware 41
2.11 SEM of a CING gyroscope . 42
2.12 Allan variance plot showing the different noise types and their slopes

when plotted as a log-log plot. 44
3.1 Diagram of Universal Resonator Analysis Tool 49
3.2 Gain-phase analysis result with frequency swept too quickly 50
3.3 Diagram of gain-phase analyzer . 53
3.4 Diagram of real-time spectrum analyzer with impulse generator . . 56

vii

3.5 Plot of impulse testing of a high frequency resonator 58
3.6 Diagram of ring-down analyzer . 59
3.7 Plot of ring-down of a mode-matched CING gyro 60
3.8 Plot of the initial and final spectrum of an automatically mode-

matched CING gyroscope . 64
3.9 Drift in required tuning voltage for a CING over time 64
3.10 Cross-coupling versus tuning voltage 65
3.11 Tuning electrode scaling constant stability 66
3.12 Setup for using URAT with a laser doppler vibrometer 66
3.13 Ring-down measured using a laser doppler vibrometer 67
4.1 Diagram of rate gyroscope control with rate and quadrature feedback 71
4.2 Diagram of a simple rate gyroscope analog control 72
4.3 Resonator attenuation versus phase shift in drive loop 73
4.4 Diagram of rate gyroscope readout and control as implemented in the

FPGA of the USRP1 . 78
4.5 Mode response of gyroscope used for FPGA rate tests 82
4.6 Allan variance for different rate controls 83
4.7 Sensitivity of different controls . 84
4.8 Diagram of the multiplexed drive circuit 86
4.9 Diagram of the multiplexed sense circuit 86
4.10 Diagram of the multiplexed control 87
4.11 Demonstration of CING operating under multiplexed control 88
5.1 Diagram of a single mass Coriolis vibratory gyroscope 90
5.2 Basic diagram of a RIG control scheme 92
5.3 Standard deviation of an angle measurement 96
5.4 Diagram of the software control architecture 100
5.5 Diagram of a PLL with variable delay 101
5.6 Diagram of the relay control architecture 102
5.7 Simulation and Control Architecture 104
5.8 Gyroscope model flowchart . 105
5.9 Reduction in effective frequency mismatch with quadrature control . 109
5.10 Simulated drift versus oscillation orientation with only quadrature

compensation . 110
5.11 Flowchart of operation of a gyroscope using URAT and gyrocontrol 111
5.12 Angle measurement using rate-integrating control with constant ap-

plied rates . 112
5.13 Drive and sense signals during angle-mode control measured with an

oscilloscope . 113
5.14 Variation in the energy signal against oscillation orientation 114
5.15 Frequency and damping variation measured using the quadrature and

amplitude controls of a CING gyroscope 115
5.16 Measured damping mismatch in a CING gyroscope 116
5.17 Harmonic analysis of the amplitude control signal 117
5.18 Harmonic analysis of drift in a CING gyroscope 118
5.19 Harmonic analysis of the quadrature control signal 118

viii

5.20 Harmonic analysis of the PLL frequency 119
5.21 The sensitivity of a CING gyroscope with FPGA control and hybrid

control . 120
5.22 CING Rate Mode Allan Variance with FPGA and hybrid control . . 120
6.1 Diagram of dynamic mismatch compensation RIG control 128
6.2 Simulated frequency and damping control with dynamic compensa-

tion and no damping mismatch. 130
6.3 Frequency and damping control with dynamic compensation and

both frequency and damping mismatch. 131
6.4 Drift of a gyro with only frequency mismatch. 131
6.5 Drift of a gyro with frequency and damping mismatch. 132
6.6 Simulated drift versus orientation with damping and frequency mis-

match control . 133
6.7 Simulated mismatch control settling 134
6.8 Simulated mismatch control settling with modified control law . . . 135
6.9 Damping mismatch control with a CING gyroscope 136
6.10 Frequency mismatch control with a CING gyroscope 137
6.11 Drift with damping and mismatch enabled 137
6.12 Damping mismatch control output versus steering signal 139
6.13 Drift of CING gyroscope with tuned damping and frequency mismatch140
6.14 Damping harmonics with tuned damping and frequency mismatch

compensation . 141
6.15 Oscillation angle change under ±90° step rotations 142
6.16 Oscillation angle change under ±180° step rotations 143
6.17 Oscillation angle change under ±270° step rotations 143

ix

LIST OF TABLES

Table

1.1 Comparison of programmable and rate-integrating gyroscope control
systems. 5

1.2 Operational parameters of a DSP based control system 8
2.1 USRP Hardware Summary . 40
2.2 Gyroscope limitations due to USRP hardware. 40
3.1 Comparison of Resonator Analysis Tools 52
3.2 URAT input and output amplitude mismatch 54
3.3 URAT gain-phase analysis compared to HP4194A 55
4.1 Low-frequency CING rate performance with different controls . . . 85
5.1 Performance of a CING gyro when controlled in rate mode with the

FPGA rate control or the hybrid control 121

x

LIST OF APPENDICES

Appendix

A. Gyroscope Simulation Code . 149

B. Hybrid Mode Gyroscope Control Code 157

C. Rate Gyroscope Firmware . 162

D. Relay Mode Firmware . 171

xi

LIST OF ABBREVIATIONS

Ag angular gain

ADPLL all-digital phase-locked loop

ARW angle random walk

ASIC application-specific integrated-circuit

CING Cylindrical Rate-Integrating Gyroscope

COTS commercial off the shelf

CVG Coriolis vibratory gyroscope

DSP digital signal processor

INS inertial navigation system

IMU inertial measurement unit

LDV Laser Doppler Vibrometry

LSB least significant bit

MAV micro aerial vehicle

MEMS micro electrical mechanics systems

PID proportional, integral, differential

RIG rate integrating gyroscope

RLG rate-laser gyroscope

RRW rate random walk

SDR software-defined radio

SNR signal-to-noise ratio

xii

SOG silicon on glass

URAT Universal Resonator Analysis Tool

ZRO Zero-rate offset

xiii

ABSTRACT

Characterization, Control and Compensation of MEMS Rate and Rate-Integrating
Gyroscopes

by

Jeffrey A. Gregory

Chair: Khalil Najafi

Inertial sensing has important applications in navigation, safety, and entertainment.

Areas of active research include improved device structures, control schemes, tun-

ing methods, and detection paradigms. A powerful and flexible characterization and

control system built on commercial programmable hardware is especially needed for

studying mode-matched gyroscopes and rate-integrated gyroscopes. A gyroscope can

be operated in a mode-matched rate-mode for increased sensitivity or rate-integrating

mode for greatly increased dynamic range and bandwidth, however control is chal-

lenging and the performance is sensitive to the matching of the modes.

This thesis proposes a system built on open and inexpensive software-defined

radio (SDR) hardware and open source software for gyroscope characterization and

control. The characterization system measures ring-down of devices with damping

times and automatically tunes the vibration modes from over 40 Hz mismatch to

better than 100 mHz in 3 minutes. When used for rate-gyroscope operation the

system provides an FPGA implementation of rate gyroscope control with amplitude,

rate and quadrature closed-loop control in the SDR hardware which demonstrates

xiv

400% improvement in noise and stability over open-loop operation. The system also

operates in a RIG mode with hybrid software/firmware control and demonstrates

continuous operation for several hours, unlike previous systems which are limited by

the gyroscope ring-down time. The hybrid mode also has a simulation module for

development of advanced gyroscope control algorithms. Advanced controls proposed

for RIG operation show over 1000% improvement in effective frequency and damping

mismatch in simulation and 25% reduction in drift due to damping mismatch in a

test RIG. By tuning the compensation, the drift can be reduced by almost 90%, with

worst case drift decreased to -41◦/s and RMS drift to -21◦/s. Harmonic analysis

of the anisotropy in a rate-integrating gyroscope measured with this control system

is presented to guide development of new error models which will further improve

performance.

xv

CHAPTER I

Introduction

Gyroscopes are instruments to measure rotation and exist in many forms. The

small gyroscopes found in commercial devices such as cell-phones and tablets are

micro electrical mechanics systems (MEMS) vibratory gyroscopes. Low-price and

limited performance requirements make MEMS gyroscopes ideal for these applica-

tions. The market for standalone MEMS gyroscopes however is expected to be begin

to shrink over the next few years, Figure 1.1, as the focus shifts to systems that

combine multiple gyroscopes and accelerometers. These combined systems can form

the basis of an inertial navigation system (INS) at the low end for gaming, at the

mid-range to improve the responsiveness of cell-phone GPS, or at the very high-end

for tracking the movements of rescue workers in a building, or guiding micro-aerial

vehicles and smart projectiles. However, for MEMS gyroscopes to gain more traction

in the inertial navigation market, performance needs to improve. The design goals of

a MEMS INS are that it should be small, meaning small sensors and highly integrated

electronics; have very low angle drift, which requires devices with low stress and high

quality factor; wide-dynamic range, being able to measure well at both low and high

rotation rates; and wide bandwidth to match the maneuverability of small vehicles.

The work in this thesis addresses the challenges of developing next generation in-

ertial sensors and inertial navigation systems at the system level with software for

1

Figure 1.1:
A projection of the MEMS gyroscope market size. From [1], this predicts
that the market for standalone MEMS gyroscopes will begin to shrink as
the market moves towards sensors with multiple degrees of freedom.

system level modeling, the development of a powerful and flexible characterization

and control system, and new algorithms for control of MEMS gyroscopes in angle or

rate-integrating mode.

Performance metrics for gyroscopes include rate noise (angle random walk (ARW)),

angle noise (rate random walk (RRW)), bias stability or drift, bandwidth, and dy-

namic range which are explained in more detail in Section 2.4. While bandwidth

is often thought of as the response to a vibratory rotation it is also critical for the

response to a step function or impulse in the rate. These kinds of rates are encoun-

tered when small vehicles such as a micro aerial vehicle (MAV) or people make sharp

2

Figure 1.2: Progression of MEMS gyroscope bias stability. From [3].

turns. Dynamic range is the difference between the lowest and highest measurable

rate. Very high rates of rotation are also more common in a small vehicle. For gyro-

scopes with low noise and drift, a very high dynamic range would be 1800◦/s, which

is only about 6 rotations per second. Typically for very high rate applications, there

is a large performance sacrifice in terms of rate noise and bias stability [2]. Advancing

gyroscope technology is typically expressed in terms of bias stability, which has units

of ◦/Hr, as in Figure 1.2. Low term noise like bias stability and RRW are important

for a large aircraft where bandwidth is usually only a few Hertz and dynamic range

may only need to be tens of degrees per second. A smaller unmanned vehicle can

require a bandwidth of kilohertz and a dynamic range of several thousands of degrees

per second.

Gyroscopes can be characterized as rate or rate-integrating gyroscopes depending

on whether they measure the rotation rate or the rotation angle (which is the inte-

3

grated rate). Any device capable of being operated as a rate-integrating gyroscope

can also be operated as a rate gyroscope, and in fact the only commercial vibratory

rate-integrating gyroscope, the Northrup Grumman HRG [4] is operated as a rate

gyro at low rates and switches to a rate-integrating mode when the rate increases.

There are several advantages to rate-integrating operation of a gyroscope. RIG

theoretically have nearly infinite bandwidth and dynamic range, which makes them at-

tractive in applications such as ultra-miniaturized autonomous vehicles, pico-satellites,

and tactical guidance systems. The downsides of RIG are increased angle drift at low

rates relative to the same gyroscope operated in rate mode and increased control

complexity. The error in a rate-integrating gyroscope is described in more detail in

Section 5.4, briefly though the angle drift in a RIG is proportional to the variation

of the stiffness and quality factor (or damping) across the device (anisotropy), and

MEMS devices tend to have worse relative anisotropy than meso-scale devices. The

gyroscope will not integrate rotation less than the angle drift rates, so the worse the

drift the higher the applied rotation should be before operating the gyroscope in rate-

integrating mode. A control system to compensate for the drift due to anisotropy

will allow rate-integrating MEMS gyroscopes to switch from rate to rate-integrating

modes at lower rates, improving overall linearity and performance.

Research groups developing gyroscopes often focus on fabricating devices or the-

oretical work on control algorithms and lack the expertise to implement effective

readout and control hardware. Much of the control work that is done is difficult to

replicate because the hardware used is not available commercially and it takes too

long to develop new hardware locally. In this thesis, a characterization and control

system for MEMS gyroscopes built on commercially available hardware is proposed.

The hardware used was developed for software-defined radio applications, but is a

powerful and flexible platform suitable for many applications. The system provides

characterization tools optimized for MEMS gyroscopes, a resource efficient rate gyro-

4

Publication Control Tuning Error
Compensation

Rate-
Integrating

Tuning-
Time

UC Irvine [5] SIMULINK None Quadrature
suppression. No -

UC Irvine [6] None electric mode
matching High Q Yes Unknown

JPL [7] FPGA - - Rate -
UC Irvine [8] DSP - - Rate -

Northrop-
Grumman
[4]

Proprietary

Mechanical
polishing,
electric mode
matching

High Q,
quadrature
suppression.

Yes Unknown

UC Berkeley
[9] Simulation -

Frequency
matching,
static damping
mismatch

Yes -

This Work FPGA + Soft-
ware

Electric mode
matching

Quadrature
suppression,
dynamic
damping and
frequency
mismatch

Yes 1s

Table 1.1:
Comparison of programmable and rate-integrating gyroscope control sys-
tems.

scope control implemented in an FPGA and suitable for multiple device integration,

and a hybrid software-firmware mode for rate and rate-integrating operation of a

MEMS gyroscope.

The rate control presented in this work is implemented in a very small FPGA

and is optimized to reduce the resource utilization. The controls are also pipelined

with the pipeline running much faster than the response time of typical gyroscopes.

This leaves a large amount of available time to process additional devices. The same

control, and potentially the analog front-end, could be shared between several de-

vices with no significant increase in the hardware cost or complexity per additional

device. This approach allows more compact system integration and could even offer

performance improvements in some situations where signals to closely packed devices

would otherwise interfere with each other.

5

1.1 Review of Gyroscope Control Platforms

Control of rate gyroscopes is covered in detail in Chapter IV RIG in Chapter V.

This section reviews the systems that have been published for working with MEMS

gyroscopes which are relatively generic. Work on programmable gyroscope control

systems and rate-integrating gyroscope operation is summarized in Table I. The table

includes the control method which indicates how controls are implemented, how tun-

ing is performed, any additional error compensation techniques, whether the system

is used for rate-integrating operation, and how long tuning takes. The programmable

hardware for some of the work in the table, especially [7, 8], is similar to the hardware

used in this work. However, that hardware is not commercially available and does not

have the software to support all of the characterization, tuning, and control functions

presented in this work.

Control of a rate-gyroscope does not require a programmable system. Rate gyro-

scope control is well suited to analog implementations and is popular in commercial

products [10]. Digital rate gyroscope control is emerging however as digital circuitry

becomes cheaper. Potential advantages of digital control include high-order filters,

avoiding the 1/f regime by directly digitizing signals at the resonance frequency [11],

combining the control of multiple devices for an inertial measurement unit (IMU),

and the ability to implement more complicated characterization and compensation

techniques than is practical in analog circuits. Several programmable gyroscope con-

trol platforms have been previously presented in the literature. The most significant

limitation of these systems is that they do not use commercially available hardware,

so significant effort is required to recreate them.

An FPGA-based rate gyroscope control is presented in [7] and [12]. The control

is closed-loop on both the rate and drive axis, but does not include a quadrature

control. Although This hardware could implement the controls presented in Chapter

IV, it is not commercially available. There are many filters in this control topology,

6

Figure 1.3:
Diagram of FPGA based control and characterization system. This
closed-loop control was implemented in [7] with the closed-loop frequency
extraction in [12], from [12]

each of which is a separate FIR filter. Although each filter is not very high order,

there many of them and they will use much more FPGA resources than the method

in Chapter IV, making it less appealing for applications with multiple sensors.

A DSP based control is easier to program and potentially lower power and higher

performing than an FPGA system. A programmable system based on a DSP is pre-

sented in [8] and illustrated in Figure 1.4. If this system were commercially available,

it would make an attractive alternative to the hardware platform for the software

system presented in this thesis. Currently, it lacks the capability for characterization,

tuning, and rate-integrating control presented here. There does not appear to be

any software framework available for this hardware either to ease development of the

characterization and control system. The features of the system in [8], defined by

the components used, are summarized in Table 1.1. To work with higher frequency

gyroscopes, one could use higher-speed ADCs. Having to implementing some of the

very delay sensitive features, such as the PLL and feed-through compensation, in a

DSP instead of an FPGA may still limit performance and will definitely limit the top

frequency. There are commercially available development boards with both a DSP

7

Figure 1.4:
Diagram of a DSP based control system. This control system imple-
mented in [8] uses a DSP to implement the control functions instead of
an FPGA or analog control.

DSP controller TI TMS320F2812 32-bit 150 MIPS
ADC and DAC conversion update rate 100 kHz

2 DAC AC carrier channels 10 Vp-p, 0.15 mV step
2 DAC AC+DC actuation channels 100 V, 0.8 mV step

3 DAC monitor channels 10 Vp-p, 0.15 mV step
3 differential ADC with transimpedance amplifiers 110 MΩ gain, 18-bit conversion

Table 1.2: Operational parameters of a DSP based control system. Presented in [8]

and FPGA, but without high-voltage handling capabilities. The performance of the

proposed system is not provided and the on-board voltage generators are a potential

source of interference.

1.1.1 Rate-integrating gyroscope control systems

Recently there has been renewed interest in MEMS RIGs. Control of meso-scale

RIG has been studied since the 1960’s. The earliest RIG controls were mixed signal

[13]. Drive signals were applied at ½ of the resonance frequency and multiplexed in

time. These controls do not directly address the drift due to damping anisotropy.

The macro-scale gyroscope is mechanically polished to reduce anisotropy, but this

method is not practical for MEMS gyroscopes and still does not produce drift on par

8

with rate mode operation.

One of the largest challenges of controlling a nearly ideal RIG is to sustain the

oscillation without biasing the angle measurement. In [6], the gyroscope is the most

ideal MEMS gyroscope to date and is operated as a RIG by allowing the gyroscope

to freely oscillate, without a sustaining loop. The angle is read out in real time using

the control system in Figure 1.5. There is no closed-loop control of the oscillation

amplitude or compensation for frequency or damping mismatch. The gyroscope used

with this readout has a very high damping time of 173 s, which limits the test time

to roughly 10 minutes. The advantage of this method is that the gyroscope can

be rotated at very high rates without any non-linearity introduced by delay in the

control system. The damping mismatch of 0.5% of 173 s is much better than any

other reported in literature for a MEMS gyroscope, but the drift is still around 10

°/Hr which is much higher than would be expected from the same device operated

as a rate gyroscope.

In [14], PLLs are proposed to generate the signals to sustain the oscillation of a

rate-integrating gyroscope as in Figure 1.6. Although the system seems simple, the

operation can be difficult to follow. If the standing wave of the gyroscope is described

as two traveling waves however, the two loops lock to each of the standing waves,

and the combined output signals match the standing wave on the gyroscope. This

approach is appealing since it is an all-analog method of sustained RIG operation,

however there is no compensation for gyroscope errors, and this method is particu-

larly sensitive to gain errors in the drive and readout. Also, any significant level of

stiffness anisotropy will keep the gyroscope from working in rate-integrating mode.

This control has not been experimentally demonstrated, since MEMS gyroscopes had

far too much mismatch to operate with this control.

A programmable control system for RIG control based on Labview SIMULINK

was proposed in [5] and included a method to compensate for quadrature error Figure

9

Figure 1.5:
Diagram of Freely Oscillating RIG Readout. This readout, from [6], al-
lows real-time sensing of the gyroscope angle, but does not sustain the
oscillation and so the measurement duration is limited by the gyroscope
ring-down time.

1.7. The quadrature error was extracted using the relationship [15]

H = xẏ − yẋ (1.1)

where x and y are the displacements and ẋ, ẏ are the velocities extracted from the

sensed signals. The method of extracting the displacement and velocity is not explic-

itly given. The control law for quadrature, based on [16], is

Fx
Fy

 = −γ1HS
T

x
y

 (1.2)

where γ1 is the control gain and ST is a skew symmetric matrix, presumably to com-

pensate for electrode misalignment. The measured angular momentum (quadrature

error) was reduced by 31%. This degree of compensation was not sufficient to allow

10

Figure 1.6:
Diagram of PLL based sustaining control for RIG. One alternative control,
from [14], for a RIG is to use PLLs to generate the correct control signals
for a RIG.

11

Figure 1.7:
Diagram of control with quadrature compensation in SIMULINK. Soft-
ware based control with quadrature compensation in SIMULINK was pro-
posed in [5].

stable rate-integrating operation. One limitation of this control was that the fre-

quency was fixed and not controlled with a PLL. Although it is not reported, it is

also very difficult to make SIMULINK controls operate in real time for fast system,

which may have limited the stability. Also, rather than sense the motion directly,

a carrier wave was used to sense the motions. This method has been proposed pre-

viously [17] to move the sense signal to a higher frequency and help improve gain

matching.

An application-specific integrated-circuit (ASIC) based system for rate gyroscope

characterization and control is now commercially available [18] and for companies

wishing to accelerate development of a commercial product could be an attractive

option. The ASIC is programmable in the sense that the control loop and filter

12

parameters can be changed, and it also includes an advanced calibration algorithm

for temperature. The downside of the ASIC is that the control methods are fixed, or

at least modifying them would require some form of intellectual property agreement.

The ASIC also does not obviously allow for as flexible of characterization as the

software methods presented in this thesis.

1.1.2 RIG control methods

The basic RIG controls proposed in [15] and [19] have been analyzed for their

stability and effect on the angle readout in several papers such as [16]. A few groups

have tried to propose controls which are substantively different from the basic controls

used in earlier works. The following works are analytical and present only simulation

results.

In [9], a control is analyzed where the gyroscope is driven at a fixed frequency.

The forcing signals required to correct for frequency mismatch are very large for

even small frequency mismatch, so the chosen frequency must be very close to the

resonance. Also, it is not clear that the proposed frequency compensation loop would

actually force the resonant frequencies to be equal. Damping mismatch compensation

is also proposed by the means of a pre-calibrated damping ratio matrix. This method

would correct the variation in the amplitude due to damping mismatch, but it is

not demonstrated that this method would compensate for the drift due to damping.

The simulated behavior of an ideal gyroscope and a non-ideal gyroscope with the

proposed control system are show in Figure 1.8. The left half of the figure shows the

non-ideal gyroscope and there are clearly still large discrepancies from ideal behavior.

One significant source of noise in RIG operation is noise from the PLL used to track

the resonance frequency, and so operating at a fixed frequency could help improve

performance. In the controls presented in Chapter V, the gyroscope can also be

operated with the PLL control loop disabled after start-up, so that the gyroscope

13

is driven with at a fixed frequency close to the resonance. This operation has been

briefly simulated with the hybrid control system and shows some promise, but it

has not been extensively analyzed. One possible source of error is the effect of large

angular vibrations on the resonance frequency.

In [20], a control is proposed that compensates for stiffness mismatch and com-

bines rate and rate-integrating operation. The stiffness mismatch is measured by

observing the frequency of the resonance on each axis. The measured mismatch is

used to generate quadrature forces which compensate for frequency mismatch. This

method assumes the frequency mismatch is aligned with the sense axes and does not

provide any means to eliminate the effect of cross-axis stiffness. Damping mismatch

is treated as a gain mismatch, which does not properly compensate for damping, and

the error in the compensation creates more quadrature error. All of the compensa-

tion is based on measurements in a pre-run calibration phase and so are sensitive to

in-run drift. Simultaneous operation in rate and rate-integrating mode is proposed

to extract the angle from the residual quadrature error. Rate operation is enable by

adding a modulated signal on the X-axis, away from the resonance frequency, and

detecting it on the Y-axis. The rate from the rate mode and a rate observer created

from the angle readout are combined to produce the final rate measurement. With

this method they are able to extract the rate and angle from a simulated gyroscope

with noise and uncompensated errors. The rate operation is not examined in detail,

and it appears that the quality of the rate operation would depend heavily on the

gyroscope orientation. This style of dual-mode operation is an interesting candidate

for implementation using the control system in Section 5.6.

1.2 Review of characterization and tuning methods

The frequency separation of gyroscope modes determines the gain and open-loop

bandwidth of a vibratory gyroscope. To improve the performance of gyroscopes as

14

Figure 1.8:
Simulated behavior of a gyroscope with fixed frequency controls. From
[9], the simulated behavior of a non-ideal gyroscope under their proposed
controls (left plots) compared to the behavior of an ideal gyroscope (right
plots). The blurring of the orientation indicates significant levels of un-
compensated error.

15

they are reduced in size, it is desirable to match the frequencies of the resonance

modes on the drive and sense axes [21]. Several online and offline methods exist to

measure and tune the mode separation. The defining characteristics of each method

are how the mismatch is determined, the means of adjusting the modes, and the

degree of tuning that is available. Some of the more successful methods are presented

below.

1.2.1 Offline Mode Matching

Offline mode matching is generally able to cope with a larger range of mismatch

than online methods. Electrostatic spring softening is the most common method of

tuning MEMS resonators. In [22], a method is presented to tune a gyroscope by

adding mass to the gyroscope at defined points, building on earlier work by the same

group on electrostatic tuning [23]. The method is presented as a means of reducing the

acceleration sensitivity of the gyroscopes, but the acceleration sensitivity is directly

linked to the frequency matching of the gyroscope [3]. The advantage of physically

modifying the device is that tuning voltages are subject to drift and are a source of

noise. The disadvantage is that the modifications generally need to do be done at

fabrication time and can’t be updated as the device ages.

Offline electrostatic tuning methods for ring gyroscopes are presented in [24] and

[25]. Electrostatic tuning uses the electrostatic spring softening effect to change the

effective stiffness. Either paper could have formed the basis of the automatic tuning

presented in Section 3.2. In [25], the tuning of a ring gyroscope is broken down into

a cross coupling (g) and on-axis tuning (ω1 − ω2), illustrated in Figure 1.9. Perfect

tuning is possible only when both the cross-coupling and on-axis mismatch terms

are eliminated. A measurement scheme and method of calculating the tuning values

required for matching a ring gyro are provided, but the experimental results are

limited because the gyroscope used only had the capability of adjusting the on-axis

16

Figure 1.9:
Classification of tuning electrodes for cross-coupling and on-axis tuning.
From [25].

frequency terms. The best tuning achieved was approximately 10 Hz from an initial

mismatch of approximately 250 Hz, Figure 1.10. The projected tuning voltage was

59.4±4.9 V and the measured optimum voltage was 58 V. One apparent advantage

of this method for calculating the mismatch is that one only need to drive and sense

one axis to measure the mismatch parameters and compare the phase difference and

ratio of the response at the two modes. For the phase, the expected values are 0 or

pi, and so small phase errors are not significant. However, damping error will cause a

large error in the measured frequency mismatch orientation because the peaks on one

axis may be very different for each mode due to damping mismatch, but the ratios of

the response between the two axes for each mode is relatively insensitive to damping

mismatch. Also, when the gyroscope cross-coupling is tuned to be very small, it

would be very difficult to determine the residual mismatch using the response from

only one axis since the response of one mode will be very small, possibly even below

the noise floor.

17

Figure 1.10:
Tuning of a gyroscope without cross-coupling removed. Since electrodes
for tuning the cross coupling were not available in [25], the optimal
frequency mismatch is still 10Hz.

A algorithm for electrostatic frequency tuning was presented in [23] which could

be automated, but automated operation was not demonstrated. The method is based

on fitting a number of parameters in a gyroscope model to the measured gyroscope

response using standard optimization techniques. The gyroscope response is mea-

sured by driving one axis and sensing each axis and then repeating for the other

axis, for four measurements per step. The fitting method returns quality factors and

frequency mismatch results, Figure 1.11 that could not be derived from linear in-

terpolation between the measurement points. Being able to measure the gyroscope

response using lower resolution tests would significantly decrease the time required for

automatic tuning. The fit of the low resolution data is limited when the response is

closely tuned, Figure 1.12. The low resolution response indicates that the gyroscope

is perfectly matched, while the high resolution response indicates a 15 mHz mismatch,

which is still very good. Part of the mismatch could be due to drive amplitude effects

if different measurement methods were used to obtain the high and low resolution

response. The initial separation was only 4 Hz with this gyroscope and some ad-

justment would have to be made for gyroscopes with a large initial mode separation,

where the mechanical response between the modes is below the noise floor. There are

18

Figure 1.11:
Resonator response using optimized model fit. In [23], the gyroscope
response is determined by fitting measurements to a model. The lines
are the fitted response with different tuning voltages and the markers
are the measurement points. The quality factor and frequency resolu-
tion are higher than would be measured from a linear interpolation of
the measurement points. The tests are used to calibrate the gyroscope
response to the tuning voltages.

no significant barriers to implementing this method in the proposed characterization

system in Section 3.1, which speaks to the flexibility of the system. In fact, these tests

could performed much more quickly using the dual axis drive and sense functionality

of the system presented in this thesis.

Closed-loop mode-matching was proposed in [12] using a FPGA based system

which is also used for closed-loop gyroscope control [7]. The proposed system can

switch which sense axis is the drive and which is the rate sense axis. The mode

matching method was to measure the resonance frequency with the one axis set as

19

Figure 1.12:
Resonator response using optimized model fit compared to high resolu-
tion scan. From [23], the fit of data measured using a lower resolution
(0.5 Hz) does not match the result measured with a higher resolution (10
mHz). The 10 mHz magnitude and phase are indicated with markers,
the dashed lines are the the fit from 0.5 Hz data and the solid fit is a fit
to the 10 mHz data.

20

the drive axis, and then repeat the measurement with the other axis. Each mea-

surement would take about 1 second assuming good signal-to-noise ratio (SNR) and

could accurately determine the resonance frequency. No method was proposed for

automating the tuning however. The quality of the matching was proposed to be

determined by the level of zero-rate offset, which they determined to be at a min-

imum with 0.1 Hz mismatch. No results were given for the level of matching they

were able to obtain or how much improvement was found. The same group is working

on automatic control algorithms, however they claim the hardware would need to be

supplemented with a microprocessor to implement the automatic control.

1.2.2 On-line tuning

Several on-line tuning algorithms rely on the phase shift between drive and sense

modes for tuning [12, 21, 26]. The advantage of this approach is that the phase shift

is easily detected and the tuning can be performed quickly. These methods generally

rely on the stiffness matrix not having any off-axis components so that a single tuning

voltage can match the modes. This assumption is not generally valid however and

will limit the degree to which the modes can be matched.

In [26], the mode-matching scheme based on measuring the difference in phase

as in Figure 1.13 is proposed. When the gyroscope is tuned, the phase response of

the two modes will be equal. The mode matching control consists of a phase error

detector and a PI controller, the output of which is applied to a tuning electrode.

The initial phase difference of a gyroscope with roughly 100 Hz mismatch is tuned

from a 90◦ phase shift to 1.3◦and the rate sensitivity is increased by a factor of 21.

The gyroscope frequency is around 9 kHz and the quality factor is specified as 800,

so this improvement is smaller than expected. Mismatch in the phase response of the

sense amplifiers for the drive axis and rate axis would crate an offset that would limit

the matching accuracy. A significant limitation of this approach is that it requires

21

Figure 1.13:
Closed-loop tuning using phase-matching. From [26], mode matching
using the phase error between the drive and sense channels was proposed
and tested for a rate gyroscope.

a signal on the rate axis which would not be there if the gyroscope were completely

matched and zero rate applied.

An offset compensation method for non-mode matched gyroscopes is proposed in

[27] which attempts to separate the signal due to a Coriolis Force from signals due

to electrical feed-through and drive axis misalignment by modulating the drive sig-

nal in a way that should be outside the response rate of the high-Q resonator. This

compensation is not meant to address mode-matching, but the same principle could

easily be extended to mode matching. The modulation can be achieved either by

directly modulating the drive signal or by applying an AC signal to the compensa-

tion electrodes. The offset components are determined by demodulating the received

signals with the modulation signal. Offset compensation is an active area of research

currently, but other methods such as [4] and [28] disrupt normal operation. The

primary challenge of the method proposed by [27] is applying a signal that is close

enough to the gyroscopes sensitive range that the effect can be measured accurately

without interfering with sensing of the Coriolis acceleration.

22

This method of compensation could be tested with the control system proposed

in Section 5.6 by modulating and demodulating the drive and sense signals. Com-

pensation techniques using DC electrodes could then be tested by manually tuning

the DC values and observing the effect on the extracted offset components. Automa-

tion could be accomplished using remote control of DC power supplies or using the

auxiliary DAC outputs to control the electrode biases directly.

1.3 Thesis Contributions and Organization

This work focuses on system level contributions to the characterization and control

of MEMS gyroscopes. The proposed contributions are

� A characterization and control system for MEMS gyroscopes built on open and

commercially available hardware and software. The characterization tools are

much more complete than other work and include ring-down analysis, impulse

response, and gain-phase analysis. The system is easy to use and expand so

that other researchers can test their own devices or algorithms without large

investment in hardware or time.

� Automatic mode-matching of high-Q (Q¿50,000) MEMS gyroscopes from over

40 Hz mismatch to below 100 mHz.

� An efficient FPGA implementation of rate gyroscope control with amplitude,

rate and quadrature closed-loop control demonstrating better than 400% im-

provement in performance for a MEMS gyroscope over open-loop control.

� Hybrid software and firmware control system and gyroscope simulator for de-

velopment of advanced gyroscope control algorithms and experimental testing

of those algorithms. The hybrid architecture allows delay sensitive components

to be implemented in the FPGA while other controls can be implemented in

23

software where development is easier.

� Rate-integrating MEMS gyroscope operation for much much longer than the

ring-down time as well as and characterization of the anisotropy, which is critical

to development of improved models.

� New control algorithms for rate-integrating gyroscopes to dynamically measure

damping and frequency anisotropy and compensate angle drift. Compensating

angle drift allows rate-integrating operation at lower rates so that dual-mode

MEMS gyroscopes are practical.

The thesis is organized as follows. Chapter II presents the theory of MEMS vibra-

tory gyroscopes and the interface and control hardware used in this work. Chapter

III presents a system for characterization and and tuning of MEMS vibratory gyro-

scopes. Chapter IV discusses control of rate gyroscopes and presents a programmable

FPGA based system for rate gyroscope control. Chapter V discusses the operation

of RIGs and presents a programmable hybrid firmware/software system for rate and

rate-integrating gyroscope control. Chapter VI presents advanced controls referred

to as dynamic mismatch compensation to improve the performance of a MEMS RIG.

Finally Chapter VII summarizes the contributions of this work, and outlines some

future work.

24

CHAPTER II

Inertial Sensing

Inertial sensors measure the forces acting on a mass. The two main categories are

accelerometers for sensing acceleration and gyroscopes for sensing rotation. Vibra-

tory gyroscopes detect rotation through the Coriolis force (or Coriolis acceleration),

Equation 2.1, an apparent force experienced by a moving object in a rotating ref-

erence frame. In this work we focus on resonant MEMS gyroscopes. This chapter

covers the Coriolis force, gyroscope mechanics, and the electronics used to interface

with the gyroscope.

Fc = 2mΩu̇ (2.1)

where m is the mass and u̇ is the velocity perpendicular to the axis of rotation.

The Coriolis force can be understood using the example of a ball thrown on a

spinning merry-go-round as in Figure 2.1, based on the discussion in [29]. For a ball

thrown on a merry-go-round in a vacuum without gravity, from the point of view of an

observer floating over the merry-go-round, the ball travels in a straight line because

there are no forces acting on it. For an observer standing on the merry-go-round

however, the ball appears to curve in the opposite direction from how the merry-go-

round is spinning. The acceleration of this curve is the Coriolis acceleration, and the

force required to create the apparent acceleration is the Coriolis force.

To make the ball travel in a straight line from the point of view of the observer

25

Fc Fc

F
c

F
c

a) Merry-go-round and thrown ball in inertial frame

b) Merry-go-round and thrown ball in rotating frame

Figure 2.1:
Diagram of forces acting on a moving object in rotating frame. An object
in a rotating frame is affected by the centripetal force, angular accelera-
tion, and the Coriolis Force

on the merry-go-round, a force would need to be applied with the opposite direction

and magnitude as the Coriolis force, and then the observer over the merry-go-round

would see the ball curve. Unlike centripetal acceleration and rotational acceleration,

the Coriolis acceleration is proportional to the velocity of the ball and not the position.

2.1 Gyroscope Model

A simple conceptual vibratory gyroscope is illustrated in Figure 2.2. The motion

of the mass can be described by writing equations for the motion along the X and Y

axes, Equation 2.2, which is Equation 6 in [19]

ẍ− 2AgΩẏ − 2AgΩ̇y +
2

τ
ẋ+ ∆

(
1

τ

)
(ẋ cos 2θτ + ẏ sin 2θτ)

+
(
ω2 − crΩ2

)
x− ω∆ω (x cos 2θω + y sin 2θω) = fx

(2.2a)

ÿ + 2AgΩẋ+ 2AgΩ̇x+
2

τ
ẏ + ∆

(
1

τ

)
(−ẋ sin 2θτ + ẏ cos 2θτ)

+
(
ω2 − crΩ2

)
y − ω∆ω (−x sin 2θω + y cos 2θω) = fy

(2.2b)

26

Y

X Ωθ

Figure 2.2:
Single mass Coriolis vibratory gyroscope. A single mass attached to a
frame with springs aligned with the X and Y axis can be used as a generic
model of all Coriolis vibrator gyroscopes.

where x is the displacement on the x axis, y is the displacement on the y axis, Ω is

the rotation rate, Ag is the angular gain which is a function of the mode shape, τ is

the damping time constant, ∆

(
1

τ

)
, θτ is the rotation of the damping matrix from

the x axis, ω is the average resonance frequency, cr is the centripetal force scaling

factor which is function of the mode shape, ω∆ω is the frequency mismatch, θω is the

rotation of the frequency matrix from the x axis, and fx and fy are the external forces

applied by drive electrodes to the x and y axes respectively. The damping mismatch

and frequency mismatch are defined as

∆

(
1

τ

)
=

1

τ1

− 1

τ2

ω∆ω =
ω2

1 − ω2
2

2

where τ1, τ2 are the damping time constants and ω1, ω2 are resonance frequencies

when the gyroscope is aligned along the principle axes of each quantity.

The Coriolis acceleration terms 2AgΩẋ, 2AgΩẏ couple the X and Y axes and allow

the vibrating structure to act as a gyroscope. All of the other terms which couple

the two axes are undesirable and are a source of offset in a rate gyroscope and drift

in a rate-integrating gyroscope. For a rate gyroscope, the resonance frequencies are

27

1 Center for Wireless Integrated MicroSensing & Systems

Rate-Integrating/Angle Mode/Whole Angle/Direct Angle

Readout Gyroscopes

Fy=0

Fy=-Dy

Fx=-Dx

Fx=-Dx

Ω

Ω

Figure 2.3:
Single mass Coriolis vibratory gyroscope in rate mode. Canceling the
damping on only one axis of the gyroscope causes it to operate in rate
mode

not necessarily matched. Mismatch increases the bandwidth of the gyroscope. How-

ever, matching the resonance frequencies will amplify the Coriolis acceleration by the

quality factor of the gyroscope, which can increase the sensitivity of the gyroscope by

several orders of magnitude. The downsides of mode-matched operation are reduced

bandwidth, scale factor stability and bias stability unless a control loop is used to

increase the bandwidth and maintain the mode matching. Interest in mode matching

of gyroscopes is increasing as a method to maintain sensitivity as gyroscopes are be-

ing made smaller to fit into commercial products and micro-aerial vehicles [30]. The

gyroscopes in this thesis are typically mode-matched.

Any mode matched gyroscope can be operated in either rate or rate integrating

modes. If the gyroscope is forced (Fx) to maintain an oscillation on one axis by

canceling the damping force (Dx) as in Figure 2.3, while the other axis is unforced

the gyroscope will operate in a rate mode. In the rate mode, the X axis is often called

the drive axis or the resonator. The Y axis is the rate-sense axis or accelerometer.

In the rate mode, when the gyroscope rotates the Coriolis force produces a force on

the rate-sense axis proportional to the amplitude of the drive axis oscillation. This

force causes an oscillation to grow on the rate-sense axis until the damping, which is

proportional to the oscillation amplitude, balances the Coriolis force, as illustrated

28

Figure 2.4:
Single mass Coriolis vibratory gyroscope amplitudes in rate mode. The
amplitude on the X or drive axis (blue) is maintained constant by a control
circuit while the Y or rate-sense axis (green) grows until the Coriolis force
is balanced by the damping.

in Figure 2.4. The output of the gyroscope is the amplitude of the rate-sense axis

vibration which is

y = AgτxΩ. (2.3)

It is useful to normalize this to the drive axis amplitude to get

y

x
= AgτΩ. (2.4)

Since the oscillation on the drive axis is kept constant while the Y axis amplitude

changes, the total energy is not constant. The rate of the energy change is dictated

by the quality factor of the gyroscope and the frequency mismatch. If the gyroscope

is matched, the oscillation on the Y axis will grow at a rate equal to the damping time

constant τ . The gyroscope bandwidth is then limited to the inverse of the damping

time constant which typically results in a very small bandwidth.

To improve the bandwidth and stability of a rate gyroscope, the gyroscope can be

operated in a closed-loop or force-feedback mode where the Coriolis force is canceled

by a electronic signal to the rate-sense axis. The output signal is then the amplitude

29

1 Center for Wireless Integrated MicroSensing & Systems

Rate-Integrating/Angle Mode/Whole Angle/Direct Angle

Readout Gyroscopes

Fy=0

Fy=-Dy

Fx=-Dx

Fx=-Dx

Ω

Ω

Figure 2.5:
Single mass Coriolis vibratory gyroscope in rate-integrating mode. Can-
celing the damping on both axes of a mode-matched gyroscope causes it
to operate in rate-integrating mode

of the feedback signal. This signal can be normalized against the amplitude of the

drive signal to produce a rotation signal very similar to the open-loop one

Fy
Fx

= AgτΩ. (2.5)

If the gyroscope is forced on both axes in order to cancel the damping on each axis

as in Figure 2.5, or if the gyroscope’s damping is much smaller than the Coriolis Force,

the gyroscope will operate in a rate-integrating mode. The rate-integrating mode is

also known as the whole angle, direct angle, or angle mode. When the gyroscope

operates in rate-integrating mode, there is no ”drive” axis and ”rate-sense” axis. If

the gyroscope is initially oscillating along the X axis, rotation will create a Coriolis

force that causes the oscillation on the y axis to grow, but without any damping

the oscillation will continue to grow. Since the Coriolis force is anti-symmetric, the

growing oscillation on the Y axis will damp the oscillation on the X axis causing it

to decay until the original oscillation is canceled and then the X axis will start to

oscillate with an oscillation in anti-phase of the original oscillation. This process will

then repeat with X and Y reversed as illustrated in Figure 2.6. The output signal for

a RIG is the angle of the oscillation which is derived from the ratio of the amplitudes

30

Figure 2.6:
Single mass Coriolis vibratory gyroscope amplitudes in rate-integrating
mode. The damping on the x (blue) and y (green) axis is canceled so that
the Coriolis force is able to continuously shift energy between the X and
Y axes.

on the X and Y axes

y

x
= tan

∫
AgΩdt = tan θ (2.6)

where θ is the orientation of the oscillation as illustrated in Figure 2.2. The sense

signal θ is simply

θ = arctan
y

x
(2.7)

One benefit of rate-integrating mode is that the bandwidth is ideally infinite.

Physically, this is because the total energy of the gyroscope is kept constant and

so the damping time constant does not mater. This infinite bandwidth can also

be seen by differentiating the sense signal with a time varying rate applied such as

Ω = A sinωΩt

Ω̂ =
θ

dt
=

∫
AgΩdt

dt
= AgΩ = AgA sinωΩt (2.8)

where Ω̂ is the measured rate. Since there is no integration or differentiation, the

scaling is independent of the frequency ωΩ. Practically, for a given rotational am-

plitude A, as ωΩ increases, the measured change in the angle will go to zero which

implies that the bandwidth is limited by the resolution of the angle measurement.

31

A more significant limitation to the bandwidth is the angular acceleration term in

Equation 2.2. If the rate is changing rapidly, especially if it is a step function, this

term represents a force in phase with the displacement, which creates an apparent

frequency mismatch and drift in the gyroscope.

2.2 Hardware

Electronics are required to turn a resonating structure into a gyroscope. These

electronics can be roughly partitioned into the sense electronics and control electron-

ics. The sense electronics are necessarily analog and are responsible for transducing

the motion of the resonator into a signal which can be used as a measure of the rate or

act as an input to the control electronics. This signal is generally a voltage, but could

be a current or a direct digital signal such as a pulse train. The control electronics

can be either analog or digital. Analog control works well for discrete implementation

of relatively simple control schemes, but digital control offers many advantages when

the control is to be implemented in an integrated circuit or to be made more sophis-

ticated with advanced compensation. With digital control, it is relatively easy to

share resources between multiple sensors, unlike analog control where most operation

is continuous in time. There are methods for making discrete time analog controls,

but the complexity would rival or surpass a digital implementation. In this work,

the analog electronics used for sensing are made as simple as possible and all of the

control is digital. This arrangement results in a powerful and flexible system that can

be used with a wide range of sensors and control schemes.

2.2.1 Sense Electronics

Most Coriolis vibratory gyroscope (CVG) use capacitive detection schemes. Ca-

pacitive sensors work well at higher frequencies such as the resonance frequencies of

MEMS devices and are generally easier to fabricate than piezo-resistive or other trans-

32

1. 2. 3.

4. 5.

C
FB

R
DC

C
COMP

R
FB

C
FB

C
FB

C
FB

R
DC

R
DC

Φ
reset

Φ
reset

Φ
sense

Φ
sense

V
e

Figure 2.7:
Amplifier configurations for charge sensing. 1) transimpedance amplifier,
2) charge integrator, 3) voltage amplifier 4) differential charge amplifier,
5) switched capacitor charge amplifier.

33

duction methods. Sense amplifiers for capacitive transducers come in many forms, the

most common of which are illustrated in Figure 2.7. For a generic readout that works

with a wide range of sensors, the transimpedance and charge integrator topologies

are preferred. Voltage amplifiers are sensitive to the input capacitance which makes

them less stable when not integrated on the same die as the gyroscope, and also have

worsening performance as the gyroscope frequency increases. Switched capacitor cir-

cuits work well at low frequencies when implemented with discrete components and

with proper design can have very low drift. For gyroscopes, the capacitors should be

switched much faster than the gyroscope frequency which is difficult using discrete

components, especially if the gyroscope frequency is near the megahertz range. Even

with an integrated implementation, the switching and sampling can increase the noise

[31].

Fully differential transimpedance amplifiers and charge integrators are preferable

to single ended implementations, but most commercial off the shelf (COTS) fully

differential amplifiers are optimized for high-speed applications and do not have good

noise performance. An integrated circuit implementation customized for gyroscopes

should be fully differential.

Transimpedance amplifiers and charge integrators work in very similar ways and

the same amplifier can be used for either transimpedance or charge integration by

changing the relative size of Rf and Cf in Figure 2.7 circuits 1 and 2. Charge integra-

tors give better noise performance at low frequencies, but require very large resistors

for RDC and tend to be unstable in discrete implementations. Transimpedance am-

plifiers are stable, easy to implement with discrete components and work over a wide

range of frequencies, with performance generally improving with the frequency. For

these reasons, transimpedance amplifiers were used in this work.

The ability to detect the Coriolis force is linked to the minimum capacitance

change that the sense method can resolve based on the signal to noise ratio. The

34

e
n

Z
f

i
r

i
n

C
p

C
s

Figure 2.8: Noise model for a single amplifier with arbitrary feedback.

minimum detectable capacitance change ∆Cs,min for a sense amplifier is

∆Cs,min =
Is

ωVbias
(2.9)

where Is is the input reference current noise, ω is the detection frequency, and Vbias is

the voltage across the sense capacitor. For the readout scheme in Figure 2.8, Is can

be dominated by several difference noise sources.

If the voltage noise of the amplifier dominates, the noise depends heavily on the

capacitance at the input node and the minimum detectable capacitance change can

be written as

∆Cs,min ≈ en
Cs + Cp
Vbias

(2.10)

where en is the amplifier voltage noise, Cs is the sensor capacitance and Cp is the

parasitic capacitance (which includes the amplifier input capacitance). If the current

noise of the amplifier dominates, the following equation holds

∆Cs,min ≈
in

ωVbias
(2.11)

where in is the amplifier current noise. For JFET and CMOS amplifiers, this is usually

very small, under 100fA/sqrtHz. If Zf is mostly resistive and can be approximated

35

1MΩ

1MΩ

1MΩ

1MΩ IO

IO

IO
IO

IO

IO

IO
IO

IO

MEMS

Differential Drive
Amplifiers Passive

Bond pads

Figure 2.9:
Diagram of analog interface board. A simple analog interface board was
designed to mount the gyroscope and amplify the gyroscope signals

with resistance Rf , then the minimum sensed capacitance can be written as

∆Cs,min ≈
√

4kT/Rf

[1 + ωRf (Cs + Cp)] (ωVbias
. (2.12)

which simplifies to the same format as Equation 2.11 if ω is larger than the time

constant, usually a few hundred Hertz, except the current noise is now the resis-

tor current noise. This noise is typically larger than the noise of a good JFET or

even CMOS amplifier and is often the dominant white-noise source. The minimum

detectable capacitance change does improve with increasing Rf .

The analog interface used for most of this work is illustrated in Figure 2.9. Al-

though differential drive amplifiers were included to provide balanced signals, they

often were not used because of cross coupling problems due to the board layout. The

sense amplifiers are dual op-amps in transimpedance configuration followed by buffer

amplifiers to drive the signal across the slip ring on the rate-table. The transimpen-

dance gain was usually 1 or 10 MΩ with 0.5 to 2 pF capacitors for stability. In cases

where the sense capacitance was large, the differential drive and buffer gains needed

to be set to unity to prevent self oscillation of higher-order modes.

36

2.2.2 Bias Voltage

Transimpedance and charge integrator amplifiers both require that a bias is ap-

plied across the sense capacitance. The bias voltage creates a current from the chang-

ing sense capacitance. This can be easily derived by differentiating the charge on a

capacitor

Q = CV

Q̇ = I = CV̇ + ĊV ≈
dC

dx

dx

dt
V =

dC

dx
ẋV

(2.13)

where Q is the charge on the capacitor, I is the sense current, C is the sense capac-

itance, V is the bias voltage, x is the displacement, and it is assumed that the bias

voltage is nearly constant. The sensitivity of the capacitance to the displacement is

also easily derived as

C =
εA

g + x

dC

dx
=

εA

(g + x)2
≈
εA

g2
=
C

g

(2.14)

ε is the permitivity, A is the capacitor area, g is the capacitor gap and it is assumed

that the gap is much larger than the displacement x.

The bias voltage is also important for driving the gyroscope. The force due to a

voltage applied to a capacitor is

F = CV 2. (2.15)

There are three main methods of driving a resonator due to the dependency of the

force on V 2. If V = A1 sin πf0t, that is a sinusoidal signal with amplitude A at ½the

resonant frequency, then the applied force is

F ∝ A2
1 sin2 πf0t = A2

1(sin 2πf0 + 1) (2.16)

37

which is at the resonant frequency. If V = A2 sin 2πf0t, that is a sinusoidal signal at

the resonant frequency, then the applied force is

F ∝ A2
2 sin2 2πf0t = A2

2(cos 4πf0 + 1) (2.17)

which is a force at twice the resonant frequency. This drive method takes advantage

of parametric amplification [32], which is the same as the pumping motion of swinging

on a swing. If V = Vbias + A3 sin 2πf0t, that is a sinusoidal signal plus a DC bias

voltage, then the applied force is

F ∝ (Vbias + A3 sin2 2πf0t)
2 = V 2

bias + A2
3 sin 4πf0 + VbiasA3 sin 2πf0 (2.18)

which has a DC component, a 2f0 component proportional at A2, and a component

at the resonant frequency proportional to AVbias. If A << Vbias then the component

at the resonant frequency dominates and is amplified by Vbias.

The first two methods have the advantage of separating the drive and sense signals

in frequency, which helps eliminate feed-through. The downside is that the AC voltage

has to be much larger than in the third method where the AC signal is amplified by

DC bias. To achieve the same force at the resonant frequency with the first and third

methods requires

A2
1 = VbiasA2. (2.19)

If a 10 V bias and a 100 mV drive is needed with the third method, a ≈3.2 V AC

signal is required with the first method, which is 32 times larger. This means that

the same signal generator can apply much larger forces with the third method and

this extends the range over which the rate and quadrature controls in Sections 4.2,

5.2 can control the gyroscope.

38

2.2.3 Control Electronics

The central hardware for the proposed system is a USRP1 which is conceptually

illustrated in Figure 2.10. The USRP1 connects to a computer via USB and has four

64MS/s 12bit ADC, four 128MS/s DAC, and an Actel Cyclone FPGA. The standard

FPGA image implements decimating filters and can support up to 8MS/s across the

USB bus. Daughter-boards plug in to the transmit and receive ports of the USRP1

to provide the analog interface. We have mostly used LFTX and LFRX daughter

boards (also available at [33]) as the interface. The boards provide a single-ended

interface to each ADC and DAC. The hardware imposed limits are summarized in

Table 2.1. Delay due to the USB bus and buffering is the most significant limitation,

especially for control.

The limitations of the USRP are also important to consider when designing the

analog front-end to maximize performance. The ADC on the USRP is 12 bits, but

this signal is decimated and filtered by at least a factor of 16 giving 14 effective bits

[44], and for this work a decimation of 128 is used, giving 16 effective bits inside the

FPGA. The full scale range of the USRP is 2Vpp, so the least significant bit (LSB) with

16 bits is ≈ 61µV . The noise of the amplifiers in the USRP are lower than this and

a quiet USRP will simply read zero. To avoid this digitization limiting performance,

the signal should be amplified so that the sense amplifier noise or mechanical noise

is close to the LSB. With a 1 MΩ transipedance amplifier, the sense amplifier noise

is generally dominated by the resistor and is ≈ 0.13µV/
√
Hz leading to an optimal

gain of around 500. The USRP has a variable gain amplifier that can provide up to

20 dBV (10x) of gain, so the external electronics should have a gain of 50. In the test

setup used for this experiment however, the rate chamber also adds significant noise

and large voltage spikes. To reduce the effect of these, the gyroscope was driven so

that the output signal was close to the limit of 2Vpp with an external gain of only 10.

The USRP may be increasing the ARW by a factor of five for a gyroscope dominated

39

Table 2.1: USRP Hardware Summary
Sense ADC 12b, 64MS/s Drive DAC 16b, 128MS/s

LFRX Range ±1V , 30MHz LFTX Drive ±3V
Bandwidth 4MHz Software Delay 10ms±2ms

Table 2.2: Gyroscope limitations due to USRP hardware.
Modes PLL Loop Delay Control Delay Logic Resources Max f0 Min Q/πf

FPGA 2 µs 2 µs 12,000 LUT 2 MHz 20 µs

Hybrid 2 µs 10 ms Ũnlimited 2 MHz 100 ms

by electrical noise.

The control system is agnostic of the sense amplifiers and detection method except

for the phase shift introduced by the sense amplifiers and whether the sense signals

are in-phase with the gyroscope vibration displacement or velocity. Voltage sensing

methods such as in [24] or charge amplifiers [10] produce an output signal in-phase

with the vibration displacement. Current sensing mechanisms as used in [34] create an

output signal in-phase with the vibration velocity. To account for this difference, it is

only necessary to change the sign of the gains in the various control loops. The analog

interface used for the experimental results presented here is illustrated in Figure 2.9.

The circuits consist of differential drive amplifiers, transimpedance amplifiers (TIA)

to convert the current of the varying capacitor to a voltage, and a second set of

amplifiers to boost the signal. Differential sensing is very important to reduce feed-

through of the drive signals due to parasitic capacitance, reject common-mode noise

introduced by the rate-table slip rings and reject 60 Hz noise and harmonics. The

TIA amplifier sensing method is used because it provides a virtual ground making it

insensitive to parasitic capacitance at the sense nodes.

The choice of control electronics limits the selection of gyroscopes which can be

controlled with the systems presented in Section 4.2 and Section 5.6. Table 2.2 sum-

marizes the gyroscope resonator requirements due to the sampling rates and delays

of the controls when implemented in the FPGA or in software.

40

LINUX

Actel Cyclone FPGA

IO

IO

LF-RX

IO

IO

AD9862
CODEC

LF-TX

TX Buffer

RX Chain
DDC
Decimate
Filter

Cypress MCU

USB TX FIFO

RX FIFO RX Buffer

TX Chain
DUC
Interpolate
Filter

AD9862
CODEC

AD9862
CODEC

I2C

FPGA Settings Registers
AUX DACs
AUX ADCs
Spare pins on LF boards

U
S
B

Figure 2.10:
Diagram of software defined radio hardware. The USRP1 from Ettus
Research was used for some digital signal processing and to link the
analog interface to the computer.

41

Figure 2.11:
SEM of a CING gyroscope. A CING gyroscope was used for testing the
rate control system. The CING is an axisymetric gyroscope with 3 kHz
and 18 kHz versions with a quality factor of several tens of thousands.

2.3 CING gyroscope

Most testing of the control system was performed with a single-crystal-silicon

Cylindrical Rate-Integrating Gyroscope (CING) gyroscope. The CING is fabricated

using an silicon on glass (SOG) process which is described in detail in [34] and [35].

The CING is made of a silicon wafer aligned on the (111) plane and operates at the

fundamental flexural (wineglass) mode. There are two versions of the CING which

operate at 18kHz (radius: 2.5 mm, height:300 µm, Q≈60,000) and 3 kHz (radius:6

mm, height:300 µm, Q≈100,000) respectively. Their resonance frequencies can be

electronically matched within a fraction of their 3dB bandwidths.

Although the performance of the CING gyro suffers because of a small angular

gain, the large quality factors help balance this effect to create a moderate perfor-

mance gyroscope.

42

2.4 Error Parameters

The simplest way to write the output signal of a rate gyroscope is

Ω̂ = Sf (Ω + Ω0) (2.20)

where Ω̂ is the output signal, Sf is the scale factor, Ω is the applied rate and Ω0 is the

Zero-rate offset (ZRO). The ZRO is the measured rate when no rate is applied and, if

it is constant, can be removed by simple calibration. Typically the ZRO is relatively

stable while the gyroscope is powered on, but has large variations between power-

ups. The noise in the measurement signal, stability of the scale factor, and stability

of the ZRO are all very important to the gyroscope performance and contribute to

different components of the noise spectrum. The noise model used here follows a

standard developed for rate-laser gyroscope (RLG) [36], but is commonly used for

MEMS gyroscopes as well.

Gyroscope noise is commonly broken down as quantization or rate environment

noise, ARW, bias stability, and RRW. The different noise types are characterized by

frequency dependency, which affects the behavior of the noise as the signal is inte-

grated or averaged. Correlated noise and interfering signals are also important error

sources. ARW is white noise in the rate which when integrated creates uncertainty

in the angle which increases with the square-root of the integration time. The noise

is usually given in units of ◦/s/
√
Hz or ◦/

√
Hr. This noise is most important over

short time spans, usually a few seconds or minutes in MEMS gyroscopes, although it

can be several hours in high-end inertial grade gyroscopes [4]. Bias stability is due to

1/f noise in the electronics and short term variation in the ZRO. When integrated,

it creates uncertainty in the angle which grows linearly with time. The units are

typically ◦/s or ◦/Hr. Stability of MEMS gyroscopes is frequently poor and so bias

stability is tracked as the primary metric for how MEMS gyroscopes are improving

43

Figure 2.12:
Allan variance plot showing the different noise types and their slopes
when plotted as a log-log plot. From [36], The horizontal axis is the
averaging time and the vertical axis is the standard deviation of the rate
signal when averaged for the averaging time.

with time. RRW is characteristic of long-term drift in the ZRO. This can be due to

changes in the mechanical stress shifting the offset, charging of the bias voltage capac-

itance, temperature drift, or other factors. RRW creates uncertainty in the measured

rotation angle which grows with time squared and for high many gyroscopes it is

what actually limits long term performance.

The Allan variance plot is one method of visualizing and extracting these various

error sources [36], which is illustrated in Figure 2.12. Each noise source is identified

by a different section of the Allan variance plot with a characteristic slope. The ARW

slope is −1/2 and the bias stability is the flat section.

Allan variance is provided by a number of statistical software tools. It is calculated

according to the formula

σ(τ)2 =
1

2N

N∑
k=1

(Ω̄k+1 − Ω̄k)
2 (2.21)

44

where τ is the averaging time, Ω̄ indicates the average over time τ so that Ω̄k is the

average rate over the kth time period τ , and N is the number of periods of duration

τ in the data set to be analyzed. Normally, τ for which N < 9 are discarded. The

Allan Variance used in this work is calculate using Python and scipy [37] using the

function

from scipy import array , unique , zeros , mean , log10 , logspace

def avar(omega , fq , pts =1000 , minbin =9):

’’’ omega is the rate data , fq is the sample rate , pts is the

maximum number of Allan Variance points to calculate and

minbin is the minimum number of data points for each Allan

Variance point. ’’’

taus = logspace(0, log10(len(omega)/minbin),pts)

taus = array(unique ([int(t) for t in taus]))

av = zeros(len(taus))

for it ,tau in enumerate(taus):

nbins = len(omega)/tau

bins = omega [:nbins*tau] # ensure all bins are equal size

bins.shape = (nbins , tau)

bar_omega = bins.mean(axis =1)

av[it] = mean((bar_omega [1:]- bar_omega [:1]) **2)/2

return taus/fq, av

The Allan variance description of noise is not the only way of considering gy-

roscope noise and there are a number of proposed replacements and augmentations

of Allan Variance [38–40], but the Allan variance method is still the standard. For

rate-integrating gyroscopes, noise analysis is less well defined and some methods of

translating rate-integrating performance into effective rate noises are presented in

Section 5.4.

If the modes of a gyroscope are matched, the Coriolis force as at the resonance

frequency of the gyroscope rate-sense axis and in phase with the velocity, which means

the displacement on the drive axis and the displacement on the rate-sense axis due to

45

the Coriolis Force are in phase. If the gyroscope is not mode matched, the rate-sense

axis is driven off-resonance leading to a ≈90° phase shift between the drive and rate-

sense axis displacements. Quadrature error is the component of the displacement on

the rate-sense axis that is out of phase with the displacement caused by the rotation

rate. This means that for mode-matched gyroscopes, the quadrature error is out-

of-phase with the drive signal and for non-mode-matched gyroscopes the quadrature

error is in-phase with the drive signal. Quadrature error in a mode-matched gyroscope

indicates that the modes are not perfectly matched and so mode-matched gyroscope

control systems often use quadrature error in a control loop to tune the gyroscope to

remove frequency mismatch.

Bandwidth in a mode-matched gyroscope can also be looked at as the effective

mismatch of the gyroscope due to the time varying rate. The AC component of the

rate modulates the Coriolis force and shifts it away from the drive axis frequency. This

is turn causes the rate-sense axis to be driven off resonance. The 3dB bandwidth of

the gyroscope rate response is therefore equal to the 3dB bandwidth of the rate-sense

axis resonance peak. One way to improve the bandwidth is to mismatch the modes so

that the Coriolis force is applied to a less steep part of the rate-sense axis frequency

response curve. Another method is to create a gyroscope with lower damping on

the rate-sense axis. However, both of these methods reduce the sensitivity of the

gyroscope.

2.5 Summary

In this chapter, the principles of CVG were presented as well as the hardware

platform, electronics, and specific MEMS gyroscope used in the rest of this work.

The electronics were chosen for their compatibility with a wide range of devices and

relative insensitivity to parasitic capacitance. Although lower noise electronics are

possible, the purpose of this work is to explore the system level aspects of gyroscope

46

performance. The parameters used to describe gyroscope performance such as ARW,

bias stability, bandwidth, and quadrature error were also presented.

47

CHAPTER III

Characterization and Compensation

We propose a system for resonant inertial sensor characterization and control us-

ing commercial SDR hardware (a USRP1) [33] as the analog/digital interface and

a mixture of software and firmware for digital signal processing and sensor control.

This system allows labs to evaluate their devices without onerous investment in test

equipment, provides a more integrated environment for sensor test and control, and

provides a framework for the development of new gyroscope control algorithms. The

integration of multiple test functions and multiple test channels in a single system

greatly reduces test time and errors due to re-cabling or not having the right equip-

ment. The system is not intended to be a better network analyzer or real-time spec-

trum analyzer than expensive dedicated hardware, but to perform all of the functions

required for high-Q, low-frequency resonator characterization in one inexpensive, flex-

ible, and easy to use package. Performance, and cost, could be increased by moving

the system to a platform with a dedicated digital signal processor, or the algorithms

developed here could be moved to an ASIC for inclusion in commercial products. The

resonant devices used in this work are MEMS gyroscopes, yet the applications extend

to resonant accelerometers and other resonant sensors.

The control and characterization software is built upon the open source GnuRadio

[41] framework and offers a powerful user interface. For characterization, we have

48

Sense A

Drive B
Drive A

Sense B

USRP
LFRX+LFTX

daughter-
boards

64MS/s RX
128MS/s TX
Decimated to
8MS/s or less

GnuRadio

Gain-phas

Oscilloscope
Ringdown
analysis

Real-time
spectrum

Custom Processing

Frequency, amplitude, waveform, channel and tool selection

Text for cursors, markers,
and derived parameters

TIA

TIA

Optional Buffers

Interactive plot with zoom,
persistence and differential

markers

Figure 3.1:
Diagram of the Universal Resonator Analysis Tool (URAT). URAT com-
bines gain-phase analysis, real-time spectrum analysis, pulse generation,
and ring down testing.

implemented software called the Universal Resonator Analysis Tool (URAT), Figure

3.1. URAT can operate simultaneously on two channels in swept-frequency gain-

phase analysis, real-time spectral analysis with band-limited pulse generation and

ring-down analysis modes. Dual channel operation is especially important for coupled

resonator devices such as vibratory MEMS gyroscopes. The same hardware, without

any recabling, also performs control functions for inertial sensing, in Chapters IV and

V.

The sensitivity and performance of MEMS resonant sensors is directly linked to the

quality factor and frequency of the resonator. In gyroscopes for instance, sensitivity

can be increased by matching the resonant frequencies of the drive and rate-sense

axes so that the sensitivity S is

S ∝ Ag
Q

πf
= Agτ

where Ag is the mechanical gain, Q is the quality factor, f is the resonator frequency

and τ is the damping time constant. Characterization and tuning of these resonators

49

−25

−20

−15

−10

−5

0

N
or

m
.

G
ai

n
(d

B
V

)
10 20 30 40 50

Frequency (Hz) +1.747×104

0
50

100
150
200
250
300
350

P
ha

se
(◦

)

Figure 3.2:
Gain-phase analysis result with frequency swept too quickly. There is
interference between oscillations from tested frequencies which are still
decaying and the current frequency, resulting in a distorted peak. This
makes it difficult to characterize the peak or identify closely spaced peaks.

presents several special challenges. Because the bandwidth f/Q is small, long sam-

pling times are required to provide sufficient resolution with real-time spectrum tech-

niques. For swept-frequency characterization, drive times significantly longer than the

damping time constant Q/πf are necessary to avoid distorting the peaks as shown in

Figure 3.2.

3.1 Universal Resonator Analysis Tool

The Universal Resonator Analysis Tool (URAT), Figure 3.1, was developed to

address several challenges of testing high-Q, low-frequency gyroscopes with a limited

budget. The most important limitation of available resonator analysis hardware is

that most are single channel, while the gyroscopes are effectively two coupled res-

onators that need to be characterized simultaneously. For instance, to characterize

the frequency mismatch of the gyroscope, the normal procedure is to drive the gyro-

scope under test with an off-axis electrode and try to sense both modes on a single

sense electrode. Another method is to rely on the cross-axis coupling of the gyro-

scope to produce both modes on one sense electrode. These methods require different

drive and sense configurations for resonance characterization and rate measurement

50

or limit a tuning methods ability to cancel cross-axis coupling before attempting to

match the mode frequencies. URAT with a USRP can drive and sense two channels

simultaneously which allows simultaneous measurement of multiple axes and reduces

measurement time.

A second limitation of commercial test equipment is that it tends to be single pur-

pose. One set of equipment is used for slow swept-frequency measurements, another

for real-time spectrum analysis, and a another setup for ring-down analysis. URAT

performs all of these functions with the same hardware and software interface, and

can be switched between functions using a menu. Rapid identification of peaks can

be done using the impulse-RTS tool, and then the software switched to ring-down

mode to check the damping time-constant of the peaks.

Lastly, resonator characterization equipment available on the market is too ex-

pensive to have multiples of each tool. The hardware used for the URAT is available

commercially for under $1000 and the software can be installed to a USB drive to turn

any computer into a powerful resonator characterization tool. A brief summary of

some commercial tools available is given in Table 3.1. The performance of URAT at

low frequencies, below 1MHz, is similar to the commercial tools but more convenient

and at much lower cost. Very few gyroscopes are designed to work at frequencies over

1MHz, and most operate from 1kHz to 100kHz. With some redesign, such as moving

the mixing of signals to the FPGA, URAT could be expanded up to about 32MHz.

Operation at even higher frequencies would require a change in the SDR hardware or

a more sophisticated analog front-end.

URAT implements four different tools, swept-frequency gain-phase analysis (Sec-

tion 3.1.1), real-time spectral analysis (Section 3.1.2), ringdown analysis Section

(3.1.3), and an oscilloscope mode for checking signal quality. To highlight the ca-

pabilities of the URAT tool, an automatic mode tuning algorithm has been imple-

mented and is described in Section 3.2. The URAT tool consists of a common user

51

Table 3.1: Comparison of Resonator Analysis Tools
URAT E5061BEP-NZA RSA5103A

(this work) [42] [43]
Function Gain-Phase, Gain-Phase, RTS,

RTS, ring-down Imped., S-Param Transient
Frequencies ≈DC-1MHz 5Hz-30MHz 1Hz-3GHz
GP Ports 2+ 1 1

Sweep Up, down, impulse Up External
Cost < $1000 >$35,000 >$30,000

interface for all of the applications, custom back end blocks that implement the var-

ious functions, and some analysis code to calculate the quality factor and mismatch

characteristics of coupled resonators.

3.1.1 Swept-frequency Gain-Phase Analysis

Swept-frequency gain-phase analysis is basically a lock-in amplifier which sweeps

the source frequency and records both the amplitude and relative phase of the re-

ceived signal. It is implemented in URAT as shown in Figure 3.3. A software block

generates an IQ (cosine and sine) reference signal and a test signal of a user selected

waveform. The test signal frequency can be an arbitrary multiple of the reference sig-

nal frequency for testing non-linear devices. Waveforms which have been implemented

include sine (both outputs in-phase), IQ (90° out of phase), differential (180° out of

phase), triangle, and saw-tooth along with other custom waveforms for testing various

driving schemes. Currently, the two output channels always have the same amplitude

but either can be disabled from the URAT interface. The waveform is constructed

in software at an intermediate sampling frequency (typically 500 kS/s, and up to 4

MS/s) and then is transferred to the USRP via USB where it is interpolated to 64

MS/s and transmitted to the CODEC where an additional interpolation brings the fi-

nal signal rate to 128 MS/s. For capacitively driven resonators, the raw output of the

USRP with an LFTX is generally sufficient and it can be around 3Vpp. Additional

52

Software
Waveform
Generator

Waveform Selector:
Sine/Sine, Sine/Cosine
abs(Sine), Sawtooth,
Square wave, Etc ...

I/Q
ref

Demod
Rx I=I ref×Rx
RxQ=Qref×Rx

Gain-Phase

∣A∣=2√Rx I
2+RxQ

2

∢A=tan−1
(RxQ , Rx I)

 ADC

DAC

GUI

USRP

FIR LPF

Custom Block GnuRadio Block

Figure 3.3:
Diagram of gain-phase analyzer. Gain-phase analysis is appropriate for
resonators with medium or short damping times. The drive frequency is
swept over a defined range and the sense signals are demodulated at the
drive frequency to determine the gain and relative phase.

external drivers can be added to boost the signal or generate multiple differential

drive signals.

On the receive side, the signal is sampled by dual 64 MS/s 12 bit ADCs. For

capacitively sensed resonators, it is generally necessary to include some external sig-

nal conditioning circuit, such as a transimpedance amplifier as in Figure 2.9. The

maximum input signal is 2Vpp with programmable gain from 0 to 20 dB. With 20 dB

gain the maximum input is then 200 mVpp. In the USRP, the signal is decimated by

a programmable amount, typically to 500 kS/s for our applications, and transferred

by USB to the host computer. The signal interpolation, decimation and filtering in

the USRP are all standard functions of the USRP.

In the URAT software, the signal from each channel is multiplied by the sine and

cosine references and then decimated and filtered. The resulting baseband I,Q signals

are then used to calculate the relative gain and phase of the two channels. The gain

53

Table 3.2: URAT input and output amplitude mismatch.
Input Rx Gain Mismatch Output Tx Gain Mismatch
mV dBV dBV mV dBV dBV

50 0 0.03 850 -6 .18
50 6 0.10 600 -9 .33
50 12 0.13 425 -12 .37
50 20 0.12
100 20 0.10

and phase are calculated according to

|H(f)| = 2
√
I × I +Q×Q/A Gain

]H(f) = arctan(Q/I) Phase
(3.1)

where A is the output amplitude and arctan is implemented as an extended arctangent

to generate signals between 0° and 360°. The gain and phase are averaged over a

period set in the user interface which is also the amount of time the drive signal

is applied. For devices with large damping times, this may be several seconds in

order to clearly resolve the peak. The current system is very good at determining

the relative gain and phase over frequency and between the two sense channels. The

amplitude matching is summarized in Table 3.2. The best input mismatch is with 0

dBV RX gain, and is below 0.15 dBV for all measured combinations. This mismatch

was measured by feeding the same signal to the front-end and reflects the mismatch

in the daughter-board and ADC. The output mismatch is slightly larger, but still

below 0.4 dBV.

The main limitations of the current system are the lack of a calibration step or an

external reference signal. The phase of H(f) is a function of the delay in the system

which, because of the implementation of the USB buffers in software and USRP, can

change occasionally. A calibration step would allow the delay to be measured and

the phase measurement corrected, but since the delay can change, calibrations would

have to be performed frequently. With an external reference signal, feeding the output

54

Table 3.3: URAT gain-phase analysis compared to HP4194A
HP4194A URAT

Mode Drive, f0 Q Gain f0 Q Gain
Sense kHz dBV kHz dBV

1 1,1 20.6605 45.6 0 20.6603 45.1 0
1 1,2 20.6603 55.2 -3.5 20.6603 53.1 -3.3
1 2,1 20.6604 58.9 -5.1 20.6603 52.5 -4.9
1 2,2 20.6603 56.6 -7.9 20.6603 58.9 -8.1
2 1,1 20.6978 28.9 -10.8 20.6972 18.7 -11.2
2 1,2 20.6978 49.4 -5.8 20.6973 45.0 -6.4
2 2,1 20.6976 46.7 -6.6 20.6972 41.1 -6.5
2 2,2 20.6977 48.7 0.4 20.6973 47.0 0.5

back to a reference input, the phase and amplitude could be determined absolutely

and reliably. Since we are currently using only two of the four ADCs and DACs of

the USRP1 this is a possibility if future applications require it.

To evaluate the accuracy of the URAT gain-phase anaylsis tool, we compared it

with an HP4194a operating in gain-phase mode, the results of which are in Table 3.3.

The measurement was on a ≈20 kHz gyro with ≈40 Hz frequency split between the

mode peaks. The device was tested with all four combinations of drive and rate-sense

axes for each mode. These 8 measurements took approximately 40 minutes with the

HP4194a since the cabling needed to be changed for each measurement, and less than

4 minutes with the URAT since only 2 measurements were required for each peak and

no cables needed to be changed. The shorter test time with the URAT may explain

the reduced variation in the resonance frequencies.

3.1.2 Impulse Generator and Spectrum Analysis

The second URAT tool is a real-time spectrum analyzer with a band-limited

impulse generator (impulseRTS) illustrated in Figure 3.4. The impulse generator

generates the desired test signal in the frequency domain with power only in the

frequencies of interest, and then generates the time domain signal by applying an

55

Buffer
Gain-Phase

∣A∣=∣G [f s : f e]/a∣
∢A=tan−1

(G [f s : f e])

 ADC

DAC

GUI

USRP

Custom Block GnuRadio Block

Software
Impulse
Generator ff s f e

a
IFFT

Buffer

FFT

G(f)=F {H (x(t))}

Figure 3.4:
Diagram of real-time spectrum analyzer with impulse generator. Real-
time spectrum analysis is most useful for quickly analyzing a moderate
bandwidth. Band-limited pulses are generated to excite the resonator in
the region of interest.

inverse Fourier transform. The FFT and IFFT are both from the SciPy [37] library.

The time domain signal is transferred to the USRP and, since the drive and sense

time windows will not align exactly, repeats until the required sampling time for the

specified frequency resolution has expired.

The response is sampled as in Section 3.1.1 and then processed on the host com-

puter where the FFT is taken of the whole signal and then the gain and phase are

calculated for only the frequencies which were non-zero in the source spectrum. The

gain and phase are calculated according to

G =
fft(Rx× window)

N

|H(f)| =

√< [G[fs : fe]×G[fs : fe]∗]

Gref

Gain

]H(f) = < [angle(G[fs : fe])] Phase

(3.2)

where Rx is the sample signal, fft and angle are functions for the FFT and angle

56

of a complex number from the SciPy library, window is a windowing function which

defaults to a hanning window (also from the SciPy library), fs and fe are the start

and end frequencies, and Gref is the source frequency spectrum magnitude.

The result of testing with the impulseRTS tool for a gyroscope before and after

mode matching is shown in Figure 3.8, and the impulseRTS tool was used for the

automatic tuning as described in Section 3.2. The impulseRTS tool is useful when

looking at a relatively wide bandwidth with moderate frequency resolution, because

it is much faster than the swept-frequency tools. Also, because it tests all frequencies

simultaneously, peaks with long damping times do not obscure other peaks as is the

case with the swept-frequency tools and so closely spaced high-Q peaks can be clearly

identified.

The frequency resolution in an FFT is limited by the sampling time, which in

the current implementation is limited by the system memory. Since we are usually

interested in only a small part of the bandwidth, other Fourier transform techniques,

such as zoom-FFT or sparse-FFT, could reduce the processing time and improve

the frequency resolution, which is currently limited to about 50 mHz. The impulse

generator is good for devices which have long damping times (0.1 s or more), which is

typical of high-Q, low-frequency MEMS. These devices will have good signal to noise

ratio. For devices with lower damping times, a chirp signal would be better since

the maximum energy at each frequency is higher and the signal will decay within

the measurement window even if the resonant frequency is close to the end of the

chirp. Both chirp and simple averaging have been implemented as options and are

especially useful when working with a Laser Doppler Vibrometry (LDV) which can

have poor SNR. Complex averaging requires a reference signal which is not currently

implemented.

Figure 3.5 shows the frequency response of a resonator with an n=3 elliptical

mode around 325.6 kHz with a 200 Hz mode-split. Eleven averages were used in this

57

0.05 0.10 0.15 0.20 0.25 0.30 0.35
+3.253e2

55

50

45

40

35

Ga
in

 (d
BV

)

0.05 0.10 0.15 0.20 0.25 0.30
Frequency (kHz) +3.253e2

150
100

50
0

50
100
150

Ph
as

e
(d

eg
)

Figure 3.5:
Plot of impulse testing of a high frequency resonator. The use of impulse
testing significantly reduces the effect of feed-through which is especially
significant at higher frequencies.

measurement with 1Hz resolution resulting in the entire 700Hz measurement taking

about 12 seconds.

3.1.3 Ringdown Test Tool

Ring-down time is defined as the time required for the oscillation of a resonator

to decay from A0 to A0/e and is equivalent to the damping time constant τ . The

ring-down analysis tool is for measuring the ring-down time of resonators where the

ring-down time ranges from a fraction of a second to hundreds of seconds. The drive

signal generation and signal sampling are identical to that described in Section 3.1.1,

however the received signal is feed to a software PLL which generates I,Q reference

signals which are used to demodulate the received signal and calculate the gain.

After a predetermined amount of time, which should be several times longer than

the damping time, the drive signal is disabled and the resonator begins to ring down.

58

Software
Waveform
Generator

Waveform Selector:
Sine/Sine, Sine/Cosine
abs(Sine), Sawtooth,
Square wave, Etc ...

I/Q ref

PLL

Ring-down

∣A∣=2√Rx I
2+RxQ

2

τ≈n×f s : An=A0 /e
τ= fit (t , log (A [n−f s :n]))

 ADC

DAC

GUI
USRP

FIR LPF

Custom Block GnuRadio Block

Demod
Rx I=I ref×Rx
RxQ=Qref×Rx

Ring-down
Timer

Figure 3.6:
Diagram of ring-down analyzer. Ring-down analysis is appropriate for
devices with long damping times. A drive signal is applied for a set
amount of time and then removed. A PLL locks on to the sense signal
and ensures that it is demodulated in-phase even if the frequency shifts
during ring-down.

Since the drive signal is not at exactly the resonance frequency, the frequency of

the resonator may drift during ring down which is why the PLL is used instead of

reference signals from the waveform generator.

The damping time constant is initially approximated by the time required for the

signal amplitude to decay to the initial signal amplitude over e. Once the signal

has decayed, the software waits for a configurable additional delay and then fits an

exponential decay function to the middle of the ring-down curve, as in Figure 3.7.

The frequency of the ring down is swept because the quality of the fit depends

on the SNR of the signal which will vary considerably with even small offsets from

the resonance frequency for high-Q resonators. Also, for nearly-matched coupled

resonators, the peaks may be very close but not quite identical. Closed loop self

resonance circuits or fixed frequency tests would have difficulty distinguishing the

peaks.

59

0 2 4 6 8 10
Time (s)

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

G
ai

n

τ = 9.5s

τ = 7.7s

Ch 0
Fit 0
Ch 1
Fit 1

Figure 3.7:
Plot of ring-down of a mode-matched CING gyro. The exponential decay
fit is overlayed on top of the decay curves. Each curve is the normalized
envelope of the received signal at the test frequency, which is recovered
by demodulating the signal.

60

3.2 Automatic Mode Matching

Mode matching (matching the rate-sense and drive axes resonance frequencies)

improves the sensitivity of rate gyroscopes and allows operation in rate-integrating

mode. Several real-time methods of mode matching [21, 26] have been presented

which are suitable when the initial mismatch and cross-coupling are small. In URAT

we have implemented automatic mode tuning meant to provide a ’coarse’ tuning that

will provide the starting point for dynamic mode matching techniques for use during

gyroscope operation. The automatic tuning of the CING is based on the analysis in

[25], where they give an equation for the spring softening due to arc shaped electrodes

around a ring. Other tuning electrode schemes can be implemented by replacing the

stiffness matrix model. The equations for the spring-softening matrix as used in this

work are given in Equation 3.3, where ε0 is the vacuum permittivity, a is the electrode

radius, d is the electrode height electrode area and h0 is the electrode gap, ψ is the

electrode position in radians, and α is the electrode width in radians. The tuning

electrodes for the CING are under the CING rather than around it, however this is

expected to only effect Ck, which is determined experimentally. The reliability and

speed of the algorithm depends on the ability of the software to accurately determine

the mismatch parameters.

Ck =
ε0ad

2h3
0

[K] = CkV
2
i ×

 2α +
1

n
cos 2nψ sin 2nα

1

n
sin 2nψ

1

n
sin 2nψ 2α− 1

n
cos 2nψ sin 2nα

(3.3)

The gyroscope is scanned using one of the analysis tools, usually the impulseRTS

tool (Section 3.1.2) but the gain-phase analyzer also works, and the mismatch pa-

61

rameters are modeled as spring constants which are calculated as

[K] =

 k + ∆k/2 kxy

kyx k −∆k/2

k = (2π

f1 + f0

2
)2

∆k = 4π2(f1 − f0)
f1 + f0

2

kxy = sk2∆kmax[H0(f1)/H1(f1), H1(f0)/H0(f0)]

sk =

 −1, if (φ0(f0)− φ1(f0)) > π/4

1, otherwise

(3.4)

where f0 and f1 are the frequencies of the the peaks of each mode and Hn(f) is the

gain of channel n at frequency f . In this model, everything is actually a frequency

mismatch and whether the source is stiffness or mass anisotropy is not considered.

In order to get matching better than the minimum resolution of the impulse-RTS

tool, the peak frequencies are calculated using an amplitude weighted average of

the FFT bins around the bin with the peak rather than just the index of the bin

with maximum signal. It is also important to implement an algorithm that reliably

identifies the peaks when they are closely spaced.

An initial guess of Ck is used to calculate a cross tuning voltage to cancel the kxy

terms and then the gyro is scanned again. The actual Ck is then calculated from the

change in the measured mismatch and the change in the electrical spring model as

[∆Kmeas] =

 ∆k/2 kxy

kxy −∆k/2

[∆Kel] = Kel,prev −Kel,new

A = [∆Kmeas][∆K
−1
el]

Ck = tr(A)/2

(3.5)

62

where Kel,prev is the electrical spring model with the previous tuning voltages and

Kel,new with the new tuning voltages, and tr is the trace of the matrix. If the tuning

is in a linear regime, A will be the identify matrix times Ck. Error in the measurement

and non-linearity however create off-axis terms. The relative size of these terms is a

measure of the quality of the estimate of Ck. To avoid having the tuning fail due to

erroneous values of Ck, the update of Ck can be performed as

g = 1− tr(AT)/tr(A)

Ck =

 g2tr(A)/2 + (1− g)2Ck−, if g > 0

Ck−, otherwise

(3.6)

where g is the ’goodness’ of the prediction and Ck− is the previous value of Ck.

If kxy/k is larger than a configurable threshold, a new cross tuning voltage is

chosen based on the new estimate of Ck. This processes is iterated until the threshold

is passed and then the algorithm tunes ∆k/k until the frequency mismatch threshold

is passed. The process is then repeated again for kxy and ∆k with lower thresholds.

A typical tuning run for a 3kHz gyro with a damping time of several seconds will

take a few minutes, 6-10 steps, and tune the frequency mismatch to a few tens of

mHz. The spectrum before and after for a CING gyro are shown in Figure 3.8. With

this automatic tuning procedure, the drift in the tuning voltages over time is easily

observed as in Figure 3.9.

The algorithm still has some weaknesses. The measured ∆k and kxy versus tuning

voltage are plotted in Figure 3.10 and Ck is related to the slope of the curves. If the

gyro is over-tuned, meaning too large of tuning biases are applied, the mechanical

and electrical spring constants are no longer linear and the calculations for Ck can

produce erroneous values. Also, damping mismatch will influence the calculation for

kxy and for gyros with large damping mismatch it can be difficult for the auto-tuning

to work reliably. Ideally Ck would be constant, however there is variation, especially

63

2650 2660 2670 2680 2690 2700 2710 2720

−140

−120

−100

−80

−60

−40

−20

∆f = −41.8Hz

∆f = 31.7mHz Ch 1
Ch 2
Ch 1
Ch 2

Figure 3.8:
Plot of the initial and final spectrum of an automatically mode-matched
CING gyroscope. The mode matching took 6 steps and generally takes
about 3 minutes for the lower frequency gyroscopes.

0 20 40 60 80 100
Time (Hr)

120

140

160

180

200

220

240

260

280

Tu
ni

ng
B

ia
s

(V
2
)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y
M

is
m

at
ch

(∆
f
H
z
)V 2

f

V 2
x

∆f

Figure 3.9:
Drift in required tuning voltage for a CING over time. The CING gyro
has a large drift in required tuning voltages for matched conditions which
eventually settle. This is easily tracked using the automatic mode match-
ing algorithm. In the above plot, the gyroscope was retuned 9 times over
4 days. If the tuning voltages are removed, the process will reverse and
over time the required tuning voltages will move back up the curve.

64

195 200 205 210 215 220 225
Cross Tuning Bias (V 2)

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
ro

ss
C

ou
pl

in
g

(
k
x
y

N
/µ
m

)

kxy

Ck = 1.52e+ 04

Figure 3.10:
Cross-coupling versus tuning voltage. Initially the cross coupling is neg-
ative. As the tuning bias is increased, the cross coupling becomes non-
linear as it is overtuned. The dashed line is a linear fit of the data
showing the effective Ck is 15,200.

for the cross-tuning terms as shown in Figure 3.11.

3.3 URAT and Laser Doppler Vibrometry

The URAT tool can also be used for non-electrical testing. LDV is an optical

method to detect the velocity of a structure from the shift in the frequency of reflected

light due to the Doppler effect. The test can be set up as illustrated in Figure 3.12

with the USRP directly driving a small piezo actuator with a small resonator attached

to it. For the actuator used here, the drive signals were only a few millivolts. Larger

signals caused the oscillations to be unstable or would even cause the resonator to

crack. Using URAT for this test provides access to tools for characterizing high-Q

devices which aren’t available in most LDV software packages, such as ring-down

testing. The result of ring-down testing a resonator with a 2 s ringdown time is

shown in Figure 3.13.

65

0 2 4 6 8 10
Tuning Step

20000

25000

30000

35000

40000

45000

50000

55000

C
k

(N
m
/V

2
)

1st Cross-tuning
1st On-axis
2nd Cross-tuning
2nd On-axis

Figure 3.11:
Tuning electrode scaling constant stability. The scaling constant is more
stable for on-axis tuning than off-axis tuning. The damping mismatch
will affect the accuracy with which the off-axis terms are measured which
is probably introducing error in the calculation of Ck.

Figure 3.12:
Setup for using URAT with a laser doppler vibrometer. Using URAT
with a laser doppler vibrometer (LDV) extends the range of devices that
can be characterized and adds special features like ring-down testing
which are not available in most LDV software.

66

Figure 3.13:
Ring-down measured using a laser doppler vibrometer. The signal-to-
noise ratio for this LDV test was poor due to the structure being trans-
parent, but it was still possible to get a reliable result using the ring-down
analysis tool.

67

3.4 Summary

The contributions of the work presented in this chapter are a characterization

system consisting of SDR hardware and software tools, and automatic mode-matching

of MEMS gyroscopes. The URAT software provides gain-phase, impulse and real-time

spectrum, and ring-down tools with performance similar to specialized commercial

tools. These tools are especially well suited to analysis of devices with long damping

times, over 0.1s, or high-Q and low-frequency. Since these tools are in the same

software, it is easy to switch between them depending on the characterization task,

which can greatly decrease test time or errors due to switching equipment. In addition

to standard electrical testing, URAT has also been used with a LDV for testing devices

without electrodes.

68

CHAPTER IV

Rate Gyroscopes

Rate gyroscopes are a class of MEMS gyroscopes where the output is a signal

proportional to the rate of rotation. Most MEMS gyroscopes are rate gyroscopes.

The control system for a rate gyroscope needs to ensure that the amplitude on one

axis, the drive axis, is constant. The second axis, or rate-sense axis, develops motion

due to the Coriolis force, Equation 2.1, which is used to measure the rate of rotation.

4.1 Mechanical Noise

Noise in MEMS gyroscopes can be introduced by the electronics as described in

Section 2.2.1, but there are also mechanical sources of noise which may be more

significant. Mechanical noise is usually presented as Brownian motion [45] and is

analyzed in extensive detail in [46] for both open-loop and closed-loop operation.

The ARW for an open-loop gyroscope is

Ωrw ≈

√
kBTωy

A2mω2
xQy

1

1 + ω2
dτ

2
y

× 3437.7◦/
√
Hr (4.1)

where kB is the Boltzmann constant, T is the temperature, ωy is the sense axis reso-

nant frequency, ωx is the drive axis resonant frequency, ωd is the frequency mismatch

(ωx − ωy)/2, A is the drive axis amplitude, m is the mass of the resonant mode, Qy

69

is the sense axis quality factor, and τy is the sense axis damping time constant or

(2Qy)/ωy. The constant 3437.7 converts the noise from rad/
√
s to ◦/

√
Hr.

The ARW in closed-loop operation is

Ωrw ≈

√
kBTωy

A2Mω2
xQy

(
1 + ω2

dτ
2
y

)× 3437.7◦/
√
Hr (4.2)

which is identical to the equation for the open-loop except for the factor of (1 + ω2
dτ

2)

which is zero if the signals are matched and not significant if the frequency mismatch

is much less than the damping time constant. Although the total rate equivalent noise

(the RMS noise) is larger in the closed-loop mode due to the increased bandwidth,

the integration of the rate to create an angle cancels this effect.

A resonator also has phase noise. One approximation of phase noise is given by

[48]. The demodulated phase noise contributes to 1/f noise in the rate signal which

determines the bias stability of the gyroscope. Phase noise is reduced with a high

quality factor and stable bias voltages.

4.1.1 Feed Through

Drive signals and compensation signals are often much larger than the sense signals

in MEMS gyroscopes. This feed-through is not a noise source, but can disrupt the

phase locking and compensation of the control system. Feed-through is dominated

by parasitic capacitance between the drive and sense nodes and so is phase shifted by

90°. The gyroscope is operated at resonance so that the phase shift is 0°. Drive feed-

through on the drive axis therefore appears as quadrature error and phase error at

the rate and drive sense channels. This error due to feed-through causes the controls

to over or under compensate and therefore results in a non-zero steady state error.

70

0°
90°

90°

0°

90°

0°

PID+
–
Amplitude Set Point

0°

PID Σ

+
+

90°

PID

PID

S
x

C
x

C
y

S
y

ϕ

I
x
 : amplitude

control

I
y
 : rate control

Q
y
 : quad control

ẋ

ẏ

f

0°

I
x

Q
y

I
y

Figure 4.1:
Diagram of rate gyroscope control with rate and quadrature feedback.
The rate gyroscope control implemented in this work consists of the blocks
shown here, similar to what is proposed in [17]. It is assumed that sense
signals are proportional to the velocities, but using rate signals instead
only requires changing the sign of the gains in the PIDs. There are paths
for amplitude control, phase tracking, rate control and quadrature control.

4.2 Rate Control

4.2.1 Control Equations

The basic control loops for a MEMS rate gyroscope are amplitude control, phase

control (a PLL), rate or force-feedback control, and quadrature control as illustrated

in Figure 4.1. Strictly speaking, none of these controls are necessary, but by using all

of them it is possible to improve the gyroscope performance. The control is based on

the demodulated sense signals. The details of the demodulation depend on whether

the output of the analog interface is in phase with the oscillation displacement (charge

amplifiers and voltage mode amplifiers), or the oscillation velocity (transimpedance

amplifier and current sensors).

Amplitude control is important for rate gyroscopes because the Coriolis accelera-

tion is proportional to the amplitude of the drive axis. If the gyroscope is driven with

71

0°
90°PLL

0°

Rate

Software

Drive
Axis

Rate
Axis

Analog
PID

Peak
DetectorGain

Control

Figure 4.2:
Diagram of a simple rate gyroscope analog control. The readout can be
analog or digital as drawn here. This control has been implemented using
analog circuits for the peak detector, variable gain amplifier and PID
controller and using the USRP to digitize the signal and extract the rate
information.

a fixed amplitude signal, the drive axis amplitude will settle to a value where either

the drive signal is balanced by the damping or the amplitude non-linearity reaches a

point where the drive is no longer effective. With an open-loop drive however, the

drive amplitude will not be stable, especially under rotation. As the signal grows on

the sense axis, the Coriolis force from the sense to drive axis will act as a damping

force on the drive axis causing the amplitude to change which will in turn affect the

amplitude of the Coriolis force. To keep the amplitude constant, an amplitude control

loop is used. This loop can be analog or digital. A simple analog control for rate

gyroscopes is illustrated in Figure 4.2.

For the amplitude of the oscillation on the drive axis to be constant, the drive force

must equal the damping force and if the gyroscope is driven close to the resonance

frequency the drive signal is then

Vdrive ∝ 2

τ
ẋ =

ω2

Q
x (4.3)

72

50 0 50
Phase (o)

10

8

6

4

2

0

At
te

nu
at

io
n

(d
BV

)

Q=10
Q=100
Q=1000

Figure 4.3:
Resonator attenuation versus phase shift in drive loop. Driving a res-
onator away from the resonance frequency will cause an attenuation of
the resonator gain that is nearly independent of the Q.

To efficiently sustain an oscillation on a resonator, it is necessary to drive it near

the resonant frequency. One way to do this is with a closed-loop where the drive

sense signal is amplified and fed back to the drive axis as in Figure 4.2. This loop will

ensure that the gyroscope operates close to its resonance frequency where the phase

shift is zero. The closed-loop can be either analog or digital, but it is important to

minimize the phase shift to keep the resonator as close to the resonance frequency as

possible, which is easier to do with an analog loop. The relationship between phase

shift and the reduction of the resonator gain is plotted in Figure 4.3. This plot is made

by calculating the gain and phase response of a resonator against frequency and then

plotting the gain versus phase. Note that the reduction in the gain is independent

of the quality factor when the quality factor is large. A small phase shift in the

sustaining loop means the drive signal can be smaller which reduces non-linearity

and feed-through.

A second method of creating a sustaining oscillator loop is with a PLL. In Figure

4.1, the PLL is formed by a demodulator which produces sx which is proportional to

the phase error, a PID which transforms the phase error into a frequency, an accumu-

73

lator which integrates the instantaneous frequency to get the phase and a waveform

generator which outputs in-phase (0°) and quadrature (90°) reference signals. Any

extra phase in the system will cause the same attenuation as in the simple loop con-

trol above. Again, this method can be implemented with analog or digital electronics,

but this approach is better than the sustaining amplifier loop for digital electronics

because a digital PLL and digital filters can adjust the phase on the PLL to cancel

the phase shift due to the filters. A second advantage of the PLL drive is that both

the 0°and 90° reference signals are provided, which is important for the next two

controls. One potential disadvantage of the PLL is that its lock-range may be much

smaller than the start-up range with the simple loop amplifier. It is possible in a

digital system to use a simple loop to start the oscillation and then switch to the

PLL once the oscillation is large enough and the approximate resonance frequency

has been determined.

The third control is a rate or force-feedback control. In Figure 4.2, there is no drive

signal on the rate axis and so the amplitude on the rate axis grows or shrinks as the

rotation rate changes. A signal can be applied to this axis to cancel any oscillation on

it, so that the amplitude is always approximately zero. The amplitude of the control

signal required to cancel the oscillation on the rate axis is then the rate signal. From

Equation 2.2, the signal required to cancel the Coriolis force is

Vrate ∝ 2AgΩẋ. (4.4)

The advantages of rate control are improved bandwidth and linearity of the gyroscope

response. The bandwidth is improved because the effective damping on the rate axis

is increased by the control loop. The linearity is improved because the signal does

not grow large enough to become non-linear. The downside is that the noise in the

sensed rate is then fed back into the rate axis, which increases the noise by
√

2.

74

The fourth control is quadrature control. In a mode-matched gyroscope, the

quadrature control is in phase with the resonator displacement and is used to cancel

the signal at the rate-sense axis that is out-of-phase with the rate signal. Since the

signal is in phase with the displacement, it modifies the resonant frequency of the axis

and can be thought of as forcing the drive and rate axes to have the same resonant

frequency. From Equation 2.2, it can be seen that to modify the resonant frequency

of the rate axis to equal the drive axis (assuming θω = 0), the quadrature signal must

be

Vquad ∝ ω∆ωx. (4.5)

where ω∆ω is defined in [19] as

ω∆ω =
ω2

1 − ω2
2

2
(4.6)

but it is more convenient for analysis to write this is terms of the average resonant

frequency ω̄ and the frequency difference δω as

ω∆ω =
(ω̄ + δω)2 − (ω̄ − δω)2

2
= 2ω̄δω (4.7)

where δω = ω1 − ω2.

The range of rates and frequency mismatch that the rate and quadrature control

can compensate for may be understood by normalizing the voltages required to the

drive voltage. The drive voltage effectiveness is amplified by the quality factor, where

as the rate or quadrature signals are not proportional to the quality factor. The

normalized rate signal is then

Vrate
Vdrive

=
2AgΩẋ

2/τ ẋ
= AgτΩ (4.8)

assuming that the gyroscope is symmetric so that the sense axis and drive axis ca-

75

pacitance is the same. The normalized quadrature signal is

Vquad
Vdrive

=
2ωδωx

xω2/Q
=

2Qδω

ω
= τδω = τπ(f1 − f2). (4.9)

From these equations, the maximum rate and frequency mismatch for a gyroscope

with a given drive amplitude, resonant frequency, damping and angular gain can be

calculated from the voltage limit of the drive circuit. From the analysis in Section

2.2.2, it is clear that the third method where a bias voltage is used along with a drive

voltage at the resonance frequency, gives the largest dynamic range and compensation

capability. From Equations 4.9, the quadrature signal will be large even for relatively

small frequency mismatch. For a 10 kHz ring gyroscope with Ag = 0.3, 1 Hz mismatch

and a quality factor of 100,000, the quadrature compensation signal is 10 times larger

than the drive signal. If the drive signal is 1/10th of the full-scale range, then the

maximum rate for that gyro is 10.5 rad/s or 600◦/s.

4.2.2 Mechanical Requirements

Not all gyroscopes are suitable for the controls presented here. These controls

assume a gyroscope that is nearly mode-matched, so the natural mechanical modes

must have nearly equal frequencies. Also, many gyroscopes only have electrodes to ac-

tuate the drive axis and sense the oscillation on the drive and sense axes. Closed loop

control of the rate requires an electrode to actuate the sense axis as well. Quadrature

control as presented here uses forces applied at the resonance frequency to cancel

frequency mismatch, but the output of the quadrature loop could also be routed to

a DAC controlling a DC voltage on a specially designed quadrature compensation

electrode. Quadrature control is more effective however when combined with closed

loop control of the rate oscillation. Gyroscopes which operate in the wineglass or

n=2 mode, such as the CING, need an extra set of electrodes in order to have enough

76

electrodes for fully differential tuning, driving, and sensing. If the gyroscope operates

at the n=3 mode, such as [49], a single set of electrodes is sufficient since there are six

antinodes for each mode which can support 2 tuning electrodes, 2 actuator electrodes

and 2 sense electrodes).

The controls here are digital and use a digital PLL to construct the drive signal.

The PLL is a finite frequency resolution. If f0/Q for the gyroscope is close to the

frequency resolution, the effective quality factor of the gyroscope will be reduced.

Also, the quality factor of the gyroscope is a factor in the loop gain of the controls.

Since the gains are applied using fixed point math, there is a minimum gain and if the

quality factor is too high this minimum gain may be too high for stable operation.

External attenuation or adjusting the fixed point scaling can address this problem.

4.2.3 Firmware

The same hardware, without any recabling, is used for both characterization and

gyroscope control by changing the firmware and software. Control may either be

implemented within the FPGA of the USRP, or in software with the FPGA imple-

menting a PLL and modulating control signals and demodulating sense signals. Both

of these approaches reduce critical delay in the self-oscillation loop, and the hybrid

control allows advanced controls to be prototyped in software. The FPGA based

control is discussed next and hybrid control is presented in Section 5.6.

4.2.4 FPGA Based Rate Control

The rate control firmware in Figure 4.4 implements a PLL and control loops for

the amplitude, rate-sense axis force feedback, and quadrature compensation. To

allow all of these to fit on the FPGA, one IIR filter and one PID are multiplexed

between each parameter to be controlled. The gyroscope signals are demodulated

using the CORDIC block distributed with GnuRadio and the output of the PLL

77

Control
Pipeline

0°90°

Software

DAC

DAC

ADC

ADC

0°90°

Square Wave
Generator

Σphase

CORDIC

C
x

S
x

C
y

S
y

P
ar

am
et

er
E

xt
ra

ct
io

n

Σ

0°

90°

X
sense

Y
sense

Y
drive

X
drive

D
ec

im
at

e
A

nd
 F

il
te

r GUI

Set IIR &
PID Gains

M
U

X

FPGA

Pipelined
PID

D
el

ay

ΔΣ
Inter-

polator0° Quad
Rate

Ampl.

Phase

Gains

MUX

Pipelined
1st order IIR

I
x

Q
y

I
y

Ф
err

Figure 4.4:
Diagram of rate gyroscope readout and control as implemented in the
FPGA of the USRP1.

phase accumulator. CORDIC is an implementation of complex multiplication using

adders, a full explanation of which can be found in [50]. The output of the two

CORDIC blocks are decimated and filtered to construct the in-phase and out-of-phase

signals for each axis, referred to as Cx, Sx, and Cy, Sy respectively. Cx represents

the drive amplitude and is routed to the PID during the amplitude control step.

Sx is proportional to the phase error of the PLL and is routed the PID during the

phase control step, implementing a phase-locked loop. Cy is the rate signal when

the gyroscope is mode matched and is routed to the PID during the rate (force-

feedback) control step. Sy is the quadrature error signal, which is a function of the

frequency mismatch between the drive and sense modes, and is routed to the PID

during the quadrature compensation step. Each of Cx,Sx,Cy,Sy and the outputs of

the PID during the four steps (Ix,φerr,Iy,Qy) are routed to the USB transfer block

and transmitted to the host computer. φerr, the output of the phase control step, is

also routed to a 32 bit accumulator clocked at the decimated sampling rate, which

is 500 kHz for the data presented here resulting in a frequency control LSB of 0.11

mHz.

78

The control block multiplexes the four gyroscope parameters to a pipeline of a first

order 16 bit IIR filter and PID. The IIR filter and PID blocks each contain a multiplier

and accumulator which are again multiplexed to perform the needed calculations. The

pipeline takes 12 cycles to fully execute and a new value can be introduced every 4

cycles. Because of this, 24 cycles at the master clock rate (0.375µs) are required to

process all of the controls. One output is produced for each input, so the total delay

is one cycle at the decimated sampling rate.

To reduce resource consumption, the PID and filter operate on 16 bit inputs, al-

though the multiplication operations in each block result in 32 bit outputs. Rounding

the signals through a mask operation as

short = long[31:16]

results in an offset in the signal. Positive values smaller than 216 are rounded to 0,

while negative values greater than −216 are rounded to -1. If this rounded signal is

integrated, as in the PID controller, there is trend to negative values. To avoid this

effect, the signals are rounded as

short = long[31:16] + long[15]

which effectively implements rounding. If long is considered to be a floating point

number with 16 bits for the integer and 16 bits for the decimals, long[15] indicates

the 2−1 power, or 0.5. If long[15] is true, the decimal portion must be greater than or

equal to 0.5, and if it is false it is less then 0.5. This rounding results in all negative

values greater than 0xffff0000 being rounded to 0, which removes the bias so that the

integral of the rounded value does not grow when the input is unbiased.

Drive signals are generated by applying a 14bit delta-sigma modulation to the

control signals and then modulating the signals with quadrature +1/-1 square waves.

79

Ix and Iy are modulated with the in-phase square wave, and Qy with the out-of-phase

(90° delayed) square wave. The modulated Iy and Qy signals are then summed and

the result is routed to the Y-axis DAC. The modulated Ix signal is routed to the

X-axis DAC. Using square waves instead of generating sinusoidal signals reduces the

firmware image by 15%, and does not seem to affect performance.

The FPGA also implements a feed-through cancellation (FTC) block. Differential

sensing does not remove all of the drive signal feed-through due mismatch in the de-

vice and amplifiers. This feed-through limits the effectiveness of error compensation

control loops. The characterization suite can measure the feed-through, and then the

FTC block scales the control signals by the provided scale-factors and subtracts that

value from the corresponding demodulated sense signal, accounting for the 90° phase

shift of the feed-through signal. The residual feed-through with low frequency gyro-

scopes is very small and more testing with higher frequency gyroscopes is required to

evaluate the effectiveness of the feed-through compensation.

4.2.5 Square versus Sine Wave Drive

Either a square wave or sine wave can be used to drive the gyroscope. In the rate

mode, there is room in the FPGA for either drive, however to implement multiple

controls in one FPGA, using the square drive greatly reduces the required resources.

To use a square drive signal, it is necessary to use the bias method of applying drive

signals, discussed in Section 2.2.2.

4.3 Rate Gyroscope Experimental Results

Many different gyroscopes are expected to be compatible with the presented con-

trols and we are working on testing more gyroscopes. In order to compare gyroscopes

across control systems, it is useful to define a scale-factor that is dependent only on

the gyroscope. For open-loop operation, the rate can be extracted from rate-sense

80

axis amplitude over the drive axis amplitude [46]

Arate
Adrive

=
cy
cx

= Agτ(Ω + Ωoffset) (4.10)

For closed-loop operation, assuming the that the gains for the drive signals on the

drive and rate-sense axes are equal, the ratio of the amplitude control and angle or

rate control is

AFFB
Aampl

=
Iy
Ix

= Agτ(Ω + Ωoffset) (4.11)

where θcontrol is the orientation (rate force-feedback) signal, Econtrol is the vibration

amplitude control signal, Ag is the gyroscope angular gain, τ is the sense axis damp-

ing time constant, Ω is any applied rotation and Ωoffset is the gyroscope zero rate

offset. The rate scale-factor Agτ should be independent of the readout circuit and is

a function of gyroscope mode shapes and mode matching, making it a useful measure

of the gyroscope performance. The scale-factor can be extracted from the slope of

the fitted rate data as in Figure 4.7.

Rate performance of a CING gyroscope has been measured with the presented

controls. The rate performance has been measured using the open-loop, open-loop

with quadrature control, closed-loop, and closed-loop with quadrature control. The

gyroscope used for these tests was a low-frequency CING gyroscope [35]. The tuning

of the gyroscope is plotted in Figure 4.5, and the modes are matched within 100 mHz.

The average damping time constant is 9 s (Q of 85,000). The temperature was not

controlled.

The Allan Variance of the gyroscope in the four modes is plotted in Figure 4.6

and the scale-factor plots in Figure 4.7. Because the quadrature control stabilizes

the frequency mismatch, the bias stability improves with the quadrature control en-

abled. The closed-loop control also reduces the scale-factor variation and further

improves the bias stability. The performance with the four different configurations is

81

Figure 4.5:
Mode response of gyroscope used for FPGA rate tests. The gyro was
electrostatically tuned to have small mismatch, and then the tuning was
adjusted while running in closed-loop to improve the sensitivity.

82

10−2 10−1 100 101

Averaging Time (s)

10−2

10−1

100

R
oo

tA
lla

n
Va

ria
nc

e
(◦
/s

)

Open loop
Quad
FFB
FFB and Quad

Figure 4.6:
The feedback loops significantly increase the stability of the gyroscope
resulting in improved AVAR plots. The noise performance is also im-
proved since the sensitivity is improved with the feedback due to reduced
effective frequency mismatch.

83

−45 −30 −15 0 15 30 45
Rate (◦/s)

−0.10

−0.05

0.00

0.05

0.10

M
ea

su
re

m
en

t-b
ia

s,
sc

al
e

fa
ct

or
x

ra
te

Open loop
Open loop fit
Quad
Quad fit
FFB
FFB fit
FFB and Quad
FFB and Quad fit

Figure 4.7:
The measurement for open-loop modes is rate axis amplitude over drive
axis amplitude, for closed-loop it is force feedback amplitude over drive
amplitude. The scale-factor for each of these is Agτ if the frequency
mismatch is zero.

summarized in Table 4.1.

The USRP has an undesirable level of coupling between the DAC output and

ADC input. This is especially pronounced on the second DAC channel with the

LFRX board and may be due to the layout of the board. The results presented here

use a custom interface board instead of the standard USRP LFTX and LFRX boards

used in the characterization results. The custom board implements a differential

second order filter and provides the fully differential connections to the USRP DACs

and ADCs. The results are similar to results achieved with the standard boards.

4.4 Multiplexed Gyroscope Control

Time multiplexing of drive and sense signals for a single gyroscope has been previ-

ously suggested [51] for the extremely large damping time HRG. In that case however,

84

Table 4.1:
Low-frequency CING rate performance with different controls. Stability
of a low-frequency CING gyro when controlled with the FPGA rate con-
trol improves with force-feedback and quadrature control, but the angle
random walk is not affected due to the small frequency mismatch.

Mode Sensitivity Offset ARW Bias Stability

(◦/s)−1 (◦/s) (◦/
√
Hr) (◦/Hr)

Open-loop -561 -22.2 8.8 712
Quad Comp -628 7.93 2.6 300

FFB -833 16.25 2.3 353
Quad + FFB -768 -1.16 0.8 170

only the drive and sense functions were multiplexed and the multiplexing was done

per cycle with square drive signals. With multiple sensors, the phase and frequency

will vary for each sensors and it would be difficult to arrange each sensors drive signal

with a mux window. Also, a single square pulse will have a wide spectrum which can

introduce noise in other sensors.

To reduce spectral leakage, a triangle shaped window is applied to both the drive

signal and the received signal. Since the signal is not sensed continuously, filtering

must be done carefully. A two stage filter is used. First a short duration filter to

reduce the effect of harmonics while demodulating the sense signal which produces one

output for each period when the channel is sensed. Second, a filter at the multiplexing

frequency to smooth out any remaining discontinuities.

4.4.1 Multiplexing Circuit

The sense circuit for the multiplexed sensor module needs to settle quickly when

the source is switched, which strongly influences the choice of sense amplifier. The

drive circuit is illustrated in Figure 4.8 and the sense circuit in Figure 4.9. These are

implemented with COTS chips, and integrating them into a single chip would greatly

reduce the parasitic capacitance due to the switches and reduce the switching noise.

A CING gyroscope has been controlled using this method, with the control im-

85

Figure 4.8:
Diagram of the multiplexed drive circuit. The minimal drive circuit for
a set of multiplexed sensors consists of an analog mux and resistors to
ensure the bias voltage does not drive when the drive is disabled.

Figure 4.9:
Diagram of the multiplexed sense circuit. The sense circuit for a set of
multiplexed sensors must minimize charge injection to avoid disturbing
the oscillation or saturating the sense amplifier.

86

0°90°

Software

DAC

ADC
C
x

S
x

Σ

0°

GUI

Set PID
Gains

M
U

X
PID

90°

Channel
Select Timer

Phase
Accumulator

Signal
Generator

[]

Channel
State

Memory
M

U
X

M
U

X
s

M
U

X
s

FPGA

D
em

ux

Figure 4.10:
Diagram of the multiplexed control. This control is a modification of
the single gyro rate control except with the control applied to multiple
devices in turn. The state of the filters and PIDs in the control are
saved for each device. The timing is controlled by a timing block which
coordinates the drive and sense signals and insures break-before-make
operation. The signal for each channel is reconstructed on the computer
in real time by demultiplexing and filtering so that one value is produced
for each time a channel is addressed.

87

Drive Drive Sense Rate Sense

Drive Window
Drive Sense

Window

Stable Average
Amplitude

Figure 4.11:
Demonstration of CING operating under multiplexed control. The con-
trol is multiplexed as if there were 8 channels present, such as 3 gyro-
scopes and 2 accelerometers, but the switches are not enabled to allow
constant viewing of the sense signals.

plemented as shown in Figure 4.10. The rate performance has not been tested yet,

however the amplitude is maintained and the phase does not drift noticeably during

drive segments. The sense and drive signal on the CING are shown in Figure 4.11.

4.5 Summary

The control of a mode-matched CING gyroscope using the same SDR hardware

as used for characterization has been demonstrated. The mode-matched performance

improves with the addition of rate force-feedback and quadrature control. The FPGA

is currently optimized to minimize resources through the use of pipelined controls,

first order IIR filters, and square wave drive. Improving the filter is expected to

improve performance. The efficient FPGA design means that several gyroscopes could

be controlled by time-multiplexing the controls for several gyroscopes. A proof-of-

concept for this approach was demonstrated showing that the phase and amplitude

are maintained.

88

CHAPTER V

Rate Integrating Gyroscopes

A RIG is a gyroscope configured to mechanically integrate an applied rate of rota-

tion and output a signal proportional to the total applied rotation. RIGs offer three

primary advantages over rate gyroscopes: mechanically unlimited bandwidth, sensi-

tivity that is purely a function of geometry, and wide dynamic range. The primary

disadvantages of RIGs are the increased complexity of the controls and increased drift.

While an ideal RIG will have zero drift, in practice even relatively small mismatch in

the parameters of the degenerate modes will produce significant drift. Potential ap-

plications are miniature flying vehicles and personal navigation systems which could

benefit from the very large bandwidth and dynamic range of RIGs.

The principle of a vibratory RIG is that the orientation of a standing wave on a

structure will lag behind the rotation of that structure. The absolute rotation of the

structure is measured by tracking the orientation of the standing wave with respect

to the structure. Currently, RIGs rely on extreme manufacturing tolerance to achieve

rate-integration. Traditional controls for a RIG track the oscillation phase, maintain

total oscillation energy and compensate for quadrature error. An optional orientation

control loop can set the standing wave orientation, and is typically used for rate-mode

operation. In this chapter we present the modeling and simulation of RIG along with

basic controls and the architectures used to implement them. Both simulation and

89

Y

X Ω
θ

a

q

ϕ=ω t

Figure 5.1:
Diagram of a single mass Coriolis vibratory gyroscope. A single mass
attached to a frame with springs aligned with the X and Y axis can be
used as a generic model of all Coriolis vibrator gyroscopes.

measurement results are also presented.

5.1 Gyroscope Model

A simple conceptual vibratory gyroscope is illustrated in Figure 5.1. Unlike a rate

gyroscope which has a drive axis and a rate-sense axis, a RIG has two equivalent

axes which can be referred to as X and Y. A mass is vibrated with amplitude a and

resonance frequency ω along an angle θ with respect to the X axis. Due to non-ideal

features of any physical gyroscope, some quadrature motion q develops, which leads

to drift in the orientation θ. Sensors are placed to measure the motion along the X

and Y axes and the motion of the mass projected onto these axes is sensed as [19]

x = acos(θ)cos(ωt) + qsin(θ)sin(ωt)

y = asin(θ)cos(ωt)− qsin(θ)sin(ωt).

(5.1)

90

Instead of a single mass, it is also possible to use any other structure with degenerate

orthogonal modes such as the wineglass mode of a ring or cylindrical resonator [53].

The sensed gyroscope motion can be IQ demodulated as

cx cy

sx sy

 =

cosφ cosφ

sinφ sinφ

xs
ys

where φ = ωt + φ′ is the phase of the demodulating signal which may have some

error φ′. The parameters cx, cy, sx, sy can be used to calculate the gyroscope control

parameters [19]

E = c2
x + s2

x + c2
y + s2

y = a2 + q2

Q = 2(cxsy − cysx) = 2aq

R = c2
x + s2

x − c2
y − s2

y = (a2 − q2) cos 2θ

S = 2(cxcy + sxsy) = (a2 − q2) sin 2θ

Li = 2(cxsx + cysy) = (a2 − q2) sin 2δφ

(5.2)

where E is the oscillation energy, Q is the quadrature error, R and S are the X,Y

projections used to calculate the oscillation angle, δφ is the phase error between

the gyroscope oscillation and the reference signal, and Li is the phase error in the

demodulation signal.

5.2 Rate-Integrating Gyroscope Controls

The parameters E,Q,R,S, and Li form the basis of the controls used in this work.

A basic RIG control system is illustrated in Figure 5.2. There are four controls

loops: amplitude, quadrature, orientation, and phase. In an ideal gyroscope, only

the amplitude and phase control are necessary. The quadrature control cancels the

quadrature error to reduce the drift due to variation in the resonance frequency and

91

8Center for Wireless Integrated MicroSensing & Systems

Rate-Integrating Gyroscope Control Essentials

θ

Q

E

ϕ

X sense

Y sense

Y drive

X drive

Quadrature

Amplitude

PLL Error

Orientation θ

Scale
+

Modulate
+

Sum

Scale
+

Modulate
+

Sum

Amplitude Cont.

Quad Cont.

Demod
+

Parameter
Extraction

Demod
+

Parameter
Extraction

Figure 5.2:
Basic diagram of a RIG control scheme. A RIG control system must im-
plement blocks to maintain the total oscillation energy, cancel quadrature
error, and proportion drive signals according to the oscillation orientation.

damping with the oscillation orientation. The orientation or angle control can steer

the oscillation to a desired orientation. The output of the orientation control is

proportional to the rate of rotation plus any intrinsic drift at that orientation. The

amplitude, quadrature and orientation control values are converted to drive signals

proportioned between the X and Y axes based on the measured value of the oscillation

orientation θ.

The gyroscope is driven with drive signals which are the sum of in-phase (i) and

out-of-phase (q) signals for each axis. The construction of ix, qx, iy is

ix = Gx(Epid cos θ − Spid sin θ)

iy = Gy(Epid sin θ + Spid cos θ)

qx = Gx(Qpid sin θ)

qy = −Gy(Qpid cos θ)

(5.3)

92

where Epid is the output of the amplitude control PID which drives the energy measure

E to the energy set point E0, Qpid is the output of the quadrature control control

PID which drives Q to zero, and Spid is the output of the rate or angle control control

PID which drives θ to a set point θ0. The gains Gx and Gy are used to correct for

gain errors in the drive electronics.

The drive signals are then used to create modulated drive signals Xdrive and Ydrive

as

Xdrive = ixCmod + qxSmod

Ydrive = iyCmod + qySmod

(5.4)

where Cmod and Smod are the modulating signals which may be cosine and sine signals

or in-phase and quadrature square wave signals.

The gyroscope orientation θ is often given as

θ = tan−1(S/R)

however, this does not capture the full range of θ and it is not immediately clear

how to extend this to 2θ ∈ [−2π, 2π] required for the advanced controls presented in

Chapter VI. The method used in our control is

2θ = tan−1(S/R) +

0, if R > 0 and cx > 0

−2π, if R > 0 and S > 0

2π, if R > 0 and S < 0

−π, if R ≤ 0 and θ−1 < 0

π, if R ≤ 0 and θ−1 > 0

where θ−1 is the previous value of θ. Since R switches from positive to negative when

θ is ±π
2

, θ−1 will not change sign when R is less than 0.

93

5.2.1 Mechanical Requirements

The mechanical requirements for the RIG control as presented here are similar to

the requirements for mode-matched rate gyroscope control. In a RIG, the mechanical

axes of the gyroscope are interchangeable, so the gain of the sense mechanisms should

be the same for the two axes. This applies to the sense capacitance as well as the

transducer and signal conditioning gain. Both axes of the gyroscope also need to be

capable of being actuated and again the gains should be equal.

5.3 Orientation feed-forward

To reduce the effect of delay, which is quantified in the next section, the control

system can measure the system delay and shift the control angle by

θtx = θrx + Ωrxtdelay (5.5)

where θtx is the angle used to scale the drive signals, θrx is the measured angle, Ωrx

is the measured rate, and tdelay is the measured delay. The delay should be constant

and is determined during an initial calibration step. In systems where the delay is

not guaranteed to be constant, a side channel can be used to continuously update the

delay.

5.4 Rate Integrating Performance

5.4.1 RIG Performance Metrics

The standard measures of performance in a rate gyroscope: ARW, bias stability,

bandwidth, dynamic range, do not obviously translate into metrics for a RIG. Here

we will describe the RIG analogs of these metrics and how they can be measured or

derived.

94

A RIG measures the displacement on the X and Y axes and calculates the orien-

tation as

θ = arctan
y

x
(5.6)

where θ is the measured angle, y is the Y axis displacement and x is the X axis

displacement. The angle noise of the gyroscope is then

θ̃ = θ̂ − θ = arctan
y + ỹ

x+ x̃
− θ (5.7)

where θ̃ is the measurement noise, θ̂ is the measured angle, and ỹ,x̃ are the displace-

ment measurement errors. This can be simplified based on the propagation of errors

and a Taylor expansion of arctan, but the derivation is complicated. For a given

oscillation amplitude r such that x = r cos θ and y = r sin θ, the angle noise as a

function of the displacement measurement noise assuming σ(x̃) = σ(ỹ) is

σθ̃ ≈
σx̃

x2 + y2
=
σr̃

r
(5.8)

where σ indicates the standard deviation of the random variable. To verify this

approximation, the simulated standard deviations of some angle measurements are

plotted in Figure 5.4.1 for different SNR (σ(r̃)/r).

The angle random walk of a RIG is not simply the noise of the derivative of the

angle, especially since the derivative of white noise is not white noise. The important

characteristic of angle random walk is the effect it has on the measured angle over

time. There is an angle random walk equivalent due to the use of the angle in drive

loop of the gyroscope because angle noise creates an error in the feedback signal.

If the drive signals are

Fx = Ec cos(θ̂) ≈ Ec cos(θ)− Ecθ̃ sin(θ)

Fy = Ec sin(θ̂) ≈ Ec sin(θ) + Ecθ̃ cos(θ)

(5.9)

95

−150 −100 −50 0 50 100 150

Orientation θ (◦)

0.000

0.005

0.010

0.015

0.020

0.025

st
d(

ar
ct

an
((
y

+
ỹ

)/
(x

+
x̃

))
)

SNR=50
SNR=100
SNR=200

Figure 5.3:
Standard deviation of an angle measurement. The standard deviation of
an angle measurement is angle dependent, especially if the SNR is low.
The discontinuities are due to the discontinuity of the arctan function
around ±90°and can be removed with a more sophisticated calculation of
arctan as in Equation 5.2.

96

these forces have the same form as the amplitude control plus orientation control if

Ecθ̃ is replaced with θcontrol. This error will then apply a rate to the gyroscope just

as the orientation control does, and this rate will be integrated by the gyroscope and

accumulate as an angle error in the same way as ARW. If the rate due to the angle

noise is calculated, the applied rate due to angle measurement noise is

ΩRIG,ARW =
θcontrol

EcontrolAgτ
=

Econtrolθ̃

EcontrolAgτ
=

θ̃

Agτ
(5.10)

It is also possible to write the angle random walk in terms of the displacement

noise

ΩRIG,ARW =
σr̃

rAgτ
. (5.11)

If a rate gyroscope is operated along the X axis and the Y axis is used for sensing,

then σr̃ = σỹ and r = x. It is clear then from Equation 4.1 and Equation 5.11 that

for the same oscillation amplitude, the angle random walk is equal in rate and rate-

integrating modes. The displacement noise can either be from mechanical noise or

voltage noise, and so the RIG ARW is the same as the rate mode ARW independent

of the displacement noise source.

Bias stability is not the same as gyroscope drift, since the drift can be removed

if it is well known which makes it more like zero rate offset. The main difference is

that the drift is angle dependent and symmetric so that if the gyroscope makes a full

rotation, the drift is zero. The same environmental factors that change the zero-rate

offset and contribute to bias instability will also lead to changes in the drift over

time. This implies that the drift stability and bias stability will be roughly the same.

However, if the gyroscope is rotated fast enough that it makes a full rotation in less

time than is required to reach the bias stability by filtering the rate, the effective bias

stability will be zero. This averaging time is generally from a few seconds for a low

quality gyro to many hours for a high quality gyroscope with environment control.

97

The following rule for operating in RIG mode versus rate mode is proposed

mode =

 rate if 360/(ΩAg) > Tstable

rate-integrating if 360/(ΩAg) ≤ Tstable

Mismatch between the actual orientation and the orientation used to scale the

control signal can also be created by delay in the control and this mismatch creates a

rate-dependency in the scale factor of the gyroscope. Under high rates of rotation the

calculated angle can significantly lag behind the actual angle. The amount of error

caused by the delay can be analyzed in a similar way as the effect of angle noise.

The angle error due to delay τD is

θerr = −ΩτD

where the negative sign reflects the measured angle lags behind the actual angle. This

error implies that the drive signal based on the measured angle θ̂ = θ + thetaerr is

Fx = Ec cos(θ̂) ≈ Ec cos(θ)− Ecθerr sin(θ)

Fy = Ec sin(θ̂) ≈ Ec sin(θ) + Ecθerr cos(θ)

which means that Ecθerr looks like the rate control signal and the induced rate due

to delay ΩD in the gyro is

ΩD =
Econtrolθerr
EcontrolAgτ

=
θerr
Agτ

=
−ΩτD
Agτ

(5.12)

and the measured rotation rate Ω̂ is the sum of the physical rotation and the rotation

induced by the delay

Ω̂ = Ω + ΩD
−ΩτD
Agτ

= Ω

(
1− τD

Agτ

)
(5.13)

98

which is the actual rotation with a scale factor. The scale factor error is constant if

the delay is constant, and contributes rate-random walk if the delay is not constant.

The impact of the error decreases as the damping time constant of the gyroscope

resonator is increased.

5.5 Software Control Architecture

The all-software control block diagram in Figure 5.4 consists of the gyroscope,

analog interface circuitry, data transfer through the USRP, and all of the control

blocks implemented in software in the GnuRadio architecture. For speed, custom

low level processing blocks were used for the PLL, parameter extraction and PID.

The gyro model PLL block consists of a PID to minimize the phase error signal ψe

calculated according to [19]. The internal phase accumulator is used to generate sine

and cosine signals for demodulating the incoming signals in the parameter extraction

block. The PLL also takes a delay parameter which is multiplied by the instantaneous

frequency to generate a phase delay which is added to the phase accumulator used to

generate a second set of periodic signals used to modulate the output of the control

blocks and generate drive signals. This arbitrary delay function is necessary to main-

tain the gyroscope oscillation close to the resonant frequency, which requires the total

loop phase-shift is a multiple of 2π. The difficultly in achieving the right phase-shift

when the delay changes each time the software is run is the primary drawback of the

all-software control.

The most significant difference between the RIG PLL in Figure 5.5, and a normal

PLL is the phase detector, which must tolerate the quadrature signal and the orien-

tation of the oscillation. The phase error is calculated as Li in Equation 5.2, The

non-delayed output of the PLL is used by the parameter extraction block to demod-

ulate the received signals. The demodulation accounts for any known gain mismatch

and whether the signal is in phase with the oscillation velocity (for transimpedance

99

Parameter
Extraction

Dual
High-
Speed
ADC

0° 90°

FPGA

0°

Excitation
Synth.

Energy,
Quad, θ

90°

Gyro Model
PLL

Q, E, S,θ
PID Cont.

φ
e

Software

Delay Adj.
Dual
High-
Speed
DAC

Figure 5.4:
Diagram of the software control architecture. In software control mode,
all of the controls are implemented in software. The FPGA is still used to
decimate the signals so that the data rates fit within the USB bandwidth.
The FPGA code has been modified from the standard firmware to prevent
accumulating delay when the transmit buffer underruns due to the lack
of a real-time operating system.

100

X
sense

Y
sense

α

β Z-1

ϕ

I demod
Qdemod

sin ϕ
cos ϕ

Phase
Detector

(r2
−k 2

)sin(2ϕe)

2 (IxQx+ IyQy) =

Frequency

I drive
Qdrive

sinϕ
cos ϕ

Phase Delay

Figure 5.5:
Diagram of a PLL with variable delay. One implementation of a PLL for
a RIG. The delay in the PLL between the modulating and demodulating
references signals can be adjusted to compensate for the uncertain delay
due to the USB bus and buffer.

amplifiers), or the oscillation position (for charge-sense amplifiers). The demodulated

signals are combined according to Equation 5.2 to form the energy level E, quadra-

ture error Q, and orientation θ signals in the parameter extraction block. Each of

these is fed to a proportional, integral, differential (PID) control. Both parameter

extraction and PID control are implemented in custom blocks to reduce system load.

The orientation block can also be used in the rate-integrating mode start-up proce-

dure or for calibration. The control blocks are enabled in the order of PLL, amplitude

control, quadrature control and then orientation control. The parameter extraction

equations make assumptions about the control state which are not necessarily true

during start-up, so stability and speed of start-up is improved if the blocks are started

after the previous block has locked or nearly locked.

5.6 Hybrid Control Architecture

The hybrid control architecture in Figure 5.6 addresses the limitations of both

the FPGA control and software control. Like the FPGA control, demodulation,

modulation and phase control are implemented in the FPGA. These operations are

very sensitive to phase and so the low, fixed delay in the FPGA is critical to good

performance. The other control functions such as amplitude control and angle control

101

Σ

FPGA

0°

cos θ

90°

E, Q, θ,
PID Cont.

Software
DAC

DAC

ADC

ADC

0°90°

IQ Square
Wave

Generator

PLL & Phase
Accumulator

CORDIC

sin θ

Delay

C
x

S
x

C
y

S
y

θQE

Σ
0°

90°

X
sense

Y
sense

Y
drive

X
drive

GUI

Set PID
Gains

Parameter
ExtractionD

ec
im

at
e

A
nd

 F
il

te
r

Figure 5.6:
Diagram of the relay control architecture. In the relay mode architecture,
the most delay critical blocks (PLL and feed-through cancellation) are
implemented in the FPGA while the rest of the control is implemented
in software.

are implemented in software. These controls need delays that are much smaller than

the time constant of the gyroscope in order to be stable, but high-Q MEMS gyroscopes

often have ring-down times tens of milliseconds and some like the CING are several

seconds or more. The delay of the software control is a few milliseconds and so these

controls can be stable. Implementing the controls in software allows for much more

complicated controls to be implemented and for rapid implementation of new controls

when developing algorithms.

In the FPGA, the PLL is a fixed point and pipelined implementation of Figure

5.5 using the same blocks as the controls in the FPGA rate mode plus an additional

block to calculate Li.

The software side of the hybrid control is similar to the all software control without

the demodulation, PLL, and modulation functions. Instead cx, sx, cy, and sy are

received from the FPGA, filtered, and used to calculate the control values in Equation

102

5.2. Software PIDs are applied to each control and the outputs of those PIDs are

used to construct ix, qx, iy, and qy as in Equation 5.3 which are transferred back to

the FPGA to be modulated.

5.7 Gyroscope Simulation

The simulation architecture illustrated in Figure 5.7 is built upon the control

software we previously presented in [54],[35],[55]. On a fast laptop, the following

simulation runs at about ½ real time (10 seconds of simulated gyroscope dynamics

and control requires roughly 20 seconds of real time) to twice real-time depending on

whether 64 bit or 32 bit libraries are used. The USRP FPGA hardware is replaced

with a software model of the PLL implemented in the FPGA, including the use of

a first order IIR filter, with precision limited to 16 bits. The simulated PLL and

the actual implementation in the FPGA are critical to the control performance. The

reference phase is accumulated as a 32 bit integer at the same sampling frequency as

used in the FPGA, 500 kS/s for these simulations, according to

φ =
∑

ω0 + φpll.

The full gyroscope model is illustrated in Figure 5.8, and includes capacitive feed-

through, misalignment of the drive and sense electrodes modeled as a rotation, and

drive and sense gain errors. Non-linearity of the parallel plate drive and the effects

of the bias voltage on the drive and sense signals are not currently modeled. Bias

voltages used to modify the stiffness matrix are modeled however so that automatic

tuning and the effect of miss-tuning can be modeled.

Capacitive feed-through is modeled by taking the derivative of the drive signals

103

cos θ

Mismatch,
E, Q, θ

PID Cont.

Control
Software

sin θ

θQEGUI

Set PID
Gains

Parameter
Extraction

Simulation
Module

I
x

Q
y

I
y

Q
xD

el
ay

 B
lo

ck

M
sg

 Q
ue

ue

Demodulator

Modulator

Drive
y

Drive
x

Sense
x

Gyro Model
and Feedthrough

Fixed Point
PLL

I
Q

C
x

S
y

C
y

S
x

Sense
y

Figure 5.7:
Simulation and Control Architecture. The simulation architecture used to
test the proposed control functions. The simulation block replicates the
FPGA firmware and gyroscope. The controls use the same code whether
the software is being run in simulation mode or with physical hardware.
Simulation mode is selected using a command line argument to the control
interface software.

104

Mechanical Lumped Element model

with first order errors

[𝑅 θ]

Rotation

Matrix
Fx

Fy

[𝐶]

Feed-through

Matrix Differentiate

Sense

Gain

Errors

Drive

Gain

Errors

Vdx

Vsy

Vsx Vsy

Fx

Fy

Delay Control

Tuning Electrode

Stiffness Matrix

Figure 5.8:
Gyroscope model flowchart. The heart of the gyroscope model is Equa-
tion 2.2, however many electrical non-idealities are not included in those
equations. The complete model used here includes gain errors, rotation ef-
fects, and feed-through. Modifying these parameters is an important tool
in trying to identify the causes of behavior observed when controlling real
gyroscopes.

105

and adding them to the output of the gyroscope model according to

xft
yft

 =

Cxx Cyx

Cxy Cyy

dxd/dt
dyd/dt

where xft, yft are the feed through signals, xd, yd are the X-axis and Y-axis drive

signals, and Cuu are coefficients chosen to match the measured feed through of MEMS

gyroscopes tested in our lab. For the low frequency 3kHz CING, the feed-through is

small enough to be ignored. It is more significant for the 20kHz CING.

The drive amplitudes provided by the control software are modulated by the

output of the PLL as xd
yd

 =

Ix Qx

Iy Qy

cosφ

sinφ

The modulated drive signals are used as inputs to the gyroscope simulation. The

gyroscope simulation is a C++ implementation using the GSL [56] ODE solver of the

equation 6 from [19] plus electronic tuning stiffness terms

ẍ− 2AgΩẏ − AgΩ̇y +
2

τ
ẋ+ ∆

(
1

τ

)
(ẋ cos 2θτ + ẏ sin 2θτ)

+
(
ω2 − A′gΩ2

)
x− ω∆ω (x cos 2θω + y sin 2θω) +Kel,xxy +Kel,yxy = xd

ÿ + 2AgΩẋ+ AgΩ̇x+
2

τ
ẏ −∆

(
1

τ

)
(ẋ sin 2θτ − ẏ cos 2θτ)

+
(
ω2 − A′gΩ2

)
y + ω∆ω (x sin 2θω − y cos 2θω) +Kel,yyy +Kel,xyx = yd

which includes angular acceleration and centripetal force as additional terms for

quadrature error generation. The constant Ag is a function of the gyroscope ge-

ometry. The velocity variables ẋ,ẏ are used as the output of the gyroscope simula-

tion. The position variables can also be used as the output to model different sense

amplifiers. The stiffness matrix from the tuning electrode model in Equation 3.3 are

Kel,xx, Kel,yx, Kel,xy, Kel,yy, in the above model and are in parallel with the Ω2 stiffness

106

terms.

The gyroscope output is demodulated to create the gyroscope parameters used by

the controls according to

cx cy

sx sy

 =

cosφ+ φdly cosφ+ φdly

sinφ+ φdly sinφ+ φdly

xs
ys

where φpll is the output of the phase accumulator and φdly is φpll plus a constant to

compensate or model any phase-shift in the circuits.

The control parameter Li is calculated within the FPGA simulation and used as

the error signal for the PLL PID. The demodulated sense signals are transferred to

the control software where they are filtered and decimated and then used to calculate

the control variables in (5.2).

5.8 Simulation Results

The above compensation schemes have been tested over a range of gyroscope pa-

rameters. The results presented below are for a gyroscope with a resonance frequency

of 5 kHz, Q of 25,000 (τ = 1.6sec) and Ag of 0.3. This Ag is predicted for a ring or

hemispherical resonator from FEM simulation and is larger than the measured Ag for

the CING resonator used in the experimental results section [35].

The drift due to frequency mismatch is proportional to the quadrature signal,

which is effectively canceled by the quadrature control loop. In order to evaluate

the reduction in frequency mismatch, it is useful to look at the rate of growth of the

quadrature signal [15]

q̇ =
q

τ
+

a

4ω
(ω2

1 − ω2
2) sin 2(θ − θω) (5.14)

where a is the oscillation amplitude, q is the quadrature amplitude, ω is the average

107

resonance frequency and ω1 and ω2 are the resonance frequencies along the principal

axes, which are rotated θω from the X-axis. The quadrature signal is maximum when

(θ − θω) = π/4. To evaluate the residual frequency mismatch, at the steady state

with (θ − θω) = π/4 and q̇ = 0

q

τ
= − a

4ω
(ω2

1 − ω2
2) (5.15)

which can be solved for using the gyroscope parameters Q and E from Equations 5.2

as

Q

E
=

2aq

a2 + q2
≈

2q

a
= − τ

2ω
(ω2

1 − ω2
2) (5.16)

and rearranging with (ω2
1 − ω2

2) = 2ω(ω1 − ω2), the frequency mismatch is

(f2 − f1) =
Q

E2πτ
. (5.17)

The residual effective mismatch calculated with Equation 5.17 for a gyroscope with

τ of 10 s and quadrature compensation is plotted in Figure 5.9.

The steady state value of q is not reached if the gyroscope is rotating. Rotation

modulates the frequency mismatch (this is easy to see if θ in Equation 5.14 is replaced

with Ωt) and the integration to get q is a low pass filter, so a rotated gyroscope

will not develop the full quadrature signal. The equations for calculating the angle

and energy break down when q > a, which provides a limit on the mismatch for

uncontrolled operation at slow rotation of

|f1 − f2| < (πτ)−1 (5.18)

which is 32 mHz for τ equal to 10 s. With quadrature control, a gyroscope with only

32 mHz frequency mismatch would have very little drift. The limit of compensation

for quadrature control comes from the relative size of the quadrature and drive signals

108

10−3 10−2 10−1 100

Frequency Mismatch (f1 − f2)

10−6

10−5

10−4

10−3

10−2

E
ffe

ct
iv

e
M

is
m

at
ch

Mismatch from q
100x Reduction

Figure 5.9:
Reduction in effective frequency mismatch with quadrature control.
Quadrature control effectively reduces the effective frequency mismatch
by about three orders of magnitude in simulation.

in the same way as for rate gyroscopes as explained in Section 4.2.

To determine the drift versus angle in each simulation, a constant rotation rate is

applied to the gyroscope (60◦/s or 90◦/s for the largest ∆τ) and then the measured

rate of rotation is calculated. The drift is the measured rate minus the applied rate.

Because of delay in the control, which is modeled to represent delay in the real system,

the drive signals lag behind the actual rotation and shift the average rate away from

the applied rate, resulting in a slight positive bias in the drift plots.

The drift for several values of ∆
1

τ
and ω∆ω without the proposed mismatch

controls are plotted in Figure 5.10. By the standard analysis, reducing the quadrature

error to zero will reduce the corresponding drift to zero, however there is a residual

drift proportional to the frequency mismatch that is an order of magnitude larger than

predicted by the residual quadrature error. This drift is due to the effective damping

mismatch introduced by the frequency mismatch since damping is proportional to

109

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

−100

−50

0

50

100

D
rif

t(
◦ /
s)

∆τ = 0.8s,∆f = −0.2Hz

∆τ = 0.3s,∆f = −0.2Hz

∆τ = 0.3s,∆f = −0.1Hz

∆τ = 0.2s,∆f = −0.1Hz

Figure 5.10:
Simulated drift versus oscillation orientation with only quadrature com-
pensation. The simulated gyroscopes has a nominal frequency of 5 kHz
and Q of 25,000 (τ = 1.6sec) with various amounts of mismatch.

ω(θ)a/τ .

5.9 Measurement Results

A single program called gyrocontrol provides the interface and control for FPGA

mode, software mode and hybrid mode control. A flow-chart of testing a gyroscope

with the proposed system is illustrated in Figure 5.9. At the beginning of each test,

the mode frequencies are matched within a fraction of a Hertz with electrostatic

tuning. For a CING, the tuning voltages are under the gyroscope mass. The bias

voltage for this CING gyroscope is 10V, and the tuning voltages are approximately

-3V (Vbias − Vxtune = 13V) for cross-axis tuning and -1V (Vbias − Vftune = 11V) for

on-axis tuning. Simulation of the tuning mechanisms does not show any interference

with the control system, however there is some concern that the large tuning voltages

110

New

resonator

New

resonator

Scan with URAT over

designed frequency

range to find peaks

DC Tuning

Scan wineglass peaks and

do automatic tuning of Δf

to < 0.1Hz

Ring-down analysis

of peaks to find τ

Ring-down analysis

to find matched τ

Copy tuning

parameters, τ to

configuration file

for the resonator

Run USRPGYRO

with configuration

file

Run USRPGYRO

with configuration

file

Use steering mode

to adjust DC tuning

(if stability is very

bad)

Apply virtual rate to

prime dynamic

mismatch

compensation

(DMC)

Operate resonator

as rate-integrating

gyro and control

amplitude,

quadrature, DMC

DC tuning

Automatically

update from DMC

values if mismatch

drifts out of range

URAT URAT

GYROCONTROL GYROCONTROL

f1,

f2

f0,

Vtune

gyro.conf

Vtune

θ, Ω

ηc

ηs,

νc

νs ηc,s

νc,s

Vtune

τ1,

τ2 τ0

Figure 5.11:
Flowchart of operation of a gyroscope using URAT and gyrocontrol.
The gyroscope is first tested and matched using URAT and then op-
erated as a gyroscope using gyrocontrol, which can operate in rate or
rate-integrating modes. Automatic closed loop tuning is only tested in
simulation at this point, and several steps would benefit from automa-
tion.

111

0 2 4 6 8 10 12 14 16 18
Time (min)

−180

−90

0

90

180

O
rie

nt
at

io
n

(◦
)

60◦/s
30◦/s

Figure 5.12:
Angle measurement using rate-integrating control with constant applied
rates. The Y-axis in this plot is the angle in the absolute coordinates of
the CING (so Y is 45°). The rates were applied consecutively and then
plotted with 0 minutes as the first zero crossing at each rate. Ideally the
output would be a straight line, modulus 90◦ with a slope equal to the
applied rate times Ag. The curve in the line represents the drift rate due
to anisotropy.

might stress or unbalance the gyroscope in unknown ways. The following results are

for control of low-frequency CING gyroscopes [35].

The relay control is capable of operating a CING as a RIG indefinitely, and has

been demonstrated to operate continuously for hours at a time over several days.

To verify that the angle control measures and controls the angle correctly, an

oscilloscope was used to verify that the drive and sense signal ratios match the values

reported in software in both freely oscillating mode and with the angle control enabled.

An example oscilloscope capture is shown in Figure 5.9. The sense signals are kept

in phase by the quadrature control loop. Using markers, the angle calculated from

the arctangent of the X and Y amplitudes is -33.69°and from the X and Y drive

112

Drive X Drive Y Sense X Sense Y

Figure 5.13:
Drive and sense signals during angle-mode control measured with an
oscilloscope. Measurements like this are used to verify that the angle
control is behaving as expected.

amplitudes is -33.73°. The angle reported by the control is -33.78°. The angle has

also been verified this way at 0°, 45°and 90°.

To verify the control accuracy, the approximate oscillation amplitude was calcu-

lated at different orientations as
√
V 2
x + V 2

y where Vx is the X-axis sense amplitude

and Vy is the Y-axis sense amplitude. The measurement results are shown in Figure

5.9. The measured variation is up to 1%, but the oscilloscope introduces significant

error making accurate measurements of the amplitude with the oscilloscope is difficult

and that variance probably dominates the measurement error. The amplitude and

quadrature control loops combine to keep this value constant. The nearly constant

value against angle indicates that the control loops work and correctly combine the

sensed signals.

113

0 10 20 30 40 50 60 70 80 90
Sensed Angle (◦)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

A
m

pl
itu

de
E

rr
or

(%
)

Figure 5.14:
Variation in the energy signal against oscillation orientation. The energy
is calculated by squaring the sensed voltages. The error is a combination
of the oscilloscope channel mismatch, oscilloscope measurement error,
monitor amplifier gain mismatch (the signal is amplified for the scope),
and USRP errors.

114

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

C
on

tro
l

η/η̄

ν/η̄

Figure 5.15:
Frequency and damping variation measured using the quadrature and
amplitude controls of a CING gyroscope. The wave orientation is con-
trolled with electronic steering.

5.9.1 Model Verification

The control system presented here can be used to help verify and improve the

gyroscope model. For a RIG, the dependency of the quadrature and damping signals

is a function of the orientation. The normalized quadrature control and amplitude

control signals are plotted in Figure 5.15. The expected shape for each curve is a

shifted version of cos 2θ, however there are both large and small variations from that

expected shape. The damping versus orientation for three consecutive sweeps of the

angle are plotted in Figure 5.16 along with the expected cos 2θ curve. In this plot

there is a clear discrepancy between the expected damping around -20◦ and 70◦.

There are also many small excursions that look like noise, except that the excursions

repeat with each pass. The large deviations are expected to be due to non-linearity

in the drive signal or the structure.

The non-linearity can be identified by looking at the harmonics of the various

control signals. The harmonic analysis is made by re-sampling the signal on each

degree of orientation (so that there are 361 points) and then taking the FFT. The

result is the components of the parameter at each wave number (wn). The wave

115

Figure 5.16:
Measured damping mismatch in a CING gyroscope. The damping is
derived from the variation in the amplitude control over 3 full rotations
of the gyroscope oscillation.

116

1 2 3 4 5 6 7 8 9 10
Wave Number

10−2

10−1

D
am

pi
ng

Va
ria

tio
n

(η
/η̄

)

Figure 5.17:
Harmonic analysis of the amplitude control signal. The amplitude con-
trol is proportional to the damping and shows large components at cos 2θ
and cos 4θ.

number is the number of times the signal repeats within 360°. So a wave number of 1

is be a dependency on cos θ, 2 is cos 2θ which is the expected mismatch dependency,

and 3 is cos 3θ and so on. The harmonic analysis of the damping is plotted in Figure

5.17 and the harmonic analysis of the drift is plotted in Figure 5.18. Although the

damping has a large component with wn=4, the drift is almost entirely at wn=2.

This implies that the non-linearity of the damping is a function of the drive signal

and not the mechanical structure. This implies that the dynamic damping mismatch

control may need to use higher order components for the amplitude compensation

but not the drift compensation.

The harmonic analysis of the quadrature control is plotted in Figure 5.19 and the

harmonic analysis of the frequency is plotted in Figure 5.20. The quadrature does

have some dependency on the damping as well as the frequency mismatch which may

explain the difference in the harmonics between the quadrature and frequency.

117

1 2 3 4 5 6 7 8 9 10
Wave Number

102

D
rif

tV
ar

ia
tio

n
(Ω

d
ri
f
t)

Figure 5.18:
Harmonic analysis of drift in a CING gyroscope. Drift is expected to be
dependent on the damping and frequency mismatch, and shows a large
component at cos 2θ and a much smaller one at cos 4θ.

1 2 3 4 5 6 7 8 9 10
Wave Number

10−1

Q
ua

d
Va

ria
tio

n
(ν
/η̄

)

Figure 5.19:
Harmonic analysis of the quadrature control signal. Quadrature control
which is expected to be a good measure of the frequency mismatch and
shows a large component at cos 2θ and quickly decreasing components
at cos 4θ and cos 6θ.

118

1 2 3 4 5 6 7 8 9 10
Wave Number

10−4

10−3
Fr

eq
ue

nc
y

Va
ria

tio
n

(ω
−
ω̄

)

Figure 5.20:
Harmonic analysis of the PLL frequency. The PLL frequency should
match the resonant frequency for the current orientation. It has large
components at cos 2θ and cos 4θ and a much smaller component at cos 6θ.

5.10 Hybrid Mode Rate Gyroscope Control

The rate control operates using rate-integrating control equations [19] with an

orientation control enabled. The orientation control holds the gyroscope at a fixed

orientation (ratio of X-axis and Y-axis amplitudes). The software parts of the control

does not suffer from the limitations of the fixed-point control, but the delay in the

USB bus limits the bandwidth. The delay is around 10 ms depending on the computer

and the complexity of the controls, which limits the bandwidth to approximately 300

Hz in the best case. The controls could be ported to other digital signal processor

(DSP) hardware with a faster link between FPGA and microprocessor to improve the

bandwidth.

119

−45 −30 −15 0 15 30 45
Rate (◦/s)

−0.2

−0.1

0.0

0.1

0.2

θ c
on
tr
ol
/E

co
n
tr
ol

Agτ = −1.81× 10−3 s/◦
Ωoffset = −70.01◦/s

Agτ = −2.92× 10−3 s/◦
Ωoffset = 20.45◦/s

Hybrid
FPGA

Figure 5.21:
The sensitivity of a CING gyroscope with FPGA control and hybrid
control. The sensitivity is defined as the ratio of the force-feedback to
the amplitude control signal. The difference in offset and slope is due to
different tuning, and for the hybrid control the orientation was held at
45°(X and Y equal) rather than 0°.

10−1 100 101 102

Averaging Time (s)

10−1

100

R
oo

tA
lla

n
Va

ria
nc

e
(◦
/s

)

2.6◦/
√
Hr

202.6◦/Hr

6.2◦/
√
Hr

152.9◦/Hr

Hybrid
FPGA

Figure 5.22:
CING Rate Mode Allan Variance with FPGA and hybrid control. The
bias stability is very sensitive to the control parameters, especially the
integral gain which can induce small slow oscillations, visible here as the
bumps at 10 second and 2 second averaging. Improvement in tuning and
gain selection will improve performance.

120

Table 5.1:
Performance of a CING gyro when controlled in rate mode with the FPGA
rate control or the hybrid control.

FPGA control Hybrid control [35]

Angle Random Walk (◦/
√
Hr) 6.2 2.6

Bias Stability (°/Hr) 153 203

Ag (◦/s−1) 0.02 0.011

5.11 Summary

The basic controls for a RIG have been implemented in software and hybrid soft-

ware/firmware control systems. The delay in the software control makes stable oper-

ation difficult, while the hybrid mode has demonstrated stable operation of a MEMS

RIG for hours at a time over the course of several days.

This control system has enabled the measurement of the gyroscope parameters

as a function of the orientation and analysis of the harmonics of the error pattern

reveal that there are large non-linearity which create components at cos 4θ and cos 6θ

in addition to the standard models cos 2θ.

The drift in the test gyroscopes is very large due to the large mismatch, especially

damping mismatch. New compensation methods to address this drift are presented

in Chapter VI.

121

CHAPTER VI

Dynamic Mismatch Compensation

The basic controls of a RIG discussed in Chapter V work well for a macro-scale

gyroscope where through careful fabrication and mechanical tuning the relative mis-

match can be made extremely small. With a MEMS gyroscope however, especially

as the resonator is made smaller, the relative mismatch will tend to increase and

the capability to do mechanical tuning is decreased. Some methods of mechanical

tuning of MEMS gyroscopes have been proposed [22, 57], this kind of tuning would

significantly increase the cost of gyroscope and may not be sufficient to achieve the

extremely high standard of matching required for a RIG. This chapter presents some

advanced controls to improve MEMS RIG gyroscope performance. The error model

in this chapter is based on the standard cos 2θ mismatch distribution used in most of

the literature. The effect of using this model with the non-linear gyroscope will be

seen in Section 6.3 as well as improved performance from tuning the compensation

values.

122

6.1 Novel Compensation Controls

The ideal MEMS RIG can be modeled as

ẍ+
1

τ
ẋ+ 2AgΩẏ + ω2x = 0

ÿ +
1

τ
ẏ − 2AgΩẋ+ ω2y = 0

(6.1)

where τ is the damping time constant, Ag is the mechanical angular gain, ω is the

resonance frequency and Ω is the rate of rotation. When modeling the gyroscope, it

can be useful to think of on-axis velocity terms as damping forces, cross-axis veloc-

ity terms as drift forces, and position terms as quadrature forces. Due to material

properties and fabrication uncertainty, the damping and frequency will depend on the

orientation of the oscillation. A commonly used model of the damping and frequency

anisotropy is

1

τ
=

1

τ0

+ ∆
1

τ
cos 2(θ − θτ) (6.2)

ω2 = ω2
0 + ω∆ω cos 2(θ − θω) (6.3)

where θτ is the orientation where the damping is minimum, θω the orientation where

the resonance frequency is maximum, ∆
1

τ
=

1

τ1

− 1

τ2

is the magnitude of the damping

mismatch and ω∆ω =
ω2

1 − ω2
2

2
the resonance frequency mismatch. The terms τ1, τ2,

ω1 and ω2 are the damping and resonance frequency parameters at θτ,ω and θτ,ω+π/2

respectively.

By combining (6.1) with (6.2) and (6.3), a model of the gyroscope which includes

123

the mismatch errors can be derived [19]

ẍ− 2AgΩẏ +
2

τ
ẋ+ ∆

(
1

τ

)
(ẋ cos 2θτ + ẏ sin 2θτ)

+ ω2x− ω∆ω (x cos 2θω + y sin 2θω) = 0

ÿ + 2AgΩẋ+
2

τ
ẏ + ∆

(
1

τ

)
(−ẋ sin 2θτ + ẏ cos 2θτ)

+ ω2y − ω∆ω (−x sin 2θω + y cos 2θω) = 0.

(6.4)

6.1.1 Damping Mismatch Compensation Loop

In [58], a method is described for dynamically determining the magnitude and

orientation of the damping mismatch in a RIG and adjusting the amplitude control to

account for the variation in a gyroscope which has both a ring drive electrode and drive

electrodes on the X and Y axes. The drift due to damping is not directly addressed

and our own simulations show that although amplitude variation is removed, the drift

is not. The method presented here does not use a ring electrode, which is not always

available in MEMS RIGs, and directly addresses the drift due to damping mismatch.

Also, the derivation presented here comes more intuitively from the gyroscope model

than that presented in [58].

To maintain the gyroscope oscillation, it is necessary to drive the X and Y axes

with a force in phase with the oscillation velocity. Examining (6.4) with only the

damping mismatch terms and including forces to maintain steady-state behavior

ẍ+
1

τ
ẋ+ ∆

1

τ
ẋ cos 2θτ + ∆

1

τ
ẏ sin 2θτ + ω2x = Fex + Fsx

ÿ +
1

τ
ẏ −∆

1

τ
ẏ cos 2θτ + ∆

1

τ
ẋ sin 2θτ + ω2x = Fey + Fsy

(6.5)

where Fex and Fey maintains the oscillation amplitude and Fsx and Fsy compensates

for any drift terms. By assigning the damping terms to Fex,Fey and the drift terms

to Fsx,Fsy, the steady-state values of these forces to maintain the oscillation and

124

compensate any drift are

Fex =
1

τ
ẋ+ ∆

1

τ
ẋ cos 2θ

Fsx = ∆
1

τ
ẏ sin 2θ

Fey = ÿ +
1

τ
ẏ −∆

1

τ
ẏ cos 2θ

Fsy = ∆
1

τ
ẋ sin 2θ

(6.6)

If the quadrature compensation loop maintains a >> q, then using (5.1) the

velocities can be written as

ẋ = ωa cos θ sinωt

ẏ = ωa sin θ sinωt

(6.7)

and by inserting (6.7) in to (6.6), the forces can be simplified to

Fex = (η cos θ + ηc cos θ) sinωt

Fey = (η sin θ − ηc sin θ) sinωt

Fsx = (ηs sin θ) sinωt

Fsy = (ηs cos θ) sinωt

where the terms η, ηc and ηs are

η = ωa
1

τ

ηc = ωa∆
1

τ
cos 2θτ

ηs = ωa∆
1

τ
sin 2θτ

The basic amplitude control will have a mean output of η. Returning to the analysis

in [58], the terms ηc and ηs can be found by implementing controls on the amplitude

125

modulated by cos 2θ and sin 2θ leading to the control equations

∆E = E − E0

η = Ap∆E +
∑

[Ai∆E + Ad(∆E −∆E−1)]

ηc =
∑

cos 2θ [Ai∆E + Ad(∆E −∆E−1)]

ηs =
∑

sin 2θ [Ai∆E + Ad(∆E −∆E−1)]

(6.8)

where Ap, Ai, Ad are proportional, integral and derivative gains which can be chosen

to optimize the response of the gyroscope, and the subscript −1 indicates the previous

value.

6.1.2 Frequency Mismatch Compensation Loop

A control loop to reduce the quadrature error is required for non-ideal RIGs. Since

the rate of growth of the quadrature is angle dependent, the control loop will tend

to over or under compensate at various orientations and depending on the rotation

rate. The gyroscope equations with only the frequency mismatch non-ideal terms and

forces to cancel the quadrature growth are

ẍ+ ω2x− ω∆ω (x cos 2θω + y sin 2θω) = Fqx

ÿ + ω2y + ω∆ω (−x sin 2θω + y cos 2θω) = Fqy

(6.9)

where Fqx, Fqy cancel growth in quadrature error from the frequency. There are other

sources of quadrature error such as rotational acceleration and damping mismatch,

however the frequency mismatch terms dominate for even small values of ∆ω. Since

the form of (6.9) is similar to (6.5), it is proposed that a similar control scheme can

be used to improve the response to resonance frequency variation with θ.

126

Setting the cancellation forces equal to the frequency mismatch terms gives

Fqx = −ω∆ω (x cos 2θω + y sin 2θω)

Fqy = +ω∆ω (−x sin 2θω + y cos 2θω)

which, using the relationship (6.7) and assuming a >> q, can be rewritten as

Fqx = − (νc sin θ + νs cos θ) cosωt

Fqy = + (νc cos θ − νs sin θ) cosωt

where the terms νc and νs are

νc = ω∆ωa cos 2θω

νs = ω∆ωa sin 2θω

By an analysis identical to that for damping mismatch compensation, the following

control laws are proposed

ν = ApQ+
∑

[AiQ+ Ad(Q−Q−1)]

νc =
∑

cos 2θ [AiQ+ Ad(Q−Q−1)]

νs =
∑

sin 2θ [AiQ+ Ad(Q−Q−1)]

(6.10)

where νc and νs will compensate the quadrature growth due frequency mismatch

and ν will control the quadrature growth from other sources. The final quadrature

cancellation signals including ν are then

Fqx = − ((ν + νc) sin θ + νs cos θ) cosωt

Fqy = + ((ν + νc) cos θ − νs sin θ) cosωt.

127

1 Center for Wireless Integrated MicroSensing & Systems

Dynamic Mismatch Compensation

θ

Q

E

ϕ

Scale

+

Modulate

+

Sum

Scale

+

Modulate

+

Sum

Demod

+

Parameter

Extraction

Demod

+

Parameter

Extraction

Figure 6.1:
Diagram of dynamic mismatch compensation RIG control. The dynamic
mismatch loops complement the normal control loops and can be enabled
and disabled without disrupting the gyroscope operation.

The feedback loops used to implement dynamic mismatch compensation are illus-

trated in Figure 6.1.

If the frequency mismatch is large, the required Fqx and Fqy may be larger than can

be supported by the control hardware. Also, large quadrature cancellation signals are

undesirable since they can saturate the sense circuits due to capacitive feed-through

or cause error in the amplitude detection if not perfectly removed by feed-through

cancellation. To reduce the level of the quadrature drive signals, νc and νs can be

used to adjust DC bias voltages which reduce the mismatch terms by electrostatic

spring softening. νc and νs can be transformed into effective stiffness mismatch and

cross coupling parameters by

∆k = skω02π

√
ν2
c + ν2

s

ητ

sk =

 −1 if νs > 0

1 if νs ≤ 0

kxy = −2∆k arctan
νc
νs
.

128

An automatic mode matching routine such as that described in Section 3.2 can then

be used to determine the bias voltages, keeping the mismatch within a range that can

be compensated for by the dynamic technique above.

6.2 Simulation Results

The frequency and amplitude control signal are plotted versus orientation for a

gyroscope with only frequency mismatch in Figure 6.2. With only quadrature con-

trol enabled, there is no variation of the damping signal against orientation and the

resonant frequency depends on the orientation. The resonance frequency is provided

by the all-digital phase-locked loop (ADPLL) in the simulation and with a physical

gyroscope. With the frequency mismatch control enabled, the frequency is forced

to a constant value independent of the orientation and an apparent damping mis-

match appears. With both frequency and damping compensation enabled, both the

frequency and amplitude control become independent of the orientation.

The drift for the same gyroscope is plotted versus orientation in Figure 6.4. The

drift with quadrature control and frequency compensation is nearly identical. The

small shift is probably due to not allowing the control to fully settle. By enabling

both the frequency and damping compensation, the residual drift is reduced to nearly

zero.

In a gyroscope with both damping and frequency mismatch, there is a dependency

on orientation for both the amplitude control and frequency as plotted in Figure 6.3.

Enabling the frequency compensation increases the damping mismatch somewhat,

while enabling the damping compensation does not significantly affect the frequency

mismatch. Enabling both eliminates the dependency on orientation for both ampli-

tude control and frequency. The drift for the different controls is plotted in Figure

6.5.

The drift for the same gyroscopes as Figure 5.10 but with the dynamic mismatch

129

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

N
or

m
al

iz
ed

D
am

pi
ng

Simulation with ∆τ = 0.0s,∆f = 0.2Hz

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Fr
eq

ue
nc

y
S

hi
ft

(H
z)

Quad Only
Freq Comp
Freq & Damp

Figure 6.2:
Simulated frequency and damping control with dynamic compensation
and no damping mismatch.

130

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

D
am

pi
ng

Simulation with ∆τ = 0.3s,∆f = −0.2Hz

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Fr
eq

ue
nc

y
S

hi
ft

(H
z)

Quad Only
Freq Comp
Damp Comp
Freq & Damp

Figure 6.3:
Frequency and damping control with dynamic compensation and both
frequency and damping mismatch.

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

−10

−5

0

5

10

15

D
rif

t(
◦ /
s)

Simulation with ∆τ = 0.0s,∆f = 0.2Hz

Quad Only
Freq Comp
Freq & Damp

Figure 6.4: Drift of a gyro with only frequency mismatch.

131

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

−40

−30

−20

−10

0

10

20

30

40

D
rif

t(
◦ /
s)

Simulation with ∆τ = 0.3s,∆f = −0.2Hz

Quad Only
Freq Comp
Damp Comp
Freq & Damp

Figure 6.5: Drift of a gyro with frequency and damping mismatch.

control enabled is plotted in Figure 6.6. The frequency mismatch control loop settles

within 9 seconds with non-optimized control values when a 90◦/s rotating drive signal

is applied, however the damping mismatch takes much longer to settle, over 266

seconds as shown in Figure 6.7. The damping mismatch takes a long time to settle

because the deviations of E from the set value with the amplitude control enabled

are very small. An alternate method of generating the control values based on the

derivative of the amplitude control

∆E = E − E0

η = Ap∆E +
∑

[Ai∆E + Ad(∆E −∆E−1)]

ηc = sin 2θ
∑

[Ai∆E + Ad(∆E −∆E−1)]

ηs = − cos 2θ
∑

[Ai∆E + Ad(∆E −∆E−1)]

(6.11)

settles much faster (under 14 seconds with only 60◦/s applied rate), as in Figure 6.8

132

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

D
rif

t(
◦ /
s)

∆τ = 0.8s,∆f = −0.2Hz

∆τ = 0.3s,∆f = −0.2Hz

∆τ = 0.3s,∆f = −0.1Hz

∆τ = 0.2s,∆f = −0.1Hz

Figure 6.6:
Simulated drift versus orientation with damping and frequency mismatch
control. The simulated gyroscope has a nominal frequency of 5 kHz and
Q of 25,000 (τ = 1.6sec) with various amounts of mismatch with both
the proposed damping and mismatch compensation enabled. The ripples
in the remaining drift are due to the settling of the PLL after enabling
the compensation controls.

but this method is unstable at low rates of rotation. One solution would be to have

the control automatically switch between the two methods when the rotation rate

crosses some threshold.

In the above plots, simulated rates of rotation were applied to the gyroscopes in

order to move the wave orientation. It is also possible to use electric signals to move

the wave orientation or create a simulated rotation. However, the lack of centripetal

force and angular acceleration mean the electronic rotation is not the same as physical

rotation. Also, in physical systems, various out of plane vibrations can be coupled

into the in-plane vibrations by rotation which is not the case with electrical rotation.

133

0 50 100 150 200 250
Time (s)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

C
on

tro
l

−180

−135

−90

−45

0

45

90

135

180

O
rie

nt
at

io
n

(◦
)

ηc/η̄

η/η̄

νc/η̄

ν/η̄

θ

Figure 6.7:
Simulated mismatch control settling. In this simulation, the frequency
mismatch loop, νc settles to 1% in 9 seconds and the damping mismatch
loop, ηc, in 266 seconds with 90◦/s applied rate of rotation.

134

0 10 20 30 40 50 60
Time (s)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

C
on

tro
l

−180

−135

−90

−45

0

45

90

135

180

O
rie

nt
at

io
n

(◦
)

ηc/η̄

η/η̄

νc/η̄

ν/η̄

θ

Figure 6.8:
Simulated mismatch control settling with modified control law. With the
modified control, (6.11), where the damping mismatch is extracted from
the derivative of the damping variation, settling of the damping control
is much faster. Here, νc settles to 1% in 13.5 seconds and the damping
mismatch loop, ηc, in 13.8 seconds with 60◦/s applied rate of rotation.

135

0 10 20 30 40 50

Time (s)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

C
on

tro
lV

al
ue

s

−180

−135

−90

−45

0

45

90

135

180

O
rie

nt
at

io
n

(◦
)

η/η̄

ηc/η̄

ηs/η̄

θ

Figure 6.9:
Damping mismatch control with a CING gyroscope. Enabling the damp-
ing mismatch control with CING gyroscope reduces the amplitude control
variation and removes some of the angle dependency of the rate scale fac-
tor. The control is enabled at 10 seconds and has mostly settled within 3
seconds.

6.3 Measurement Results

The damping mismatch control loop is shown to settle in 3 seconds when driven

with an rotating drive signal in Figure 6.9. The frequency mismatch control loop

settles in 7 seconds in Figure 6.10. The tests were made without optimizing the

control gains. The inability of the control loops to fully settle is due to the measured

errors not matching the model in (6.2) and (6.3) as discussed in Section 5.9.

Despite the mismatch between the model and the gyroscope errors, the controls

are still able to reduce the drift of a CING gyroscope as shown in Figure 6.11. The

RMS drift is reduced by 25%, and the remaining drift is dominated by the regions

where the model and measured error are the most different. The source of this

difference could be particular to the CING, the hardware implementation, or a more

general problem with MEMS RIG. The error model can also be updated to better

approximate the measured error and further improve performance.

136

0 5 10 15 20 25 30 35 40

Time (s)

−1.5

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

C
on

tro
lV

al
ue

s

−180

−135

−90

−45

0

45

90

135

180

O
rie

nt
at

io
n

(◦
)

ν/η̄

νc/η̄

νs/η̄

θ

Figure 6.10:
Frequency mismatch control with a CING gyroscope. Enabling the fre-
quency mismatch control with CING gyroscope reduces the quadrature
control variation and the residual quadrature signature.The control is
enabled at 9 seconds and is mostly settled within 7 seconds.

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

−200

−150

−100

−50

0

50

100

150

200

D
rif

t(
◦ /
s)

Comp Off
Comp On
Sine Fit

Figure 6.11:
Drift with damping and mismatch enabled. The drift as measured from
the variation of the measured rotation rate from the average rotation
rate of a CING gyroscope under electronic rotation with and without the
proposed compensation enabled. With this level of mismatch, no rate
less than nearly 200◦/s would fully rotate the gyroscope orientation.

137

6.3.1 Tuned Mismatch Compensation

Using the steering or angle control to cause the gyroscope orientation to process

distorts the results of the dynamic mismatch compensation loop. This is likely due to

coupling between the horizontal and vertical components of the mode as it precesses.

Another potential reason is feed-through, but the feed-through is small and feed-

through compensation does not significantly affect the result. In Figure 6.12, the mean

output of the dynamic damping mismatch controls are plotted against the steering

signal. The zero crossing is expected to be the correct value for compensation with no

steering signal applied. The dynamic mismatch compensation can be applied using

fixed values instead of activating the feedback loops. The drift with the dynamic

mismatch compensation using the zero crossing values for the compensation, tuned

DMC, is shown in Figure 6.13. The RMS drift is reduced by over 85% and the max

drift is reduced by over 88%. The worst drift is reduced from -322◦/s to -41◦/s. There

is no uncompensated plot with applied rates because the rate table could not apply

a large enough rate to process this gyroscope without the compensation. Using these

fixed compensation values, the higher order terms of the damping variations are also

reduced as illustrated in Figure 6.14. It is not clear why the mismatch compensation

would reduce the higher order terms of the angle dependency of the damping.

To verify the angle measuring nature of these controls, a CING gyroscope with

tuned dynamic mismatch compensation applied was subjected to alternating clock-

wise and counter-clockwise step rotations. The results for ±90° , ±180° , and ±270° ro-

tations are plotted in Figures 6.15, 6.16, and 6.17 respectively. The angular gain is

calculated for each step from the measured angle change divided by applied rotation

and the average is 0.0115 which agrees very closely with the angular gain calculated

from the constant rate tests in Section 5.9. This is the third method used to calculate

the angular gain, in addition to the rate-mode slope and the time required for the

standing wave to precesses fully, and the results from all tests agree closely. The

138

−1.0 −0.5 0.0 0.5 1.0

θcontrol/η

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

D
rif

tc
om

pe
ns

at
io

n

0.0802

0.3366

ηc/η̄

fit
ηs/η̄

fit

Figure 6.12:
Damping mismatch control output versus steering signal. The steering
control distorts the damping mismatch, possibly due to coupling of the
vertical and horizontal components of the CING resonant mode. The
zero crossing is expected to reflect the true mismatch.

139

−180 −135 −90 −45 0 45 90 135 180
Orientation (◦)

−400

−300

−200

−100

0

100

200

300

D
rif

t(
◦ /
s)

Steering, Quad Only
Steering, Tuned DMC
+90◦/s, Tuned DMC
−90◦/s, Tuned DMC

Figure 6.13:
Drift of CING gyroscope with tuned damping and frequency mismatch
compensation. Without compensation, the gyroscope will not fully pre-
cess with the rates that can be applied using the rate table (upto 120◦/s).
With the tuned mismatch compensation (tuned DMC), precession is pos-
sible with both θcontrol and applied rates of ±90◦/s.

140

1 2 3 4 5 6 7 8 9 10
Wave Number

10−4

10−3

10−2

10−1

100

D
am

pi
ng

Va
ria

tio
n

(η
/η̄

)

Steering, Quad Only
Steering, Tuned DMC
+90◦/s, Tuned DMC
−90◦/s, Tuned DMC

Figure 6.14:
Damping harmonics with tuned damping and frequency mismatch com-
pensation. The damping variation is measured using the amplitude con-
trol variation. All of the even terms are reduced with the mismatch
compensation, independent of whether to oscillation is precessed with a
real rate or using the steering or angle control.

141

−10 −5 0 5 10

t− t0(s)

−1.5

−1.0

−0.5

0.0

0.5

O
rie

nt
at

io
n

(◦
)

0◦ to 90◦, Āg = −0.0119

90◦ to 0◦, Āg = −0.0116

90◦ Transitions

Figure 6.15: Oscillation angle change under ±90° step rotations.

similar behavior in these different tests indicate that the underlying model of the

operation is correct.

142

−10 −5 0 5 10

t− t0(s)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

O
rie

nt
at

io
n

(◦
)

45◦ to 225◦, Āg = −0.0114

225◦ to 45◦, Āg = −0.0113

180◦ Transitions

Figure 6.16:
Oscillation angle change under ±180° step rotations. The rotation is
between 45° and 225° instead of starting from 0°.

−10 −5 0 5 10

t− t0(s)

−4

−3

−2

−1

0

1

O
rie

nt
at

io
n

(◦
)

0◦ to 270◦, Āg = −0.0114

270◦ to 0◦, Āg = −0.0106

270◦ Transitions

Figure 6.17: Oscillation angle change under ±270° step rotations.

143

6.4 Summary

We have described two novel control loops to characterize and compensate for

damping and frequency mismatch in RIG, which we expect to be critical for high-

performance operation of MEMS RIG. The loops use the residual error in the tra-

ditional control loops to determine orientation dependent error and an orientation

steering control then cancels the drift induced by the mismatch. The controls have

been tested in simulation and implemented in a functional control system and tested

with a CING gyroscope. The deviation of the damping and quadrature behavior from

the model limits the ability of the feedback loops to determine the correct compen-

sation parameters, however using tuned parameters the drift can be reduced by over

85% from a worst case value of over 320◦/sto around 41◦/s.

144

CHAPTER VII

Conclusion and Contributions

We have presented control and compensation systems for vibratory MEMS gyro-

scopes to characterize high-Q (Q over 50,000) resonators and operate them as rate or

rate-integrating gyroscopes. Although this work focused on gyroscopes, the same tools

and controls can be used with accelerometers. MEMS Rate and Rate-Integrating gy-

roscopes fill key technical needs for consumer, military and space applications. MEMS

gyroscopes offer advantages not only in size and weight, but in some harsh environ-

ments they may even outperform their meso-scale counterparts. While MEMS rate

gyroscopes are well established, the RIG is an emerging component of the MEMS

gyroscope field. The proposed research addresses several problems to be solved in

MEMS RIG research. The problems to be addressed are slow characterization and

tuning, poor performance due to damping mismatch, the lack of robust and accessible

control hardware and algorithms, and the difficulty in using RIG due to the overall

complexity of tuning, tweaking, readout and control.

7.1 Contributions

� A characterization and control system for MEMS gyroscopes built on open and

commercially available hardware and software. The characterization tools are

much more complete than other work and include ring-down analysis, impulse

145

response, gain-phase analysis and automatic tuning. The system is easy to use

and expand so that other researchers can test their own devices or algorithms

without large investment in hardware or time.

� Automatic mode-matching of high-Q (Q over 50,000) MEMS gyroscopes from

over 40 Hz mismatch to below 100 mHz.

� An efficient FPGA implementation of rate gyroscope control with amplitude,

rate and quadrature closed-loop control demonstrating better than 400% im-

provement in performance for a MEMS gyroscope over open-loop control.

� Hybrid software and firmware control system and gyroscope simulator for de-

velopment of advanced gyroscope control algorithms and experimental testing

of those algorithms. The hybrid architecture allows delay sensitive components

to be implemented in the FPGA while other controls can be implemented in

software where development is easier.

� Rate-integrating MEMS gyroscope operation for much much longer than the

ring-down time as well as and characterization of the anisotropy, which is critical

to development of improved models.

� New control algorithms for rate-integrating gyroscopes to dynamically measure

damping and frequency anisotropy and compensate angle drift. Compensating

angle drift allows rate-integrating operation at lower rates so that dual-mode

MEMS gyroscopes are practical.

7.2 Future Work

The system described in this thesis is meant to be a test-bed for development of

algorithms for MEMS gyroscopes and characterization of new resonators. To prove

the applicability of this system to a wide range of gyroscopes, it should be tested

146

with more gyroscopes than just the CING. Also, the controls have demonstrated

basic operation of the CING gyroscope in a rate-integrating mode, but the inherent

limitations of the CING make it difficult to evaluate more subtle problems with the

control. Testing the system with other gyroscopes will help to identify problems

caused by the control system.

Although the dynamic mismatch compensation shows promise for enabling medium

quality gyroscopes to operate as RIG, more analysis is required to prove the stabil-

ity of the controls under all situations, to determine the limits of where the controls

are actually able to improve performance, and improve the error model to separate

electrical and mechanical non-linearity and further reduce drift.

The time-multiplexing technique briefly introduced for control of multiple rate-

gyroscopes could also used to control a signal gyroscope without introducing problems

due to feed-through. This could significantly improve the ability to characterize and

compensate RIG and can be extended for RIG operation.

Finally, transferring all of these techniques to a fully embedded system would

greatly reduce system size and improve performance, especially due to reduced delay.

A self-contained but still programmable version of the current system would allow

rapid testing of algorithms for very high performance gyroscopes and rapid charac-

terization of gyroscope resonators during the fabrication process.

147

APPENDICES

The following sections list the source code that is original to this work as is

important to the measured and simulation results presented in this work.

148

APPENDIX A

Gyroscope Simulation Code

#include <math.h>

#include <complex >

#include <stdio.h>

#include <string.h>

#include <gsl/gsl_errno .h>

#include <gsl/ gsl_matrix .h>

#include <gsl/gsl_odeiv .h>

#include <vector >

#include <string >

#include <gr_io_signature .h>

#include <gr_sincos .h>

#include <gyro_relay_model_source .h>

#include " gyro_common .h"

#include " fpga_regs_common .h"

#include " fpga_regs_standard .h"

#define SENSE_ROTATED // read is rotated from drive

//#define POSITION // use position readout

double fixed2float16(int fix)

{

return (fix >= TWO15 ? fix - TWO16 : fix) / TWO16;

}

double fixed2float32(int fix)

{

return (fix >= TWO31 ? fix - TWO32 : fix) / TWO32;

}

gyro_relay_model_source :: gyro_relay_model_source

(gr_msg_queue_sptr msgq ,

std:: string fpga_model , double signal_rate , int upsample , double x0,

double y0, double Th0 , double ThS , const std::vector <double > &feedthrough ,

const std::vector <double > &gains , const std::vector <double > &tuning ,

double rate , double rate_freq , double wx, double wy, double th_frq ,

double txx , double tyy , double th_tau , double kr, double kc)

: gr_sync_block ("relay_model_source",

gr_make_io_signature (0, 0, 0),

gr_make_io_signature (1, 1, sizeof (float))),

d_msgq(msgq), d_signal_rate(signal_rate), d_upsample(upsample),

d_rate(rate), d_rotated (0), d_rate_freq(rate_freq), d_rate_accel (1e6),

d_kr(kr), d_kc(kc), d_tolerance (1e-9), d_iptr(NULL),

149

d_vs((wx+wy)/2.), d_dt (1/ signal_rate), d_irate (0.),

d_drate (0.), d_rate_phase (0.), d_pp (0.0), d_pv (0.0) , d_ld1 (0.), d_ld2 (0.),

d_loopback(false), d_rxa(true), d_rxb(false), d_nch (2), d_rx_swap(false),

d_tx_swap(false), d_rxenable(false), d_txenable(false),

d_tuning_update(false),

d_txphase (0), d_rxphase (0), d_pll_filt(gains , gains) /*will overwrite*/,

d_pll_pid (327670 , 0, 1), d_pll_updated(false), d_pll_f0 (0), d_pll_delay (0),

d_count (0)

{

d_w0 = (wx*wx+wy*wy)/2.;

d_wdw = (wx*wx-wy*wy)/2.;

d_dmp = (1/txx +1/tyy);

d_ddp = (1/txx -1/tyy);

d_rwc = cos(2* th_frq);

d_rws = sin(2* th_frq);

d_rtc = cos(2* th_tau);

d_rts = sin(2* th_tau);

d_SthS= sin(2*ThS);

d_CthS= cos(2*ThS);

for(int it=0; it <4; it++)

{

d_ftg.push_back(feedthrough.at(it));

d_ftc.push_back(feedthrough.at(it));

d_gain.push_back(gains.at(it));

d_Ks.push_back(tuning.at(it));

}

for(int it=0; it <2; it++)

{

d_new_pll_a.push_back (0);

d_new_pll_b.push_back (0);

}

d_gain_range.push_back (-20);

d_gain_range.push_back(20);

d_gain_range.push_back (0.5);

d_step_type = gsl_odeiv_step_rkf45; //bsimp; //rk8pd;

d_step = gsl_odeiv_step_alloc(d_step_type , ODE_DIM);

d_control = gsl_odeiv_control_y_new(d_tolerance ,

d_tolerance *1e3);

d_evolve = gsl_odeiv_evolve_alloc(ODE_DIM);

// jac is only used for some solvers ,

// it is complicated due to control signals and rate

d_sys = {relay_func , NULL /*jac*/, ODE_DIM , this};

d_state [0] = x0; d_state [1] = 0.; d_state [2] = y0; d_state [3] = 0.;

if(fpga_model != "")

{

d_fifo = fopen(fpga_model.c_str(), "r");

}

else

d_fifo = NULL;

}

/* This models access to the FPGA registers used to configure the part of the

controls in the fpga */

bool gyro_relay_model_source :: _write_fpga_reg(int reg , int value)

{

switch(reg)

{

case FR_RX_MUX: // rx mux

d_rx_swap = value & 0x10; // could do more with this

break;

case FR_MASTER_CTRL: // rx enable , tx enable

d_rxenable = value & 0x2;

d_txenable = value & 0x1;

break;

case FR_MODE: // loopback

d_loopback = value & 0x1;

break;

case FR_USER_17: // enables

150

d_pll_pid.enable(value & 0x8);

break;

case FR_USER_9: // pll filter params

d_new_pll_a [0] = fixed2float16(value & 0xffff);

d_new_pll_a [1] = fixed2float16 ((value >> 16) & 0xffff);

break;

case FR_USER_8: // pll filter params

d_new_pll_b [1] = fixed2float16(value & 0xffff);

d_pll_updated = true;

break;

case FR_RX_FREQ_2: // f0

d_pll_f0 = value;

break;

case FR_USER_20: // pll delay

d_pll_delay = value;

break;

case FR_USER_6: // Ap

d_pll_pid.set_Ap(fixed2float16(value & 0xffff));

break;

case FR_USER_7: // Ai , Ad

d_pll_pid.set_Ai(fixed2float16(value & 0xffff));

d_pll_pid.set_Ad(fixed2float16 ((value >> 16) & 0xffff));

break;

case FR_USER_12: // feedthrough

d_ftc [0] = fixed2float16(value & 0xffff);

break;

case FR_USER_13: // feedthrough

d_ftc [1] = fixed2float16(value & 0xffff);

break;

case FR_USER_14: // feedthrough

d_ftc [2] = fixed2float16(value & 0xffff);

break;

case FR_USER_15: // feedthrough

d_ftc [3] = fixed2float16(value & 0xffff);

break;

default:

break;

}

return true;

}

gyro_relay_model_source ::~ gyro_relay_model_source ()

{

gsl_odeiv_evolve_free (d_evolve);

gsl_odeiv_control_free (d_control);

gsl_odeiv_step_free (d_step);

}

bool gyro_relay_model_source :: set_mux(int mux)

{

d_tx_swap = mux & 0x1;

return true;

}

bool gyro_relay_model_source :: set_nchannels(unsigned nchannels)

{

d_nch = nchannels;

return true;

}

std::vector <double >

gyro_relay_model_source :: monitor ()

{

std::vector <double > a;

a.push_back(d_rotated *180/ M_PI);

a.push_back(d_irate *180/ M_PI);

a.push_back (0.);

return a;

151

}

bool

gyro_relay_model_source ::start()

{

d_iptr = NULL; // make sure work looks for a new message

return true;

}

bool

gyro_relay_model_source ::stop()

{

return true;

}

int

gyro_relay_model_source ::work (int noutput_items ,

gr_vector_const_void_star &input_items ,

gr_vector_void_star &output_items)

{

/* input is 4 streams of floats interleaved (ix ,qx,iy,qy), output is

8 streams of floats interleaved (cx,sx ,cy,sy,lih ,lil ,lch ,lcl */

float *optr = (float *) output_items [0];

if(d_fifo != NULL)

{

int rp,ip;

for (int it=0; it < noutput_items/d_nch; it++)

fscanf(d_fifo , "%x\n", &rp, &ip);

}

if(d_iptr == NULL)

{

d_msg = d_msgq ->delete_head (); // blocking message fetch

d_iptr= (float *)(d_msg ->msg());

d_ninput_items = d_msg ->arg2();

if(d_msg ->arg1() == 2) // done

{

fprintf(stderr , "gyro_relay_model_source ::work DONE\n");

return -1;

}

}

// input is 4xCont , output is 4xsense ,lih ,lil ,lch ,lcl

int nprocess = d_ninput_items < noutput_items/d_nch ?

d_ninput_items : noutput_items/d_nch;

// need_extra causes an input to be processed to supply a request for a

// partial output. Do this when we already have an extra but an even

// number are requested , or don’t have an extra and an odd

// number are requested.

int need_extra = (d_ninput_items > noutput_items /2) // enough input

and ((d_extra.size() and !(noutput_items % d_nch)) // noutput full set

or (d_extra.size() < (noutput_items % d_nch))) ?

((noutput_items % d_nch)-d_extra.size()) : 0;

int processed = 0; // number of output created

if (d_extra.size()) // use extra first

{

int it;

for (it = 0; it < d_extra.size() and it < noutput_items; it++)

{

*optr++ = d_extra.back();

d_extra.pop_back ();

}

processed +=it;

}

if(d_pll_updated)

{

d_pll_filt.set_taps(d_new_pll_a , d_new_pll_b);

d_pll_updated = false;

152

}

if(d_tuning_update)

{

d_Ks = d_new_Ks;

d_tuning_update = false;

printf (" Loading new Ks");

printf (": %.5e %.5e %.5e %.5e\n", d_Ks[0], d_Ks[1], d_Ks[2], d_Ks [3]);

}

if(d_loopback) // this is a test mode

{

fprintf(stderr , "Loopback %d %d\n", nprocess , d_nch);

for (int it = 0; it < nprocess ; it++)

{

*optr++ = *d_iptr ++;

*optr++ = 0;

d_ninput_items --;

processed += 2;

}

if(d_ninput_items == 0)

d_iptr = NULL; // used up all input data

return processed;

}

d_t = 0.;

d_ti = 0.;

float sense1 , sense2 , drive1 , drive2 , qdrive , idrive;

float cx , sx , cy, sy, cdemod , sdemod;

float ix , qx , iy, qy;

float lih ,lil ,lch ,lcl;

for (int it = 0; it < nprocess /4 ; it++)

{

// modulate

gr_sincosf(d_txphase*FSCALE , &qdrive , &idrive);

ix = *(d_iptr);

qx = *(d_iptr +1);

iy = *(d_iptr +2);

qy = *(d_iptr +3);

drive1 = ix*idrive+qx*qdrive;

drive2 = iy*idrive+qy*qdrive;

d_iptr +=4;

d_ninput_items -=4;

if(d_tx_swap)

solve_1step(drive2 , drive1 , sense1 , sense2);

else

solve_1step(drive1 , drive2 , sense1 , sense2);

gr_sincosf(d_rxphase*FSCALE , &sdemod , &cdemod);

if(d_rx_swap)

{

cx = sense2 * cdemod;

sx = sense2 * sdemod;

cy = sense1 * cdemod;

sy = sense1 * sdemod;

}

else

{

cx = sense1 * cdemod;

sx = sense1 * sdemod;

cy = sense2 * cdemod;

sy = sense2 * sdemod;

}

pll_1step(cx,sx ,cy,sy);

*optr++ = cx; *optr++ = sx; *optr++ = cy; *optr++ = sy;

//if d_nch > 2 {}

lih = floor(d_li/TWO16);

lil = fmod(d_li ,TWO16);

153

lch = floor(d_lc/TWO16);

lcl = fmod(d_lc ,TWO16);

*optr++ = lih; *optr++ = lil;

*optr++ = lch; *optr++ = lcl;

processed += 8;

}

if (need_extra) // odd , but enough data for all

{

// modulate

gr_sincosf(FSCALE*d_txphase , &qdrive , &idrive);

drive1 = *(d_iptr)*idrive +*(d_iptr +1)*qdrive;

drive2 = *(d_iptr +2)*idrive +*(d_iptr +3)*qdrive;

d_iptr +=4;

d_ninput_items -=4;

if(d_tx_swap)

solve_1step(drive2 , drive1 , sense1 , sense2);

else

solve_1step(drive1 , drive2 , sense1 , sense2);

gr_sincosf(FSCALE*d_rxphase , &sdemod , &cdemod);

if(d_rx_swap)

{

cx = sense2 * cdemod;

sx = sense2 * sdemod;

cy = sense1 * cdemod;

sy = sense1 * sdemod;

}

else

{

cx = sense1 * cdemod;

sx = sense1 * sdemod;

cy = sense2 * cdemod;

sy = sense2 * sdemod;

}

pll_1step(cx,sx ,cy,sy);

lih = floor(d_li/TWO16);

lil = fmod(d_li , TWO16);

lch = floor(d_lc/TWO16);

lcl = fmod(d_lc , TWO16);

d_extra.push_back(lcl);

d_extra.push_back(lch);

d_extra.push_back(lil);

d_extra.push_back(lih);

d_extra.push_back(sy);

d_extra.push_back(cy);

d_extra.push_back(sx);

d_extra.push_back(cx);

for(int it = 0; it < need_extra; it++)

{

*optr++ = d_extra.back();

d_extra.pop_back ();

}

processed += need_extra;

}

if(d_ninput_items == 0)

{

d_iptr = NULL; // used up all input data

}

return processed;

}

inline void

gyro_relay_model_source :: pll_1step(float cx , float sx , float cy, float sy)

{

double li, lc, lp_lc;

long rd_lc;

li = floor(d_pll_filt.filter ((cx*sx + cy*sy)/TWO16));

lc = d_pll_pid.update(d_li);

154

lp_lc = d_pll_filt.filter(lc);

rd_lc = lround(lp_lc);

d_li = li;

d_lc = rd_lc;

d_txphase = (d_txphase + d_pll_f0 + d_lc) & 0xffffffff;

d_rxphase = (d_txphase + d_pll_delay) & 0xffffffff;

}

void gyro_relay_model_source ::set(double rate , double accel)

{

d_rate = rate*M_PI /180;

d_rate_accel = accel*M_PI /180;

}

void gyro_relay_model_source :: set_rate_freq(double rate_freq , double accel)

{

d_rate_freq = M_TWOPI*rate_freq; // convert to radians

d_rate_accel = accel*M_PI /180;

}

inline void

gyro_relay_model_source :: solve_1step(float drive1 , float drive2 ,

float &sense1 , float &sense2)

{

std::vector <double > ft(2);

double rotations , rs, rc, rate , last_t;

d_ti += 1/ d_signal_rate;

d_drive1 = drive1;

d_drive2 = drive2;

while (d_t < d_ti) // use variable step -size between ti

{

d_rate_phase = fmod(d_rate_phase+d_rate_freq*d_dt ,M_TWOPI);

sincos(d_rate_phase , &rs , &rc);

rate = fabs(d_rate*rc-d_irate) < (d_rate_accel*d_dt) ?

d_rate*rc : d_irate+sgn(d_rate*rc -d_irate)*d_rate_accel*d_dt;

d_drate = (rate -d_irate)/d_dt;

d_irate = rate;

last_t = d_t;

d_err = gsl_odeiv_evolve_apply (d_evolve , d_control , d_step ,

&d_sys ,

&d_t , d_ti , &d_tolerance ,

d_state);

d_dt = d_t - last_t;

}

d_rotated = modf((d_rotated + d_irate/d_signal_rate), &rotations);

d_pp = d_pp *(1 -1/128.)+drive1*d_state [0]/128;

d_pv = d_pv *(1 -1/128.)+drive1*d_state [1]/128;

// Feed through calculation , real is x, imag is y

ft[0] = d_gain [0]*(d_ftg [0]*(drive1 - d_ld1) + d_ftg [2]*(drive2 - d_ld2));

ft[1] = d_gain [1]*(d_ftg [1]*(drive1 - d_ld1) + d_ftg [3]*(drive2 - d_ld2));

#ifdef SENSE_ROTATED

#ifdef POSITION /* position readout */

sense1 = ft[0]+(float)(d_gain [0]*(d_state [0]* d_CthS

- d_state [2]* d_SthS)/USRP_SCALE);

sense2 = ft[1]+(float)(d_gain [1]*(d_state [0]* d_SthS

+ d_state [2]* d_CthS)/USRP_SCALE);

#else /* velocity readout */

sense1 = ft[0]+(float)(d_gain [0]*(d_state [1]* d_CthS

- d_state [3]* d_SthS)/USRP_SCALE/d_vs);

sense2 = ft[1]+(float)(d_gain [1]*(d_state [1]* d_SthS

+ d_state [3]* d_CthS)/USRP_SCALE/d_vs);

#endif // position

#else

#ifdef POSITION /* position readout */

sense1 = ft[0]+(float)(d_gain [0]*(d_state [0]/ USRP_SCALE));

sense2 = ft[1]+(float)(d_gain [1]*(d_state [2]/ USRP_SCALE));

155

#else /* velocity readout */

sense1 = ft[0]+(float)(d_gain [0]*(d_state [1]/ USRP_SCALE/d_vs));

sense2 = ft[1]+(float)(d_gain [1]*(d_state [3]/ USRP_SCALE/d_vs));

#endif // position

#endif // rotated

d_ld1 = drive1;

d_ld2 = drive2;

}

int relay_func (double t, const double y[], double f[],

void *params)

{ // model from Lynch "Gyro analysis by method of averaging"

// Y[0:3] = x vx y vy , f[0:3] = dx dvx dy dvy

gyro_relay_model_source *m = (gyro_relay_model_source *) params;

// dx/dt = vx

f[0] = y[1];

// dvx/dt = fx + ...

f[1] = m->d_drive1*m->d_gain [2]*30 // electrical forcing

+ 2*m->d_kr*m->d_irate*y[3] // coriolis force

+ m->d_kr*m->d_drate*y[2] // angular acceleration

- m->d_dmp * y[1] // damping

- m->d_ddp * (y[1] * m->d_rtc + y[3] * m->d_rts) // damping mismatch

- y[0] * (m->d_w0 - m->d_kc*m->d_irate*m->d_irate)// spring + centripedal

+ m->d_wdw * (y[0] * m->d_rwc + y[2] * m->d_rws) // frequency mismatch

+ m->d_Ks [0] * y[0] + m->d_Ks [1] * y[2]; // electrostatic tuning

// dy/dt = vy

f[2] = y[3];

// dvy/dt = fy - ...

f[3] = m->d_drive2*m->d_gain [3]*30 // electrical forcing

- 2*m->d_kr*m->d_irate*y[1] // coriolis force

- m->d_kr*m->d_drate*y[0] // angular acceleration

- m->d_dmp * y[3] // damping

+ m->d_ddp * (y[3] * m->d_rtc - y[1] * m->d_rts) // damping mismatch

- y[2] * (m->d_w0 - m->d_kc*m->d_irate*m->d_irate)// spring + centripedal

- m->d_wdw * (y[2] * m->d_rwc - y[0] * m->d_rws) // frequency mismatch

+ m->d_Ks [2] * y[0] + m->d_Ks [3] * y[2]; // electrostatic tuning

return GSL_SUCCESS;

}

156

APPENDIX B

Hybrid Mode Gyroscope Control Code

#include <gyro_common .h>

#include <gyro_wa_control_relay_2 .h>

#include <gr_io_signature .h>

#include <gr_sincos .h>

#include <math.h>

#include <gr_math.h>

#include <stdio.h>

#include <string.h>

//#define SQUARE_DRIVE

#define VELOCITY -1 // -1 for velocity , 1 for position

gyro_wa_control_relay_2 :: gyro_wa_control_relay_2

(\

bool velocity , float lock_thresh , const std::vector <double > &dm_ff_taps ,

const std::vector <double > &dm_fb_taps , float x_gain , float y_gain ,

float clip , float elock , float qlock , float slock , float smp_rate)

: gr_sync_block ("wa_control_relay_2",

gr_make_io_signature (4, 4, sizeof (float)),

gr_make_io_signature (16, 16, sizeof (float))),

d_amp (0.), d_err (0.), d_lock_thresh(lock_thresh), d_pll_enb(false),

d_theta_offset (0.0) , d_theta_last (0.), d_ext_enb(false),

d_filt_cx(dm_ff_taps , dm_fb_taps), d_filt_sx(dm_ff_taps , dm_fb_taps),

d_filt_cy(dm_ff_taps , dm_fb_taps), d_filt_sy(dm_ff_taps , dm_fb_taps),

d_rx_gain(x_gain), d_ry_gain(y_gain), d_dm_updated(false),

d_epid(clip ,-clip ,elock), d_qpid(clip ,0., qlock), d_spid(clip ,0., slock),

d_dxpid(clip ,0,elock),d_dypid(clip ,0,elock),

d_fxpid(clip ,0,qlock),d_fypid(clip ,0,qlock),

d_dpid (15,0,1), d_count (0), d_delay (0),

d_dd_locked(false), d_dd_enable(false),

d_smp_rate(smp_rate), d_Kerr (0.), d_Ferr (0.), d_Kq (0.), d_plus_pi(M_PI)

{

d_v = 0;

}

void

gyro_wa_control_relay_2 :: set_dm_taps (const std::vector <double > &ff_taps ,

const std::vector <double > &fb_taps)

{

d_new_dm_ff_taps = ff_taps;

d_new_dm_fb_taps = fb_taps;

157

d_dm_updated = true;

}

/* Check whether tha PLL is locked , used to control initialization sequence */

bool

gyro_wa_control_relay_2 :: locked ()

{

bool locked = (d_amp > 100) && (fabs(d_err/d_amp) < d_lock_thresh);

if(locked)

d_ext_enb = true; // this won’t unset if ’lock’ is lost

return locked;

}

void

gyro_wa_control_relay_2 :: enable(bool enb)

{

d_pll_enb = enb;

}

gyro_wa_control_relay_2 ::~ gyro_wa_control_relay_2 ()

{

}

/* Detect the delay for feed -forward correction of the delay */

int

gyro_wa_control_relay_2 :: delay_detect (int noutput_items ,

gr_vector_const_void_star &input_items ,

gr_vector_void_star &output_items)

{

float *ix = (float *) output_items [0]; // in phase x axis mod

float *qx = (float *) output_items [1]; // out of phase x axis mod

float *iy = (float *) output_items [2]; // in phase y axis mod

float *qy = (float *) output_items [3]; // out of phase y axis mod

float *p_cx = (float *) input_items [0];

float *p_sx = (float *) input_items [1];

float *p_cy = (float *) input_items [2];

float *p_sy = (float *) input_items [3];

if(d_dd_enable && (! d_delay) && (d_count < 16384))

{ // this is over 50ms, skip once d_delay is set

for(int it=0; it <noutput_items; it++)

{

*ix++ = d_count ++;

}

}

else // don’t set locked until the output is cleared

{

if(d_dd_enable)

{

if(! d_delay) // only set this once

{

d_delay = d_count - floorf (*p_cx);

d_tmp_delay = d_delay;

}

d_count -= noutput_items;

if(d_count <= 0)

{ // send out as many as were already sent to clear out the queue

d_dd_locked = true;

}

}

memset(ix, 0, noutput_items*sizeof(float));

}

memset(qx, 0, noutput_items*sizeof(float));

memset(qy, 0, noutput_items*sizeof(float));

memset(iy, 0, noutput_items*sizeof(float));

return noutput_items;

}

158

void

gyro_wa_control_relay_2 :: dd_enable(bool enb)

{

if(enb)

d_delay = d_tmp_delay;

else

d_delay = 0;

d_dd_enable = enb;

}

void gyro_wa_control_relay_2 :: dd_clear ()

{

d_dd_locked = false;

d_count = 0;

d_delay = 0;

}

int

gyro_wa_control_relay_2 ::work (int noutput_items ,

gr_vector_const_void_star &input_items ,

gr_vector_void_star &output_items)

{

if (d_dm_updated)

{

d_filt_cx.set_taps(d_new_dm_ff_taps ,d_new_dm_fb_taps);

d_filt_sx.set_taps(d_new_dm_ff_taps ,d_new_dm_fb_taps);

d_filt_cy.set_taps(d_new_dm_ff_taps ,d_new_dm_fb_taps);

d_filt_sy.set_taps(d_new_dm_ff_taps ,d_new_dm_fb_taps);

d_dm_updated = false;

return 0; // history requirements may have changed.

}

float *ix = (float *) output_items [0]; // in phase x axis mod

float *qx = (float *) output_items [1]; // out of phase x axis mod

float *iy = (float *) output_items [2]; // in phase y axis mod

float *qy = (float *) output_items [3]; // out of phase y axis mod

float *E = (float*) output_items [4];

float *Q = (float*) output_items [5];

float *Th = (float*) output_items [6];

float *Li = (float*) output_items [7];

float *epid=(float*) output_items [8];

float *qpid=(float*) output_items [9];

float *spid=(float*) output_items [10];

float *rate=(float*) output_items [11];

float *fmmx=(float*) output_items [12];

float *fmmy=(float*) output_items [13];

float *dmmx=(float*) output_items [14];

float *dmmy=(float*) output_items [15];

float *p_cx = (float *) input_items [0];

float *p_sx = (float *) input_items [1];

float *p_cy = (float *) input_items [2];

float *p_sy = (float *) input_items [3];

int size = noutput_items;

float cx , sx , cy, sy;

float cx2 ,sx2 ,cy2 ,sy2;

float S, R; // ~x,y components of primary oscillation

float sint , cost , sin2t , cos2t; // sin and cos of orientation , for efficiency

float ffth; // fed -forward angle

if(! d_pll_enb) // just send 0

{

delay_detect(noutput_items , input_items , output_items);

memset(E, 0, noutput_items*sizeof(float));

memset(Q, 0, noutput_items*sizeof(float));

memset(Th ,0, noutput_items*sizeof(float));

memset(epid , 0, noutput_items*sizeof(float));

memset(qpid , 0, noutput_items*sizeof(float));

159

memset(spid , 0, noutput_items*sizeof(float));

memset(rate , 0, noutput_items*sizeof(float));

return noutput_items;

}

while (size -- > 0)

{ // XX_FILTER based on filter and invert cX based on velocity

cx = CX_FILTER (*p_cx++ * VELOCITY * d_rx_gain);

sx = SX_FILTER (*p_sx++ * d_rx_gain);

cy = CY_FILTER (*p_cy++ * VELOCITY * d_ry_gain);

sy = SY_FILTER (*p_sy++ * d_ry_gain);

cx2 = cx*cx;

sx2 = sx*sx;

cy2 = cy*cy;

sy2 = sy*sy;

// Extract control parameters

*E = (cx2+sx2+cy2+sy2)*USRP_SCALE;

Q = 2(cx * sy - cy * sx)*USRP_SCALE;

R = (cx2+sx2 -cy2 -sy2)*USRP_SCALE;

S = 2*(cx * cy + sx * sy)*USRP_SCALE;

d_err = (2*(cx * sx + cy * sy))*USRP_SCALE; // Li

// Orientation Expansion

*Th = ((S == 0.0) && (R == 0.0)) ? 0 // avoid NaN , only happens at startup

: (atan(S/R) // avoid NaN , [-pi/2,+pi/2]

+ (R > 0 ? (cx > 0 ? 0 : (S > 0 ? -M_TWOPI : M_TWOPI)) // R > 0

: d_plus_pi)); // R < 0, [-2pi ,+2pi]

d_plus_pi = *Th > 0 ? M_PI : -M_PI;

// PIDS

*epid = d_epid.update (*E,1); // average damping compensation

*qpid = d_qpid.update (*Q,1); // quadrature compensation

*spid = d_spid.update (*Th); // steering control

d_rate = fmod(*Th-d_theta_last ,M_PI /2);

d_rate = fabs(d_rate) > 26.17/ d_smp_rate ? 0 : d_rate;

cos2t = cos(*Th); sin2t = sin(*Th);

*dmmx = d_dxpid.update (*E,-d_rate*d_smp_rate*sin2t);

*dmmy = d_dypid.update (*E, d_rate*d_smp_rate*cos2t);

/* this oscillates around set point if gain is higher than ampl gain

// fails when rate is negative?

*dmmx = d_dxpid.update (*E, sin2t);

*dmmy = d_dypid.update (*E,-cos2t); */

/* this the one from theory , settles slowly but works

*dmmx = d_dxpid.update (*E, cos2t);

*dmmy = d_dypid.update (*E, sin2t); */

/* This works without fmm in steering , with Ai ,Ad == 0in qpid ,

but takes long time to settle

*fmmx = d_fxpid.update (*Q, cos2t);

*fmmy = d_fypid.update (*Q, sin2t);

*/

/* This works with Ai,Ad != 0, doesn ’t oscillate when settling.

Problem with negatve rates

*fmmx = d_fxpid.update (*Q, cos2t);

*fmmy = d_fypid.update (*Q, sin2t); */

/* This works with Ai,Ad != 0, doesn ’t oscillate when settling. */

*fmmx = d_fxpid.update (*Q, -d_rate*d_smp_rate*cos2t);

*fmmy = d_fypid.update (*Q, -d_rate*d_smp_rate*sin2t);

d_theta_last = *Th;

// Calculate scaling of drive signals including feed forward

// Next Th is Th+rate*d_delay (so instantaneous Th is correct)

ffth = *Th + d_rate * d_delay; // feed forward orientation

if(! d_epid.enable ())

{

cost = 0.5;

sint = 0.5;

}

else

160

{

sint = sin(ffth /2); cost = cos(ffth /2);

}

*ix = d_tx_gain *((* epid+*dmmx) * cost - *spid*sint + *dmmy*sint);

*iy = d_ty_gain *((*epid -*dmmx) * sint + *spid*cost + *dmmy*cost);

*qx = d_tx_gain *(*qpid*sint - *fmmx*cost - *fmmy*sint);

*qy = d_ty_gain *(-*qpid*cost + *fmmx*sint - *fmmy*cost);

*rate = d_rate * d_smp_rate;

*Li = d_err;

d_v ++;

ix++; iy++; qx++; qy++;

E++; Q++; Th++; epid ++; qpid ++; spid ++; rate ++; Li++;

fmmx ++; fmmy ++; dmmx ++; dmmy ++;

}

// calculate values for tuning bias voltages. These are more epxensive

// and only need to be done very slowly , so just do it once per buffer

// This is 2(Theta_w)

d_Kerr = atan2(S,R) - atan2 (*(qy -1), *(qx -1));

// This is delta_w * tau

d_Ferr = *(iy -1) +*(ix -1) ?

(*(qy -1) -*(qx -1))/(*(iy -1) +*(ix -1)) : *(qy -1) /(*(ix -1));

d_amp = *(E-1);

return noutput_items;

}

161

APPENDIX C

Rate Gyroscope Firmware

// Pipelined gyroscope parameter extractor and controller

module rate_gyro_cont (clk , reset , enable ,

serial_addr , serial_data , serial_strobe ,

cx, sx , cy , sy, interp_strobe ,

interp_rate , strobe ,

ix, iy , qy , qx, phase);

parameter SET_ADDR = 0;

parameter FREQ_ADDR = 0;

parameter CONT_ADDR = 0;

parameter resolution= 32;

parameter LSS = 1; // Lsum scale

parameter LCS = 0; // Lcont scale

input wire clk , reset , enable , strobe;

input wire [15:0] cx;

input wire [15:0] sx;

input wire [15:0] cy;

input wire [15:0] sy;

input wire interp_strobe;

input wire [7:0] interp_rate;

input wire [6:0] serial_addr;

input wire [31:0] serial_data;

input wire serial_strobe;

output wire [31:0] ix;

output wire [31:0] iy;

output wire [31:0] qy;

output wire [31:0] qx;

output reg [31:0] phase;

reg [3:0] pipeline;

reg rdy; // finished one sample , wait for another

reg [1:0] pid_mux , iir_mux;

reg pid_strobe , iir_strobe;

wire [31:0] pid_sum , pid_last , pid_cont ,

pid_new_sum , pid_new_last;

wire [15:0] pid_Ap , pid_Ai , pid_Ad;

wire [15:0] iir_in , iir_in_hist;

wire [31:0] iir_out , iir_out_hist;

wire [15:0] iir_b1 , iir_a0 , iir_a1;

162

wire [31:0] iir_out_limited;

reg [31:0] pid_err;

reg [15:0] Eerr , Eerr_last; // inputs to IIR

reg [31:0] Esum , Elast , Econt;

reg [31:0] E_iir_out_hist ,L_iir_out_hist ,S_iir_out_hist ,Q_iir_out_hist;

reg [31:0] Qsum , Qlast , Qcont;

reg [31:0] Ssum , Slast , Scont;

reg [31:0] Lsum , Llast , Lcont;

wire [15:0] Einit;//, Qinit , Sinit;

wire [31:0] freq0;

wire [31:0] cont_config; // cont_config [3:0] == enable spid ,qpid ,lpid ,epid

wire [15:0] Eset;

reg [15:0] cx_n , cx_n1; // latched input and prev_input

reg [15:0] sx_n , sx_n1;

reg [15:0] cy_n , cy_n1;

reg [15:0] sy_n , sy_n1;

assign qx = Lcont;

assign ix = Econt;

assign iy = Scont;

assign qy = Qcont;

pipelined_pid pid

(.clk(clk), .reset(reset), .enable(enable), .strobe(pid_strobe),

.err(pid_err), .prev_sum(pid_sum), .prev_in(pid_last),

.new_in(pid_new_last), .new_sum(pid_new_sum), .cont(pid_cont),

.rdy(pid_rdy), .Ap(pid_Ap), .Ai(pid_Ai), .Ad(pid_Ad));

pipelined_iir1 iir

(.clk(clk), .reset(reset), .enable(enable), .strobe(iir_strobe),

.in(iir_in), .out(iir_out), .rdy(iir_rdy),

.in_hist(iir_in_hist) ,.out_hist(iir_out_hist),

.b1(iir_b1),.a0(iir_a0),.a1(iir_a1));

rate_gyro_gains rgg

(.clk(clk), .pid_mux(pid_mux), .iir_mux(iir_mux),

.b1(iir_b1), .a0(iir_a0), .a1(iir_a1),

.Ap(pid_Ap), .Ai(pid_Ai), .Ad(pid_Ad),

.serial_addr(serial_addr), .serial_data(serial_data),

.serial_strobe(serial_strobe));

assign iir_out_limited = iir_out;

assign pid_sum = pid_mux [1] ? (pid_mux [0] ? Esum : Ssum)

: (pid_mux [0] ? Qsum : Lsum);

assign pid_last = pid_mux [1] ? (pid_mux [0] ? Elast : Slast)

: (pid_mux [0] ? Qlast : Llast);

assign iir_in = iir_mux [1] ? (iir_mux [0] ? Eerr : cy_n)

: (iir_mux [0] ? sy_n : sx_n);

assign iir_in_hist = iir_mux [1] ? (iir_mux [0] ? Eerr_last : cy_n1)

: (iir_mux [0] ? sy_n1 : sx_n1);

assign iir_out_hist = iir_mux [1] ? (iir_mux [0] ? E_iir_out_hist : S_iir_out_hist

)

: (iir_mux [0] ? Q_iir_out_hist : L_iir_out_hist);

setting_reg #(SET_ADDR) sr_eset (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe) ,.

addr(serial_addr) ,.in(serial_data) ,.out ({Einit ,Eset }));

// Phase accumulator for PLL

setting_reg #(FREQ_ADDR) sr_freq0 (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(freq0));

setting_reg #(CONT_ADDR) sr_config (. clock(clk) ,.reset (1’b0) ,.strobe(

serial_strobe) ,.addr(serial_addr) ,.in(serial_data) ,.out(cont_config));

always @(posedge clk)

if (reset)

phase <= #1 0;

‘ifdef SLOW_PHASE_UPDATE

else if (enable & strobe)

163

‘else

else

‘endif

phase <= #1 phase + freq0 + {{ LCS{Lcont [31]}} , Lcont [31: LCS]};

always @(posedge clk)

if (reset)

begin

rdy <= #1 1’b1;

pipeline <= #1 4’d0; pid_mux <= #1 2’d0;

iir_mux <= #1 2’d0; pid_strobe <= #1 1’d0;

iir_strobe <= #1 1’d0; pid_err <= #1 32’d0;

Eerr <= #1 16’d0; Eerr_last <= #1 16’d0;

Esum <= #1 32’d0; Elast <= #1 32’d0;

Econt <= #1 32’d0; E_iir_out_hist <= #1 32’d0;

L_iir_out_hist <= #1 32’d0; S_iir_out_hist <= #1 32’d0;

Q_iir_out_hist <= #1 32’d0; Qsum <= #1 32’d0;

Qlast <= #1 32’d0; Qcont <= #1 32’d0;

Ssum <= #1 32’d0; Slast <= #1 32’d0;

Scont <= #1 32’d0; Lsum <= #1 32’d0;

Llast <= #1 32’d0; Lcont <= #1 32’d0;

cx_n <= #1 16’d0; cx_n1 <= #1 16’d0;

sx_n <= #1 16’d0; sx_n1 <= #1 16’d0;

cy_n <= #1 16’d0; cy_n1 <= #1 16’d0;

sy_n <= #1 16’d0; sy_n1 <= #1 16’d0;

end

else if (enable & strobe)

begin

rdy <= #1 1’b0;

pipeline <= #1 4’d0;

pid_mux <= #1 2’h0;

iir_mux <= #1 2’h0;

cx_n <= #1 cx; // sample inputs

sx_n <= #1 sx;

cy_n <= #1 cy;

sy_n <= #1 sy;

cx_n1 <= #1 cx_n; // input history for IIR

sx_n1 <= #1 sx_n;

cy_n1 <= #1 cy_n;

sy_n1 <= #1 sy_n;

// stobe kickstarts new IIR sequence , rest are driven by rdy

iir_strobe <= #1 1’b1;

end

else if (!rdy && enable && (iir_rdy | pid_rdy))

begin

if(iir_rdy) // mux++ & latch history of IIR to correct stream

begin

iir_mux <= #1 iir_mux + 1’b1;

pid_err <= #1 iir_out_limited ;

// pid_err <= #1 iir_out; // IIR output always goes to PID input

case (pipeline)

4’d0: iir_strobe <= #1 1’b1;

4’d1: iir_strobe <= #1 1’b1;

4’d2: iir_strobe <= #1 1’b1;

4’d3: iir_strobe <= #1 1’b0; // wait for new data

endcase

case (pipeline)

4’d0:

begin

// stobe kickstarts new PID sequence , then driven by rdy

pid_strobe <= #1 1’b1;

L_iir_out_hist <= #1 iir_out_limited ;

Eerr <= #1 cx_n - Eset;

Eerr_last <= #1 Eerr;

end

4’d1: Q_iir_out_hist <= #1 iir_out_limited;

4’d2: S_iir_out_hist <= #1 iir_out_limited ;

4’d3: E_iir_out_hist <= #1 iir_out_limited;

164

endcase // case (pipeline)

end // if (iir_rdy)

else

iir_strobe <= #1 1’b0;

if(pid_rdy) // mux++ & latch outputs of PID to correct stream

begin

pid_mux <= #1 pid_mux + 1’b1;

case (pipeline)

4’d1: pid_strobe <= #1 1’b1;

4’d2: pid_strobe <= #1 1’b1;

4’d3: pid_strobe <= #1 1’b1;

4’d4:

begin

pid_strobe <= #1 1’b0; // wait for new data

rdy <= #1 1’b1;

end

endcase

case (pipeline)

4’d1: Lcont <= #1 pid_cont; //{{3{ pid_cont [31]}} , pid_cont [31:3]};

4’d2: Qcont <= #1 pid_cont;

4’d3: Scont <= #1 pid_cont;

4’d4: Econt <= #1 pid_cont;

endcase // case (pipeline)

case (pipeline)

4’d1: Lsum <= #1 cont_config [3] ? {{LSS{

pid_new_sum [31]}} , pid_new_sum [31: LSS]}

: 32’b0;

4’d2: Qsum <= #1 cont_config [2] ? pid_new_sum : 32’b0;

4’d3: Ssum <= #1 cont_config [1] ? pid_new_sum : 32’b0;

4’d4: Esum <= #1 cont_config [0] ? pid_new_sum : {Einit ,16’b0};

endcase // case (pipeline)

case (pipeline)

4’d1: Llast <= #1 pid_new_last;

4’d2: Qlast <= #1 pid_new_last ;

4’d3: Slast <= #1 pid_new_last;

4’d4: Elast <= #1 pid_new_last ;

endcase // case (pipeline)

end // if (pid_rdy)

else if (pipeline != 4’d0)

pid_strobe <= #1 1’b0;

if(iir_rdy && (pid_rdy | pipeline == 0))

pipeline <= #1 pipeline + 1’b1;

end // if (!rdy && enable && (iir_rdy | pid_rdy))

else // turn off strobes

begin

iir_strobe <= #1 1’b0;

pid_strobe <= #1 1’b0;

end

endmodule // rate_gyro_cont

// This is first order filter for applications where flatness isn’t critical

module pipelined_iir1 (clk , reset , enable , strobe ,

in, out , rdy , in_hist , out_hist , b1, a0, a1);

parameter RES = 32;

input wire clk , reset , enable , strobe;

output reg rdy;

input wire [15:0] in; // sensed signals

input wire [15:0] in_hist; // input history for this stream

input wire [31:0] out_hist; // out history for this stream

output reg [31:0] out;

input wire [15:0] b1,a0,a1;

wire [15:0] coeff; // muxed coeff

wire [15:0] val; // muxed memory

wire [31:0] sum;

wire [30:0] prod;

wire [31:0] prod_e;

165

wire [31:0] pre_acc;

reg [31:0] acc;

reg [1:0] mux;

reg signed [15:0] in_n;

reg signed [15:0] in_n1;

reg signed [31:0] out_n; // need full resolution to support low freqs

reg signed [15:0] b1_n , a0_n , a1_n; // latched gains

reg set;

assign prod_e = {prod ,prod [30]};

assign sum = acc + prod_e;

// pre_acc is remainder of out that would otherwise be discarded

// this allows small positive signals to grow even if the initial output is 0

// negative numbers tend to be overcounted (negaive anything rounds

// to at least - 1), so the postivie remainder slows signal growth and

// makes the filter balanced for +/- signals

assign pre_acc = {16’b0,out_n [15:0]};

mult mult(.clock(clk),.x(val) ,.y(coeff),

.product(prod),.enable_in (1’b1),

.enable_out ());

// y[n] = a[0]*x[n]+a[1]*x[n-1]+b[1]*y[n-1]

// do a[1] then a[0] then b[1]

assign coeff = mux[1] ? b1_n : (mux[0] ? a1_n : a0_n);

// when mux == 0, in_n is previous input ,

// when mux == 1, in_n will be the newly sampled input

assign val = mux[1] ? out_n [31:16] : (mux [0] ? in_n : in_n1);

always @(posedge clk)

begin

if(reset)

begin

out <= #1 32’b0; out_n <= #1 32’b0;

rdy <= #1 1’b0; in_n <= #1 16’d0;

in_n1 <= #1 16’d0; acc <= #1 32’d0;

mux <= #1 2’d0; a0_n <= #1 16’d0;

a1_n <= #1 16’d0; b1_n <= #1 16’d0;

set <= #1 1’b0;

end

else

begin

if(strobe & enable)

begin

in_n1 <= #1 in_hist;

in_n <= #1 in;

out_n <= #1 out_hist;

acc <= #1 32’d0;

rdy <= #1 1’b0;

mux <= #1 1’b0;

a0_n <= #1 a0;

a1_n <= #1 a1;

b1_n <= #1 b1;

set <= #1 1’b1;

end

else if (set && !rdy)

begin

mux <= #1 mux + 2’b1;

case(mux)

2’d0 : acc <= #1 pre_acc;

2’d1 : acc <= #1 sum; // acc += a0*prev_in

2’d2 : acc <= #1 sum; // acc += a1*in

2’d3 :

begin

set <= #1 1’b0; // disable mux (set by strobe)

rdy <= #1 1’b1; // strobe ready to parent module

out <= #1 sum; // acc += b1*prev_out

end

endcase // case (mux)

166

end // else: !if((strobe | rdy) & enable)

else

rdy <= #1 1’b0;

end // else: !if(reset)

end // always @ (posedge clk)

endmodule // pipelined_iir1

// PID which rounds by only using top 16 bits. Should use pipelined_pid16 , but

// this is the version used for the data presented here.

module pipelined_pid (clk , reset , enable , strobe ,

err , prev_sum , prev_in , new_in , new_sum , cont , rdy ,

Ap, Ai , Ad);

parameter RES = 32;

parameter SCALE = 5;

parameter ISCALE = 0;

parameter DSCALE = 0;

input wire clk;

input wire reset;

input wire enable;

input wire strobe;

input wire [RES -1:0] err; // this is the input to control

input wire [RES -1:0] prev_sum;

input wire [RES -1:0] prev_in;

output reg [RES -1:0] cont;

output reg [RES -1:0] new_sum;

output reg [RES -1:0] new_in;

output reg rdy;

input wire [15:0] Ap,Ai,Ad;

wire [15:0] gain; // muxed gain

wire [15:0] val; // muxed memory

wire [31:0] sum;

wire [31:0] diff;

wire [31:0] diffl;

wire [30:0] prod;

wire [31:0] prod_e;

//wire [15:0] out_short;

reg [31:0] acc;

reg [2:0] mux;

reg [15:0] Ap_n ,Ai_n ,Ad_n;

reg signed [RES -1:0] in_n;

reg signed [RES -1:0] in_n1;

reg set;

wire [15:0] err_short;

assign err_short = err [31:16];

mult mult(.clock(clk),.x(val) ,.y(gain),

.product(prod),.enable_in (1’b1),

.enable_out ());

// y[n] = pg*x[n] + sum

// sum = sum[n-1] + pi*x[n] + pd*(x[n]-x[n-1])

assign gain = mux[1] ? Ap_n : (mux[0] ? Ad_n : Ai_n);

// when mux == 0, in_n is previous input ,

// when mux == 1, in_n will be the newly sampled input

assign diff = in_n - in_n1;

assign diffl = (diff [31] & (diff > 32’hffff0000)) ? 32’h0 : diff;

// assign diffl = (diff [31] & (diff < 32’hffff8000)) ? 32’h80000000 : (~diff [31] &

(diff > 32’h00007fff) ? 32’h7fff0000 : {diff [15:0] ,16’b0});

assign val = mux[1] ? in_n [31:16] : (mux[0] ? {{ DSCALE{diffl [31]}} , diffl [31:(

DSCALE +16)]} : in_n [31:16]);

// assign val = mux [1] ? in_n [31:16] : (mux[0] ? diffl [(31- DSCALE):(16- DSCALE)]

: in_n [31:16]);

// scaling for sample rat , mux is +1 from gain and val. Use same scale for P and D

gains

assign prod_e = mux [1] ? {prod [30], prod[30-SCALE :0],{ SCALE {1’b0}}} : {{1+ ISCALE{

prod [30]}} , prod [30: ISCALE]};

167

assign sum = acc + prod_e;

always @(posedge clk)

if(reset)

begin

cont <= #1 32’d0; new_sum <= #1 32’d0;

new_in <= #1 32’d0; rdy <= #1 1’b0;

in_n <= #1 32’d0; in_n1 <= #1 32’d0;

acc <= #1 32’d0; mux <= #1 2’d0;

Ap_n <= #1 16’d0; Ai_n <= #1 16’d0;

Ad_n <= #1 16’d0; set <= #1 1’b0;

end

else

if(strobe && enable) // get new values

begin

in_n1 <= #1 prev_in;

in_n <= #1 err;

new_in <= #1 err;

acc <= #1 prev_sum;

mux <= #1 2’d0;

rdy <= #1 1’b0;

Ap_n <= #1 Ap;

Ai_n <= #1 Ai;

Ad_n <= #1 Ad;

set <= #1 1’b1;

end

else if (set && !rdy)

begin

mux <= #1 mux + 1’b1;

case(mux)

2’d1 :

begin

acc <= #1 sum; // result from mux = 0 (Ai*in_n)

if(sum [30] && !sum [31]) // clip high

new_sum <= #1 32’h40000000;

else if(sum [31] && !sum [30]) // clip low

new_sum <= #1 32’ hc0000000 ;

else

new_sum <= #1 sum ;// this is sum to carry over

end

2’d2 : acc <= #1 sum; // result from mux = 1 (Ad*diff)

2’d3 :

begin

set <= #1 1’b0;

rdy <= #1 1’b1;

cont <= #1 sum; // result from mux = 2 (Ap*in_n)

end

endcase // case (mux)

end // if (!rdy)

else

rdy <= #1 1’b0;

endmodule // pipelined_pid

// load gains into l,m,n and Ap, Ai, Ad based on current mux

module rate_gyro_gains (clk , pid_mux , iir_mux ,

b1, a0 , a1 , Ap, Ai, Ad,

serial_addr , serial_data , serial_strobe);

parameter E_AP_ADDR = 64;

parameter E_AID_ADDR = 65;

parameter S_AP_ADDR = 66;

parameter S_AID_ADDR = 67;

parameter Q_AP_ADDR = 68;

parameter Q_AID_ADDR = 69;

parameter L_AP_ADDR = 70;

parameter L_AID_ADDR = 71;

parameter PLL_B_ADDR = 72;

168

parameter PLL_A_ADDR = 73;

parameter PID_B_ADDR = 74;

parameter PID_A_ADDR = 75;

parameter resolution = 32;

input wire clk;

input wire [1:0] pid_mux , iir_mux;

output wire [15:0] b1,a0,a1;

output wire [15:0] Ap,Ai,Ad;

input wire [6:0] serial_addr;

input wire [31:0] serial_data;

input wire serial_strobe;

wire [15:0] E_Ap , E_Ai , E_Ad;

wire [15:0] S_Ap , S_Ai , S_Ad;

wire [15:0] Q_Ap , Q_Ai , Q_Ad;

wire [15:0] L_Ap , L_Ai , L_Ad;

wire [15:0] pll_a0 , pll_a1 , pll_b1;

wire [15:0] pid_a0 , pid_a1 , pid_b1;

assign Ap = pid_mux [1] ? (pid_mux [0] ? E_Ap : S_Ap)

: (pid_mux [0] ? Q_Ap : L_Ap);

assign Ai = pid_mux [1] ? (pid_mux [0] ? E_Ai : S_Ai)

: (pid_mux [0] ? Q_Ai : L_Ai);

assign Ad = pid_mux [1] ? (pid_mux [0] ? E_Ad : S_Ad)

: (pid_mux [0] ? Q_Ad : L_Ad);

assign b1 = iir_mux [1] ? (iir_mux [0] ? pid_b1 : pid_b1)

: (iir_mux [0] ? pid_b1 : pll_b1);

assign a0 = iir_mux [1] ? (iir_mux [0] ? pid_a0 : pid_a0)

: (iir_mux [0] ? pid_a0 : pll_a0);

assign a1 = iir_mux [1] ? (iir_mux [0] ? pid_a1 : pid_a1)

: (iir_mux [0] ? pid_a1 : pll_a1);

wire [31:0] E_Aid;

wire [31:0] Q_Aid;

wire [31:0] S_Aid;

wire [31:0] L_Aid;

wire [31:0] pll_a;

wire [31:0] pid_a;

assign E_Ai = E_Aid [15:0];

assign E_Ad = E_Aid [31:16];

assign Q_Ai = Q_Aid [15:0];

assign Q_Ad = Q_Aid [31:16];

assign S_Ai = S_Aid [15:0];

assign S_Ad = S_Aid [31:16];

assign L_Ai = L_Aid [15:0];

assign L_Ad = L_Aid [31:16];

assign pll_a0 = pll_a [15:0];

assign pll_a1 = pll_a [31:16];

assign pid_a0 = pid_a [15:0];

assign pid_a1 = pid_a [31:16];

setting_reg #(E_AP_ADDR) sr_e_ap (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe) ,.

addr(serial_addr) ,.in(serial_data) ,.out(E_Ap));

setting_reg #(E_AID_ADDR) sr_e_aid (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(E_Aid));

setting_reg #(S_AP_ADDR) sr_s_ap (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe) ,.

addr(serial_addr) ,.in(serial_data) ,.out(S_Ap));

setting_reg #(S_AID_ADDR) sr_s_aid (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(S_Aid));

setting_reg #(Q_AP_ADDR) sr_q_ap (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe) ,.

addr(serial_addr) ,.in(serial_data) ,.out(Q_Ap));

setting_reg #(Q_AID_ADDR) sr_q_aid (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(Q_Aid));

setting_reg #(L_AP_ADDR) sr_l_ap (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe) ,.

addr(serial_addr) ,.in(serial_data) ,.out(L_Ap));

setting_reg #(L_AID_ADDR) sr_l_aid (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

169

,.addr(serial_addr) ,.in(serial_data) ,.out(L_Aid));

setting_reg #(PLL_B_ADDR) sr_pll_b (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(pll_b1));

setting_reg #(PLL_A_ADDR) sr_pll_a (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(pll_a));

setting_reg #(PID_B_ADDR) sr_pid_b (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(pid_b1));

setting_reg #(PID_A_ADDR) sr_pid_a (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(pid_a));

endmodule // rate_gyro_gains

170

APPENDIX D

Relay Mode Firmware

// Pipelined gyroscope parameter extractor and controller

module relay_gyro_cont (clk , reset , enable ,

serial_addr , serial_data , serial_strobe ,

cx, sx , cy , sy, strobe , phase , L_n , Lcont);

parameter FREQ_ADDR = 0;

parameter CONT_ADDR = 0;

parameter resolution= 32;

input wire clk , reset , enable , strobe;

input wire [15:0] cx;

input wire [15:0] sx;

input wire [15:0] cy;

input wire [15:0] sy;

input wire [6:0] serial_addr;

input wire [31:0] serial_data;

input wire serial_strobe;

output reg [31:0] phase;

reg rdy; // signals finished one sample , wait for another

reg [1:0] iir_mux;

reg ext_strobe , pid_strobe , iir_strobe;

wire ext_rdy , pid_rdy , iir_rdy;

wire [31:0] pid_sum , pid_last , pid_cont ,

pid_new_sum , pid_new_last;

wire [15:0] pid_Ap , pid_Ai , pid_Ad;

wire [15:0] iir_in , iir_in_hist;

wire [31:0] iir_out , iir_out_hist;

wire [15:0] iir_b1 , iir_a0 , iir_a1;

wire signed [31:0] param; // extracted parameter

output wire [31:0] L_n; // latched parameter and previous

output reg [31:0] Lcont;

reg [15:0] pid_err , Llast;

reg [31:0] L_iir_out_hist;

reg [31:0] Lsum;

reg [15:0] Lcont_n0;

reg [15:0] Lcont_n1;

wire [15:0] Lcont_short;

wire [31:0] freq0;

171

wire [31:0] cont_config; // cont_config [3:0] == enable spid ,qpid ,lpid ,epid

reg [15:0] cx_n; // latched inputs

reg [15:0] sx_n;

reg [15:0] cy_n;

reg [15:0] sy_n;

relay_extractor extractor

(.clk(clk), .reset(reset), .enable(enable), .strobe(ext_strobe),

.cx(cx_n), .sx(sx_n), .cy(cy_n), .sy(sy_n),

.out(param), .rdy(ext_rdy));

pipelined_pid16 pid

(.clk(clk), .reset(reset), .enable(enable), .strobe(pid_strobe),

.err(pid_err), .prev_sum(pid_sum), .prev_in(pid_last),

.new_in(pid_new_last), .new_sum(pid_new_sum), .cont(pid_cont),

.rdy(pid_rdy), .Ap(pid_Ap), .Ai(pid_Ai), .Ad(pid_Ad));

pipelined_iir1 iir

(.clk(clk), .reset(reset), .enable(enable), .strobe(iir_strobe),

.in(iir_in), .out(iir_out), .rdy(iir_rdy),

.in_hist(iir_in_hist) ,.out_hist(iir_out_hist),

.b1(iir_b1),.a0(iir_a0),.a1(iir_a1));

relay_gyro_gains rgg

(.clk(clk),

.b1(iir_b1), .a0(iir_a0), .a1(iir_a1),

.Ap(pid_Ap), .Ai(pid_Ai), .Ad(pid_Ad),

.serial_addr(serial_addr), .serial_data(serial_data),

.serial_strobe(serial_strobe));

assign L_n = pid_err;

assign pid_sum = Lsum;

assign pid_last = Llast;

assign iir_in = Lcont_n0;

assign iir_in_hist = Lcont_n1;

assign iir_out_hist = L_iir_out_hist;

setting_reg #(FREQ_ADDR) sr_freq0 (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(freq0));

setting_reg #(CONT_ADDR) sr_config (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(cont_config));

assign Lcont_short = Lcont [31:16];

always @(posedge clk)

if (reset)

phase <= #1 0;

else if (enable & strobe)

phase <= #1 phase + freq0 + Lcont;

always @(posedge clk)

if (reset)

begin

rdy <= #1 1’b1; pid_strobe <= #1 1’d0;

iir_strobe <= #1 1’d0; pid_err <= #1 16’d0;

L_iir_out_hist <= #1 32’d0; Lcont_n0 <= #1 16’d0;

Lcont_n1 <= #1 16’d0; Lsum <= #1 32’d0;

Llast <= #1 16’d0; Lcont <= #1 32’d0;

cx_n <= #1 16’d0; sx_n <= #1 16’d0;

cy_n <= #1 16’d0; sy_n <= #1 16’d0;

end

else if (enable & strobe)

begin

rdy <= #1 1’b0;

cx_n <= #1 cx; // sample inputs

sx_n <= #1 sx; // sample inputs

cy_n <= #1 cy; // sample inputs

sy_n <= #1 sy; // sample inputs

172

iir_mux <= #1 2’h0;

// stobe kickstarts new extract sequence , rest are driven by rdy

ext_strobe <= #1 1’b1;

end

else if (!rdy && enable && (ext_rdy | iir_rdy | pid_rdy))

begin

if(ext_rdy)

begin

pid_strobe <= #1 1’b1;

pid_err <= #1 (param [31] & (param < 32’ hff800000)) ? 16’ h8000 : (~

param [31] & (param > 32’ h007fffff) ? 32’ h7fff : param [23:8]+

param [7]);

end

else

ext_strobe <= #1 1’b0;

if(pid_rdy) // latch history of PID

begin

pid_strobe <= #1 1’b0; // wait for new data

iir_strobe <= #1 1’b1;

Lcont_n0 <= #1 pid_cont [31:16]+ pid_cont [15];

Lcont_n1 <= #1 Lcont_n0;

Lsum <= #1 cont_config [3] ? pid_new_sum : 32’b0;

Llast <= #1 pid_new_last ;

end // if (pid_rdy)

if(iir_rdy) // latch history of IIR

begin

iir_mux <= #1 iir_mux + 1’b1;

case (iir_mux)

2’d0:

begin

Lcont <= #1 iir_out;

L_iir_out_hist <= #1 Lcont;

rdy <= #1 1’b1;

iir_strobe <= #1 1’b0;

end

endcase

end // if (iir_rdy)

end // if (!rdy && enable && (ext_rdy | iir_rdy | pid_rdy))

else // turn off strobes

begin

ext_strobe <= #1 1’b0;

iir_strobe <= #1 1’b0;

pid_strobe <= #1 1’b0;

end

endmodule // relay_gyro_cont

// this only extracts Li , much simpler than WA

// the implementation could be simpler , but this should be more

// easily expanded to the full WA control

module relay_extractor (clk , reset , enable , strobe ,

cx, sx , cy , sy, out , rdy);

parameter RES = 32;

input wire clk , reset , enable , strobe;

output reg rdy;

input wire [15:0] cx, sx, cy , sy;

reg signed [15:0] cx_l , sx_l , cy_l , sy_l;

wire signed [30:0] csx , csy; // intermediate calculations

output reg [31:0] out;

wire signed [15:0] cM; // muxed c input

wire signed [15:0] sM; // muxed s input

wire signed [31:0] sum;

wire signed [30:0] prod;

wire signed [31:0] prod_e;

reg signed [31:0] acc;

reg [1:0] mux;

173

reg set;

assign prod_e = {prod [30], prod};

assign sum = acc + prod_e;

mult mult(.clock(clk),.x(cM) ,.y(sM),

.product(prod),.enable_in (1’b1),

.enable_out ());

assign cM = mux [0] ? cy_l : cx_l;

assign sM = mux [0] ? sy_l : sx_l;

always @(posedge clk)

begin

if(reset)

begin

out <= #1 32’b0; rdy <= #1 1’b0;

cx_l <= #1 16’b0; sx_l <= #1 16’b0;

cy_l <= #1 16’b0; sy_l <= #1 16’b0;

acc <= #1 32’d0; mux <= #1 2’d0;

set <= #1 1’b0;

end

else

begin

if(strobe & enable)

begin

cx_l <= #1 cx;

sx_l <= #1 sx;

cy_l <= #1 cy;

sy_l <= #1 sy;

acc <= #1 32’d0;

rdy <= #1 1’b0;

mux <= #1 1’b0;

set <= #1 1’b1;

end

else if (set && !rdy)

begin

mux <= #1 mux + 2’b1;

case(mux)

2’d1 : acc <= #1 sum; // acc += cx*sx

2’d2 :

begin

out <= #1 sum; // acc + cy*sy

set <= #1 1’b0; // disable mux (set by strobe)

rdy <= #1 1’b1; // strobe ready to parent module

end

endcase // case (mux)

end // else: !if((strobe | rdy) & enable)

else

rdy <= #1 1’b0;

end // else: !if(reset)

end // always @ (posedge clk)

endmodule // relay_extractor

// Implement PID that rounds to 16 bits

module pipelined_pid16 (clk , reset , enable , strobe ,

err , prev_sum , prev_in , new_in , new_sum , cont , rdy ,

Ap, Ai , Ad);

parameter RES = 32;

parameter SCALE = 5;

parameter ISCALE = 0;

parameter DSCALE = 0;

input wire clk;

input wire reset;

input wire enable;

input wire strobe;

input wire [15:0] err; // this is the input to control

174

input wire [RES -1:0] prev_sum;

input wire [15:0] prev_in;

output reg [RES -1:0] cont;

output reg [RES -1:0] new_sum;

output reg [15:0] new_in;

output reg rdy;

input wire [15:0] Ap,Ai,Ad;

wire [15:0] gain; // muxed gain

wire [15:0] val; // muxed memory

wire [31:0] sum;

wire [31:0] diff;

wire [30:0] prod;

wire [31:0] prod_e;

reg [31:0] acc;

reg [2:0] mux;

reg [15:0] Ap_n ,Ai_n ,Ad_n;

reg signed [15:0] in_n;

reg signed [15:0] in_n1;

reg set;

mult mult(.clock(clk),.x(val) ,.y(gain),

.product(prod),.enable_in (1’b1),

.enable_out ());

// y[n] = pg*x[n] + sum

// sum = sum[n-1] + pi*x[n] + pd*(x[n]-x[n-1])

assign gain = mux[1] ? Ap_n : (mux[0] ? Ad_n : Ai_n);

// when mux == 0, in_n is previous input ,

// when mux == 1, in_n will be the newly sampled input

assign diff = in_n - in_n1;

assign val = mux[1] ? in_n : (mux [0] ? diff : in_n);

// scaling for sample rat , mux is +1 from gain and val. Use same scale for P and D

gains

assign prod_e = {prod [30], prod [30:0]};

assign sum = acc + prod_e;

always @(posedge clk)

if(reset)

begin

cont <= #1 32’d0; new_sum <= #1 32’d0;

new_in <= #1 32’d0; rdy <= #1 1’b0;

in_n <= #1 16’d0; in_n1 <= #1 16’d0;

acc <= #1 32’d0; mux <= #1 2’d0;

Ap_n <= #1 16’d0; Ai_n <= #1 16’d0;

Ad_n <= #1 16’d0; set <= #1 1’b0;

end

else

if(strobe && enable) // get new values

begin

in_n1 <= #1 prev_in;

in_n <= #1 err;

new_in <= #1 err;

acc <= #1 prev_sum;

mux <= #1 2’d0;

rdy <= #1 1’b0;

Ap_n <= #1 Ap;

Ai_n <= #1 Ai;

Ad_n <= #1 Ad;

set <= #1 1’b1;

end

else if (set && !rdy)

begin

mux <= #1 mux + 1’b1;

case(mux)

2’d1 :

begin

acc <= #1 sum; // result from mux = 0 (Ai*in_n)

175

if(sum [30] && !sum [31]) // clip high

new_sum <= #1 32’h40000000;

else if(sum [31] && !sum [30]) // clip low

new_sum <= #1 32’ hc0000000 ;

else

new_sum <= #1 sum ;// this is sum to carry over

end

2’d2 : acc <= #1 sum; // result from mux = 1 (Ad*diff)

2’d3 :

begin

set <= #1 1’b0;

rdy <= #1 1’b1;

cont <= #1 sum; // result from mux = 2 (Ap*in_n)

end

endcase // case (mux)

end // if (!rdy)

else

rdy <= #1 1’b0;

endmodule // pipelined_pid16

// load gains into l,m,n and Ap, Ai, Ad based on current mux

module relay_gyro_gains (clk ,

b1, a0 , a1 , Ap, Ai, Ad,

serial_addr , serial_data , serial_strobe);

parameter L_AP_ADDR = 70;

parameter L_AID_ADDR = 71;

parameter PLL_B_ADDR = 72;

parameter PLL_A_ADDR = 73;

parameter resolution = 32;

input wire clk;

output wire [15:0] b1,a0,a1;

output wire [15:0] Ap,Ai,Ad;

input wire [6:0] serial_addr;

input wire [31:0] serial_data;

input wire serial_strobe;

wire [15:0] L_Ap , L_Ai , L_Ad;

wire [15:0] pll_a0 , pll_a1 , pll_b1;

assign Ap = L_Ap;

assign Ai = L_Ai;

assign Ad = L_Ad;

assign b1 = pll_b1;

assign a0 = pll_a0;

assign a1 = pll_a1;

setting_reg #(L_AP_ADDR) sr_l_ap (. clock(clk), .reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(L_Ap));

setting_reg #(L_AID_ADDR) sr_l_aid (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out ({L_Ad ,L_Ai }));

setting_reg #(PLL_B_ADDR) sr_pll_b (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(pll_b1));

setting_reg #(PLL_A_ADDR) sr_pll_a (. clock(clk) ,.reset (1’b0) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out ({ pll_a1 ,pll_a0 }));

endmodule // gyro_gains

176

BIBLIOGRAPHY

177

BIBLIOGRAPHY

[1] M. Perlmutter and L. Robin, “High-Performance, low cost inertial MEMS: a
market in motion!” in IEEE/ION PLANS 2012. Myrtle Beack, CA: IEEE,
Apr. 2012.

[2] S. Saraswathy, J. Geen, and J. Chang, “High performance gyro with fast startup
time, high range, wide bandwidth, low noise and excellent vibration immunity,”
Myrtle Beack, SC, Apr. 2012.

[3] J. Cho, “Environmentally resistant rate and rate-integrating gyroscopes,” Ph.D.
dissertation, Dept. Elect. Eng., Univ. Michigan, Ann Arbor, 2012.

[4] D. Meyer and D. Rozelle, “milli-HRG inertial navigation system,” Myrtle Beack,
SC, Apr. 2012.

[5] C. Painter and A. Shkel, “Experimental evaluation of a control system for an
absolute angle measuring micromachined gyroscope,” in Sensors, 2005 IEEE,
Nov. 2005, pp. 1084–1087.

[6] I. P. Prikhodko, S. A. Zotov, A. A. Trusov, and A. M. Shkel, “Foucault pendulum
on a chip: Rate integrating silicon MEMS gyroscope,” Sensors and Actuators A:
Physical, vol. 177, pp. 67–78, Apr. 2012.

[7] D. Keymeulen, C. Peay, D. Foor, T. Trung, A. Bakhshi, P. Withington, K. Yee,
and R. Terrile, “Control of MEMS disc resonance gyroscope (DRG) using a
FPGA platform,” in Aerospace Conference, 2008 IEEE, Mar. 2008, pp. 1 –8.

[8] A. A. Trusov, I. Chepurko, A. R. Schofield, and A. M. Shkel, “A standalone
programmable signal processing unit for versatile characterization of MEMS gy-
roscopes,” in 2007 IEEE Sensors. IEEE, Oct. 2007, pp. 244–247.

[9] S. Park, R. Horowitz, and C. Tan, “Dynamics and control of a MEMS angle
measuring gyroscope,” Sensors and Actuators A: Physical, vol. 144, no. 1, pp.
56–63, May 2008.

[10] J. A. Geen, S. J. Sherman, J. F. Chang, and S. R. Lewis, “Single-chip surface
micromachined integrated gyroscope with 50/h allan deviation,” IEEE Journal
of Solid-State Circuits, vol. 37, no. 12, pp. 1860– 1866, Dec. 2002.

178

[11] S. Rombach, T. Northemann, M. Maurer, M. Dienger, and Y. Manoli, “Modu-
lated electro-mechanical continuous-time lowpass sigma-delta-modulator for mi-
cromachined gyroscopes.” IEEE, Jun. 2011, pp. 1092–1095.

[12] M. Ferguson, D. Keymeulen, K. Hayworth, B. Blaes, C. Peay, K. Yee, E. Mac-
Donald, and D. Foor, “A hardware platform for tuning of MEMS devices using
Closed-Loop frequency response,” in Aerospace Conference, 2005 IEEE, Mar.
2005, pp. 1 –7.

[13] E. J. Loper and D. D. Lynch, “Sonic vibrating bell gyro,” Jun. 1979, U.S. Clas-
sification: 73/504.13 International Classification: : G01P 904; G01C 1956.

[14] M. W. Putty, “A micromachined vibrating ring gyroscope.” 1992.

[15] B. Friedland and M. Hutton, “Theory and error analysis of vibrating-member
gyroscope,” IEEE Transactions on Automatic Control, vol. 23, no. 4, pp. 545–
556, Aug. 1978.

[16] V. Zhuravlev, “Oscillation shape control in resonant systems,” Journal of Applied
Mathematics and Mechanics, vol. 56, no. 5, pp. 725–735, 1992.

[17] D. D. Lynch, A. Mathews, and G. T. Varty, “Innovative mechanizations to opti-
mize inertial sensors for high or low rate operations,” Stuttgart, Germany, Sep.
1997.

[18] S. Smyser, “Si-Ware systems,” http://www.si-
ware.com/ShowPage.aspx?PID=144, May 2012. [Online]. Available:
http://www.si-ware.com/ShowPage.aspx?PID=144

[19] D. D. Lynch, “Vibratory gyro analysis by the method of averaging,” in 2nd St.
Petersburg Int. Conf. on Gyroscopic Technology and Navigation, St. Petersburg,
Russia, 1995.

[20] D. Piyabongkarn, R. Rajamani, and M. Greminger, “The development of a
MEMS gyroscope for absolute angle measurement,” IEEE Transactions on Con-
trol Systems Technology, vol. 13, no. 2, pp. 185–195, Mar. 2005.

[21] A. Sharma, M. F. Zaman, and F. Ayazi, “A smart angular rate sensor system,”
in IEEE Sensors 2007, Oct. 2007, pp. 1116–1119.

[22] D. Schwartz, D. J. Kim, and R. T. M’Closkey, “Frequency tuning of a disk
resonator gyro via mass matrix perturbation,” Journal of Dynamic Systems,
Measurement, and Control, vol. 131, no. 6, p. 061004, 2009.

[23] Dong Joon Kim and R. M’Closkey, “A systematic method for tuning the dynam-
ics of electrostatically actuated vibratory gyros,” IEEE Transactions on Control
Systems Technology, vol. 14, no. 1, pp. 69–81, Jan. 2006.

179

http://www.si-ware.com/ShowPage.aspx?PID=144

[24] M. W. Putty, “Micromachined vibrating ring gyroscope.” Ph.D. dissertation,
Dept. Elect. Eng., Univ. Michigan, Ann Arbor, 1995.

[25] B. J. Gallacher, J. Hedley, J. S. Burdess, A. J. Harris, A. Rickard, and D. O.
King, “Electrostatic correction of structural imperfections present in a microring
gyroscope,” Journal of Microelectromechanical Systems, vol. 14, no. 2, pp. 221–
234, Apr. 2005.

[26] Sangkyung Sung, Woon-Tahk Sung, Changjoo Kim, Sukchang Yun, and Young
Jae Lee, “On the Mode-Matched control of MEMS vibratory gyroscope via
Phase-Domain analysis and design,” IEEE/ASME Transactions on Mechatron-
ics, vol. 14, no. 4, pp. 446–455, Aug. 2009.

[27] W. A. Clark and J. A. Geen, “Offset detection and compensation for microma-
chined inertial sensors,” publication number: US 2011/0041609 A1 U.S. Classi-
fication: 73/514.29.

[28] G. Casinovi, W. Sung, M. Dalal, A. Shirazi, and F. Ayazi, “Electrostatic
self-calibration of vibratory gyroscopes,” in Micro Electro Mechanical Systems
(MEMS), 2012 IEEE 25th International Conference on, Feb. 2012, pp. 559 –
562.

[29] R. P. Feynman, The Feynman lectures on physics, Jan. 1989, vol. 1.

[30] W. Sung, M. Dalal, and F. Ayazi, “A mode-matched 0.9 MHZ single proof-
mass dual-axis gyroscope,” in Solid-State Sensors, Actuators and Microsystems
Conference (TRANSDUCERS), 2011 16th International, Jun. 2011, pp. 2821
–2824.

[31] J. Wu, G. Fedder, and L. Carley, “A low-noise low-offset capacitive sensing
amplifier for a 50- mu;g/ radic;Hz monolithic CMOS MEMS accelerometer,”
Solid-State Circuits, IEEE Journal of, vol. 39, no. 5, pp. 722 – 730, May 2004.

[32] B. Gallacher, J. Burdess, and K. Harish, “A control scheme for a mems elec-
trostatic resonant gyroscope excited using combined parametric excitation and
harmonic forcing,” Journal of Micromechanics and Microengineering, vol. 16,
no. 2, pp. 320 – 331, 2006, excitation scheme;Oscillator scheme;Parametric exci-
tation;Rate resolution;.

[33] Ettus Research, “USRP1,” Mar. 2012. [Online]. Available: https://www.ettus.
com/product/details/USRP-PKG

[34] J. Cho, J. Gregory, and K. Najafi, “Single-crystal-silicon vibratory cylinderical
rate integrating gyroscope (CING),” in Solid-State Sensors, Actuators and Mi-
crosystems Conference (TRANSDUCERS), 2011 16th International, Jun. 2011,
pp. 2813–2816.

180

https://www.ettus.com/product/details/USRP-PKG
https://www.ettus.com/product/details/USRP-PKG

[35] ——, “High-Q, 3kHz Single-Crystal-Silicon cylindrical Rate-Integrating gyro
(CING),” in Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th In-
ternational Conference on, Paris, France, Feb. 2012, pp. 172–175.

[36] IEEE, “IEEE standard specification format guide and test procedure for Single-
Axis laser gyros,” IEEE Aerospace and Electronic Systems Society, Standard
647-2006, 2006.

[37] SciPy, “SciPy,” Mar. 2012. [Online]. Available: http://www.scipy.org/

[38] Y. Stebler, S. Guerrier, J. Skaloud, and M. Victoria-Feser, “A framework for
inertial sensor calibration using complex stochastic error models,” Myrtle Beack,
SC, Apr. 2012.

[39] R. J. Vaccaro and A. S. Zaki, “Statistical modeling of rate gyros,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 61, no. 3, pp. 673–684, Mar.
2012.

[40] Z. Berman, “Inertial sensors: Further developments in Low-Cost calibration and
testing,” Myrtle Beack, SC, Apr. 2012.

[41] GNU Radio, “GNU radio,” Mar. 2012. [Online]. Available: http://www.
gnuradio.org

[42] Agilent, “E5061B-005 LF-RF network analyzer option + 005 impedance analysis
option,” Mar. 2012. [Online]. Available: http://www.home.agilent.com/agilent/
product.jspx?pid=1944859

[43] Tektronix, “RSA5000,” Mar. 2012. [Online]. Available: http://www.tek.com/
spectrum-analyzer/rsa5000

[44] R. Stewart, “An overview of sigma delta ADCs and DAC devices,” in Oversam-
pling and Sigma-Delta Strategies for DSP, IEE Colloquium on, Nov. 1995, pp.
1/1 –1/9.

[45] T. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibra-
tion sensors,” Electron Devices, IEEE Transactions on, vol. 40, no. 5, pp. 903
–909, May 1993.

[46] R. Leland, “Mechanical-thermal noise in mems gyroscopes,” IEEE Sensors Jour-
nal, vol. 5, no. 3, pp. 493 – 500, 2005/06/, mEMS gyroscopes;mechanical ther-
mal noise;vibrational gyroscope;random walk;noise equivalent rotation rate;noise
spectral density;noise component;synchronous demodulation;.

[47] M. Kirkko-Jaakkola, J. Collin, and J. Takala, “Bias prediction for MEMS gyro-
scopes,” Sensors Journal, IEEE, vol. 12, no. 6, pp. 2157 –2163, Jun. 2012.

[48] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” Solid-State Circuits,
IEEE Journal of, vol. 35, no. 3, pp. 326 –336, Mar. 2000.

181

http://www.scipy.org/
http://www.gnuradio.org
http://www.gnuradio.org
http://www.home.agilent.com/agilent/product.jspx?pid=1944859
http://www.home.agilent.com/agilent/product.jspx?pid=1944859
http://www.tek.com/spectrum-analyzer/rsa5000
http://www.tek.com/spectrum-analyzer/rsa5000

[49] H. Johari and F. Ayazi, “High-frequency capacitive disk gyroscopes in (100) and
(111) silicon,” in 2007 IEEE 20th International Conference on Micro Electro
Mechanical Systems (MEMS), jan. 2007, pp. 47 –50.

[50] J. M. Muller, Elementary Functions Algorithms and Implementation. Boston,
MA: Birkhuser Boston, 2006.

[51] A. Matthews, G. T. Varty, C. Li, and D. D. Lynch, “United states patent:
5801310 - vibratory rotation sensor with whole-angle tracking,” Sep. 1998.

[52] I. P. Prikhodko, S. A. Zotov, A. A. Trusov, and A. M. Shkel, “Foucault pendulum
on a chip: angle measuring silicon MEMS gyroscope,” in 2011 IEEE 24th In-
ternational Conference on Micro Electro Mechanical Systems (MEMS). IEEE,
Jan. 2011, pp. 161–164.

[53] V. Zhuravlev, “Theoretical foundations of solid-state wave gyroscopes,” Mechan-
ics of Solids, vol. 28, no. 3, pp. 3–15, 1993.

[54] J. Gregory, J. Cho, and K. Najafi, “MEMS rate and rate-integrating gyroscope
control with commercial software defined radio hardware,” in Solid-State Sen-
sors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th In-
ternational, Jun. 2011, pp. 2394–2397.

[55] ——, “Characterization and control of a high-Q MEMS inertial sensor using low-
cost hardware,” in IEEE/ION PLANS 2012. Myrtle Beack, CA: IEEE, Apr.
2012.

[56] Free Software Foundation, “GSL - GNU scientific library - GNU project,” Mar.
2012. [Online]. Available: http://www.gnu.org/software/gsl/

[57] D. Schwartz and R. T. M’Closkey, “Decoupling of a disk resonator from lin-
ear acceleration via mass matrix perturbation,” Journal of Dynamic Systems,
Measurement, and Control, vol. 134, no. 2, p. 021005, 2012.

[58] Y. K. Zhbanov, “Amplitude control contour in a hemispherical resonator gyro
with automatic compensation for difference in q -factors,” Mechanics of Solids,
vol. 43, no. 3, pp. 328–332, Jun. 2008.

182

http://www.gnu.org/software/gsl/

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Review of Gyroscope Control Platforms
	Rate-integrating gyroscope control systems
	RIG control methods

	Review of characterization and tuning methods
	Offline Mode Matching
	On-line tuning

	Thesis Contributions and Organization

	Inertial Sensing
	Gyroscope Model
	Hardware
	Sense Electronics
	Bias Voltage
	Control Electronics

	CING gyroscope
	Error Parameters
	Summary

	Characterization and Compensation
	Universal Resonator Analysis Tool
	Swept-frequency Gain-Phase Analysis
	Impulse Generator and Spectrum Analysis
	Ringdown Test Tool

	Automatic Mode Matching
	URAT and Laser Doppler Vibrometry
	Summary

	Rate Gyroscopes
	Mechanical Noise
	Feed Through

	Rate Control
	Control Equations
	Mechanical Requirements
	Firmware
	FPGA Based Rate Control
	Square versus Sine Wave Drive

	Rate Gyroscope Experimental Results
	Multiplexed Gyroscope Control
	Multiplexing Circuit

	Summary

	Rate Integrating Gyroscopes
	Gyroscope Model
	Rate-Integrating Gyroscope Controls
	Mechanical Requirements

	Orientation feed-forward
	Rate Integrating Performance
	RIG Performance Metrics

	Software Control Architecture
	Hybrid Control Architecture
	Gyroscope Simulation
	Simulation Results
	Measurement Results
	Model Verification

	Hybrid Mode Rate Gyroscope Control
	Summary

	Dynamic Mismatch Compensation
	Novel Compensation Controls
	Damping Mismatch Compensation Loop
	Frequency Mismatch Compensation Loop

	Simulation Results
	Measurement Results
	Tuned Mismatch Compensation

	Summary

	Conclusion and Contributions
	Contributions
	Future Work

	APPENDICES
	BIBLIOGRAPHY

