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ABSTRACT

Although PEPT1 is the most important pathway in the absorption of di- and tri-
peptides in the small intestine, its in vivo relevance in the absorption, tissue
distribution, and disposition of pharmacologically active compounds is still not well
understood. Hence, we decided to study the role of PEPT1 in the following: 1) the
intestinal permeability of cefadroxil, 2) the in vivo pharmacokinetics of cefadroxil,
and finally 3) the in silico absorption and pharmacokinetics of cefadroxil using the
advanced compartmental absorption and transit (ACAT) model built into
Gastroplus®. Cefadroxil was chosen as a model drug to study PEPT1 because of its
good metabolic stability and commercial availability as a radiolabeled compound.
The findings show that PEPT1 was responsible for 90% of the effective permeability
(Petr) of cefadroxil. PEPT1 transport of cefadroxil in the jejunum of wild-type mice
had a Ki of 3.8 mM and a Vimax of 4.75 nmol/cm?/s. Also, the Pesr in the duodenum,
jejunum, and ileum were significantly higher in wild-type than in PEPT1 knockout
mice, but not in colon where the Pesrwas very low in both genotypes. After oral
administration, the Cmax and AUCy.120 across all doses were lower in knockout mice
than in wild-type animals. There was also an “apparent” linearity in the Cmax and
AUCo-120 for both genotypes. However, the analysis of the intravenous data showed
no difference in disposition between genotypes. The third specific aim was an effort
to integrate the experimental results and to retrospectively model the absorption
and pharmacokinetics of cefadroxil using an ACAT model. In the knockout mice, a

good prediction of plasma concentration-time profiles was obtained for all doses

XVii



studied. In the wild-type mice, the plasma concentration-time profiles for the lower
doses were reproduced. The model predicts saturation of the intestinal PEPT1 at
higher concentrations in wild-type mice that was not seen experimentally, probably
due to a simultaneous saturation of the active tubular secretion and reabsorption,
resulting in an apparent linearity of the plasma concentration-time profiles as a
function of dose. A physiologically-based pharmacokinetic model will need to be

developed to take into account the saturation in cefadroxil renal clearance.
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CHAPTER 1

INTRODUCTION AND RESEARCH OBJECTIVES

Proton-coupled oligopeptide transporters, also known as peptide
transporters, are a family of membrane transport proteins present in a broad range
of species, from bacteria to mammals. These proteins transport di- and tri-
peptides—themselves products of protein degradation—and other peptide-like
molecules across different membranes in the body. These transporters are usually
located in the brush border membrane (apical side) of epithelial cells. They co-
transport peptides and protons into the cell cytosol, down an inwardly-directed
proton gradient and negative membrane potential.

Proton-coupled oligopeptide transporters have been found in many species.
In humans four types have been cloned and identified: PEPT1, PEPT2, PHT1 and
PHT?2. The first two, PEPT1 and PEPT2, can transport di- and tri-peptides with
different sequences and charges, but not single amino acids or peptides longer than
4 amino acid residues. The last two, PHT1 and PHT2, can transport histidine, along

with some di- and tri-peptides.



PEPT1 is a high-capacity and low-affinity transporter, expressed
predominantly in the small intestine, and to a lesser extent in the kidney, pancreas,
and liver. PEPT?2 is a high-affinity and low-capacity transporter expressed in the
kidney, mammary gland epithelium, brain and choroid plexus, lungs, and enteric
nervous system, but not in the intestinal epithelium.

Understanding the importance of PEPT1 contribution to the absorption,
tissue distribution, and/or disposition of peptides and peptide-like drugs has been a
goal of several research groups for the past 30 years. This transporter has been
shown to be relevant in the in vitro uptake of di- and tri-peptides and certain
peptide-like drugs, such as beta-lactam antibiotics, angiotensin-converting enzyme
and renin inhibitors, and some anticancer drugs like bestatin. It also has been shown
to be relevant in the absorption of di-peptides, such as Gly-Sar, though to date
nobody has actually shown its relevance and contribution to the in vivo and in situ
absorption, tissue distribution and disposition of pharmacologically relevant
molecules.

When it comes to studying drug transport, Caco-2 cells are convenient,
inexpensive, and ideal for screening and preliminary experiments. It is widely
known that experimental results obtained with these cells do not always correlate
with human ones due to the over or lack of expression of several transport proteins
in these cells. On the other hand, ex vivo experiments give results that are closer to
natural conditions, but still lack the intact blood and nerve supply. Finally, in situ

and in vivo experiments require the most time and resources, but they best



resemble the real anatomical and physiological conditions, giving more precise
results.

For drug delivery, peptide transporters, especially PEPT1, have been of great
interest to researchers and pharmaceutical companies because of their broad
substrate specificity. Recent research activities have applied pro-drug strategies to
target this transporter to improve drug bioavailability after oral dosing. One
example is L-Dopa-L-Phe, a prodrug of L-Dopa, which is effectively absorbed in the
small intestine, and is used in the treatment of Parkinson’s disease.

In the proposed study, cefadroxil has been chosen as a model drug to
investigate the role of PEPT1 in drug absorption because it has several advantages.
For example, it has been shown to be a substrate for PEPT1. Also, since this
antibiotic is very stable, quantification strategies are less demanding. Cefadroxil is
excreted unchanged in the urine; it is not hydrolyzed in the acidic environment of
the stomach or degraded by intra- or extracellular enzymes. Moreover, cefadroxil is
commercially available as a radiolabeled compound, allowing its detection and
quantification in very small quantities of blood, body fluids, tissues and organs.

Due to its chemical structure and its high steric resemblance to physiological
occurring tri-peptides, cefadroxil has a high affinity for PEPT1, allowing us to
hypothesize that its absorption will be affected by the deletion of this protein.
Different from other di- and tri-peptides previously used in PEPT1 research (e.g.
Gly-Sar), cefadroxil is pharmaceutically relevant, since it has been widely used to
treat several bacterial infections in the skin, urinary tract, and upper respiratory

airways.



In order to better comprehend the transporter’s contribution to the
absorption, distribution and disposition of cefadroxil, it is necessary to compare the
drug’s behavior in systems where the transporter is present to those where the
transporter is not. In our laboratory, viable PEPT1 knockout mice were developed
and have been proven to be a useful tool for the study of this protein. Having PEPT1
knockout mice as an experimental tool provides a unique opportunity to study the
importance of PEPT1 in the kinetics of cefadroxil oral absorption, as well as the
kinetics of cefadroxil distribution and elimination from the body. In this project, |
studied the contribution of PEPT1 in the absorption and pharmacokinetics of
cefadroxil by doing the following:

1) Measuring the contribution of PEPT1 to the intestinal permeability of
cefadroxil and the influence of pH, sodium, substrate concentration, and intestinal
segment on drug uptake, using an in situ single-pass perfusion technique in wild
type and PEPT1 knockout mice.

2) Determining the contribution of PEPT1 to the in vivo absorption, tissue
distribution, and disposition of cefadroxil using wild type and PEPT1 knockout mice.

3) Establishing an in silico model of the absorption and pharmacokinetics of
cefadroxil in wild type and PEPT1 knockout mice using an advanced compartmental

absorption and transit (ACAT) model.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Anatomy and Physiology of the Small Intestine

The small intestine is the longest part of the gastrointestinal tract and is
located between the stomach and the large intestine. It consists of 3 parts that look
very similar to the naked eye, but differ at the microscopic level [1]. The first part of
the small intestine is called the duodenum. In adult humans the duodenum is
approximately 25 cm and has a pH between 1-2 at fasted conditions. The
subsequent segment of the small intestine is called the jejunum. It is about 250 cm
long and has an approximate pH of 6.5. The final part of the small intestine is called
the ileum and, like the jejunum, but unlike the duodenum, is attached to the body by
the mesentery. The ileum is between 200 and 400 cm long and has an approximate

pH of 6.6 during fasting conditions [1].



The absorption of most nutrients and orally administered drugs takes part in
the small intestine. This is mostly due to its vast surface area, given the arrangement
of the intestinal wall [1] (Figure 2.1)The surface of the intestinal wall contains: 1)
circular folds (plicae circularis), 2) small projections called villi, and 3) tiny
projections called microvilli.

The circular folds form creases and ridges that do not disappear when the
intestine is extended, and can be seen with the naked eye. Villi are microscopic
structures that have a hair-like shape and measures around 0.5 to 1.5 mm in height
depending on the intestinal segment. Each villus plays an important role in the
exchange of nutrients and drugs because it contains a capillary network and a lymph
vessel [1]. Microvilli are cytoplasmic protrusions or extensions of the plasma
membrane on the apical (luminal) side of the intestinal columnar epithelial cells,
also known as enterocytes or absorptive cells. It is because of these hair-like
microstructures that the apical membrane is also known as the brush-border
membrane. Each absorptive cell can have as many as 3000 of these structures in its
apical membrane, and each one can be up to 1 um in length [1, 2].

The intestinal wall is a thick barrier that consists of four broad concentric
layers: 1) the mucosa, 2) the submucosa, 3) the muscularis externa, and 4) the
serosa or adventitia [1, 2]. The mucosa faces the luminal side of the intestine and is
composed of the simple columnar epithelium, the lamina propia, and the muscularis
mucosae. The epithelium is a monolayer made up of 4 different types of cells:
absorptive, goblet, APUD, and M cells. The absorptive cells are the most numerous

ones in the epithelium and are located on the tips of the villi. The two principal



functions of these cells are to produce and secrete enzymes, and to absorb nutrients.
The goblet cells produce and secrete mucus, and are also located on the tips of the
villi. Both the absorptive and the goblet cells are generated from undifferentiated
cells in the crypts of Lieberkuhn. They then differentiate and migrate to the tips of
the villi. APUD cells, which stand for amine precursor uptake and decarboxylation
cells, produce hormones that regulate different functions in the intestine, such as
mobility and secretion. M cells, also known as microfold cells, specialize in sampling,
phagocyting, and transporting antigens from the intestinal lumen. These last two
types of cells are produced in the crypts of Lieberkuhn and do not migrate to the top
of the villi [2].

The next sublayer of the mucosa, the lamina propia, is the connective tissue
that holds the epithelium. It contains collagen fibers, elastic fibers, blood and lymph
capillaries, and lymph cells. The blood and lymph vessels are located close to the
epithelium to facilitate absorption [2].

The layer above the lamina propia is called the muscularis mucosae. This
stratum consists of two thin layers of smooth muscle. The fibers of the internal layer
are arranged in a circular manner, while those of the external layer are arranged
longitudinally. Both of these layers are responsible for the contraction of the villi
during digestion [1].

The submucosa is the tissue section above the muscularis mucosae. It has a
rich and well-developed network of blood and capillary vessels, and is highly

innervated with parasympathetic nerves. The submucosa of the duodenum has an



unusual type of gland, the Brunner’s Glands. These duodenal glands produce
mucous, epidermal growth factor, and bicarbonate rich fluid [1].

The muscularis externa is the outer most level of the intestine, and is
responsible for peristaltic movements. It is composed of two layers of smooth
muscle—i.e. an inner circular layer, and an outer longitudinal one—and a middle
layer of nerve fibers [1].

As mentioned above the intestinal wall is highly perfused with blood vessels.
The arterial blood that reaches the jejunum and the ileum comes from the superior
mesenteric artery, while the venous blood is transported to the portal vein and

eventually to the liver [2].



Absorption and Transport Mechanisms

Most of the absorption of electrolytes, nutrients, water and drugs occurs in
the proximal segment of the small intestine, which is facilitated by its vast surface
area. For a molecule to go from the lumen of the intestine to the lumen of the blood
vessel it needs to go through several barriers, including the unstirred water layer in
the lumen of the intestine, the apical and the basolateral membranes of the
epithelial cells, the intercellular space, and the apical and basolateral membranes of
the endothelial cells [1].

There are different pathways molecules can cross a cellular membrane,
including the paracellular and transcellular routes. Transcellular refers to the traffic
of molecules across the interior of a cell, while paracellular means the traffic in
Probetween the cells. Transcellular transport includes passive diffusion, active and
facilitated transport, and transcytocis [3] (Figure 2.2)

Different physicochemical and structural factors influence the route a
molecule takes to reach the blood stream. Water and some small ions, like chloride
and potassium, are transported via paracellular channels, a process driven by
osmotic and electrochemical gradients [3].

Some molecules can passively diffuse through the membrane. Passive
diffusion is a process that does not require energy because the movement of
molecules is driven by a concentration and/or an electrochemical gradient [3]. In

passive diffusion the transport of a solute across a membrane is a non-saturable



process. The rate of transport or flux is proportional to the solute concentration
gradient, and can be described using Fick’s first law of diffusion, according to the

following equation:

dM _AD(C,-C,)
dr X

(2.1)

where dM/dt is the rate of transport (pg/sec), A is the surface area of the
membrane (cm?), D is the diffusion coefficient (cm?/sec), X is the thickness of the
membrane (cm), and Ci-Co is the difference of solute concentration between the two
sides separated by the membrane (pg/mL). The diffusion coefficient D is a
parameter related to the lipophilicity and the size of the molecule, and to the
viscosity of the membrane. Usually small lipophilic drugs can cross membranes
easier than large hydrophilic ones [1, 3, 4].

Large hydrophilic molecules usually need the help of membrane transport
proteins to get into the cytosol. There are two types of membrane transport
proteins: transporters and channels. Channels form aqueous pores in the cell
membrane, that allow small ions and water to go through it without binding to it[3].
Transporters are proteins that bind the solute and after a series of conformational
changes, transfer it across the cell membrane. Some transporters, but no channels,
can transport a solute against its concentration gradient or electrochemical gradient.
This process is called active transport because it uses energy, e.g. from ATP
hydrolysis, to pump molecules across the membrane [3] (Figure 2.3)

There are several types of transporters and they can be classified according

to the source of energy that they use to move solutes. ATP-driven pumps use the
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energy that results from the hydrolysis of ATP to move solutes uphill (against a
concentration gradient) [3]. Coupled transporters combine the downhill transport
of a molecule to the uphill transport of another. These can either be symporters, in
which both molecules go in the same direction, or antiporters, in which they move
in opposite ones. Na+ and H+ are some of the most utilized molecules by coupled
transporters [3].

When proteins are ingested, they get degraded into oligopeptides by
different types of enzymes. Once the products of the degradation of these proteins
reach the small intestine, they get further cleaved by peptidases located in the brush
border membrane and then get absorbed, mainly as di- and tripeptides [5]. Due to
the hydrophilicity and the presence of charged groups, it has been shown that these
peptides need a transporter protein to reach the cytosol of the enterocytes. This
transporter has been identified as PEPT1. Di- and tri-peptides that reach the cytosol
get further hydrolyzed into amino acids by intracellular peptidases, and are either
used in the cell or get released by amino acid transporters in the basolateral
membrane. Some peptide-like molecules do not undergo degradation and are
potentially transported by still unknown peptide transporters in the basolateral
membrane [6].

The interaction of a transporter and its substrate follows the Michaelis-
Menten kinetics. The rate of transport (v) increases with the drug concentration, but
it reaches a maximum, called Vmax, when the transporter gets saturated [7] ( Figure
2.3). The concentration at half of the maximum rate of transport (Vmax) is called the

Michaelis-Menten constant (Ki) and is a good indicator of the affinity of the
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transporter for the substrate. A substrate with low Ky, has a higher affinity for the
transporter than one with a higher K, [7].

A ,dC_vC
d  di K, +C

(2.2)

Some compounds can competitively inhibit the protein without being
transported by it, and are therefore called inhibitors. The affinity of the inhibitor for
the transporter can be expressed by the inhibition constant K;, and is usually
calculated using ICso of the competitive inhibitor and the concentration and K of
the substrate as shown in equation 2.3 [7].

IC
Ki — 50
1+ [Substrate]
K

m

(2.3)
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Modeling and Simulation of Absorption Behavior

The prediction of the rate and extent of absorption and pharmacokinetics of
orally dosed drugs is a task many research groups have pursued in the last few
decades, however it is still a difficult venture. This task has been proven to be not
easy due to the several factors that affect the absorption process. Those factors can
be divided into 3 categories: 1) Physiological factors of the GI tract, 2)
Physicochemical characteristics of the drug, and 3) Dosage form factors[8]. In the
first category, one can find that several physiological aspects of the gastrointestinal
tract may affect drug absorption, including and not limited to pH, transit time, blood
flow, gastric emptying, membrane porosity, surface area of the GI tract, and
absorption mechanisms. In the second category some of the most common factors
that affect absorption are solubility, pKa, stability, lipophilicity, and salt form. From
the dosage form stand point, one should consider if the drug is administered as a
solution, suspension, capsule, tablet or as a sustained release form[8, 9] [10].

A variety of models are available for the prediction of absorption of drugs in
the intestine, from very simple ones such as the mixing tank model, to the more
complex ones, such as the advanced compartmental absorption and transit model
(ACAT) developed by Simulations Plus (Figure 2.4)[9].

The ACAT model was developed based on the compartmental absorption
model developed (CAT) by Yu and Amidon in 1996 [11]. The original CAT model

divides the gastrointestinal tract into 7 segments, but doesn’t take into account the
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absorption of drugs in the stomach or colon. It also needs the measured drug’s
effective permeability [8]. The ACAT model used in Gastroplus® was developed by
Simulations Plus model and divides the gastrointestinal tract into 9 compartments,
in all of which absorption can occur. The ACAT defines one compartment for
stomach, one for the duodenum, 2 compartments for the jejunum, 3 for the ileum, 1
for the ceacum, and finally 1 compartment for the ascending colon. Those 9
compartments are then sub-divided into the following 4 sub-compartments:
unreleased drug, undissolved drug, dissolved drug, and the enterocyte [8]. The
ACAT model uses a series of differential equations, around 80 of them, to describe
the transfer of drug along the GI tract and across the different sub-compartments.
Different from the CAT model, the ACAT model allows drug absorption in the
stomach and colon, and also can predict in silico the effective permeability of
different drugs based on their chemical structure using the ADMET prediction
module[8]. The ACAT model also allows the addition of paracellular absorption
through out the gastrointestinal tract. It also allows the incorporation of
transporter and metabolism processes in the small intestine, colon and liver, by
using Michaelis-Menten kinetics differential equations [8, 12, 13].

One of the most interesting features of the ACAT model is its ability to
extrapolate in vitro and pre-clinical data in order to predict a drug’s absorption
behavior and its pharmacokinetics and establish first in human doses. Abuasal et al
[14] published recently a paper about the successful prediction of human
pharmacokinetics, from in vitro and rat in situ and in vivo data for a compound that

was a substrate of CYP3A4 and P-gp [12-14].
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Proton-coupled Oligopeptide Transporters

Peptide transporters are plasma membrane proteins that belong to the
SoLute Carrier family 15 (SLC15). The SLC15 family is a phylogenetically conserved
family comprised by four proton-dependent membrane transporters: SLC15A1
(PEPT1), SLC15A2 (PEPT2), SLC15A3 (PHT2), and SLC15A4 (PHT1) [15-17].
Peptide transporters have been identified in a wide variety of species, both in
prokaryote and eukaryote organisms, where they have been reported to have
similar structural features and functions. PEPT1 was the first member of the SLC15
family to be identified. First, it was cloned and characterized in the rabbit small
intestine in 1994 by Fei et al and Boll et al [18, 19], and later found in mouse, rat,
and human. Peptide transporters have been found to be highly homologous across
different species, with around 90% amino acid identity between mammal species.
[20] [21]. Though, there is only 50% amino acid identity between PEPT1 and PEPTZ,
and only 20% between PHT1 and PEPT2 [22].

PEPT1 is highly expressed in the apical border of the small intestinal
epithelial cells. It is mainly located at the tip of the villi of the duodenum, the
jejunum, and the ileum. In healthy patients PEPT1 is not expressed in the colon, but
it has been found in the colon of patients with chronic diseases, such as Crohn’s
disease and ulcerative colitis (for references see Table 2.1). PEPT1 has also been
found to a lesser extent in other organs of the healthy human body, such as the

kidney, liver, and pancreas. In the kidney, PEPT1 has been found in the apical
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membrane of epithelial cells in the S1 segment of the proximal tubule, where it
reabsorbs a very small percentage of the di- and tripeptides from the urine back into
the blood prolonging their half-life [21].

PEPT?2 is expressed in different parts of the body, including the kidney, the
lung, the enteric nervous system, the choroid plexus, astrocytes, cerebral cortex, and
neurons (for more details see Table 2.1. Localization of peptide transporters.) [23-
26]. In the kidney, PEPT2 is mostly expressed on the apical membrane of the
epithelial cells in the S3 segments of the in proximal tubules, where it does most of
the reabsorption of di-and tri-peptides and peptide-like drugs. PEPT2 is expressed
on the apical membrane of the choroid plexus, where it has been shown to remove
neuropeptides and peptide-like drugs from the cerebrospinal fluid (CSF)[27-30].

While PEPT1 is a low affinity and high capacity transporter, its isoform
PEPT?2 is a low capacity and high affinity one [31]. Peptide transporters can move
substrates against a concentration gradient thanks to an inwardly directed proton
gradient and a negative membrane potential [32]. The proton gradient is caused by
the pH difference between the acidic microclimate (pH=6.6) at the brush border
membrane of the intestine and the neutral cytoplasm (pH=7.35). This acidic micro-
climate is maintained by the sodium hydrogen exchanger (NHE3), which is a
transporter located in the apical membrane of the cell, and responsible for
catalyzing the exchange of an exiting H+ and an incoming Na* [6, 33] (see Figure 2.5).

The movement of substrates involves the binding and co-transport of a
proton, or two, from the intestinal lumen to the cell cytosol, the excretion of a

proton back to the lumen via the sodium-proton exchanger (NHE3), and the efflux of
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sodium to the blood by a sodium potassium exchanger in the basolateral membrane.
This sodium potassium exchanger is a transporter that uses the energy generated by
the hydrolysis of ATP to exchange 3 sodium ions for 2 potassium ions [3] [33] [6].
While mammalian peptide transporters PEPT1 and PEPT2 can transport almost all
possible di- and tri-peptide combinations, and some peptide-like drugs, they cannot
move single amino acids or oligopeptides with 4 or more amino acid residues [34]
(Table 2.2).

Little is known about the other 2 members of the SLC15 family, the
peptide/histidine transporters PHT1 and PHT2. These transporters, different from
PEPT1 and PEPT2, can transport the amino acid L-histidine. Although it has been
shown that they transport peptides, it is still unknown to what extent they can
transport all di- and tripeptide combinations [35] [36].

Although the three dimensional structure of human PEPT1 has not been
completely elucidated, some structural features have been proven to be key for
substrate recognition and transport. This human protein contains 708 amino acid
residues, and is predicted to have 12 putative transmembrane domains, with both
the amino- and carboxy-termini facing the cytosolic side of the membrane [20]. [t
also has a large extracellular loop between the 9t and 10t transmembrane domain
with several glycosilation points [20] (Figure 2.6).

Several studies with chimeric transporters have shown that the
transmembrane domains TM1-TM4 and TM7-TM are relevant for substrate affinity

and binding [37-39]. Mutational studies proved that the extracellular histidine H57
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is involved in the binding of the proton, and tyrosines Y12, Y56, Y64, Y91, and Y167
play a key role in the binding and translocation of the substrate [40-42].

Although PEPT1 has a preference for compounds with no net charge, it can
transport both positively and negatively charged molecules [43, 44]. The transport
of molecules with zero net charge is optimal at the pH of the brush border
microclimate (around 6.5), but the optimal pH for the transport of ionic species
shifts up or down according to their net charge. Neutral and cationic species are
transported in a 1:1 stoichiometry in relation to protons. Acidic peptides, like the
ones containing aspartic or glutamic acid are moved in a 1:2 relation, where the
second proton is attached to the peptide side chain [44-46].

Water plays an important role in the active transport of the differently
charged peptides. It interacts with the charged amino acid residues, acting as a
shield. It also fills void spaces in the transporter to allow a better docking of the
peptide [47, 48].

Different authors have shown that certain features in the substrate are
required for its ability to bind to the transporter, such as two oppositely charged
groups separated by carbon backbone with a distance of 5.5 to 6.3 Angstrom, along
with the presence of at least one L-enantiomer amino acid residue in the molecule
[49].

The alpha-amino group and the peptide bond have been shown not to be
necessary for binding to the transporter, although their presence in the substrate

increases the affinity [50]. Another important feature that helps increase the

18



bonding affinity is the carbonyl oxygen in the peptide bond, since it binds to the
substrate-binding domain by a hydrogen bond [51].

Competition and electrophysiological experiments have helped measure Ky,
constants for different compounds and identified some substrates and inhibitors of
the PEPT1 transporter. Peptides that have 3 amino acid residues as L-enantiomers
have a higher affinity than those with only two or just one [50]. Also, compounds in
which the peptide bond has a trans conformation also have a higher affinity for
PEPT1 [52]. Molecules that have hydrophobic side chains expel water from the
binding pockets and therefore have a higher affinity for the protein, acting as

inhibitors [53].
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Pharmacological Importance of Peptide Transporters

As mentioned above, PEPT1 is a high-capacity and low-affinity peptide
transporter capable of carrying all natural di- and tripeptides, and some peptide-like
drugs [20] [19]. Some of these drugs include betalactam antibiotics like cephalexin
and cefadroxil, antiviral drugs like valacyclovir and valgancyclovir, peptidomimetic
anticancer compounds like bestatin, and inhibitors of the angiotensin-converting
enzyme (ACE) like enalapril [54-60] (Figure 2.8).

For several years researchers have experimented with drug chemical
structures to improve undesirable pharmaceutical and pharmacokinetic
characteristics without diminishing their therapeutic capabilities [61]. Several
approaches are available, and attaching moieties to molecules to improve their
characteristics is a widely used technique. The modified drug, also known as
prodrug, is then later converted to the active drug in the body usually by enzymes.
Prodrugs can be design specifically to target specific membrane transporters or
enzymes in order to control their uptake into certain tissues [61].

Designing a prodrug to target PEPT1 is a strategy that has been used with
hydrophilic drugs to improve their permeability through the intestine. Since PEPT1
has high capacity and broad substrate specificity it has been used as a target for
improving drug delivery. Drugs with low permeability can be modified into
prodrugs that can by recognized and transported by PEPT1, improving then the
drug’s bioavailability. There are already numerous prodrugs in the market that are

bound and transported by PEPT1. L-valacyclovir is the ester prodrug of acyclovir, an
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antiviral drug with low permeability. In this case the prodrug has 3 to 5 times higher
oral bioavailability than the original nucleoside [62].

Another successful case in target-designed prodrugs is the one involving o-
methyl-dopa, an antihypertensive drug with low permeability in the intestine. By
modifying the parent drug with peptidic moieties, like Phe-oa-methyl-dopa, o.-
methyl-dopa-Phe, and p-Glu-L-Dopa-Pro its permeability and therefore its

bioavailability increased significantly [63, 64].
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Genetic Variation of PEPT1

Similar to metabolizing enzymes, transporters also have genetic
polymorphisms that have been linked to important changes in the pharmacokinetics
of drugs, and potentially significant consequences on their pharmacodynamics and
toxicity. For example, genetic variations in p-glycoprotein have been associated
with changes in the disposition of some of its substrates, such as digoxin [65] and
fexofenadine [66]. Also, genetic variants of OATP-C and OAT3 have been implicated
with changes in the disposition of pravastatin in humans [67].

Interestingly enough, three independent studies found that PEPT1 has well
conserved substrate recognition and very few genetic polymorphisms that actually
affect the uptake of its substrates [68-70]. For the study done by Zhang et al the 9
non-synonymous SNPs, and their relative frequencies, were: S117N (22.7%), G419A
(6.8%), T451N (3.4%), V416L (1.1%), V4501 (1.1%), R459C (1.1%), T1141 (1.1%),
V122M (1.1%), and P586L (1.1%) (see Figure 2.7). The latter two non-synonymous
polymorphisms are located in the transmembrane domains, while the other seven
are located in the extracellular loops. When the variants were transfected into HeLa
cells and their transport capacity was tested using Gly-Sar, the results showed that
none of the non-synonymous polymorphisms had reduced affinity for the substrate
(i.e. significant changes in the Ky,). The only significant difference was seen with the
P586L variant, which showed reduced maximal uptake of Gly-Sar (Vmax was 10-fold
lower) [69].

In their second study, Anderle et al [70] show that, although the non-

synonymous polymorphism F28Y has reduced Gly-Sar uptake (Ku is 3.5-fold higher)
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when transfected into HeLa cells. They also showed its frequency is rare (0.002),

and interestingly enough it was only detected in the African-American population.
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Regulation of PEPT1

The expression level and function of PEPT1 can be regulated by a variety of
factors, and several studies have reported changes in mRNA and protein levels both
in vivo and in vitro under different conditions.

For example, fasting and type of diet are some of the most reported factors
affecting the levels of PEPT1. For example, it has been shown that the expression of
PEPT1 is subject to the influence of the diurnal rhythm, and that the amount of
transporter is higher at night when the rats are awake and eating, than during the
day when they are sleeping [71, 72]. Pan et al revealed that in rats PEPT1 levels
were dependent on food intake and that its functionality was higher at 8pm than at
8am, which indicates that the levels of the protein were higher after a few hours of
fasting [72, 73]. Also, Ferraris et al showed that RNA and protein levels of PEPT1 in
rats increased after fasting for periods of 24 hours [74, 75]. Finally, Ma et al [76]
demonstrated that in wild-type mice, PEPT1 protein levels in the small intestine
increase with fasting periods of over 16 hours. This protein up regulation resulted in
an increase of Gly-Sar absorption after oral administration to wild-type mice. No
effect was seen in PEPT1 knockout mice, demonstrating that the increase in Gly-Sar
exposure was due solely to increase in PEPT1 expression, and not in other
transporters[76].

Experiments in Caco-2 cells have proven that an increased concentration of
peptides in the growth medium increases the Viax of the PEPT1-mediated transport
by increasing the number of transporters present in the apical membrane of the

cells [77]. This increase in protein levels was caused by an enhanced gene
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transcription [77, 78]. Other experiments in rats showed that high protein diets and
therefore high concentration of peptides in the intestinal lumen increase the amount
of PEPT1 in the apical membrane by increasing the gene expression [79].

Several reports reveal the effect of disease state on PEPT1 levels. For
example, there is some in vivo and in vitro evidence that intestinal PEPT1 is up
regulated in patients that have damaged intestinal mucosa due to infections with
cryptosporidium parvum, a common cause of diarrhea. It is hypothesized that the
damage to the mucosa causes a decrease in the absorption of peptides, which in turn
causes an increase in the amount of PEPT1 mRNA being transcribed [80].

Also, PEPT1 has been reported to be aberrantly present in the colon of
patients with Crohn’s disease and ulcerative colitis, the two forms of the
inflammatory bowel disease (IBD). Although no conclusions have yet been reached
about the role of PEPT1 in the mechanism of the disease, some in vitro experiments
have suggested that this transporter is in charge of the movement of the peptide
neutrophil chemotactic factors such as fML (N-formyl-Met-Leu-Phe) and muramyl
dipeptide [81-83]. New evidence suggest that in IBD patients the colonic PEPT1 acts
as a gate into the enterocyte for bacterial di- and tri-peptides, which trigger an
immunologic response by producing of cytokines and chemokines that induce
neutrophil migration into the inflammation site [81-85].

Hormonal regulation of PEPT1 is another well-described phenomenon in this
field. Experiments in Caco-2 cells and jejunal brush border vesicles show that when
Insulin and EGF bind to their extracellular receptors, the Vmax of the PEPT1

mediated transport increases transiently but the mRNA levels do not, indicating that
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the increase in transport is caused by an increased stability of the RNA and not an
increase on the transcription of it [86] [87]. When physiological concentrations of
EGF were added to the basolateral compartment of Caco-2 cells cultures for
different periods of time, the transport of dipeptides was first increased, without an
increase in the RNA levels [88], and then after several days of exposure the
transport was inhibited due an inhibition of PEPT1 transcription [89].

On the other hand, research with leptin has revealed receptors for this
hormone in the small intestine of rats, especially in the jejunum. An increase in
peptide transport is noted when leptin is added in perfusion experiments [90].
Experiments with Caco-2 cells have also revealed that the transport of some
betalactam antibiotics can be enhanced when this hormone is added to the medium
on the apical side of the chamber, but not on the basolateral side [90]. Although
more research needs to be done, it is believed that the increased transport is due to
translocation of the peptide transporter from the cytoplasm to the apical membrane,
and not to enhanced transcription [90, 91].

Other hormones like triiodothyronine (T3), recombinant human growth
hormone (rhGH), and progesterone have been investigated to a lesser extent. When
T3 is added to Caco-2 cell cultures it decreases the amount of membrane PEPT1, and
therefore the uptake of dipeptides [92]. The mechanism by which the increase in
transcription and/or stability of the transporter is induced is not yet known.
However, in vivo experiments have shown that rats with hypothyroidism have a
decrease in PEPT1 expression and activity in the small intestine [93]. When rhGH

was added over four days to Caco-2 cell cultures the uptake of cephalexin, a
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betalactam antibiotic, was enhanced due to the increase of PEPT1 mRNA in the cells
[94]. Other experiments in Caco-2 cells have shown that when progesterone and
norethisterone were added to the medium, the uptake and transport of cephalexin
decreased with both hormones because of a decrease in the expression of PEPT1
[95, 96].

It has been shown in vitro and in vivo that some drugs affect the expression of
PEPT1 by either increasing or decreasing the protein levels at the apical membrane
or the mRNA levels of it. Drugs like 5-fluorouracil and clonidine have been reported
to increase the transporter’s level both in vivo and in vitro, though the exact
mechanism is not yet known [97, 98]. Nifedipine, a calcium channel blocker, was
shown to boost the activity of PEPT1 and increase the bioavailability of orally
administered amoxicillin in humans. The mechanism of this enhancement relies on
the decrease of intracellular calcium, which stimulates the sodium-proton
exchanger and resulting in an increase of extracellular protons available for
PEPT1[99]. The opposite effect is shown with amiloride, which is a blocker of the
sodium-proton exchanger. When amiloride was given concomitantly with oral
amoxicillin, the bioavailability of the latter one was reduced significantly[99]. Some
immunosuppressive agents have been shown to reduce the transport rate of Gly-Sar

in vitro [100].
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Cefadroxil

The IUPAC chemical name for cefadroxil is (6R, 7R)-7-[(R)-2-amino-2-(p-
hydroxyphenyl)acetamido]-3-methy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-
carboxylic acid (See structure in Figure 2.9). Its molecular weight is 363.39 and its
molecular formula is C1¢H17N30sS. It is soluble in water (Intrinsic solubility = 17.4
mg/mL) and slightly soluble in alcohol. Its apparent pKa’s are: 2.64, 7.30 and 9.69 at
35 °C and its isoelectric point is 4.9 [101] .

Cefadroxil is a semi-synthetic betalactam antibiotic that belongs to the first
generation of cephalosporins. It is used to treat different kinds of infections in the
ear, skin, urinary tract, and upper and lower respiratory tract. It has been widely
used to treat community-acquired pneumonia and infections in patients with known
allergies to penicillins [102, 103].

Cefadroxil is effective against most Gram-positive cocci, but not against
methicillin-resistant Staphilococci and Enterococci. It is also active against certain
Gram-negative bacteria like Klebsiella pneumoniae, Proteus mirabilis and Escherichia
coli [104].

Cefadroxil binds to transpeptidases, which are specific penicillin-binding
proteins (PBP’s) inside the bacterial cell wall. This binding causes the inhibition of
cross-linking of peptydoglycan, a basic step in the synthesis of the bacterial wall.
The inhibition of this step breaks the equilibrium between the degradation and
formation of new bonds, allowing the bacterial autolysins to degrade the entire

bacterial wall [105].
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Cefadroxil adverse reactions are usually mild and can be reversed easily
[103]. The antibiotic can cause nausea, vomiting, diarrhea, and hypersensitivity
reactions like skin rashes and dermatitis. It is contraindicated in patients with
known allergies to other cephalosporins [104].

Cefadroxil has a high oral bioavailability and food does not alter its
absorption. Its half-life in humans is around 95 minutes, which is longer than that of
other cephalosporins of the same generation. It is extensively distributed to several
tissues, including the lung, tonsils, placenta, bone, muscle, and prostate and is
approximately 20% bound to plasma proteins [103, 104]. Cefadroxil, like some
other cephalosporins, is not metabolized and about 90% can be recovered
unchanged in urine in the first 24 hours after oral administration [104]. Table 2.4
shows the pharmacokinetic parameters of cefadroxil in humans.

The absorption of cefadroxil from the small intestine has been attributed to
transporters, due to the antibiotic’s physicochemical characteristics and the
saturable kinetics of this process [106]. Cefadroxil, being a hydrophilic drug with
two oppositely charged groups at the physiological pH, is most likely to be
transferred across membranes by different transporters than by passive diffusion.
However, the contribution of each of these mechanisms to the total mass transfer
process is still not known [107].

As mentioned previously, cefadroxil chemical structure resembles that of a
tri-peptide (see Figure 2.10), and its proton-dependent transport is inhibited by
other amino-cephalosporins and di- and tri-peptides [56, 107-110]. Several authors

have shown that peptide transporters, like PEPT1, play a critical role in the
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absorption of cefadroxil from the small intestine [107, 109]. Cefadroxil has been
widely used as a substrate to study PEPT1 and PEPT2 because of its
pharmacological activity, high affinity for peptide transporters, and its lack of
degradation or metabolism by enzymes in the body.

PEPT2 has been shown to be responsible for most of the reabsorption of
cefadroxil from the urine back to the blood, increasing the half-life of the drug and
therefore increasing the exposure of different tissues to the antibiotic [111]. On the
other hand, PEPT2 has also been shown to act as an efflux transporter of cefadroxil
from the cerebrospinal fluid (CSF) in the choroid plexus, decreasing the
concentration of this drug in the brain. Previous studies have shown that when
PEPT2 null mice where treated with cefadroxil, the ratio of the CSF to plasma drug
concentration was higher as compared to wild type mice [28, 29].

Since cefadroxil has a negative charge at the physiological pH, it can bind to
organic anion transporters (OATSs). These transporters are present in the
basolateral membrane of the epithelial cells in the proximal renal tubules, and are
thought to be responsible for the active secretion from blood to tubular fluid of
several negatively charged endogenous and exogenous compounds, like cefadroxil.
This family of transporters includes OAT1, OAT2 and OAT3 and it was shown
recently that from these three proteins present in the human kidney, OAT3 plays a
stronger role than OAT1 in the active secretion of cephalosporins [112].
Experiments using Xenopous oocytes expressing OATP2B1, the organic anion
transporting polypeptide-2 A 1 expressed in the liver, show that cefadroxil is also a

substrate for this transporter [113].
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It has been shown that in mice where the multidrug resistance-associated
protein 4 was removed, there is an increase in the blood concentration of
ceftizoxime and cefazolin [114]. MRP4 is located in the basolateral membrane of the
epithelial cells in the kidneys where it is involved in the tubular active secretion of
some cephalosporins from the blood to the urine [114]. Also, de Waart et al [115]
showed that MRP3 and MRP4 located on the basolateral membrane of the
enterocytes could be involved in the transport of cefadroxil across the basolateral
membrane (from the enterocyte into the blood) in mice.

The human multidrug and toxin extrusion/H(+)-organic cation antiporters
(MATE1) have been shown to be capable of transporting some cephalosporin
antibiotics. This transporter is expressed in the basolateral membrane of the

kidneys [116-118].
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Figure 2.1. Layers of the small intestine. Extracted from Gastrointestinal Physiology, The

McGraw-Hill Companies, Inc. 2008
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Figure 2.6. Topology of PEPT1. Analyses indicate that the transporter has 12 putative
transmembrane domains. It also contains a large extracellular loop between the 9t and 10t
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Figure 2.9. Structure of cefadroxil. This first generation amino-cephalosporin has a
molecular weight of 363, a cLogP of -2.51, and pKa’s of 2.70, 7.22, and 9.62 (shown in

parenthesis). Its intrinsic solubility is 17.4 mg/mL (pH = 4.9), and its Log D (4.8) = -2.11.

40



Cefadroxil Tripeptide

Figure 2.10. Structural similarities between a tri-peptide and cefadroxil. Both molecules
have carboxylic groups and amino terminal groups separated by a carbon backbone of
similar length. They also have the peptide bond in the L-conformation. Extracted from:
Rubio . and Daniel H. Trends in Pharmacological Sciences, Volume 23, Issue 9, 434-440, 1

September 2002.

41



Hepatocyte

CIM

Enterocyte

Renal tubular cell

PEPT1/2

OCT3 OATP2B1

1
OCTZ OAT1/2/3

Figure 2.11. Some of the transporter proteins involved in the uptake of cefadroxil in
different tissues of the body. PEPT1 is expressed mainly on the apical membrane of the
enterocyte, but also at lower levels on the apical membrane of the kidney tubular cells (S1).
PEPT?2 is responsible for most of the reabsorption of cefadroxil in the kidney. It is expressed
on the apical membrane of the renal tubular cells in the S2 and S3 segments of the proximal
tubule. The organic anion transporters 1, 2, and 3 (OAT 1/2/3) have been shown to be
responsible for the active secretion of cefadroxil in the kidney tubular cells. OATP2B1
expressed in the liver has been shown to uptake cefadroxil into the hepatocytes from the

basolateral membrane. Extracted from: Zair et al. Pharmacogenomics 2008 9(5).
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Tables

TRANSPOTER SITE OF EXPRESSION REFERENCES
PEPT1 Small Intestine [78,119,
(SLC15A1) (apical membrane of enterocytes) 120]
Kidney [37]
(apical membrane of epithelial cells)
Pancreas [121]
(lysosomes of acinar cells)
Bile Duct [122]
(apical membrane of cholangiocytes)
Liver [123]
(lysosomes)
Blood [124]
(monocytes)
PEPT2 Kidney [125-127]
(SLC15A2) (apical membrane epithelial cells)
Brain [28,111]
(epithelial cells in choroid plexus, astrocytes and sub- and
ependymal cells)
Lung [26,128,
(epithelial cells in bronchii and trachea, alveolar pneumocytes) 129]
Mammary gland [130]
(epithelial cells in glands and ducts
Macrophages and glial cells of enteric nervous system [23]
PHT1 Brain [35]
(SLC15A4)
Eye [35]
PHT?2 Brain [36]
(SLC 15A3)
Thymus and lymphatic system [36]
Lung [36]
Spleen [36]

Table 2.1. Localization of peptide transporters.
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PROPERTY PEPT1 PEPT2 PHT1 PHT2
Gene SLC15A1 SLC15A2 SLC15A4 SLC15A3
Amino Acids 707 - 710 729 572 582
Transmembrane 12 12 12 12
Domains
AA identity 80-90% 80-90% <20% (PEPT1) | 50% (PHT1)

(species) (species) <20% (PEPT1)
50% (PEPT1)
Amino Acids in 2-3 2-3 2-3 2-3
Substrate
L-Histidine No No Yes Yes
Substrate Affinity Low High High ?
Km range mM uM uM ?
Transport Type Proton Proton Proton Proton

co-transporter

co-transporter

co-transporter

co-transporter

Table 2.2 Molecular and functional features of the 4 identified human peptide transporters.
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TRANSPORTER LOCATION SYSTEM USED REFERENCE
PEPT1 Small intestine Caco-2 cells, [45, 55, 131]
Oocytes
Kidney (proximal tubule) | Oocytes, BBMV [55,132]

PEPT2 Kidney (AP) KO mice, cells, [132] [21] [111]

BBMV [55]
CSF Cells, KO mice [21, 28, 29,55, 111]

OAT3 Kidney (BL) S2 cells [133] [112, 134]
(transfected)

OAT1 Kidney (BL) S2 cells [112,133,134]
(transfected)

OAT?2 (rat) Kidney (BL) S2 cells [133, 134]
(transfected)

OAT4 Kidney (BL) S2 cells [133,134]
(transfected)

OATP2 Liver rat (BL) Oocytes [113]

MRP3/4 Intestine Oocytes [115]

Table 2.3. Transporters involved in the transport of cefadroxil.
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PHARMACOKINETIC PARAMETER VALUE REFERENCE
Clearance (mL/min) 181.5 [135]
Vdss (L) 17.05 [135]
% Excreted after 24 hours (I.V.) 93 [135]
F (%) 90.1 [135]
T1/2 (min) 115 [136]
Cmax (ug/mL) [136]
(500 mg) 15.1
(1000 mg) 30.8
Tmax (min) 50 [136]
Cl/F (mL/min) 145 - 200 [136]

Table 2.4. Pharmacokinetic parameters of cefadroxil in adult humans.
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