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ABSTRACT 

 

White blood cells (WBCs) and their subtypes are important constituents of the 

human immune system as their concentration, quantified by a WBC count test, indicates 

the state of body’s immune response against infections. These cell count tests are 

important prognostic and diagnostic indicators for a number of human immunological 

diseases, most prominent of them being AIDS. Flow cytometry (FC) is the gold standard 

for counting WBCs. Although high throughput and accurate, FC based instruments are 

bulky, expensive and require skillful and trained personnel for their operation and 

maintenance. This necessitates the development of inexpensive, portable point-of-care 

(POC) systems for capturing and enumerating WBCs and their subtypes.  

 

We envision a portable, point-of-care WBC counting system which can capture 

thousands of WBCs and simultaneously image and count them. Towards this end, we 

have developed: 

- A microfluidic biochip for trapping and counting WBCs. The biochip has a novel 

3D cell trapping architecture and enables simultaneous capture and counting of 

thousands of WBCs. A WBC trapping efficiency of ~90% is achieved using the 

biochip. 
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- Microlens arrays with a large field of view (FOV) imaging capability that have an 

optical performance (numerical aperture, resolution) equivalent to a conventional 

microscope objective. 

   

 We envision that the cell trapping biochip and the microlens arrays proposed in 

this thesis can be integrated to perform simultaneous on-chip capture and 

imaging/counting of WBCs. The integrated microsystem can also be used as a generic 

platform for sorting and enumeration of different kinds of cells for disease diagnosis and 

research applications.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation  

Globalization and rapid industrial growth has led to significant improvement in 

the average standard of living of the people worldwide. This economic prosperity has 

spurred increased health awareness amongst the people from developed and developing 

countries. These people now subscribe to regular health checkup programs at their nearby 

hospitals and health clinics to keep a periodic record of their health and to prognose a 

disease or a disorder in its early state. However, lack of time due to busy work schedule 

and hectic urban life makes it difficult to make these regular hospital visits. Thus there is 

a huge demand to develop benchtop biomedical systems which are affordable and 

portable enough to be installed in one’s house and which have diagnostic and monitoring 

performance comparable to the state-of-the-art equipments in the hospitals and health 

clinics.  

 

On the other end of the health management spectrum are the underdeveloped 

regions of the world like the ones in sub-Saharan Africa and South Asia where there is an 

immense shortage of basic infrastructure like water, electricity and sanitation and hence 

are termed as “resource limited settings”. Ironically, these regions have one of the 

world’s highest densities of population and are the ones most severely hit by
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the life threatening epidemics and diseases like Acquired Immune Deficiency Syndrome 

(AIDS), malaria and tuberculosis [1-3]. Illiteracy and lack of health and sanitation 

awareness leads to these diseases outbreak and consequently these people need to 

undergo diagnosis and monitoring tests at regular intervals to prevent a huge loss of 

human life. Extreme poverty and scarcity of basic infrastructure deprives these teeming 

millions of access to even primary healthcare facilities. With the intervention of global 

health agencies like the World Health Organization and non-governmental agencies like 

the Bill and Melinda Gates Foundation and several others, the hospitals and health clinics 

in these regions are equipped with state-of-the-art disease diagnostic and treatment 

systems [4-7]. However, a major proportion of the population in these regions resides in 

rural areas far from the urban health centers and hence, is unable to avail the benefits of 

these facilities. Consequently there is a major research emphasis on developing 

inexpensive healthcare devices and systems which can be used at the point-of-care (POC) 

in these resource-limited settings with a performance equivalent to the state-of-the-art 

systems and with minimal resource requirements [8, 9].        

 

Interestingly, the two different demographics described above with totally 

different economic and social frameworks have an identical requirement of POC 

diagnostic and monitoring systems for an efficient health and disease management. Rapid 

technology strides in the past few decades have made it possible to design and develop 

systems to meet this huge need for POC biomedical devices. Development of these 

devices has primarily entailed the miniaturization of macroscale equipments and 

processes in a compact design with low sample requirements, using minimal 
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infrastructure like electricity, water and refrigeration and operable without the help of a 

trained health personnel. Design of these POC systems involves the identification and 

development of:  

 A mechanism to manipulate the biological sample (blood, saliva, urine etc.) in order 

to isolate and capture the desired disease biomarker. 

 A mechanism for making a quantitative/qualitative measure of the biomarker to 

ascertain the disease occurrence/stage. 

 

In this thesis, we will discuss POC systems for the analysis of blood and its 

components which enable diagnosis and monitoring of a large number of diseases.  

 

1.2 Blood: a major disease biomarker 

Blood is one of the most common biological samples whose constituents are used 

for diagnosis and staging of a large number of diseases. Blood consists of three kinds of 

cells; red blood cells (RBCs), white blood cells (WBCs) and platelets contained in a fluid 

known as plasma (Figure 1.1) [10]. Blood is primarily composed of: 

 Plasma which makes more than half the volume of the blood (~55%) and consists of 

about 92% of water and a number of other proteins, ions and hormones.  

 RBCs also known as erythrocytes constitute 99% of all the blood cells and are 

responsible for delivery of oxygen to different parts of the body. These cells are 

doughnut shaped with a disk diameter of 6-8 μm and a thickness of 2 μm.  
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Figure 1.1: A scanning electron microscope image of blood cells [adapted from the 

wikipedia website: http://en.wikipedia.org/wiki/White_blood_cell]. The doughnut shaped 

cells are the RBCs, the spherical shaped cells are the WBCs and the small disc-shaped 

cells are the platelets. 

________________________________________________________________________ 

 WBCs also known as leukocytes are divided into 6 subcategories: neutrophils, 

basophils, eosinophils, lymphocytes, monocytes and macrophages. WBCs are 

normally spherical in shape with their size ranging from 7 to 20 μm in diameter. 

These cells play an important role in defending the body against infections and hence 

constitute an important part of the body’s immune system. The total count of WBCs 

and the differential count of their subtypes is therefore an important indicator for a 

number of immunological diseases.  

 Platelets also known as thrombocytes are irregularly shaped blood cells which are 2-3 

μm in diameter and play an important role in clotting of blood at the site of a cut or an 

injury. 
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In particular, WBCs or their subtypes constitute different aspects of human 

immune system and an increase or decrease in their count from the normal level usually 

indicates an immunological disorder [11]. WBCs and their subtype count is therefore an 

important measure for diagnosis and monitoring of immunological diseases like AIDS as 

well as other diseases like leukemia [12]. Patients afflicted with these diseases need to 

undergo WBC count tests (total as well as differential) at regular intervals (few days to 

months) to ascertain the efficacy and to accordingly modify the treatment regimen to 

check the proliferation of the disease. To summarize, WBC and their subtypes count tests 

constitute probably the most important tests for ascertaining the functioning of human 

immune system and hence are required to be conducted at frequent intervals to diagnose 

and stage an immunological disorder. It cannot be emphasized enough that a WBC and 

their subtypes counting system which can be used at the point-of-care (POC) will enable 

a more efficient disease management particularly in resource limited settings. Next, we 

review the current state-of-the-art techniques used for counting WBCs and their subtypes 

from human blood. 

 

1.2.1 Flow cytometry for counting WBCs and their subtypes 

 Current techniques for counting WBCs and their subtypes are based on flow 

cytometry (FC) which is considered the gold standard for quantifying WBCs with a 

relatively small margin of error [13]. The operation principle of FC involves the hydro-

dynamic focusing of cells which are registered to a counter while passing one by one 

through the focal point of a laser/detector setup. The interaction of the edge of cell with 

the laser light leads to forward light scatter whose magnitude indicates cell size. Light 
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photons interacting with the internal contents of a cell scatters at a wide angle and this 

side scatter provides information about the internal compostion (e.g. granularity) of a 

cell. A specialized type of flow cytometry, known as fluorescence activated cell sorting 

(FACS) is the most widely used method for counting individual cells (Figure 1.2) [14]. 

In this approach, the cells are labeled with a fluorescent dye which specifically tags the 

cells of interest. This dye gets excited by light in a certain wavelength range and emits 

light in another wavelength range. If a cell emits light upon passing through the focused 

laser beam (recorded by the detector), it is included in the total cell count.    
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Figure 1.2: Mechanism by which Fluorescence activated cell sorter (FACS) counts and 

sorts cells [adapted from http://classes.midlandstech.com, Copyright 2004 Pearson 

Education, Inc.].  

________________________________________________________________________ 

The state-of-the-art FC instrumentation consists of commercial available multi-

purpose FACS cytometers or specialized single platform flow cytometers designed for 

counting WBCs. These instruments are expensive ($30,000-$150,000) and not realistic 

options for most POC settings as they are bulky, have continuous electricity 

requirements, require the use of filtered water and expensive refrigerated reagents, and 

http://classes.midlandstech.com/
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require technical expertise for operation (Figure 1.3). Single-purpose FC designs have 

constraints similar to standard flow cytometry: costs, electricity dependence, and 

operational inefficiencies. For all of these reasons, the use of FC systems has been mostly 

limited to hospitals and specialized clinics in big cities; they are almost unaffordable for 

the small health centers and inaccessible to the people in the resource limited settings. 

These limitations of the FC systems bring forward a pressing need to develop 

inexpensive, portable systems which can be used at the POC for isolating and counting 

WBCs from human blood. 

 

Figure 1.3: Image of a two-laser FACS Calibur Flow Cytometer [adapted from 

http://www.georgiahealth.edu/cancer/shared/flow/equipment.html]. The flow cytometer 

is expensive, bulky, needs electricity and refrigerated reagents and a trained personnel for 

its operation and maintenance.   

________________________________________________________________________ 

 

1.3 Thesis Objective 

As discussed earlier, requirements of large volumes of samples and expensive 

reagents (in the order of ml), complicated and costly optical components and technical 

http://www.georgiahealth.edu/cancer/shared/flow/equipment.html
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personnel makes FC instruments unsuitable for the resource limited settings. Hence there 

is a pressing need to develop inexpensive portable WBC counting systems which can be 

used at the point of care in resource limited settings. We envision a WBC counting 

system similar in operation to a glucose level monitoring instrument (known as a 

glucometer) used by diabetic patients (Figure 1.4). In order to obtain the count of WBCs 

or their subtypes, an undiluted blood sample will be drawn from the patient using the 

standard finger-prick method and loaded by the user into a disposable biochip that will 

process the blood sample. The biochip will be inserted into the analysis module which 

will provide the WBC count in less than a minute. This system will enable to perform 

WBC count test for a few dollars and its portability and ease-of-use will make it suitable 

for the resource limited settings.  

 

Figure 1.4: Portable system for obtaining counts of WBCs and their subtypes at the point 

of care. 

________________________________________________________________________ 
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In order to develop a compact WBC counting system, we envision a disposable 

biochip that can: a) capture WBCs from human blood and b) independently image and 

count the captured cells. The proposed biochip will be formed by integration of the 

microfluidic and microoptical devices respectively (Figure 1.5). The microfluidic 

component of the device will enable the capture of thousands of WBCs on the biochip 

surface and the microoptical component comprising of an array of microlenses will 

enable to image and count these cells. The incorporation of microoptical components on 

chip will preclude the need to use the conventional, bulky microscope elements resulting 

into a compact and cheaper WBC counting system.  

 

Figure 1.5: Disposable WBC capturing biochip obtained by the integration of 

microfluidic (cell capturing) and microoptics (cell imaging) components.  

________________________________________________________________________ 

The biochip’s cell trapping and imaging components have been presented in a 

cross sectional view (Figure 1.6). The first (microfluidic) module of the biochip is 

responsible for the capture of WBCs from the blood sample and the optical excitation of 

fluorescent molecules attached to the cell surfaces. The second (microoptics) module of 
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the biochip is responsible for collecting the light emitted by the captured WBCs and 

forming their image on an imaging sensor. The data analysis module would analyze this 

image and the number of captured WBCs will be obtained.  

 

Figure 1.6: Cross-sectional schematic of the WBC counting biochip.   

________________________________________________________________________ 

The biochip would be simple to operate, inexpensive to fabricate and will have 

low sample and reagent requirements (in the order of μl). In this thesis, we employ lab-

on-chip technology for developing microfluidic and microoptical modules to fabricate the 

proposed WBC counting biochip. 

 

1.3.1 Microfluidics for lab-on-a-chip systems 

 Microfluidics is a relatively recent branch of science and engineering which deals 

with the control and manipulation of fluids in flow channels with sub-mm dimensions 

[15]. Typically, such flow channels have at least one dimension (mostly the height) in the 

order of a few to a hundred microns. Microfluidics has favored greatly from the 
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advancements in the planar microfabrication technologies used for producing integrated 

semiconductor devices and microelectomechanical systems (MEMS) based sensors and 

actuators [16]. Over the past two decades, there have been pioneering developments in 

the field of microfluidics which enabled the integration of flow control modules like 

pumps, valves, mixers etc. on the microfluidic devices, hence making these systems 

compact and inexpensive by eliminating the need for external equipment to perform these 

functions [17].  

 

 Lab-on-a-chip devices refer to a class of devices which enable performing a set of 

laboratory operations (chemical and biological) on a small scale [18]. These devices are 

compact, easy to use, have lesser sample and reagent consumption as well as a smaller 

process time, enable precise control of the biological and/or chemical interactions and are 

very cost effective. Microfluidic devices possess all the characteristics mentioned above 

and hence the development of lab-on-a-chip systems has been concurrent with the 

advancement in microfluidic technology. Microfluidic systems have emerged with wide 

range of applications like individual molecule investigation [19], optofluidic systems 

integrating microfluidics with optics [20], chemical reaction on chips [21], cell 

manipulation on chips [22] and point-of-care diagnostic systems [23].      

 

1.3.2 Research goals 

With the characteristics mentioned above, lab-on-a-chip technology presents itself 

as a promising alternative for the miniaturization of conventional state-of-the-art flow 

cytometers. These microdevices will meet the demand for point-of-care disease 
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diagnostic and monitoring systems. Using microfluidic technology as the enabling tool, 

this thesis aims towards developing components for the point-of-care WBC capture and 

counting biochip. The thesis aims at achieving the following objectives: 

1. To develop a cell trapping microfluidic biochip for capturing and counting white 

blood cells from human blood.  

Since the white blood cells constitute a very small fraction of total cellular 

composition of the blood, separation of WBCs from the other cells (RBCs and platelets) 

is the first step in the process to count the WBCs and their subtypes. The conventional 

flow cytometry systems used for counting WBCs employ a serial process in which the 

fluorescently marked WBCs (in a human whole blood sample) are passed in a focused 

stream through a detection region and are counted and separated based on their light 

scattering characteristics. Miniaturizing these systems into portable setups however, 

entails expensive optical components (lasers, detectors etc) which need to be precisely 

aligned to perform a serial counting of the WBCs. Here, we aim to develop a microfluidic 

cell trapping biochip which will perform a size based separation of the WBCs from 

human whole blood. This approach will entail a parallel cell counting process in which 

thousands of WBCs will be simultaneously captured on the surface of the biochip and 

counted. This biochip should be simple to use, perform an efficient capture of the WBCs, 

integrable with other optical components and provide a generic platform for size based 

capture and counting of cell types other than blood cells for diagnosis and monitoring of 

several other diseases.       
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2. To develop a micro-optical module for simultaneously imaging a large number of 

cells.  

Optical imaging is the most commonly used technique for analysis of biological 

samples (cells, tissues etc). A conventional microscopy setup uses a high magnification 

objective lens with a high light collection capability (indicated by its numerical aperture 

NA) to obtain a high-resolution image of the micron-sized cells. However these objective 

lenses are not only expensive, they also have a small field of view (FOV) (a 20x 

magnification objective has a FOV of ~ 1mm), which prevents them from simultaneously 

imaging cells spread over a larger area. Since our aim is to develop a system that can 

simultaneously count thousands of WBCs captured on the biochip surface (Aim 1), we 

work towards development of optical systems that can provide a high FOV imaging 

capability while retaining the optical performance (resolution, magnification etc) of the 

microscope objective lenses. Here, we aim to develop two types of inexpensive microlens 

arrays which enable simultaneous counting of a large number of microobjects spread over 

a large field of view (in the order of cm). The first types of microlenses are polymer-

based microlenses that can be fabricated easily and reproducibly from a patterned mold 

and have an equivalent optical performance as the microscope objective typically used 

for imaging cells and tissues. The second type of microlenses are doublet microlenses 

which have a higher light collecting performance (NA) than the planar microlenses and 

are capable of forming brightfield as well as fluorescent images of biological 

microobjects directly on an imaging sensor surface. These microlens arrays can be 

integrated with the cell trapping biochip described above and could possibly enable 
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development of inexpensive systems for on-chip counting of cells, precluding the need 

for bulky external microscopes.   

    

1.4 Thesis Organization 

The research work presented in this thesis has been organized in the form of the 

following five chapters: 

Chapter 2 – Literature Review 

 This chapter reviews the microfluidic lab-on-chip devices for capturing and 

counting white blood cells (WBCs) and their subtypes. A review of various microlens 

arrays with an emphasis on their microfabrication processes and optical performance has 

also been discussed in this chapter.   

 

Chapter 3 – A 3D Microfluidic Cell Trapping Biochip For Counting White Blood Cells 

 This chapter presents a novel 3D cell trapping biochip which enables size based 

confinement and capture of WBCs. The biochip is a significant improvement over the 

membrane based captures approaches in that it confines WBCs in the 3 dimensions 

resulting into higher WBC trapping efficiency. The design of the biochip has been 

optimized to ensure equal WBC trapping in all regions of the biochip without any 

dependence upon the relative distance from the biochip inlet or outlet. A high (>87%) 

WBC trapping efficiency has been demonstrated using the biochip.   

 

Chapter 4 – A Polymer-based, Planar Microlens Array For Imaging Micron-Sized 

Objects 
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This chapter presents a soft lithography based approach to fabricate an array of 

planar, polymer-based microlenses. UV-assisted curing of a pressurized polymer under 

deformable, elastomeric membranes is utilized to obtain fixed focal length microlenses. 

Sub-100 μm diameter microlenses with numerical aperture (NA) in the range 0.05-0.30 

have been fabricated using this approach. We utilized the microlenses to image the 

micron-size resolution features patterned on a chrome mask.   

 

Chapter 5 – A High Numerical Aperture Doublet Microlens Array  

This chapter demonstrates a novel doublet microlens array fabrication technique. 

The doublet microlenses are formed using glass microspheres assembled on silicon 

microholes and planarized using a polymer layer. The fabrication process was 

combination of silicon microfabrication and a novel fluidic assembly technique. The 

fabricated microlenses had a numerical aperture of 0.5 which was a significant 

improvement over the NA (0.3) of microlenses reported in Chapter 4. These microlenses 

could also perform brightfield as well as fluorescent image formation of micron-size 

objects directly on an imaging sensor without the use of intermediate lenses.  

 

Chapter 6 – Conclusions and Future work 

 This chapter summarizes the work demonstrated in this thesis and presents the 

potential future directions.  
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CHAPTER 2 

Literature Review 

 

 This chapter presents a review of the microfluidic biochips that have been 

designed for capturing and counting white blood cells (WBCs) from human blood. A 

review of various microlens arrays, which can be utilized for on-chip optical imaging of 

microobjects, has also been presented in this chapter.  

 

2.1  Introduction 

Microfluidic lab-on-chip technology has found extensive applications in the 

global healthcare sector for the past two decades [23, 24]. With their advantages of low 

sample requirements and reagent consumption, inexpensiveness and ease of operation, 

these devices have emerged as viable replacements to the macroscale flow cytometry 

(FC) techniques particularly for the point-of-care (POC) diagnostic applications. Since 

WBC count is an important biomarker for the diagnosis and monitoring of a number of 

immunological diseases and disorders, significant research emphasis has been given 

towards the development of microfluidic devices for WBC capture and counting. The 

WBC capture microdevices employ various principles like size based capture, 

immunoaffinity based capture etc. In the first section of this chapter, various microfluidic 

approaches for WBC capture from human blood are discussed. 
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Since this thesis also presents microlens arrays for high-resolution optical imaging of 

micron-sized objects, we review the fabrication and optical performance of various 

microlens arrays.   

 

2.2 Microfluidic biochips for WBC capture and enumeration  

 WBCs and their subtypes count is an important diagnostic and monitoring 

indicator for a number of immunological diseases (e.g. AIDS). For most of these 

diseases, a specific WBC subtype count is required to make a disease assessment (e.g. 

CD4+ T-lymphocyte count to monitor HIV/AIDS proliferation). A strategy to count these 

WBC subtypes can entail capture of all the WBCs and then identifying and counting the 

targeted WBC subtype by performing an additional step. A large number of microfluidic 

biochips have been proposed for separation and capture of WBCs (and their subtypes) 

from human blood [25]. Since one of the aims of this thesis is to develop a WBC 

capturing microdevice, we are going to review these microfluidic approached to capture 

WBCs. Even though some of these microdevices were designed to capture a specific 

WBC subtype (rather than all the WBCs), their operating principle can be used for 

capturing all the WBCs. 

 

2.2.1    Size-based capture of WBCs 

 Since WBCs are bigger in size than other blood cells (RBCs and platelets), they 

can be separated from these cells by passing human blood through filter structures which 

allow RBCs, platelets and blood plasma to pass through while capturing larger WBCs. In 

one such approach, a commercial polycarbonate track-etch membrane filter (with ~ 3 μm 
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in diameter pores) is used to separate and capture WBCs from human whole blood 

(Figure 2.1) [26]. The smaller and less stiff RBCs and platelets squeeze through the holes 

while the larger WBCs are captured. This device was designed to count the CD4+ T-cells 

(a type of WBCs) for ascertaining the proliferation of HIV infection in infected patients. 

The T-cells were stained with fluorescent antibodies before the whole blood was injected 

into the device and the captured T-cells were enumerated with the help of epifluorescence 

microscopy. This is an extremely simple approach for WBC capture requiring no sample 

preparation and a process time of less than 10 minutes. However it can be seen that some 

of the membrane holes are fused leading to the escape of WBCs along with the RBCs and 

platelets and resulting into a low efficiency of capture of WBCs.  

  

Figure 2.1: The membrane flow cell device for counting CD4+ T-lymphocytes from 

human blood [adapted from [26]]. (A) Upon processing the whole blood through the flow 

cell, the white blood cells are captured on the micro holes and the red blood cells and 

platelets filter through. The arrows indicate the red blood cells filtering through the 

microholes. (B) Fluorescence image showing T-lymphocytes (stained with fluorescent 

antibodies) captured on the membrane.    

________________________________________________________________________ 

 A WBC capture approach similar to that employed in the membrane filtration 

device used different patterns of microfilters etched on a silicon substrate (Figure 2.2) 

[27]. The various designs used were a) weir, b) pillar, c) crossflow and d) membrane. 

While the RBCs squeezed through the 3.5 μm filter patterns, the WBCs were captured. 

These devices demonstrated varying levels of WBC trapping and RBC passing 

A B 



20 

 

efficiencies. While the weir pattern device obtained a WBC trapping efficiency and RBC 

passing efficiency of 70% and 28-42% respectively, the crossflow device was the most 

efficient pattern with the WBC trapping efficiency and RBC passing efficiency of 72-

95% and 60-95% respectively. Since the RBCs are almost two to three orders of 

magnitude more in number than the WBCs, even a small percentage (5%) of non-passing 

RBCs will clog the device. These filtration based WBC capture approaches suffer from 

the drawback that they trap WBCs in 2 dimensions and the cells being flexible, are free to 

squeeze out in the 3
rd

 dimension resulting into a lower WBC trapping efficiency.     

 

Figure 2.2: Schematic representation of the silicon microfilter designs used for WBC 

capture [adapted from [27]]. The designs are a) weir filter (side view), b) pillar filter (top 

view), c) crossflow filter (top view) and d) membrane filter (side view). 

________________________________________________________________________ 
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2.2.2    Immunoaffinity based capture of WBCs 

 Many human cells express unique receptors on their cell surface (antigens) which 

bind to specific proteins (known as antibodies extracted from blood serum of humans, 

mouse etc.). All WBC subtypes have a common cell surface receptor CD45, which can 

be used for isolating WBCs from other blood cells (RBCs and platelets) by using a 

monoclonal antibody against this receptor (anti-CD45 monoclonal antibody). Also 

different subtypes of WBCs possess a unique combination of different cell surface 

receptors like CD3, CD4, CD8, CD18 etc. By using antibodies specific to a particular 

receptor, it is possible to capture and separate a WBC subtype from other WBCs. 

Capturing WBCs by passing blood over a surface functionalized with antibodies is a very 

useful WBC isolation approach. This immunocapture approach becomes more powerful 

in a microfluidic device which with its high surface area to volume ratio enables greater 

cell-antibody interactions resulting into a higher WBC trapping efficiency.  

 

   Immunoaffinity based microfluidic devices have been used to capture WBCs 

from human blood using two different approaches. These approaches are: a) WBC 

adhesion on antibody functionalized structures (pillars) in a microfluidic device and b) 

Optimization of shear stress for WBC adhesion on antibody immobilized planar surfaces. 

The first approach mimics a physiological process in which the blood vessels express 

specific adhesion proteins on their surface to selectively capture WBCs, hence separating 

them from RBCs and platelets [28, 29]. In this phenomenon, the cells are not 

permanently immobilized on the binding site instead they roll on the surface. 

Microfluidic devices with different pillar geometries and configurations, functionalized 
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with a WBC specific adhesion protein (human E-selectin IgG) were used to capture 

different WBC cell lines and the influence of pillar geometry and configuration on the 

speed and efficiency of WBC capture was evaluated (Figure 2.3). Using this device, a 

hundred fold enrichment of the WBCs was obtained as compared to their original 

concentration. However, since these experiments were done with leukocyte cell lines 

rather than human blood sample, the capability of this approach to separate and capture 

WBCs from other blood cells in the sample is still unknown.  

 

Figure 2.3: Microfluidic device with protein (E-selectin) functionalized pillars for 

capturing leukocyte cell lines [adapted from [28]]. (A) Square array of 25x25 μm square 

posts spaced 25 μm apart. (B) Alternating arrays of thin posts with 30 μm longitudinal 

post to post spacing and the adjacent rows offset by 15 μm in the flow direction.   

________________________________________________________________________ 

The second immunoaffinity based capture approach relies upon the change in the 

cell-antibody adhesion mechanics with the shear stress in the flow. Different WBC 

subtypes have different optimal shear stress values for the most efficient capture. To 

ascertain the optimal shear stress for the adhesion of human lymphocytes, cells were 

flown in a device (with antibody functionalized surface) with linearly varying shear stress 

[30]. Once optimized, devices with parallel flow design (constant optimal shear stress 

throughout the device length) were used for enrichment of lymphocyte cell lines [31]. 

B A 
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100% and 75% pure suspensions of T-lymphocytes and B-lymphocytes were obtained in 

~ 3 min.  

 

 Using the above immunoaffinity based capture approach, a microfluidic device 

was fabricated for capturing and counting of CD4+ T-cells from 10 μl of HIV infected 

whole blood (Figure 2.4) [32]. A T-cell capture efficiency of 70-80% and a capture 

specificity of 60-90% were obtained using this device. A low value of capture specificity 

was attributed to the binding of monocytes on the antibody-immobilized surfaces. 

 

Figure 2.4: Microfluidic device used for capturing and counting CD4+ T-cells from 

human whole blood [adapted from [32]]. (A) Schematic of the steps of operation of the 

CD4+ T-cells counting microdevice. (B) Microfabricated device with optimal channel 

dimensions (4 mm x 51 mm x 50 μm for optimal shear stress) to capture T-lymphocytes.    

________________________________________________________________________  

 A modified version of the above microfluidic device was designed to minimize 

the monocyte contamination to improve the CD4+ T-cell capture purity [33]. In this 

design, a monocyte depletion chamber was incorporated upstream of the CD4+ T-cell 

capture chamber (Figure 2.5). The monocytes with a higher optimal shear stress value 

(1.5 dyn/cm
2
) were captured in the depletion chamber whereas the CD4+ T-cells with a 

lower optimal shear stress value (0.3 dyn/cm
2
) were captured in the downstream 

A B 
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chamber.  Using these devices, the T-cell capture purity increased to 80-90%. Although 

these devices were designed specifically for the capture of CD4+ T-cells, they can be 

functionalized with a suitable antibody to capture any leukocyte of interest. However, 

these devices have a drawback that their functionalization comprises of a number of steps 

and non specific binding of other blood cells significantly brings down the captured cell 

purity.               

 

Figure 2.5: Schematic representation of a two stage cascaded device for CD4+ T-cell 

capture [adapted from [33]]. Reduced monocyte contamination results into an increased 

T-cell capture purity.   

________________________________________________________________________ 

 

2.3 Microlens arrays for imaging micron-sized biological objects 

Optical imaging based approaches have conventionally been used for detecting 

and visualizing micron-scale biological objects like cells and tissues. An optical 

microscope is the instrument most commonly used for cellular imaging. Various variants 

of the optical microscopy techniques like fluorescence microscopy, confocal microscopy 
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and multiphoton microscopy are used for cellular imaging depending upon the optical 

performance desired like the resolution, magnification, selectivity etc. These microscopes 

provide high resolution cellular imaging enabled by the high light collecting capability of 

their objective lenses (indicated by their numerical aperture NA). However, these high 

NA objective lenses have a small field of view (FOV) (in the order of 100-1000 μm) that 

prevents simultaneous imaging of cells and tissues spread over a larger area (in the order 

of mm). Also, the large size and huge cost of these objective lenses make them unsuitable 

for point-of-care imaging applications.       

 

 Advancements in the microfabrication technology over the past two decades has 

enabled researchers to develop micron scale lenses also known as ‘microlenses’ which 

aim to mimic the optical performance of conventional objective lenses. These microlenes 

are often obtained using a batch fabrication process from a photolithographically 

patterned mold. This enables simultaneous fabrication of thousands of microlenses 

reproducibly at a very low cost. Also, arrays of these microlenses enable simultaneous 

imaging of micro-objects spread over a large area, providing large FOV imaging 

capability. In the next section, we will review these microlens facbrication techniques 

with emphasis on the optical performance as well as the ease of fabrication of these 

microlenses.  

 

2.3.1    Microlens fabrication methods 

 The microlenses can be divided broadly into two categories, i) fixed focal length 

microlenses and ii) variable focal length (tunable) microlenses. The tunable microlenses 
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primarily comprise of micro-optofluidic lenses that use a liquid as the lens medium and 

use a microfluidic scheme for actuating the fluid to vary the microlens focal length. 

Tuning using pneumatic pressure, dielectrophoresis, stimuli responsive hydrogels, 

electrowetting and hydrodynamic forces respectively are some of the actuation 

techniques used for varying the microlens focal length [34]. Although these techniques 

enable microlenses with focal lengths in a wide range, they require an external actuation 

source and hence they are not suitable for point of care applications with infrastructure 

constraints. Thus in this review, we will focus on the fabrication techniques for fixed 

focal length microlenses.    

 

2.3.1.1  Fixed focal length microlenses 

 One of the earliest methods for fabrication of the fixed focal length microlenses 

involved melting and reflow of photoresist microstructures on a glass substrate. In order 

to obtain these microlenses, the photoresist microstructures were melted by heating them 

to a temperature of 150ºC. The surface tension caused the melted photoresist to obtain a 

curved microlens profile (Figure 2.6A) [35]. This fabrication approach provides high fill 

factor for the microlenses, with the microlens pitch (center-to-center distance) being as 

small as the microlens diameter (Figure 2.6B) [36]. The surface profile of these 

microlenses varies with the surface tension at the photoresist-air-glass interfaces.  
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Figure 2.6: Scanning electron micrographs of the microlenses fabricated using 

photoresist melting and reflow methods. (A) 1.5 µm in diameter microlenses can be 

fabricated using this approach [adapted from [35]]. (B) High fill factor square microlens 

array fabricated using photoresist melt and reflow method [adapted from [36]].  

________________________________________________________________________ 

 

 Ink-jet printing of ultraviolet (UV) curable polymers has also been employed to 

obtain refractive microlenses. This process utilizes a drop-on-demand ink-jet printer to 

dispense the polymer on a hydrophobic substrate (Figure 2.7A) [37]. The polymer 

droplets are subsequently polymerized into plano-convex microlenses using UV light 

irradiation (Figure 2.7B) [38]. Like the photoresist reflow based fabrication approach, 

this process too enables fabrication of microlens arrays with a high fill factor. However 

this process requires the use of a very expensive setup for dispensing polymer on the 

substrate. Also the surface profile of the microlens depends greatly upon the surface 

tension at the interfaces as well as the wettability of the substrate. 

 

 

 

 

 

A B 
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Figure 2.7: Ink-jet printing process for fabricating microlenses. (A) Schematic of the ink-

jet printing setup for dispensing UV curable polymer [adapted from [37]]. (B) 

Microscopic image of an array of ink-jet printed microlenses [adapted from [38]].   

________________________________________________________________________ 

Focused ion beam milling and femtosecond laser direct writing techniques have 

been proposed for fabrication of high NA microlenses [39, 40]. While the focused ion 

beam milled microlenses achieved NA of 0.64, microlens fabricated using femtosecond 

laser direct writing technique achieved high NA of 0.46 for a 100% fill factor (Figure 

2.8). Like ink-jet printing technique, these processes are serial processes and require 

expensive equipments.   

A B 
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Figure 2.8: (A) Scanning electron microscope (SEM) image of the microlens fabricated 

using focused ion beam milling [adapted from [39]]. (B) SEM image of hexagonal 

microlens array fabricated using femtosecond laser direct writing. A 100% microlens fill 

factor is obtained using this technique [adapted from [40]].  

________________________________________________________________________ 

 

 A simple microlens fabrication approach involves molding various materials 

against rigid and elastomeric molds [41-44] (Figure 2.9). The patterns on a mold form 

the negative replica of the microlens profile resulting into microlenses when a thermally 

or UV curable polymer is cast on the mold. This microlens fabrication approach is a 

parallel approach which results into an array of 100s and 1000s of microlenses at the end 

of one molding step. This microlens fabrication process is simple to implement, however 

the quality of the mold deteriorates with its greater usage resulting into poor microlens 

surface profile.  
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Figure 2.9: Microlens fabricated by molding various materials against the elastomer 

(polydimethylsiloxane PDMS) and silicon molds respectively. (A) Schematic of the 

fabrication of sol-gel glass microlens arrays by molding them against the PDMS mold 

[adapted from [42]]. (B) SEM image of sol-gel glass microlenses [adapted from [42]]. 

(C) Microlens mold obtained by the isotropic wet etching of silicon in an acid solution 

[adapted from [44]]. (D) SEM image of an array of microlenses obtained by molding a 

UV curable polymer against the isotropically etched silicon mold [adapted from [44]].  

________________________________________________________________________ 
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2.4 Conclusions 

 This chapter reviewed various microfluidic devices for separating and capturing 

WBCs and their subtypes. Various microfabrication techniques for obtaining high 

performance fixed focal length microlens arrays were also reviewed in this chapter. The 

advancements in the fields of microfabrication and microfluidics technology has led to 

the miniaturization of macroscale cell separation and imaging processes. An integration 

of these two technologies can enable the development of compact and cheap point-of-

care WBC counting systems. 
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CHAPTER 3 

A 3D Microfluidic Cell Trapping Biochip For Counting White Blood Cells 

 

In this chapter, we present a microfluidic biochip for trapping and counting 

human white blood cells on a microfabricated hole array. A novel 3D cell trapping 

architecture has been proposed for performing size based capture of the white blood cells. 

White blood cells suspended in the buffer solution were injected under pressure into the 

biochip and optimal pressure for the highest cell trapping efficiency was ascertained. 3 

psi was measured as the optimal injection pressure at which a high (>87%) efficiency of 

trapping of the white blood cells was achieved. We aim to develop this device as a point-

of-care diagnostic and monitoring platform that can perform size based separation and 

counting of white blood cells and other disease indicators like the circulating tumor cells 

from human whole blood.     

 

3.1 Introduction 

White blood cells (WBCs) and their subtypes are important constituents of the 

human immune system [45]. Their concentration, quantified by a WBC count test, 

indicates the state of body’s defense against potentially harmful pathogens such as 

bacteria, viruses, and fungi [46]. In addition, an abnormal WBC count (which 

corresponds to a WBC concentration of >10,000 cells/μl or <4,000 cells/μl of whole 

blood), may be associated with certain hematologic malignancies [47, 48], autoimmune 
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disorders [49, 50] or even drug toxicities [51-53]. WBC counts test are therefore 

important diagnostic tools for a number of human diseases and disorders, as well as for 

monitoring the progression and treatment of such pathological conditions. 

 

Flow cytometry (FC) is the current gold standard for counting WBCs [54]. 

Although FC instruments have high throughput capacity and accuracy, they are expensive 

(tens of thousands of dollars), non-portable, consume large volumes (typically in the 

milliliter range) of blood samples and reagents and require considerable technical 

expertise for their operation and maintenance. Their use is therefore limited to hospitals 

and specialized clinics in big cities and renders them unsuitable in the field, at the 

doctor’s office or in small communities that lack both the infrastructure as well as the 

trained health personnel. 

 

To overcome those issues, microfluidic technology has recently emerged as an 

alternative approach for replacing the bulky and expensive FC instruments. Due to the 

unique advantages of small volume sample and reagent consumption, low cost and ease 

of operation, various microfluidic devices have been developed to address the challenge 

of WBC (or their subtypes) count on-chip. Such microfluidic devices can be divided into 

two categories: continuous flow microdevices [55-60] and cell-capturing microdevices 

[25]. The former ones can be considered as miniaturized FC systems as cells are counted 

as they flow through the detection region. However, these devices have to be precisely 

interfaced and aligned with elaborate and bulky fluidic, optical and electrical setups for 

registering the cells of interest. 
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In cell-capturing microdevices, cells are mechanically or chemically immobilized 

on-chip and imaged/counted using a microscope and a CCD camera. Mechanical 

immobilization approaches typically employ a commercial membrane filter with micron-

sized holes for capturing WBCs from whole blood [26]. The membrane filter also 

functions as a cell separator: WBCs, being larger in size than the red blood cells (RBCs), 

are captured in the holes while the RBCs squeeze through the holes. However, the holes 

do not have a consistent shape and size, as a result some holes are fused together leading 

to the escape of WBCs and low WBC trapping efficiency. Microfabricated silicon-based 

microfilters have also been proposed for isolating WBCs from human whole blood [27]. 

These microfilter based devices essentially have a 2D architecture and they capture 

WBCs through their confinement in a plane. However the cells have the freedom to move 

in the third dimension leading to their escape and a reduced (72-85%) trapping efficiency.      

 

Chemical immobilization through immunoaffinity-based selection has also been 

used for capturing WBCs and their subtypes (e.g. CD4
+
 T-cells). The working principle is 

straightforward: blood samples flow through a microfluidic device that has previously 

been functionalized with antibodies against the desired cell surface receptors. In this 

approach, enumeration of the captured cells is done optically using a microscope [32, 33, 

61] or electrically by measuring the impedance change upon cell lysis using on-chip 

electrodes [62]. Functionalization of those microdevices requires a number of incubation 

and washing steps while non-specific antibody binding reduces the purity of the 

functionalized cell population. 
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HemoCue WBC is a benchtop WBC counting system that does not use 

microfluidic technology [63]. The system counts WBC concentration in human whole 

blood by imaging of the stained nuclei of WBCs. This system, although simple to use, is 

not accurate (accuracy <90%) and is not able to distinguish nucleated RBCs from WBCs 

while it measures the average light intensity from the bulk of the lysed blood sample.  

    

In this work, we describe a cell-capturing microfluidic chip that mechanically 

traps human WBCs. The microdevice incorporates a novel 3D architecture in which an 

array of microholes (termed ‘microhole array’) is microfabricated on a suspended, thin 

film that is sandwiched between a two-layer microfluidic network. The proposed device 

differs from previous membrane-type cell-capturing approaches as it confines WBCs in 

all the 3 dimensions (a simple membrane confines cells only in 2 dimensions) leading to 

a high WBC trapping efficiency (>87%). Similar to other cell-capturing devices, the 3D 

architecture also provides an advantage over flow cytometry approaches as thousands of 

on-chip trapped WBCs can be imaged/counted simultaneously using standard fluorescent 

microscopy This precludes the need for precise alignment of optical elements with the 

microfluidic chip. Although we report results from lysed human blood samples, our 

microfluidic chip due to its unique two-layer architecture can potentially perform size-

based separation of RBCs and platelets from WBCs. We envision the integration of this 

microdevice with on-chip optical modules and its subsequent development into a generic 

platform for size-based separation and imaging/counting of different types of cells for 

various point-of-care applications.  
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3.2 Materials and methods  

3.2.1    Materials 

SU-8 photoresist was purchased from MicroChem (Newton, MA) and the 

polydimethylsiloxane (PDMS) elastomer was obtained from Dow Corning (Midland, 

MI). Chlorotrimethylsilane was purchased from Sigma Aldrich (St. Louis, MO). 

Phosphate buffered saline (PBS) was obtained from Mediatech, Inc (Manassas, VA). 

RBC lysis buffer was obtained from eBioscience (San Diego, CA). Alexa Fluor® 488-

conjugated mouse antibody to human CD45 (AF488-anti-CD45) was purchased from 

Invitrogen (Frederick, MD).  

 

3.2.2    Biochip design 

Our 3D cell-capturing chip (Figure 3.1) consists of a membrane of ~10,700 

microholes, ~4 µm in diameter that are patterned on a 1 μm thick silicon nitride film. The 

microholes are arranged in a 17x17 array of clusters (289 clusters in total). Each cluster 

contains 37 microholes and it is separated from its neighboring ones by a distance of 120 

μm. The entire microhole array is ~2 mm x 2 mm and it is sandwiched between two 

microfluidic networks. The top microfluidic network includes: (i) an inlet region that 

branches into 17 microfluidic channels (termed ‘inlet fluidic arms’) and (ii) 18 

microfluidic channels (termed ‘outlet fluidic arms’) that merge into the outlet region. 

Each inlet fluidic arm is a 60 µm wide, 20 µm deep, dead-end microchannel that delivers 

WBCs to a single row of clusters (each row contains 17 clusters). The outlet fluidic arms 

are 26 µm wide, 20 µm thick, dead-end microchannels that are connected to the inlet 

fluidic arms through the bottom microfluidic network. The bottom microfluidic network 
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consists of 30 µm long, 1.28 µm thick microchannels (termed ‘microfluidic connectors’) 

that connect the clusters from a single inlet fluidic arm to two outlet fluidic arms through 

a set of 4 µm in diameter microholes (termed ‘exit microholes’).  

 
 

Figure 3.1: (A) 3D illustration of a WBC trapping microhole cluster of the biochip. The 

cell trapping layer is sandwiched between the top and the bottom microfluidic channels 

(Top cover is not shown for clarity). (B) A snapshot of the microfluidic biochip (12 

images were obtained with a 5x microscope objective and stitched together). Enlarged 

view of the trapping holes with the top microfluidic channels was obtained using a 20x 

microscope objective. A magnified view of an individual microhole cluster (obtained 

with a 50x microscope objective) has also been presented.  

_______________________________________________________________________ 
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The working principle of the biochip is purely based on mechanical confinement 

(Figure 3.2): WBCs, due to their large size (7-15 µm in diameter), are spatially restricted 

and therefore immobilized in the 3 dimensional space that is created by the microhole 

array and the thin (~1.28 µm thick) bottom microfluidic network. While WBCs are being 

trapped in the microhole array, the remaining blood continues to flow through the 

microholes, the bottom microfluidic network and the outlet microchannel of the top 

microfluidic network. After the entire blood sample is processed, the number of trapped 

WBCs is counted by examining the microhole array under a fluorescent microscope.  

 

Figure 3.2: Schematic of the trapping of WBCs in the microhole array. Fluorescently 

tagged WBCs suspended in the buffer solution are injected into the biochip under 

pressure. While the buffer flows through the microhole array, the WBCs are confined and 

trapped in the microhole array and their squeezing out is prevented by the bottom 

microfluidic layer.  

________________________________________________________________________ 
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3.2.3    Biochip microfabrication 

The biochip consists of two microfabricated modules: the cell trapping module 

and the sample delivery module (Figure 3.3). The microfabrication of the trapping 

module starts with a low pressure chemical vapor deposition (LPCVD) of a silicon 

dioxide and a low stress silicon nitride layer (1.28 µm and 1 µm thick respectively) on a 

silicon substrate. The microhole array is then patterned on the silicon nitride layer using 

photolithography and reactive ion etching (RIE). An isotropic, HF time-etch step of the 

underlying silicon oxide layer is finally performed to obtain the microhole array and the 

bottom microfluidic network. The sample delivery module consists of a network of 

PDMS microfluidic channels fabricated using soft lithography. A 20 µm thick layer of 

SU-8 photoresist is spun and photolithographically patterned on a silicon wafer to obtain 

the microfluidic mold. PDMS is then cast on the SU-8 mold, cured at 65ºC for 2h and 

peeled off to obtain the sample delivery module. Silanization of the SU-8 mold prior to 

PDMS casting minimizes stiction of the cured PDMS. Holes are punched into the PDMS 

mold with a sharpened 19-gauge needle to obtain the inlet and outlet ports. Finally the 

silicon nitride and the PDMS surfaces of the two modules are exposed to air plasma (120 

mTorr, 30 W, 15 s) [64], aligned manually under a light microscope and bonded together. 
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Figure 3.3: The microfabrication process of the cell trapping biochip. The cell trapping 

and the sample delivery modules are fabricated separately and subsequently aligned and 

bonded under an upright microscope using a 5x microscope objective.  
________________________________________________________________________ 

 

3.2.4    Fluid flow simulations and modeling 

Parameters of the fluid flow through the biochip (pressure, volumetric flow rate 

and microfluidic resistance) were obtained using a combination of numerical 

(computational fluid dynamics (CFD)) and resistive electrical circuit modeling [65]. The 

top and bottom microfluidic networks were modeled using electrical circuit elements 

while the clusters were modeled using COMSOL. All microchannels in the two networks 

were represented as ohmic resistors with zero capacitance. The simulations were 
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performed in LT Spice IV software assuming that there are no WBCs present in the 

microhole array. Assuming rectangular geometry, the resistance (R) for each microfluidic 

segment (inlet and outlet fluidic arms, microfluidic connectors) was estimated by [66]: 

                                                 

where l, w and h are the length, width and height of the rectangular microfluidic segment 

respectively and η is the viscosity of the fluid (we used the viscosity of water (η = 10
-3 

Pa-s) in our calculations). 

 

The microfluidic resistance of a single cluster (Rcluster) was estimated in COMSOL 

using the laminar flow module. In those simulations, the fluidic resistance of a single 

microhole (Rmicrohole) was calculated by dividing the pressure drop across it by the 

volumetric flow rate through it. Subsequently, the microfluidic resistance of an entire 

cluster (Rcluster) was obtained by considering that all 37 microholes in the cluster are 

ohmic resistors connected in parallel (Rcluster = Rmicrohole / 37).  

 

3.2.5 Blood sample preparation and biochip operation  

All experiments were performed with lysed human blood samples. 20 µl of 

finger-prick human whole blood samples were initially tagged with monoclonal CD45 

fluorescent antibodies (Alexa Fluor® 488-anti-CD45, excitation 495 nm, emission 519 

nm, Invitrogen Inc.) in the ratio 10:3 (to label all the WBCs). Subsequently, the red blood 

cells (RBCs) were removed by incubating the blood sample with a lysis buffer 

(eBioscience, San Diego, CA) for 10-15 min. The WBCs were then collected via 
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centrifugation and finally diluted in PBS buffer (1x Dulbecco’s Phosphate Buffered 

Saline) to a total volume of 20 µl. 1 µl aliquots of this buffer solution (containing WBCs) 

were subsequently used for experiments.  

 

At the beginning of every experiment and before loading the blood sample, a 

purging step with PBS buffer was performed to remove air bubbles from the biochip and 

to ensure uniform flow conditions. All experiments were performed under constant 

pressure in order to eliminate WBC escape and/or rupture due to pressure buildup during 

the WBC trapping process. That was achieved by connecting the inlet of the biochip to a 

compressed air supply through a digital pressure controller (model number PC-30PSIG-

D/5P, Alicat Scientific, Inc.). The outlet of the biochip was exposed to the atmospheric 

pressure. 

 

3.2.6 WBC counting 

Fluorescently tagged WBCs were counted in the inlet region, the cell trapping 

array and the outlet region of the biochip using an upright epi-fluorescent microscope 

equipped with a low-light CCD camera (QuantEM: 512SC, Photometrics Inc.). The WBC 

number in the inlet region and the cell trapping array was obtained by analyzing images 

from those regions at the end of each experiment (e.g. when 1 µl of lysed blood sample 

was processed through the biochip). The fluorescent images were analyzed using 

commercial imaging software (MetaMorph, Molecular Devices Inc.). Fluorescent 

impurities (e.g. residuals formed during lysing, dust particles, etc) that could alter the 

WBC count, were eliminated by comparing their size and fluorescence intensity with the 
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average size and fluorescent intensity of manually-identified WBCs. WBCs that exited 

the cell trapping array were manually counted on the fly by continuously monitoring the 

flow through the outlet region of the biochip.  

 

3.3 Results 

3.3.1 Uniform pressure and flow rate distribution in the biochip  

We performed CFD simulations using COMSOL software to obtain the maximum 

pressure difference across the 37 microholes of a single cluster for different trapping 

scenarios. The maximum pressure difference across the microholes determines the 

tendency of an incoming cell to remain trapped or squeeze out. It is therefore an 

important parameter that affects the trapping efficiency. We varied the number of WBC-

filled microholes (we assumed that there is no flow through a microhole when a WBC is 

trapped) and obtained the resulting maximum pressure difference across the remaining 

open microholes in the cluster. A 3 psi pressure difference between the inlet and outlet of 

the simulated fluidic domain was used. Our results (Figure 3.4) suggest that the 

maximum pressure difference (ΔPmax) across the open (unfilled) microholes in a cluster 

remains relatively stable for up to ~70% microhole occupancy (occupancy = number of 

WBC-filled microholes in the cluster / total number of microholes in the cluster). 

However beyond 70% microhole occupancy, ΔPmax rises considerably which can lead to 

cell escape and reduced trapping efficiency. Considering the 70% occupancy limit and 

the fact that our microfluidic chip has a total of 10,700 microholes, it is expected that the 

chip can efficiently trap up to ~7,500 WBCs (70% occupancy) before there is a 

significant pressure drop across the remaining open microholes. That number of WBCs is 
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compatible with finger-prick point-of-care devices that typically process ~0.5 μl of whole 

blood [67] (0.5 μl of blood contains an average of 3,000-5,000 WBCs in healthy 

individuals).  

 

Figure 3.4: (A) COMSOL geometrical model used to simulate the pressure profile 

through an individual microhole cluster. The arrows signify the direction of flow into the 

device, passing through the microhole cluster and the bottom microfluidic layer and 

subsequently exiting through the outlet channel. The cross section schematic shows the 

pressure difference across an unoccupied microhole. (B) Pressure profile (in Pa) has been 

presented for the top plane of the bottom microfluidic layer (indicated in green). The 

white and the dark circles indicate the occupied and the unoccupied microholes 

respectively. (I), (II), (III) and (IV) correspond to 0, 18, 31 and 34 microholes occupied in 

the cluster (out of 37 holes). (C) Maximum pressure difference across a microhole cluster 

as a function of the % of the microholes (in the cluster) occupied by the cells. 

________________________________________________________________________ 
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Furthermore, using the duel modeling approach described above and assuming 

pressure driven flow, we obtained the flow rate through each of the 17 clusters in a single 

inlet fluidic arm (Figure 3.5). We observed that the maximum and minimum relative 

flow rates (the relative flow rate is the ratio of the flow rate through a cluster divided by 

the total flow rate entering the inlet fluidic arm) were 6.3% and 5.7% respectively, 

indicating that the flow is divided almost equally among all clusters in a single inlet 

fluidic arm. This small variation can be attributed to the high microfluidic resistance of 

each of the microfluidic connectors (R ~ 9.1 x10
15

 Pa-s/m
3
) which exceeds the resistance 

of the inlet fluidic arm (R ~ 10
13

 Pa-s/m
3
) and of a cluster (R ~ 3.5 x10

13
 Pa-s/m

3
) by 

three and two orders of magnitude respectively. Maintaining a uniform flow distribution 

among all clusters in an inlet fluidic arm ensures an equal probability of trapping WBCs 

in the array. We avoid modeling the entire biochip, as all fluidic arms are connected in 

parallel to the inlet and outlet regions and therefore they experience identical flow 

conditions. 
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Figure 3.5: (A) Resistive electrical circuit to analyze the distribution of flow through 

different trapping microhole clusters (1-17) along the length of one of the 17 microfluidic 

inlet arms. Rcluster 1-17 indicate the fluidic resistances of the microhole clusters 1-17 

respectively. All the resistances used for the resistive electrical circuit modeling have 

been illustrated using a 3D cross section. Rconnector exceeds any other resistance in the 

network by at least two orders of magnitude. This resistive circuit was analyzed using LT 
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Spice IV software to obtain the flow rates through each of the 17 microfluidic arms. (B) 

% of the total flow passing through each of the microhole clusters in the beginning of the 

flow (no cell trapped). Flow distributes almost equally among all the 17 clusters.   
________________________________________________________________________ 

 

3.3.2 Maximum WBC trapping efficiency  

In order to obtain the optimum pressure that resulted in the highest trapping 

efficiency (ETrap), we conducted experiments at a pressure range of 1-7 psi with blood 1 

μl blood samples containing at least 200-500 WBCs (Figure 3.6). We defined ETrap at a 

given pressure as the percentage ratio of WBCs captured in the cell trapping array over 

the total number of WBCs processed through the biochip: 

 
 

The total number of WBCs was calculated by adding the number of WBCs that 

remained in the inlet region (Nin), the ones that trapped in the array (Narray) and the ones 

that escaped in the outlet region of the biochip (Nout). We also calculated the WBC 

escape yield (Yescape) that is the percentage ratio of Nout over the sum of Narray and Nout. 

The Yescape does not consider the Nin and hence it is a more realistic indicator of the 

ability of the microhole array to capture WBCs. 

 

Our results indicate that the ETrap reaches a maximum value of ~90% (average 

from 4 measurements) at 3 psi. At lower pressures, ETrap decreases by approximately 

10%. This decrease can be attributed to the higher number of WBCs remaining in the 

inlet region due to the low flow rate/WBC speed. Beyond 3 psi, ETrap decreases linearly 

with pressure as a larger number of WBCs squeeze through the microholes and escape 
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the biochip. It was also observed that a slightly higher percentage of WBCs escape the 

array at 1-2 psi when compared to the optimum pressure of 3 psi (Figure 3.6, % WBC 

escape curve). This counterintuitive observation can be attributed to the longer time that 

is required for the 1 μl of blood sample to flow through the biochip at low pressures. A 

prolonged processing time causes initially trapped WBCs to squeeze out of the array and 

finally exit the biochip. Beyond 3 psi, as anticipated, the Yescape increases with pressure 

reaching a value of 24-30% at 7 psi. For pressures 7 psi and above, the high flow rate 

resulted in an inaccurate count of the number of WBCs exiting the biochip using the 

imaging modality described earlier. At pressures 1 psi and below, the flow was extremely 

slow, leading to an aggregation of a high number of WBCs in the inlet region. 

 

Figure 3.6: Biochip trapping efficiency and WBC escape % versus pressure. Each data 

point represents result from a single WBC trapping experiment using a new biochip for 

every experiment. Four devices were used for each pressure value. For all these 
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experiments, the number of input cells was in the range 180-500. Maximum trapping 

efficiency was obtained for 3 psi pressure. Snapshot depicts the fluorescently tagged 

white blood cells trapped in the microholes. 

________________________________________________________________________ 

 

3.3.3 WBC trapping efficiency versus number of processed WBCs  

We furthermore measured the trapping efficiency for different WBC 

concentrations (100–1000 WBCs/μl) at the optimum pressure of 3 psi (Figure 3.7A). We 

chose ~100 WBCs per μl to be the lower limit as this represents the extremely low 

number of WBCs present in patients with a weak immune system (e.g. end-stage AIDS 

patients). To achieve low WBC concentration values, blood samples were diluted by 5-6 

fold after the lysis step. In the above range of input WBC concentrations, ETrap exhibited 

small variations, ranging between 87-95%. The WBC escape percentage (Figure 3.7B) 

varied between 1.8 - 3.6%, indicating that a very low number of processed WBCs was 

able to squeeze out of the array.      
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Figure 3.7: (A) Biochip trapping efficiency versus number of input WBCs. (B) WBC 

escape % versus number of WBCs entering the cell trapping region (i.e. total number of 

input WBCs – number of WBCs stuck in the inlet region). Each data point represents 

result from a single WBC trapping experiment using a new biochip for every experiment. 

For all these experiments, 3 psi pressure was used. The trapping efficiency has an 8% 

range (max value – min value). Maximum escape % value of 3.65 was obtained from 

these experiments. 

________________________________________________________________________ 
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3.4 Discussion 

We presented a novel 3D microfluidic architecture for capturing WBCs. Although 

the trapping efficiency of our biochip is higher than other size-based cell trapping 

approach by 5-15% [27], the ultimate limit of trapping all WBCs was not achieved for 

two reasons: (i) a small number of WBCs – probably the ones with the smallest diameter 

(e.g. lymphocytes) - were able to escape the array and (ii) some WBCs adhered at the 

inlet of the biochip. The latter reason had a dominant effect on reducing the trapping 

efficiency as the number of WBCs adhered at the inlet region was 2-3 times higher than 

the number of WBCs that escaped the microhole array. We anticipate that the 

functionalization of the microfluidic walls with a blocker against non-specific protein 

binding (e.g. bovine serum albumin (BSA) solution) [68] would minimize cell adherence 

and therefore significantly increase the trapping efficiency. Moreover, reducing the 

diameter of the microholes could further increase the trapping efficiency as the smallest 

WBCs will not be able to escape. An alternative strategy for capturing the smallest 

WBCs would be to decrease the thickness of the bottom microfluidic network. Such an 

approach is not recommended though as it can dramatically increase the fluidic resistance 

and therefore the time needed to process the blood sample. 

 

Our simulation results indicate that the ETrap of the proposed design is not affected 

by the total number of WBCs trapped as long as that number does not exceed ~7,500 

WBCs (70% occupancy of the array). That number is larger than the number of WBCs 

expected in most patients with compromised immune system (3,500-5000 WBCs/ μl). In 
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any case, the size of the microhole array can be easily scaled up if a large number of 

WBC needs to be processed.  

 

Finally, we should emphasize that all our experiments were performed with lysed 

human whole blood samples. The removal of RBCs from whole blood was necessitated 

due to their overwhelming number (~6 million RBCs in 1 μl) over the number of WBCs. 

Experiments were also performed with whole blood samples, but they were not 

successful: RBCs tend to stick to the microhole array, clogging the biochip. The clogging 

was not that severe when highly diluted whole blood samples (1:100 blood/buffer) were 

used; however the time required for processing the large volume of the diluted sample 

increased considerably (15-20 min at 3 psi). This resulted in a decrease in the trapping 

efficiency as many trapped WBCs eventually squeezed out of the microhole array. Future 

biochip designs can incorporate an on-chip RBC lysis chamber [69] and/or a metering 

chamber [70, 71] upstream of the microhole array. Such an integration scheme would 

eliminate the various off-chip lysis/dilution steps and potentially improve WBC viability 

as well as the overall performance of the biochip. 

 

3.5 Conclusions  

Monitoring of diseases that compromise the immune system (e.g. HIV/AIDS, 

aplastic anemia) is performed by counting WBCs and/or their subtypes. In this chapter, 

we presented a novel microfluidic chip for trapping and counting WBCs in minute 

volumes of lysed, diluted blood samples. The biochip incorporates an array of ~10,700 

microholes that is sandwiched between two microfluidic networks. This unique 
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architecture enables the three-dimensional confinement/trapping of WBCs in the array, 

resulting in a high trapping efficiency (>87%). Although, the current design requires the 

use of a fluorescent microscope for counting the number of WBCs, we envision the 

development of an integrated optofluidic system that will report the WBC count 

automatically. The use of such a system can be extended to other types of cells including 

specific sub-populations of WBCs (e.g. CD4+T cells) or even circulating tumor cells 

(CTCs) for point-of-care monitoring at home, at the physician’s office or at a resource-

limited setting.  
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CHAPTER 4 

A Polymer-based, Planar Microlens Array For Imaging Micron-sized Objects 

 

In this chapter, we present a novel microfabrication approach for obtaining arrays 

of planar, polymer-based microlenses. The proposed microlenses arrays consist of 

deformable, elastomeric membranes that are supported by polymer-filled microchambers. 

Each membrane/microchamber assembly is converted into a solid microlens when the 

supporting UV–curable polymer is pressurized and cured. By modifying the microlens 

diameter (40-60 µm) and curing pressure (7.5-30 psi), we demonstrated that it is possible 

to fabricate microlenses with a wide range of effective focal lengths (100–400 µm) and 

numerical apertures (0.05-0.3). We obtained a maximum numerical aperture of 0.3 and 

transverse resolution of 2.8 µm for 60 µm diameter microlenses cured at 30 psi. These 

values were found to be in agreement with values obtained from opto-mechanical 

simulations. We envision the integration of these microlenses arrays with cell capturing 

microfluidic biochips (presented in chapter 3) for point-of-care cell counting applications. 

 

4.1 Introduction 

Microlenses are used in optical communication [72, 73], displays [74, 75], optical 

sensors [76, 77], photolithographic systems [78, 79]  as well as in biomedical imaging 

applications [80-82]. Recent advances in micromachining technology led to the 

development of a variety of microlens microfabrication approaches including photoresist-
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reflow and transfer methods [35, 83], ink jet processes of UV curable polymers [37], hot 

embossing techniques [84], micromolding using silicon substrates [44, 85], soft 

lithography-based replication processes by molding various materials against rigid or 

elastomeric molds [41, 42, 86]. Photoresist-reflow methods rely on the surface tension of 

the photoresist to form a smooth microlens surface. These methods require accurate 

control of the microfabrication parameters (photoresist thickness, hydrophobicity) and 

produce microlenses with small numerical aperture (NA) due to the small aspect ratio 

(thickness vs diameter) of the patterned photoresist. Ink-jet methods are serial processes 

that require an elaborate experimental setup for accurately dispensing small drops of the 

optical material onto a rigid substrate. The properties of ink-jet processed microlenses 

depend on the rheological properties of the dispensing material (viscosity, surface 

tension), making the fabrication of microlenses with small diameters (<100 µm) and large 

aspect ratio (to achieve high NA), a challenging task. Hot embossing techniques produce 

microlenses with rough surfaces and suffer from post-embossing shrinkage. Fabrication 

of silicon molds requires isotropic wet etching of silicon and deposition of silicon 

oxide/nitride as the etchant mask. These fabrication steps are extremely time consuming 

and expensive. Soft lithography-based replication processes provide low-cost microlens 

arrays whose properties depend on the quality of the master mold.  These processes take 

advantage of the excellent optical [87] and mechanical [88, 89]  properties of the 

polydimethylsiloxane (PDMS) elastomer. PDMS has low elastic modulus, minimum light 

absorption in the visible spectrum and extremely low autofluorescence, it is therefore an 

ideal optical material for microlens molding and replication processes [90, 91].  
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In this work, we describe a novel array of polymer-based, solid microlenses with 

a numerical aperture (NA) of ~0.3. Key element is the microfabrication of an ‘inflatable’, 

polymer-filled PDMS mold that consists of an array of circular microchambers enclosed 

by flexible membranes. When the mold is inflated, the microchamber/membrane array is 

converted into a microlens array. Using a UV-curable polymer as a filling medium, the 

microlens arrays can be subsequently solidified when the desired focal length is obtained. 

The proposed approach has three major advantages: a) the microlens focal length can be 

adjusted by regulating the pressure applied to the filling polymer during curing, b) the use 

of PDMS as the mold material enables large membrane deflections that result in 

microlenses with high NA, and c) the optical properties (e.g. index of refraction) of the 

microlenses can be varied as there is a large collection of commercially available curable 

materials. We envision such microlens arrays to play a key role in various lab-on-chip 

detection systems for imaging micron-size objects (cells, viruses, etc.) [33, 92]. In 

particular, they can be integrated with the WBC capturing biochip (discussed in chapter 

3) for the development of a point-of-care WBC counting system. 

 

4.2 Design and Microfabrication of the Microlens Array 

The inflatable PDMS mold has a two-layer architecture (Figure 4.1): (i) the first 

layer (the ‘microlens’ layer) contains the circular microchamber/membrane array, and (ii) 

the second layer (the ‘support’ layer) contains an array of thick (~200 μm thick) square 

microwells aligned on top of the microchamber/membrane array. The main purpose of 

the second layer is to facilitate the handling of the thin first layer during the 

microfabrication process (see next paragraph for details). A microfluidic network 
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patterned on the first layer is used to deliver the UV-curable polymer into the 

microchambers. The increase in pressure within the microfluidic network induces a 

uniform deflection of the PDMS membranes across the array. That results in the 

formation of an array of plano-convex microlenses with a pressure-dependent focal 

length and NA. When the pressure is stabilized within the network (typically in few 

seconds), the polymer is ready to be UV-cured to obtain the solid microlens array. 
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Figure 4.1: (A) A picture of a 9x11 PDMS-based, planar microlens array. The right inlet 

is used to fill up the microfluidic network with the UV curable polymer (the left inlet is 

not used in the depicted design). Scale bar, 1.5 mm. (B) A close-up view of 16 cured 

microlenses of different diameters.  Each microlens sits beneath a square microwell. 

Scale bar, 200 µm. A magnified top view of a 60 µm in diameter microlens cured at 30 

psi and a schematic diagram of its cross section are shown on the right (I and II 

respectively). Scale bar, 50 µm.  

________________________________________________________________________ 
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The microfabrication process of the microlens array involves (Figure 4.2): i) the 

fabrication of two SU-8 master molds (for each of the two PDMS layers) using standard 

photolithographic processes, ii) the fabrication of the inflatable PDMS mold from the two 

SU-8 master molds using soft-lithography, and iii) the injection and curing of the UV-

curable polymer into the inflatable PDMS mold. 

  

The fabrication of the first SU-8 master mold (corresponding to the microlens 

PDMS layer) is performed in a two-step photolithographic process [90]. A 13 µm thick 

film of SU-8 photoresist is patterned on a silicon wafer to define the microfluidic 

network, followed by the patterning of a second, 40 µm thick, SU-8 film to form the 

circular microchambers. A 20:1 PDMS mixture is then spun at 1750 rpm and cured on 

the two-step SU-8 mold to obtain a ~52 µm thick PDMS layer. Such a PDMS 

composition results in a layer of low elastic modulus (<1MPa [93]), which is necessary to 

achieve large membrane deflections, and therefore high NA microlenses. By accurately 

measuring the thickness of SU-8 circular microchambers and the PDMS microlens layer, 

we estimated the PDMS membrane thickness to be 12.1 ± 1.4 µm (16 measurements 

were taken from different runs using a profilometer). 

 

The second SU-8 mold (corresponding to the support PDMS layer) is fabricated 

by patterning a 50 µm thick SU-8 film. The design incorporates an array of 200 µm x 200 

µm square microwells, each one sitting on top of a single microlens. A thick (~1 mm) 

PDMS layer (the support layer) is subsequently cured, peeled off and air-plasma bonded 

(90 W, 35 sec) to the PDMS microlens layer. Finally, the two-layer PDMS assembly is 
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detached from the first SU-8 mold and bonded to a 175 µm thick glass slide to create the 

sealed inflatable PDMS mold. The use of the support PDMS layer is critical for peeling 

off the thin microlens layer as it provides structural integrity and eliminates the microlens 

membranes from tearing apart. The inflatable PDMS mold is then filled with a UV 

curable polymer, pressurized and cured. 

 

 
 

Figure 4.2: The microfabrication process of the microlens device. 

________________________________________________________________________ 
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4.3 Results  

To obtain the optical properties of the proposed high NA, solid microlenses, we 

characterized an array of 40 µm and 60 µm diameter microlenses following the 

microfabrication process described above. A high index of refraction UV-curable 

polymer (Norland 60, index of refraction n = 1.56) was injected into the inflatable PDMS 

mold and cured (10 min, at 365 nm (Entela UV lamp)) under constant pressure to ensure 

uniform deflection across the membrane array. The effective focal length (EFL) of the 

cured microlens device was measured for a range of curing pressures (7.5-30 psi) using a 

custom-made optical setup (Figure 4.3). The EFL corresponds to the distance between 

the top surface of a microlens and the best-focused image formed when passing a laser 

beam (532 nm) through the microlens. We followed a 2-step sequence to determine the 

EFL: i) the top surface of a microlens was visually identified and set as the reference 

plane (plane I), and ii) the plane containing the image of the focused laser beam was 

brought into the imaging plane of the microscope objective (plane II) by vertically 

moving the microlens. The distance between these two planes corresponded to the EFL of 

the microlens. Plane II was identified by extracting the plane of the maximum light 

intensity through image analysis software (Metamorph®).  
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Figure 4.3: Schematic of the experimental setup for characterizing the optical propereties 

(effective focal length (EFL), point spread function (PSF)) of the microlens device. A 

laser (532 nm) was used to obtain the EFL while a white light source was used to obtain 

the PSF. 

________________________________________________________________________ 
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The EFL of both the 40 µm and 60 µm diameter microlenses exhibited a strong 

dependence on the curing pressure (Figure 4.4). EFL changes up to ~200 % were 

measured over the entire pressure range. For low pressures (< 7.5 psi), the circular 

membranes undergo small (sub-µm) deflection. These microlenses weakly focus the laser 

beam resulting in a large depth of focus (several mm’s) that makes it difficult to assign a 

single value to the focal length. High pressures (>30 psi) resulted in breakage of the 

microlens membranes. Experimental EFL data were also compared with opto-mechanical 

simulation values. The pressure-dependent microlens profiles were simulated using 

commercially available finite element analysis software (ANSYS). The deflected 

membrane profiles were imported into an optical design software (OSLO LT) to 

determine the corresponding EFLs. Simulations were performed for a membrane 

thickness of 10.7 µm and 13.5 µm to capture the upper and lower limit of the 

corresponding measured values. The elastic modulus and Poisson ratio of the PDMS 

membrane was set to 3 MPa [89] and 0.49 respectively. A refractive index of 1.41, 1.56 

and 1.51 was used for the PDMS, the UV-curable polymer and the glass slide 

respectively. The experimental EFL values for both the 40 µm and 60 µm diameter 

microlenses were within the simulated upper and lower EFL bounds.  
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Figure 4.4: Effective Focal Length (EFL) versus curing pressure for (A) 40 µm and (B) 

60 µm diameter microlenses. Experimental and opto-mechanically simulated EFL values 

are obtained for a pressure range of 7.5-30 psi. Each data point is the average of 16 

measurements from 2 microlens devices (8 microlenses/device). The measured EFL 

values have standard deviation of 4.31% and 4.10% for 40 µm and 60 µm diameter 

microlenses respectively. 

________________________________________________________________________ 
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The numerical aperture (NA) of the microlenses (for use in air) was estimated 

from [94] where a and F represent the microlens radius and EFL respectively.  
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Based on the EFL values reported above, a maximum NA of ~0.17 and ~0.3 was 

obtained for 40 µm and 60 µm diameter microlenses cured at 30 psi respectively (Figure 

4.5). The light loss through a single microlens was obtained by measuring the decrease in 

the light intensity of white light passing through the microlens device. For microlenses 

cured at 30 psi, the light loss was found to be 0.86 dB (18 %). 
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Figure 4.5: Numerical Aperture (NA) versus curing pressure for (A) 40 µm and (B) 60 

µm diameter microlenses. NA values are calculated using the EFL values presented in 

Figure 4.4. 60 µm diameter microlenses (with lower EFL) have higher NA than 40 µm 

diameter microlenses (with higher EFL).    

________________________________________________________________________ 
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To characterize the surface profile of a single microlens from the array (Figure 

4.6A) we used a white-light interferometer (Veeco NT9100). We obtain direct optical 

access to the array by immersing the microlens device in acetone for 10 minutes and 

manually detaching the support layer. A 25 nm thick, gold layer was subsequently 

evaporated on the microlens surface to acquire a clean interferometric image. The PDMS 

membrane profile of a 60 µm diameter solid microlens showed a maximum deflection of 

~6 µm when cured at 30 psi, corresponding to a microlens with an aspect ratio of 10:1 

(Figure 4.6B). The microlens profile (Figure 4.6) allows us to determine the minimum 

microlens pitch (microlens center-to-center distance). For 60 µm microlenses cured at 30 

psi, the membrane deformation extends up to ~40 µm from the center of the microlens, 

and therefore they can be placed as close as 80 µm apart. Microlenses of smaller diameter 

or cured at lower pressures will have smaller pitch. 
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Figure 4.6: (A) Surface profile of a 60 µm diameter microlens (cured at 30 psi) obtained 

using a white light interferometer. (B) A 2D microlens profile measured along its midline 

(cross section A-A’ in A). The profile has been curve fitted with a sixth order 

polynomial.  

______________________________________________________________________ 
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The depth of focus and the transverse resolution of such a microlens (60 µm 

diameter solid microlens, cured at 30 psi) were calculated by measuring its axial intensity 

profile and point spread function (PSF) respectively (Figure 4.7). To obtain the axial 

intensity profile, we extracted the maximum intensity from imaging planes above and 

below the best focused plane in an optical setup similar to the one used for obtaining the 

EFL. The theoretical value of the depth of focus (DOF) was estimated to be ~6 µm [95]. 

Within that distance, the maximum intensity dropped by 5%. To obtain the PSF of the 

microlens, we measured the background-corrected in-plane intensity distribution (I[x,y]- 

I0) at the best-focused plane and normalized that value by the background intensity (I0). 

The transverse resolution of the microlens, defined as the full width at half maximum 

(FWHM) of the PSF [96], was found to be 2.8 µm.  
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Figure 4.7: (A) Relative intensity (maximum intensity for a given axial plane normalized 

with the maximum intensity measured at the best focused plane) along the optical axis of 

a 60 µm diameter microlens as a function of the distance from the best-focused plane. 

The pictures depict the focused laser beam as imaged at the focal plane and at two out-of 

focus planes. Scale bar, 10 µm. (B) The PSF of the same microlens represented as the in-

plane intensity distribution (I[x,y] – I0) at the best-focused plane, normalized with respect 

to the background intensity I0.  

________________________________________________________________________ 
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Finally, we demonstrated that it is possible to use the fabricated microlenses to 

magnify and image micron-size resolution features patterned on a chrome mask (Figure 

4.8). 3 µm wide line features were clearly visible after placing the microlens device 

between the chrome mask and a 1x microscope objective (we used Olympus SZX16 

stereo microscope). Minimum distortion was observed at the center region of the 

microlens. 

 

Figure 4.8: Micron-size resolution patterns imaged: (A) without using a microlens, and 

(B) through a 60 µm diameter microlens (NA ~ 0.3). Equally-spaced, 3 µm wide lines are 

magnified by a factor of ~2 and are clearly visible. Scale bar, 50 µm (A) and 25 µm (B).  

________________________________________________________________________ 
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4.4      Conclusions 

In this chapter, we demonstrate a novel microfabrication process for obtaining 

polymer-based, planar microlens arrays. The microlens array comprises of polymer-filled 

circular microchambers enclosed by deformable, elastomeric membranes. Each 

microchamber is transformed into a solid microlens when the UV-curable polymer is 

pressurized and cured. By varying the curing pressure (7.5-30 psi), microlenses with a 

wide range of EFL (100-400 µm) and NA (0.05-0.3) have been fabricated from 40 µm 

and 60 µm diameter membranes. We have obtained a NA of 0.3 and transverse resolution 

of 2.8 µm for 60 µm diameter microlenses (cured at 30 psi). Smaller diameter (40 µm) 

microlenses have lower NA than larger diameter (60 µm) microlenses for similar curing 

conditions. The proposed microlens design is compatible with a wide variety of curable 

polymers and therefore it can be used to obtain microlenses with different optical 

properties. We envision the use of these planar microlenses in lab-on-chip detection 

systems for imaging micron-sized biological specimens. These microlenses can be 

integrated with the cell trapping biochips (such as the one in chapter 3) for obtaining 

compact and portable cell imaging and counting systems.  
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CHAPTER 5 

A High Numerical Aperture Doublet Microlens Array 

 

This chapter presents a high numerical aperture, doublet microlens array for 

imaging micron-sized objects. The proposed doublet architecture consists of glass 

microspheres trapped on a predefined array of silicon microholes and covered with a thin 

polymer layer. A standard silicon microfabrication process and a novel fluidic assembly 

technique were combined to obtain an array of 56 μm in diameter microlenses with a 

numerical aperture (NA) of ~0.5. This NA value was a significant improvement over the 

0.3 NA polymer-based microlenses presented in chapter 4 and hence these microlenses 

are better suited for high resolution imaging of cells and tissues. Using the doublet 

microlens array, we demonstrated brightfield and fluorescent image formation of 

microobjects directly on a CCD sensor without the use of intermediate lenses. The 

proposed microlens fabrication technology is a significant advancement towards the 

unmet need of inexpensive, miniaturized optical modules, which can be further integrated 

with lab-on-chip microfluidic devices and photonic chips for a variety of high-end 

imaging/detection applications. In particular, these microlenses arrays can be integrated 

with the WBC capture biochip presented in chapter 3 for fluorescence based imaging and 

counting of WBCs. 
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5.1 Introduction 

Modern optical imaging-based research and industrial systems rely on the use of 

bulky and expensive objectives lenses. Despite their superior performance in resolving 

submicron features under low-light conditions, these lenses can detect only one sample at 

a time (that lies within their field of view (FOV)), while manufacturing limitations do not 

allow miniaturization and integration with emerging micromachined devices, including 

miniature CCD sensors [97], photonic chips [98] and microfluidic biochips [99]. The 

development of on-chip lens-based optical modules entails the miniaturization of these 

lenses while maintaining superb imaging quality. Such miniaturized, typically 

microfabricated lenses (also known as ‘microlenses’) can be used in displays [75, 100, 

101], for optical coupling [102-104] and surface microstructuring [105] as well as in 

various biomedical imaging applications [106-108].  

 

A number of microlens microfabrication approaches have been proposed over the 

past three decades. Photoresist reflow and transfer methods are the earliest methods for 

fabricating microlenses [35, 83, 109]. These microlenses have a low light collecting 

capability (indicated by a low numerical aperture (NA)) and are unable to form a resolved 

image of weakly light-emitting micron-sized objects. A modified approach called the 

‘boundary confined method’ has been proposed to obtain high NA (NA~0.54) 

microlenses [110]. Similar to other photoresist reflow approaches, this method requires 

accurate control of the surface tension of the photoresist-substrate interface. Ink-jet 

printing of UV-curable polymers has been another approach for fabricating microlens 

arrays [37, 38]. This method requires an expensive setup for accurately dispensing a 
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polymer on a rigid substrate. Recently, fabrication of high NA (NA~0.37) microlens 

arrays using ink-jet printing of UV-curable polymers on hydrophobic glass substrates has 

been reported [111]. These processes require an elaborate control of the material 

properties (viscosity, surface tension) of the polymer as well as of the hydrophobicity of 

the substrate surface. Microfabrication of high NA microlenses has also been proposed 

using focused ion beam milling and femtosecond laser direct writing technologies [39, 

40]. These microfabrication processes are serial processes and require expensive 

equipments and experienced personnel. Soft lithography-based approaches in which 

optical materials are molded against rigid and elastomeric molds to obtain microlenses 

have also been demonstrated [41, 42]. These methods are simple to implement but the 

microlens quality is strongly dependent on the surface finish of the mold. Alternatively, 

planar, polymer-based arrays of microlenses can be microfabricated by UV-assisted 

curing of microfluidic networks [112]. These planar microlenses have a relatively high 

NA (NA~0.3) when compared to other planar microlenses but are not amenable to an 

easy integration with other optical and microfluidic devices.  

 

High NA (NA~0.64) spherical microlenses have also been microfabricated by 

injecting SU-8 photoresist through microfabricated nozzles and utilizing surface tension 

to form micro-balls [113]. These microlenses largely vary in size due to fluctuations in 

the injection pressure and the contact angle between the photoresist and the substrate. 

Another process for spherical microlens fabrication involves polymer molding against 

isotropically etched silicon master molds [44]. The surface quality of the mold is highly 

dependent upon the precise balance of reagents used to etch the master mold. Finally, a 
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number of high NA, spherical microlens fabrication approaches employing the use of 

glass or polystyrene microspheres have been proposed [114, 115]. However, none of 

these microlenses have been shown to form the image on their own on an imaging sensor 

without the aid of additional optical elements. Several microlenses have been proposed 

for amplifying the light signal on the imaging sensor, hence increasing the effective 

numerical aperture of the imaging system [116-121]. However, all these approaches 

involve the use of macroscopic lenses in addition to the microlens arrays for image 

formation on the imaging sensor.   

 

We propose a novel microfabrication approach for obtaining low-cost, high-NA 

arrays of doublet microlenses for imaging micron-sized objects without the need of any 

additional lenses. These microlenses are made out of glass microspheres with a 

transparent polymer spun on them. Planarizing one side of the microlenses with a 

transparent polymer layer enables an easy integration of the microlens array with 

microfluidic lab-on-chip devices and other photonic chips. The microlenses array is 

microfabricated using a combination of silicon micromachining, soft lithography and 

fluidic assembly. To our knowledge, this is the first demonstration of magnified image 

formation on a CCD sensor using a microlens array without use of intermediate lenses. 

An array of these doublet microlenses has the following advantages: i) equivalent optical 

performance (resolution, NA) to a conventional microscope objective, ii) simultaneous 

imaging of a large number of objects, iii) easy integration with other micromachined 

modules, including microfluidic and optical chips, iv) direct image formation on an 

imaging sensor without any extra lenses and v) low microfabrication cost. This microlens 
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fabrication approach not only provides higher NA (0.5) microlenses as compared to the 

0.3 NA planar polymer-based microlenses presented in chapter 4 but also enables direct 

image formation on an imaging sensor (not possible with the planar microlenses owing to 

a thick PDMS support layer). With these advantages, we believe that the doublet 

microlens arrays can be readily integrated with the WBC capture biochip presented in 

chapter 3 to develop a point-of-care WBC counting biochip.   

 

5.2 Design and Microfabrication of the Doublet Microlens Array 

The proposed doublet microlens array consists of glass microspheres, fluidically 

assembled on top of an array of wafer-through microholes (Figure 5.1). The microhole 

array captures/places the microspheres in a predefined pattern, while it creates a clear 

optical path for the collected light to reach the imaging sensor. The microlens array 

collects light originating from micron-sized objects and forms an image of these objects 

on the imaging sensor. It is intended to function as a magnifying lens: objects placed at a 

plane slightly below the focal plane of the microlens array, appear magnified at the 

imaging sensor. To ensure that the magnified image is in focus on the plane of the sensor 

the sensor’s spatial position has to be adjusted in the vertical direction using a 

translational manipulator. 
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Figure 5.1: (A) A 10x10 array of 56 µm in diameter doublet microlenses. Scale bar, 500 

µm. (B) A schematic of the cross section of the microlenses array. The microlens 

diameter is defined by the diameter of the microhole. (C) A collimated light beam is 

focused at a point (focal point) right below the top surface of the PDMS layer. The 

distance between the focal point and the silicon dioxide surface is the microlens effective 

focal length (EFL). a is the microhole (microlens) diameter and r is the microsphere 

diameter. (D) Mechanism of image formation using the doublet microlens array. The 

object is placed on the surface of the microlens. A magnified image is formed directly on 

a CCD sensor. 

________________________________________________________________________ 

 

The microfabrication of the doublet microlens array involves three steps (Figure 

5.2): i) microfabrication of the microhole array, ii) assembly of glass microspheres on the 

array, and iii) spinning of a polymer layer on the captured microspheres to form the 

doublet microlenses. Specifically, a 2 µm thick PECVD silicon dioxide is initially 

deposited on a ~500 µm thick silicon substrate. An array of 56 µm diameter microholes is 

then patterned and etched on the oxide layer using standard photolithography and reactive 

ion etching (RIE). Deep reactive ion etching (DRIE) is further employed to fabricate 

wafer-through circular microholes in the silicon substrate. Subsequently, the silicon 

substrate is thinned down to 200 µm using a combination of lapping and chemical-
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mechanical polishing (CMP). An aqueous solution containing glass microspheres (60 µm 

nominal diameter, refractive index 1.51 at a wavelength of 589 nm; catalog no. 02718-

AB, Structure Probe, Inc.) is then dispensed on the oxide-coated silicon surface. A 

suction force is subsequently applied from the other side of the substrate to assemble and 

trap the glass microspheres atop of the microhole array. Doublet microlenses are finally 

obtained by spinning and curing (65ºC, 1 hour on a hot plate) a ~75 µm thick (spun at 

1600 rpm) layer of polydimethylsiloxane (PDMS) elastomer on top of the array. 
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Figure 5.2: Microfabrication process of the doublet microlens array. Key concept is the 

fluidic assembly of glass microspheres (step 4). 

________________________________________________________________________ 
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5.3 Results and Discussion 

We performed optical simulations using OSLO software to ascertain the effective 

focal length (EFL) of the fabricated microlenses (for all simulations, we assumed a 

wavelength of 580 nm). We defined the microlens EFL as the distance between the best 

focused plane of a collimated light beam passing through a doublet microlens and the 

silicon dioxide-coated wafer surface (Figure 5.1C). A refractive index of 1.41 and 1.51 

was used for the PDMS and the glass microspheres respectively. EFL values of 65-75 µm 

were obtained for glass microspheres ranging 57-63 µm in diameter. Experimental EFL 

values were obtained for individual microlenses in the array using a collimated white 

light (see [112] for details on the experimental setup used to measure the EFL). The EFL 

measurement process involved obtaining the best focused plane by capturing a stack of 

images along the microlens axis and finding the plane with the maximum light intensity. 

A 40X (0.6NA) microscope objective was used to image the best focused plane. EFL 

values measured for 20 microlenses in the microlens array varied from 63 to 71 μm. 

These values correlated strongly with the EFL range obtained from optical simulations. 

Such a variation on the measured EFL between microlenses can be attributed to 

variations of the microsphere diameter (5%, given by the manufacturer). We also 

performed optical simulations to assess the dependence of the EFL on the PDMS curing 

conditions (temperature, time) as those are known to affect the PDMS refractive index 

[122]. For two extreme curing cases (48 hours at 25ºC and 1 hour at 150ºC), the EFL was 

found to change by less than 1 μm (assuming a change in the PDMS refractive index 

from 1.416 to 1.472 [122]). These results show that the EFL of our microlenses is not 

significantly affected by the PDMS curing conditions.    
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Furthermore, we used optical simulations to estimate the NA of the doublet 

microlenses as a function of microhole diameter (a) to microsphere diameter (r) ratio 

(figure 3). For our fabricated microlenses (a = 56 μm, r = 60 μm, a/r = 0.93), a NA of 

0.495 was obtained. This NA value is very close to the maximum theoretical NA value 

(0.53, a/r = 1.0) achievable using this microfabrication method. It should be emphasized 

that objectives with a NA of 0.35-0.4 are commonly used in microscopy for imaging cells 

and tissues [123].  

 

 
 

Figure 5.3: Simulation results depicting the dependence of the numerical aperture (NA) 

on the microhole to microsphere diameter ratio (a/r). A NA value of 0.495 was estimated 

for our microfabricated microlenses.   

________________________________________________________________________ 
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To measure the depth of focus (DOF) of the doublet microlenses, we obtained the 

axial light intensity profile of a collimated light beam that was focused through the 

microlens array (Figure 5.4). The collimated light beam was generated by placing a point 

source of light (a halogen lamp) 25-30 cm away from the microlens array. The average 

light intensity was obtained for imaging planes above and below the best focused plane 

(the focal plane) and normalized with respect to the average light intensity at the best 

focused plane (that corresponded to the maximum average intensity). Intensity values for 

all imaging planes were background-corrected. The DOF of the fabricated doublet 

microlenses (a/r = 0.93, NA~0.495) was estimated to be ~3.6 μm [95]. Within this 

distance, the average light intensity decreased by 2% from its maximum value (at the best 

focused plane). 
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Figure 5.4: Normalized intensity (with respect to the background corrected average 

intensity at the best focused plane) of a doublet microlens as a function of the axial 

distance from the best focused plane. The images depict a focused light beam at different 

axial planes. Scale bar, 10µm.   

________________________________________________________________________ 

 

Low (4X) and high (40X) magnification measurements were taken from a 4x4 

microlens array and from a single microlens respectively to obtain the point spread 

function (PSF) (Figure 5.5). The 4x4 array had 16 spatially distinguishable intensity 

peaks (Figure 5.5A), observed at the center of each microlens. The average value of the 

normalized intensity from those 16 peaks was 82.3% (standard deviation 19.6%), ranging 

from 44% to 100% between individual microlenses. This non-uniformity in the peak 

values can be attributed to the EFL variation discussed earlier in this section. 
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Figure 5.5: (A) PSF of a 4x4 microlens array. Scale bar of the image: 100 µm. (B) PSF 

of an individual microlens. Scale bar of the image: 10 µm. (A) and (B) plots were 

obtained using a 4X (NA=0.15) and a 40X (NA=0.6) microscope objective respectively. 

In both (A) and (B), normalized intensity values at a particular xy point were obtained by 

normalizing the background-corrected light intensity at that point with the maximum 

value in the entire image.  

________________________________________________________________________ 
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As described above, a major advantage of the proposed microlens array is their 

capability to form an image directly on an imaging sensor without intermediate lenses. To 

demonstrate the image formation capability and magnification achieved using these 

microlenses, we used a microlens array to image resolution patterns etched on a chrome 

layer, deposited on a glass substrate (Figure 5.6). A 640x480 CCD sensor chip (5.6 μm 

pixel size), dismantled from a web camera (Logitech QuickCam 3000) and a custom 

experimental setup utilizing x-, y- and z-axis manipulators, were used to acquire images 

and to align the patterns-microlens assembly with the imaging sensor chip (Figure 5.6A). 

A white light source was used to illuminate the resolution patterns. In this brightfield, 

transmission imaging mode, the microlens array was able to resolve various 1 µm and 2 

µm resolution patterns (Figure 5.6B(I)-(III)). The theoretical resolution was calculated 

to be 0.45 – 0.71 μm (for a 450-700 nm wavelength) [95].  

 

We also demonstrated the use of these microlenses for fluorescent imaging of 

micron-size objects. We obtained a magnified, fluorescent image of 4 μm in diameter 

polystyrene bead (excitation peak 505 nm, emission peak 515 nm, catalog no. F-8859, 

Invitrogen, Inc.) using a slightly modified setup for fluorescence imaging (Figure 

5.6B(IV)). The fluorescent beads were illuminated with a blue light obtained after 

passing white light (originated by a halogen lamp) through an optical band-pass filter 

(XF1073 475AF40; Omega Optical). A thin (~100 μm) long-pass emission filter (Yellow 

12 Kodak Wratten colour filter) was inserted between the microlens array and the CCD 

sensor to block the excitation light. The fluorescent image obtained for the bead was 

magnified by a factor of ~6. At this 6X magnification, a 56 μm diameter microlens (with 



87 

 

a 60 μm microsphere) is estimated to have a field of view (FOV) of ~9.3 μm (FOV = 

microhole diameter/magnification). The dimensions of the objects used for brightfield 

and fluorescence imaging correspond to an average cell diameter (e.g. blood cell) and 

hence the above imaging results validate the potential use of these microlenses for 

imaging biological micron-size objects (cells, tissues etc.) directly on a CCD sensor.  
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Figure 5.6: (A) Schematic of the setup for imaging micron-size resolution patterns using 

the doublet microlenses array. (B) (I) & (II) Brightfield, transmission images of 1 and 2 

μm line resolution patterns respectively using a 56 µm diameter microlens (NA~0.495). 

Equally spaced, 1 µm wide lines are clearly resolved by the doublet microlens. Scale bar, 

20 μm. (III) Brightfield, transmission image of a 5 µm square grid. Scale bar, 20 μm. (IV) 

Fluorescence image of a polystyrene bead (4 μm in diameter). 

________________________________________________________________________ 
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5.4      Conclusions 

In this chapter, we have presented a novel doublet microlens array 

microfabrication approach for the direct visualization of micron-sized objects. Using 

these microlenses, we have demonstrated direct image formation on a CCD sensor 

without additional optical elements. These microlenses resolved 1 µm resolution patterns 

and had a numerical aperture of ~0.495. As a result, they can be considered as 

miniaturized microscope objectives and they provide a cheaper alternative for bulky and 

expensive microscope optics. They can readily find biomedical applications in imaging of 

cellular and subcellular components. Owing to their superior optical performance and 

ease of fabrication over the planar polymer-based microlens arrays, these microlenses 

provide a better option for integration with the WBC capture biochip. The integrated 

biochip will enable on-chip fluorescence imaging and counting of WBCs. 
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CHAPTER 6 

Conclusions and Future Work 

 

6.1 Conclusions 

White blood cells (WBCs) and their subtypes are indicators of the state of the 

human immune system. WBC count (total as well as differential) in human blood is, 

therefore, an important metric for diagnosis of a number of immunological diseases. Flow 

cytometry based instruments which have been used conventionally for WBC counting are 

bulky, resource intensive and not amenable for use at the point-of-care. Microfluidic lab-

on-chip technology with its unique features can be employed for developing miniaturized 

WBC counting systems. These features include: i) low sample and reagent requirements, 

ii) less power requirements, iii) precise and controlled delivery of sample and reagent 

volumes, iv) small size of the devices which are inexpensive and disposable, v) ease of 

operation and maintenance, vi) possible integration of the individual modules for cell 

capture, imaging and counting respectively, on a single platform and vii) fast and 

sensitive results owing to small sample volumes. Taking advantages of these features of 

the microfluidic lab-on-chip technology, we have envisioned a WBC counting system 

which will capture WBCs from human blood and simultaneously image and count them. 

In this thesis, we have developed individual modules which i) can capture WBCs and ii) 

can be used for imaging and counting WBCs. The important contributions of this thesis 

can be summed up as the following: 
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6.1.1  Microfluidic biochip with a 3D architecture for capturing WBCs  

Size based capture of WBCs is a commonly employed method of isolating WBCs 

from other blood components (RBCs and platelets). This method relies upon the bigger 

size of WBCs as compared to RBCs and platelets. A number of microfluidic approaches 

utilize membrane filters (with microholes) for capturing WBCs in a flow while allowing 

the RBCs and platelets to squeeze through [26, 27]. Although simple to fabricate and 

operate, these microfluidic devices have low (< 80%) WBC trapping efficiency. This can 

be attributed to the 2 dimensional confinement of WBCs in the filter holes (no constraint 

in the third dimension), hence allowing them to squeeze through and resulting into a 

lower trapping efficiency. To overcome this drawback of membrane filter based 

microdevices, we have developed a microfluidic biochip with a novel 3D cell trapping 

architecture for capturing WBCs.     

      

 The biochip incorporates a membrane with an array of photolithographically 

patterned microholes, sandwiched between two microfluidic networks. The WBCs 

flowing through the biochip are confined in the 3D space created by the microholes and 

the bottom microfluidic network resulting into a more efficient trapping. A high (>87%) 

WBC trapping efficiency was obtained using the biochip when WBCs suspended in a 

buffer solution were flown through the device at 3 psi injection pressure. The biochip 

design has been optimized to ensure equal cell trapping probability in all the regions of 

the biochip. The biochip has the flexibility of operation in both push (pressure) as well as 

pull (suction) mode. We envision that the biochip with its novel cell trapping design can 

not only be used for separating WBCs from other blood components but also for the size 
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based separation of other cells (e.g. circulating tumor cells) from biological samples 

(blood, urine, saliva etc.).  

 

6.1.2  High numerical aperture microlens arrays for imaging micro-objects 

Microscope objective lenses with a high light collection capability (high 

numerical aperture NA) are usually employed for high resolution imaging of biological 

micro-objects (cells, tissues etc.). However these objective lenses are bulky, expensive, 

have a small field-of-view and hence are not suitable for integration with microdevices 

manipulating cell and tissue samples. This limitation of conventional objective lenses 

necessitates the development of inexpensive microlenses that have an equivalent optical 

performance (NA, magnification) as the macroscale lenses and which can be easily 

integrated with the lab-on-chip microfluidic devices. To meet this requirement, we have 

developed two microfabrication techniques for obtaining high NA microlens arrays. 

 

         Planar, polymer-based microlens array using soft lithography 

This microlens array fabrication approach involves deflection of an elastomeric 

membrane integrated on the top of polymer-filled circular microchambers. Upon the 

application of pressure to the UV-curable polymer in the microchambers which is 

simultaneously cured by exposure to UV radiations, each membrane/microchamber 

assembly transforms into fixed focal length microlens. Large membrane deflection 

achievable by the use of an elastomeric material results into microlens with a highly 

curved surface profile. These microlenses have a high light collecting ability reflected in 

their high NA (~0.3) values. This microfabrication technique enables fabrication of 
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microlenses with a wide range of focal lengths and numerical apertures by varying the 

elastomeric membrane thickness, lens filling polymer and the applied pneumatic 

pressure.  

 

         Doublet microlens array using fluidic assembly of microspheres 

This microlens fabrication approach involves assembling glass microspheres on 

an array of silicon microholes using a novel fluidic assembly technique. The fabrication 

is complete by spinning a thin layer of transparent polymer on one side of the 

microspheres to planarize the microlens surface. A planar microlens surface enables an 

easy integration with other lab-on-chip microdevices. High NA (0.5) microlenses were 

obtained using this microfabrication technique. Using microspheres with varying 

refractive indices, doublet microlenses with a wide range of numerical apertures can be 

obtained. The doublet microlenses have been demonstrated to be capable of imaging 1 

μm resolution patterns directly on a CCD sensor without the any additional optical 

elements. Thus, they provide a cheaper alternative to more bulky and expensive 

microscope objective lenses and can be used for the development of new generation of 

miniaturized microscopes for biomedical applications.  

 

The two microlens arrays discussed in this thesis have an inexpensive fabrication 

process which can be scaled up to obtain 100s and 1000s of microlenses on a single 

substrate. With their high NAs (0.3-0.5), these microlens arrays can enable large field-of-

view high resolution imaging of micron-sized objects.  
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6.2 Future Work 

We envision that the work presented in this thesis can be extended in the 

following research directions: 

 

6.2.1 Cell trapping biochip with an integrated volume metering and RBC lysis 

chamber 

 The WBC capture performance of the biochip proposed in this thesis has been 

demonstrated using buffer suspended WBCs obtained after lysing RBCs from 1 μl of 

whole blood. In order to more accurately determine the WBC trapping efficiency of the 

biochip, we would essentially be required to count the WBCs in a given volume (e.g. 1 

μl) of whole blood before the blood enters the cell trapping region of the biochip. To 

achieve this functionality, we envision a cell trapping biochip with an integrated volume 

metering chamber (Figure 6.1). The metering chamber will not only ensure the injection 

of a fixed volume of blood in the cell trapping region but will also provide a window for 

imaging the blood cells before their entry in the cell trapping region. Hydrophobic valves 

which have been employed for flow control in microfluidic devices will also be 

incorporated in this device design [124-126]. These valves will help to control the flow of 

blood and buffer during the biochip operation. A hydrophobic pad patterned in the 

connecting narrow channel between the metering chamber and the cell trapping region 

will help to stop the flow of blood unless a higher pressure is applied to overcome the 

pressure barrier across the hydrophobic pad. A similar hydrophobic pad patterned at the 

buffer inlet will prevent the blood from entering the buffer channel.  
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Figure 6.1: Snapshot of the first prototype of a cell trapping biochip with an integrated 

volume metering chamber. The metering chamber of this prototype has a total volume of 

0.1 μl. Scale bar, 500 μm. 

________________________________________________________________________ 

The integrated biochip will work in the following manner: The fluorescently 

tagged whole blood is injected into the biochip through one of the inlets and the flow 

stops at the hydrophobic pad (at the metering chamber-cell trapping region interface). A 

fixed volume of blood fills up the metering chamber. WBCs are then imaged and counted 

in the metering chamber. This is followed by the injection of PBS solution through 

another inlet under pneumatic pressure. This pressure overcomes the pressure barrier 

across the hydrophobic pad and pushes the blood cells into the trapping region where 

WBCs are trapped and imaged. The WBC trapping efficiency (η) of the biochip will be 

given by:    

  
chamber  metering in the  WBCsof #

 WBCs trappedof #
η   

             

            Off-chip lysis of RBCs from whole blood involves a number of mixing and 

centrifuging steps. A large number of WBCs also get destroyed during the lysis process. 

Blood 
Inlet 

Cell Trapping 
Region 
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To avoid this WBC loss, some on-chip RBC lysis techniques have been proposed which 

completely eliminate centrifuging and vigorous mixing steps resulting into negligible 

WBC loss [69, 127]. We envision a modified form of the above biochip in which the 

metering chamber will be pre-functionalized with a detergent (e.g. Tween 20) during the 

fabrication process. This detergent will serve the purpose of lysing RBCs from the whole 

blood. A passive mixer will also be incorporated in the design of the metering chamber to 

ensure that the entire blood volume comes in contact with the detergent resulting into the 

destruction of most of the RBCs [128]. We believe that this integrated design will enable 

a more accurate measurement of the biochip WBC trapping efficiency. With the 

optimization of this biochip design, this can develop into a device for obtaining an 

accurate WBC count from human whole blood. 

 

6.2.2   Microfluidic-based oil immersion lens array 

  Oil-immersion objective lenses are employed for high resolution imaging 

applications. Immersion oil whose refractive index matches with that of the objective lens 

material increases the light collecting ability (and the NA) of the lens. With the aim to 

obtain high NA (~0.7-0.8) microlenses, we envision a variation of the doublet 

microlenses which incorporates high index of refraction oil-immersed ball lenses. High 

index of refraction microspheres will provide a higher NA than that obtained using the 

doublet microlenses (NA ~ 0.5) proposed in this thesis. 

 

The proposed microlens array will consist of sapphire ball lenses (refractive index 

1.77) integrated on the top of an array of immersion oil-filled microchambers (Figure 
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6.2). The oil/ball lens assembly will act as a high NA (~0.8) doublet lens and can be used 

for high resolution imaging of biological micro-objects.  

 

Figure 6.2: Cross sectional view of the proposed oil-immersion microlens array. A glass 

coverslip and a spacer will accurately define the distance between the lens and the sample 

object.  

________________________________________________________________________ 

We envision that the oil-immersion lens array can be used as an add-on module 

on low cost stereoscopes to enable high resolution, wide field of view imaging of 

biological samples in the lab, in the doctor’s office or in the field.    

 

6.2.3   Integrated biochip for on-chip capture, imaging and counting of WBCs 

 In this thesis, we have presented microfabricated modules which can be used for 

capturing WBCs (cell trapping biochip) and imaging and counting micro-objects 

(microlens arrays). We envision an integrated WBC counting biochip which will 

incorporate the optimized cell trapping module as well as the high NA microlens arrays. 

The integrated biochip will enable simultaneous capture and imaging/counting of WBCs 

from human whole blood. In addition to the biochip, the WBC counting system would 

comprise of a portable reader for counting the number of WBCs captured in the biochip 

(Figure 6.3). While the biochip will constitute the disposable part of the system, the 
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reader will form the permanent part and will be battery operated. The reader will be 

equipped with a laser diode for exciting WBC fluorescence, an achromatic doublet lens 

for collecting cell fluorescence from the microlenses, an optical bandpass filter paper for 

filtering the incident laser light, a CCD sensor, a microprocessor for analyzing the image 

formed on the CCD sensor and an inexpensive LCD screen for displaying the final WBC 

count.   

 

Figure 6.3: Schematic of the proposed benchtop WBC counting system. The integrated 

biochip (cell trapping module + microlens array) will constitute the disposable part of the 

system. The benchtop reading equipment will comprise of the optical components like 

the laser diode, cylindrical lens, achromatic doublet lens, bandpass filter and CCD sensor.  

________________________________________________________________________
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Though the proposed integrated system is targeted towards point-of-care WBC 

counting applications, we envision that this system can be used as a generic platform for 

on-chip cell sorting and imaging for various other biomedical research and diagnostic 

applications.  
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Appendix A 

Fabrication Process Flow Of The Microfluidic Devices 

 

A.1 Fabrication process flow of the WBC trapping biochip 

This device was used for the size based capture of WBCs. The fabrication process 

flow for this device involved fabrication and integration of two modules, a) the cell 

trapping module and b) the sample delivery module, as explained below. 

 

a) The cell trapping module - The trapping module consists of an array of 4 μm in 

diameter microholes patterned on a silicon nitride layer. 

Step 1: Wafer prefurnace clean 

The silicon wafers were cleaned using standard prefurnace clean procedure to remove 

organic and ionic contaminants from the wafer surface. Wafers were dipped in a beaker 

containing 1 liter each of hydrogen peroxide (H2O2) and ammonium peroxide (NH4OH) 

to remove organic contaminants like grease, dust particles and solvent residue. This was 

followed by immersing the wafers in a 1:100 hydrofluoric acid (HF) solution to remove 

the oxide layer. Subsequently, the wafers were dipped in a beaker containing 850 ml each 

of hydrogen peroxide (H2O2) and hydrochloric acid (HCl) to remove the ionic 

contaminants. The wafers were subsequently rinsed and dried using deionized (DI) water 

in a Vertec spin rinser drier. 
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Step 2: Low pressure chemical vapor deposition (LPCVD) of silicon oxide and low 

stress silicon nitride  

The prefurnance cleaned wafers were loaded in a LPCVD furnace for deposition of 1.28 

μm silicon oxide. This was followed by the deposition of a 1 μm thick layer of LPCVD 

low stress silicon nitride.  

Step 3: Photolithographic patterning of the microhole array   

The silicon wafer (with LPCVD silicon oxide and silicon nitride) was vapor primed with 

a photoresist adhesion promoter HMDS (Hexamethyldisilazane) in an oven. 

Subsequently, a 3 μm thick layer of SPR 220 3.0 photoresist was spun on the primed 

wafer at 3000 rpm followed by baking the spun photoresist in a 115 ºC oven for 45 

seconds. The photoresist was exposed to ultraviolet (UV) rays through a photomask for 

0.35 seconds using the GCA ACS 200 AutoStep exposure tool. The wafer was 

subsequently baked in a 115 ºC oven for 90 seconds followed by development of 

photoresist in AZ 300 MIF developer for 60 seconds. All the photolithographic patterning 

steps except the exposure step were performed using the ACS 200 cluster tool. An array 

of 4 μm in diameter microholes was obtained in the photoresist layer subsequent to this 

step. The wafer was hard baked on a 120 ºC hot plate for 10 minutes. 

Step 4: Etching of the low stress silicon nitride 

Using the patterned photoresist layer as the etch mask, the microhole array was etched on 

the silicon nitride layer using the reactive ion etching (RIE) technique. A nitride etching 

recipe (nitride etch rate 34 nm/min, photoresist etch rate 25 nm/min) on the Plasma-

Therm 790 RIE tool was used for this step. Subsequently the photoresist layer was 
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stripped off by immersing the wafer in hot PRS 2000 (a positive photoresist stripper) for 

10 minutes. 

Step 5:  Etching of silicon oxide 

The wafer was immersed in a 1:10 solution of HF in DI water to perform an isotropic 

time etch of silicon oxide layer. An etch time of 8 minutes ensured the formation of 

microfluidic network in the silicon oxide layer. The wafer was rinsed in a bath of DI 

water for 10 minutes subsequent to the HF time etching step. 

Step 6: Dicing of individual dies 

The wafer with patterned microholes and silicon oxide microfluidic network was diced 

manually into individual dies using a silicon scribe. Since the individual dies were 

parallel to the wafer flat, they were easily obtained by cleaving the wafer in <110> 

direction.  

 

b) The sample delivery module - It consisted of a network of microfluidic channels 

patterned in polydimethylsiloxane (PDMS) elastomer using soft lithography. The 

mold for casting the PDMS was made from SU-8 photoresist using standard 

photolithography technique.       

Step 1: Wafer dehydration 

A silicon wafer was dehydrated on a hotplate at 180° C for approximately 10 minutes. 

            Step 2: Spinning SU-8 photoresist 

            SU-8 2015 photoresist was used for mold fabrication as the desired microfluidic channel 

thickness was 20 μm. SU-8 2015 photoresist was spun on the silicon wafer for 5 sec @ 

500 rpm and for 30 sec @ 2000 rpm to obtain a thickness of 20 μm.
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Step 3: Soft baking the photoresist 

            The wafer was soft baked on a hot plate for 1 min @ 65 °C and for 4 min @ 95 °C.  

Step 4: Exposure to UV rays 

            The wafer was exposed to UV through a photomask in ‘soft contact’ mode using a Karl 

Suss MA/BA-6 Mask Aligner tool (lamp power 20 mW/cm
2
). An exposure time of 9 

seconds was used for this step 

Step 5: SU-8 Post-exposure bake 

            The wafer was baked on a hotplate for 1 min @ 65 °C and for 5 min @ 95 °C.  

Step 6: Developing SU-8 photoresist 

The baked SU-8 photoresist was developed using ‘SU-8 Developer’ for approximately 5 

minutes. The wafer was rinsed with iso-propanol and dried using a N2 gun.  

Step 7: Hard baking the SU-8 mold 

The wafer was baked on a hotplate for 10 min @ 180 °C. 

Step 8: Silanization of the SU-8 mold 

The SU-8 mold was placed in a vacuum chamber along with a small quantity of a 

silanizing agent such as Trimethylchlorosilane (TMCS) and silanized for approximately 

30 minutes. 

Step 9: Mixing PDMS prepolymer with curing agent 

A 50 g PDMS prepolymer was mixed with the curing agent in the ratio 10:1. 

      Step 10: Pouring the prepolymer-curing agent mixture onto the SU-8 mold 

The SU-8 mold was placed in a petri dish and fixed using a scotch tape. Subsequently, 

the PDMS-prepolymer mixture was poured onto the SU-8 mold.  
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Step 11: Degassing PDMS 

The petri dish containing the mold was placed in a vacuum chamber until all the air 

bubbles were removed.  

Step 12: Curing PDMS 

The petri dish was placed in an oven at 65 °C for 2 hrs. The solidified PDMS was peeled 

off the mold and divided into individual sample delivery module using a sharp blade.    

Step 13: Punching inlet and outlet holes in the sample delivery module 

The inlet and the outlet holes were drilled using a 19 gauge stainless steel needle (0.031 

inch inner diameter, 0.042 inch outer diameter; Kahnetics) (sharpened by electrolysis in a 

phosphoric acid solution).   

Step 14: Cleaning the inlet and outlet holes 

Drilling holes inside PDMS generates a significant amount of scrap that can easily clog 

the microfluidic channels. To clean this scrap, the inside surface of the hole was rubbed 

with a 25 gauge needle (1.5 inch, Becton-Dickinson) and the PDMS particles stuck on the 

inside surface were removed. This step completed the fabrication of the sample delivery 

module.  

 

Bonding the cell trapping module to the PDMS sample delivery module  

The cell trapping module is plasma bonded to the sample delivery module using air 

plasma (March Asher tool) at 30 W and 120 mTorr for 15 s. Alignment marks patterned 

on both the modules were used to align the microhole array (in the trapping module) with 

the microfluidic network (in the delivery module) before bonding. The bonded biochip 

was placed on a 65 °C hot plate for 10 minutes to increase the bond strength. 
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A.2 Fabrication process flow of the polymer-based microlens array 

The planar polymer-based microlens array can be used for simultaneous imaging 

of a large number of micron-sized objetcs. The fabrication process flow for this device 

can be divided into three modules, a) fabricating two master molds from SU-8 photoresist 

using standard photolithography, b) fabricating the inflatable PDMS mold from the 

master molds using soft lithography and c) fabricating the microlens array from the 

inflatable mold, as explained below. 

 

a) Fabrication of SU-8 master molds – Two master molds were fabricated using SU-8 

photoresist using similar photolithography steps as explained in A.1 (b).  

Fabrication of the first SU-8 master mold  

It involved successive patterning of two layers of SU-8 photoresist. Briefly, a silicon 

wafer was dehydrated and SU-8 2007 photoresist was spun at 1000 rpm for 30 sec to 

obtain a thickness of ~13 μm. This was followed by soft baking the wafer at 65 °C for 1 

min and 95 °C for 3 min. The wafer was then exposed to UV through a photomask in 

‘soft contact’ mode using the MA/BA-6 Mask Aligner Tool for 8 seconds. The wafer was 

baked post exposure at 65 °C for 1 min and 95 °C for 4 min and subsequently developed 

in the SU-8 developer for 3 min. The wafer was then hard baked at 180 °C for 10 min. 

This completed the fabrication of the 13 μm thick microfluidic network on the silicon 

wafer.  

Subsequently a second layer of SU-8 was patterned on this microfluidic network. SU-8 

2025 photoresist was spun at 2000 rpm for 30 sec to obtain a thickness of ~40 μm. This 

was followed by soft baking the wafer at 65 °C for 2 min and 95 °C for 6 min. The wafer 
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was then exposed to UV through a photomask in ‘soft contact’ mode using the MA/BA-6 

Mask Aligner Tool for 10 seconds. Alignment marks were used to align the features in 

the first SU-8 layer with those in the 2
nd

 photomask. The wafer was baked post exposure 

at 65 °C for 1 min and 95 °C for 6 min and subsequently developed in the SU-8 

developer for 5 min. The wafer was then hard baked at 180 °C for 10 min. Subsequent to 

the lithography of second SU-8 layer, 40 μm thick circular SU-8 microchamber features 

were obtained on the top of 13 μm thick microfluidic channels.  

Fabrication of the second SU-8 master mold  

This SU-8 mold was fabricated to obtain the support PDMS layer. This mold consisted of 

an array of 200 µm x 200 µm microwells that aligned with the circular microchamber 

patterns fabricated in the previous step. For fabrication of this mold, a silicon wafer was 

dehydrated and SU-8 2050 photoresist was spun at 3000 rpm for 30 sec to obtain a 

thickness of ~50 μm. This was followed by soft baking the wafer at 65 °C for 3 min and 

95 °C for 9 min. The wafer was then exposed to UV through a photomask in ‘soft 

contact’ mode using the MA/BA-6 Mask Aligner Tool for 14 seconds. The wafer was 

baked post exposure at 65 °C for 2 min and 95 °C for 7 min and subsequently developed 

in the SU-8 developer for 7 min. The wafer was then hard baked at 180 °C for 10 min. 

This completed the fabrication of the second SU-8 master mold.  

 

b) Fabrication of the inflatable PDMS mold – This involved soft lithography 

technique of casting PDMS elastomer on the two SU-8 master molds followed by 

plasma assisted bonding of both PDMS parts.   
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Step 1: Spinning and curing PDMS membrane on the first SU-8 master mold 

A 20:1 mixture of the PDMS prepolymer and curing agent was mixed and spun (WS-400 

Lite Series Spin Processor; Laurell Technologies Corporation) on the silanized SU-8 

mold at 1750 rpm to obtain a PDMS thickness of ~52 μm. A lesser proportion of curing 

agent to prepolymer (from the usual 1:10 ratio) ensured a softer PDMS membrane which 

was desired for higher deflections. The spun PDMS was then cured in a 65 °C oven for 

30 min. 

Step 2: Casting PDMS on the second SU-8 master mold  

The process was similar to the one explained in A.1 (b). A mixture of PDMS prepolymer 

and curing agent in the ratio 10:1 was prepared and poured on the silanized SU-8 master 

mold to obtain ~1mm PDMS thickness. The SU-8 mold (with prepolymer-curing agent 

mixture) was placed in a vacuum chamber to remove all the air bubbles. Subsequently, 

the mold was placed in a 65 °C oven for 2 hrs to cure the PDMS. The solidified PDMS 

was peeled off the mold and divided into individual dies using a sharp blade.  

Step 3: Bonding the PDMS membrane to the PDMS support module 

The PDMS membrane (on the 1
st
 SU-8 mold) and the PDMS support modules (obtained 

from the 2
nd

 SU-8 mold) were exposed to air plasma (90W, 250 mTorr) for 35 sec. 

Subsequently, the microchamber structures underneath the PDMS membrane were 

aligned with the PDMS support module under a 5x microscope objective and the two 

parts were bonded by placing the assembly in the 65 °C oven for 10 min. This was 

followed by peeling off of the membrane-support layer assembly from the SU-8 master 

mold. Inlet holes (for injecting the UV-curable polymer) were punched in the PDMS 

assembly using a 19 gauge stainless steel needle. 
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Step 4: Bonding the PDMS assembly to the glass coverslip 

The two layer PDMS assembly (obtained from the previous step) and a 175 μm thick 

glass coverslip (Fisherbrand Microscope Cover Glass, Catalog No. 12-544-C) were 

exposed to air plasma (90 W, 250 mTorr) for 35 sec and bonded to each other to obtain 

the sealed inflatable PDMS mold. A hollow steel pin (0.016 inch inner diameter, 0.025 

inch outer diameter; Kahnetics) was attached to the inlet to facilitate chip-to-tube 

interface. 

 

c) Fabrication of the microlens array from the inflatable mold - This involved filling 

a UV-curable polymer into the inflatable PDMS mold under pressure and curing it to 

obtain fixed focal length microlenses. 

Pressure assisted injection of the UV-curable polymer and curing 

A high index of refraction UV-curable polymer (Norland 60, index of refraction n = 1.56) 

was filled in a 3 ml syringe (Becton Dickinson 3 ml syringe, Catalog No. 309582) and 

injected into the inflatable mold under manually applied pressure. When all the air 

bubbles escaped from the PDMS mold (verified manually under a stereomicroscope), the 

inlet was connected to an air supply through a pressure controller (R-800-60 Sub 

miniature pressure regulator, output range 0-60 psi; AIRTROL Inc.). In order to solidify 

the UV-curable polymer at a particular pressure value, the inflatable mold (with 

pressurized polymer) was exposed to UV for 10 minutes under a UV lamp (365 nm 

wavelength; Entela). This resulted into curing of the polymer under the deflected PDMS 

membrane resulting into fixed focal length microlenses.  
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A.3 Fabrication process flow of the doublet microlens array 

The high numerical aperture doublet microlens array can potentially be used for 

high resolution brightfield and fluorescence imaging of cells and tissues. Fabrication of 

the doublet microlens array can mainly be divided into three key processes, a) fabrication 

of the microhole array, b) assembly of glass microspheres on the array and c) spinning of 

a PDMS layer on the captured microspheres 

 

a) Fabrication of the microhole array – Arrays of 56 μm in diameter through wafer 

microholes were etched in a silicon substrate. 

Step 1: Plasma enhanced chemical vapor deposition (PECVD) of silicon oxide  

A 2 μm thick PECVD silicon oxide was deposited on a silicon wafer using GSI PECVD 

tool.  

Step 2: Photolithographic patterning of the microhole array 

A 10 x 10 array of 56 μm in diameter microholes were patterned on the oxide layer using 

SPR 220 3.0 photoresist following same steps as Step 3 of A.1 (a). 

Step 3: Etching of PECVD oxide 

Using the patterned photoresist layer as the etch mask, the microhole array was etched on 

the silicon oxide layer using the deep reactive ion etching (DRIE) tool. An oxide etching 

recipe (oxide etch rate 0.2 μm /min, photoresist selectivity 1:1) on the STS DRIE tool 

was used for this step.  

Step 4: Through wafer etch of the silicon wafer 

Using the oxide layer and residual photoresist as etch mask, through wafer microholes 

were etched in the silicon wafer using the DRIE technique. A silicon etching recipe 
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(silicon etch rate 5 μm/min, photoresist selectivity 47:1, oxide selectivity 500:1) on the 

STS DRIE tool was used for this step. For the through wafer etch, the silicon wafer had 

to be mounted on a carrier wafer using a crystal bond and subsequent to the etching, the 

two wafers were separated by immersing them in a hot PRS bath which dissolves the 

crystal bond.  

Step 5: Thinning of the silicon wafer 

The silicon wafer was thinned down to 200 μm (from the non oxide side) using a lapping 

tool followed by the polishing of the etched surface using the chemical mechanical 

polishing (CMP) tool. This completed the fabrication process for the microhole array. 

Step 6: Dicing of individual dies 

The thinned silicon wafer with patterned microholes was diced manually into individual 

dies using a silicon scribe. 

 

b) Assembly of glass microspheres on the array – Glass microspheres (60 µm 

nominal diameter, refractive index 1.51 at a wavelength of 589 nm; catalog no. 

02718-AB, Structure Probe, Inc.) were assembled on the microhole array.  

Step 1: Fabrication of a PDMS suction port 

A 5 mm diameter hole was punched in a 1 cm thick PDMS piece, which was aligned and 

attached to the microhole array. The PDMS piece adhered to the silicon surface without 

any additional adhesion treatment. A tube connected to a 3 ml syringe was connected to 

the other end of the 5 mm hole to apply the suction force. 
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Step 2: Dispensing and assembly of glass microspheres 

An aqueous solution of glass microspheres was then dispensed on the oxide-coated 

silicon surface. A suction force was subsequently applied manually from the other side of 

the substrate to assemble and trap the glass microspheres atop of the microhole array. A 

piece of double sided tape was attached on a glass coverslip and the tape was brought in 

contact with the wafer surface resulting into the removal of the extra microspheres. This 

resulted into the assembly of microspheres on the microhole array. 

 

c) Spinning of PDMS on the assembled microspheres – This process completed the 

doublet microlens fabrication by spinning a PDMS layer on the microspheres. 

A 10:1 PDMS prepolymer to curing agent mixture was prepared and spun (WS-400 Lite 

Series Spin Processor; Laurell Technologies Corporation) on the silicon microhole array 

(with assembled microspheres) at 1600 rpm for 1 min. In order to prevent the flying off 

of the microspheres during the spinning step, the lowest acceleration of 108 rpm per sec 

was used. This resulted into a PDMS thickness of ~75 µm. The PDMS was subsequently 

cured on a 65ºC hot plate for one hour. This completed the fabrication process of the 

doublet microlens array. 

 

 

 

 



113 

 

Appendix B 

Opto-mechanical Simulations Of Planar Microlens’ Focal Length And Numerical 

Aperture 

 

In this section, we will describe the opto-mechanical simulations performed to 

characterize the pressure dependence of the effective focal length (EFL) and numerical 

aperture (NA) of the planar, polymer-based microlenses. Pressure dependent deflection of 

the PDMS membrane was obtained using a finite element analysis software ANSYS. The 

resulting microlens profile was imported into an optical design software (OSLO LT) to 

obtain the microlens EFL and NA.  

  

B.1 Microlens profile using ANSYS  

An ANSYS programming code was written to solve for the pressure dependent 

deflection of the PDMS membrane for given dimensions (thickness, diameter). This code 

creates the geometry of the membrane and imparts it the elastic properties (Young’s 

Modulus, Poisson’s Ratio). It meshes the entire structure for the simulation and applies 

constraints on different surfaces. Finally, load (pressure in Pa) is applied on the 

membrane and the resulting membrane deflection is computed. An example ANSYS code 

for solving the deflection of a 60 µm in diameter membrane under 3 psi (200 kPa) 

pressure has been presented below. 
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ANSYS code for computing the pressure induced PDMS membrane deflection: 

_______________________________________________________________________ 

 

/prep7 

 

!creating the geometry of the membrane 

CYLIND, 3e-5, 7e-5, 0, 5.2e-5 

CYLIND, 0, 3e-5, 4e-5, 5.2e-5 

alls 

vadd, all 

 

!meshing the struture 

!et for defining the element type 

et, 1, solid95 

 

!defining material properties (Young’s Modulus, Poisson’s Ratio) 

mp, ex, 1, 30e5 

mp, prxy, 1, 0.49 

 

!meshing 

alls 

mshkey, 0 

smrtsize, 2 

MSHAPE, 1, 3d 

vmesh, all 

 

!constraining surfaces 

alls 

da, 1, all, 0 

da, 3, all, 0 

da, 4, all, 0 

 

!defining loads 

sfa, 7, , pres, 200000 

 

!solving for the membrane deflection 

/sol 

solve 

________________________________________________________________________ 

 

Upon successful run of the program, the resulting membrane deflection can be 

visualized either graphically (Figure B.1) or the values can be imported into a text file.  
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Figure B.1: A representative PDMS membrane deflection (microlens) profile obtained 

using ANSYS mechanical simulations. 

________________________________________________________________________ 
 

There was a difference between the maximum deflection values of the outer and 

the inner surface of the membrane. The inner surface underwent a larger deflection 

resulting into a smaller radius of curvature. The radius of curvature of the inner surface 

was estimated by drawing a circle which passed through the center point (point of 

maximum deflection) and the two edges of the inner surface. Similar process was adopted 

to estimate the radius of curvature of the outer membrane surface. These radii of 

curvature values were used by the optical simulation software (OSLO LT) to compute the 

microlens effective focal length and numerical aperture (Figure B.2).  
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Figure B.2: Simulation of microlens’ focal length and numerical aperture using OLSO 

software. (A) Lens surface data spreadsheet used for entering the lens material and 

geometrical properties into the software. (B) A ray diagram obtained from the OSLO 

software demonstrating the microlens’ focusing properties.  

________________________________________________________________________ 
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