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Abstract 

 

Diversity in intracellular microRNA regulatory networks: microRNA-21 and 
beyond  

 
by 
 

John Rolf Androsavich 
 

Chair: Nils G. Walter 
 

microRNAs (miRNAs) comprise a broad class of short non-coding RNA that regulate 

gene expression by guiding the RNA induced silencing complex (RISC) to mRNAs 

containing complementary ‘seed sites’. General principles of miRNA action in mammals 

have emerged over the last decade from research using cultured cancer cell models; 

however, it is unclear whether these principles apply in vivo, where few functional 

studies have been performed in healthy tissue. Furthermore, it is uncertain whether there 

are mechanistic or functional heterogeneities between the hundreds of miRNAs 

conserved across mammals.  

 The primary aim of this thesis was to compare the repressive activities of three 

highly abundant miRNAs— miR-21, miR-122, and let-7— in healthy liver tissue, and to 

contrast them with measured or previously reported activities in cancer cell lines. miRNA 

activities were measured based on (i) array profiling following pharmacological 

inhibition, and (ii) binding to polysome-associated target mRNAs. It was found that miR-

21, compared to miR-122 and let-7, has surprisingly little impact on regulation of 

canonical seed-matched mRNAs. Moreover, miR-21 showed greatly reduced binding to 

polysome-associated target mRNAs, possibly due to reduced thermodynamic stability of 

seed pairing. Significantly, these trends are reversed in human cervical carcinoma (HeLa) 

cells, where miR-21 and other miRNAs showed enhanced target binding within 

polysomes and miR-21 triggers strong degradative activity toward target mRNAs. Taken 
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together, these results suggest that certain miRNA activities can be highly context 

dependent and miRNA pathways are overactive under pathological conditions. 

Additionally, bioinformatic analysis of sequence features in miR-21 and miR-122 

responsive targets revealed low to moderate correspondence with previously established 

targeting trends derived from HeLa, exposing the complexity of in vivo target selection 

and suggesting cross-talk with other regulatory networks. 

 As an additional aim, a single molecule method was developed for directly 

observing the kinetic diversity in miRNA processes. The method combines particle 

tracking with step-wise photobleaching to probe dynamics and stoichiometry in complex 

assembly. Pilot studies indicate that fluorophore labeled let-7 miRNAs, detectable as 

single molecules, undergo a biphasic kinetic assembly when microinjected into live HeLa 

cells. 
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Chapter 1: 

Diversity of microRNA Regulatory Networks and Implications in Disease 

 
1.1 Introduction 

 The cell is a ‘little box’. With this description of the black pores in the cork he 

observed underneath his microscope, Robert Hooke famously coined the term cell and 

gave it biological meaning in 16671. Since then, descriptions of cells have, of course, 

grown more sophisticated, progressing along with philosophical and scientific 

understanding. More than two centuries after Hooke’s publication of Micrographia, 

Theodor Schwann, in 1847, established the cell theory and described cells as “individual 

elementary units of all organisms2.” By the early 1900s, following the advent of classic 

genetic theories of inheritance, and on the backdrop of atomic and quantum discoveries in 

physics, the insides of cells began to be better understood and appreciated. American 

zoologist Herbert Spencer Jennings commented, “A cell of a higher organism contains a 

thousand different substances, arranged in a complex system3.”  Soon thereafter, with the 

discovery in the mid-20th century of DNA as the hereditary unit of life, additional 

knowledge of cells came in the form of understanding its components rather than the cell 

itself; as Boris Ephrussi eloquently phrased it, “the cell robbed of its noblest prerogative, 

was no longer the ultimate unit of life. The title was now conferred on the genes, 

subcellular elements, of which the cell nucleus contain many thousands4.” And so, the 

modern day disciplines of molecular biology, biochemistry, and genetics were born; and 

no longer was the cell a black box devoid of substance. Instead it was filled with DNA 

and protein (and RNA).  

 In 1958, after helping to deduce the structure of DNA, Francis Crick proposed the 

central dogma of molecular biology, a hypothesis that shaped the research landscape for 

the remainder of the century. As an extension to the ‘one gene, one enzyme’ theory 

proposed by Beadle and Tatum in 1941, the central dogma proposed that in gene 
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expression information passed unidirectionally between three biopolymers: hereditary 

information encoded in genes composed of DNA was passed down or transcribed to 

passive templates composed of RNA, which in turn was translated to final protein 

products that enacted cellular functions. In this model, DNA and protein were the active 

polymers, while RNA was simply the message, a temporary intermediate between the 

more important cellular components. In the 1970s and 80s, the passivity of RNA was 

challenged by several findings that certain cellular RNAs held the capacity for catalysis, 

much like protein, or storage of genetic information, much like DNA5-7. Nonetheless, 

RNA continued to remain largely underappreciated and in the shadows of the other 

biopolymers. 

 The Human Genome Project, launched in 1990, was an international effort to 

sequence the 2.85 billion nucleotides of human euchromatic DNA. The massive 

undertaking, pursued in parallel by the publicly funded International Human Genome 

Sequencing Consortium and the privately held Celera Genomics, took thirteen years to 

fully complete and cost several billion dollars (the private venture was shorter, less 

expensive). One of the primary objectives of the project was to discover novel protein 

coding genes and gain new insights for the development of treatments and preventions 

for inherited diseases8. Surprisingly, despite pre-sequencing estimates in the upwards of 

140,000 genes9, only 22,287 gene loci (~34,000 protein-coding transcripts) were 

identified10. Most shocking, however, is the fact that the identified protein coding regions 

only account for a mere ~1.2% of the human genome10.  

 Why do humans have so few genes and so much DNA? Despite an initial proposal 

that the majority of the non-protein coding DNA was simply evolutionary remnant, so 

called ‘junk-DNA’ (a testament to the central dogma— if it does not code for protein, it’s 

useless), with the last decade of research it has become increasingly clear that a diverse 

world of non-coding RNAs (ncRNAs) is richly encoded in the genome and abundantly 

expressed in the cell to enact a wide range of functions. High throughput efforts by the 

ENCODE project, tasked with interpreting the human genome sequence, have estimated 

that 80% of the genome is transcribed into ncRNAs11, a phenomenon that has lead to 

ncRNA being called the cellular ‘dark matter’12 (in reference to physical ‘dark matter’, 

which accounts for the great majority of the matter in the universe).  
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 So it turns out that Hooke was not too far off — the cell is a little black box, and it 

is filled with RNA.  

 

1.2 microRNA: Discovery and Impact 

Larval development of the Caenorhabditis elegans nematode worm consists of a series of 

temporal changes in gene expression that coordinately define the organism’s body plan. 

In 1993, while studying early stages of larval development, Victor Ambros and 

coworkers discovered that, at the end of the first larval stage (L1), temporal decreases in 

the protein Lin-14 coincide with the appearance of a ~22 nucleotide (nt) non-coding 

RNA that matched the sequence of a different gene lin-4, which did not appear to code 

for protein13. The lin-4 gene is essential for proper development; deletion causes the L1 

stage to reiterate at later stages in development due to persisting levels of Lin-14 protein. 

The authors proposed that the lin-4 RNA, which is partially complementary to the 

3’untranslated region (UTR) of the lin-14 transcript, was repressing Lin-14 protein 

expression through an antisense-like mechanism13.  It was not until seven years later that 

a second short RNA, let-7, was found to be involved also in developmental changes in 

gene expression, this time repressing heterochronic genes lin-14, lin-28, lin-41, lin-42 

and daf-12— all with 3’UTRs containing complementary sites to let-714. Soon thereafter, 

it was discovered that the let-7 ‘microRNA’ is not just an idiosyncrasy of worms but, 

instead, it is highly conserved throughout metazoans from Drosophila to humans15.  

 A boom in microRNA (miRNA) research has since ensued, with year over year of 

exponential growth in related publications topping 5,000 articles in 2011 (Fig. 1.1). 

Sustaining this scientific enthusiasm are the vast depths of miRNA function. To date, 

over 1,500 miRNAs have been identified, each believed capable of regulating several 

hundred genes and, taken together, >60% of all protein coding genes16. With this breadth, 

it comes as no surprise that miRNAs are involved in nearly all cellular processes from 

cell differentiation and growth to stress response and apoptosis17. Most importantly, it is 

evident that miRNAs are intricately linked to disease18. Due to their ability to alter large 

sets of genes, miRNAs have sparked new optimism as a means of intervention in 

complex multifactorial disorders such as cancer and cardiovascular disease19. 
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Figure 1.1 Number of miRNA-related publications by year. Based on PubMed 
keyword search “microRNA” 
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1.3 miRNA Biogenesis: From Birth to Death 

miRNA expression is a highly regulated multiple-step process20. The main steps of 

miRNA biogenesis have been modestly characterized, but the timing of events and the 

exact factors involved are currently unsettled. In addition, there are exceptions to the 

rules and several instances of non-canonical miRNA biogenesis have been reported21. 

Further, while the miRNA pathway in general is highly conserved across metazoans, 

certain processing steps appear to diverge. The following description outlines the best-

known pathway in mammals (Fig. 1.2).   

 miRNAs are encoded in both intergenic regions as independent transcriptional 

units as well as in the intronic regions of protein-coding genes22. Transcription and 

processing are remarkably similar in both cases. miRNAs encoded as discrete genes are 

transcribed by RNA polymerase II into pri-(mary)microRNA transcripts that are several 

kilobases in length and are capped and tailed similar to messenger RNAs23. Often several 

miRNAs can be clustered in a single pri-miRNA, such is the case for miR-23a/miR-

27a/miR-24-224. Pri-miRNAs are highly structured with the miRNA folded into the stem 

of an imperfect hairpin-loop that forms an arm in the longer transcript. This arm is then 

recognized by the protein factor Dgcr8 (DiGeorge Critical Region 8), which subsequently 

recruits the endonuclease III Drosha to cleave out the hairpin, yielding a 65-80 bp pre-

(cursor)miRNA that has a 2 nt 3’overhang that serves as a handle for downstream 

recognition25. Dgcr8/Drosha also processes intronic miRNAs into pre-miRNAs. 

Interestingly, Drosha cleavage may actually precede the splicing step without inhibiting, 

and perhaps even promoting, mature message production26,27. It has also been reported 

that in Drosophila melanogaster and C. elegans certain spliced introns, termed miRtrons, 

can fold as pre-miRNAs and enter the miRNA pathway, bypassing Drosha/Dgcr8 

cleavage28.  

 Pre-miRNAs are exported from the nucleus by the exportin-5/Ran-GTP 

complex29. Once in the cytoplasm, they undergo a second cleavage step by another 

endonuclease III enzyme, Dicer, which generates the mature ~22 nt double stranded 

miRNA. Dicer contains two neighboring RNase III domains, a DExH RNA 

helicase/ATPase domain, a PAZ domain, and a double stranded RNA-binding domain.   
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Figure 1.2 Schematic of the miRNA pathway. Reprinted with permission from Krol et 
al. 59.   
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Crystal structures of a protozoan Dicer homolog indicate that Dicer binds and spans the 

length of the pre-miRNA with the PAZ domain bound to the pre-miRNA 3’end overhang 

and the dual RNase III domains positioned at the other end of the stem just before the 

terminal loop30. The ~65 Ångstrom distance between the PAZ and RNase III domains 

serves as a molecular ruler, ensuring that Dicer cleaves the pre-miRNA to the proper 

mature length. When in position, the RNase III domains form an intramolecular dimer 

and cleave the pre-miRNA at staggered positions on both sides of the stem, thus excising 

the loop to produce the mature double-stranded ~22 nt miRNA with 3’ overhangs on each 

end30.    

 It is believed that Dicer cleavage is coupled to loading of the mature miRNA into 

the RNA induced silencing complex (RISC), the effector of miRNA activity. In vitro 

reconstitution experiments using purified proteins suggest that a minimum of three 

proteins— Dicer, Argonaute (Ago), and Trbp— are required for RISC loading31.  Ago, as 

the central RISC factor, is the keystone of the pathway that is ultimately loaded with the 

mature miRNA. Trbp (human immunodeficiency virus trans-activating response RNA-

binding protein) is required for efficient miRNA activity and is thought to recruit Ago to 

Dicer32,33.  Single particle electron microscopy (EM) depicts these three factors as 

forming a RISC loading complex (RLC) where Dicer is in an L-shape conformation and 

Trbp and Ago are positioned, respectively, at the foot and along the body34,35. Modeling 

in the pre-miRNA suggests this architecture would place Ago in position for direct 

handoff of the cleaved mature product34,35. 

 The two strands of the mature miRNA are denoted as guide and passenger 

strands. The guide strand goes on to guide RISC to mRNA targets, whereas the passenger 

strand is degraded and/or ejected. Guide strand selection is a critical process since it 

ultimately determines a miRNA’s targets. In most cases, miRNAs are thermodynamically 

asymmetric and the strand with the weaker duplex at the 5’ end is preferentially 

selected36. This asymmetry can be sensed by Dicer, which repositions the miRNA for 

directional handoff of the duplex to Ago37. The Ago family of proteins has a bilobal 

structure consisting of four conserved domains: one lobe entails an N-terminal and a PAZ 

domain, and the other a MID and a C-terminal PIWI domain38. Crystal structures of 

human Ago2 bound to guide-strand RNA reveal that the guide strand lies along a central 
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cleft between the two lobes with the 5’-phosphate positioned in a pocket of the MID 

domain and the 3’ end anchored by the PAZ domain39. For miRNAs with extended 

duplex complementarity, unwinding is initiated by cleavage of the passenger strand by 

the PIWI domain, which has an RNase-H-like fold and contains the catalytic active site40. 

For most miRNAs, however, the N-terminal domain, which is positioned at the 3’end of 

the RNA below the PAZ domain, may serve to wedge the passenger strand from the 

guide strand41.   

 After removal of the passenger strand, the activated miRISC is capable of binding 

targets. miRNAs bind targets based on complementary base pairing to the miRNA seed 

region,  nucleotides 2-8 from the 5’end. Biochemical and structural data support a ‘seed 

nucleation’ model wherein the miRNA seed region, held in a pre-constrained A-form 

conformation to reduce the entropic penalty of binding targets, first binds and stabilizes 

the target interaction before the flexible 3’end forms additional supplementary base 

pairs39,42. Thermodynamic studies using isothermal titration calorimetry have shown that 

the PIWI/MID domains of an Ago archaea homolog enhance miRNA-target affinity by 

300-fold mostly due to reduced entropy43. It is unclear which components are present in 

RISC at the point of target binding. Reconstitution experiments suggest Dicer and Trbp 

dissociate following RISC loading with miRNA31. Other factors deemed necessary for 

RISC to repress translation and/or destabilize targets include among others 

Tnrc6/Gw18244-46, Rck/p5447, Mov1048, Rack149, Eif650, Dcp1/251, and Ccr4-Not51. 

 Unlike the founding members let-7 and lin-4, which function as switches by 

turning a small number of developmental genes entirely on and off, the majority of 

miRNAs are believed to have a more subtle effect on gene expression, repressing protein 

output by 1.5 - 3 fold17. In this manner, miRNAs confer robustness to expression by fine-

tuning protein levels, buffering against transcriptional fluctuations and stress17,18,52. Still, 

even these modest levels of repression can have a huge impact on the cell since a given 

miRNA can directly regulate several hundred genes53. Furthermore, since many miRNAs 

target transcription factors, perturbation of a solitary miRNA can affect thousands of 

downstream genes17,54. The significance of how this effect can shape expression patterns 

is exemplified by ectopic transfection of tissue specific miRNAs. For example, 

transfection of brain specific miR-124 into cervical cells alters the transcriptome in such 
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a way as to resemble that of brain cells54. Similarly, miR-302/367 is sufficient to induce 

pluripotency in transfected somatic cells without the need for other transcription factors55. 

 Following target repression, miRNAs may localize to P bodies (see Section 1.7), 

where they could be recycled for multiple rounds of repression56. However, the number 

of rounds for multiple turnover may be self-limiting since target interaction may trigger 

non-templated addition of uridine to the 3'end of the miRNA, thereby marking the 

miRNA for degradation56,57. While uridylation has been associated with miRNA 

stability57,58, miRNA degradation is the least characterized step in the pathway and a 

nuclease(s) responsible for miRNA decay has not been identified yet.  

 

1.4 Mechanisms of miRNA-Mediated Repression 

When it comes to the mechanism(s) of miRNA-mediated repression, a question mark 

may be the most unifying point: “How do miRNAs regulate gene expression?60,61”; “Are 

the answers in sight?62”; “How many mechanisms?63” — these questions, which 

exemplify the current state of confusion, have been asked in the titles of recent review 

articles summarizing the seemingly contradictory data that exist in support of various, 

distinct mechanisms (Fig. 1.3).  

 

Translational repression versus transcript destabilization 

One topic of debate is whether miRNAs predominantly reduce protein output by 

repressing translation or by inducing transcript destabilization. Despite numerous reports 

of repression occurring only at the protein level several very recent studies using array 

profiling and quantitative mass spectrometry indicate that most repression events are a 

result of decreases to both protein and transcript (see Section 1.5 for more details). The 

emerging picture is that translational repression occurs first, followed independently by 

destabilization via active recruitment of deadenylase factors64-67.  
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Figure 1.3 Proposed mechanisms of miRNA-mediated repression. Reprinted with 
permission from Filipowicz et al.62.   
  

Accelerated deadenylation also results in a reduced 
abundance of miRNA-repressed mRNAs in mammalian 
cells56. Moreover, knockdown experiments in C. elegans77, 
and analysis of the decay intermediates originating from 
repressed mRNAs in worms77 and mammalian cells56,82, 
support the role of decapping and 5 3  exonucleolytic 
activities in these systems.

Widespread miRNA-mediated deadenylation 
of mRNAs occurs during zebrafish embryogenesis.  
The miRNA miR-430 facilitates the removal of hundreds 
of maternal mRNAs by inducing their deadenylation and 
subsequent decay at the onset of zygotic transcription79. 
Interestingly, some miR-430 targets, such as nanos1 and 
tudor-like tdrd7 mRNAs, are repressed by miR-430 in 
somatic but not germ cells, indicating that target destabi-
lization and/or repression can be tissue or cell specific95. 
Likewise, mRNA reporters targeted by let-7 miRNA are 
destabilized to different degrees in different mammalian 
cell lines82.

Although many of the mRNAs that are targeted by 
miRNAs undergo substantial destabilization, there are 
also numerous examples of repression at the transla-
tional level, with no or only a minimal effect on mRNA 
decay (Supplementary information S1 (table)). Studies 
using D. melanogaster S2 cells identified some endog-
enous or reporter miRNA targets, for which repression  

could be entirely accounted for by either mRNA 
degradation or translational repression, or by a com-
bination of both processes78,83. It is not known what 
determines whether an mRNA follows the degradation or  
translational-repression pathway. Accessory proteins 
bound to the 3  UTR might be involved, or structural sub-
tleties of imperfect miRNA–mRNA duplexes, particularly  
of their central regions, could be important82,96.

Whether the deadenylation and the ensuing decay 
are primary or secondary to the translational repres-
sion remains unknown. Clearly, the association of 
AGO instead of eIF4E with the m7G cap would not 
only prevent effective recruitment of ribosomes, but 
would also disrupt the circularization of the mRNA, 
probably rendering the poly(A) tail more vulnerable 
to exonucleolytic degradation. Experiments that have 
been carried out to explore whether deadenylation is 
a primary or secondary event have not proved to be 
conclusive. Reporter mRNAs that are repressed by 
either oligonucleotides that are complementary to the 
AUG codon or the 5  UTR hairpins do not undergo  
deadenylation unless they contain miRNA sites79,80. 
However, it is unlikely that mRNA circularization is 
disrupted by the oligonucleotide or the hairpin, both 
of which act at some distance from the cap. By contrast, 
the disruption could be effected by the miRNP AGO 
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Figure 3 | Possible mechanisms of the microRNA-mediated post-transcriptional gene repression in animal cells. 
Binding of micro-ribonucleoproteins (miRNPs), possibly complexed with accessory factors, to mRNA 3  UTR can induce 
deadenylation and decay of target mRNAs56,78,79,83 (upper left). Alternatively, miRNPs can repress translation initiation  
at either the cap-recognition stage43,44,53–55 or the 60S subunit joining stage57 (bottom left). mRNAs repressed by 
deadenylation or at the translation-initiation stage are moved to P-bodies for either degradation or storage. The 
repression can also occur at post-initiation phases of translation66–68, owing to either slowed elongation or ribosome 
‘drop-off’ (bottom right). Proteolytic cleavage of nascent polypeptides was also proposed as a mechanism of the 
miRNA-induced repression of protein production67 (upper-right). A protease (X) that might be involved in the process 
has not been identified. The 7-methylguanosine cap is represented by a red circle. eIF4E, eukaryotic initiation factor 4E.
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Translational repression: initiation versus post-initiation 

Two contrasting findings using sucrose gradients have led to proposals of multiple 

distinct mechanisms for how miRNAs repress translation. First, miRNAs can prevent 

target mRNAs from sedimenting into polysome-containing fractions68,69. This result is  

consistent with a mechanism where miRNAs block an early step in translation either at 

the initiation step or shortly thereafter. The details for how this might occur are unclear. 

Since miRNAs cannot repress reporters containing internal ribosome entry sites (IRES), 

RISC may interfere with initiation factor Eif4e recognizing the mRNA 5’-terminal m7G 

cap, an essential step in canonical, but not IRES-mediated translation initiation68,70,71. The 

MID domain of Ago proteins contains an amino acid motif similar to that found in Eif4e, 

suggesting Ago may compete with Eif4e for cap binding72. However, structural data do 

not support Ago binding of cap, and pull-down assays indicate Ago only binds cap 

analogues non-specifically73. Alternatively, RISC may prevent 60S and 40S subunit 

joining. In cell-free extracts, targeted mRNAs are bound by 40S but not 60S subunits74. 

In agreement, RISC complexes have been identified in human cells containing 60S 

subunits and the negative initiation factor Eif6, which binds the 60S subunit and prevents 

formation of 80S assembly50. Eif6 is required for miRNA-mediated repression in human 

cells and C. elegans50, but surprisingly not in Drosophila75. Therefore, multiple 

mechanisms may exist for translation repression at the initiation step.   

 The second finding using sucrose gradients, in apparent contradiction to the first, 

is that miRNAs are also often found in polysome fractions associated with translating 

target mRNAs49,76-79. This result is consistent with a mechanism where miRNAs block a 

late step in translation. Further experimentation has led to several conclusions on how 

this may occur, including slowing the rate of elongation80, increased ribosome drop-off76, 

and proteolysis of the nascent peptide chain79. Petersen et al.76 found that ribosomes on 

repressed mRNAs dropped-off faster and reached the stop-codon less often than on non-

target mRNAs, suggesting miRNAs reduce the production of full-length protein. In order 

for increased ribosome drop-off to occur without reducing the amount of steady-state 

mRNA in polysome fractions, initiation would have to load ribosomes faster than the 

drop-off rate.  Nottrott et al.79 did not observe increased drop-off rates or any other 

measurable effects on the translation of target mRNAs, despite reductions in target 
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reporter protein output. To resolve this paradox, the authors engineered reporters to 

express luciferase protein with eight N-terminal Myc tags that could be 

immunoprecipitated as soon as the nascent chain was translated. While control reporter 

mRNA could be immunoprecipitated by anti-Myc pull-down, reporters fused with a 

3’UTR containing let-7 seed sites could not be pulled down, thus suggesting that the 

nascent protein was digested or bound by a proteolytic enzyme as it was being translated. 

Although there are no other reports of miRNA-induced nascent chain degradation, Guo et 

al.81 similarly found that the ribosome densities on most target mRNAs do not change in 

the presence of miRNA. The authors conclude the reduced protein output is the result of 

destabilized mRNA, but note the possibility that the same results would be obtained if 

initiation and elongation rates were equally attenuated81. Therefore, multiple mechanisms 

may exist for translational repression post-initiation, and these could even work in 

combination with inhibition at earlier stages.  

 Is there a unifying mechanism to explain such contrasting results? On one hand, 

miRNAs prevent translation at an early step, preventing ribosomes from binding to target 

mRNA. On the other hand, miRNAs associate with translating mRNAs and more subtly 

alter translational rates. In both cases, the mechanistic details are unclear and multiple 

translational steps may be inhibited or other processes may have an effect. Different 

mechanisms may occur with specific species, cell types, time points, targets, or miRNAs.     

 
1.5 Experimental Determination of miRNA Targets 

Understanding miRNA function requires identification of target genes. As a starting 

point, several open source web-based tools are available to predict targets based on 

sequence complementarity to miRNA. Often, other parameters are also built into these 

tools to help improve performance. The more popular prediction methods include 

TargetScan82, MiRanda83, PicTar84, and PITA85. The accuracy of these methods widely 

varies86 and it is unclear in what biological contexts or with which miRNAs these tools 

work best.  

 The most common method to validate a miRNA-target interaction is a reporter 

assay. In this method, a luciferase reporter is fused to the 3’UTR of a gene of interest and 

transiently transfected in cultured cells endogenously expressing or transfected with the 
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miRNA in consideration. Reduced luciferase expression compared to a control reporter 

without the 3’UTR or, more specifically, with a mutant seed site suggests the 3’UTR is 

sensitive to miRNA repression. While a growing number of targets have been verified 

using luciferase reporter assays87, these only account for a very small percentage of the 

total number of predicted targets.     

 Several groups have utilized higher throughput methods for identifying large 

groups of miRNA targets. By ectopically transfecting brain-specific miR-1 and miR-124 

into HeLa cells, Lim et al.54 used microarrays to measure downregulation in transcript 

abundance of 96 and 174 annotated genes, respectively. Importantly, for both miRNAs, 

the majority of downregulated genes contained 3’UTR seed sites, thus demonstrating for 

the first time that miRNA activity can be studied at the transcript level using microarray 

profiling. Grimson et al.82 performed a similar analysis in HeLa cells with 11 different 

miRNAs and observed changes in transcript abundance of hundreds of genes, 75% of 

which contained 3’UTR seed matches. They also observed a correlation between gene 

repression and certain seed site features like A/U richness. These correlations were 

converted to a generalized quantitative model and incorporated into the TargetScan 

algorithm for target predictions82.  

 How well does array profiling capture miRNA activity? Three studies (two from 

the Bartel group and one from the Rajewsky group) have now combined array profiling 

with proteomic analysis to assess how well mRNA and protein levels correlate following 

miRNA transfection. Using SILAC (stable isotope labeling with amino acids in cell 

culture) quantitative mass-spectrometry, the Bartel group first53 found that targets whose 

protein levels were repressed by more than a third also showed detectable decreases in 

mRNA levels 48 h after transfection of miRNA into HeLa cells53. Subsequent analysis 

using ribosome profiling to assess protein output at 12 h post-transfection suggested that 

not only does mRNA decay reflect protein reduction, but it may also be the more 

significant effect of miRNA-mediated repression81.  The Rajewsky group88 also found a 

strong correlation between mRNA and protein levels using a similar mass-spectrometry 

approach, pulsed-SILAC (pSILAC), 12 h after transfection of HeLa cells. However, 

analysis at 8 h showed a much weaker correlation with more targets showing reduced 

protein than mRNA, consistent with conclusions of other early time point kinetic 
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analyses that protein inhibition precedes mRNA destabilization64,65,89. These studies 

therefore validate array profiling as a tool for studying the majority of cell-wide miRNA 

targeting events with the caveat that profiling should be performed ≥12 h post 

perturbation. Due to its convenience and cost-effectiveness, array profiling has become a 

common tool in the miRNA field.  

 As an alternative to transfection with miRNAs, miRNAs can also be inhibited to 

identify depressed targets. The disadvantage of transfection, on the one hand, is the 

requirement of ectopic expression or higher-than-physiological levels to avoid 

competition with endogenous miRNA; the advantage of inhibition, on the other hand, is 

that it can determine endogenous targets. Several different strategies have been 

implemented to inhibit miRNAs including morpholinos that block pre-miRNA 

processing90, ‘target protectors’ that bind targets and prevent miRNA access 91, and 

plasmid expressed ‘sponges’92 and ‘tough acting decoys’93,94. However, the most 

commonly used inhibitors are anti-miRs. Anti-miRs are antisense oligonucleotides (also 

known as ASOs) complementary to mature miRNA guide strands. They have been used 

both as potential therapeutics and as tools for studying miRNAs. Several different anti-

miR chemistries have been developed to increase affinity, stability, and delivery. 

Common sugar modifications include 2’-O-methyl (2’OMe), 2’-O-methoxyethyl 

(2’MOE), 2’fluoro (2’F), and locked nucleic acid (LNA)95. LNA is a bicyclic nucleic acid 

analogue ‘locked’ into a C3-endo conformation by a bridging carbon linking the 2’O and 

4’C atoms. These modifications protect from nuclease degradation and enhance affinity 

and increase the melting temperature (Tm) of the anti-miR:miRNA duplex. In general, 

LNA provides the highest affinity followed by 2’F > 2’MOE > 2’OMe > DNA95-97. 

However, often these analogues are used in combination at different base positions to 

fine-tune affinity and/or decrease manufacturing cost97. Several studies have shown that 

anti-miRs with higher affinity are often more potent95,97-99, although there are exceptions 

to this trend96,100. The anti-miR backbone can also be modified. Phosphothioester (PS) 

interbase linkages, where a non-bridging oxygen is replaced with a sulfer atom, confer 

nuclease resistance and improve tissue delivery97,101, but at the cost of minor reductions 

in affinity97.  

 Anti-miRs have been used as a tool for understanding miRNA function and 
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targeting in various cultured mammalian cell lines. For example, miR-21’s targets, 

including Pdcd4 and Btg2, have been identified using array profiling and proteomics in 

HeLa and MCF-7 cells102-104. MCF-7 cells were also used with LNA-based anti-miRs to 

investigate the targets of miR-101105. However, it is unclear how many of the targets 

identified in cell culture are regulated in vivo.  

 In 2005, Krutzfeldt et al. demonstrated for the first time that miRNAs could be 

inhibited in vivo with intravenous administration of anti-miR to mice106. In this landmark 

study, liver miR-122 was inhibited using cholesterol conjugated 2’OMe-based anti-miRs, 

called ‘antagomiRs’. miR-122 inhibition resulted in the upregulation of numerous genes 

with miR-122 seed sites, but it also caused several genes to be downregulated, likely as a 

result of secondary effects. Since these downregulated genes were functionally enriched 

in cholesterol biosynthesis pathways, anti-122 treatment caused reduced levels in plasma 

cholesterol. Moreover, other miRNAs including miR-16, miR-192, and miR-194 could 

also be inhibited in liver, lung, kidney, heart, intestine, fat, skin, bone marrow, muscle, 

ovaries, and adrenals (their targets, however, were not identified). These results, 

therefore, suggest that anti-122 and other anti-miRs could be of therapeutic value for the 

treatment of metabolic diseases and other ailments106. Other groups have since expanded 

on the link between miR-122 and cholesterol synthesis, even showing its therapeutic 

potential in non-human primates99,107,108. While anti-miRs have become a powerful tool 

for studying the roles of miRNAs in disease using various mouse models109, surprisingly 

few inhibition studies outside of those for miR-122 discussed here have focused on the 

physiological roles of miRNAs in healthy tissue. Various miRNA knockout mouse 

models have been used for physiological target determination110; however, these 

knockouts are rare and have been studied thus far with only limited focus, mostly in the 

areas of cardiovascular and immunological function111. Moreover, there is some evidence 

that miRNA deletion, as opposed to short term inhibition, can be masked by 

compensatory mechanisms18,112.  Therefore, in vivo activity and targets of most miRNAs 

under normal conditions are still largely unknown. This represents a major gap in 

knowledge; particularly considering that miRNA activity is highly dysregulated in 

cultured, diseased cells. Taken together, a critical current question in the field is-- Do the 

emerging paradigms and validated targets established in transformed cell lines apply to 
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miRNA activity in vivo? 

 
1.6 miRNAs in Disease 

miRNAs are strongly implicated in disease. Aberrant miRNA activity due to 

inappropriate expression has been linked to metabolic disorders such as diabetes and 

obesity, neurological degenerative diseases including Alzheimer’s and Parkinson’s, 

cardiovascular disease, fibrosis, and auto-inflammatory diseases113. Most if not all 

cancers show altered miRNA levels114. Even otherwise normal miRNA function can 

contribute to disease: hepatitis C virus (HCV) hijacks miR-122 to enhance replication in 

liver cells115,116. Mutations in the seed region of a miRNA, although less common, can 

also cause Mendelian inherited diseases such as hearing impairment117.   

 Pharmacological modulation of miRNA abundance may be a powerful new strategy 

for treating human disease. Several biotechnology companies are pursuing miRNA-based 

therapeutics with a current pipeline that includes drugs for treating HCV, various cancers, 

and hypercholesterolemia. The drug furthest in development, an anti-miR targeting miR-

122 for treatment of HCV, is currently in Phase II clinical trials. Early safety data 

suggests miRNA inhibition is associated with low cellular toxicity118. In contrast to 

inhibition, miRNA replacement strategies are also being developed for cases where 

protective miRNAs are reduced in the diseased state.  Delivery of tumor suppressors let-7 

and miR-34a mimics in vivo to Kras activated mouse models of non-small-cell lung 

cancer (NSCLC) caused a 60% reduction in tumor area119,120. Such miRNA mimics are 

currently only in preclinical phases of development. 

 miRNAs are also proving to be useful biomarkers for cancer diagnostics114. 

Profiling of miRNA expression in leukemias and solid tumors shows distinct differences 

in miRNA expression compared to normal tissues, with some miRNAs being upregulated 

and others being downregulated121,122. In some cases, miRNA expression signatures can 

be so unique and distinct that they can be used to classify cancers. Using a bead-based 

flow cytometric method, Lu et al.121 were able to classify based on miRNA expression 

profiles the developmental lineages and differentiation states of 334 tumor samples. This 

level of information may one day substantially improve the diagnosis and prognosis of 

cancer and help in determining proper courses of treatment. 
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miRNA-21: a notorious oncogenic miRNA 

miR-21 may be an especially effective drug target and biomarker for several diseases 

including cancer. In a large profiling study, miR-21 was the only miRNA found to be 

upregulated in all clinical samples tested including lung, breast, stomach, prostate, colon, 

and pancreatic tumors122. Increased expression of miR-21 compared to healthy tissue has 

also been detected in glioblastomas123, cholangiocarcinomas124, esophageal squamous 

cell cancers125, liver cancers126 and cervical cancers127. Additionally, miR-21 expression 

levels are a valuable prognostic marker. High levels of miR-21 have been correlated with 

poor patient survival and/or therapeutic outcome for several cancers including colon128, 

lung129, and prostate cancers130, and higher levels of miR-21 are associated with 

aggressive forms of breast cancer131,132.   

 Functional studies indicate that miR-21 has oncogenic potential in cancer cell lines. 

Inhibition of miR-21 caused a decrease in proliferation and invasion in MDA-MB-231 

breast cancer cells133. Similar results were observed in Huh7 and HepG2 

hepatocarcinoma cells126. Additionally, inhibition of miR-21 reduced invasion and 

metastasis of colon cancer cells 134 and suppressed growth of HeLa cells127. In several 

cell lines including glioblastoma, anti-miR-21 transfection caused cell death135. In 

contrast to inhibition, transfection of miR-21 promoted proliferation and invasion in 

MCF-7 and pancreatic cancer cells130. In the latter, increased levels of miR-21 were also 

found to promote chemoresistance to the cancer drug gemcitabine130. Several tumor 

suppressor genes were identified as miR-21 targets in these and similar studies including 

Pdcd4, Timp3, Reck, Spry1/2, Brg2, and Cdc25a136. Taken together, these data support 

that increased levels of miR-21 can promote oncogenic phenotypes, while targeted 

inhibition of miR-21 can reverse them.   

 Multiple pathways may induce miR-21 overexpression. The miR-21 gene is located 

on chromosome 17 in the intron of a protein-coding gene, Tmem49, with unknown 

function137.  Despite this overlap, miR-21 transcription is independent and driven by its 

own promoter following stimulation with phorbol-12-myristate-13-acetate (PMA)137.  

Several upstream promoter elements have been computationally inferred and the 

transcription factor AP-1 has been shown to activate transcription of miR-21 loci137. 

Interestingly, AP-1 is repressed by Pdcd4, a target of miR-21’s, indicating the existence 
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of a feedback loop138. A double negative feedback loop also exists between miR-21 and 

another one of its targets: Nfib, a transcriptional repressor that blocks the promoter of 

miR-21137. Both of these feedback loops could amplify changes in miR-21 expression.  

Indeed, miR-21 expression is stimulated by the Pdcd4/AP-1 loop in cardiac myocytes in 

response to oxidative stress139. miR-21 transcription can also be attenuated by estradiol 

via estrogen receptor alpha, which may play a role in miR-21’s involvement in breast 

cancers140.  

 Mature miR-21 levels can also be augmented post-transcriptionally by enhanced 

processing of primary miR-21 transcripts. Davis et al.141 reported that treatment of 

vascular smooth muscle cells (VSMC) with bone morphogenic proteins (BMPs) and 

transforming growth factor beta (Tgfb) induces recruitment of Smad and RNA helicase 

p68 to pri-miR-21; this in turn enhances Drosha cleavage and the production of pre-miR-

21141. The additional miR-21 levels function to transition the smooth muscle cells to a 

contractile phenotype by downregulating target Pdcd4141.  Although BMPs have a 

stimulatory effect in vascular cells, BMP-6 inhibits miR-21 transcription in MDA-MB-

231 breast cancer cells142, suggesting miR-21 production is regulated by tissue specific 

controls.  

 Most importantly, Ras, the most frequently activated oncogene in human cancers, 

can induce overexpression of miR-21. Frezzetti et al. found that activated Ras induced 

miR-21 expression in mouse fibroblast NIH-3T3 and rat thyroid FRTL-5 cells via at least 

three pathways: AP-1, Raf/Mapk (mitogen activated protein kinase) and 

phosphatidylinositol 3-kinase (PI3K)143.  

 Induction of miR-21 overexpression by Ras suggests that miR-21 contributes to 

cancer by supporting and reinforcing oncogenic programs initiated by other factors rather 

than initiating tumorigenesis itself. In agreement, using a miR-21 inducible transgenic 

mouse, Hatley et al. reported that miR-21 overexpression only promoted lung tumor 

formation when co-expressed with activated Ras138. Importantly, miR-21 deletion 

suppressed the oncogenic effects of Ras indicating that miR-21 is a primary downstream 

effector in the pathogenesis of Ras-induced cancers. However, in contrast to a supporting 

role, Medina et al.144 found that overexpression of miR-21 alone is sufficient to cause 

pre-B-cell lymphoma in transgenic mice. The authors showed that tumor formation 



 

 19 

became dependent on miR-21 overexpression, a phenomenon termed oncogene addiction; 

by turning off miR-21 expression from an inducible promoter, tumor growth receded due 

to increased apoptosis. Therefore, miR-21’s contribution to pathogenesis may be 

dependent on cellular environment and other unknown factors. Further research is 

required to define the precise roles of miR-21 in cancer.  

 
1.7 Probing miRNA Pathways with Fluorescence Microscopy 

Fluorescence microscopy has been indispensable for studying the subcellular localization 

of miRNA and its pathway components. Both miRNA and miRISC have been found to 

colocalize in various granular bodies including Processing bodies.  

 

Processing Bodies 

Processing bodies or P bodies (PBs) are cytoplasmic sites of RNA degradation and 

storage that contain over sixty different proteins including decapping factors, nucleases 

and helicases145. Their essence is rather elusive, being defined simply as cellular foci that 

are microscopically visible when a PB component, or ‘marker’, is detected with 

immunofluorescence or expressed as a fluorescent fusion. They were first identified in 

1997 when Bashkirov et al. found the 5’-3’ exonuclease Xrn1 to localize in cytoplasmic 

foci146. Later, the mRNA decapping factors Dcp1/2 and Lsm1-7 were found to colocalize 

in Xrn1 foci, suggesting that cap removal and exonucleolytic decay, the last two steps in 

mRNA degradation preceded by deadenylation, is compartmentalized in these 

assembles147,148. Sheth and Parker reported that in Saccharomyces cerevisiae inhibiting 

mRNA turnover either before or after the decapping step altered the abundance and size 

of Xrn1 foci149. This combined with evidence that RNA decay intermediates also 

localized in the foci, demonstrated that mRNA decay occurs within these granules in 

equilibrium with the cellular RNA pool translating in polysomes149. Similar results were 

found in human cells150, indicating that the roles of PBs in the mRNA decay process are 

conserved among eukaryotes.  

 Evidence has emerged indicating that PBs play a role in miRNA-mediated 

repression. First, both miRNAs and Ago2 have been found to localize to PBs68,151-153. 
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Second, reporter mRNAs containing miRNA seed sites localize to PBs in a miRNA-

dependent manner68,152. Third, several PB components, including Tnrc6/Gw182 and 

Rck/p54, are required for both miRNA-mediated repression and PB formation152,154. 

Knockdown of these genes depletes PBs and relieves repression of target reporters. 

Additionally, Ago mutants incapable of being recruited to PBs by Tnrc6/Gw182 cannot 

effect repression, even when directly tethered to target mRNA155. Fourth, PBs do not 

contain core components of the translational machinery, suggesting PBs could sequester 

repressed mRNAs away from translating polysomes156. Importantly, however, visible 

PBs can be disrupted by knockdown of Lsm1 without affecting target repression, thus 

suggesting miRISC and targets localize to PBs not to cause repression but as a 

consequence of it 47,157.  

 miRNA-mediated silencing can persist in the absence of visible PBs, but this 

independence is not reciprocal: PB formation requires active miRNA pathways to deposit 

mRNA.  Disruption of miRNA biogenesis by depletion of Drosha/Dgcr8 in human cells 

or either Drosha, Dicer, or Ago in Drosophila cells results in loss of PB formation157,158. 

Interestingly, block of translation, and thus removal of mRNAs from polysomes, by 

puromycin treatment could not rescue PB formation in Drosophila cells depleted of 

essential miRNA factors157. This indicates that translationally inactive mRNA has to 

proceed through miRNA-related channels in order to enter PBs. Therefore it is likely that 

PBs are heavily populated with repressed miRNA targets awaiting degradation, thus 

making PB localization a key late step in the miRNA repression pathway.  

 PBs could also serve as storage facilities for temporally repressed mRNA. In yeast, 

mRNA localizes to PBs during stress or arrest in growth, and then reenters polysomes for 

translation after recovery159. Bhattacharyya et al.69 have observed a similar phenomenon 

involving the cationic amino acid transporter (Cat-1) in liver cells. In the fed state, Cat-1 

is repressed by miR-122 and localized to PBs; however, in response to amino acid 

starvation, the RNA binding protein (RBP) HuR reverses miR-122 repression and Cat-1 

is transported from PBs to cytoplasmic polysomes160. Stored mRNA may be physically 

separated from the RNA degradation enzymes. Electron microscopy has revealed PBs are 

comprised of multiple compartments161, and let-7 has previously been found to localize 

as foci closely adjacent to but not overlapping with Dcp1a foci68.  
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 Further research will be needed to determine what factors are involved in 

determining the fates of mRNAs transported to PBs. These mechanisms may help explain 

why certain mRNA-target interactions may result primarily in translational reductions. 

Single particle tracking experiments may be especially useful for characterizing 

complexes transported to PBs.  

   

Single Particle Tracking  

Single particle tracking (SPT) is a biophysical microscopy method for analyzing a 

molecule’s change in position over time, i.e., its spatiotemporal organization in the cell. 

The method can be used in live cells to measure the dynamics of fluorescently labeled 

cellular components. From these data, properties of the tracked component can be 

inferred including modes of transport, relative molecular weights, and interactions with 

cellular substructures such as cytoskeletal filaments. Because each particle is tracked 

individually, the complete distribution of particle behaviors can be measured, thereby 

enabling subpopulations, if present, to be uncovered from the ensemble. 

 At the outset of this thesis work, SPT had not yet been used to study miRNAs. 

However, it had been used to probe the dynamics of mRNA ribonuclear protein 

complexes (mRNPs) and PBs, which represent two key steps in the miRNA repression 

pathway. Fusco et al.162 were the first to use SPT to analyze the transport of MS2-labeled 

mRNPs in the cytoplasm of living cells. The authors reported that mRNPs stochastically 

transitioned between several different types of motion, with the majority of particles 

undergoing corralled motion indicating hindrance by the cytoskeleton, organelles or 

possibly even PBs. Consistently, disruption of microtubules caused some, but not all, of 

these particles to be released to more diffusive motions. Most importantly, mRNPs with a 

beta-actin ‘zipcode’ sequence, which cause mRNPs to localize to the cell periphery, 

displayed increased directional movement, thus suggesting that long-range transport, but 

not necessarily short-range, is facilitated by motor-directed, active processes162.  

Comparable experiments have also been used to investigate nuclear transport163 and 

export 164. Similar to mRNPs, Aizer et al.165 found that PBs (marked by Dcp proteins) 

displayed a variety of movements; however, PB diffusion was slower than most mRNPs. 

Further, PBs had extensive interaction with microtubules — PBs were observed swaying 
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back-and-forth and, less often, processing along on the fibers. By indirectly comparing 

PB and mRNP dynamics, the authors speculated that mRNPs reach PBs largely by 

chance via diffusive motions, but the microtubule network may serve as a highway for 

trafficking certain complexes165. Two-color tracking experiments, simultaneously 

imaging mRNPs and PBs as they come together, are necessary to test this hypothesis and 

investigate how miRNAs modulate these events.    

 
1.8 Thesis Objectives 

 

Primary Objective — Chapters 2 & 3 

It is evident that miRNA activity is highly dysregulated in cancer, yet our basic 

understanding of mammalian miRNA targeting and function has been derived mostly 

from cultured cancer cells. The primary objective of this thesis is to investigate in vivo 

the repressive activities of miRNAs under healthy cellular conditions and contrast these 

with activities measured or previously reported for cultured cells. I focus on the 

oncogenic miR-21 with the hope of gaining insights into its contributions to disease; I 

seek to better understand the well-documented ‘abnormal’ activity by better defining 

exactly what ‘normal’ activity is. In Chapter 2, I use anti-miR inhibition and array 

profiling data to measure the repression signature of miR-21 and two other similarly 

abundant miRNAs in healthy mouse liver. Additionally, I use sucrose gradients to 

investigate biochemically how these miRNAs are interacting with targets. These results 

are contrasted with similar measurements in HeLa cells. In Chapter 3, I use 

bioinformatics to further dissect the array profiling data from Chapter 2 in order to better 

understand the underlying principles behind miR-21’s target selection.  

 

Secondary Objective — Chapter 4 

Another outstanding question in the field is the mechanism(s) by which miRNAs repress 

targets. The seemingly contradictory mechanistic data available suggest that miRNAs 

may utilize different modes of repression. The secondary objective of this thesis is to 

develop an incisive tool for visualizing single miRNAs as they proceed through the 



 

 23 

repression pathway(s). This tool could be used to assess heterogeneities among miRNAs 

in regard to their spatiotemporal assembly into repressive complexes and interactions 

with target mRNAs, which would be expected if certain miRNAs enact distinct 

mechanisms of repression. In Chapter 4, I discuss the development of such a method that 

combines intracellular single particle tracking with step-wise photobleaching.     
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Chapter 2: 

Disease-linked microRNA-21 exhibits drastically reduced mRNA binding and 

silencing activity in healthy mouse liver1  

 

2.1 Introduction 

 MicroRNAs (miRNAs) are an expansive class of evolutionarily conserved post-

transcriptional gene regulators effecting RNA silencing. At ~21 nucleotides (nt), these 

endogenous non-coding RNAs are partially complementary to the 3’ untranslated regions 

(3’UTRs) of mRNAs; and thus control and typically silence gene expression by recruiting 

proteins of the RNA induced silencing complex (RISC) to their mRNA targets61,166. A 

growing body of evidence has demonstrated that miRNAs are involved in nearly all 

processes of the cellular life cycle, from growth and differentiation to maintenance and 

cell death167-169. This broad capacity is achieved by the actions of nearly 1,500 miRNAs 

that are bioinformatically predicted to regulate expression of >60% of the human 

proteome based on base pairing rules involving 7- to 8-nt short ‘seed sequences’16. 

Perturbing the levels of a single miRNA has been shown to affect the mRNA and protein 

levels of hundreds of downstream genes53,88. Although the precise mechanism of 

miRNA-mediated regulation remains debated61, global evaluation of expression changes 

following transfection with or deletion of miRNAs has revealed that, at least at later time 

points, the majority of changes observed at the protein level are mirrored at the transcript 

level, indicating that mRNA destabilization is an important component of miRNA 

function53,81,88,170. Apparently, miRNA-mediated degradation can occur while the mRNA 

target is still actively translated within polyribosome (polysome) complexes49,77-79,171 

                                                
1 Androsavich, J. R., Chau, B. N., Bhat, B., Linsley, P. S., & Walter, N. G. (2012). Disease-linked 
microRNA-21 exhibits drastically reduced mRNA binding and silencing activity in healthy mouse liver. 
RNA. Nelson Chau performed the array profiling and Sylamer analyses. B. Bhat synthesized the anti-miRs. 
John Androsavich performed all other experiments and bioinformatic analyses. 
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 Recently, the role of miRNAs in disease has become a strong focal point of 

research. To date, more than 4,100 miRNA-disease associations have been reported172. 

While the interactions between a miRNA and its target mRNAs are believed to mostly 

result in mild ‘fine-tuning’ of expression output, imbalances in this interplay can have 

deleterious effects on the cell. In some cases, dysregulation of a single miRNA-target 

interaction induces disease. For example, chromosomal truncations in the 3’UTR of the 

mRNA encoding the human proto-oncogene high mobility group A2 (Hmga2), a 

transcriptional modulator expressed at high levels during embryogenesis but silenced in 

adulthood by let-7 miRNA, can lead to cancerous transformation due to loss of let-7 

miRNA-mediated repression173. Alternatively, disease can arise from aberrant miRNA 

expression, which can potentially have much broader impacts on the transcriptome. For 

example, miR-21 is found to be overexpressed in several types of human tumors122 as 

well as heart fibroblasts following cardiac stress174. While this correlation is suggestive of 

the pathological effects of miR-21, the miRNA’s precise role in disease progression 

remains unresolved. Overexpression of miR-21 alone in the hematopoietic system can 

induce tumorigenesis in transgenic mice144; however, in more solid tissues such as 

brain144 and lung138, activation of another oncogene, such as Kras138, appears necessary 

for miR-21 to contribute to and reinforce cancerous phenotypes.  

 Our knowledge of miRNA function and of the mechanistic links between miRNA 

and disease remains incomplete. In large part, this is due to poor understanding of the 

multitude of targets regulated by different miRNAs. While considerable effort has been 

expended towards global prediction of miRNA targets17, experimental support for these 

predictions is limited. Indeed, most validated targets have been confirmed using gene 

reporter assays in cultured cancer cell lines. Little is known about miRNAs and their 

targets under healthy cellular conditions.  

 We here have investigated the function of three highly abundant miRNAs in 

healthy mouse liver. We show that, with the exception of a restricted set of genes 

enriched in stress-response pathways, inhibition of miR-21 with a specific ‘anti-miR’ 

oligonucleotide drug or abrogation by genetic deletion has surprisingly little effect on 

mRNA levels of predicted and previously validated targets, in contrast to our 

observations for let-7 and miR-122. Consistent with a diminished repression capacity, 
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miR-21 displays an unusual sub-cellular distribution with reduced binding to actively 

translating mRNAs. In stark contrast with healthy tissue, miR-21 displays a significantly 

augmented repression signature and strengthened binding to mRNA targets in the 

cancerous HeLa cell line, as previously suggested. Our analysis gives a biochemical 

perspective on the disparities of miRNA-mediated repression between healthy and 

diseased states and suggests that miR-21 passes a threshold in its transition from a very 

specific regulator under normal homeostasis to an overactive, broadly repressive 

oncomiR in cancer.  

 

2.2 Materials and Methods 

Animal care and treatments. All animal experiments were conducted according to the 

Institutional AAALAC Guidelines. Male C57BL/6 mice were housed four to five animals 

per cage with a 12 h light/dark cycle. Oligonucleotides were dissolved in saline and 

administered to mice by intraperitoneal (i.p.) injection. For mRNA profiling studies, mice 

were treated with 20 mg/kg twice weekly for 2 weeks. miR-21 knockout mice were 

obtained from Dr. Stuart Orkin (Harvard University,175).  

Cell culture and transfection. HeLa cells were cultured in DMEM with 10% FBS. Anti-

miR-21 was transfected with Lipofectamine RNAiMax (Life Technology) according to 

manufacturer instructions.  For sucrose gradients, HeLa cells were treated with 0.1 mg/ml 

cycloheximide 20 min before harvesting. Lysates were prepared by swelling cells on ice 

in hypotonic buffer (10 mM NaCl, 1.5 mM magnesium acetate, 50 ug/ml dextran sulfate, 

10 mM Tris-HCl, pH 7.4) before Dounce homogenization. The homogenized lysate was 

collected, centrifuged at 1,200 x g for 5 min at 4 °C, and loaded on sucrose gradients (see 

Liver Lysates and Fractionation). 

Comparison with Computationally Predicted Targets. Predicted targets for each 

miRNA were downloaded from the following databases: miRanda-mirSVR - mouse, 

good mirSVR score, conserved miRNA, updated August 2010; 

TargetScan(Conservation) - mouse, conserved targets Pct scores, v5.2; 

TargetScan(Context) - mouse, conserved targets context scores, v5.2; 

TargetScan(Context+) - mouse, conserved targets context+ scores, v6.0; microCosm - 
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mouse, v3.0; and PITA - mouse, top predictions, 3/15 flank, v6.0. Starting with the 

highest score, each set of top predictions were cross-referenced with genes measured by 

array profiling until the first 30 matches were found. All matches came from at most the 

top 50 predictions from any prediction dataset.  

Gene Ontology Classifications and Bioinformatic Calculations. For gene ontology 

assignments, seed-matched or non-matched gene sets were analyzed with the Panther 

gene expression data analysis tool176,177. Enrichment statistics were calculated relative to 

a custom-loaded background dataset consisting of all genes measured in our array 

profiling. For thermodynamic calculations, seed-matched genes for each miRNA were 

cross-referenced with hybridization energy calculations derived from the Vienna RNA 

package178 available in the PITA database85 (Fig. 2B, top left, and Supplemental Fig. 

S2A) or calculated with RNAhybrid179 (Supplemental Fig. S2B). For calculation of target 

site numbers, all RefSeq (NCBI) transcript sequences associated with genes measured by 

array profiling that mapped to a unique Ensembl ID were downloaded and searched for 

3’UTR seed-matched sequences using MatLab software (Math Works) with code written 

in-house.  

Liver Lysates and Fractionation. Prior to harvest, blood was flushed from hepatic 

tissue by perfusion with 1x PBS via the portal vein. Lysates were prepared in lysis buffer 

(20 mM Tris, pH 7.4, 100 mM NaCl, and 2.5 mM MgCl2) supplemented with EDTA-free 

protease inhibitor cocktail tablets (Roche). Intact livers (~1.0-1.5 g) were homogenized 

with a glass Dounce in 3 ml ice-cold lysis buffer by twenty strokes with each of the loose 

and tight plungers. The homogenate was centrifuged at 1,000 x g for 10 min at 4 °C. The 

resulting S1 supernatant was then centrifuged twice at 16,000 x g for 10 min at 4 °C. The 

final S16 supernatant was immediately layered on top of a 20-60% linear sucrose 

gradient prepared by gently overlaying decreasing percentages (w/v) of sucrose solutions 

prepared in lysis buffer. Equal OD260 units were loaded for each sample. Sucrose 

gradients were ultracentrifuged at 35,000 r.p.m., ~ 218,000 × g, for 3 h at 4 °C in a 

Beckman SW41 rotor. After centrifugation, 0.5 ml aliquots were collected by hand by 

puncturing the bottom of the ultracentrifuge tube. The A260 of each fraction was measured 

with a spectrophotometer. For samples prepared with puromycin, 1 mM puromycin and 
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10 mM vanadyl ribonucleoside complex (NEB) were added to the homogenized lysate, 

the salt concentration was adjusted to 300 mM NaCl, and the lysate was incubated at 37 

°C for 10 min. For sample prepared with EDTA, 0.5 M EDTA, pH 8.0, was added to a 

final concentration of 30 mM. 

miRNA pull-down assay. miRNA pull-down assays were performed as previously 

described180. Briefly, 2’O-methyl ‘capture’ oligonucleotides (IDT) modified with a 

5’biotin were titrated into S16 liver lysates and incubated at 25 C for 1 h. Lysates were 

then incubated with M280 streptavidin-coated magnetic beads (Invitrogen) to precipitate 

the biotin-conjugated capture strand with its complementary miRNA. Supernatants were 

removed and total RNA was purified using Trizol reagent (Invitrogen) and isopropanol 

precipitation. miRNA was detected using northern blot with 32P-end-labeled 

complementary DNA probes and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDC) cross-linking, as previously described181.  

mRNA array profiling and analysis. Total RNA from tissues or cell culture was 

extracted as per the manufacturer's instructions (miRNeasy kit, Qiagen). mRNA 

expression profiles were measured for mouse liver and HeLa cells using Mouse Genome 

430 2.0 arrays (Affymetrix) and U133A arrays (Affymetrix), respectively. mRNA 

microarrays were run in triplicate for anti-miR or saline treated and transgenic mice. For 

analysis by cumulative distribution frequency, genes containing one or more particular 

miRNA seed-matched sequences in their RefSeq curated 3’UTRs were compared to those 

without seeds, and the p-value significance of the difference between these curves was 

determined by one-sided Kolmogorov-Smirnov test. Web-based software was used to 

analyze the same datasets using the Sylamer algorithm182. Gene expression changes were 

compared by student t-test and ranked from highest to lowest fold-change across the x-

axis. Hypergeometric enrichment scores were computed for all 47 (16,384) possible 

heptamer sequences or for all 48 (65,536) possible octamer sequences and were plotted on 

the y-axis.  

Oligonucleotide synthesis and purification. Standard procedure was used to synthesize 

and purify anti-miRs for miR-21, miR-122, and let-7 used in current investigation. 

Briefly, 2’-ribofluoro (2’-F) and 2’methoxyethyl (MOE) modified oligonucleotides were 
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synthesized on AKTA Oligopilot 100 (GE Healthcare) synthesizer. The 2’MOE amidites 

were acquired from Isis pharmaceuticals (Carlsbad CA). The F-modified nucleoside 

phosphoramidites were purchased from ST Pharm, former Samchully Pharma (South 

Korea) and Innovassynth Technologies (Mumbai, India). The key steps in the solid phase 

synthesis of F/MOE anti-miRs 21 and 122 were (1) 3.0 min detritylation step with 15% 

DCA/toluene. (2) A 0.15 M solution of the phosphoramidites in anhydrous acetonitrile in 

each coupling step. (3) For sulfurization, 0.2 M Phenyl acetyl disulfide (PADS) in 1:1 

anhydrous pyridine / CH3CN was used with 6 min contact time. After completion of the 

synthesis, solid support was treated with triethyl amine (TEA): acetonitrile (1:1) at room 

temperature for 30 min. It was followed treatment with a mixture of aqueous ammonium 

hydroxide (33 wt. %): ethanol (200 proof, Koptec, 3:1) and heated at 55 °C for 9 h which 

resulted in complete removal of all the protecting groups. The anti-miRs were purified by 

ion exchange chromatography on an AKTA Explorer (GE healthcare) HPLC system on a 

strong anion exchange column (source 30 Q, GE Healthcare). The fractions with high 

purity (by LCMS) of the desired full-length anti-miR were pooled together and 

concentrated under high vacuum to a smaller volume. The oligonucleotides were desalted 

by reverse phase HPLC to furnish desired F/MOE modified anti-miRs in about 40% 

isolated yield based on the loading of the solid support. The anti-miRs were lyophilized 

to a dry powder. The final purity of the anti-miRs was assessed by ion-pair-HPLC–MS 

analysis with Agilent 1200 HPLC 6130 MSD system from Agilent Technologies.  

RNA Analysis. Following fractionation, total RNA from individual fractions was 

purified using Trizol (Invitrogen) extraction and miRNeasy-96 kits (Qiagen). RNA was 

quantified with real-time quantitative PCR (RT-qPCR), using High Capacity cDNA 

Reverse Transcription reagents and TaqMan MicroRNA or mRNA assays (Applied 

Biosystems). RT-qPCR reactions were performed in triplicate in 384-well format using 

an Applied Biosystems 7900HT fast real-time PCR instrument. For absolute 

quantification, standard curves for each amplified miRNA were run in parallel using 

serial dilutions of synthetic miRNA oligos (IDT) designed from guide-strand sequences 

listed in the mirBase database (mirbase.org)183. Note that the TaqMan microRNA assays 

are selective for only mature miRNA and cannot detect precursers or edited variants 

(Applied Biosystems).  
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Statistical Analysis. Statistical significance was tested as described in the text. ANOVA 

and non-parametric Kruskal-Wallis tests were calculated using Prism 5.0 (GraphPad 

Software). One-sided Kolmogorov-Smirnov tests were calculated using R software 

package (http://www. R-project.org). Linear regression analysis was calculated using 

OriginPro 7.0 (OriginLab). For mouse array profiling, genes that showed ≥1.10 fold-

change compared to saline-treatment with p < 0.05 from three biological replicates per 

treatment group were considered significant.  

 3’ Rapid Amplification of cDNA ends (RACE). Pdcd4 3’UTR lengths were 

determined using a RLM-RACE kit (Ambion) and custom nested PCR primers for 

Pdcd4:  

inner Primer: GCACAGCAACTCTTACAGTCTTAGGTGTTAC 

outer primer: GAGCTACTGAGCACAGCAACTC  

The final PCR products were analyzed with agarose gel electrophoresis.  

Western Blotting. Western Blot analysis was performed by first pooling together every 

other fraction and precipitating the protein with the addition of 3 volumes of pre-chilled 

neat ethanol and overnight incubation at -20 °C. Following centrifugation, the pelleted 

protein was washed with 70% (v/v) cold ethanol and then resuspended in 1X LDS sample 

loading buffer (Invitrogen). Due to the high concentration of protein in the top fractions 

of the gradient (low sucrose density), the first two pooled fractions were resuspended to 

their original volume prior to precipitation. The remaining fractions were resuspended in 

1/10 of their original volume and were thus concentrated 10×. Equal volumes of each 

pooled fraction were resolved with SDS-PAGE and immunoblotted following a standard 

protocol. Rabbit polyclonal antibody to Ago2/Eif2c2 (ab5072) was purchased from 

Abcam. Rabbit polyclonal antibody to Trbp was developed in-house at Isis 

Pharmaceuticals (Carlsbad, CA). Primary antibodies were detected using IR-dye labeled 

secondary antibodies and membranes were scanned using an Odyssey Imaging System 

(Li-Cor). 
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2.3 Results 

miR-21 silences only a narrow subset of all mRNAs with matching seed sequence 

To study miR-21’s intrinsic silencing activity in vivo in healthy animals, we used array 

profiling to measure changes in mouse liver mRNA populations resulting from inhibition 

of the miRNA. Anti-miR oligonucleotides were synthetically tailored to be 

complementary to the full-length miRNA and featured a number of chemical 

modifications to enhance specificity, affinity, and stability. We chose to focus on liver 

tissue, for the following reasons: (a) miR-21 is among the 10 most highly abundant 

miRNAs in both mouse and human liver samples184-187 (Fig. 2.1); (b) anti-miR delivery 

to this tissue by systemic administration is made highly efficient by the hepatic portal 

system; and (c) miR-21 is found to be elevated in human hepatocellular carcinoma 

clinical samples and has been found to contribute to tumorigenesis and enhanced 

invasiveness by silencing the expression of the tumor suppressors Pdcd4, Pten, and Reck 

in hepatocyte derived carcinoma cell lines126. In addition to miR-21, we performed 

similar inhibition analyses on two other miRNAs that similarly are among the most 

highly expressed liver miRNAs (Fig. 2.1): miR-122, formerly believed to be a liver 

specific miRNA, where it has been implicated in cancer and hepatitis C188, but recently 

discovered to be expressed in other tissues as well189; and let-7, a conserved family of 11 

miRNA isoforms with high sequence similarity that is broadly involved in cell 

development and tumor suppression190.  

 All systemic anti-miR treatments had broad effects on the transcriptome with 

between ~12% and 23% of the >17,500 genes measured being statistically significantly 

(p < 0.05 by student t-test with three biological replicates per group) up- or down-

regulated compared to a saline treatment as negative control (Fig. 2.2.A, left). The 

majority of these changes were mild with median changes in the range of 14 − 20% for 

down-regulated genes and 21 − 31% for up-regulated genes (Fig. 2.2.A, right). Such 

changes may reflect shifts in the expression levels of miRNA targets, downstream effects 

caused by these shifts, and/or non-specific effects of the anti-miR106. To determine the 

primary effects of the anti-miR, that is, to elucidate the genes directly regulated by a 

miRNA, we binned genes based on the presence of 7-nt (7m1A or 7m8) or 8-nt (8m) -
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long seed sequence matches in each mRNA’s 3’UTR that are complementary to the 5’-

end of the miRNA (Fig. 2.2.B). It is believed that 8m-seed-matches are the most effective 

sites, with mRNAs containing these sequences having the highest likelihood for being a 

miRNA target17. In the case of miR-122 and let-7, miRNA inhibition caused a 

significantly greater upregulation of all seed-matched mRNA compared to non-matched 

mRNA for the same cumulative fraction (one-sided Kolmogorov-Smirnov p-value (KS p) 

= 1.44x10-25 for 8m-miR-122; 1.06x10-8 for 8m-let-7, Fig. 2.2.C, top and mid panels). 

These results are consistent with both canonical miRNA-target predictions16 and previous 

results for miR-122 using similar experimental conditions99. Unexpectedly, this 

preferential effect on seed-matched targets was not strongly observed upon miR-21 

inhibition (KS p = 3.74x10-2 for 8m-miR-21, Fig. 2.2.C, bottom). To verify this result, 

we reanalyzed the same profiling data using the Sylamer algorithm, which computes the 

hypergeometric significance for finding enrichment of short sequences on one end or the 

other of a profiling dataset ranked from most up-regulated to most down-regulated182. 

The main advantage of the Sylamer algorithm is that it does not require a priori 

assumptions regarding sequence; it instead computes and plots enrichment signatures for 

all possible sequences of a certain input length, thus enabling non-specific effects or other 

trends to be uncovered. Sylamer analysis showed that treatment with anti-miR-122 (Fig. 

2.2.D, top left, p < 1 x 10-25) or let-7 (Fig. 2.2.D, top right, p < 1 x 10-12) induced 

upregulation of genes enriched for seed-matches unique to the inhibited miRNA, thus 

demonstrating the specificity of these treatments. Still, we did not find enrichment on 

either end of the anti-miR-21 ranked gene list for miR-21 seed matches nor any other 7 or 

8-nt sequence (Fig. 2.2.D, bottom left), indicating that on a transcriptomic scale, the 

primary effects of miR-21 inhibition cannot be clearly discerned above background.  

The three anti-miR oligonucleotides used were identical in all chemical 

modifications but sequence, thus it is unlikely that the diminished effect of anti-miR-21 

was due to drug inefficacy. To further rule out this possibility, we compared livers of 

wild-type and miR-21 knockout mice (for validation see 175) and found a lack of de-

repression similar to inhibition by anti-miR-21 (Fig. 2.2.D, bottom right).  
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 We also noticed that, in contrast to the majority of targets containing 7 or 8-nt 

matches, only a narrow subset of miR-21 seed-matched transcripts were significantly up-

regulated upon miR-21 inhibition, restricted to just 24 8m-seed-matches (Table 2.1). This 

observation suggests that either miR-21 has a higher selectivity for these targets or it has 

fewer high-potential targets compared to miR-122 and let-7. We conclude that in healthy 

liver tissue miR-21 demonstrates very limited mRNA target engagement, silencing fewer 

targets to a lesser extent than other miRNAs of similarly high abundance. 
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Figure 2.1 miR-21, miR-122, and let-7 family isoforms account for a large 
proportion of total miRNA expression in liver.  Shown are data for human and mouse 
samples curated in the gene expression omnibus186. The top-10 most abundant miRNAs 
combined as a fraction of total miRNA expression (column graph) and their abundance 
relative to one another (pie graph) are shown for (A) qPCR profiling of human liver 
samples (GSE22058)185 and (B) deep sequencing data from fetal mouse liver tissue 
(GSE21370)184. 
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Figure 2.2 Array profiling of liver mRNA following miRNA inhibition or knockout. 
(A) Total gene expression changes in response to anti-miR treatment. Left, fraction of 
total genes measured which were significantly (p < 0.05, student t-test) upregulated 
(positive y-axis) or down-regulated (negative y-axis). Right, the magnitudes of change in 
expression for the same fractions plotted as cumulative distribution frequencies. The 
dotted line represents the median. (B) Schematic of canonical miRNA seed:mRNA seed-
matched pairing for miR-122, let-7 and miR-21. The miRNA seed region, nucleotides 2-8 
in the 5’ end of a miRNA, binds to 7- or 8-nt seed-matched sequences in the 3’UTRs of 
mRNA transcripts. Three variations of seed-matches have been identified as being the 
most critical for miRNA binding: heptanucleotide sequences complementary to either 
position 2-8 of the miRNA (7m8) or position 2-7 with an adenosine at position 1 (7m1A), 
or octanucleotide sequences complementary to position 2-8 plus an adenosine at position 
1 (8m). Note that while Watson-Crick base pairing is not required across from position 1, 
it frequently occurs since a majority of miRNAs contain uracils at this position. (C) 
Cumulative distribution frequencies for all profiled genes plotted as a function of fold-
change in expression following anti-miR treatment against miR-122 (top), let-7 (middle), 
or miR-21 (bottom). Genes were binned based on the presence (colored lines) or absence 
(grey line) of seed-matched sequences complementary to the inhibited miRNA. (D) 
Heptanucleotide Sylamer analysis of the same datasets shown in C for each indicated 
treatment. The seed matches for each miRNA are highlighted. All other possible 7-nt 
sequences not related to the seed match are shown as grey lines and thus represent 
statistical background noise. The 8m seed match from the octanucleotide analysis is 



 

 36 

shown super-imposed. Heptanucleotide and octanucleotide analyses had similar 
backgrounds. The peaking of enrichment, calculated as a hypergeometric p-value, for 
seed-matched sequences on the left hand side of the plot for miR-122 (top left) and let-7 
(top right) indicates that the genes most up-regulated upon miRNA inhibition are 
enriched for the corresponding seed-matched sequence. Enrichment for miR-21 seed-
matched genes is not observed when miR-21 is inhibited (bottom left) or knocked-out 
(bottom right). 
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Table 2.1 All miR-21 8m-seed-matched genes showing significant upregulation upon 

anti-miR-21 treatment in mouse liver.  

Gene Fold-Change p-value Seed-Type RefSeq ID 

Dnaja1 1.73 0.0033 8m 

NM_001164671/

//NM_00116467

2///NM_00829 

Taf7 1.51 0.0001 8m 
NM_175770///N

M_17577 

Skp2 1.33 0.00001 8m 
NM_013787///N

M_14546 

Timp3 1.28 0.001 8m NM_011595 

Pex10 1.26 0.0164 8m NM_001042407 

Tbcel 1.24 0.0307 8m NM_173038 

5730403B10Rik 1.24 0.0043 8m NM_025670 

E2f2 1.23 0.0129 8m NM_177733 

Cdc25a 1.23 0.0019 8m NM_007658 

Yap1 1.21 0.0004 8m 
NM_001171147/

//NM_00953 

Fmo2 1.2 0.0095 8m NM_018881 

Zranb2 1.18 0.0018 8m NM_017381 

Nkiras1 1.18 0.0015 8m NM_023526 

Cand1 1.18 0.0169 8m 

NM_027994///N

M_027994///NM

_02799 

Ubl4 1.17 0.0068 8m NM_14505 

Ogfod1 1.17 0.0128 8m 
NM_001093757/

//NM_17776 

Lipk 1.17 0.0312 8m NM_172837 

Hpgds 1.17 0.0384 8m NM_019455 
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Sbno1 1.15 0.0442 8m NM_001081203 

Ehd1 1.14 0.0051 8m NM_010119 

A030009H04Rik 1.12 0.0111 8m 
NM_020591///N

R_02782 

2610507B11Rik 1.12 0.0487 8m NM_001002004 

Agps 1.10 0.031 8m NM_172666 

4632428N05Rik 1.10 0.0226 8m 

NM_001159572/

//NM_02873 
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miR-21 repression corresponds poorly with targeting predictions and known targets  

We next sought to compare our experimental results with the most probable targets 

derived from the available target prediction databases. Not all mRNAs containing a seed 

match are expected to be repressed by a co-expressed miRNA, as the likelihood for an 

interaction can be dependent on several factors such as binding site accessibility and/or 

hybridization free energy. Several target prediction algorithms have been developed to 

take these factors into account, with the goal of decreasing the frequency of false-

positives16,82,84,85,183,191,192. Scores are assigned based on heavy weighting of local mRNA 

context features, evolutionary conservation, and/or thermodynamics in an effort to rank 

the most likely or most potent targets of a miRNA. Indeed, for miR-122 and let-7 we 

found that the experimental changes in mRNA level for the majority of top predicted 

targets across seven algorithms (see Materials and Methods) were on average greater than 

the changes for all 7- or 8-nt seed matches together (Fig. 2.3.A, top), indicating that they 

were more predictive than just seed-matching alone. Our understanding of target 

prediction remains incomplete, as the mean changes of the top predicted targets were 

below those of the experimentally observed top-30 seed-matched targets, and several top 

predictions particularly for let-7 were not significantly up-regulated upon anti-miR 

treatment (Fig. 2.3.A, bottom). These observations, however, are in agreement with a 

similar comparison between top prediction sets and proteomic data following miR-223 

genetic deletion in mouse neutrophils53, indicating a similar, if somewhat limited 

accuracy of the predicted responses for target proteins and mRNAs upon impairment of 

miR-223, miR-122, and let-7. By comparison, we observed that far fewer predicted 

targets of miR-21 were regulated. Although a few targets were predicted correctly (Fig. 

2.3.A, bottom), these showed only very mild increases upon anti-miR treatment, while 

the majority of predicted targets were unresponsive or slightly down-regulated (Fig. 

2.3.A, top). Surprisingly, none of the TargetScan predictions, among the most accurate 

for miR-122 and let-7, were correct for miR-21; the Context+ algorithm, which was 

designed to account for miRNAs with low 5’ G/C content, a category into which miR-21 

falls, did not significantly remedy this lack of accuracy (Fig. 2.3.A). 
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A miRNA’s base composition can have a significant influence on mRNA target 

binding capacity. Sequence analysis revealed full-length miR-21 as slightly more A/U-

rich (64%) than miR-122 (54%) and let-7 (59%). These differences are enhanced in the 

seed region: miR-21 (71%), miR-122 (43%), let-7d (43%) (Fig. 2.2.B). Since the seed 

region often accounts for the majority of miRNA:mRNA base-pairing interactions, we 

hypothesized that the release of free energy upon target binding would be much lower for 

miR-21 than miR-122 or let-7. Indeed, computational analysis estimated the free energy 

of miR-21 binding to targets detected in our array profiling to be significantly less than 

for the other miRNAs (Fig. 2.3.B), indicating that 3’end pairing does not sufficiently 

compensate for weak seed pairing for a majority of targets. This reduced binding energy 

may partially explain miR-21’s inactivity; however, we did not find much of a correlation 

between calculated binding energies and changes in mRNA levels (Fig. 2.4.A). 

Thermodynamics also does not satisfactorily explain why miR-21 does not repress 

Pdcd4, a validated target with extended complementary pairing and binding energies 

similar to those of miR-122 target AldoA (Fig. 2.4.B). Furthermore, the 5’ miRNA seed 

region, critical for target recognition, may disproportionally contribute to the 

thermodynamics of target binding by serving to nucleate the miRNA:mRNA interaction. 

In line with a seed-nucleation binding model, structural probing of guide-strand loaded 

RISC suggests that the 5’ segment is preorganized by protein-RNA interactions in a 

conformation favorable for Watson-Crick base pairing, while the 3’ end remains 

unconstrained, free to adopt a more flexible, less-primed conformation42. Recent data 

from Bartel and colleagues emphasized the relationship between seed base composition 

and repression by demonstrating that the low repression proficiencies of the C. elegans 

miRNA lsy-6 and the human miRNA miR-23 were due, in part, to weak seed pairing; the 

other decisive factor was concluded to be high target abundance, which can dilute the 

effects a miRNA exerts on any given specific mRNA191. The influence of these factors 

was weighted in a modified version of the TargetScan context prediction scores, termed 

Context+. Interestingly, miR-21 and miR-23 seeds are similarly A/U-rich (2/8 bases are 

G/C); however, miR-21 is not believed to have high target abundance by our calculation 

(Fig. 2.3.C) or the Bartel group’s (39th percentile compared to the 90th percentile for miR-

23). As a result, Context+ consistently ranked miR-21 targets higher than those of miR-
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23, but often lower than those of miR-122 or let-7 (Fig. 2.3.D). In relation to our 

comparison between array profiling results and target predictions, the mean scores for the 

top 30 Context+ predictions were not significantly different for miR-21 and miR-122 

targets (Fig. 2.3.E), yet predictions for miR-122 were far more accurate (Fig. 2.3.A). 

Therefore, we conclude that miR-21, like miR-23 and lsy-6, binds targets with unusually 

low thermodynamic stability, possibly explaining its substandard repression proficiency. 

Still, the exhibited activity of miR-21 is not entirely explained by the most recent 

predictive models nor is it completely analogous to miR-23 or lsy-6 as it has comparably 

few target sites.  

 We also compared our experimental results with known targets of each miRNA, 

supported by experimental evidence in mice or human samples and curated in the 

miRecords database of validated miRNA:target associations193. We found only 12.5% of 

all validated miR-21 targets to be significantly upregulated upon anti-miR treatment, with 

the prominent miR-21 targets Pdcd4, Pten, and Reck among the majority of targets that 

were not up-regulated (Fig. 2.3.F). In comparison, miR-122 and let-7 inhibition 

derepressed 90% and 15.8% of all previously reported targets, respectively. The 

discrepancy between miR-122 and let-7 was unexpected considering the overall strong 

repression signatures and agreement with prediction algorithms found for these two 

miRNAs. We note, however, that many of the curated targets for miR-122 are derived 

from a single study that used anti-miRs to inhibit liver miR-122108, similar to our own, 

which explains the consistency. By contrast, the curated targets for let-7 are individually 

referenced from a number of different studies from a wide range of biological samples. 

These observations emphasize the importance of biological context when assessing 

specific miRNA-target pairings. 
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Figure 2.3 miR-21 inhibition does not derepress expected targets. (A) Comparison 
between bioinformatic target predictions and observed mRNA changes. Top, mean log2 
fold-change of the top 30 ranked targets from each computational prediction algorithm 
shown for the corresponding miRNA of each treatment. Grey bars show the mean fold-
change of the observed top 30 most up-regulated seed-matched mRNAs, and thus 
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represent the highest fold-change possible for any of the predictions. Dashed red lines 
show the mean fold-change for all seed-matched mRNAs for each miRNA. Bottom, the 
number of the top 30 predicted targets from each algorithm that were significantly 
upregulated (≥10% increase in mRNA with p ≤ 0.05, student t-test). (B) Box-and-whisker 
plots of calculated free energies of target binding for each miR-122 (blue), let-7 (green) 
and miR-21 (red). Each bar represents five values: the median (center line), 25th 
percentile (bottom of box), 75th percentile (top of box), maximum free energy (bottom 
line), and minimum free energy (top line). (***) = p < 0.001, determined by Kruskal-
Wallis test with Dunns post-test. (C) Predicted number of 3’UTR target sites for each 
miRNA binned by seed match type. (D) Cumulative distribution frequencies for 
TargetScan Context+ scores for the indicated miR-122 (blue), let-7 (green), miR-21 (red), 
and miR-23a (yellow). Negative scores are ranked higher. (E) Scatter plots of TargetScan 
Context+ scores for the top 30 predicted targets of the each miRNA. Each center line 
represents the median, whereas top and bottom lines denote the interquartile range. ns = 
not significant, (***) = p < 0.001, determined by Kruskal-Wallis test with Dunns post-
test. (F) Heat map of observed changes in mRNA levels for previously validated targets 
of miR-122, miR-21, or let-7 curated in miRecords database. Expression changes for 
each gene are shown for all three anti-miR treatments, with the white-dashed line 
highlighting the treatment that corresponds to the miRNA of the pre-validated target. A 
star marks each gene that was significantly upregulated upon inhibition of the expected 
targeting miRNA. 
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Figure 2.4 Derepression of seed-matched targets with anti-miR-21 treatment does 
not correlate with predicted thermodynamics of miR-21 binding. (A) Linear 
regression analysis of thermodynamic data from the PITA database85 with measured 
expression changes for miR-21 seed-matched mRNAs. Two thermodynamic values are 
plotted on the y-axis for each seed-matched gene: free energy of duplex binding (∆Gduplex, 
red) and free energy of duplex binding minus the cost of target unwinding (∆∆Gduplex-open, 
blue). Linear regression fits, correlation coefficients, and p values are shown for each.  
(B) miR-21 is expected to bind Pdcd4 mRNA, a previously validated target of miR-21, 
with particularly high stability.  Top, predicted base pairing between miR-21 and Pdcd4 
mRNA. The seed region, often the only region of the miRNA with perfect base pairing, is 
shown in green to illustrate the extended interaction. Bottom, extended base pairing with 
Pdcd4 is predicted to compensate for a high A/U rich seed region, increasing the stability 
of the interaction to levels comparable with those predicted for miR-122 and let-7.  
Shown are the RNAhybrid179 calculated free energies for binding of miR-21 with Pdcd4 
(black bar), of miR-122 with AldoA (grey bar), and of let-7d with Col3a1 (white bar).  
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Stress response genes are exceptionally sensitive to miR-21 inhibition 

Since the limited transcriptome response to miR-21 inhibition corresponded well with 

neither miRNA target predictions nor previously reported targets, we next turned to gene 

ontology classifications to identify whether a biological relationship existed among the 

up-regulated genes. Closer inspection showed that the most up-regulated genes induced 

by anti-miR-21 treatment belonged to the DnaJ family of co-chaperones, with Dnaja1 as 

the single most up-regulated 8m-seed-matched target, and heat shock proteins, including 

several Hsp90 variants and Hsph1, as the most up-regulated genes in the entire profiling 

dataset (Fig. 2.5.A). Interestingly, stress response genes were significantly enriched (p < 

0.05, binomial test176,177 only in both the anti-miR-21 up-regulated seed-matched (p = 

0.028) and non-matched (p = 0.018) datasets. The large majority of these genes were not 

significantly upregulated by the other anti-miRs, disfavoring the notion that the stress 

response pathway may have been triggered by a non-specific effect of the anti-miR 

treatment (Fig. 2.5.A). Many of the activated stress response genes do not contain a miR-

21 seed-match, perhaps indicating that they are upregulated due to derepression of a 

transcription factor (Fig. 2.5.A, non-seed containing genes are marked in black). Notably, 

stress response proteins are coordinately transcribed by heat shock factors (HSFs), which 

trimerize in response to stress and activate transcription by releasing RNA polymerase II 

(pol II) from a TATA binding protein (TBP)-dependent TFIID transcription initiation 

complex, stalled at the promoter regions of DNA loci encoding chaperones and co-

chaperones194,195. Although we did not find an upregulation of HSFs (Fig. 2.5.B), we did 

discover that several TBP-associated factors (TAFs) were strongly upregulated, 

particularly Taf7, which contains a miR-21 8m seed in its 3’UTR (Fig. 2.5.B). 

Recombinant Taf7 was previously found to associate with the HSF1 oligomerization 

domain in vitro and some models suggest an active role for TAF proteins in HSF 

transcriptional activation195. Thus, it emerges that miR-21 may regulate heat stress 

response cascades, possibly by directly repressing Taf7, although we cannot rule out 

alternative mechanisms. 
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Figure 2.5 miR-21 inhibition induces expression of stress response genes. (A) mRNA 
changes for significantly up-regulated stress-response genes following anti-miR-21 
treatment. Fold change levels are plotted relative to those observed for the other anti-miR 
treatments [fold-changeanti-21 - mean fold-change(anti-122, anti-let-7)] to demonstrate the anti-
miR-sequence-dependence of induction. Red bars indicate the gene transcript contains a 
seed match for miR-21. (B) mRNA changes for stress response activators (HSFs) or 
related transcriptional genes (TAFs and TBP). Fold change levels represent those 
observed for anti-miR-21 treatment alone. A star marks each gene that was significantly 
upregulated upon miR-21 inhibition. Red bars indicate that the gene contains a seed 
match for miR-21. 
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miR-21 is sparsely associated with translating polysomes 

We next sought to investigate the functional basis for miR-21’s diminished silencing 

activity. We hypothesized that miR-21 may be less associated with mRNA due to either 

weak target-binding or assembly of miR-21 into alternative RNA-protein complexes that 

prevent it from engaging target transcripts. To assess this possibility, we performed 

polysome analysis on linear sucrose gradients and compared the distribution of mature 

miR-21 to those of mature miR-122 and let-7. Such analyses have shown that miRNAs 

typically fractionate predominantly with translating ribosomes, likely by base pairing 

with target mRNAs77-79,171. Cytoplasmic lysates prepared from perfused liver tissue in a 

manner that preserves the majority of all tested miRNAs (Fig. 2.6) were fractionated by 

centrifugation on 20%-60% sucrose gradients. Analysis of the ribosomal RNA (rRNA) 

content of each fraction based on absorbance at λ = 260 nm (A260) and electrophoresis of 

total RNA on denaturing agarose gels revealed that polysomes, representing mRNAs 

associated with multiple ribosomes, sedimented into the densest half of the gradient 

(fractions 11-20, Fig. 2.8.A), as expected. We note that cycloheximide, as an inhibitor of 

translation, was not necessary to prevent runoff under our conditions and its inclusion did 

not have an effect (Fig. 2.7); we therefore did not typically include it in our assays. 

western blots showed that the essential RISC proteins Argonaute 2 (Ago2) and TAR-

RNA binding protein (Trbp)  (MacRae et al., 2008) were present throughout the gradient, 

with the most significant proportion found in fractions 1-4 at the top of the gradient (Fig. 

2.8.A). Using real-time quantitative PCR (RT-qPCR) we analyzed the abundance of 

miRNAs in each fraction and found that miR-21 displays a significantly different 

distribution compared to miR-122 and let-7d, a representative isoform of the let-7 family 

(Fig. 2.8.B). While ~50% of both miR-122 and let-7d were detected in the polysome-

containing fractions, miR-21 was ~2.5-fold depleted in these fractions (Fig. 2.8.C), but 

enriched by a similar margin in the top fractions of the gradient (fractions 2-3) where it is 

likely assembled in a non-target bound RISC-like complex since these fractions are 

where RISC proteins are most abundant and the sedimentation velocity appears to be 

greater than expected for free miRNA alone (fraction 1-2). These results appear to be 

independent of overall miRNA abundance since the relative levels of miR-122 and let-7d 

are greater and less than that of miR-21, respectively (Fig. 2.8.D).  
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 The association of miRNAs with polysomes was previously reported for cultured 

HeLa cells78,79. To confirm that these results are consistent in vivo, and that co-

sedimentation was not coincidental, we tested whether the distribution of miRNAs in 

polysome-containing fractions could be disrupted with puromycin, a tRNA-mimic that 

blocks elongation of actively translating complexes. As expected, treatment of lysates 

with puromycin prior to loading on sucrose gradients caused a loss in polysomes and a 

resulting increase in 80S ribosomes (Fig. 2.8.E). miRNAs showed a similar shift away 

from the densest fractions towards the top of the gradient (Fig. 2.8.F). In addition, we 

tested the effect of EDTA, which causes dissociation of polysomes and monosomes into 

40S and 60S ribosomal subunits (Fig. 2.9). Again, polysome dissociation was matched by 

the loss of miRNA sedimentation into the densest fractions (Fig. 2.9, quantified in Fig. 

2.8.F, inset). Interestingly, miR-122 under these conditions still sedimented with the 80S 

ribosome fractions, perhaps due to the presence of a RISC-loading complex of similar 

sedimentation properties196.  

Taken together, these results suggest that, in healthy mouse liver, miR-21 is 

associated with actively translating complexes to a significantly lesser extent than other 

miRNAs. 
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Figure 2.6 Percent recovery of miRNA in lysates used for sucrose gradient analyses. 
Homogenized liver tissue was pelleted briefly at 500 × g for 1 min at 4 °C to remove any 
remaining intact cells. The resulting S0.5 supernatant was then centrifuged at 16,000 × g 
for 20 min to yield S16 supernatant and P16 pellet. Total RNA was purified from S16 
and P16 and equal volumes of each sample were assayed for each miRNA as described in 
the Materials and Methods section. Percent recovery was calculated as NS16/(NS16+NP16), 
where N is the copy number detected. Error bars represent standard error of the mean 
(SEM). 
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Figure 2.7 Comparison of lysates prepared in the presence or absence of 
cycloheximide. Liver sections of equal mass from the same animal were prepared as 
described in the Materials and Methods section. For sample prepared in the presence of 
cycloheximide, a final concentration of 1 mM cycloheximide was spiked into the sample 
during homogenization. (A) Relative A260 of purified RNA from each fraction. Arrow 
indicates the 80S fraction and the grey box indicates the fractions containing polysomes 
(PS). (B) Percentage of miR-21 and let-7d on polysomes from each preparation. 
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Figure 2.8 miR-21 is disproportionally lacking in polysomal complexes. (A) Top, 
A260 profile and denaturing agarose analysis of sucrose gradient fractions. Arrow 
indicates the 80S fraction and the grey box indicates the fractions containing polysomes 
(PS). Bottom, western blots of pooled adjacent fractions confirming the presence of RISC 
proteins throughout the gradient. Inputs for lanes 3-10 were concentrated 10-fold by 
precipitation prior to loading, while lanes 1-2 were not further concentrated. (B) Equal 
volumes of purified total RNA from each fraction were analyzed with RT-qPCR for the 
presence of miR-21 (white square), miR-122 (grey triangle), and let-7d (black circle). 
The fraction copy number for each miRNA is plotted as the percent total copy number 
detected from all fractions. Each data point shown is the mean from a total N = 7 from 
three independent experiments.  (C) The mean summed percent total from B in fractions 
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11-20 (highlighted with grey box) for miR-21 (white bar), miR-122 (grey bar) and let-7d 
(black bar). (***) = p < 0.001, calculated by one-way analysis of variance (ANOVA) 
with Bonferroni post-test. Error bars represent standard error of the mean (SEM). (D) 
Relative miRNA levels before (unfractionated; white bar) or summed after (fractionated; 
black bar) sucrose gradient fractionation. Error bars represent standard error of the mean 
(SEM). (E) miRNA sedimentation is sensitive to translational drop-off. Lysates were 
treated with puromycin or EDTA to disrupt translation. A260 profiles for puromycin 
treated (dashed line) and untreated (solid line) samples. (F) miRNA distributions 
resulting from puromycin treatment. Inset, comparison of miR-21 (white bars) and miR-
122 (black bars) summed percent totals in the densest fractions (normally taken to be 
polysome-containing fractions) for untreated, puromycin, and EDTA treated samples.  
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Figure 2.9 Comparison of lysates prepared in the presence or absence of EDTA. (A) 
A260 profiles for EDTA treated (dashed line) and untreated (solid line) samples. (B) 
Resulting miR-21 (white squares) and miR-122 (black circles) distributions for EDTA 
treatment. Arrows mark the 80S fraction. Grey box indicates the fractions containing 
polysomes in the untreated sample 
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miR-21 is able to bind complementary RNA and remains unassociated with 

polysomes upon administration of its anti-miR 

To further probe for a correlation between miR-21’s altered sub-cellular distribution and 

its mRNA silencing activity, we analyzed miRNA gradient distributions following anti-

miR treatment. Mice were treated with a single dose of anti-miR 24 h prior to gradient 

analysis. This quick treatment, sufficient to elicit a measurable response using Sylamer 

analysis for anti-miR-122, manifested in the gradients as a nearly complete shift of miR-

122 away from all but the lowest-density fractions (Fig. 2.10.A). In polysome-containing 

fractions, miR-122 enrichment was reduced ~20-fold with anti-miR-122 compared to 

saline and anti-miR-21 treated animals (Fig. 2.10.A, inset). This shift was sequence 

selective, thus is very likely due to complementary base pairing between anti-miR and 

miRNA. This observation suggests that miRNAs sediment with polysomes because they 

are directly bound to mRNAs rather than associated with ribosomes through interactions 

bridged by RISC components.  

 While miR-21 showed a similar shift to low-density fractions upon treatment with 

anti-miR-21, the effect was significantly minimized due to the fact that miR-21 was 

already preferentially distributed in the low-density fractions even in the absence of anti-

miR (Fig. 2.10.B). As a result, anti-miR-21 induced only a ~4-fold change of miR-21 in 

the polysomal fraction, about five-fold less of an effect than that seen with miR-122 and 

anti-miR-122 (Fig. 2.10.B, inset).  

 Despite reports to the contrary, anti-miRs do not cause degradation of cognate 

miRNAs; they can, however, interfere with miRNA detection, making it appear as if the 

miRNA has been degraded96. To ensure that the observed anti-miR-induced shifts were 

genuine and not a detection artifact, the relative levels of miRNAs in treated and 

untreated lysates were compared prior to loading on gradients. Levels of miR-122 and 

miR-21 were not reduced following anti-miR treatment (Fig. 2.10.C), indicating that 

under our experimental conditions, anti-miR did not interfere with RT-qPCR 

measurements. Surprisingly, miR-21 instead showed about a two-fold increase in 

expression with anti-miR-21 treatment (Fig. 2.10.C). This observation may be attributed 

to either release of otherwise immeasurable miR-21 from sequestered populations or de 
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novo miR-21 expression triggered by a feedback loop in response to anti-miR mediated 

inhibition, perhaps suggesting that minimal silencing activity of miR-21 is still relevant 

to signaling pathways (see Discussion). Still, even with such increased levels, we infer 

that miR-21 is fully inhibited by anti-miR based on the extent of depletion from dense 

fractions of the sucrose gradient (Fig. 2.10.B).  

 Since the anti-miR inhibited miR-21 resembles the uninhibited miRNA on the 

sucrose gradient, we investigated whether miR-21 could at all bind complementary RNA. 

Liver lysates were prepared as usual and incubated with increasing concentrations of 5’-

biotin-end-labeled 2’-O-methyl oligonucleotides fully complementary to either miR-122 

or miR-21. After pull-down with streptavidin coated-beads, the depletion of each miRNA 

was quantified using northern blot. The entirety of measurable miR-21 was depleted with 

a half-titration point of K1/2 = 0.82 ± 0.09 nM, while miR-122 was depleted with a K1/2 = 

1.4 ± 0.1 nM (Fig. 2.10.D). Considering that miR-122 levels in our lysates are ~2.5-fold 

those of miR-21 (Fig. 2.8.D), the binding results indicate that miR-21 is in principle 

capable of binding a complementary RNA, just as efficiently as miR-122.  

 The findings that systemically delivered anti-miRs cause an upregulation of 

corresponding mRNA targets and block the binding of their respective miRNAs to 

polysome-bound mRNAs indicates that the miRNA-polysome interaction is critical for 

miRNA-mediated silencing. Consequently, the severely reduced binding of miR-21 to 

polysomes is consistent with its decreased mRNA silencing activity and the reduced 

response of its mRNA targets to the administration of anti-miR-21. 
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Figure 2.10 The sub-cellular distribution of miR-21 resembles that of inhibited 
miRNA. (A) Percent distribution profile of miR-122 in sucrose gradients following a 
single dose of saline (black circle or bar), anti-122 (white square or bar), or anti-21 (grey 
triangle or bar) 24 h prior to harvest. Arrow indicates the 80S fraction and the grey box 
indicates the fractions containing polysomes (PS). Inset, the corresponding mean summed 
percent total in polysomal fractions for each treatment. (B) As in A for miR-21. (C) 
Comparison of miRNA levels in anti-miR treated lysates prior to gradient fractionation. 
The relative miR-122 (black bars) and miR-21 (white bars) levels were calculated with 
the 2-ΔΔCt method197 using miR-22 as a reference. The normalized fold-change levels of 
miRNA were further set to 1.0 in saline treated animals. (D) miRNA binding assay with 
2’O-methyl complementary capture RNA. Biotinylated 2’O-methyl oligos 
complementary to either miR-21 (black circle and dashed line) or miR-122 (grey square 
and solid line) were titrated into S16 liver extracts. Bound miRNA was depleted from the 
extract by precipitation of the capture RNA using streptavidin-coated beads, while 
unbound miRNA was detected by northern blot (shown here from a representative 
experiment). Data were fit with a sigmoidal dose-response curve with variable slope (for 
miR-21: K1/2 = 0.817 +/- 0.092 nM, hill-slope = 1.080 +/- 0.2194, R2 = 0.962; for miR-
122: K1/2 = 1.389 +/- 0.104 nM, hill-slope = 1.130 +/- 0.312, R2 = 0.967). Data points 
were averaged from duplicate experiments and error bars represent SEM. 
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A known target mRNA is largely inaccessible to miR-21 

Our interpretation that intracellular access and binding of miRNA to polysomes is 

important to miRNA-mediated silencing assumes that repressed transcripts are indeed 

associated with polysomes. While mRNA is necessary for polysome formation, previous 

cell culture studies have shown that some mRNA targets are not associated with 

polysomes during repression by miRNA68,69. Instead, these repressed mRNAs are 

translationally incompetent and sediment in low-density fractions of sucrose gradients.  

To determine the location of repressed and non-repressed mRNAs under our 

experimental conditions, we measured the distribution of AldoA and Pdcd4 mRNA in the 

presence and absence of anti-miR. These mRNAs are previously validated targets of 

miR-122 and miR-21, respectively. Consistent with our profiling data, RT-qPCR showed 

a four-fold derepression (increase) of AldoA mRNA levels upon anti-miR-122 

administration, confirming it as a miR-122 target. In contrast, we found no changes in 

Pdcd4 levels upon treatment with anti-miR-21, indicating the absence of a regulatory 

interaction with miR-21 (Fig. 2.11.A). Unlike the observations of earlier cell culture 

studies68,69, the largest fraction of both mRNAs (~80%) was found in polysomes under 

saline treated conditions, demonstrating that repression by endogenous liver miRNAs 

does not prevent (at least partial) translation of target mRNAs (Fig. 2.11.B-C). In the 

presence of the corresponding anti-miR, both AldoA and Pdcd4 mRNAs shift slightly 

from fractions 16-20 to fractions 10-14; however, this shift does not significantly reduce 

the total percentage of mRNA contained in polysomal fractions (Fig. 2.11.D). This 

finding indicates that anti-miRs can cause slight changes to translation in a sequence-

independent manner reminiscent of a mild interferon-like response198,199, rather than the 

miRNA-mediated effect observed with miR-122 in Huh-7 cells69 and with let-7 in HeLa 

cells68.  

Three Pdcd4 transcript variants are recorded in the NCBI Reference Sequence 

(RefSeq) database. All three are transcribed from the same locus and code for the same 

protein; however, the mRNAs differ in 5’- and 3’UTR length (Fig. 2.11.E, left). While 

variant 1 (NM_011050.4) and variant 2 (NM_001168491.1) have identical 3’UTRs and 

both contain a single miR-21 8m seed-match, variant 3 (NM_001168492.1) does not 
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contain a seed match due to the absence of an ~500 nt segment flanking the miR-21 site. 

Intriguingly, the remainder of the 3’UTR, both upstream and downstream of the miR-21 

site, is identical to that of the other variants, suggesting that variant 3 may have evolved 

to avoid miR-21 regulation. If variant 3 were the predominant transcript in mouse liver, 

this would explain why we did not observe derepression of this highly referenced target. 

To test the relative abundance of the variants, 3’ rapid amplification of cDNA ends 

(3’RACE) was employed to amplify the 3’UTRs of transcripts containing the Pdcd4 open 

reading frame from total RNA. Agarose gel electrophoresis of the amplified product 

displayed two bands with lengths of ~750 bp and ~250 bp, which matched the expected 

lengths of variants 1/2 and variant 3, respectively (Fig. 2.11.E, right). Densitometric 

analysis of the relative band intensities showed ≥ 90% of the Pdcd4 transcript population 

to be of the longer variety, indicating that the majority of Pdcd4 expressed in mouse liver 

contains a miR-21 binding site.  

We conclude that mRNA targets of miRNAs retain translational capacity and 

reside in polysomes, regardless of the extent of their regulation. Taken together with 

miR-21’s observed sub-cellular distribution in healthy liver, a known target mRNA such 

as Pdcd4 appears predominantly inaccessible to the abundant intracellular miR-21. 
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Figure 2.11 Predicted mRNA targets remain associated with polysomes in the 
presence and absence of miRNA-mediated repression. (A) Relative levels of AldoA 
(white bar) and Pdcd4 (black bar), following treatment with anti-miR. mRNA levels were 
calculated with the 2-ΔΔCt method using GAPDH as a reference. (B) Percent distribution 
profile for AldoA mRNA, a predicted target for miR-122, in sucrose gradients following 
a single dose of saline (black circle), anti-122 (white square), or anti-21 (grey triangle) 24 
h prior to harvest. Arrow indicates the 80S fraction and the grey box indicates the 
fractions containing polysomes (PS). (C) As in B for Pdcd4. (D) The corresponding mean 
summed percent totals of AldoA (white bars) and Pdcd4 (black bars) mRNA in 
polysomal fractions for each treatment. Data points were averaged from duplicate 
experiments and error bars represent SEM. (E) Three variants of the Pdcd4 transcript are 
encoded in the same locus in the mouse genome. Left, schematic of variant sequence 
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alignment. The transcripts, which code for the same protein, have variable 5’UTRs and 
identical open reading frames (grey box) and 3’UTRs, except for variant 3, where the 
miR-21 binding site is absent, but the upstream and downstream portions of the 3’UTR 
are retained. Arrows mark the sites for forward (F) and reverse (R) primers for sequence 
length determination using 3’ rapid amplification of cDNA ends (RACE). Right, agarose 
gel of PCR products from 3’RACE. The expected lengths for the variants are marked by 
arrowheads. Based on intensity comparison between the slower migrating and faster 
migrating bands, the larger variants containing miR-21 seed matches make up ≥ 90% of 
the Pdcd4 transcript population. Reactions containing no reverse transcriptase (no RT) or 
primers for the actin 3’UTR served as negative and positive controls, respectively.  
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In cancer cells, miR-21 is highly associated with polysomes and has a strong 

repression signature 

In notable contrast to our findings in liver, Nilsen and colleagues have previously 

reported miR-21 as highly associated with polysomes in cervical adenocarcinoma HeLa 

cells78, where measurable miR-21 target repression is observed127. To verify these results, 

HeLa cell extracts were prepared as described by these authors, analyzed on sucrose 

gradients, and miR-21 was quantified by RT-qPCR. Consistent with the previous report, 

~60% of miR-21 was distributed in polysome-containing fractions in similar abundance 

as that observed for liver let-7 and miR-122 (Fig. 2.12.A). Additionally, let-7a was also 

found to have enhanced polysome association in HeLa cells as compared to liver, with 

nearly all let-7a detected in polysomal fractions (Fig. 2.12.A). This observation suggests 

that miRNA target engagement may be globally enhanced in HeLa cells. As a control, 

only ~12% of liver miR-21 from gradients prepared using identical conditions were 

found in polysome fractions, even less than using our original preparation conditions 

(compare Fig. 2.12.A with Fig. 2.8.B-C).  

 Elevated levels of miR-21 are detected in both liver and cervical cancer cell lines 

relative to their corresponding healthy source tissues200,201. To determine whether a 

higher abundance of miRNA was responsible for the observed increase in polysome 

binding, we measured miR-21 copy numbers per amount of total input RNA isolated 

from liver or HeLa cells. Coincidentally, both samples contained comparable levels of 

miR-21 at 4,000-5,000 copies per 10 pg input RNA (Fig. 2.12.B). We conclude that miR-

21’s distinct polysome binding profile in liver and HeLa cells is not due to differences in 

expression levels.  

Next, we investigated whether this increased association with polysome-bound 

mRNA translated to a stronger repression profile. HeLa cells transfected with either anti-

miR-21 or saline were array profiled and analyzed with the Sylamer algorithm (Fig. 

2.12.C). Contrasting with our findings for liver miR-21, inhibition of HeLa miR-21 

resulted in a measurable derepression of mRNAs enriched with 7- or 8-nt seed matches. 

In addition, many of the previously validated targets such as Pdcd4 were strongly 

derepressed in HeLa (Fig. 2.12.D), in sharp contrast to our results in liver. Interestingly, 
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few targets were mutually derepressed in both contexts (Fig. 2.13), suggesting there may 

be different determinants for miR-21 target selection between HeLa and mouse liver.  

These findings support the conclusion that polysome complexes are important for 

miRNA-mediated repression in cancer cells, as increased repression by miR-21 is 

associated with increased binding to polysome-bound mRNA. Our HeLa cell results are 

thus consistent with previous observations77-79,171, and further underscore the unusually 

limited RNA silencing activity of the abundant miR-21 in healthy liver. 
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Figure 2.12 miR-21 is highly associated with polysomes and strongly represses a 
broad range of targets in HeLa cells. (A) Left, percent distribution profile of HeLa 
miR-21 (dark red circles), HeLa let-7a (dark green triangles), and liver miR-21 (grey 
open squares) in sucrose gradients loaded with mouse liver or HeLa extracts prepared 
under the same conditions. The grey box indicates the fractions containing polysomes 
(PS). Right, the mean summed percent total in polysome fractions 7-13 (highlighted with 
grey box) for each miRNA (colors are the same as in the left panel). Error bars represent 
SEM from triplicate experiments. (B) Absolute quantification of miR-21 copy numbers in 
liver and HeLa lysates normalized to total input RNA. Error bars represent SEM from N 
= 4 (HeLa) and N = 3 (liver) biological replicates assayed in two independent 
experiments. (C) Heptanucleotide Sylamer analysis of array profiling of HeLa cells 
transfected with anti-miR-21 (compared to saline mock transfection). The seed matches 
for each miRNA are highlighted. All other possible 7-nt sequences not related to the seed 
match are shown as grey lines and thus represent statistical background noise. The 8m 
seed match from the octanucleotide analysis is shown super-imposed. Heptanucleotide 
and octanucleotide analyses had similar backgrounds. The peaking of enrichment for 
miR-21 seed-matched sequences on the left hand side of the plot indicates that the genes 
most upregulated upon miRNA inhibition are enriched for the corresponding seed-
matched sequence (compare with mmu liver in Fig. 1D, bottom left). (D) Heat map 
comparison of responses in mRNA levels for known targets from inhibition of miR-21 in 
mouse liver or HeLa.  
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Figure 2.13 miR-21 represses different targets under different biological contexts. 
(A) Scatter plot of measured expression changes in miR-21 seed-matched transcripts 
following inhibition of miR-21 in HeLa (y-axis) versus mouse liver (x-axis). Transcripts 
with > 0.175 log2 fold-change expression (>10% increase on a linear scale) in inhibited 
versus saline treated samples were considered to be upregulated targets (i.e. derepressed 
due to miR-21 inhibition). The orange dotted lines represent these thresholds set for each 
dataset and they divide the plot into four quadrants: transcripts upregulated in HeLa only 
(top left, colored blue), transcripts mutually upregulated in both HeLa and mouse liver 
(top right, green), transcripts upregulated in liver only (bottom right, yellow), and 
transcripts not upregulated in either context (bottom left, grey). The number of transcripts 
in each quadrant is shown.  
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2.4 Discussion 

In contrast to its oncogenic prowess in cancer cells, miR-21 is a surprisingly weak 

RNA silencer in healthy liver tissue 

In the current study, we have examined the in vivo activity of miRNAs in healthy mouse 

liver tissue using array profiling and polysome analysis. Although testing of additional 

tissues and cell lines is desirable, our results strongly suggest that miR-21, relative to 

other miRNAs, is functionally limited under normal physiological conditions, yet not in 

cultured cancer cells. Evidence for this conclusion is provided by the following 

observations: (a) Pharmacological inhibition or knockout of miR-21 does not result in an 

upregulation of mRNA targets significantly enriched for seed sequence matches; (b) 

miR-21 exhibits reduced binding to translating target mRNAs, which represents the 

largest population of an mRNA in the cell; (c) the sucrose gradient distribution of miR-21 

alone resembles that of the anti-miR inhibited miRNA, suggesting that miR-21 is 

impeded from interacting with polysome-bound mRNA equally in the absence as in the 

presence of its anti-miR. In contrast, by analyzing the global upregulation of mRNAs 

following miRNA inhibition we were able to observe trends for miR-122 and let-7 

consistent with canonical miRNA-target prediction rules82. That miR-21 displays these 

trends so minimally in liver challenges the current assumption that the rules of 

engagement of highly expressed miRNAs are the same across different tissues and cell 

types. These results may extend to other healthy tissues as well, since previous studies 

have hinted that miR-21 is also surprisingly underactive in lung and heart in the absence 

of applied stress112,138. 

May idiosyncrasies in miR-21’s mechanism of silencing explain our results? That 

miR-21 represses gene output by inhibiting translation directly without causing changes 

to mRNA levels cannot be unequivocally dismissed; however, we found little evidence to 

suggest an upregulation of translational capacity in the absence of miRNA-mediated 

repression. Moreover, a translation-based mechanism compared to a degradation-based 

mechanism arguably would necessitate an even more pronounced interaction of miRNA 

with translating complexes, which we found to be lacking. 
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 miR-21’s meager repression signature in healthy cells is surprising considering its 

reported oncogenic prowess, capable of inducing the formation of tumors that are 

dependent solely on its silencing activities144. Considering these apparently contradictory 

activities, our results suggest that miR-21 becomes “activated” during disease or other 

aberrant states, broadening both its repression footprint and its impact on the cellular 

state. In line with this conclusion, we found a large number of seed-matched targets to be 

derepressed upon inhibition of miR-21 in adenocarcinoma HeLa cells. Many of these 

affected transcripts have been found to be the downstream targets, underpinning miR-

21’s pathological contribution in tumor modulation136, and similar derepression of targets 

has been reported upon inhibition of miR-21 in MCF-7 breast cancer cells103. 

Correspondingly, we observed starkly different sub-cellular locations of miR-21 under 

the two biological contexts: miR-21 in mouse liver predominantly sediments in light 

fractions apart from mRNAs, while in HeLa lysates miR-21 predominantly sediments in 

polysomal fractions with mRNA. Co-sedimentation of miRNA/mRNA was not 

coincidental, as it was dependent on miRNA base pairing and was sensitive to small-

molecule translational inhibitors. Therefore, we posit that miR-21’s increased repression 

proficiency in HeLa is at least partly due to enhanced binding to its targets. However, the 

mechanism(s) underlying this enhancement in HeLa cells — or alternatively, the 

diminished activity in liver tissue — are still unclear. Considering that let-7a also shows 

additional polysomal binding in HeLa cells suggests that this enhanced target loading 

capacity may be due to an increased abundance of a common protein factor like the 

receptor for activated C-kinase (Rack1), a 40S ribosomal protein and essential component 

for miRNA-mediated repression involved in loading miRISC onto translating mRNAs49. 

Proteomics analysis of miRNA-containing complexes first separated by sucrose gradient 

fractionation as done here could lend further insight into which protein complexes are 

less capable of assembling with miR-21.  

What may cause miR-21’s limited RNA silencing activity in healthy liver? 

It is conceivable that miR-21’s reduced binding and repression in liver tissue are 

attributable to thermodynamics. Indeed, computational analysis predicted miR-21 to bind 

targets less stably than other miRNAs largely due to high A/U richness in the seed region. 
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Binding assays showed that miR-21 binds a complementary 2’O-methylated RNA as 

effectively as does miR-122, however, these assays merely demonstrate miR-21’s 

potential to bind target RNAs. The thermodynamics of miRNA:mRNA binding are not 

reflected due to the unusually high extent of base pairing and the 2’O-methyl 

modifications of the complementary RNA, which both raise the free energy of duplex 

binding202. Interestingly, miR-23 and lsy-6, miRNAs also with A/U rich seeds, have 

similarly been reported to have limited repressive activity191. However, unlike miR-21, 

these miRNAs additionally have high target abundance that further dilutes their effects on 

the transcriptome. Although experimental work demonstrated that these properties — 

weak seed pairing and high target abundance — can independently contribute to 

diminished proficiency, it is uncertain whether weak seed pairing alone could explain our 

observations for liver miR-21. The current “Context+” predictive model, which takes 

these properties into account, suggests not since the top predicted targets of miR-21 were 

scored equally high as those of miR-122, indicating that miR-21 is still predicted to 

repress targets similarly to miR-122, despite its weaker seed pairing. It should be noted, 

however, that the Context+ algorithm and its “Context only” predecessor were both 

trained with array profiling experiments from HeLa cell culture. Accordingly, and 

consistent with our own HeLa cell data, these algorithms score miR-21 targets highly. 

These considerations lead us to propose a model wherein miR-21 in liver tissue, despite 

its abundance, is expressed at a level below the threshold required to bind and repress a 

wide range of targets in this cellular environment. Interestingly, the same expression level 

is sufficient to elicit target repression in HeLa, which indicates that these cells are 

generally more conducive to miR-21 activity and perhaps that of other miRNAs as well. 

This favorable environment for miRNA-mediated repression may be due to increased 

availability of pathway components, alterations in the transcriptome landscape, or 

changes in the activity of other regulatory proteins (e.g., A/U-rich element RNA-binding 

proteins) that may compete with miRNAs for target binding.  However, further 

investigation will be required to determine whether an increased abundance of miR-21, 

which frequently occurs under pathological conditions like liver and cervical 

cancer201,203, is alone sufficient to activate target repression.  This can be tested in the 
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future by experiments similar to those shown here, but using transgenic mice 

overexpressing liver miR-21.  

 Additionally or alternatively, miR-21’s target abundance may be underestimated. 

Although the number of different transcripts containing miR-21 target sites is less than 

those for miR-122 or let-7, the abundances of these transcripts were not factored into our 

calculation. It is possible that miR-21 targets are expressed to higher levels, causing miR-

21’s effect on any one gene to be weakened. Yet, such a notion is inconsistent with the 

observed dominant localization of miR-21 in non-polysomal fractions, as increased target 

abundance would be expected to lead to greater relative miR-21 fractionation into 

polysomes due to increased mRNA binding.  

Another possibility is that only specific abundant, yet translationally inactive 

transcripts play a role in miR-21’s low silencing activity in liver. An increasing amount 

of recent research has concluded that transcripts of pseudogenes, evolutionarily 

miscopied gene duplicates that do not code for functional proteins, can strongly influence 

miRNA-mediated gene regulation by sequestering miRNAs away from real targets204-207. 

For example, the pseudogene PTENP1 can indirectly control expression of its ancestral 

gene PTEN by “sponging up” miRNAs that bind both transcripts; in this way, increases 

in the pseudogene’s non-coding RNA levels cause increases in the ancestral gene’s 

mRNA levels and vice versa. Since pseudogenes often contain non-sense mutations near 

the start of the open reading frame, these transcripts would be expected to largely reside 

in non-polysomal fractions, possibly explaining miR-21’s localization if it were bound to 

a pseudogene(s)207,208. Intriguingly, miR-21 is presumed to bind PTENP1 in human 

cells208. Although a Ptenp1 mouse homolog has not been discovered to our knowledge, 

there remains the possibility that other yet-to-be identified miR-21 binding 

pseudotranscripts exist. The high sequence similarity between pseudogenes and their 

ancestral genes complicates a characterization of a large fraction of the pseudo-

transcriptome by conventional means (i.e., by RT-qPCR and microarrays)208,209. The 

advent of deep-sequencing technology should rapidly enable the measurement of the 

presence and prevalence of pseudo-transcripts, and contribute to our understanding of 

how this endogenous network of miRNA-sponges affects miRNAs such as miR-21.  
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miR-21 regulation is specifically linked to stress response pathways 

We found a select group of seed-matched targets to be upregulated upon miR-21 

inhibition. An interesting question is why these transcripts respond while most do not. 

Importantly, we found stress response to be a common biological pathway among up-

regulated genes both with and without miR-21 seed matches. Weakly binding miRNAs 

like miR-21 may be particularly suited to regulate response pathways, as they would be 

more sensitive to subtle transcriptomic fluctuations or other changes in their targets, 

allowing for a temporal control of miRNA-mediated repression, which in turn may be 

responsive to extracellular cues. We also found that miR-21 itself is up-regulated 

following anti-miR-21 treatment, suggesting the presence of a feedback loop that may act 

to contain a stress activation event by reestablishing the balance between miR-21 and its 

targets. Such a feedback loop may explain why miR-21 is overexpressed in chronically 

stressed, abnormal cell states such as cancer and cardiac disease136. We hypothesize that 

miR-21 exerts its influence on the activation of heat stress response cascades via Taf7, 

which has been shown to interact with HSF-activation complexes195. Additionally, Taf7 

may act as a node for miR-21's integration into additional stress response pathways, as 

increasing amounts of Taf7 in HEK293 and COS cells correlate with enhanced 

transactivation of c-Jun, an AP-1 transcription factor activated by stress-activated protein 

kinases (SAPKs)210-212. In the future, it will be important to further test for links between 

miR-21 and stress to determine which stresses and stress-related pathways miR-21 may 

respond to in various tissues.  

 Finally, we note that we cannot entirely rule out the possibility that some or all of 

the seed-matched transcripts, despite containing miR-21 binding sites, are up-regulated as 

the result of secondary effects of miR-21 inhibition, not because they were directly 

repressed by miR-21. The current standard for validating miRNA:target interactions are 

reporter gene assays where luciferase constructs are engineered with the 3’UTRs of 

interest and expressed in cell lines co-expressing the targeting miRNA; selectivity of the 

interaction is demonstrated if mutation of the seed sequence results in increased 

luciferase output. However, our findings underscore that assays in cell culture may not be 

appropriate considering the drastically different miR-21 activities observed between liver 
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tissue and cultured HeLa cells. A better solution in general would therefore be to validate 

target specificity in the same biological context used for the original observation. For 

example, reporter gene assays mediated by in vitro translation have been previously used 

to study miRNA activity in Krebs-2 excites extract46 and rabbit reticulocyte lysate71. 

Translation competent liver extracts have been reported213; thus, further validation using 

this type of system may be possible for miR-21 in the future.  

In conclusion, we find unexpectedly narrow target specificity in healthy liver 

compared to cancer cells for one of the most abundant, disease-linked miRNAs, 

demonstrating the importance of biological context in RNA silencing. Future studies will 

need to test additional tissues and cell lines to confirm the generality of our findings as 

well as to address the mechanism(s) behind miR-21’s regulatory activation in cancer cells 

in more depth. Focused approaches to compare miR-21 activity in normal and diseased 

tissue138,144, where miR-21 is co-overexpressed with additional oncogenic or other 

disease promoting factors, may be particularly powerful to define the conditions required 

for miR-21 activation. 
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Chapter 3: Bioinformatic Analysis of the Contextual Features Influencing 

miRNA-21 Target Selection1 

 

3.1 Introduction 

 In addition to protein coding, a messenger RNA encodes ancillary information on 

where it should be translated214, to what levels215, and under what conditions69. This 

information is encoded in recognition elements (REs)— short sequence motifs, often 

found in the 3’ untranslated region (UTR), that are recognized by miRNA or RNA 

binding proteins (RBPs). A major challenge in the RNA field is determining how REs 

impart specificity with only little sequence information. The miRNA-RE — the seed site 

— is just 7 or 8 nucleotides (nts) long; perhaps not coincidentally, other RBP-REs are 

commonly of similar length. Given that the average 3’UTR contains ~700 nts, a single 

miRNA or RBP can theoretically bind and repress one out of approximately every 23 

genes by chance alone. Estimating that ~20,000 protein coding genes are transcribed, 

each factor is then expected to regulate >800 genes. Experimental measurements, 

however, indicate that for miRNA only a minor portion of all possible targets are actually 

regulated. Array profiling of HeLa cells after miRNA transfection showed measurable 

changes in less than 25% and 50% of transcripts containing 7-mer and 8-mer sites, 

respectively82. Proteomic profiling using quantitative mass-spectrometry showed similar 

responses (<40%), indicating a comparable scope of regulation exists at both the protein 

and transcript levels53. From these data, it becomes apparent that there is more to REs 

than the short sequences themselves: additional determinants must make recognition 

elements actually recognizable. 

  Several miRNA target prediction methods are available to help experimental 

scientists narrow down large candidate pools of miRNA targets to sets that are more 

workable. The concept behind these tools is that the probability of a miRNA interaction 
                                                
1 The array profiling data analyzed in this chapter were obtained by Nelson Chau. All analyses were 
designed and performed by John Androsavich. 
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can be calculated based on mRNA features surrounding seed sites that have been 

experimentally determined to generally affect target repression. Contextual features can 

include thermodynamic parameters such as calculated energy of miRNA binding and 

extent of base pairing to the 3’ end of the miRNA; accessibility of seed sites as estimated 

by local mRNA secondary structure or A/U richness; or other less intuitive features, such 

as relative location of the seed site. Together these features help to narrow down the list, 

but they often do not provide enough sensitivity or specificity. For this reason, most 

prediction measurements include a heavy weighting for site conservation across species 

in order to reduce noise. With the assumption that conserved sites are biologically 

relevant, this helps to account for the as-yet undiscovered features that could affect 

targeting. While unique combinations of these features and various scoring schemes have 

been implemented, independent experimental validations of these methods indicate that 

overall their performances are moderate at best. Depending on the prediction method and 

available experimental data, the rates of precision (correctly predicted/total predicted) can 

range from 24 − 51%, while the rates of sensitivity (correctly predicted/total correct) can 

range from 6 − 48%86,216.  

 In Chapter 2, we observed that miR-21 in liver regulates an unexpectedly narrow 

portion of all possible targets: of 1,583 total targets, only 140 or ~8% showed significant 

derepression upon inhibition of miR-21. Surprisingly, only 8 of these (~6%) were 

considered highly probable targets across seven computational prediction algorithms, and 

only one was ranked twice, indicating that the algorithms did not converge on these 

targets. Therefore, it seems that even the minimal activity displayed by miR-21 does not 

follow the “rules” of target selection; or at least the same weighting of these rules as they 

apply to other miRNAs. As a result, in order to understand miR-21’s proclivities, it may 

first be necessary to re-evaluate the known determinants of targeting to determine which 

features distinguish the select few responsive targets.  

 In the current Chapter 3, we systematically analyzed miR-21 array profiling data 

in healthy mouse liver for trends in both well-established and lesser-known sequence-

based contextual features that may influence target selection. We found that miR-21 

seemingly does not discriminate targets based on features that have been recognized as 

general determinants of miRNA-mRNA interactions. Instead, on average, miR-21 
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responsive targets have greater levels of expression and slightly shorter open reading 

frames (ORFs) than non-responsive targets, two features not taken into account by 

current prediction methods. Moreover, all miR-21 targets are highly enriched with RBP-

REs, suggesting that crosstalk with RBP networks may explain miR-21’s target selection. 

For comparison, we also analyzed miR-122 inhibition responses, which turned out to 

overall correspond better with predictions. For miR-122, two favorably scored features—

multiple seed sites and seed sites proximal to ORFs — were detected to be preferential. 

Surprisingly, however, neither miR-21 nor miR-122 responses showed discernible trends 

relating to thermodynamics of target binding or site accessibility. We conclude that in 

addition to displaying a diminished repression capacity, liver miR-21 selects its few 

targets based on different features than other miRNAs, which have yet to be discovered. 

We also discuss potential divergences in studying miRNA targeting using anti-miR-

induced inhibition compared to other methods of perturbation.  

 

3.2 Materials and Methods 

Many of the scripts and functions for running these analyses are provided in Appendix 

A.  

Array Profiling Data. Array profiling data was the same as used in Chapter 2.   

Comments on downregulated responses. Numerous seed-matched transcripts were 

significantly downregulated after miR-122 or miR-21 inhibition, suggesting that these 

miRNAs could have an activating effect on these genes. While Steitz and colleagues have 

found that miRNAs can enhance protein output of certain genes during cell cycle 

arrest217, we found no evidence that this is a widespread occurrence for the studied 

miRNAs in liver tissue. If it were, we would expect enrichment of seed-sequences in the 

most downregulated genes with Sylamer analysis, which was not observed  (Fig 2.2.D).  

We therefore attribute the majority of these changes to secondary effects. We binned 

these genes separately since they could otherwise be highly efficient targets if not for the 

stronger secondary effects on their expression levels.  
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Expression/Conservation Filtering. Expression level cutoffs were based on log2 

transformed normalized labeled-cRNA array hybridization intensities from single-array 

profiling liver RNA samples of mouse C57BL/6.   This expression filter eliminated genes 

with intensities less than the median and those not matched to anti-miR array profiling 

data. Target site conservation was determined by comparing mouse transcripts with 

human transcripts. A mouse target site was considered conserved if its human homolog, 

matched based on gene symbol, also contained a target site for the same miRNA.  

Extension Scoring. Seed site sequences plus thirteen additional upstream nucleotides 

were extracted from 3’UTRs and aligned with the reverse complement of the miRNA 

sequence using Needleman-Wunsch global sequence alignment. Starting from the 

opposite end and up to the seed sequence, 1 point was scored for each base match and 0.5 

points for each consecutive match with no intervening gap.  

 

Statistical Analysis. Differences in response bins were tested for statistical significance 

using two-way ANOVA with Bonferroni post-tests using Prism Software 4.0 (GraphPad). 

Pearson correlation coefficients were calculated using Origin Software 8.6 (OriginLab).  

Kolmogorov-Smirnov tests were calculated using MatLab Software 2011a (Mathworks). 

Linear regression analysis was calculated using OriginPro 7.0 (OriginLab). Permutation 

tests were performed by searching for motifs in randomly scrambled sequences with the 

same base composition as the test sequence218.  This process was repeated for n = 1000 

and n = 500 rounds for 200 nt and full-length UTR sequences, respectively. p-values 

were calculated as p = n(k) / n, where n(k) is the number of rounds where the motif was 

found in the scrambled sequence more often than it was found in the test sequence, and n 

is the total number of rounds. The test sequence was considered enriched with a motif if p 

< 0.05.   

 



 

 75 

3.3 Results 

Sequence Database Development 

In order to detect trends and compare sequence characteristics across different genes, we 

first needed to build a searchable local database of annotated information for each gene 

measured in our array profiling experiments.  From the outset, we had in mind the 

following requirements for the database: flexibility to easily extract relevant information 

for hypothesis testing; adaptability to update or alter the database with additional 

experimental data or updated annotation releases; and compatibility both in terms of 

operating system independence and file I/O.  

 We chose to build our database using the Matlab (MathWorks, Natick, MA) 

bioinformatics toolkit as it met these requirements while still being easily accessible to 

bench scientists with only moderate coding experience. A schematic of the algorithm 

employed for database development and filtering is shown in Figure 3.1. In addition, 

many of the MatLab codes used for database development and sequence analysis are 

found in Appendix A.   

 Our local database (referred to as the Anti-miR Array Profiling (AMAP) 

database) was populated with curated mRNA (accession prefix ‘NM_’) entries from the 

National Center for Biotechnology (NCBI) Reference Sequence (RefSeq) Database. 

Although excluded from the analyses here due to their uncertainty, non-coding RNA 

(‘NR_’), predicted mRNA (‘XM_’), and predicted non-coding RNA (‘XR_’) were also 

added to the local database for future studies.  In total, the AMAP database consisted of ~ 

3.5x104 accession files that were then clustered into 1.8x104 groups – each group 

contained accession files for transcripts cross-detected by the same probe sets in the array 

profiling. For sequence analysis, we extracted 5’UTR, CDS, and 3’UTR sequences from 

each accession group. If an accession group contained >1 mRNA isoform then we gave 

priority to the isoform sequence that (1) contained the miRNA seed-match of that 

particular analysis and/or (2) had the longest 3’UTR.    

 Our aim was to determine whether unique sequence properties exist in transcripts 

found to have increased expression following inhibition of miR-21 (referred to as 
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responsive or upregulated transcripts).  In addition to more general features like transcript 

length and estimated abundance, we searched for as many properties known to affect 

miRNA-mRNA interactions as possible. These characteristics included length, A/U-

richness, non-canonical miRNA sites, number of seed sites, seed locations, 3’ base 

pairing, RBP motifs, and expression level.    

 To reduce the influence of sequence background noise, our datasets were filtered 

based on measured expression levels and/or conservation of seed-sequence (Fig. 3.1A). 

Expression filtering was meant to reduce the number of false negatives by eliminating 

from the analysis genes not expressed in liver that might otherwise be effective targets; 

whereas conservation filtering, assuming that conserved targets are more likely to be 

regulated, was intended to reduce the number of false positives (i.e., genes containing a 

seed site that were upregulated through secondary effects). These filtered datasets were 

analyzed in parallel to the non-filtered datasets. The results of filtering on the number of 

seed-matched genes are shown in Figure 3.1.B.    
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Figure 3.1 Bioinformatics flowchart and filtering results. (A) Schematic of pipeline 
built for local bioinformatics database. Top, Curated NCBI Ref-Seq gene/transcript 
information was collected for each gene measured in our anti-miR array profiling 
(AMAP) analysis. Seed-matched transcripts for each inhibited miRNA were identified 
based on the presence of 7m1A, 7m8, or 8m seed complementary sites in 3’UTRs. Each 
seed-matched transcript was characterized based on a number of properties including 
length, percent A/U base-composition, presence of non-canonical miRNA binding sites 
(non-canonical), number of miRNA seed sites (# seeds), miRNA seed site locations (seed 
locs), RNA-binding protein (RBP) motifs, and expression (exp) level. For the analyses 
described in this chapter, seed-matched transcripts were divided into ‘upregulated’, ‘non-
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responsive’, and ‘downregulated’ bins and the characteristics of each bin were compared 
to assess miRNA-targeting preferences.  Middle, Bottom To reduce the number of false-
positives and false-negatives, datasets were filtered based on two criteria: expected 
expression levels in mouse liver (based on array profiling data, see Materials and 
Methods) and conservation in human homolog transcripts. (B) Results of filtering on the 
number of unique seed-matched genes for miR-21 and miR-122. The number of non-
responsive genes, but not the number of upregulated genes, is reduced between the non-
filtered (NF) and expression filtered (EF) gene sets for each miRNA. Application of the 
conserved filter (CF) alone, on the other hand, reduces the number of genes in each bin 
category. Use of both the expression filter and conservation filter (EF+CF) together gives 
the most specific gene set, and for miR-122, the largest ratio of #upregulated/#non-
responsive genes.       
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Testing the influence of expression levels on target selection  

We first examined whether responsive targets were more or less expressed than non-

responsive targets. For seed-matched transcripts, we calculated the Pearson correlations 

for relative expression levels, as measured by the intensities from the microarray data 

used for expression filtering, and plotted them versus fold-change in expression.  We 

found a significant, if small positive correlation for both miR-21 (r = 0.091, p = 

0.162x10-3) and miR-122 (r = 0.123, p = 6.25x10-7) transcripts (Fig. 3.2.A). Similar 

results were obtained with the conserved datasets (miR-21-C: r = 0.118, p = 0.0262; miR-

122-C: r = 0.095, p = 0.032). In order to gain a more intuitive perspective on these data, 

we binned genes based on their response to anti-miR-induced miRNA inhibition and 

calculated the average expression levels for each bin. Consistent with the observed 

correlations, mean expression levels of upregulated genes were significantly greater than 

non-responsive genes (Fig. 3.2.B). There were no significant differences between up and 

downregulated genes. The linear differences in mean hybridization intensities between 

upregulated and non-responsive genes were ~1.6-fold and ~1.8-fold for miR-21 and miR-

122 targets, respectively. We consider these differences to be estimates rather than 

absolutes because microarray signal intensities can be biased towards probes with higher 

affinities219. However, use of processing methods that account for these biases should at 

least minimize these effects. Therefore, for both miRNAs analyzed we conclude that, on 

average, upregulated targets are slightly more highly expressed than their non-responsive 

counterparts.      
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Figure 3.2 Influence of expression levels on target selection. (A) Scatter plots of seed-
matched transcript expression levels for miR-21 (m21) and miR-122 (m122) expressed 
and expressed/conserved (m21-C; m122-C) gene sets. The grey dashed horizontal line 
represents the minimum cutoff for genes considered expressed (see Materials and 
Methods). (B) Mean relative expression levels of expressed miR-21 and miR-122 seed-
matched genes binned based on their changes in expression following miR-21 or miR-
122 inhibition, respectively. Error bars represent SEM. (*) = p < 0.05; (**) = p < 0.001, 
determined by two-way ANOVA with Bonferroni post-test. 
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Responsive messages tend to have shorter ORFs 

Next, we tested the relationship between inhibition response and target length. We found 

3’UTRs of targets upregulated upon miR-122 inhibition to be on average ~600 nt shorter 

than non-responsive targets, a significant deviation (Fig. 3.3.B, top). Although miR-21 

showed a similar pattern, it was not statistically significant. We also found that this trend 

extended to the open reading frame (ORF) as miR-21, miR-21 conserved, and miR-122 

upregulated target sets showed statistically shorter protein coding sequences than their 

non-responsive counterparts by a range of ~ 400 − 700 nt or ~ 130 − 230 codons (Fig. 

3.3.B, middle). Less significant differences were observed for 5’UTRs (Fig. 3.3.A, 

bottom). 

 Seed site position in the 3’UTR has been shown to affect repression 82. For miR-

122, seed sites tended to be distributed closer to the end of the ORF in upregulated genes 

than non-responsive or down-regulated genes (Fig. 3.3.B, right). However, this trend was 

not observed in miR-21 targets (Fig. 3.3.B, left). To determine whether 3’UTR length 

and seed site position were interrelated we normalized each absolute site position by the 

length of its 3’UTR. These relative positions were then binned, compiled into histograms, 

and plotted as trend lines for upregulated, non-responsive, and down-regulated targets 

(Fig 3.3.C). Seed sites were fairly uniformly distributed along the lengths of 3’UTRs 

with a maximum inter-bin range of ~10% (Fig. 3.3.C). However, upregulated sets for 

miR-21, miR-122, and miR-122 conserved showed slight bias towards the beginning of 

the 3’UTR, and also the end for miR-21, which showed a hyperbolic trend (Fig. 3.3.C, 

green line). This agrees with previous data indicating that seed sites at the beginning and 

near the end of the 3’UTR are most effective82. Non-responsive and down-regulated gene 

sets did not show dramatically different distributions, except in certain cases where a 

greater fraction appeared to be distributed near the middle and end of the 3’UTR as 

opposed to the beginning (Fig. 3.3.C, orange and purple lines).  Surprisingly, upregulated 

miR-21 conserved targets appeared to resemble the non-responsive trends more so than 

they did the other upregulated datasets (Fig. 3.3.C, bottom left). This finding may be due 

to the limited number of targets classified in this dataset, resulting in poorer statistical 

sampling.  
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 We next counted the number of targets in each dataset containing more than one 

seed site, a well-documented feature of robust targets82,173,220. Between miR-122 and 

miR-21, there were largely different responses measured in multi-seed targets. For miR-

21, only 15 (~14%) multi-seed targets were responsive (Fig. 3.3.D), in-line with liver 

miR-21’s narrow repression signature. Surprisingly though, these targets accounted for < 

11% of the upregulated genes in the expressed dataset (Fig. 3.3.E), far less than expected 

if multiple seeds were a major influence on miR-21 target repression. In contrast, 93 

(~49%) miR-122 multi-seed targets were responsive (Fig. 3.3.D), which accounted for 

~20% of the upregulated genes (Fig. 3.3.E). Similar results were found with conserved 

datasets for each miRNA.      

 We conclude that miR-122 upregulated targets on average have shorter ORFs and 

3’UTRs, seed sites closer to the ORF— due to both relative positioning and the shorter 

3’UTR— and nearly 20% contain multiple seed sites. For miR-21, except for ORF 

length, these trends were not as clearly discernible.     

 

 

       



 

 83 

 
Figure 3.3 Influence of mRNA length, seed location, and number of seeds on target 
selection. (A) Mean 3’UTR (top), ORF (middle), and 5’UTR (bottom) lengths of binned 
expressed seed-matched transcripts for miR-21 (m21) and miR-122 (m122). Only 
expressed targets were included. Results from expressed, conserved transcripts for miR-
21 (m21-C) and miR-122 (m122-C) are also shown. (*) = p < 0.05; (**) = p < 0.01; (***) 
= p < 0.001, determined by two-way ANOVA with Bonferroni post-test. (B) Cumulative 
distribution frequency plots of seed distances (in nucleotides) from ORFs. The 
significances of differences in distributions between upregulated-and-non-responsive and 
up-regulated-and-down-regulated gene bins are shown on each plot as Kolmogorov-
Smirnov p-values (KS p). (C) Histograms of relative seed locations calculated as [seed 
position (nt) / UTR length (nt]. For clarity, the tops of each bar are plotted as a point in a 
connecting line rather than the traditional histogram bar plot. (D) Fraction of genes in 
each bin containing more than one corresponding miRNA seed site.  
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Responsive sites are not more A/U rich 

It is now well established that target secondary structure in and around seed sites can 

dramatically impact miRNA-mediated regulation85,221-223. Because miRISC does not 

appear to be capable of actively unwinding target structure224, there is a high enthalpic 

cost for a miRNA to access a highly structured seed site85. In lieu of secondary structure 

predictions, regions with greater A/U content should be thermodynamically less costly to 

disrupt compared to G/C rich regions due to the, on average, fewer hydrogen bonds 

formed between Watson-Crick base pairs of their secondary structure.  Consequently, 

more effective miRNA sites have been reported to be found in regions with higher A/U 

base content82. In addition, A/U-rich mRNAs may be especially susceptive to miRNA-

mediated degradation223. 

 In our experiments, we did not find a significant difference in the base 

compositions of full length 3’UTRs between responsive and non-responsive or 

downregulated targets (Fig. 3.4.A). However, for certain upregulated targets we did 

notice that the seed sites occurred in local A/U-rich regions, irrespective of the overall 

full-length composition (Fig. 3.4.B). In order to see if this was a general characteristic of 

upregulated targets, we calculated local base compositions for regions surrounding the 

seed sites, varying the window size centered on the seed site from 20 nt to 200 nt (Fig. 

3.4.C). Across these windows, miR-21 targets were slightly more A/U-rich compared to 

the full-length 3’UTRs. Surprisingly, miR-122 targets were more G/C-rich compared to 

full-length 3’UTRs. A/U content showed little change across the range of window sizes, 

indicating that the local base compositions around the seeds did not change at a uniform 

cutoff distance.  Importantly, upregulated targets were not significantly more A/U rich:  

Upregulated targets showed a slightly higher A/U content in the miR-21 and miR-122 

conserved datasets; however, these differences were statistically insignificant. We 

conclude that A/U base composition is not a distinguishing feature of responsive targets.  
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Figure 3.4 Influence of 3’UTR base composition on target selection. (A) Mean 
fraction A/U composition of 3’UTRs in each bin for each miRNA gene set.  (B) Moving 
window analysis of 3’UTR base composition for two upregulated miR-21 seed-matched 
targets Pex10 (left) and E2F2 (right). The x-axis indicates the relative position in the 
3’UTR with the left side of the axis representing the start of the 3’UTR and the right side 
of the axis representing its end. An open red circle in each plot marks the miR-21 8m 
seed position. For both these genes, the seed position falls inside an A/U rich window. 
(C) Mean fraction A/U for increasing window sizes centered on the miRNA seed-match 
sequence. For each window size, the average A/U compositions for upregulated (red 
circle and line), non-responsive (yellow square and line), and down-regulated (green 
triangle with line) binned genes are plotted. The grey dashed line represents the mean 
A/U composition of the full-length 3’UTRs of all seed-matched genes in that dataset 
(equal to the average of the three bins in each group shown in A).    
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Non-canonical sites are minimally effective 

In addition to the 3’UTR, functional seed sites may also occur in the 5’UTR, and even 

more likely, in the mRNA coding sequence (CDS). CDS seed sites have been shown to 

be functional in both Drosophila and human cells225,226. Furthermore, cross-linking 

immunoprecipitation (CLIP) experiments have revealed that nearly 25% of identified 

Ago2 binding sites map back to mRNA CDSs227, suggesting that miRISC can frequently 

access the CDS in spite of competition by ribosomes228. We thus wanted to investigate 

whether CDS targeting had any effect in our experiments. We were especially interested 

in seeing whether we could observe CDS sequence trends for miR-21 since, surprisingly, 

no trends were observed for the 3’UTR (Fig. 2. 2.D).  Similar to the 3’UTR, however, 

Sylamer analysis of miR-21 inhibition data using CDSs showed no statistical enrichment 

for miR-21 7-mer seed sequences (Fig. 3.5.A). Accordingly, miR-21 6-mer seeds were 

found in < 20% of genes and most were not upregulated (Fig. 3.5.B). Similar results were 

found for miR-122 (Fig. 3.5.B), indicating that CDS seed sites are not effective sites for 

miR-21 and miR-122 in liver.      

 We also investigated alternative modes of 3’UTR binding.  In brain, non-

canonical sites have been validated with either a G-bulge between miRNA positions 5 

and 6 229 or centered pairing with miRNA positions 4-15 230 (Fig. 3.5.C). These types of 

sites are often highly conserved, but the universalness of their function has not yet been 

shown. Surprisingly, in liver for miR-21, a greater number of genes containing G-bulge 

sites were upregulated than genes containing 8m canonical sites; and the majority of 

these did not contain a 7-mer or 8m canonical site (Fig. 3.5.D, left). G-bulge targets as a 

population also showed a greater median fold-change than both all miR-21 canonical 

seeds combined and a control population containing a random 8-mer sequence (Fig. 

3.5.D, mid/right).  However, G-bulge targets had a lower median fold-change than 

canonical 8m targets and, unlike the 8m population, the fold-change distribution for G-

bulge targets was not significantly different from the distribution for all genes (Fig. 

3.5.D, right). A comparable percentage of G-bulge genes was found in upregulated genes 

in the miR-122 inhibition data; however, owing to the strong activity of miR-122, this 

was ~2.5-fold less than the number of up-regulated miR-122 canonical 8m genes (Fig. 

3.5.E, left). Furthermore, G-bulge targets as a population were not found to be 
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upregulated overall with a median fold-change less than canonical miR-122 seeds (Fig. 

3.5.E, mid/right). As for centered pairing sites: Only two of these types of sites were 

found for miR-122 and only one for miR-21; neither were up-regulated following 

miRNA inhibition.   

 We conclude that non-canonical miRNA sites account for few of the expression 

changes in our data. For miR-21, G-bulge sites are less effective than 8m sites but 

perhaps just as effective as 7-mer sites; but these effects are still quite small, on par with 

miR-21’s weak canonical activity.    
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Figure 3.5 Influence of non-canonical miRNA binding sites on target selection. (A) 
Heptanucleotide Sylamer analysis of coding sequences from all genes (non-filtered) in 
anti-miR-21 profiling experiments. 7m8 and 7m1A miR-21 seed sequences are 
highlighted in purple and pink, respectively. All other seven-nucleotide sequences are 
shown in grey and represent statistical background. Significance thresholds are marked 
by horizontal dotted lines. No sequence surpasses these thresholds indicating a lack of 
enrichment for seven-nucleotide sequences on either side of the ranked gene list. (B) 
Fraction of genes in each bin containing a 6m seed in its coding sequence. Results from 
expressed seed-matched transcripts for miR-21 (m21) and miR-122 (m122) as well as 
expressed, conserved transcripts (m21-C & m122-C) are shown. (C) Schematic 
illustrating the differences in canonical 8m seed-target binding and non-canonical G-
bulge site binding and centered pairing. The sequence of miR-21 is used as an example. 
miRNA and mRNA bases involved in target sequence recognition are highlighted in 
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black and blue, respectively. Watson-crick base pairing is illustrated as dark vertical 
lines. Nucleotides shown in grey are considered less important for target sequence 
recognition and have variable complementarity between the miRNA and target. The G-
bulge site is characterized as having an additional non-pairing guanine between base 5 
and 6 of the miRNA (highlighted in red). Centered pairing involves an extended region of 
complementarity between the target and the middle of the miRNA sequence (bases 4 – 
15). (D) Left, Number of expressed upregulated genes in anti-miR-21 profiling data 
containing a G-bulge site (GB-total; red), G-bulge site and no canonical miR-21 seed 
(GB-noseed; dark red), or canonical 8m miR-21 seed (8mer; blue). The percent that each 
population makes up of the total number of upregulated genes is indicated above each bar 
in parentheses. Middle, cdf plot of expression changes following miR-21 inhibition for all 
expressed genes (pink) and those containing a G-bulge site (red), miR-21 8m seed (blue), 
any miR-21 seed (black), and a random 8m seed with the same base composition as the 
miR-21 8m seed (green). The dotted brown line marks the median. Right Bar plot of 
median values from the middle cdf plot. Value above each bar is the KS p-value 
calculated between that distribution and the distribution of all genes. Significant 
differences (p < 0.05) between two distributions are marked with a star (*). (E) Same as 
D for anti-miR-122 array profiling.       
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Target responses do not correlate with thermodynamics of miRNA binding 

A poor seed interaction can be compensated for by extensive base pairing to the 3’ end of 

the miRNA82,229. Since miR-21 has a weak seed-sequence due to a high A/U base 

composition, we hypothesized that responsive targets may be able to supplement binding 

energetics by forming more base pairs with the 3’ end of miR-21. To test this hypothesis, 

we used an alignment based approach to score contiguous base pairs starting from the 

3’end of the miRNA, similar to what has been done previously82. Neither miR-21 nor 

miR-122 upregulated targets were scored higher than non-responsive targets, suggesting 

that these targets were not more likely to form additional base pairs outside of the seed 

region (Fig 3.6.A). More robust thermodynamic calculations also showed no correlation 

between response and thermodynamics of binding (Fig 3.6.B-C).       

 



 

 91 

 
Figure 3.6 miRNA 3’base pairing and binding thermodynamics. (A) 3’ pairing scores 
for miR-21 (m21) and miR-122 (m122) expressed genes and miR-21 (m21-C) and miR-
122 (m122-C) expressed, conserved genes binned based on response to miRNA 
inhibition. Scores were computed based on the number of contiguous miRNA-mRNA 
base pairs that could form starting from the 3’end of the miRNA (see Materials and 
Methods). (B) Linear regression analysis of thermodynamic data for duplex binding from 
the PITA database85 with measured expression changes for miR-21 seed-matched 
mRNAs. Linear regression fits, correlation coefficients, and p-values are shown for each. 
(C) Same as B for miR-122.  
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Targets are commonly enriched in RBP motifs  

Hundreds of RNA binding proteins (RBPs) are encoded in mammalian cells and several 

have been identified as capable of augmenting or inhibiting miRNA-mediated gene 

regulation by binding to mRNAs proximal to or overlapping with miRNA binding 

sites218,231-233. We therefore sought to gain perspective on the extent to which known 

RBPs could affect miR-21/miR-122 targeting networks. Transcripts were searched for 

four RBP consensus motifs linked to miRNA pathways:  

— U-rich motif (URM), UUUUAAA, which has been correlated with repressed 

transcripts in several small RNA transfection experiments218;  

— Hu (ELAV) binding site, UUUNUUU, which can antagonize miRNA activity by 

stabilizing mRNA69,234,235. In other cases, it can also enhance miRNA activity236.   

— PUM motif, UGUANAUA, often found adjacent to conserved miRNA seed 

sites233. PUM proteins have also been shown to interact with Ago containing 

complexes237; and  

— A/U rich element (ARE), UAUUUAU, which affects mRNA stability and is 

recognized by nearly 20 different RBPs218.  

 

We first searched for the presence of these motifs in regions proximal (within 200 nt) to 

miR-21 and miR-122 seed sites, where the RBPs could directly compete or even 

cooperatively bind with miRISC (Fig 3.7.A). The Hu motif was the most commonly 

found among both miR-21 and miR-122 targets. It occurred more frequently near miR-21 

seeds (~30 − 40% per bin) than miR-122 seeds (~15 − 25%), suggesting its antagonistic 

effects on miR-21 may partially explain miR-21’s limited repression signature; however, 

it appeared just as frequently among upregulated genes as it did among non-responsive 

genes, arguing against this hypothesis. The other motifs were not as common, occurring 

at <10% for most bins.  In general, the RBP motifs occurred in proximal regions with 

similar frequencies across the response bins.  

 This analysis was then extended to the full-length 3’UTRs (Fig. 3.7.B). Again, the 

Hu motif was the most common, found in ~90% of miR-21-targeted genes and a slightly 

lower fraction of miR-122 genes. The UR motif was next most common at >50%, 

followed by PUM and ARE, which occurred at similar frequencies ~20 − 40%. Because 
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3’UTR sequences are often long and A/U rich, these motifs would be expected to occur at 

high rates due to chance alone. We therefore used the permutation method (see Materials 

and Methods) to test for statistical enrichment of the motifs218. For Hu and URM, 

approximately half of the genes containing these motifs were significantly enriched for 

them, indicating that these motifs often occur repetitively throughout each of the 3’UTRs. 

ARE and PUM sites were often less enriched. Similar to the results with proximal 

sequences (Fig 3.7.A), each motif occurred at similar frequencies between the response 

bins.  

 Much like miRNA seed sites, not all RBP motif sites are expected to be 

functional. Since the rules for RBP binding are even less clear than those for miRNA, it is 

impossible to gauge the true biological relevance of these results. However, the 

prevalence of these motifs, especially Hu and URM, in sequences both proximal and 

distal to miR-21 and miR-122 seed sites strongly suggests that RBPs could significantly 

influence target repression by these miRNAs.      
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Figure 3.7 Influence of RNA binding protein sites on target selection. (A) Percent of 
genes in each upregulated (Up), non-responsive (NR), and downregulated (Down), bin 
containing known RBP motifs within 200 nt of the seed sequence. Sequences were 
analyzed for four different RBP motifs that have previously been shown to affect miRNA 
activity: URM (blue), Hu (green), PUM (yellow), and ARE (red). Transcripts containing 
an RBP motif were assessed for statistical enrichment of the motif with consideration of 
sequence base composition. Enrichment scores (permutation test, see Materials and 
Methods) were assigned to each gene transcript and the percent of genes with significant 
enrichment for each motif is indicated on each bar by a horizontal line. (B) Same as A, 
but for full-length (FL) 3’UTRs.  



 

 95 

3.4 Discussion 

We have recently reported (Chapter 2 and 238) that liver miR-21 represses only a narrow 

set of targets containing canonical 7- or 8-mer seed sites. In the current study, we have 

examined in depth the sequences of these targets to better understand what makes them 

exceptional. We found little evidence to support that the minimal activity of miR-21 

follows the current canonical or even known non-canonical modes of target selection.  

Instead, we uncovered a new possible determinant, ORF length, and found significant 

enrichment in motifs for RBPs suggesting these regulators may influence target selection. 

 

Length and Expression 

miR-21 responsive targets as a whole were distinguishable from non-responsive targets 

by two features: length and expression. Neither of these are known features affecting 

miRNA-mRNA interactions. We found that responsive miR-21 targets, on average, had 

significantly shorter ORFs. This was also observed for miR-122 targets, in addition to 

having shorter 3’UTRs.  The effects of transcript length on miRNA-mediated repression 

are not well studied. One possible explanation is that shorter transcripts, with fewer bases 

to cleave, may be more quickly degraded, enabling the miRNA to reduce steady-state 

levels to a greater extent. In addition, a shorter ORF may speed up the rate of decay if 

ribosome runoff must be completed before transcript degradation can occur. This is 

supported by models where miRNAs first inhibit translation at the initiation step, before 

inducing transcript destabilization239. We also found a weak, but detectable correlation 

with expression levels, with responsive targets slightly more highly expressed. This result 

was unexpected since miRNAs generally are less effective as the abundance of target 

sites increases 240. While we do not discount a biological relevance, alternatively this 

effect may be caused by a bias in the array profiling data.  Measurements on more 

abundant (or better hybridizing) transcripts may be less prone to noise, resulting in lower 

standard deviations between biological replicates and greater significance between 

treated and untreated groups. Because we based our cutoffs on p-values, more abundant 

genes may then be more likely to be binned as upregulated than genes with lower 
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expression. Still, we expect any bias to be minimal and do not believe that these effects 

had a major contribution on our other results.   

 

Inhibition versus Transfection of miRNA 

Array profiling of HeLa cells after different transfections of eleven miRNAs indicated 

that target repression generally correlated with four independent features of 3’UTR sites: 

A/U base composition near the seed site, the number of seed sites, extent of base-pairing 

to 3’ non-seed regions of the miRNA, and position of the site towards the ends of the 

3’UTR82. These results were subsequently built into a quantitative model for target 

prediction called TargetScan(Context)82. Here, these features were among those tested in 

an attempt to better understand miR-21 target selection. As a positive control, we chose 

to analyze miR-122 in parallel with miR-21. Unlike miR-21, miR-122 responses showed 

moderate correspondence with TargetsScan predictions (TargetScan performed better 

than four other prediction methods; Fig 2.3.A). miR-122 was in fact one of the eleven 

miRNAs used for training TargetScan82. In agreement, miR-122 showed clear trends for 

two TargetScan features — responsive targets showed enrichment for having multiple 

sites and sites near the ORF. These features were not detected for miR-21. Unexpectedly, 

trends for A/U-richness and 3’-pairing were not detected for either miRNA. One simple 

explanation for this discrepancy is technical— our bioinformatic analyses are similar, but 

not identical to those of Grimson et al.82. Alternatively, miRNAs may target different 

transcripts in HeLa cells, which demonstrate enhanced miRNA activity, than liver cells 

(Fig. 2.12 and Fig 2.13). A third possibility is that targets, and targeting preferences, 

identified by miRNA transfection may not be the same as those identified by inhibition.  

 Fundamentally, transfection and inhibition are different methods for perturbing 

miRNA-mRNA interactions.  In the former, an abundant amount of miRNA is introduced 

into the repression network, while in the latter a miRNA is effectively removed. We posit 

that these differences may cause distinctive changes in the transcriptome, even with the 

same miRNA. On the one hand, transfected miRNA may repress any and all preferred 

targets due to shear abundance, irrespective of competing factors. On the other hand, 

inhibition would be expected to only cause derepression of actively repressed targets 

(aside from secondary effects), which may be far fewer than the total number of preferred 



 

 97 

or possible targets. In support of this notion, compared to values reported for transfection 

(repression/downregulation)82, a lower percentage of seed-matched genes displayed 

detectable responses (derepression/upregulation) in our inhibition experiments. In 

addition, the magnitudes of inhibition responses appear to be more modest. It is therefore 

possible that, upon inhibition, the same targeting trends exist, but are not as easily 

discernible since it is more difficult to, proverbially, separate the wheat from the chaff. 

Alternatively, endogenous competitive effects may reshape target selection: a more 

abundant, stronger binding miRNA could block all of the most favorable sites of a lower-

abundance miRNA that shares many of the same targets, and as a result shunt the lesser 

miRNA to otherwise less-favorable targets. Likewise, RBPs, which can induce 

conformational changes in RNA secondary structure241, could convert an otherwise ‘bad’ 

target into a more favorable one. Importantly, because transfection could dramatically 

shift equilibrium in favor of a single miRNA, miRNA copy number may drown out the 

influence of endogenous competition on target selection. Future studies directly 

comparing transfection and inhibition of various miRNAs will be necessary to shed more 

light on this question and help assess the relative biological validity of these two 

experimental approaches.   

 

Influence of RNA binding proteins on target selection 

An expanding number of reports have demonstrated that RBPs can directly modulate the 

activities of certain miRNAs. The ubiquitously expressed Hu family protein HuR may be 

a particularly important liaison between RBP and miRNA networks. Filipowicz and 

colleagues have found that HuR reversibly, in response to stress, prevents miR-122 from 

repressing the cationic amino acid transporter 1 (Cat-1) mRNA in liver cells69. This 

antagonism, the result of HuR oligomerization on mRNA to prevent miRISC binding, can 

protect other mRNAs harboring the HuR motif, regardless of proximity to seed sites and 

even in the absence of stress242. HuR can also enhance miRNA-repression in other cases, 

as it and let-7 interdependently work together to repress c-Myc expression in HeLa 

cells236.  

 We posit that RBPs may have a broad impact on miR-21 targeting networks.   

Both miR-21 and miR-122 targets were highly enriched in RBP-REs, especially the Hu 
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motif, which also occurred frequently proximal to miR-21 sites. Although direct 

correlations between RBP motifs and response were not uncovered, their frequency of 

occurrence, in particular of the Hu motif, and emerging insights into their abilities to 

modulate miRNA activity make RBPs an alluring candidate for the focus of future 

experiments to understand the targeting dispositions of miR-21 and other miRNAs upon 

anti-miR inhibition.  

 The miRNA network is seemingly built on surprisingly little sequence 

information. Single molecule fluorescence RNA annealing studies suggest that 7-nt of 

complementary sequence, the length of a miRNA seed, is the minimum number of 

contiguous base-pairs required for rapid Watson-Crick paired annealing243. In addition, 

Nature may have selected for miRNAs the minimum amount of specificity as to cast a 

wide net on gene regulation. RBPs may play the part of the fishermen, choosing exactly 

where and when to cast the net of repression. Further, HuR and Pum1 RBPs are 

phosphorylated in response to stress or growth factor stimulation, which alters their sub-

cellular localization and interactions with miRNAs244,245. RBPs may therefore serve to 

connect the miRNA network to cell signaling cascades, allowing for temporal, transcript 

specific alterations in gene expression in response to extracellular stimuli. Since miR-21 

has been directly linked to stress response pathways238, it activities may be especially 

coupled to that of RBPs.  
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Chapter 4: iSHiRLoC: A single-molecule method for visualizing and measuring 

heterogeneities in microRNA processes1 

 

4.1 Introduction 

 The mechanisms by which miRNAs reduce expression output are debated62,246. 

Some have concluded that translational inhibition is the primary pathway65,68,80, while 

others claim it is transcript destabilization53,81,170. Adding to the confusion, several modes 

of translational inhibition have been proposed: blocking of the initiation step68,170, stalled 

elongation80, ribosome drop-off76 and even nascent chain proteolysis79. Supporting 

evidence has been derived from experimental conditions and techniques as diverse and 

varied as the mechanisms themselves, making it difficult to compare and contrast these 

seemingly contradictory findings. This leads to the question: Is there a unitary 

mechanism underlying miRNA activity or can different miRNAs, or even individual 

molecules of the same miRNA, divergently enact repression? 

 Recently, we have developed and published a method for probing the 

heterogeneities of miRNA-mediated processes by visualizing single miRNAs as they 

proceed through the repression pathway— from diffuse mature duplex, to miRISC 

assembly, to target engagement, to P body docking, to release of the miRNA (the full 

publication is provided in Appendix B)247.  The method is based on a two-pronged 

approach: high resolution tracking of fluorophore labeled miRNAs in live cells and step-

wise single-molecule photobleaching in fixed cells. Together, these tools enabled us to 

measure the dynamic localization and stoichiometry of miRNA complexes, respectively. 

Complex assembly and disassembly could be kinetically determined by utilizing the 

imaging techniques at varying time increments after introducing the miRNA into the cell.  
                                                
1 This chapter includes John Androsavich’s contributions to Pitchiaya, S., Androsavich, J.R., and Walter, 
N.G (2012), EMBO Reports, the full text of which is provided in Appendix B. Results referred to in 
Appendix B were largely the work of Sethu Pitchiaya. In addition, Katelyn Doxtader, an undergraduate, 
performed the Ago2-WT/Y529E mutagenesis, imaging, and particle counting analysis under John 
Androsavich’s supervision.  
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We have termed this method iSHiRLoC, or intracellular single-molecule high-resolution 

localization and counting, and propose its broad applicability, but find it particularly well 

suited for studying the miRNA pathway in hopes of establishing a unifying model for 

repression.  

 In its first implementation, we used iSHiRLoC to study the complex assembly of 

let-7a miRNA in HeLa cells. The miRNA was 3’ fluorophore labeled and microinjected 

into the cytoplasm. Microinjection provided a convenient means to introduce a relatively 

consistent number of miRNAs—preventing both overloading of the pathway and too high 

of miRNA densities to track single molecules—and unlike transfection, a better defined 

‘0 h’ time point for kinetic analysis. Control experiments demonstrated that neither 

fluorophore labeling nor microinjection hampered the miRNA’s ability to repress 

expression of reporter genes. Following microinjection, we were able to detect miRNAs 

as well-resolved foci as early as at the 2-h time point. Step-wise photobleaching revealed 

that the majority of these foci contained single fluorophore labeled miRNAs. We attribute 

this extraordinary sensitivity of detection largely to the use of highly inclined laminar 

optical sheet (HILO) illumination248, wherein the angle of incidence of the illuminating 

laser was adjusted to just above the critical angle, causing the excitation light to pass 

diagonally, rather than perpendicularly, through the sample; this reduced the volume of 

excitation above and below the focal plane, and as a result, increased signal-to-noise.   

 The microinjected miRNA progressed through a series of time-dependent changes 

in diffusion and multimerization. Immediately after microinjection, the miRNA could 

only be detected as a hazy background in the cell due to rapid diffusion too fast for our 

time resolution of 100 ms. At 2 h post-injection, detectable complexes were formed and 

their diffusion coefficients found distributed into two Gaussian populations — a slow-

moving population with diffusion coefficient equal to 0.26 µm2s-1, and a fast population 

with a coefficient of ~ 0.034 µm2s-1.   Importantly, these diffusion coefficients are similar 

to those of mRNPs and P bodies, respectively, key intermediates of the miRNA pathway 

that we found to be colocalized with the miRNA. These populations, on average, diffused 

progressively faster through the 4 h and 8 h time points, suggesting that the complexes 

decreased in mass over time.  This trend appeared to extend out to 32 h, the latest time 

point measured, where foci were no longer trackable due to large inter-frame 
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displacements. Step-wise photobleaching of fixed cells at these time points showed that 

multimeric assembly followed the same course as diffusion, with the number of 

multimers rapidly increasing after injection, peaking at ~4 h, and then slowly diminishing 

over time. The rates of these processes lead us to propose a model for let-7a miRNA 

assembly that is characterized by two distinct kinetic processes: an initial fast assembly 

step (with a rate constant of 1.2±0.2 h-1), where miRNAs undergo rapid assembly into 

first mRNPs and then P bodies, followed by a slower disassembly step (with a rate 

constant of 0.14±0.08 h-1). An artificial CXCR4 miRNA, which has very few endogenous 

targets, only exhibited similar rates of assembly/disassembly when an exogenous 

artificial mRNA target was co-microinjected, thus providing strong evidence for target-

dependent miRNA assembly.   

 In this chapter, I detail a few of the key developments for establishing the 

iSHiRLoC system for studying miRNA. In addition, we discuss tracking of the central 

RISC component Ago2; recent inhibition experiments that further support the 

functionality of trackable complexes; and lastly, the synthesis and testing of a biarsenical 

fluorophore that may be useful for iSHiRLoC.   

 

4.2 Materials and Methods 

 

Cell culture and media. HeLa cells (CCL-2) were acquired from ATCC and maintained 

under growth conditions in Dulbecco’s modified eagle medium (DMEM) with high 

glucose, 10% (v/v) fetal bovine serum (FBS), and formulated non-essential amino acids 

(MEM-NEAA). Several (1 − 4) hours before imaging, to reduce autofluorescence 

background, growth media was replaced with DMEM containing reduced (2% v/v) FBS 

and no phenol red pH indicator. This reduced media was again replaced immediately 

before imaging with a buffered saline solution (BSS) containing 20 mM HEPES pH 7.4, 

135 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, and 5.6 mM glucose.           

 

Fluorescence Repression Assays. For microinjection repression assays, 1.5x105 

cells/dish were plated on deltaT (Bioptech) dishes the day prior to microinjection. Cells 

were microinjected in the nucleus with 1X PBS solutions containing 0.1 µg/µl pEF6-
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mCherry-mH3Um, 0.1 µg/µl pEGFP-C1, and 1.5 µm wt- or mut-let-7a1.  Following 

injection, cells were maintained in growth media for 24 h to allow for expression and 

maturation of the fluorescent reporter proteins. Widefield microscopy images were 

acquired for mCherry and GFP and intensities were measured using ImageJ software 
(NIH). For individual cells, the background subtracted mCherry signal was normalized 
with that of GFP, and the reported repression levels were taken from the mean 
mCherry/GFP ratio over all cells from two independent experiments. When necessary, 
signals were corrected for channel cross-talk (bleed-through) by subtracting the fraction 
of signal from the opposite channel that is empirically determined to bleed-through:  

 
where Ia’ is the cross-talk corrected intensity for channel A, Ia is the non-corrected 
intensity, Ib is the intensity for channel B, and C is the fraction of Ib that enters channel 
A. This fraction is pre-determined by imaging each color separately using both channels. 
In our experiments, we found ~14% of mCherry signal bleed-through to the GFP 
channel. For transfection repression assays (Fig. 4.1.B), 4x105 cells were plated on 6-well 

glass bottom plates the day before transfection. Cells were co-transfected with 4.0 µg 

DNA consisting of an equimolar ratio of pEF6-mCherry-mH3Um and pEGFP-C1 

plasmids and 10 pmol miRNA duplex. Cells were incubated with transfection complex 

for 6h before replacing the media. 48 h post-transfection, cells were either assayed using 

fluorescence microscopy or by western blot. For fluorescence microscopy, to facilitate 

counting of cells, nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI) for 1 h 

at 37 oC. Cells were imaged using a Nikon TE-2000U widefield microscope with a 
CoolSNAP HQ2 CCD camera (Photometrics) and fluorescence intensities were quantified 
in the same manner as for microinjection repression assays.  For western blots, wells 
transfected in triplicate were pooled and the cells were pelleted at 1,000 x g for 10 min at 
4 oC. After washing, pellets were resuspended in 75 μl lysis buffer (20 mM Tris pH 7.2, 
100 mM NaCl, and 2.5 mM MgCl2) and lysed by four cycles of freeze-thaw in liquid 
nitrogen with rigorous vortexing between each cycle. Lysates were cleared by benchtop 
centrifugation at 9,000 rpm for 10 min at 4 oC, supernatants were transferred to fresh 
tubes and 5 μl protease inhibitor cocktail (Sigma) was added to each. Equal volumes of 

each lysate were resolved with SDS-PAGE and immunoblotted following a standard 

protocol. Rabbit monoclonal antibody to dsRed/mCherry was purchased from Clontech. 

Mouse monoclonal antibody to β-actin was purchased from Sigma. Primary antibodies 
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were detected using Cy3/Cy5 conjugated secondary antibodies and membranes were 

scanned using a Typhoon imaging system (GE).   

 

Plasmids and miRNA oligonucleotides  

Fluorescent reporter plasmids. Fluorescence reporter plasmid pEF6-mCherry-mH3Um 

was constructed by first subcloning the mCherry ORF from the pRSET-mCherry vector, 

a gift from Roger Tsien (UCSD), into the multiple cloning site of the pEF6-myc-His-B 

(Invitrogen) vector using BamHI and EcoRI restriction sites. Then, using PCR cloning, 

the mutant HMGA2 3’ UTR, a gift from David Bartel (Whitehead Institute, MIT) was 

inserted downstream of the mCherry ORF between XhoI and NotI sites. pEGFP-C1 was 

purchased from Clontech. 

 

Ago2 and Dcp1a plasmids. pEGFP-hAgo2 was contributed by Phillip Sharp (MIT). 

pEGFP-hAgo2-Y529E was created by site-directed mutagenesis using the Quikchange 

XL kit (Stratagene) as per manufacturers recommendations. pRFP-Dcp1a was a gift from 

Nancy Kedersha (Brigham and Women's Hospital). 

 

MS2 plasmids. Basic plasmids encoding the EGFP fused MS2 coat protein (pMCP-

EGFP) and 24 copies of the MS2 stem-loop (pSL-MS2_24x) were received as gifts from 

Robert Singer (Albert Einstein College of Medicine). The pMCP-GFP plasmid was used 

as is for initial experiments (Fig. 4.2); however, it suffered from poor expression in our 

hands likely due to having a weak promoter (derived from the large subunit of RNA 

polymerase II162).  To improve expression, the MCP-GFP sequence was PCR amplified 

and inserted into the pEF6-myc-His-B (Invitrogen) parent plasmid under control of the 

EF1α promoter. This plasmid, pEF6-MCP-GFP, showed a slight improvement in 

expression and was used for the remainder of the MS2 experiments (Fig. 4.3). The 

hairpin loops of pSL-MS2_24x were incorporated into the tail end of a luciferase reporter 

construct, engineered in the pmirGLO (Promega) backbone, consisting of an optimized 

firefly luciferase coding DNA sequence (CDS) and the mutant Hmga2 3’UTR. This 

plasmid, pmG-mH3UM-MS2, was created in two steps as detailed elsewhere.  
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miRNA. RNA oligonucleotides were ordered from Keck Oligo Synthesis facility (Yale 

University School of Medicine). All oligos contained a 5’phosphate and guide strands 

contained 3’ amino-C7 linkers (*).     

 

wt-guide-let-7a1: P-UGAGGUAGUAGGUUGUAUAGUU* 

wt-passenger-let-7a1: P-CUAUACAAUCUACUGUCUUUCC* 

mut-guide-let-7a1: P-UGCGUUAGUAGGUUGUAUAGUU* 

mut-passenger-let-7a1: P-CUAUACAAUCUACUGUCGUUCC* 

 

RNA was purified as described 249 and the 3’ amine groups were labeled with Cy5 N-

succinimidyl-ester and repurified with HPLC to remove all unlabeled RNA. Guide and 

passenger strands were annealed in a 1:1 ratio in RNase-free H2O by placing tubes in a 

65 oC bath that was then allowed to cool to room temperature.  

 

Anti-miRs. LNA/DNA antisense oligonucleotides were purchased from Exiqon and used 

as provided. For injection with miRNA, 3.0 µm anti-miR was mixed with 1.5 µm duplex 

miRNA in 1x PBS. For labeling, Cy5 was conjugated to the 5' ends using the same 

procedure for labeling miRNAs. Labeled anti-miR was injected at 3.0 µm concentration 

in 1x PBS. The anti-miR sequences were as follows, without showing proprietary 

(Exiqon) LNA positions, and marking the amino-linker (*) positions:  

 

anti-let-7a: *ACTATACAACCTACTACCTC 

anti-control:*GTGTAACACGTCTATACGCCCA 

 

Fluorescence In Situ Hybridization (FISH). Probes against the MS2 hairpin-loop 

containing four amino-C6 modified deoxythymidine bases250 were ordered from the Keck 

Oligo Synthesis facility (Yale University School of Medicine) with the sequence: 

A*TGTCGACCTGCAGACA*TGGGTGATCCTCA*TGTTTTCTAGGCAAT*TA, 

where *T indicates the modified bases. The probes were labeled with Cy3 fluorophores 

by reacting the amino-handels with Cy3-N-succinimidyl-ester (GE) at room temperature 

for 72 h, rotating and protected from light (final labeling efficiency ~ 93%).  Dye-labeled 
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probes were subsequently HPLC purified. FISH was performed on cells co-transfected 

with pMCP-GFP and pMS2-mHM3Um-24xMS2 using previously published methods 250. 

 

Microinjection. Microinjection was performed using an Eppendorf Femtojet injection 

system and InjectMan micromanipulator (Eppendorf). All injection solutions were 

prepared in 1x PBS and backfilled into prepulled Femtotip microinjection needles 

(Eppendorf). Injection parameters were typically set at 100 hPa injection pressure, 20 hPa 

constant pressure, and 0.5 s injection time. 

 

Microscopy. Imaging was performed using a customized Olympus IX81 microscope. 

The illumination module consisted of a cell-TIRF system coupled with solid-state lasers 

with wavelengths of 488 nm (25 mW), 532 nm (100 mW) and 640 nm (100 mW). Lasers 

were directed through an acousto-optical tunable filter before being coupled into the cell-

TIRF module. All laser lines had 10 nm bandwidth clean-up filters to ensure 

monochromatic illumination. Net powers of ~1.2 mW, 7 mW, and 8 mW were achieved 

at the objective for the 488 nm, 532 nm and 640 nm laser lines, respectively. Laser beams 

were focused on the back-focal plane of the objective at distances from the optical axis 

such that the incident angle at the dish-media interface created a highly inclined laminar 

optical sheet (HILO) of illumination.  This provided significantly greater signal-to-noise, 

while also enabling greater penetration depths. The detection module consisted of a 60X 

1.45 NA oil-immersion objective (Olympus), 1x - 4x magnification changer (Olympus), 

and an Evolve EM-CCD camera (Photometrics). A dual-band filter cube consisting of a 

z491/639rpc dichroic filter (Chroma) and z491/639m emission filter (Chroma) was used 

for detection of GFP and Cy5, while a broadband filter cube with Q570LP dichroic and 

HQ610/75m emission filters (Chroma) was used for detecting Cy3 and mCherry. Unless 

otherwise specified, all tracking videos and images were recorded at 100 ms camera 

exposure time using 120x magnification (60x objective plus 2x magnification changer). 

For live-cell imaging, cells were maintained on-stage at 37 oC using the DeltaT open dish 
system and heated lid (Bioptechs).   
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Tracking image analysis. Centroid tracking was performed using Imaris as described in 

Appendix B. Gaussian-fit tracking was performed using the Jaqaman et al. Matlab 

routine251.  In both cases, tracking data were similarly analyzed with in-house Matlab 

routines to calculate the mean squared displacement (MSD) and diffusion coefficients.  

 

Colocalization image analysis. For mRNA-miRNA colocalization experiments, HeLa 

cells were co-microinjected with the MS2/MCP plasmids and the appropriate Cy5 labeled 

miRNA, incubated for 24 h under normal growth conditions and formaldehyde fixed just 

prior to imaging. Images for each channel were acquired sequentially and corrected for 

chromatic positional offset with an in-house Matlab routine. An object based approach252 

was used to quantitatively assess co-localization based on sub-pixel localization of the 

centers of mass (COMs) of isolated objects from the GFP (green circles) and Cy5 (red 

circles) channels (Fig. 4.3.B). Two objects, one from each channel, were considered 

'perfectly' co-localized if their COMs were localized in the same pixel (yellow circles; 

pixel size ≈ 133 nm) or simply co-localized if the radial distance between the COMs was 

less than the resolution limit (~281 nm for Cy5 dye). In the latter case, the COMs of the 

two co-localized objects occur on adjacent, but separate pixels; these were mapped as 

cyan and magenta circles for Cy5-COMs and GFP-COMs, respectively, for Fig. 4.3.B. 

Statistical significance was estimated using simulated images created in Matlab with the 

same particle densities as experimental images. Images were simulated 5000 times and p-

values were computed from the number of iterations where colocalization was equal to or 

exceeded experimental results.  

 

Purification of recombinant IF2 proteins. pIF2-His plasmid encoding the bacterial 

initiation factor 2 (IF2) was received as a gift from the Rachel Green lab (Johns Hopkins 

Medical School). A modified version, pIF2-TC-His containing a C-terminal tetracysteine 

(TC) tag situated between the end of the IF2 ORF and the His tag was engineered by 

ligating a short adapter sequence between the HindIII and NotI restriction sites. Both 

constructs were expressed in Escherichia coli strain BL21 grown in 2L of lysogeny broth 

(LB) media at 37 oC for 3 h after induction with 1 mM IPTG. IF2 expressing cells were 

pelleted, resuspended in cold lysis buffer (20 mM Tris pH 7.5, 300 mM NaCl, 5 mM 
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imidazole, and 1 mM 2-mercaptoethanol) containing protease inhibitors, and lysed in a 

microfluidizer at 80-90 psi. Clarified lysate was stirred with pre-equilibrated nickel 

sepharose resin at 4 oC for 30 min, after which, the slurry was transferred to a glass 
column and the filtrate passed through by gravity flow.  The resin was generously (5 − 6 
column volumes each) washed with lysis buffer followed by binding buffer (lysis buffer 
w/ 500 mM NaCl), and then eluted with elution buffer (lysis buffer with 250mM 
imidazole and raised pH 8.5). Collected fractions were analyzed with SDS-PAGE, and 
IF2 containing fractions were pooled and dialyzed overnight against 100 mM Tris pH 
7.5, 140 mM NaCl, 60 mM KCl, 14 mM MgCl2, and 2 mM DTT. Protein concentrations 
were determined by Bradford assay (Promega) before being diluted 1:1 with 100% 
glycerol and stored at −20 oC.  
 

Cy3AsH binding assays. Binding assays were performed similarly as described by Cao 

et al.253. Proteins (IF2, IF2-TC, or BSA) were pre-incubated at room temperature in a 

buffer containing 50 mM HEPES pH 7.5, 10% DMSO (v/v), and 140 mM KCl in the 

presence of 100 µm ethanedithiol (EDT), 1 mM tris(2-carboxyethyl)phosphine (TCEP), 

and 1 mM 2-mercaptoethanol (BME). After 1 h, Cy3AsH solubilized in DMSO was 

added to a 1 µM final concentration and the labeling proceeded for an additional 2 h. 

Fluorescence was recorded using an Aminco-Bowman S2 fluorimeter with 545 nm 

excitation and a 550 − 600 nm detection range scanned with 1 nm stepsizes at a rate of 1 

step/sec. Apparent dissociation constants (Kapp) were calculated based on changes in 

fluorescence observed with increasing protein levels using nonlinear regression to the 

equation,  
 

 

where ∆F is the observed fluorescence enhancement measured for each total 

concentration of protein ([P]), and [F] is the total concentration of Cy3AsH. For SDS-

PAGE analysis, labeling reactions were mixed with SDS-PAGE loading buffer with 200 

mM DTT containing no loading dye and run on 4-12% Bis-Tris NuPage polyacrylamide 

gels (Invitrogen) for 25 min at 200 V. Gels were imaged on a Typhoon scanner using 

Cy3 settings.         
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Synthesis of Cy3AsH: 

General Comments. The synthesis was based on Cao et al.253 with modifications in the 

solvents used for the second reaction and the chromatography purification for the final 

product. All reagents were obtained from Sigma-Aldrich without further purification. 1H-

NMR spectra were acquired using a Varian Inova 400 MHz spectrometer. Time of flight 

electrospray ionization mass spectrometry (TOF/ESI/MS) was performed on a 

Micromass LCT instrument.   

 

1--Sulfobutyl-2,3,3-trimethyl-indolenine (Compound 1). To a 25 ml round bottom 

flask, 0.8 ml 2,3,3-trimethylindolene, 1.6 ml butane sulton, and 7.0 ml 1,2-

dichlorobenzene were added, in order, through a rubber septum. The mixture was 

refluxed for 15 h at 120 oC and the product was precipitated by adding the reaction to 100 

ml ice-cold acetone with gentle swirling, yielding a burnt red-orange solid. The solid was 

dried to completion in a desiccator containing calcium chloride. Yield 60%. 1H NMR 
(DMSO): 1.54 (s, 6H), 1.74 (m, 2H), 1.96 (m, 2H), 2.5 (m, 10H), 2.84 (s, 3H), 4.48 (t, 
2H), 7.62 (m, 2H), 7.82 (m, 2H), 8.03 (m, 1H). TOF/ESI/MS: m/z calcd. for [M+H]+ 
296.1, found 296.1.    
 

3-(3,3-dimethyl-1-(4-sulfobutyl)indolin-2-ylidene)prop-1-enyl)-3,3-dimethyl-1-(4-

sulfobutyl)-3H-indolium (Cy3, Compound 2). 300 mg compound 1 (1.0 mmol) was 

dissolved in 1.5 ml pyridine solvent in a 25 ml round bottom flask equipped with a reflux 

condenser. The solution was heated to 120 oC and a total of 300 μl triethylorthoformate 
(2 mmol) was added in 40 μl increments every 15 min over the course of 2 h. Following 
the last addition, the reaction was continued for another 2 h (4 h total). The reaction was 
cooled to room temperature, yielding a viscous dark purple substance with a metallic 
sheen. This substance was transferred to a 50 ml flask and several volumes of ether were 
added, producing a cloudy orange suspension with visible precipitate collected at the 
bottom of the flask. The ether was removed by rotary evaporation and the remaining solid 
was dissolved in a small volume of an ethylacetate/methanol (6:5) mixture. The solution 
was transferred to a 250 ml round-bottom containing silica gel (5-6 scoops using a 
standard curved scoopula) and the solvent was removed by rotatory evaporation. The 
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adsorbed silica was dry loaded on top of a 7 inch packed silica column and an 
ethylacetate/methanol (6:5) mixture was passed through as mobile phase. The products 
resolved as two bands: a faster migrating pink band and a slower migrating dark purple 
band. Eluted fractions containing the pink product were collected and dried, first with 
rotatory evaporation to remove the solvent and second with phosphorous pentoxide 
desiccation to remove remaining water. Yield 68%. 1H NMR (DMSO): 1.54 (t, 2H), 1.73 
(m, 16H), 1.82 (m, 4H), 4.1 (t, 4H), 6.5 (d, 2H), 7.29 (t, 2H), 7.44 (t, 2H), 7.50 (d, 2H), 
7.62 (d, 2H), 8.35 (t, 1H). TOF/ESI/MS: m/z calcd. for [M]- 599.23, found 599.0.     
 
Cy3-bis-mercuric trifluoroacetate (Compound 3). 131 mg mercury oxide was 
dissolved in 4 ml trifluoroacetic acid (TFA) with mild heat. After cooling, 180 mg of the 
Cy3 dye (compound 2) was added. The reaction was stirred overnight at room 
temperature. The following day, the TFA was evaporated by gently streaming nitrogen 
gas over the surface of the uncapped reaction at 40 oC for 1 h, resulting in the formation 
of dark purple/red precipitate around the sides of the flask.  The flask was placed in a 
desiccator containing phosphorous pentoxide and a vacuum was pulled for 2 days to 
ensure complete drying. The yield was 83%. No analytical data available due to safety 
concerns regarding the mercury. 
 
3-(5-(1,3,2-dithiarsolan-2-yl)-3,3-dimethyl-1-(4-sulfobutyl)indolin-2-ylidene)prop-1-
enyl)-5-(1,3,2-dithiarsolan-2-yl)-3,3-dimethyl-1-(4-sulfobutyl)-3H-indolium  
(Cy3AsH, Compound 4).  In an oven-dried 10 ml round-bottom flask, 300 mg compound 
3 and 18 mg palladium II acetate were mixed with 3.5 ml anhydrous N-
methylpyrrolidinone (NMP), 0.52 ml arsenic trichloride (6.21 mmol, 27 eq), and 0.40 ml 
diisopropylethylamine (DIEA; 2.3 mmol, 10 eq). The reaction proceeded under nitrogen 
at 60 oC. After 3h, the solution was transferred to a 150 ml flask containing 0.25M 
phosphate buffered saline (PBS; pH 6.9) and 840 μl ethanedithiol (EDT) was added. The 
solution was extracted with 3 x 30 ml chloroform, and the combined organic layers were 
dried by addition of copious amounts of sodium sulfate. After 30 min, the sodium sulfate 
was removed by filtration and washed with several portions of chloroform until the 
filtrate ran clear. The collected filtrate was distilled at 40 oC under vacuum for several 
hours until only reddish oil remained. This was then purified twice by chromatography on 
silica gel using a methylenechloride/methanol/water (20:6:1 v/v) mixture. The yield was 
3%. 1H NMR (DMSO): 1.69-1.82 (m, 17H), 2.33 (m, 1H), 3.21 (m, 4H), 4.13 (t, 4H), 
6.61 (d, 2H), 7.53 (d, 2H), 7.72 (d, 2H), 7.87 (s, 2H), 8.33 (t, 2H).  TOF/ESI/MS: m/z 
calcd. for [M]- 931.00, found 930.5.     
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4.3 Results 

 

Orthogonal fluorescence repression assay for measuring the activity of 

microinjected miRNA 

iSHiRLoC is based on the premise that miRNAs injected into cells can be incorporated 

into the miRNA pathway and function to repress targets. In order to validate this premise, 

we developed a fluorescence-based repression assay that could measure miRNA activity 

in single cells. A fluorescence reporter construct encoding mCherry, a red fluorescence 

protein, was engineered to contain the 3’UTR of the mouse high mobility group A2 gene 

(mHmga2). The mHmga2 3’UTR is approximately 3 kilobases (kb) in length and 

contains seven seed sequences to the let-7 miRNA. Pairwise mutagenesis has 

demonstrated that each let-7 site pair can independently contribute to repression, having 

an additive effect in combination, and although the 3’UTR contains predicted seed sites 

for other miRNAs, let-7 appears to be the predominating repressor173. HeLa cells, the cell 

line used for the current iSHiRLoC work (Appendix B), express high amounts of 

endogenous let-7 (~20,000 copies/cell, Appendix B.3. Materials and Methods). To 

distinguish the activity of injected let-7 from that of endogenous let-7, we utilized 

orthogonal mutations in the mHmga2 3’UTR and let-7 miRNA173 (Fig. 4.1.A).  

We first tested the assay with transfection. The mCherry-mHmga2 3’UTR mutant 

reporter construct (mCherry-mHM3Um) was transfected with either no miRNA, wt-let-

7a, or mut-let-7a. In order to control for transfection efficiency, an EGFP plasmid was 

co-transfected and EGFP and mCherry fluorescence were quantified ratiometrically.  

While cells transfected with wt-let-7a or no miRNA showed a similar ratio of 

mCherry/EGFP, cells transfected with mut-let-7a showed an ~70% decrease in mCherry 

expression, thus demonstrating the specificity of the system (Fig. 4.1.B). To validate that 

the fluorescence levels were reflective of protein levels, transfected cells were analyzed 

with western blots (Fig. 4.1.C). Again, mut-let-7a caused an ~70% decrease in mCherry 

protein compared to no miRNA. However, unlike the fluorescence measurements, wt-let-

7a also showed ~50% decreased mCherry levels compared to no miRNA. This 

discrepancy is likely due to using endogenous actin as a loading control in the western 

blot, which does not account for changes in transfection efficiency. Under the same 
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transfection conditions, co-transfection of plasmid DNA with additional nucleic acids is 

likely less efficient than transfection of plasmid DNA alone due to changes in the 

charge:lipid ratio. This is supported by the fact that a random single-stranded DNA 

(ssDNA) oligo also caused decreased expression of mCherry (data not shown); thus, 

emphasizing the necessity for ratiometric measurements with dual exogenous reporters.      

After validating the specificity of the orthogonal system and ratiometric 

quantification, we tested whether microinjected miRNA could cause repression. Cells 

were microinjected into the nucleus with the dual reporter plasmids in combination with 

either wt- or mut-let-7a miRNA. Since only faint mCherry expression could be detected 

~2.5 h post-transfection in the absence of miRNA (data not shown), cells were 

maintained for 24 h post-injection to allow the proteins to fully mature and reach steady 

state. Similar to transfection, injected mut-let-7a caused a decrease in mCherry/GFP 

ratios compared to wt-let-7a (Fig. 4.1.D). This strongly indicates that at least a fraction of 

injected miRNA is functional, and also suggests that mature miRNA is transported out of 

the nucleus to effect repression.  

These data, taken together with luciferase assays showing that 3’end fluorophore 

labeling does not inhibit miRNA activity (Fig. B.1.A), validate the biological relevance 

of our iSHiRLoC approach. 
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Figure 4.1 Fluorescence-based miRNA repression assay. (A) Schematic of mCherry 
reporter with Hmga2 3’UTR, which has x7 seed sequences for let-7 miRNA (positions 
indicated with red blocks). Two point mutations in let-7 seed sites were introduced to 
make the reporter sensitive to an orthogonal mutant miRNA. (B) Left, Representative 
composite images of mCherry (red) and GFP (green) fluorescence in cells co-transfected 
with a mCherry-Hmga2 mutant reporter, EGFP control plasmid, and the indicated 
miRNA. Nuclei are stained with DAPI (blue) for visualization. Two examples are shown 
for each group. Right, quantification of mCherry fluorescence relative to GFP, 
normalized with respect to ‘no miRNA’ sample. (N = 2 independent trials, 75 cells per 
group) Error bars, SEM. (C) Quantification of mCherry-Hmga2 mutant reporter 
expression by western blot. Endogenous actin was used as a loading control. (D) 
Representative images of GFP fluorescence (top) and mCherry fluorescence (bottom) in 
cells co-injected with an mCherry reporter plasmid, a GFP control plasmid and, either the 
wild-type (WT) or mutant let-7-a1 (MUT) miRNA are shown. Scale bar, 20 µm. (C) 
Quantification of mCherry fluorescence relative to GFP fluorescence, normalized with 
respect to the WT sample (N = 3 independent trials, 50 cells per group). Error bars, 
standard error of the mean.  
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Intracellular colocalization of miRNA and messenger RNA 

Diffusion analysis of injected wt-let-7a miRNA revealed two normally distributed 

populations 4 h after microinjection: a more slowly diffusing population, with a mean 

diffusion constant of ~0.0034 µm2s-1, and a faster moving population, with a mean 

diffusion constant of ~0.26 µm2s-1 (Fig. B.3.G). These diffusion rates are similar to those 

of P-bodies (PBs), cytoplasmic sites of RNA degradation165, and mRNA 

ribonucleoprotein complexes (mRNPs)162; thus, suggesting that the tracked miRNAs 

were assembled in these two respective complexes. Indeed, by co-expressing GFP-

Dcp1a, a decapping protein that localizes to P-bodies, we could observe colocalization of 

miRNA and P-bodies (Fig. B.3.A).  

 To investigate the interactions with mRNPs, we utilized the MS2 RNA labeling 

method developed by the Singer group162.  A luciferase reporter construct (mG-mH3UM-

MS2) was engineered with the mutant Hmga2 3’UTR followed by 24 tandemly repeated 

MS2 hairpin-loops (Fig. 4.2.A). These loops acted as binding sites for the MS2 coat 

protein (MCP), which was co-expressed as a GFP fusion such that binding of multiple 

MCP-GFPs to the reporter construct enabled its detection above background (Fig. 4.2.A-

B). To decrease background, the MCP-GFP was appended with a nuclear localization 

signal (NLS), thus removing most non-bound protein from the cytoplasm.  

 We generally experienced poor expression of these constructs with very few 

(<1%) cells having a green nucleus as evidence that the MCP-GFP-NLS is being 

expressed (Fig. 4.2.B). In these few cells, well resolved cytoplasmic and nuclear particles 

could be detected, and these were verified to contain the MS2-mRNA by fluorescence in 

situ hybridization (FISH) (Fig. 4.2.B).  

 Next, we measured the extent of colocalization with miRNA. Due to poor 

expression, we made two modifications that were slight improvements: first, the MCP-

GFP promoter was swapped for a slightly stronger variant, and second, rather than using 

transfection that gave variable results, the MS2/MCP plasmids were microinjected into 

the nucleus in order to deliver them at a more consistent quantity and ratio. The latter step 

had the added convenience that the fluorophore-labeled miRNA could be introduced 

simultaneously since nuclear-injected miRNA was confirmed to be functional (Fig. 

4.1.D). At 24 h post-injection, several cells could be imaged that contained both the 
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miRNA and expressed, labeled mRNA (Fig. 4.2.C). Following deconvolution, an image 

processing method that quantitatively removes out of focus light, colocalization of the 

mut-Hmga2 mRNA with mut-let-7a could be qualitatively discerned by overlaying the 

two channels (Fig. 4.2.C). For quantitative analysis, we used an object-based method252. 

Images were segmented into objects by thresholding, and the sub-pixel localizations of 

these objects’ centers of mass (COMs) were determined. Objects were then assigned as 

colocalized taking into account that, due to the diffraction limit of light, two objects 

cannot be resolved, and are thus considered colocalized, if their COMs are separated by a 

distance less than ~1/2 the emission wavelength (~250 nm for GFP) (Fig. 4.2.C). Using 

this approach, we observed miRNA-specific colocalization: ~18% of mut-let-7a-Cy5 was 

determined to be colocalized with the mut-Hmga2-GFP mRNA, compared to ~7% for 

wt-let-7a-Cy5 and <3% for control cells not expressing mRNA (where colocalization 

simply arises from coincidental colocalization background) (Fig. 4.2.D). The wt- and 

mut-let-7a samples had comparable particle densities, thus ruling out the possibility that 

increased colocalization was due to coincidence alone (Fig. 4.2.E). Furthermore, 

statistical analysis using simulated images showed that colocalization was non-random 

for the matched mutant mRNA-miRNA samples (p = 0.0138). The wt-let-7a-Cy5 likely 

shows a higher colocalization than background due to the fact that it has many 

endogenous targets; this may lead to its localization to common cellular RNA foci, such 

as PBs, where the mutant mRNA may also reside due to either its regulation by 

endogenous factors or natural decay.  

 Lastly, we combined the colocalization data with stepwise photobleaching 

analysis to reveal the types of complexes that were being formed between miRNA and 

mRNA. For mut-let-7a-Cy5, colocalized spots contained more multimers (~62%) than 

monomers (38%) while independent, non-colocalized spots had nearly an even 

distribution (Fig. 4.2.F). Taken together, these data indicate that colocalized 

miRNA:mRNA are interacting in complexes that can contain more than one miRNA 

bound to a single mRNA. Alternatively, they may be assembled into larger degradation 

complexes, such as PBs, that contain multiple mRNAs and multiple miRNAs.     
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Figure 4.2. Injected let-7a colocalizes with MS2-labeled reporter transcripts. (A) 
Schematic of the MS2 reporter mRNA containing a firefly luciferase coding sequence 
(FL CDS), mutant Hmgs2 3’UTR, and 24 tandem repeats of the MS2 hairpin-loop. When 
co-expressed, up to 48 MS2(coat protein)-GFP fusions can bind to the reporter hairpin 
loops, enabling the transcript to be detected by fluorescence microscopy. (B) 
Confirmation of MS2 reporter expression with fluorescence in situ hybridization (FISH). 
Cells transfected with the MS2 plasmids were hybridized with Cy5-labeled probes 
antisense to the MS2 hairpin loops. Several colocalizing particles (yellow; marked with 
white arrows) of GFP (green) and Cy5 (red) could be observed in a cell expressing the 
MS2-GFP fusion and reporter, identifiable by the GFP signal in the nucleus.  Scale bars = 
10 µm. (C) Injected Cy5-labeled mutant let-7 colocalizes with the reporter mRNA.  From 
left: (1) Unprocessed image of GFP (green) fluorescence from a cell injected with the 
MS2 plasmids and mut-let-7-Cy5; (2) Unprocessed image of Cy5 (red) fluorescence from 
the same cell; (3) GFP (green) and Cy5 (red) images were deconvolved to reduce 
background and overlaid into a composite image. Yellow particles indicate co-
localization. (4) Co-localization map representing independent miRNA (red) and mRNA 
(GFP) particles, and either perfectly co-localized (yellow) or adjacent miRNA-mRNA 
localizations with an inter-particle center-center distance less than the lateral resolution 
limit of the image (cyan and magenta). (5) Zoomed view of the region in the preceding 
images marked by a white box. Yellow circles indicate co-localized spots. Scale bars = 5 
µm (1-4) or 1 µm (5). (D) Fraction of mutant (mut / +; circle) or wild-type (WT / +; 
square) miRNA colocalizing with the mutant reporter. To test for the contribution of 
background fluorescence, control cells were injected with mutant let-7-a and MS2-GFP 
plasmid without the MS2-mRNA expression plasmid (mut / - ; triangle). Data points 
within each group are explicitly shown and their associated means (dashed lines) are 
shown (N = 2 cells for each group). (E) Mean densities of detected Cy5 (red bars) and 
GFP (green bars) particles for images used for quantifying colocalization in D. (F) 
Distribution of monomers and multimers of mutant let-7-a miRNA non-colocalized 
(independent) or colocalized with MS2-GFP tagged target mRNAs. The coordinates of 
stepwise-photobleached particles in the mut-let-7-Cy5 channel were mapped to the mut-
mRNA-GFP channel to assess the extent of colocalization. N = 2 cells containing a total 
of 60 independent and 16 colocalized let-7-a particles. Data points within each group are 
explicitly shown (grey circles, monomers; black squares, multimers) in addition to their 
mean values (grey dotted line, monomers; black dotted line, multimers). The statistical 
variation within each group was minimal between replicates.
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Dcp1a and Ago2 tracking suggest miRISC assembles into intermediates of P body 

formation 

Argonaut (Ago) proteins are the central protein components of the miRNA pathway. 

They directly bind and unwind mature duplex miRNAs254, stabilize target binding43, and 

recruit additional factors to effect target repression255. Ago also serves to protect miRNA 

from nuclease degradation256. Therefore, it is likely that all functional, mature miRNAs 

are escorted by Ago from the time they are handed off by Dicer until they are released for 

decay.  

 We thus sought to measure the dynamics and localizations of Ago to compare it 

with miRNA. Transiently expressed Ago2-EGFP localized into bright granules the 

diffusion of which fell into three Gaussian populations with mean diffusion coefficients 

of ~0.0264 µm2s-1, ~0.00313 µm2s-1, and ~1.81e-5 µm2s-1 (Fig. 4.3.A, top). These 

coefficients are highly similar to those of Dcp1a (Fig. B.S.2.C), and in agreement with 

several previous reports of Ago2 colocalizing with P body complexes257-261.  Alignment 

of the histograms for Ago2 and miRNA tracking at 4 h post-injection, when multimer 

formation peaks (Fig. B.2.E,top), revealed that the slow diffusing population of let-7a, 

attributed to association with P bodies, matched the fastest diffusing population of Ago2 

(Fig. 4.3.A, top and middle). However, the fastest let-7a population, attributed to 

incorporation into mRNPs, was not detected for Ago2. This is likely due to the fact that 

these complexes have few Ago protein molecules, which when combined with the fast 

diffusion and the high background at the wavelength of EGFP emission would make 

them difficult to detect with the sensitivity of our current microscope. Surprisingly, the 

most prevalent Ago2 population (~0.00313 µm2s-1) was not explicitly observed for let-7a 

(Fig. B.2.G). Reexamination of the original let-7a data set provided evidence, however, 

for a third Gaussian at 1.38×10-3 µm2s-1, and that this actually fit slightly better to the data 

(R2 = 0.9862 versus 0.9816); this Gaussian population is, however, still narrower and 

slightly offset compared to that of Ago2 (Fig. 4.3.A, top and middle).  

 Recently, we have begun testing a new particle tracking routine based on Jaqaman 

et al.251, which detects particles with Gaussian fitting and determines a particle’s 

localization based on the peak of its fit. This method may be more robust than our current 

routine that uses a center of mass (centroid) based method to detect particles. Reanalysis 
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of the same let-7a images at 4 h post-injection with this new method resolved three well 

fit (R2 = 0.9850) Gaussian populations: a slow population (~ 0.1740 µm2s-1), an 

intermediate population (~0.0230 µm2s-1), and a fast population (~0.0053 µm2s-1) (Fig. 

4.3.A, bottom). Importantly, the new tracking routine maintained the fast diffusing 

population from the original results, but split the previous ‘slow’ population into two 

distributions that better agree with the Ago2 results.  Therefore, we may observe three 

populations of miRNA, not two: a fast population that diffuses similarly to mRNPs, and 

an intermediate and slow population which both diffuse similarly to Dcp1a/Ago2. 

 The exact nature of the Dcp1a and Ago2 populations is unclear. Based on similar 

distributions between Dcp1a and Ago2 and their known colocalization, we hypothesize 

that all the observed populations are P body-like. The differences in diffusion coefficients 

are then likely due to differences in size, as we observe a broad size distribution in 

detectable Dcp1a foci (Fig. 4.3.B). According to the Stokes-Einstein equation, objects 

with smaller radii undergo faster Brownian diffusion than objects with larger radii, and 

we generally observe this trend (although we have not yet directly quantified the 

correlation of size and diffusion for P bodies). We propose that smaller foci may actually 

be immature P bodies or intermediate complexes. In line with this hypothesis, we often 

observe smaller Dcp1a foci merging with larger foci, suggesting that these complexes 

may be delivering cargo to the larger assembly (Fig. 4.3.C).           
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Figure 4.3 Ago2 tracking suggests the presence of a smaller intermediary miRISC/P 
body complex. (A) Comparison of Ago2 and miRNA diffusion coefficient distributions. 
Top, Histogram of the distribution of diffusion coefficients for Ago2-EGFP particles, 
calculated assuming Brownian diffusion. The distributions can be fit (purple dashed 
lines) to three normal populations (R2 = 0.974). The median bins for the two most 
prevalent populations are demarcated with a grey dotted line to facilitate comparison with 
the other histograms. Middle, let-7a diffusion histogram from the 4h timepoint (Fig. 
B.2.G), fitted with three Gaussian functions (red dotted lines, R2 = 0.9862) instead of two 
(see Fig. B.2.G). These data are the result of centroid-based tracking (Routine 1). The 
median bin for the fastest population is demarcated with a dashed yellow line. Bottom, 
the same 4h images were reanalyzed with a Gaussian-based tracking method (Routine 2) 
and fitted into three populations (green dashed line, R2 = 0.9850). (B) Volumetric 
measurements of Dcp1a-containing foci. Z-stack images of fixed cells expressing RFP-
Dcp1a were acquired and 3D volumes of detected particles were calculated using 
Huygens Software. Ago2 foci, which colocalizes with Dcp1a, shows a similar 
distribution. (C) Montage of a smaller Dcp1a particle sampling and docking with a larger 
particle.  Each frame is a 0.1 s snapshot taken every 2.0 s (20 frames/40 s total). Images 
were thresholded and made binary for visualization. Scale bar (black bar above top left 
hand corner) =  1 µm.  
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Inhibited miRNA and miRISC seldom form trackable foci 

That microinjected miRNA can repress reporter gene expression and colocalizes with on-

pathway complexes demonstrates the biological relevancy of our approach.  For 

additional confirmation, we performed several additional control experiments that include 

inhibition of injected miRNA and mutation of Ago2.  

 Microinjection of let-7a-Cy5 with locked-nucleic acid (LNA)-modified DNA 

antisense (LNA/DNA) anti-miR resulted in complete loss of punctate formations 4 h 

post-injection (Fig. 4.4.A). Importantly, mismatched anti-miR control did not decrease 

the number of foci formed (Fig. 4.4.A, left). Additionally, fluorophore labeled anti-let-7 

and anti-miR control did not themselves form foci, as expected (Fig. 4.4.A). This 

indicates that inhibited miRNA or modified RNA is not recognized by miRISC and 

suggests that only functional miRNA can assemble into complexes detectable as foci.  

 Rüdel et al.262 have reported that a tyrosine in the 5’ miRNA binding pocket in the 

mid-domain of Ago2 can be phosphorylated by an as-yet unknown kinase, resulting in a 

loss of miRNA-binding capacity due to charge-charge repulsion. This phosphorylation 

can be constitutively mimicked by an Y529E mutation, causing both loss of miRNA 

binding and localization to P bodies. We have now reproduced these results using our 

system (Fig. 4.4.B). As mentioned above (4.3.3), transient expression of Ago2-EGFP in 

HeLa cells induces formation of bright P body-like cytoplasmic punctae (Fig. 4.4.B, left).  

The number of foci per cell varies widely, with most showing 10-14 particles. In order to 

test whether these foci contain miRNA, as suggested by the overlap between our miRNA 

and Ago2 tracking results (Fig. 4.4.A), we expressed the Ago2-Y529E mutant for 

comparison. Unlike wild-type, expression of the Ago2-Y529E mutant forms few foci; 

instead, fluorescence was more evenly distributed throughout most cells (Fig. 4.4.B, 

right). Foci counting reveals, however, that the mutation has incomplete penetrance for 

foci formation, which was not previously reported262. The great majority of cells had 0-4 

particles, but a fraction (~32%) had several more (Fig. 4.4.B, right). While the reason(s) 

behind this cell-to-cell variation are unclear, we conclude that the majority of tracked 

Ago2 is probably bound to miRNA or in miRNA-related complexes since a mutant Ago2 

incapable of loading miRNA only irregularly assembles into trackable particles.    
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Figure 4.4 Inhibition of miRNA or miRISC alters their subcellular distributions. (A)  
Anti-miR inhibited miRNA does not form well-resolved particles at 4h post-injection. 
Left top row, HeLa cells were microinjected with let-7a-Cy5 alone or in the presence of 
anti-let-7 oligonucleotide or mismatched anti-control. Left bottom row, cells injected with 
labeled anti-let-7 or anti-control. Right, The relative number of detectable particles for 
each image to the left normalized to let-7a-Cy5 alone. Images were analyzed with Imaris 
software, using the same quality threshold. (B) miRNA loading impaired Ago2-Y529E 
mutant forms fewer particles than Ago2-WT when expressed as a GFP fusion. Left, 
representative images of Ago2-WT and Ago2-Y529E. Right, Histograms of the number 
of Ago2-WT or Ago2-Y529E foci detected per cell (N = 67 cells for wt; N = 66 cells for 
Y529E).  Numbers on the x-axis below each bin represent the bottom edge for that bin.  
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Synthesis and testing of Cy3AsH: a potential new tool for iSHiRLoC 

To apply iSHiRLoC to answer questions on how miRNAs effect translation requires new 

fluorescence tools. GFP and its derivatives are the workhorses of modern-day 

fluorescence microscopy. The ability to clone and express, with relative ease, a 

fluorescent protein in the same open reading frame (ORF) as virtually any other protein 

of interest has enabled the determination of the dynamic intracellular localization of 

perhaps thousands of proteins. Yet, fluorescent proteins have their drawbacks. At a mass 

of nearly 30 kilodaltons (kDa) (238 amino acids), they can sterically interfere with 

protein-protein interactions and obfuscate endogenous protein localization 263. Moreover, 

GFP-based chromophores, which are autocatalytically formed by oxidation in the center 

of a beta-barrel tertiary structure, can take at least several minutes to mature even after 

the full-length protein is translated264. As a consequence, neither the localization of 

protein synthesis nor its rates can easily be studied intracellularly using fluorescent 

proteins265.  

 A new class of biarsenical fluorophores has been developed with the intent of 

eliminating these problems266. These fluorophores are small molecular weight organic 

dyes modified to recognize genetically encoded tags that are orders of magnitude shorter 

than fluorescent proteins.  The approach is based on the ability of organoarsenicals to 

form reversible covalent bonds bridging two adjacent thiols. This property, ironically, is 

also responsible for the toxic effects of arsenic: pyruvate catabolism and ultimately ATP 

production are inhibited by arsenic binding to the dithiolane ring of lipoic acid, a cofactor 

of pyruvate dehydrogenase267. To prevent this toxic effect and impart specificity to the 

labeling method, organic dyes are appended with dual cis-facing arsenic handles, and the 

protein to be labeled is expressed with an engineered tetracysteine tag containing two 

pairs of cysteines spaced at the same distance from one another as are the arsenic handles 

on the fluorophore. This arrangement allows for cooperative binding of the fluorophore 

to the tag with an affinity great enough that the antidote for arsenic poisoning, 

ethanedithiol, can be coadministered during labeling to prevent cytotoxicity and non-

specific binding.  

 The first biarsenical fluorophore developed was based on the common green 

fluorescent dye fluorescein, and was termed FlAsH or fluorescein arsenical helix binder 
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since the tag, consisting of six amino acids in the configuration ‘CCXXCC’, was believed 

to form an α-helix structure266. Further improvements to the FlAsH tag, however, found 

the optimal motif to be ‘CCPGCC’, which is more consistent with a β-turn268 and NMR 

studies have confirmed this to be the case269. Despite the misnomer, a second biarsenical 

compound, ReAsH, was subsequently developed that recognizes the same FlAsH tag but 

is red in fluorescence268.   

 FlAsH and ReAsH, facilitated by their commercial availability, have been used in a 

number of different applications. In addition to their small size, another advantage of 

these fluorophores is that they are cell permeable and exhibit a several-fold enhancement 

in fluorescence only after tag binding; therefore, by pre-incubating cells in the dye, 

transient expression events or changes in protein conformation can be detected nearly 

instantaneously with minimal background270,271.     

 Most relevant to our studies, ReAsH has been used for intracellular live-cell 

localization of active translation sites265. In this method, a TC tag was engineered just 

after the start codon in a reporter construct encoding a GFP-β-actin fusion protein.  

Because only the TC tag had to be translated, and not the full-length protein, sites of 

translation could be detected as cytoplasmic punctae before the nascent chain was 

released. Importantly, the formation of these punctae were sensitive to translational 

inhibitors: puromycin, a translation initiation inhibitor, caused rapid drop-off of punctae, 

while cycloheximide, a translation elongation inhibitor, increased the persistence of 

punctae as if translation were frozen in place.   

 Translation site labeling combined with colocalization and tracking of miRNA and 

mRNA could provide for direct kinetic measurements of translational repression and 

simultaneous determination of the inhibited steps (initiation or elongation). However, 

these experiments would require single-molecule localizations, which in-turn requires 

fluorophores with optimal photophysical properties. FlAsH and ReAsH have relatively 

low extinction coefficients and fast photobleaching and/or –blinking rates, and are largely 

untested in this application. ReAsH localization has been measured with high precision (5 

nm) in vitro272, but it is unclear whether this is translatable to inside cells where far more 

photons need to be detected in order to overcome higher backgrounds from cellular 

autuofluorescence. Translation site labeling with ReAsH reported by Rodriguez et al.265 



 

 124 

appeared to produce well resolved, bright particles, but their localization analysis was 

only semi-quantitative, thus providing little benchmark to judge its potential.  

 Cao et al.253 have reported on the synthesis of a promising new biarsenical, 

Cy3AsH, which features arsenic handles appended to a scaffold Cy3, a commonly used 

fluorophore for single molecule methods including iSHiRLoC. This dye has improved 

photophysical properties over FlAsH/ReAsH including a higher extinction coefficient 

and brightness (quantum efficiency×extinction coefficient) as well as increased 

photostability. Although its fluorescence enhancement upon binding is several fold lower, 

this may be less a characteristic of the fluorophore than its tag —CCKAEAACC— 

which, compared to the FlAsH tag, is extended between the cysteines by three amino 

acids in order to account for the longer inter-arsenic distance on Cy3AsH. The Cy3AsH 

tag, unlike the FlAsH tag, has not gone through extensive rounds of modification273, thus 

there may be significant room for improvement.  

 Given its potential, we wanted to test Cy3AsH’s fluorescence properties and its 

ability to specifically label tagged proteins. Since it is not commercially available, we 

synthesized the molecule using a modified four-step procedure (Fig. 4.5) based on that of 

Cao et al.253. We were unable to produce the Cy3 intermediate (compound 2) in the 

second reaction using the previously described acidic buffer conditions (acetic acid/acetic 

anhydride mix), but instead were successful using pyridine as the solvent 274. We also had 

to alter the conditions for chromatographic purification following the transmetallation of 

the final product, substituting the methanol/toluene (1:2 v/v) mobile phase with 

methylenechloride/methanol/water (20:6:1 v/v). Yields for the first three steps were 

moderate at 60 − 83%, however, the final product was recovered at much lower rates 

(3%), likely due to two rounds of purification necessary to eliminate an additional spot on 

the thin layer chromatography (TLC).  

 Previous testing of Cy3AsH labeling was done using a short helical peptide with a 

terminal TC tag253. For preliminary testing, we wanted to see whether Cy3AsH could be 

used to label a full-length protein with a more complex structure. We chose to use the 

100 kDa bacterial translation initiation factor IF2 since it is easy to express 

recombinantly and purify, and engineered the Cy3AsH-TC tag ‘KLCCKAEACCKA’ at 

the C-terminus (Fig. 4.6.A). Our Cy3AsH had a maximum absorbance at λ = 565 nm and 
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a maximum emission at λ = 571 nm. Addition of IF2-TC protein resulted in a 

bathochromic shift in fluorescence of 11 nm (Fig. 4.6.B-C). Titration of Cy3AsH with 

increasing concentrations of IF2-TC in the presence of 100 µm EDT resulted in a 

maximum enhancement of ~5-fold and an apparent Kd =  6.31±0.99 µM (Fig. 4.6.B-C). 

Dye binding was highly stable and not completely reversed with reducing SDS-PAGE 

(Fig. 4.6.D).  

 Next, we tested the specificity of labeling. Cy3AsH was incubated with either 5 or 

20 µM IF2-TC, or unlabeled IF-2 or bovine serum albumin (BSA) as controls, and run on 

SDS-PAGE (Fig. 4.6.E). The fraction of bound Cy3AsH was quantified by measuring the 

intensities of bands containing bound Cy3AsH (slow migrating) versus non-bound free 

Cy3AsH (fast migrating) (Fig. 4.6F). IF2-TC at 20 µM concentration showed the greatest 

extent of labeling (~26%), approximately 5-fold greater than non-tagged IF2 (~5%). 

Unexpectedly, BSA control at the same concentration showed a similar binding 

efficiency as IF2-TC (~20%). Fluorescence scans, however, show a maximal emission at 

λ = 596 nm in the presence of 20 µM BSA, which is 14 nm and 25 nm red-shifted to the 

maximal emissions for IF2-TC and no protein, respectively. This suggests that Cy3AsH 

has a different mode of binding to BSA compared to IF2-TC.  

 We conclude that Cy3AsH can be used to fluorescently label TC tagged proteins 

and that binding causes a change in its spectral properties, causing a red-shift and modest 

enhancement of emission. However, labeling is not tag-specific as considerable amounts 

of Cy3AsH could also bind non-tagged proteins.  

 

 



 

 126 

 

Figure 4.5 Scheme of Cy3AsH Synthesis. 
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Figure 4.6 Testing Cy3AsH labeling of tetracysteine-tagged protein. (A) IF2 and IF2-
TC plasmid cloning and protein purification. The Cy3AsH-TC tag was cloned 
downstream of the IF2 CDS before the histidine tag. Both IF2 and IF2-TC were purified 
by the histidine tag with nickel-sepharose. Fractions collected during purification of each 
protein are shown resolved by SDS-PAGE. (B) Fluorescence wavelength scan of 1 µm 
Cy3AsH in the presence of varying concentrations of IF2-TC. (C) Maximum intensities 
from B plotted as a function of IF2-TC concentration. Intensities are baseline corrected 
for non-zero fluorescence in the absence of protein. Data points are fitted with a non-
linear regression (see Materials and Methods). (D) SDS-PAGE of Cy3AsH labeled IF2-
TC. Labeled full-length protein is observed at 102 kDa. Additional bands are likely 
protein decay products resulting from harsh labeling conditions. (E) SDS-PAGE of 
Cy3AsH labeling reactions containing 1 µm Cy3AsH and 5 µm or 20 µm IF2-TC, IF2, or 
BSA. (F) Quantification of Cy3AsH bound to each protein in the gel shown in E. The 
fraction bound was calculated as the summed density of slow migrating bands divided by 
the sum of all bands (including free dye). (G) Fluorescence wavelength scan of Cy3AsH 
in the presence of no protein (blue), IF2-TC (yellow-to-red), or BSA (green). The 
maximum emission wavelengths are marked with dashed lines.   
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4.4 Discussion 

Summary 

Single molecule analysis can access depths of biological information previously 

inaccessible by ensemble methods275. We have now developed and implemented, in 

iSHiRLoC, a single molecule analysis method for studying miRNA in real-time, in live-

cells. In its current form, iSHiRLoC is able to distinguish kinetically distinct steps in 

complex assembly and disassembly of a miRNA247. We have also characterized the 

diffusion of Dcp1a (P bodies) and Ago2, two important pathway components. We 

envision future experiments where these various components are tracked simultaneously, 

and their interactions are timed and mapped to build a systems biology framework276 for 

understanding miRNA processes. 

 

Protein repression assay 

Specific repression of an mCherry-Hmga2 mutant reporter by seed-matched injected 

miRNA demonstrated that microinjection does not hamper cellular RNA silencing and 

that duplexed mature miRNA can be effectively incorporated into repressive complexes. 

At 24 h post-microinjection, we measured ~70% repression of mCherry levels. In order 

to place our complex assembly kinetics into context, it will be important to repeat these 

measurements at earlier time points to determine when the onset of repression occurs. 

Based on our kinetics, we predict this may be as soon as the 2 h time point, when miRNA 

was first reliably detected in high molecular weight RNPs. However, the reporter assay in 

its current form may be limited at these early time points as the rate of protein expression 

and maturation, to the levels required for detection, may be slower than the kinetics of 

repression. Indeed, we were only able to observe faint mCherry fluorescence as early as 

~2.5 h post-injection in the absence of miRNA. GFP may even take longer to detect due 

to its even slower maturation264,277. A better approach would be to inject miRNA into 

cells already expressing the reporters at steady state. However, because fluorescent 

proteins have long half-lives (~24 h), moderate attenuation to protein output would have 

little if any effect on steady-state levels, making the assay insensitive. One possible 
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solution is to destabilize the fluorescent proteins; while another is to adopt a 

luminescence based reporter gene system suitable for microscopy.  

 

Colocalization with MS2-labeled mRNA 

Using a quantitative object-based analysis, we measured sequence-specific colocalization 

of fluorophore labeled mutant let-7a with MS2-labeled mutant Hmga2 reporter 

transcripts. These data support the conclusion that microinjected miRNAs bind targets 

and assemble into mRNPs. In addition, stepwise photobleaching showed that colocalized 

miRNA was more often multimeric in nature than non-colocalized miRNA. Due to the 

high number of GFPs (~30-40 162) loaded onto mRNAs containing 24 MS2 hairpin-loops, 

stepwise photobleaching cannot be used to determine the ratio of miRNA:mRNA (the 

upper limit for photobleaching is approximately 7-8 before the steps are no longer 

discernible). Since Hmga2 contains seven let-7 seed sites, it may be expected that several 

miRNAs could be bound to a single transcript; however, while the presence of multiple 

seed sites can enhance repression220, this enhancement is often simply additive82,173. This 

lack of cooperativity suggests that multiple sites enhance repression by increasing the 

chance for a single binding event, rather than enabling cooperative binding. An 

alternative possibility is that the colocalized multimers are in sites with several target 

transcripts, like P bodies. Immunofluorescence against P body proteins could be used to 

further character these complexes.  In addition, MS2-labeled mRNPs can be co-tracked in 

live cells with miRNA or Dcp1a.  

 

Identification of an intermediary complex 

In agreement with their colocalization in P bodies, Dcp1a and Ago2 exhibited similar 

diffusive properties when expressed as fluorescent fusions. Tracking revealed that for 

both proteins there are at least two populations. We attribute these differences in 

diffusion to size, since both small and larger foci are detected, but we expect there may 

be additional distinctions in the molecular architecture of these complexes — they may 

consist of different factors or stoichiometry of factors. While a large list of P body 

components has been identified145, it is still unclear what exactly makes a P body a ‘P 
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body’; are they consistent assemblies with defined factors or is there heterogeneity 

between the granules? Consistent with the latter possibility, Poly(-rC) Binding Protein 2 

(PCBP2) and TNGW1, an isoform of GW182, have been shown to only localize in a 

subset of P bodies with unknown determinants278,279. We have observed that smaller 

Dpc1a foci interact and even join with larger foci, and we speculate that the smaller 

versions may be immature aggregates or satellite assemblies that form around and 

transport destabilized mRNPs to be degraded in the larger sites. We also note the 

possibility that some of these foci, both small and large, may be non-functional 

aggregates resulting from transient protein overexpression280. It will be important to see if 

both the distributions in diffusion as well as size persist in stably transfected cell lines 

selected for low-to-moderate expression more akin to endogenous levels. 

 Comparing Ago2 diffusion with that of miRNA, we found only one corresponding 

population — the slow miRNA population — matched that of the fastest Ago2.  This was 

surprising considering that Ago is required for all known miRNA functions, and thus is 

expected to exhibit similar dynamics. While sensitivity limits may explain why Ago2 

cannot be detected diffusing as fast as the most mobile miRNA complexes (which we 

assign to mRNPs), it does not explain why few miRNAs are observed to have very slow 

diffusion coefficients coincident with the most prevalent Ago2 population. Importantly, 

this very slow population could be detected for miRNA when the same movies were 

analyzed with a Gaussian-based, in place of a centroid-based, method for particle 

detection251. Why might this be the case? The centroid-based method may be more 

sensitive to low signal-to-noise, causing localization error to be compounded with 

diffusion281. This error would arguably have the heaviest weight on dim particles with 

low diffusion coefficients, making stagnant particles appear more mobile than they 

actually are.  It will thus be critical to directly compare the two routines using simulated 

images with varying signal-to-noise levels to determine their relative accuracies and 

limitations.  

 

Inhibition of miRNA and miRISC-loading 

Co-microinjection of LNA/DNA anti-miR with fluorophore-labeled duplexed miRNA 

inhibited the formation of trackable foci. Due to the very high base-pairing affinity of 
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LNA 282, we suspect that, even in the absence of heat-annealing, the anti-miR displaced 

the passenger strand and was bound to the guide strand before microinjection.  Loss of 

foci then suggests that miRNA:anti-miR duplexes cannot be incorporated into the 

miRNA pathway. This is supported by previous evidence that modifications, including 

2'deoxy substitutions that distort the A-form structure of small RNA duplexes decrease 

the effectiveness of gene repression283. That functional and non-functional miRNA 

duplexes display such dissimilar subcellular distributions serves as an important control 

for our experiments — we are unlikely tracking non-functional complexes — but it may 

also be useful as a readout to screen oligonucleotide chemistries for the development of 

anti-miRs or chemically modified siRNA/miRNA mimics282. 

 We also observed a similar loss of foci when Ago2 was mutationally inhibited to 

prevent miRNA loading. Surprisingly, this effect varied from cell-to-cell, with most cells 

expressing Ago2-Y529E having no or very few foci, but a few having as many as Ago2-

WT. This incomplete penetrance may trivially be due to residual Ago2-WT plasmid in 

the Ago2-Y529E DNA (although we did not detect this in our sequencing results). 

Alternatively, the mutant glutamate residue, which conceivably inhibits miRNA binding 

by repulsing the 5' phosphate of the RNA262, could become protonated under certain 

situations due to perturbations in the pKa induced by local conformational changes284. 

These changes may be induced by cell cycle dependent protein-protein interactions, 

seeing as Ago2 can directly interact with genes involved in cell cycle transition285. It is 

also possible that under certain conditions Ago2 could localize to PBs without being 

loaded with miRNA. 

 

Cy3AsH 

Biarsenical fluorophores are a relatively new tool in the microscopist’s toolbox. As such, 

they have not undergone the same extensive testing and rounds of improvement as the 

steadfast fluorescent protein. While FlAsH and ReAsH provide unobtrusive fluorophore 

labeling with added versatility, their largest drawback currently is non-specific 

binding273. This can be especially problematic with endogenous proteins that contain 

several naturally occurring cysteines286. Cy3AsH has only been previously tested using 

short TC-tagged peptide fragments that were designed to be helical in nature and 
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contained no other cysteines253. We found that Cy3AsH could be used to label IF2-TC, a 

much larger protein the structure of which near the TC-tag is unknown. Yet, Cy3AsH 

also bound BSA with nearly the same affinity as IF2-TC. A closer inspection of the 

amino acid sequence for BSA shows that it contains 35 cysteines including 8 cysteine 

pairs. It is possible that at least two of these pairs could fold close to one another creating 

a TC-like site. Interestingly though, the wavelength of emission from BSA-bound 

Cy3AsH was red-shifted relative to that of IF2-TC, indicating that there are differences in 

binding. It is unclear what exactly these differences are; they could be the distance 

between cysteine pairs or the result of binding to single cysteines (with the other arsenic 

unbound). Regardless, the utility of Cy3AsH for intricate intracellular experiments like 

translation site labeling is put into question with the observed potential for non-specific 

binding. To get an idea of how many BSA-like proteins exist in the cell, we searched 

ORFs in the mouse genome and found that more than thirty different proteins contain 

>10 cysteine pairs.  Moreover, 22 genes contain a 'CCXXXXXCC' sequence. Therefore, 

we may expect significant non-specific binding of Cy3AsH inside cells.  

 There are several discrepancies between our results and those of Cao et al253: our 

molecule, relative to theirs, had slightly red-shifted maximum absorption and emission 

wavelengths and a higher (i.e., weaker) Kapp. These differences may point to underlying 

structural differences in the small molecules. We characterized our compound by both 

1H-NMR and mass spectrometry, but unfortunately had too low a yield for 13C-NMR. 

Without such analytical data, we cannot rule out the possibility that mercuration of the 

cyanine was not regioselective for the para position relative to the nitrogen group of the 

indoline ring.  Alternative positioning of the arsenics would consequently reduce tag-

binding affinity and could even change photospectral characteristics. Additional research 

is needed to confirm the structure of our molecule.  

 In its current form, Cy3AsH may be useful for certain single molecule experiments. 

It is best suited for labeling in vitro small recombinant proteins with few natural cysteines 

or synthetic peptides. One potential application may be for labeling peptide ligands for 

use in single molecule cell membrane or lipid bilayer protein binding assays287,288.   
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Chapter 5: Summary, Conclusions, and Future Experiments 
 
5.1 Summary and Conclusions 

 The complexity of higher organisms demands stringent control over gene 

expression. miRNAs have evolved in metazoans to provide an additional layer of control 

at the post-transcriptional level. By binding to mRNAs, miRNAs can regulate the levels 

of hundreds of genes and modulate expression programs17. During development, 

miRNAs can shape cellular identity and control cell growth and differentiation; while in 

post-development, it is thought that miRNAs function to maintain homeostasis and act as 

buffers against stress17. In many diseases, miRNA regulatory networks become 

dysfunctional, and the system in place to protect the cell turns harmful.  

 Over 1,500 miRNAs have been identified in humans and hundreds of these are 

highly conserved across mammals289. Each miRNA has its own unique set of targets 

based on seed pairing rules and, therefore, each has its own influence on various 

pathways. It is uncertain whether other distinctions exist among miRNA class members. 

Relatively few miRNAs have been extensively studied to date, and only in limited 

contexts. Computational target prediction methods, commonly used for inferring miRNA 

function, assume a certain universality: One tool fits all -- an abundant miRNA is likely 

to repress highly favorable targets x, y, and z irrespective of cell or tissue type. However, 

few of these predictions or assumptions have been validated across different cell types, 

particularly in vivo where little is known about miRNA activity. In contrast, seemingly 

contradictory mechanistic data suggests there may be diversity in miRNA activity, with 

certain miRNAs enacting different modes of repression on different targets and/or in 

different contexts.   

 Here, I have investigated in healthy mouse liver the functions of three highly 

abundant disease-linked miRNAs: miR-21, an oncogenic miRNA upregulated in most 

cancers; let-7, a tumor suppressor; and miR-122, a mostly liver specific miRNA linked to 

cancer and hepatitis C viral (HCV) infection. I find that in contrast to other miRNAs, 
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genetic deletion or inhibition of miR-21 with a specific antimiR oligonucleotide has 

surprisingly little effect on mRNA levels of predicted and known targets. This limited 

activity is further contrasted by miR-21’s activity in the cervical cancer HeLa cell line, 

where inhibition has a strong effect on targets. These findings indicate both that miR-21 

is functionally restricted in non-stressed tissue relative to cancer cells, and current 

miRNA target engagement rules do not apply equally to all miRNAs and cell states.  

 Using both biochemical and computational approaches, we sought to better 

understand the reasons behind liver miR-21’s reduced activity. I discovered using sucrose 

gradients with fresh liver extracts that, comparatively, miR-21 is significantly 

underrepresented within polysome-complexes, where the majority of target mRNAs are 

found. Binding assays indicated, however, that miR-21 is not sequestered or actively 

prevented from binding targets. Noticing that the sequence of miR-21 is relatively A/U 

rich, I next studied its theoretical target-binding energies. Thermodynamic calculations 

with bioinformatically predicted targets showed miR-21 to bind targets with significantly 

lower stability than other miRNAs. Thus, we conclude that unfavorable thermodynamics 

and possibly other factors elevate the threshold required for binding and repressing most 

targets, and miR-21, despite its abundance, is maintained at a level below this threshold 

in healthy mouse liver.  

 Interestingly, the same expression level is sufficient to elicit target repression in 

HeLa, which indicates that these cells are generally more conducive to miR-21 activity 

and perhaps that of other miRNAs as well. In agreement, we found that HeLa miR-21 is 

highly enriched in polysomal fractions, indicating that increased association with 

polysome-bound mRNA enhances target repression. Considering that increased miR-21 

activity is strongly implicated in the development and progression of cancer, and miR-21 

is required for maintenance of HeLa cell replication, we propose that enhanced 

association with polysome-bound mRNA is a critical step towards the gain of miR-21 

function observed in many stressed or diseased cells.  Additionally, we conclude that for 

the measured miRNA/target combinations, binding to targets while the mRNA resides in 

polysomes is critical for miRNA-mediated regulation; a conclusion supported previously 

using cultured cells.  For the first time, however, we provide in vivo evidence from a non-

stressed tissue for the significance of miRNA-polysome association. Unlike previous 
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reports of mRNA targets being removed from polysomes during miRNA repression68,69, 

we did not observe large shifts in mRNA relative to polysomal fractions in the presence 

or absence (inhibition) of miRNA. We note, however, that subtle changes in translation 

rates would likely not be detected with the resolution of our sucrose gradient 

preparations, especially in combination with the observed sequence-independent effects 

of antimiRs on translation.    

 miR-21 inhibition in liver induces upregulation of genes significantly enriched in 

stress response including heat shock factors and co-chaperones. The majority of these 

genes do not contain a miR-21 seed site, indicating that their induction is a secondary 

effect of inhibition. I propose induction of the stress cascade may be mediated through 

Taf7, a heat shock transcription factor associated protein that was among the few strongly 

upregulated miR-21 seed-matched targets. I also found that miR-21 itself is upregulated 

following antimiR-21 treatment, suggesting the presence of a feedback loop that may act 

to contain a stress activation event. Taf7 may also mediate this loop since it has 

previously been found to activate transcription factor AP-1210, a known promoter of miR-

21 expression137,142. This loop has not yet been characterized, and it should be further 

explored along with its connection to the heat shock cascade.  

 Taken together, I propose a model wherein miR-21 plays a critical role as a 

regulator of cellular stress response (Fig. 5.1). In this model, miR-21 first serves under 

basal conditions as a pressure valve for stress response by repressing a narrow set of 

'threshold 1' targets that are more easily repressible than most other seed-matched 

transcripts (referred to as 'threshold 2' targets); the reasons behind this favorability are 

unknown, but are likely due to contextual features and/or association with additional 

regulatory factors. In the event of stress, one or more of these threshold 1 targets may 

transition to threshold 2 to temporally evade miR-21 regulation, and in turn, trigger the 

stress response cascade. This step of the model is reflected in our experimental data: 

when miR-21 targets were released from repression by antimiR inhibition, molecular 

chaperones, co-chaperones, and other stress-response factors were upregulated as a 

secondary effect. Following induction of stress response, miR-21 may next act as a brake 

to contain the response and restore the cell to homeostasis. To do so, miR-21 may 

undergo an activation event to enable it to regulate threshold 2 targets in order to restore  
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Figure 5.1 Proposed model for miR-21's role in stress response. Under normal 
conditions (top center panel) miR-21 operates at a threshold below that of most targets 
(threshold 2), instead repressing a limited set of more favorable targets (threshold 1). At 
the onset of stress, certain threshold 1 targets may evade miR-21 regulation in order to 
activate a stress response cascade that functions to respond to and resolve the stress 
(bottom right panel). In order to return to homeostasis, miR-21 repressive activity is 
enhanced above threshold 2 (bottom left panel). However, in the event of chronic stress, 
as is typical in cancer, miR-21 may remain in its activated form (bottom left panel, 
marked with red). See text for more details.  
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regulatory balance. Increased expression of miR-21 via the putative Taf7/AP-1 feedback 

loop discussed above may contribute to this activation. Augmented miR-21 activity may 

also enable miR-21 to temporally regulate additional targets in order to, for instance, 

prevent premature cell death in response to otherwise resolvable stress events. 

Consistently, although absent in non-stressed liver, several apoptotic factors including 

Pdcd4 are regulated by miR-21 in cancer cells including HeLa where miR-21 repression 

is enhanced and where cellular environments are assailed by chronic stress from various 

sources including metabolic, misfolded proteotoxic, mitotic, oxidative, and DNA damage 

stress18. In healthy cells, miR-21 would be expected to return to its more restricted 

repression capacity following stress mediation; however, in the chronically stressed 

cancer state, miR-21 would remain activated, and as a result, contribute to tumorigenesis 

by persistently inhibiting intrinsic fail-safe mechanisms like apoptosis. Although largely 

speculative, this model takes into account the experimental data reported here while 

helping to explain the seemingly contradictory activity of miR-21 between healthy and 

diseased cells. It can further serve as an experimental framework for future 

investigations.  

 Lastly, bioinformatics was used to assess the determinants underlying miR-21’s 

target selection in liver. It was hypothesized that Taf7 and other responsive targets have 

optimal features that facilitate miR-21 binding (so called threshold 1 targets). To test this 

hypothesis, a local database of cDNA sequences was built and sequence-based features 

were extracted for each gene measured by array profiling. Features included A/U 

richness, number of seed sites, seed locations, extent of miRNA base pairing, and 

estimated binding thermodynamics. These features are known determinants of target 

selection, and have previously been found to correlate with target repression induced by 

transfected miRNA in HeLa cells82. Additionally, we searched for lesser known 

determinants including transcript length, expression level, non-canonical miRNA binding 

sites, and the presence of recognition sites for RNA binding proteins (RPBs) that are 

recently emerging as modulators of miRNA networks218,231-233. Unexpectedly, clear 

trends for known determinants were not detected in miR-21 responsive targets, indicating 

that miR-21 may select targets differently than other miRNAs. Instead, upregulated 

targets were found on average to have greater levels of expression and shorter open 
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reading frames (ORFs). Neither of these features are known determinants. Whereas 

expression may be a bias in detection, transcripts with shorter ORFs could potentially be 

more rapidly destabilized by miRNA. This can be tested in cell culture using reporters 

with varying ORF lengths and detecting destabilization with RT-qPCR. Moreover, all 

miR-21 targets are highly enriched with RBP-REs, suggesting that crosstalk with RBP 

networks may explain miR-21’s target selection. For comparison, miR-122 targets were 

also tested for the same sequence based trends. In addition to length and expression, 

additional known determinants were detected, consistent with better overall agreement of 

miR-122 inhibition responses with prediction algorithms. Surprisingly, however, neither 

miR-21 nor miR-122 responses showed discernible trends relating to thermodynamics of 

target binding or site accessibility. We conclude that in vivo targeting may be more 

complicated than depicted by current models of target prediction, due to crosstalk with 

other regulatory networks.  

In summary, this work demonstrates the complexity of miRNA regulatory networks 

and suggests that a great deal of diversity exists in miRNA activity, especially in terms of 

biological context. In addition, it provides important functional and mechanistic insights 

into the underlying changes in miRNA-mediated repression in the transition between 

health and disease. Despite the scientific enthusiasm for miRNA over the last decade 

(Fig. 1.1), little research has focused on the in vivo physiological roles of mammalian 

miRNA most likely due to the fact that using cell culture as an experimental model is 

both more convenient and experimentally more flexible. Because research using cell 

culture has become commonplace throughout all fields of biology, it is easy to forget that 

these cells, even those that were once human in origin, are not representative of 'normal' 

cells; instead they often have altered morphologies and karyotypes and have cellular 

environments defined by chronic stress-- hallmarks of their diseased state. This work 

demonstrates that considerable differences exist between the physiological in vivo 

activities and the pathological in cellulo activities of miRNA. While we focused on miR-

21, we also found that in vivo let-7 regulated few of the targets previously validated in 

cell culture (Fig. 2.3) suggesting that these differences extend past the idiosyncrasies of 

miR-21. Further work is needed to truly understand what/how context-dependent factors 

influence targeting. In addition, miR-21 may not be an isolated anomaly, but rather just 
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one example of the diversity that exists among members of this class of regulatory non-

coding RNA. Other miRNAs, like miR-21, may be less active than their counterparts or 

display other divergences in target selection, binding, or repression mechanisms. 

Importantly, some of these differences may be normalized in cell culture due to globally 

exaggerated miRNA pathways; therefore, extensive diversity between miRNA class 

members may only be uncovered with comparative studies in healthy animal tissue as 

done here.   

 
5.2  Future Experiments 

In this thesis I propose that miR-21 undergoes an overactivation event to transition from 

its normal activity as a weak repressing, tightly controlled miRNA in healthy cell states 

to a strong repressing dysregulated oncogenic miRNA in diseased states. In the 

following, I outline future experiments to further test this hypothesis and to probe the 

underlying mechanisms/causes. Additionally, experiments to better understand miR-21 

target selection in healthy liver are proposed. These experiments supplement the many 

other proposed experiments mentioned throughout this work and are listed by priority.  

 

Test miR-21 activity in additional contexts 

In our analysis we found context specific activity of miR-21 in HeLa cells and healthy 

liver tissue. Future studies will need to extend these analyses (antimiR array profiling / 

polysome analysis) to additional biological contexts to confirm the generality that miR-

21 is moderately active in healthy cells relative to other miRNAs and overactive in 

diseased cells (and that repression corresponds with polysome binding). Literature 

suggests that miR-21 is moderately active in other tissues besides liver: Hatley et al.138 

have noted, in brief, the absence of robust miR-21 target repression in miR-21 knockout 

lung tissue. Additionally, Patrick et al.112 have shown that Pdcd4 is only upregulated 

following anti-miR-21 treatment in heart tissue following transaortic constriction (TAC), 

but not in the healthy sham control group.  We would therefore expect to find similar 

results in lung and heart as we found in liver. However, interestingly, miR-21 may have 

increased activity in healthy keratinocytes as Ma et al.290 have reported that several 
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predicted and known miR-21 targets including the tumor suppressors Spry1, Pten, and 

Pdcd4 are upregulated in keratinocytes from miR-21 knockout mice relative to wild-type. 

Therefore, miR-21 activity could be tissue and/or growth dependent, and given its role in 

controlling apoptosis, its activity may vary based on normal cell turnover rates, and vice 

versa.  

 We suspect based on the well-documented activity of miR-21 in cancer cells that 

most transformed cell lines show irregularly enhanced miR-21 activity similar to HeLa. 

Because our in vivo studies have focused on liver, hepatocarcinoma cell lines such as 

Huh7 and HepG2 would make for a better comparison than cervical HeLa cells.  

Huh7/HepG2 cells replication has previously been shown to be miR-21 dependent126, 

therefore, in these cells we would expect to find miR-21 enriched in polysomal fractions. 

Additionally, primary hepatocytes and non-transformed immortalized cells such as NIH-

3T3 could be tested. If these cells can replicate miR-21 activity observed in liver tissue, it 

would greatly facilitate research on non-activated miR-21 since it would allow for greater 

experimental manipulation than what is realistically feasible in mice. Comparing cultured 

cells grown to confluence with actively dividing cells could also assess the influence of 

growth on miR-21 activity. 

 

Compare levels of miRNA related factors between HeLa and liver 

We found that comparable levels of miR-21 are expressed between liver and HeLa, yet 

miR-21 activity is less well controlled in the latter. This suggests that other factors 

besides miR-21 abundance affect the strength of miR-21 activity. We also found 

enhanced polysome binding for let-7 in HeLa, suggesting that the miRNA machinery in 

general is overactive, rather than just miR-21 specifically. One possibility is that a certain 

miRNA-related factor(s) is more abundantly expressed in HeLa. To test this idea, 

quantitative western blots could be used to compare levels of core miRNA components 

between liver and HeLa. One factor of particular interest that may be upregulated in 

HeLa is the receptor for activated C-kinase (Rack1), which is necessary for loading 

miRNA onto translating mRNAs49. Another factor is the RBP HuR, whose binding motif 

frequently occurs near miR-21 sites. Since HuR can have both positive and negative 

effects on miRNA-mediated repression, enhanced miR-21 activity could result from 
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increased or decreased HuR expression, respectively. In cancer, HuR is often found to be 

overexpressed291, suggesting that if HuR is responsible for miR-21's activity in HeLa, it is 

due to positive cooperativity. If one of these factors is found to be differentially 

expressed in HeLa, functional studies could be carried out to assess its role. For example, 

miR-21 polysome binding, relative to that of a stronger binding miRNA, could be 

assessed after Rack1 partial knockdown (Rack1 is essential for miRNA activity). 

Alternatively, although technically more challenging, Rack1 could be overexpressed in 

mouse liver to see if it enhances miR-21 polysome binding.   

 

Directly induce miR-21 activation in liver  

A more direct approach to studying miR-21 and its contributions to disease processes 

would be to try to stimulate miR-21 activation in liver. miR-21 is upregulated in most 

cancers, therefore it could be tested whether increased miR-21 levels, expressed from an 

inducible promoter in a transgenic animal, are sufficient to increase the repression 

footprint and enhance target binding / polysome sedimentation. We would suspect this 

not to be the case since miR-21 expression alone is not sufficient to induce tumorigenesis 

in solid tissues including brain144 and lung138. The oncogene Ras has been shown to 

induce miR-21 expression, and in lung, Ras is necessary for miR-21 to contribute and 

reinforce cancerous phenotypes138. We would expect Ras to increase miR-21's repression 

signature and enhance polysome binding. Since miR-21 appears to be stress-responsive, 

various stressors such as chemical stimulants (e.g. carbon tetrachloride, a highly 

hepatotoxic carcinogen292) could also be screened for their ability to trigger miR-21 

overactivation.  

 

Use iSHiRLoC to compare miR-21 complexes in transformed and primary culture  

As discussed in Chapter 4, iSHiRLoC is a single molecule technique for studying 

miRNA complex assembly in live cells. iSHiRLoC could be especially useful for 

studying miR-21 or other miRNAs in a variety of contexts including primary 

hepatocytes.  Of particular interest will be to co-track miR-21 with putative target 

mRNAs in both healthy and diseased cells.  My prediction is that specific differences in 
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diffusion will be observed as long as the miR-21 concentration remains below its 

repression threshold.  Once such a signature is discovered, the influence of varying some 

of the cofactors discussed above by either RNAi knockdown or controlled expression will 

then reveal their influence on miR-21-mediated target repression. 

 

Utilize deep sequencing to further probe miR-21 targeting 

A major limitation of our current study is that we cannot distinguish between primary and 

secondary effects of miRNA inhibition. This is especially problematic in the case of seed-

matched targets, and may be why few clear feature trends were detected in Chapter 3.   

Unfortunately, validation of these targets using routine luciferase assays requires cell 

culture, where miR-21 activity is altered.  

 High throughput sequencing crosslinking immunoprecipitation (HITS-CLIP) could 

be useful for validating targets and further exploring miR-21 target binding227. In this 

method, cDNA sequenced target fragments that are cross-linked and immunoprecipitated 

with Ago precisely identify miRNA binding sites. HITS-CLIP could be used in 

conjunction with array profiling to obtain a set of high confidence targets that exhibit 

both derepression and loss of a mapped miRNA binding site in the presence of antimiR. 

These data could then be reanalyzed for sequence-based trends or ontology classification 

to identify new pathways regulated by miR-21 and other miRNAs.     

 Additionally, deep sequencing is capable of providing additional sequence 

information on the transcriptome that cannot be ascertained by array profiling or 

accounted for a priori using annotated sequence data. There is a growing appreciation 

that a great deal of context-dependent sequence variation exists among transcriptomes. 

Variation arising from alternative polyadenylation, which can lengthen or shorten 

3'UTRs, and non-templated RNA editing can significantly affect miRNA regulatory 

networks by creating, altering or deleting seed sites in certain transcripts. Alternative 

polyadenylation is pervasive in cancer, as well as are other genetic aberrations such as 

chromosomal translocations173. Therefore, these changes in the targeting landscape could 

partially explain why miR-21 represses different genes in healthy and cancer cells, a 

hypothesis which could be explored using deep sequencing to compare -- with nucleotide 

resolution -- transcriptomes derived from healthy liver and HeLa cells. 
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Appendix A 

Matlab Functions and Scripts for Bioinformatic Analysis of Target Contextual 
Features 

 
The following scripts were used to extract various mRNA features. In general, the scripts 
follow the same pattern:  
— array profiling data is called for a particular miRNA; 
— seed-matched genes are expression or expression/conservation filtered; 
— Genbank gene annotation data is called 
— feature data is extracted; and 
— data is binned by response and outputted. 
  
All of these scripts require certain database variables to be pre-loaded in the workspace: 
load gen_refmap2 —> loads gen_refmap (mouse database) 
load mmu_liver_DataMatrices —> loads an_21DM, an122DM, anlt7DM (AMAP data) 
load mmuliver_expressedgenes —> loads expressedgenes 
load human_gen_refmap2 —> loads hsaGBmap2 (human database) 
 
Local A/U Composition 
%%AUwindowscript2: Computes A/U compositions of sequences flanking 
%%seed-sites with growing window size.  
%% For expressed m21 anyseed 
m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
  
%% For expressed m21 conserved anyseed 
m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
  
%% For expressed m122 anyseed 
m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
  
%% For expressed m122 conserved anyseed 
m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
  
%% For expressed let7 anyseed 
let7data = mtxseed2(an122DM,'let7','anyseed',gen_refmap); 
explet7 = let7data(expressedgenes,:); 
utrs = getLongUtrSeqs2(explet7,'let7',gen_refmap); 
accs = getLongUtrData2(explet7,'let7',gen_refmap); 
binidx = binDM(explet7); 
seedlocs = cellfun(@(x) x.UTR3.let7.index, accs,'UniformOutput', false); 
  
%% For expressed let7 conserved anyseed 
let7data = conservedsites(an122DM,'let7','anyseed',gen_refmap,hsaGBmap2); 
explet7 = let7data(expressedgenes,:); 
utrs = getLongUtrSeqs2(explet7,'let7',gen_refmap); 
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accs = getLongUtrData2(explet7,'let7',gen_refmap); 
binidx = binDM(explet7); 
seedlocs = cellfun(@(x) x.UTR3.let7.index, accs,'UniformOutput', false); 
%% Calcs 
  
utrlengths = cell2mat(cellfun(@(x) length(x.UTR3.Sequence), accs, 'UniformOutput', 
false)); 
pad = 'n'; 
for i = 1:10 
    pad = strcat(pad, 'nnnnnnnnnn'); 
end 
padutrs = cellfun(@(x) strcat(pad, x,pad),utrs, 'UniformOutput', false); 
  
  
seeds = cellfun(@(x) x(x>0),seedlocs,'UniformOutput',false); 
seeds = cellfun(@(x) x+numel(pad), seeds, 'UniformOutput', false); 
  
  
windows = 10:10:100; 
FAUbasecount = zeros(length(seeds),length(windows)); 
  
for i = 1:length(seeds); 
    for j = 1:length(windows) 
        win = windows(j); 
        Useq = padutrs{i}; 
        for k = 1:numel(seeds{i}) 
            seq = Useq(seeds{i}(k)-win:seeds{i}(k)+win); 
            bases = basecount(seq); 
            FAU(k) = (bases.A+bases.T)./(bases.A+bases.T+bases.G+bases.C); 
        end 
        FAUbasecount(i,j) = mean(FAU); 
    end 
end 
  
% Output 
for i = 1:length(windows); 
test = FAUbasecount(:,i); 
  
AUupmean = mean(test(binidx(:,1),:),1); 
AUncmean = mean(test(binidx(:,2),:),1); 
AUdnmean = mean(test(binidx(:,3),:),1); 
  
Nup = numel(find(binidx(:,1) == 1)); 
Nnc = numel(find(binidx(:,2) == 1)); 
Ndn = numel(find(binidx(:,3) == 1)); 
  
AUupstd = std(test(binidx(:,1),:),0,1)/sqrt(Nup); 
AUncstd = std(test(binidx(:,2),:),0,1)/sqrt(Nnc); 
AUdnstd = std(test(binidx(:,3),:),0,1)/sqrt(Ndn); 
  
dataout(i,:) = [AUupmean' AUupstd' Nup AUncmean' AUncstd' Nnc AUdnmean' AUdnstd' Ndn]; 
  
end 
  
     
 
Full Length A/U Composition 
%% AUrichscript2: Computes A/U composition of full length 3'UTRs 
  
dataout = zeros(6,9); 
for i = 1:6 
    disp(i) 
    if i == 1 
        % For expressed m21 anyseed 
        m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
        expm21 = m21data(expressedgenes,:); 
        utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
        binidx = binDM(expm21); 
    elseif i == 2 
        % For expressed m21 conserved anyseed 
        m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
        expm21 = m21data(expressedgenes,:); 
        utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
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        binidx = binDM(expm21); 
         
    elseif i == 3 
        % For expressed m122 anyseed 
        m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
        expm122 = m122data(expressedgenes,:); 
        utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
        binidx = binDM(expm122); 
         
    elseif i == 4 
        % For expressed m122 conserved anyseed 
        m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
        expm122 = m122data(expressedgenes,:); 
        utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
        binidx = binDM(expm122); 
    elseif i == 5 
        % For expressed let7 anyseed 
        let7data = mtxseed2(an122DM,'let7','anyseed',gen_refmap); 
        explet7 = let7data(expressedgenes,:); 
        utrs = getLongUtrSeqs2(explet7,'let7',gen_refmap); 
        binidx = binDM(explet7); 
         
    elseif i == 6 
        % For expressed let7 conserved anyseed 
        let7data = conservedsites(an122DM,'let7','anyseed',gen_refmap,hsaGBmap2); 
        explet7 = let7data(expressedgenes,:); 
        utrs = getLongUtrSeqs2(explet7,'let7',gen_refmap); 
        binidx = binDM(explet7); 
    end 
    % 
    Atailidx = cellfun(@(x) regexp(x,'a{5,}\>'),utrs,'UniformOutput',false); 
    utrsnotail = cell(size(utrs)); 
    for j = 1:length(utrs) 
        if isempty(Atailidx{j}) 
            utrsnotail(j) = cellstr(utrs{j}(1:end)); 
        else 
            utrsnotail(j) = cellstr(utrs{j}(1:Atailidx{j})); 
        end 
    end 
    utrBaseComps = cellfun(@(x) basecount(x),utrsnotail,'UniformOutput', false); 
    utrFAU = cellfun(@(x) (x.A+x.T)./(x.A+x.T+x.G+x.C),utrBaseComps)'; 
    test = utrFAU'; 
     
    AUupmean = mean(test(binidx(:,1),:),1); 
    AUncmean = mean(test(binidx(:,2),:),1); 
    AUdnmean = mean(test(binidx(:,3),:),1); 
     
    Nup = numel(find(binidx(:,1) == 1)); 
    Nnc = numel(find(binidx(:,2) == 1)); 
    Ndn = numel(find(binidx(:,3) == 1)); 
     
    AUupstd = std(test(binidx(:,1),:),0,1)/sqrt(Nup); 
    AUncstd = std(test(binidx(:,2),:),0,1)/sqrt(Nnc); 
    AUdnstd = std(test(binidx(:,3),:),0,1)/sqrt(Ndn); 
     
    dataout(i,:) = [AUupmean' AUupstd' Nup AUncmean' AUncstd' Nnc AUdnmean' AUdnstd' 
Ndn]; 
end 
 
5’UTR Length 
%% UTR5length_script computes lengths of 5'UTRs 
dataout = zeros(6,9); 
for i = 1:6 
    if i == 1 
        % For expressed m21 anyseed 
        m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
        expm21 = m21data(expressedgenes,:); 
        accs = getLongUtrData2(expm21,'m21',gen_refmap); 
        binidx = binDM(expm21); 
    elseif i == 2 
        % For expressed m21 conserved anyseed 
        m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
        expm21 = m21data(expressedgenes,:); 
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        accs = getLongUtrData2(expm21,'m21',gen_refmap); 
        binidx = binDM(expm21); 
    elseif i == 3 
        % For expressed m122 anyseed 
        m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
        expm122 = m122data(expressedgenes,:); 
        accs = getLongUtrData2(expm122,'m122',gen_refmap); 
        binidx = binDM(expm122); 
    elseif i == 4 
        % For expressed m122 conserved anyseed 
        m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
        expm122 = m122data(expressedgenes,:); 
        accs = getLongUtrData2(expm122,'m122',gen_refmap); 
        binidx = binDM(expm122); 
    elseif i == 5 
        % For expressed let7 anyseed 
        let7data = mtxseed2(an122DM,'let7','anyseed',gen_refmap); 
        explet7 = let7data(expressedgenes,:); 
        accs = getLongUtrData2(explet7,'let7',gen_refmap); 
        binidx = binDM(explet7); 
    elseif i == 6 
        % For expressed let7 conserved anyseed 
        let7data = conservedsites(an122DM,'let7','anyseed',gen_refmap,hsaGBmap2); 
        explet7 = let7data(expressedgenes,:); 
        accs = getLongUtrData2(explet7,'let7',gen_refmap); 
        binidx = binDM(explet7); 
    end 
    % Calcs and Output 
    cdsidx = cell2mat(cellfun(@(x) x.CDS.indices, accs,'UniformOutput', false)); 
    lengths = cdsidx(:,1); 
     
    upmean = mean(lengths(binidx(:,1),:),1); 
    ncmean = mean(lengths(binidx(:,2),:),1); 
    dnmean = mean(lengths(binidx(:,3),:),1); 
     
    Nup = numel(find(binidx(:,1) == 1)); 
    Nnc = numel(find(binidx(:,2) == 1)); 
    Ndn = numel(find(binidx(:,3) == 1)); 
     
    upstd = std(lengths(binidx(:,1),:),0,1)/sqrt(Nup); 
    ncstd = std(lengths(binidx(:,2),:),0,1)/sqrt(Nnc); 
    dnstd = std(lengths(binidx(:,3),:),0,1)/sqrt(Ndn); 
     
     
    dataout(i,:) = [upmean' upstd' Nup ncmean' ncstd' Nnc dnmean' dnstd' Ndn]; 
end 
 
CDS/ORF Length 
%% CDSlengths_script2 computes CDS/ORF lengths 
%% For expressed m21 anyseed 
m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
expm21 = m21data(expressedgenes,:); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
  
%% For expressed m21 conserved anyseed 
m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
expm21 = m21data(expressedgenes,:); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
  
%% For expressed m122 anyseed 
m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
expm122 = m122data(expressedgenes,:); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
  
%% For expressed m122 conserved anyseed 
m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
expm122 = m122data(expressedgenes,:); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
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%% For expressed let7 anyseed 
let7data = mtxseed2(an_21DM,'let7','anyseed',gen_refmap); 
explet7 = let7data(expressedgenes,:); 
accs = getLongUtrData2(explet7,'let7',gen_refmap); 
binidx = binDM(explet7); 
  
%% For expressed let7 conserved anyseed 
let7data = conservedsites(an_21DM,'let7','anyseed',gen_refmap,hsaGBmap2); 
explet7 = let7data(expressedgenes,:); 
accs = getLongUtrData2(explet7,'let7',gen_refmap); 
binidx = binDM(explet7); 
%% Calcs and Output 
cdsidx = cell2mat(cellfun(@(x) x.CDS.indices, accs,'UniformOutput', false)); 
lengths = cdsidx(:,2)-cdsidx(:,1); 
  
upmean = mean(lengths(binidx(:,1),:),1); 
ncmean = mean(lengths(binidx(:,2),:),1); 
dnmean = mean(lengths(binidx(:,3),:),1); 
  
Nup = numel(find(binidx(:,1) == 1)); 
Nnc = numel(find(binidx(:,2) == 1)); 
Ndn = numel(find(binidx(:,3) == 1)); 
  
upstd = std(lengths(binidx(:,1),:),0,1)/sqrt(Nup); 
ncstd = std(lengths(binidx(:,2),:),0,1)/sqrt(Nnc); 
dnstd = std(lengths(binidx(:,3),:),0,1)/sqrt(Ndn); 
  
dataout = [upmean' upstd' Nup ncmean' ncstd' Nnc dnmean' dnstd' Ndn]; 
 
3’UTR Length 
%% UTRlengthscript Computes 3'UTR lengths 
%% For expressed m21 anyseed 
m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
%% For expressed m21 conserved anyseed 
m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
  
  
%% For expressed m122 anyseed 
m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
  
%% For expressed m122 conserved anyseed 
m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
  
%% For expressed let7 anyseed 
m7data = mtxseed2(anlt7DM,'let7','anyseed',gen_refmap); 
expm7 = m7data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm7,'let7',gen_refmap); 
binidx = binDM(expm7); 
  
%% For expressed let7 conserved anyseed 
m7data = conservedsites(anlt7DM,'let7','anyseed',gen_refmap,hsaGBmap2); 
expm7 = m7data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm7,'let7',gen_refmap); 
binidx = binDM(expm7); 
%% 
utrlengths = cellfun(@(x) length(x),utrs); 
test = utrlengths; 
  
  
AUupmean = mean(test(binidx(:,1),:),1); 
AUncmean = mean(test(binidx(:,2),:),1); 
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AUdnmean = mean(test(binidx(:,3),:),1); 
  
Nup = numel(find(binidx(:,1) == 1)); 
Nnc = numel(find(binidx(:,2) == 1)); 
Ndn = numel(find(binidx(:,3) == 1)); 
  
AUupstd = std(test(binidx(:,1),:),0,1)/sqrt(Nup); 
AUncstd = std(test(binidx(:,2),:),0,1)/sqrt(Nnc); 
AUdnstd = std(test(binidx(:,3),:),0,1)/sqrt(Ndn); 
  
dataout = [AUupmean' AUupstd' Nup AUncmean' AUncstd' Nnc AUdnmean' AUdnstd' Ndn]; 
 
Extended 3’base-pairing 
%% extendedbasepairingscript computes scores for 3'miRNA base-pairing.  
% miRNA is aligned to target sequence and starting from the 3'end, each 
% 'base-pair' is given a score of 1 point and each consecutive 'base-pair' 
% is given a bonus 0.5 points 
%% 
%% For expressed m21 anyseed 
m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
expm21 = m21data(expressedgenes,:); 
DM = expm21; 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
%% For expressed m21 conserved anyseed 
m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
DM = expm21; 
%% For expressed m122 anyseed 
m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
DM = expm122; 
%% For expressed m122 conserved anyseed 
m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
DM = expm122; 
%% 
firstseeds = cell2mat(cellfun(@(x) min(x(x>0)), seedlocs, 'UniformOutput',false)); 
utrlengths = cell2mat(cellfun(@(x) length(x), utrs, 'UniformOutput', false)); 
tocloseidx = firstseeds < 14 | (utrlengths-firstseeds)<8; 
firstseeds = firstseeds(~tocloseidx); 
bindsites = cell(length(firstseeds),1); 
utrs2 = utrs(~tocloseidx); 
for i = 1:length(utrs2) 
    bindsites{i} = utrs2{i}(firstseeds(i)-13:firstseeds(i)+8); 
end 
  
%m21 = lower(rna2dna('UAGCUUAUCAGACUGAUGUUGA')); %uncomment for m21 
m122 = lower(rna2dna('UGGAGUGUGACAAUGGUGUUUG')); %uncomment for m122 
miR = m122; 
count = cell(length(utrs2),1); 
for i = 1:length(utrs2) 
    target = bindsites{i}; 
    [~,b] = nwalign(target(1:end-1), seqrcomplement(miR)); 
    idx = zeros(1, numel(b(2,:))); 
    idx(strfind(b(2,:),'|')) = 1; 
    score = 0; 
    for j = 1:length(idx(1:13)) 
        if idx(j) == 1 && idx(j+1) == 1 
            score = score+0.5; 
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        end 
    end 
    score = score+sum(idx(1:13)); 
    count{i} = score; 
end 
  
count = cell2mat(count); 
newDM = DM(~tocloseidx,:); 
binidx = binDM(newDM); 
  
upnumel = sum(binidx(:,1)); 
upmean = mean(count(binidx(:,1))); 
upsem = std(count(binidx(:,1)))/sqrt(upnumel); 
  
ncnumel = sum(binidx(:,2)); 
ncmean = mean(count(binidx(:,2))); 
ncsem = std(count(binidx(:,2)))/sqrt(ncnumel); 
  
dnnumel = sum(binidx(:,3)); 
dnmean = mean(count(binidx(:,3))); 
dnsem = std(count(binidx(:,3)))/sqrt(dnnumel); 
  
dataout = [upmean upsem upnumel ncmean ncsem ncnumel dnmean dnsem dnnumel]; 
 
 
G-bulge search. In its current form presented here, it is written only for miR-122 as an example. 
%% gbulgescript (for miR-122) 
expDM = an122DM(expressedgenes,:); 
expDM = sortrows(expDM); 
accs = getLongUtrData3nomir(expDM, gen_refmap); 
datanotfound1 = ~cellfun(@(x) isstruct(x), accs); 
datanotfound2 = cellfun(@(x) length(x), accs)<1; 
datanotfound = datanotfound1 | datanotfound2; 
accs = accs(~datanotfound); 
cdsidx = cellfun(@(x) x.CDS.indices, accs,'UniformOutput', false); 
%% 
for i = 1:length(accs); 
    fullseq = accs{i}.Sequence; 
    utrseqs(i,1) = cellstr(fullseq(cdsidx{i}(2):end)); 
end 
  
%% 
expDMfltr = expDM(~datanotfound,:); 
genes = rownames(expDMfltr); 
%% 
gbulgeidx = ~cellfun(@isempty, strfind(utrseqs,'acagctcc')); 
m8idx = ~cellfun(@isempty, strfind(utrseqs,'acactcca')); 
randseq = lower(randseq(8,'FromStructure',basecount('acactcca'))); 
randidx = ~cellfun(@isempty, strfind(utrseqs,randseq)); 
%m7idx = ~cellfun(@isempty, strfind(utrseqs,'ataagct')); 
binidx = binDM(expDMfltr); 
  
%% 
bulge = getlog2(expDMfltr(gbulgeidx,:)); 
m8 = getlog2(expDMfltr(m8idx,:)); 
rand = getlog2(expDMfltr(randidx,:)); 
seed = getlog2(mtxseed2(an122DM,'m122','anyseed', gen_refmap)); 
all = getlog2(expDMfltr); 
  
%% 
meanbulge = median(getlog2(expDMfltr(gbulgeidx,:))); 
mean8m = median(getlog2(expDMfltr(m8idx,:))); 
meanrand = median(getlog2(expDMfltr(randidx,:))); 
meanseed = median(getlog2(mtxseed2(an122DM,'m122','anyseed', gen_refmap))); 
meanall = median(getlog2(expDMfltr));  
  
%% 
[f1 x1] = ecdf(bulge); 
[f2 x2] = ecdf(m8); 
[f3 x3] = ecdf(rand); 
[f4 x4] = ecdf(seed); 
[f5 x5] = ecdf(all); 
figure; hold on 
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plot(x1,f1,'r'); 
plot(x2,f2,'b'); 
plot(x3,f3,'g'); 
plot(x4,f4,'k'); 
plot(x5,f5,'m'); 
%% 
[~,p(1)] = kstest2(all, m8); 
[~,p(2)] = kstest2(all, all); 
[~,p(3)] = kstest2(all, rand); 
[~,p(4)] = kstest2(all, bulge); 
[~,p(5)] = kstest2(all, seed); 
 
 
RBP motif search for full-length 3’UTRs.  
%% motifsearch2script_FL searches the full length 3'UTR for RBP motifs 
%% For expressed m21 anyseed 
m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
seed = 'taagct'; 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
  
%% For expressed m122 anyseed 
m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
%% For expressed m21 conserved anyseed 
m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
%% For expressed m122 conserved anyseed 
m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
%% 
firstseeds = cellfun(@(x) min(x(x>200)), seedlocs,'UniformOutput', false); 
toclose2startidx = ~cellfun(@(x) length(x), firstseeds); 
firstseeds(toclose2startidx) = {0}; 
firstseeds = cell2mat(firstseeds); 
utrlengths = cellfun(@(x) length(x), utrs); 
% seedlocs = strfind(utrs, seed); 
% firstseeds = cellfun(@(x) x(1), seedlocs); 
% toclose2startidx = firstseeds < 200; 
toclose2endidx = (utrlengths - firstseeds) < 200; 
tocloseidx = toclose2startidx | toclose2endidx; 
%% 
flankidx = zeros(length(utrs),2); 
flankidx(~tocloseidx,1) = firstseeds(~tocloseidx)-100; 
flankidx(~tocloseidx,2) = firstseeds(~tocloseidx)+100; 
flankidx(toclose2startidx,:) = repmat([1 201], numel(find(toclose2startidx == 1)), 1); 
flankidx(toclose2endidx,1) = utrlengths(toclose2endidx)-200; 
flankidx(toclose2endidx,2) = utrlengths(toclose2endidx); 
%find utrs smaller than 200 nt 
tosmallidx = flankidx(:,1)<1; 
flankidx(tosmallidx,1) = 1; 
flankidx(tosmallidx,2) = utrlengths(tosmallidx); 
% 
% %% 
utrflanks = cell(length(utrs),1); 
for i = 1:length(utrs) 
    seq = utrs{i}; 
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    utrflanks(i,1) = cellstr(seq(flankidx(i,1):flankidx(i,2))); 
end 
%% 
motifs = {'ttttaaa'; 'ttt\wttt'; 'tgta\wata'; 'tatttat'}; 
motifhit = cell(length(motifs),2); 
for i = 1:length(motifs) 
    numhits = cellfun(@numel, regexp(utrs, motifs{i})); 
    hits = find(~cellfun(@isempty, regexp(utrs, motifs{i}))); 
    P = zeros(length(hits),1); 
    for j = 1:length(hits) 
        seqcall = utrs{hits(j)}; 
        rseq = cell(500,1); 
        for k = 1:500 
            rseq(k) = cellstr(lower(randseq(length(seqcall), 'fromstructure', 
basecount(seqcall)))); 
        end 
        rhits = find(~cellfun(@isempty, regexp(rseq, motifs{i}))); 
        numrhits = cellfun(@numel, regexp(rseq, motifs{i}))>=numhits(hits(j)); 
        P(j) = sum(numrhits)/500; 
        fprintf('round %d/%d: %d iterations to go\n', i, length(motifs), length(hits)-j); 
    end 
    motifhit{i,1} = [hits P]; 
end 
  
%Convert significant hits from linidx to index 
%% 
motifsigidx = zeros(length(accs), length(motifs)); 
for i = 1:length(motifhit) 
    test = motifhit{i}; 
    sigidx = test(:,2)<=0.05; 
    linidx = test(sigidx,1); 
    motifsigidx(linidx,i) = 1; 
end 
  
motiftotidx = zeros(length(accs), length(motifs)); 
for i = 1:length(motifhit) 
    test = motifhit{i}; 
    sigidx = true(length(test),1); 
    linidx = test(sigidx,1); 
    motiftotidx(linidx,i) = 1; 
end 
%% 
dataout = zeros(6,length(motifs)); 
for i = 1:length(motifs); 
    dataout(1,i) = sum(motiftotidx(binidx(:,1),i)/sum(binidx(:,1))); %UP-Total 
    dataout(2,i) = sum(motiftotidx(binidx(:,2),i)/sum(binidx(:,2))); %NR-Total 
    dataout(3,i)  = sum(motiftotidx(binidx(:,3),i)/sum(binidx(:,3))); %DN-Total 
    dataout(4,i) = sum(motifsigidx(binidx(:,1),i)/sum(binidx(:,1))); %UP-SIG 
    dataout(5,i) = sum(motifsigidx(binidx(:,2),i)/sum(binidx(:,2))); %NR-SIG 
    dataout(6,i)  = sum(motifsigidx(binidx(:,3),i)/sum(binidx(:,3))); %DN-SIG 
end 
dataout = dataout*100; 
  
%% 
bar(dataout(1:3,:)) 
hold on; bar(dataout(4:6,:)) 
axis([0.5 3.5 0 100]) 
  
 
 
RBP motif search for 200 nt local sequences centered on seed-sites.  
%% motifsearch2script searches for RBP motifs within 200 nt of seed-sites 
%% For expressed m21 anyseed 
m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
seed = 'taagct'; 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
  
%% For expressed m122 anyseed 
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m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
  
%% For expressed m21 conserved anyseed 
m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
%% For expressed m122 conserved anyseed 
m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
%% 
firstseeds = cellfun(@(x) min(x(x>200)), seedlocs,'UniformOutput', false); 
toclose2startidx = ~cellfun(@(x) length(x), firstseeds); 
firstseeds(toclose2startidx) = {0}; 
firstseeds = cell2mat(firstseeds); 
utrlengths = cellfun(@(x) length(x), utrs); 
% seedlocs = strfind(utrs, seed); 
% firstseeds = cellfun(@(x) x(1), seedlocs); 
% toclose2startidx = firstseeds < 200; 
toclose2endidx = (utrlengths - firstseeds) < 200; 
tocloseidx = toclose2startidx | toclose2endidx; 
%% 
flankidx = zeros(length(utrs),2); 
flankidx(~tocloseidx,1) = firstseeds(~tocloseidx)-100; 
flankidx(~tocloseidx,2) = firstseeds(~tocloseidx)+100; 
flankidx(toclose2startidx,:) = repmat([1 201], numel(find(toclose2startidx == 1)), 1); 
flankidx(toclose2endidx,1) = utrlengths(toclose2endidx)-200; 
flankidx(toclose2endidx,2) = utrlengths(toclose2endidx); 
%find utrs smaller than 200 nt 
tosmallidx = flankidx(:,1)<1; 
flankidx(tosmallidx,1) = 1; 
flankidx(tosmallidx,2) = utrlengths(tosmallidx); 
% 
% %% 
utrflanks = cell(length(utrs),1); 
for i = 1:length(utrs) 
    seq = utrs{i}; 
    utrflanks(i,1) = cellstr(seq(flankidx(i,1):flankidx(i,2))); 
end 
%% 
motifs = {'ttttaaa'; 'ttt\wttt'; 'tgta\wata'; 'tatttat'}; 
motifhit = cell(length(motifs),2); 
for i = 1:length(motifs) 
    numhits = cellfun(@numel, regexp(utrflanks, motifs{i})); 
    hits = find(~cellfun(@isempty, regexp(utrflanks, motifs{i}))); 
    P = zeros(length(hits),1); 
    for j = 1:length(hits) 
        seqcall = utrflanks{hits(j)}; 
        rseq = cell(1000,1); 
        for k = 1:1000 
            rseq(k) = cellstr(lower(randseq(length(seqcall), 'fromstructure', 
basecount(seqcall)))); 
        end 
        rhits = find(~cellfun(@isempty, regexp(rseq, motifs{i}))); 
        numrhits = cellfun(@numel, regexp(rseq, motifs{i}))>=numhits(hits(j)); 
        P(j) = sum(numrhits)/1000; 
        fprintf('round %d/%d: %d iterations to go\n', i, length(motifs), length(hits)-j); 
    end 
    motifhit{i,1} = [hits P]; 
end 
  
%Convert significant hits from linidx to index 
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%% 
motifsigidx = zeros(length(accs), length(motifs)); 
for i = 1:length(motifhit) 
    test = motifhit{i}; 
    sigidx = test(:,2)<=0.05; 
    linidx = test(sigidx,1); 
    motifsigidx(linidx,i) = 1; 
end 
  
motiftotidx = zeros(length(accs), length(motifs)); 
for i = 1:length(motifhit) 
    test = motifhit{i}; 
    sigidx = true(length(test),1); 
    linidx = test(sigidx,1); 
    motiftotidx(linidx,i) = 1; 
end 
%% 
dataout = zeros(6,length(motifs)); 
for i = 1:length(motifs); 
    dataout(1,i) = sum(motiftotidx(binidx(:,1),i)/sum(binidx(:,1))); %UP-Total 
    dataout(2,i) = sum(motiftotidx(binidx(:,2),i)/sum(binidx(:,2))); %NR-Total 
    dataout(3,i)  = sum(motiftotidx(binidx(:,3),i)/sum(binidx(:,3))); %DN-Total 
    dataout(4,i) = sum(motifsigidx(binidx(:,1),i)/sum(binidx(:,1))); %UP-SIG 
    dataout(5,i) = sum(motifsigidx(binidx(:,2),i)/sum(binidx(:,2))); %NR-SIG 
    dataout(6,i)  = sum(motifsigidx(binidx(:,3),i)/sum(binidx(:,3))); %DN-SIG 
end 
dataout = dataout*100; 
  
%% 
bar(dataout(1:3,:)) 
hold on; bar(dataout(4:6,:)) 
axis([0.5 3.5 0 60]) 
  
 
 
Relative seed location script 
%% relativeseedlocationscript2 finds seed locations and normalizes to 3'UTR length 
  
%% For expressed m21 anyseed 
m21data = mtxseed2(an_21DM,'m21','anyseed',gen_refmap); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
%% For expressed m122 anyseed 
m122data = mtxseed2(an122DM,'m122','anyseed',gen_refmap); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
  
%% For expressed m21 conserved anyseed 
m21data = conservedsites(an_21DM,'m21','anyseed',gen_refmap,hsaGBmap2); 
expm21 = m21data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm21,'m21',gen_refmap); 
accs = getLongUtrData2(expm21,'m21',gen_refmap); 
binidx = binDM(expm21); 
seedlocs = cellfun(@(x) x.UTR3.m21.index, accs,'UniformOutput', false); 
  
%% For expressed m122 conserved anyseed 
m122data = conservedsites(an122DM,'m122','anyseed',gen_refmap,hsaGBmap2); 
expm122 = m122data(expressedgenes,:); 
utrs = getLongUtrSeqs2(expm122,'m122',gen_refmap); 
accs = getLongUtrData2(expm122,'m122',gen_refmap); 
binidx = binDM(expm122); 
seedlocs = cellfun(@(x) x.UTR3.m122.index, accs,'UniformOutput', false); 
%% 
utrlengths = cell2mat(cellfun(@(x) length(x.UTR3.Sequence), accs, 'UniformOutput', 
false)); 
seeds = cellfun(@(x) x(x>0),seedlocs,'UniformOutput',false); 
relseeds = cell(length(utrlengths),1); 
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for i = 1:length(utrlengths) 
    relseeds(i,1) = cellfun(@(x) x/utrlengths(i), seeds(i),'UniformOutput', false); 
end 
  
test = relseeds; 
up = cell2mat(test(binidx(:,1))); 
nc = cell2mat(test(binidx(:,2))); 
dn = cell2mat(test(binidx(:,3))); 
  
uphist = histc(up,0:0.1:1.0); 
nchist = histc(nc,0:0.1:1.0); 
dnhist = histc(dn,0:0.1:1.0); 
  
dataout = [uphist nchist dnhist]; 
 
 
This script was used to build the local human genbank database. A similar method was used for the mouse database.  
 
%%Build human genref map 
cd('/Users/Shared/Genbank_refseq_HSA') 
accString = ls; 
idxN = strfind(accString, 'N'); 
fileList = cell(1,1); 
for i = 1:length(idxN) 
    if i == length(idxN) 
        fileList(i) = cellstr(deblank(accString(idxN(i):end))); 
    else 
        fileList(i,1) = cellstr(deblank(accString(idxN(i):idxN(i+1)-1))); 
    end 
     
end 
  
for i = 1:length(fileList) 
    hsaGB(i) = genbankread(fileList{i}); 
    if rem(i,100) == 0 
        disp(i) 
    end 
end 
  
%% Find genbank data with same gene symbol 
LocusNames = arrayfun(@(x) x.LocusName, hsaGB,'UniformOutput',false); 
geneSym = values(ref_gene_master_map, LocusNames); 
uniqueGeneSym = unique(geneSym); 
multEntryIdx = cell(length(uniqueGeneSym),1); 
for i = 1:length(uniqueGeneSym) 
    multEntryIdx(i) = {find(~cellfun(@isempty, strfind(geneSym, uniqueGeneSym{i})))}; 
    if rem(i,100) == 0 
        disp(i) 
    end 
end 
  
%% Create new GB map structure with same genesym accessions grouped together 
hsaGBmap = containers.Map(uniqueGeneSym{1}, hsaGB(multEntryIdx{1}));   
for i = 1:length(uniqueGeneSym) 
    hsaGBmap(uniqueGeneSym{i}) = hsaGB(multEntryIdx{i}); 
end 
  
%% 
genbankdata = values(hsaGBmap); 
%Create 3UTR field in genbankdata structures 
for i = 1:length(genbankdata) 
    if strcmp(genbankdata{i},'No Accession Number') == 1 
    else 
        count = numel(genbankdata{i}); 
        for j = 1:count 
            if isempty(genbankdata{i}(j).CDS) ~= 1 
                CDSstring = genbankdata{i}(j).CDS.location; 
                CDSend_idx = strfind(CDSstring,'..'); 
                CDSend = str2num(CDSstring(CDSend_idx+2:end)); 
                UTR3 = genbankdata{i}(j).Sequence(CDSend+1:end); 
                genbankdata{i}(j).UTR3.Sequence = UTR3; 
                 
                %Search for m21 seeds 
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                m21hit = seedmatch(UTR3, 'hsa-miR-21'); 
                if isempty(m21hit) == 1 
                    genbankdata{i}(j).UTR3.m21.match = 'no'; 
                    genbankdata{i}(j).UTR3.m21.index = m21hit; 
                 
                elseif sum(m21hit(1,:)) >= 1 
                    genbankdata{i}(j).UTR3.m21.match = '8m'; 
                    genbankdata{i}(j).UTR3.m21.index = m21hit; 
                 
                elseif sum(m21hit(2,:)) >= 1 
                    genbankdata{i}(j).UTR3.m21.match = '7m8'; 
                    genbankdata{i}(j).UTR3.m21.index = m21hit; 
                     
                elseif sum(m21hit(3,:)) >= 1 
                    genbankdata{i}(j).UTR3.m21.match = '7m1A'; 
                    genbankdata{i}(j).UTR3.m21.index = m21hit; 
                              
                end 
                 
                %Search for m122 seeds 
                m122hit = seedmatch(UTR3, 'hsa-miR-122'); 
                   if isempty(m122hit) == 1 
                    genbankdata{i}(j).UTR3.m122.match = 'no'; 
                    genbankdata{i}(j).UTR3.m122.index = m122hit; 
                 
                elseif sum(m122hit(1,:)) >= 1 
                    genbankdata{i}(j).UTR3.m122.match = '8m'; 
                    genbankdata{i}(j).UTR3.m122.index = m122hit; 
                 
                elseif sum(m122hit(2,:)) >= 1 
                    genbankdata{i}(j).UTR3.m122.match = '7m8'; 
                    genbankdata{i}(j).UTR3.m122.index = m122hit; 
                     
                elseif sum(m122hit(3,:)) >= 1 
                    genbankdata{i}(j).UTR3.m122.match = '7m1A'; 
                    genbankdata{i}(j).UTR3.m122.index = m122hit; 
                              
                end 
                 
                %Search for let7 seeds 
                let7hit = seedmatch(UTR3, 'hsa-let-7a'); 
                if isempty(let7hit) == 1 
                    genbankdata{i}(j).UTR3.let7.match = 'no'; 
                    genbankdata{i}(j).UTR3.let7.index = let7hit; 
                 
                elseif sum(let7hit(1,:)) >= 1 
                    genbankdata{i}(j).UTR3.let7.match = '8m'; 
                    genbankdata{i}(j).UTR3.let7.index = let7hit; 
                 
                elseif sum(let7hit(2,:)) >= 1 
                    genbankdata{i}(j).UTR3.let7.match = '7m8'; 
                    genbankdata{i}(j).UTR3.let7.index = let7hit; 
                     
                elseif sum(let7hit(3,:)) >= 1 
                    genbankdata{i}(j).UTR3.let7.match = '7m1A'; 
                    genbankdata{i}(j).UTR3.let7.index = let7hit; 
                              
                end 
                 
            else 
                genbankdata{i}(j).UTR3.Sequence = {}; 
            end 
        end 
    end 
    if rem(i,100) == 0 
        fprintf('Iterations Remaining:%0.0f\n',length(genbankdata) - i) 
    end 
end 
  
%% Create another new GB map structure with modified genbank data 
hsaGBmap2 = containers.Map(keys(hsaGBmap),genbankdata); 
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These functions are commonly called in the preceding scripts.  
 
function idxout = binDM(dataMtx) 
%binDM Returns indices for upregulated, no change, and downregulated genes from input 
datamatrix  
  
%dataMtx = sortrows(dataMtx); 
binUPidx = dataMtx(:,1) >= 1.1 & dataMtx(:,2) <= 0.05;  
binNCidx = dataMtx(:,1) < 1.1 & dataMtx(:,1) > -1.1; 
binDNidx = dataMtx(:,1) <= -1.1 & dataMtx(:,2) <= 0.05; 
  
idxout = [binUPidx binNCidx binDNidx]; 
end 
  
 
function newdataMtx = conservedsites(dataMtx, miRNA, seed, gen_refmap, hsaGBmap2) 
%conservedsites Accepts a mouse datamatrix,  filters for a particular miRNA and 
%returns the genes with verified site conservation in human  
  
mmudata = mtxseed2(dataMtx, miRNA, seed, gen_refmap); 
mmugenes = rownames(mmudata); 
mmugenesclean = cellfun(@(x) genecleanup(x, ' /// '), mmugenes,'UniformOutput',false); 
hsagenes = cnvgenes_human(mmugenesclean, hsaGBmap2); 
emptyidx = cellfun(@isempty, hsagenes); 
hsaGB = values(hsaGBmap2, hsagenes(~emptyidx)); 
  
conservedidx1 = zeros(1,1); 
for i = 1:length(hsaGB) 
    hasutridx = cellfun(@length, arrayfun(@(x) fieldnames(x.UTR3),hsaGB{i}, 
'UniformOutput', false)) == 4; 
    tempGB = hsaGB{i}(hasutridx); 
    if strcmp(seed, 'anyseed') 
        yesidx =  ~arrayfun(@(x) isempty(eval(sprintf('x.UTR3.%s.index', 
miRNA))),tempGB); 
    else 
        matchanswers = arrayfun(@(x) eval(sprintf('x.UTR3.%s.match', miRNA)), 
tempGB,'UniformOutput',false); 
        yesidx = strcmp(matchanswers, seed(1:end-2)); 
    end 
    if sum(yesidx) >= 1 
        conservedidx1(i,1) = 1; 
    else 
        conservedidx1(i,1) = 0; 
    end 
end 
     
conservedidx2 = zeros(size(emptyidx)); 
conservedidx2(~emptyidx) = conservedidx1; 
conservedidx2 = logical(conservedidx2); 
  
newdataMtx = sortrows(mmudata(unique(mmugenes(conservedidx2)),:)); 
end 
  
 
function [newDataMatrix] = mtxseed2(datamat, miRNA, seed, gen_refmap, varargin) 
%mtxseed Will search a datamatrix for genes matching a specific miRNA 
%(currently limited to miR-21 (m21), miR-122 (m122), or let-7 (let7)). The 
%seed type should be specified as '8mer' '7m8' '7m1A' or 'anyseed'. Input 
%must also include the gen_refmap containing genes keys and genbank 
%structure values for each gene, prematched to the miRNAs. Varargin 
%includes 'sig' for only genes having significant (P < 0.05) change and/or 
%a threshold value (example: '> 1.6'). Threshold cannot be applied without 
%specifying significant filter (must be varargin{2}). Specify 'nosig' if 
%significant filter should not be on when threshold is applied. 
  
n = nargin; 
%error check 
if strcmp(seed, '8mer') || strcmp(seed,'7m8') || strcmp(seed,'7m1A') || 
strcmp(seed,'anyseed') || strcmp(seed,'noseed') 
    
    genes = rownames(datamat); 
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    switch seed 
        case '8mer' 
            seed_idx = '1'; 
        case '7m8' 
            seed_idx = '2'; 
        case '7m1A' 
            seed_idx = '3'; 
        case 'anyseed' 
            seed_idx = ':'; 
        case 'noseed' 
            seed_idx = ':'; 
    end 
     
    k = 0; 
    for i = 1:length(genes) 
        key = genes{i}; 
        entry = gen_refmap(key); 
        entry_count = numel(entry); 
        j = 0; 
        while j < entry_count 
            j = j+1; 
            if ischar(entry(j)) 
            elseif isempty(entry(j).UTR3.Sequence) == 1 
            elseif eval(sprintf('sum(sum(entry(j).UTR3.%s.index(%s,:)))',miRNA, 
seed_idx)) > 0 
                k = k+1; 
                newgenes(k,1) = genes(i,1); 
                j = entry_count+1; 
            end 
        end 
    end    
    newDataMatrix = datamat(unique(newgenes),:); 
    newDataMatrix = sortrows(newDataMatrix,'Fold Change','descend'); 
    if strcmp(seed,'noseed') 
        newDataMatrix = datamat; 
        newDataMatrix(unique(newgenes),:) = []; 
    end 
    if n >= 5 && strcmp(varargin{1},'sig') == 1 
        newDataMatrix = newDataMatrix(newDataMatrix(:,2)<=0.05,:);  
    end 
    if n == 6  
        threshold = varargin{2}; 
        rows = eval(sprintf('newDataMatrix(:,1) %s',threshold)); 
        newDataMatrix = newDataMatrix(rows,:); 
    end 
     
else 
    fprintf('Invalid Input. Use 8mer, 7m8, 71mA, anyseed or noseed'); 
     
end 
end 
 
 
 
function UtrCell = getLongUtrSeqs2(dataMatrix, miRNA, genrefmap) 
%getLongUtrSeqs Returns the longest seed-matched UTR sequences 
%   can accept datamatrix or gene list as input 
  
%check if input is a cell list of genes or dataMatrix 
inputcheck = iscell(dataMatrix); 
if inputcheck == 0 
    genes = rownames(dataMatrix); 
else 
    genes = dataMatrix; 
end 
  
%find empty values 
emptyidx = cellfun(@isempty, genes); 
UtrCell = cell(size(emptyidx)); 
genes = genes(~emptyidx); 
data = values(genrefmap, genes); 
UTRs = cell(1,1); 
for i = 1:length(data) 
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    if length(data{i}) == 1 
        if length(fieldnames(data{i}.UTR3)) == 1 
            UTRs(i,1) = cellstr('NUM'); 
        else 
            UTRs(i,1) = cellstr(data{i}.UTR3.Sequence); 
        end 
    else 
        %Find the longest UTR for that genesymbol 
        LocusName = arrayfun(@(x) x.LocusName, data{i},'UniformOutput',false); 
        options = data{i}; 
        options = options(~cellfun(@isempty, regexp(LocusName,'\wM'))); 
        idx = ~arrayfun(@(x) isempty(eval(sprintf('x.UTR3.%s.index', miRNA))),options); 
        if numel(idx) == 0 
            UTRs(i,1) = cellstr('NUM'); 
        elseif numel(idx) == 1 
            UTRs(i,1) = cellstr(options(idx).UTR3.Sequence); 
        elseif numel(idx) > 1 
            options = options(idx); 
            [~, idx] = max(arrayfun(@(x) length(x.UTR3.Sequence),options)); 
            UTRs(i,1) = cellstr(options(idx).UTR3.Sequence); 
        elseif numel(idx) < 1 
            disp(i) 
        end 
    end 
end 
UtrCell(~emptyidx) = UTRs; 
UtrCell(emptyidx) = cellstr('NGM'); 
end 
  
 
 
 
function DataCell = getLongUtrData2(dataMatrix, miRNA, genrefmap) 
%getLongUtrSeqs Returns DATA for the longest seed-matched UTR sequences 
%   can accept datamatrix or gene list as input 
  
%check if input is a cell list of genes or dataMatrix 
inputcheck = iscell(dataMatrix); 
if inputcheck == 0 
    genes = rownames(dataMatrix); 
else 
    genes = dataMatrix; 
end 
  
%find empty values 
emptyidx = cellfun(@isempty, genes); 
DataCell = cell(size(emptyidx)); 
genes = genes(~emptyidx); 
data = values(genrefmap, genes); 
UTRs = cell(1,1); 
for i = 1:length(data) 
    if length(data{i}) == 1 
        if length(fieldnames(data{i}.UTR3)) == 1 
            UTRs(i,1) = cellstr('NUM'); 
        else 
            UTRs{i,1} = data{i}; 
        end 
    else 
        %Find the longest UTR for that genesymbol 
        LocusName = arrayfun(@(x) x.LocusName, data{i},'UniformOutput',false); 
        options = data{i}; 
        options = options(~cellfun(@isempty, regexp(LocusName,'\wM'))); 
        idx = ~arrayfun(@(x) isempty(eval(sprintf('x.UTR3.%s.index', miRNA))),options); 
        if numel(idx) == 0 
            UTRs(i,1) = cellstr('NUM'); 
        elseif numel(idx) == 1 
            UTRs{i,1} = options(idx); 
        elseif numel(idx) > 1 
            options = options(idx); 
            [~, idx] = max(arrayfun(@(x) length(x.UTR3.Sequence),options)); 
            UTRs{i,1} = options(idx); 
        elseif numel(idx) < 1 
            disp(i) 
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        end 
    end 
end 
DataCell(~emptyidx) = UTRs; 
DataCell(emptyidx) = cellstr('NGM'); 
end 
 
 
function [seed_index_matrix] = seedmatch(sequence, miRNA) 
%seedmatch Searches input sequence for a match to a given seed 
% User must specify sequence to search and miRNA using miRbase nomenclature 
% PrintValue == 1 will return a prompt with the number of seed_matches 
% found 
  
seed_index_cell = cell(3,1); 
seed_8mer = miRmatchlookup(miRNA, '8mer'); 
seed_7m8 = miRmatchlookup(miRNA, '7m8'); 
seed_7m1A = miRmatchlookup(miRNA, '7m1A'); 
  
s8mer_idx = strfind(sequence, seed_8mer); 
  
s7m8_idx = strfind(sequence, seed_7m8); 
  
s7m1A_idx = strfind(sequence, seed_7m1A); 
  
  
s8hits = numel(s8mer_idx); 
seed_index_matrix(1,1:s8hits) = s8mer_idx; 
  
s7m8hits = numel(setdiff(s7m8_idx,s8mer_idx)); 
seed_index_matrix(2,1:s7m8hits) = setdiff(s7m8_idx,s8mer_idx); 
  
s7m1Ahits = numel(setdiff(s7m1A_idx-1, unique([s8mer_idx s7m8_idx]))+1); 
seed_index_matrix(3,1:s7m1Ahits) = setdiff(s7m1A_idx-1, unique([s8mer_idx s7m8_idx]))+1; 
  
  
end 
  
 
function [seed_match] = miRmatchlookup(miRbase_miRNA_name, seed_type) 
%miRmatchlookup Finds seed_matches (on mRNA) to a particular miRNA 
%   Input miRNA name should use miRbase nomenclature standards, for 
%   example: mmu-miR-21 for mouse miRNA-21. Seed_type options include 6mer, 
%   7m8, 7m1A, and 8mer. 
  
load miRfamilymatch_map 
  
seed7m8 = miRfamilymatch_map(miRbase_miRNA_name); 
  
if strcmp(seed_type, '6mer') 
    seed_match = seed7m8(2:end); 
  
elseif strcmp(seed_type, '7m8') 
    seed_match = seed7m8; 
     
elseif strcmp(seed_type, '7m1A') 
    seed_match = sprintf('%sa',seed7m8(2:end)); 
     
elseif strcmp(seed_type, '8mer') 
    seed_match = sprintf('%sa',seed7m8); 
  
end 
  
 
function [array] = getlog2(datamat) 
%getlog2 Computes the log2 data from linear fold change in a datamatrix 
 
values = double(datamat(:,1)); 
values(values>0) = log2(values(values>0)); 
values(values<0) = log2(-1./(values(values<0))); 
array = values; 
  
end 
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function DataCell = getLongUtrData3nomir(dataMatrix, genrefmap) 
%getLongUtrSeqs Returns DATA for the longest transcripts 
%   can accept datamatrix or gene list as input 
  
%check if input is a cell list of genes or dataMatrix 
inputcheck = iscell(dataMatrix); 
if inputcheck == 0 
    genes = rownames(dataMatrix); 
else 
    genes = dataMatrix; 
end 
  
%find empty values 
emptyidx = cellfun(@isempty, genes); 
DataCell = cell(size(emptyidx)); 
genes = genes(~emptyidx); 
data = values(genrefmap, genes); 
UTRs = cell(1,1); 
for i = 1:length(data) 
     
    if ~isstruct(data{i})  
        UTRs(i,1) = cellstr('NUM'); 
    elseif length(data{i}) == 1 
        if length(fieldnames(data{i}.UTR3)) == 1 
            UTRs(i,1) = cellstr('NUM'); 
        else 
            UTRs{i,1} = data{i}; 
        end 
    else 
        %Find the longest UTR for that genesymbol 
        LocusName = arrayfun(@(x) x.LocusName, data{i},'UniformOutput',false); 
        options = data{i}; 
        options = options(~cellfun(@isempty, regexp(LocusName,'\wM'))); 
            [~, idx] = max(arrayfun(@(x) length(x.Sequence),options)); 
            UTRs{i,1} = options(idx); 
    end 
end 
DataCell(~emptyidx) = UTRs; 
DataCell(emptyidx) = cellstr('NGM'); 
end 
 
function [newstr] = genecleanup(str, delimiter) 
%genecleanup Cleans up compound gene names containing a delimiter 
delim = delimiter; 
delim_count = numel(strfind(str, delim)); 
if delim_count >= 1 
holder = cell(delim_count+1,1); 
for i = 1:delim_count 
    [first str] = strtok(str, delim); 
    holder{i} = first; 
end 
holder{end} = str(6:end); 
[a b] = min(cellfun(@numel,holder)); 
newstr = holder{b}; 
else 
    newstr = str; 
end 
  
function [output_genes] = cnvgenes_human(input_genes, hsaGBmap2) 
%cnvgenes Converts a cell array of strings of gene names to compatible 
%versions for indexing into the anti-miR mouse liver datamatrix arrays 
%   IMPORTANT: Input must be a cell array of strings!  
  
output_genes = cell(length(input_genes),1); 
mygenes = keys(hsaGBmap2); 
  
for i = 1:length(input_genes) 
    match_test = strcmpi(input_genes{i},mygenes); 
    if sum(match_test) > 0 
        output_genes(i) = mygenes(match_test); 
    else 
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        search = strfind(lower(mygenes), lower(input_genes{i})); 
        idx = cellfun(@isempty, search); 
        if sum(idx) == length(mygenes) 
        else 
            output_genes{i} = mygenes{~idx}; 
        end 
    end 
     
end 
end 
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Appendix B  

Intracellular single molecule microscopy reveals time and mRNA dependent 

microRNA assembly4 

 

B.1 Abstract 

MicroRNAs (miRNAs) associate with components of the RNA induced silencing 

complex (RISC) to assemble on messenger RNA (mRNA) targets and regulate protein 

expression in higher eukaryotes. Here, we describe a method for the intracellular single 

molecule, high-resolution localization and counting (iSHiRLoC) of miRNAs. 

Microinjected, singly-fluorophore labeled, functional miRNAs were tracked within 

diffusing particles, a majority of which contained single such miRNA molecules. 

Observed mobility and mRNA dependent assembly changes suggest the existence of two 

kinetically distinct pathways involving miRNAs, revealing the dynamic nature of an 

important gene regulatory pathway and paving the way towards its single molecule 

systems biology. 

 

B.2 Introduction 

Gene regulation by microRNAs (miRNAs) is an evolutionarily conserved RNA silencing 

pathway wherein ~22-nucleotide-short non-coding RNAs assemble with components of 

the RNA induced silencing complex (RISC) so that their guide strand can bind partially 

complementary sequences in mRNA 3’ untranslated regions (UTRs) to repress protein 

expression17,293. To date, over 1,500 mammalian miRNAs have been identified that, 

collectively, are predicted to regulate over 60% of all protein coding genes291. The 

ubiquitous nature of miRNAs implicates their involvement in all aspects of multi-cellular 

life17,293, from general cellular processes such as cell differentiation and survival to 

pathologies such as cancer, thus creating an urgent need to understand the mechanism(s) 

                                                
4 Reproduced in part with permission from Pitchiaya, S., Androsavich, J. R., & Walter, N. G. (2012). 
Intracellular single molecule microscopy reveals two kinetically distinct pathways for microrna assembly. 
EMBO Reports.  
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by which miRNAs function. While standard ensemble assays, including intracellular 

fluorescence microscopy68,294, have revealed a wealth of information17,293, the mechanism 

of gene repression by miRNAs is still debated81,246. We have developed an incisive tool 

to quantify the intracellular diffusion and assembly of single functional miRNAs, which 

are parameters fundamental to their biological function, in pursuit of their still elusive 

mode of action. 

Single molecule fluorescence microscopy (SMFM) has emerged as a powerful 

tool to quantify properties of biomolecules not accessible to conventional ensemble-

averaging techniques275,295. In particular, SMFM has been applied to living cells to assess 

diffusive properties by single particle tracking (SPT)295 and the stoichiometry of 

molecular complexes by stepwise photobleaching198. The strategies available so far, 

however, either decorate the target molecule with multiple fluorescent probes, thereby 

creating high-molecular weight appendages that may impede function, and/or have only 

been applied to proteins or large RNA-protein complexes295-297. Our intracellular single 

molecule, high-resolution localization and counting (iSHiRLoC) method overcomes these 

caveats by combining microinjection (which defines an experimental start point) and 

low-background illumination with SPT and stepwise photobleaching to visualize the 

diffusive motions and distribution of singly fluorophore labeled functional small RNAs 

inside cells. We observe two kinetically distinct pathways involving mRNA dependent 

miRNA assembly processes, providing a direct look at the complexity of the intracellular 

processes involved in RNA silencing. 

 

B.3 Materials and Methods 

Plasmids, DNA and RNA olignucleotides. Luciferase reporter plasmids pmG-mH3U 

(wt) and pmG-mH3UM (mut) were engineered by inserting the wild-type and mutant 

mouse HMGA2 3’ UTR sequences, respectively, downstream of the firefly luciferase 

ORF in the pmirGLO dual-luciferase expression vector (Promega). The wild-type and 

mutant 3’ UTRs were PCR amplified from plasmid templates received as a gift from 

David Bartel (Whitehead Institute, MIT)173 using primers containing at their 5’ ends  

XhoI and NotI or XhoI and XbaI restriction sequences, respectively. Following 
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restriction digestion, the amplicon insert was ligated to complementary ends in the 

pmirGLO vector. Fluorescence reporter plasmid pEF6-mCherry-mH3Um was 

constructed by first subcloning the mCherry ORF from the pRSET-mCherry vector, a gift 

from Roger Tsien (UCSD), into the multiple cloning site of the pEF6-myc-His-B 

(Invitrogen) vector using BamHI and EcoRI restriction sites. Then, using PCR cloning, 

the mutant HMGA2 3’ UTR was inserted downstream of the mCherry ORF between 

XhoI and NotI sites. pEGFP-C1 was purchased from Clontech. pMCP-EGFP, a plasmid 

bearing the ORF of the MS2 coat protein fused to EGFP and an SV-40 nuclear 

localization signal (NLS), and pSL-MS2_24x, a plasmid bearing 24 copies of the MS2 

stem loops162, were received as gifts from Robert Singer (Albert Einstein College of 

Medicine). A Luciferase reporter plasmid bearing the MS2 stem loops was created in two 

steps. First, the ORF of IF2, PCR amplified using a forward primer bearing SbfI and 

EcoRI restriction enzyme sites and a reverse primer bearing a NotI restriction enzyme 

site, was cloned into the corresponding SbfI and NotI sites in plasmid pmG-mH3UM. 24 

copies of the MS2 stem loop (from pSL-MS2_24x) were then cloned into the EcoRI-NotI 

restriction enzyme sites of the resultant plasmid, pmG-mH3UM-IF2, to generate pmG-

mH3UM-MS2. We had to resort to this two-step procedure because linearized plasmids 

containing the MS2 stem loops often recombined with the genome of the bacterial 

competent cells we were using, thus resulting in clones bearing smaller plasmids. Clones 

containing the MS2 stem loops were created in SURE2 bacterial cells (Stratagene) to 

minimize recombination of the MS2 repeats with the bacterial genome. Plasmid pEGFP-

hDcp1a was created by removing the mRFP1 ORF from pmRFP1-hDcp1a (gift from 

Nancy Kedersha, Brigham Women‘s hospital) using AgeI and XhoI restriction enzyme 

digestion and replacing it with the similarly digested ORF of EGFP, which was PCR 

amplified from pEGFP-C1 (Clontech) using DNA primers bearing AgeI and XhoI 

restriction enzyme sites. Plasmid pRL-TK-cxcr4-6x 71 containing the renilla luciferase 

coding sequence and an artificial 3’ UTR with six binding sites for an artificial cxcr4 

miRNA downstream of the T7 promoter, was purchased from Addgene.  

Negative control siRNA used in transfection experiments was purchased from 

Ambion. SiLuc2 siRNA, a positive control siRNA, was designed towards the coding 

sequence of the firefly luciferase gene (luc2) and purchased from Dharmacon as a duplex.  
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All other RNA oligonucleotides were purchased from the Keck Biotechnology Resource 

Laboratory at the Yale University School of Medicine with a 5’ phosphate (P) and, in the 

case of amine modified RNA, a 3’ amino group on a C7 carbon linker. RNA was purified 

as described249 and the 3’ amine groups were labeled with Cy3 or Cy5 succinimidyl ester 

as described249,298. RNA sequences were as follows: 

let-7-a1 guide: P-UGAGGUAGUAGGUUGUAUAGUU 

let-7-a1-passenger: P-CUAUACAAUCUACUGUCUUUCC 

let-7-a1 mut guide: P-UGCGUUAGUAGGUUGUAUAGUU 

let-7-a1 mut passenger: P-CUAUACAAUCUACUGUCGUUCC 

cxcr4 guide: P-UGUUAGCUGGAGUGAAAACUU 

cxcr4 passenger: P-GUUUUCACAAAGCUAACACA 

siLuc2 guide: GAAGUGCUCGUCCUCGUCCUU 

siLuc2 passenger: GGACGAGGACGAGCACUUCUU 

Guide and passenger strands were heat-annealed in a 1:1 ratio, resulting in duplex 

miRNAs, and frozen for further use. DNA oligonucleotide MS2 with four internal amine 

modifications was purchased from the Keck Biotechnology Resource Laboratory at the 

Yale University School of Medicine, purified and labeled as described above. A DNA 

oligonucleotide completely complementary to MS2 (C-MS2) with a 5’ phosphate (P) was 

purchased from Invitrogen. The labeled and complementary strands were annealed in a 

1:1 ratio and frozen for further use. DNA sequences were as follows: 

MS2: AXGTCGACCTGCAGACAXGGGTGATCCTCAXGTTTTCTAGGCAATXA 

( X represents an amine modified deoxy-uridine) 

C-MS2: P-

TAATTGCCTAGAAAACATGAGGATCACCCATGTCTGCAGGTCGACAT 

 

mRNA synthesis. pRL-TK-cxcr4-6x was linearized either with XhoI or NotI restriction 

enzyme and purified by phenol-chlorofom extraction followed by ethanol precipitation. 

In vitro transcriptions were performed with 1 µg linearized plasmids using the 

MegaScript T7 kit (Ambion) according to manufacturer‘s protocol. Transcription 
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reactions were then DNase treated (turbo DNase, Ambion) and the respective RNAs, RL 

(XhoI digest) and RL-cxcr4-6x (NotI digest), purified by LiCl precipitation. The RNAs 

were size selected from upon 5% (w/v) urea poly-acrylamide gel electrophoresis, 

5’capped with m7G using the ScriptCap capping kit and polyadenylated using the polyA 

tailing kit (Epicentre). Capped and tailed RNAs were purified by gel filtration (Roche© 

RNA columns). The length of the polyA tails was estimated based on electrophoretic 

mobility on a 1.2% formaldehyde agarose gel.  

 

Cell culture and media.  HeLa cells (CCL-2, ATCC) were cultured in DMEM (GIBCO, 

Invitrogen) supplemented with 10% (v/v) fetal bovine serum (FBS) and non-essential 

amino acids (NEAA) at 37℃. 1 - 1.25e5 cells were seeded onto delta-T dishes 

(Bioptechs) one day before microinjection, such that they were ~80% confluent at the 

time of microinjection. Regular medium was replaced with phenol red-free medium 4 h 

prior to microinjection and subsequently with a minimal medium (HBS), without serum 

and vitamins, but containing 20 mM HEPES-KOH pH 7.4, 135 mM NaCl, 5 mM KCl, 1 

mM MgCl2, 1.8 mM CaCl2 and 5.6 mM glucose, immediately before microinjection. 

After microinjection, cells were incubated in phenol red-free DMEM containing 2% (v/v) 

FBS and 1x NEAA and in the presence of a 5% CO2 atmosphere for the indicated 

amounts of time prior to imaging. For long incubations (4 h and greater), the medium was 

replaced every 4 h with fresh growth medium containing 2% (v/v) FBS. We found that 

cellular autofluorescence was a function of serum concentration; higher serum 

concentrations resulted in higher background and medium with no serum exhibited the 

least background. We used 2% (v/v) FBS to prevent conditions of serum starvation and 

simultaneously minimize cellular autofluorescence. 

 

Microinjection. Microinjections were performed using a Femtojet pump (Eppendorf) 

and a microscope mounted Injectman NI2 micromanipulator (Eppendorf). Solutions to be 

microinjected were centrifuged at 16,000 x g for 15 min at 4℃ just prior to 

microinjection. For a majority of the tracking and fixed cell experiments, the micropipette 
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(Femtotips, Eppendorf) was loaded with 1.5 µM fluorophore labeled miRNA and 0.05% 

10 kDa Fluorescein dextran (Invitrogen) in PBS. Fluorescein, which is spectrally distinct 

from Cy5, served as a marker to locate microinjected cells, mainly because Cy5 

photobleached relatively quickly (within ~1.5 s). The focal plane to be imaged was 

adjusted during 488 nm (fluorescein) excitation and then quickly switched to 640 nm 

(Cy5) excitation for image acquisition. For (negative) control experiments, the miRNA 

was omitted and either 0.05% Fluorescein dextran (Invitrogen) in PBS or plain PBS were 

used. Microinjection of fluorescein dextran only resulted in very low background and 

false-positive particles. In some experiments, the fluorescein dextran was omitted and 2 

µM Cy3 labeled miRNA in PBS was used. Although Cy3 labeled particles were visible 

for a longer time than those of Cy5, the majority of experiments were performed with 

Cy5 labeled miRNAs in conjunction with fluorescein dextran for two reasons: (i) cellular 

autofluorescence was higher upon 532 nm (Cy3) excitation as compared to 640 nm 

excitation; and (ii) it was easier to choose microinjected cells and check for microinjector 

clogging without photobleaching the dye conjugated to the miRNA. Co-microinjecting 

let-7-a1-Cy3 along with either fluorescein dextran or Alexa-647 dextran resulted in high 

background fluorescence and strong Cy3 fluorescence quenching, respectively, when 

illuminated with at 532 nm. The former background is largely contributed by the spectral 

overlap between fluorescein and Cy3. For MS2 DNA microinjections, 0.5 µM duplex 

DNA mixed with 0.05% (w/v) of 10 kDa fluorescein dextran in PBS was microinjected. 

For co-microinjections of miRNA with mRNA, 1.5 µM cxcr4 miRNA and 0.25 µM 

mRNAs (RL or RL-cxcr4-6x) were mixed with 0.05% (w/v) of 10 kDa fluorescein 

dextran in PBS. All of the above microinjections were performed at 100 hPa 

microinjection pressure for 0.5 s with 20 hPa compensation pressure. Using these 

conditions, microinjection volume was estimated to be ~0.02 pL or ~0.5% - 5% of the 

total cell volume, which translates to ~18,000 molecules of miRNA (at 1.5 µM working 

concentration). For plasmid microinjections, compensation pressure was increased to 40 

hPa and plasmids were co-microinjected along with the appropriate amounts of miRNA 

at a working concentration of 0.1 µg/µl in PBS (see Repression Assays for further 

details).  
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Fluorescence microscopy. Imaging was performed using a cell-TIRF system based on 

an Olympus IX81 microscope equipped with a 60x 1.45 NA oil-immersion objective 

(Olympus), nanometer-precision motorized stage (ASI Imaging), focal drift control 

module (zero drift control, Olympus), 1x – 4x magnification changer (Olympus) and an 

EM-CCD camera (Evolve, Photometrics). Solid state lasers with wavelengths of 488 nm 

(25 mW), 532 nm (100 mW) and 640 nm (100 mW), were directed through an acousto-

optical tunable filter, split into different fiber-optic cables and then coupled to the cell-

TIRF module. All laser lines had 10 nm bandwidth clean-up filters to ensure 

monochromatic illumination. Net powers of ~1.2 mW, 7 mW and 8 mW were achieved at 

the objective for the 488 nm, 532 nm and 640 nm laser lines, respectively. Laser beams 

were focused on the back-focal plane of the objective and made to travel parallel to the 

optic axis such that changing the distance from the optic axis controlled incident angle at 

the dish-media interface. Highly inclined laminar optical sheet (HILO) microscopy 248 

was used to achieve deeper penetration into cells without compromising on signal-to-

noise ratio. A dual band filter cube consisting of a z491/639rpc dichroic filter (Chroma) 

and z491/639m emission filter (Chroma) was used to detect GFP and Cy5 emission. Cy3 

emission was detected using a Q570LP dichroic filter (Chroma) and HQ610/75m 

emission filter (Chroma). All videos were recorded at 100 ms camera exposure time 

using 120x magnification (60x objective and 2x additional magnification using the 

magnification changer) unless otherwise mentioned. Cells were maintained at 37℃ on 

the microscope stage while imaging using the DeltaT open dish system (Bioptechs) and a 

heated lid (Bioptechs). 5% CO2 was supplemented to cells using the side port of the 

heated lid. 

 

Live cell imaging data analysis. The dish was washed several times with HBS 

immediately after microinjection. Cells were imaged in HBS consisting of 0.3 U/mL 

Oxyfluor (Oxyrase), 20 mM sodium succinate, 2 mg/mL ascorbic acid and 200 µM trolox 

(HBS-OSS). Oxyfluor and its substrate succinate act as an oxygen scavenging system, 

whereas ascorbic acid and trolox served as strong triplet state quenchers, effectively 

increasing the lifetime of the fluorophores inside the cells. 
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Single particles were tracked using the tracking module of Imaris (Bitplane). Only 

particles that lasted for more than 9 frames, in which case the error in the calculated 

diffusion coefficient will be ~50%299, were used for further analysis. All tracks were 

visually inspected to ensure that they arose from well-isolated particles. In-house 

MATLAB routines were then used to calculate the mean squared displacement (MSD) 

and diffusion coefficients. Brownian diffusion coefficients were calculated by fitting the 

mean squared displacement for the first three time intervals to the equation300: 

 

An offset was used to account for the error in localization at t = 0. Localization precision 

was measured by tracking the variation in position of fixed miRNA particles 

(Supplementary Fig. S1A). Relative deviation analysis301 was performed on individual 

trajectories, based on the equation: 

 

where D is the instantaneous diffusion coefficient and n is a data point at a later time lag, 

not included in the original calculation of D. An RD value of 1 corresponds to pure 

Brownian motion. If the MSD time course were to deviate from linearity, such as those in 

anomalous, directed and corralled motions, RD values will deviate from 1. Thus, by 

comparing the distribution of RD values between multiple sample sets, we can gauge if a 

change in mobility of particles is due to the preponderance of one type of diffusive 

pattern over another.   

 The analytical forms of MSD time courses for different forms of motion: 

                                                                         (Brownian 

motion) 
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                                        (Corralled 

motion) 

 

                            (Biased / directed motion with 

diffusion) 

were used to derive diffusion coefficients from data points in Fig. 1e respectively. 

 Calculation of background intensity was done using ImageJ software (NIH). 

Briefly, a binary mask, using the background subtracted-thresholded image created by 

our intensity analysis software (see Fixed cell imaging and data analysis), was used to 

subtract all miRNA particles from an image and the total intensity from the resultant 

image was used to calculate the average background intensity. Intensity of regions 

outside the cell was used as the baseline to calculate the relative average background 

intensity.  

 The 1 h and 32 h datasets were background subtracted, thresholded and 

deconvolved to accurately localize single particles. These images were subsequently also 

used in Supplementary Fig. S4 to calculate the average number of particles visible for at 

least nine consecutive frames.  

 

Fixed cell imaging and data analysis. Cells were first washed five times with PBS, 

fixed using 4% (w/v) paraformaldehyde in PBS for 20 min, washed five times with PBS 

after fixing and imaged in PBS consisting of the same OSS-antioxidant mix as mentioned 

above (PBS-OSS).  

Intensity analysis to determine number of photobleaching steps was performed 

using a custom written LabView (National Instruments) code302. A Chung-Kennedy non-
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linear filter303 was used to effectively average out the noise within intensity traces, yet 

preserving fast and sudden transitions, which aided in better visualization of 

photobleaching steps. The number of fluorophores per spot was estimated based on the 

number of photobleaching steps. The density of spots within cells was low enough (~0.1 - 

0.25 spots/µm^2) to be confident that single particles were discerned. We also note that 

the number of miRNAs we observed in the focal plane of a microinjected cell (~500 on 

average per fixed cell, considering both the number of distinct particles and their 

individual photobleaching steps; Supplementary Table B.S.1 and Fig B.4.D) correlates 

well with the volume fraction of the cell in focus multiplied with the total number of 

microinjected miRNAs (~18,000), suggesting that we can account for a significant 

fraction of the microinjected miRNAs. 

For mRNA-miRNA colocalization experiments, HeLa cells were co-

microinjected with the MS2/MCP plasmids and the appropriate Cy5 labeled miRNA, 

incubated for 24 h under normal growth conditions and formaldehyde fixed just prior to 

imaging. An object based approach252 was used to quantitatively assess co-localization 

based on sub-pixel localization of the centers of mass (COMs) of isolated objects from 

the GFP (green circles) and Cy5 (red circles) channels (Fig B.3.C). Two objects, one 

from each channel, were considered 'perfectly' co-localized if their COMs were localized 

in the same pixel (yellow circles) or simply co-localized if the radial distance between the 

COMs was less than the resolution limit. In the latter case, the COMs of the two co-

localized objects occur on adjacent, but separate pixels; these were mapped as cyan and 

magenta circles for Cy5-COMs and GFP-COMs, respectively, for Fig. B.3.C. We 

typically observed a density of 0.08 Cy5 particles/µm^2, 0.28 GFP particles/µm^2 and 

0.13 Cy5 particles/µm^2, 0.2 GFP particles/µm^2 in the specific (in the presence of 

target mRNA) and non-specific (with a negative control miRNA) samples, respectively. 

The density of green particles arising from background fluorescence was 0.08 GFP 

particles/µm^2 in samples that were injected with mutant let-7-a1-Cy5 (0.07 

particles/µm^2) and MCP plasmid without the MS2-mRNA expression plasmid. We 

chose wild-type let-7-a1 as a non-specific control miRNA for two reasons: (i) This 

miRNA is incapable of repressing a reporter target with mutant let-7-a1 seed sequences 

(Fig B.1.A) and (ii) we expect maximal non-specific co-localization of this miRNA with 
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our reporter mRNA in common cellular RNA foci, such as PBs, since let-7-a1 has many 

endogenous targets that it would localize to PBs, where the mutant mRNA may also 

reside due to its regulation by endogenous factors. Fluorophore labeled wild-type let-7-a1 

thus serves as a robust negative control miRNA, setting an upper limit for sequence 

independent co-localization. 

Repression assays. For transfection repression assays 24 h prior to transfection, 100 µL 

of 15,000 HeLa cells were seeded per well of a 96 well plate. Cells were transfected with 

60 ng of the indicated plasmid, 10 nM of the indicated dsRNA, 0.4 µL of Lipofectamine 

2000 (Invitrogen) and 50 µL of OptiMEM (GIBCO). 6 h after transfection the growth 

medium was replaced with fresh medium. 24 h after transfection, medium was replaced 

with phenol red-free DMEM. Dual luciferase assays were performed using the Dual-Glo 

luciferase assay reagents (Promega) as per the manufacturer’s protocol and luminescence 

was detected using a Genios Pro (Tecan) plate reader. For microinjection repression 

assays, 0.1 µg/ul of both pEF6-mCherry-mH3UM and pEGFP-C1 plasmids were 

microinjected with 1.5 µM WT or MUT let-7 miRNA and 0.025% Alexa647 dextran 

(Invitrogen) in PBS. Following microinjection, cells were maintained under normal 

growth conditions for 24 h prior to imaging. Fluorescence signal were quantified using 

ImageJ software (NIH). The background subtracted mCherry signal was normalized with 

that of GFP for individual cells, which was then averaged over all cells. Using our filter 

sets (refer to Microscopy) we observed a small amount of mCherry bleed-through signal, 

~14%, while imaging GFP. This bleed through was corrected for in our calculations. 

Repression was measured by normalizing the average relative intensity of mutant let-7-a1 

injections with respect to that of wild-type let-7-a1 injections.  

Estimating the cellular abundance of mRNA targets for let-7 and cxcr4. We first 

used targetscan 5.2© to identify potential mRNA targets of the let-7 and cxcr4 miRNAs. 

These targets were then compared to data from a HeLa cell mRNA expression profiling 

array304 (dataset accessible at NCBI GEO database304,305, accession GSM650992) using a 

custom written MATLAB code to identify endogenously expressed targets of both 

miRNAs. We found that ~10% of all predicted targets in either datasets were not 

expressed in HeLa cells. Comparing mRNA abundances of all potential targets for both 
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miRNAs, we deduced that let-7 is predicted to have ~10-fold more expressed target 

molecules than cxcr4. 

Calculation of miRNA copy number in HeLa cells. We calculated the number of let-7 

miRNA molecules per cell based on miRNA expression profiling data306 and previously 

reported abundance of let-7a307 and miR-21308 in HeLa cells. Fluorescence307 and qRT-

PCR 308 assays have estimated the copy number of let-7a and miR-21 to be ~4,000 copies 

and ~20,000 copies per cell, respectively. Deep sequencing data306 

(http://www.mirz.unibas.ch/cloningprofiles/) suggest that let-7a, which comprises 

~16.5% of the total let-7 population, and miR-21 represent ~1.6% and ~13.2%, 

respectively, of the total miRNA pool in HeLa cells (~150,000 copies). Taking both of 

these data sets into consideration, we estimate the total let-7 population to be between 

15,000 and 24,000 molecules per HeLa cell. 

 

B.4 Results and Discussion 

iSHiRLoC – a biologically relevant, intracellular, single molecule method 

To study intracellular miRNA transport and localization, we microinjected mature 

double-stranded let-7-a1 or artificial cxcr4 miRNA, labeled on the 3’-end of the guide 

strand with one Cy3 or Cy5 fluorophore, into human HeLa cervical cancer cells. Let-7-a1 

miRNA is a member of the highly conserved, tumor suppressing let-7 family whose 

function is critical to cell proliferation173. Let-7-a1 and cxcr4 have ~700 and ~70 

predicted mRNA targets in HeLa cells, respectively and both miRNAs have been 

reported to localize to processing bodies (PBs)68,153, sub-cellular ribonucleoprotein (RNP) 

complexes enriched in RNA processing enzymes. Microinjection allowed us to control 

the number of molecules introduced into the cytoplasm (~18,000) to be similar to the 

endogenous levels of let-7 miRNAs, minimizing cell perturbation and facilitating single 

miRNA detection as distinct point-spread functions upon imaging by highly inclined 

laminar optical sheet (HILO) microscopy248. We supplemented cell medium with an 

oxygen scavenger system to delay photobleaching. Microinjected cells divided normally 
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after 24 h and remained viable for at least 32 h, attesting to the low invasiveness of 

iSHiRLoC. 

 We further sought to ensure that microinjected, fluorophore-labeled miRNAs 

retain functionality. Transfection experiments showed that a luciferase reporter gene with 

seven let-7 target sequences was strongly repressed even without adding exogenous let-7-

a1, most likely due to the fact that let-7 is one of most abundant miRNA families in HeLa 

cells. Accordingly, repression was moderately enhanced (only ~2.8 fold) upon co-

transfection with let-7-a1 (Fig B.1.A). To enhance the sensitivity of our assay, we 

included a mutant let-7-a1 that was previously shown to specifically repress a 

compensatory mutant of the target sequence173. As expected, the repression of mutant 

target by mutant let-7-a1 was strong (~5.6 fold) and specific, consistent with previous 

observations173. In this more sensitive assay, we then showed that attaching either a 

single Cy3 or Cy5 to the 3’-end of the let-7-a1 guide strand does not significantly 

compromise repression (Fig B.1.A). Finally, we microinjected either mutant or wild-type 

let-7-a1 along with both an mCherry reporter plasmid containing seven mutant let-7 

target sequences and a control GFP reporter plasmid, and found that the intended target 

protein was specifically and strongly repressed, supporting the biological relevance of 

microinjecting miRNAs as part of iSHiRLoC (Fig B.1.B-C). 

 

Upon RNP assembly, microRNAs diffuse within well-resolved single particles 

We next analyzed SPT trajectories of miRNA particles 4 h after microinjecting cells with 

let-7-a1-Cy3 or let-7-a1-Cy5 (Fig B.2.A-B) and found individual particles to undergo (at 

least) four distinct diffusive patterns (Fig B.2.C-E). Control experiments showed that 

microinjection of PBS buffer alone or fluorescein-conjugated dextran, used as a marker 

for microinjection, contributed neither to the fluorescence signal nor impacted the 

function and mobility of miRNA particles (Fig B.1.B and Fig B.2.F). Our SPT analysis 

reached a super-accuracy of ~30 nm at 100 ms temporal resolution with an observation 

window of, on average, ~3 s for let-7-a1-Cy3 (and cxcr4-Cy3) and ~1.5 s for let-7-a1-

Cy5, before an individual particle went out of focus or photobleached (Supplementary 
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Fig B.S.1.B). Only very few particles had large changes in intensity over their trajectory 

(Supplementary Fig B.S.1.B) that may report diffusion along the z-axis. However, we 

cannot rule out that miRNA particles diffuse along the z-axis between successive imaging 

frames, taken every 100 ms. 

Time-averaged mean squared displacement (MSD) analysis of individual SPT 

trajectories allowed us to characterize the distinct diffusive patterns as biased, corralled, 

fast or very slow Brownian diffusion, leading to a wide range of diffusion coefficients 

(Fig B.2.E-F, Supplementary Fig B.S.1.C-E). Analysis of a large number of trajectories 

(Supplementary Table B.S.1) 4 h after microinjection revealed two distinct Gaussian 

distributions of microscopic diffusion constants, with average diffusion coefficients of 

~0.26 µm^2/s and ~0.034 µm^2/s for both let-7-a1-Cy3 (Fig B.2.F) and let-7-a1-Cy5 

miRNA (Fig B.2.G), smaller than those reported for RISC by fluorescence correlation 

spectroscopy, ~5.4 µm^2/s294. We did not observe more rapidly diffusing particles 

possibly due to limits in our time resolution (100 ms camera integration time) and/or 

since they may not be visible for all of 9 frames, our threshold for diffusion coefficient 

calculation. The main particles we did observe had diffusion coefficients that resemble 

those of messenger RNPs162 and PBs (Supplementary Fig B.S.2)165, key mechanistic 

intermediates of mRNA repression by miRNAs17,293 that have much higher molecular 

masses than RISC. These assignments were further supported by the observed co-

localization of microinjected miRNAs both with messenger RNPs (mRNPs) containing 

matching miRNA target sites and with PBs (Fig B.3). Taken together, our microinjected 

miRNAs are functionally fully active (Fig B.1), and are associated with mRNAs and PBs 

(Fig B.3), strongly suggesting that the observed particles must contain miRNAs bound to 

and actively repressing target mRNAs. 

The diffusion constants of miRNA containing RNPs increase over an 8-hour period 

Next, we asked whether the diffusive properties of miRNA containing particles changed 

over time. Such changes may be expected for RISC-mediated loading of miRNAs onto 

mRNA targets and subsequent processing of the resulting mRNPs. To this end, we 

incubated let-7-a1-Cy5 microinjected cells for 1, 2, 4, 8 and 32 h prior to imaging. After 

1 h and 32 h, high background and large inter-frame displacements of individual 
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particles, respectively, precluded accurate tracking. This observation, together with 

further analysis (Supplementary Fig B.S.3), is consistent with the presence of fast 

diffusing free miRNAs and smaller miRNA-protein complexes, respectively, that become 

blurred at our 100-ms time resolution. Notably, after 32 h the 3’ fluorophore labeled 

miRNAs, whose 3’ ends are blocked against poly-uridylation - a key step in the miRNA 

degradation pathway309, remained detectable as intracellular particles of relatively slow 

diffusion, suggesting that they were neither (fully) degraded nor exported. For the 

intermediate time points (2 h, 4 h and 8 h) we again clearly discerned diffusing particles 

within two distinct Gaussian distributions, whose average Brownian diffusion constants 

systematically increased over time (Fig B.2.G). This increase in mobility over time was 

not caused by an increase in the fraction of particles undergoing directed motion 

(Supplementary Fig B.S.4), suggesting that, on average, the molecular weights of the 

RNPs decrease in the 2 to 8 h timeframe. We note that the shifted distributions measured 

at later time points became increasingly curtailed above a diffusion coefficient of ~1 

µm^2/s (Fig B.2.F-G and Supplementary Fig B.S.1.E) due to our limited time 

resolution, somewhat diminishing the observed effect by narrowing the fast diffusing 

population. 

 

Intracellular fluorophores can be counted accurately by stepwise photobleaching 

The goal of iSHiRLoC is to measure both diffusion properties and assembly states of 

individual small RNA containing particles. To assess assembly, we utilized the relatively 

rapid stepwise photobleaching198 of single Cy5 fluorophores to quantify the number of 

miRNA molecules per particle. HeLa cells microinjected with either let-7-a1-Cy5 or 

cxcr4-Cy5 were formaldehyde-fixed and continuously illuminated until all fluorescent 

particles had photobleached (Fig B.4.A-B). By counting the number of photobleaching 

steps for many particles (Fig B.4.C, Supplementary Fig B.S.5.A and Supplementary 

Table B.S.1), we were able to deduce the distribution of their assembly states (Fig 4D). 

While close to 50% of all particles contained single fluorophore labeled miRNAs 2 h 

after microinjection, a significant fraction held up to seven labeled miRNAs (Fig B.4.C-

D and Supplementary Fig B.S.5.A). To test for bias from ‘dark’ (prebleached) Cy5, we 
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microinjected a control DNA labeled with an average of 3.45 Cy5 fluorophores per 

molecule and counted a majority of 3 and 4 photobleaching steps in each particle 

(Supplementary Fig B.S.5.B-D), as expected if prebleaching is negligible. In addition, 

we observed a strong overlap in the distribution of fluorescence intensities between 

particles in fixed and living cells 2 h after microinjection (Supplementary Fig B.S.5.E), 

when most miRNAs are assembled into RNPs, suggesting that our counting results in 

fixed cells closely reflect the miRNA assembly states in living cells. 

 

Time and mRNA dependent changes in miRNA assembly support a multiple target 

turnover model 

We monitored miRNA assembly over time at the same time points as in our diffusion 

measurements. Similar to our observations in living cells, high background made it 

impossible to accurately localize single miRNA particles in cells that were fixed only 20 

min after microinjection (Supplementary Fig B.S.6.A). At later time points (1 h to 32 h), 

we found two distinct assembly phases for let-7-a1 miRNA that fit well with a double-

exponential function, suggesting the existence of two kinetically distinct processes (Fig 

B.4.E and Supplementary Fig B.S.6). The faster phase is characterized by a rate 

constant of 1.2 ± 0.2 h^-1, during which the number of RNPs containing more than one 

miRNA increases; we note that this time evolution resembles that of the initial assembly 

of miRNAs into RNPs observed over the earliest (1-2 h) live cell time points. The slower 

phase with a rate constant of 0.14 ± 0.08h^-1 leads to a modest increase in RNPs 

containing just a single miRNA and matches the timing of the increase in mobility of 

miRNA containing particles in live cells (Fig B.2.G and Supplementary Fig B.S.3.B) as 

well as that of miRNA-induced mRNA target degradation81. Based on these observations, 

we propose the following time-dependent model for miRNA assembly: At initial time 

points, such as 20 min and up to 1 h (Supplementary Figs B.S.3.A and B.S.6.A) after 

microinjection, a significant fraction of our miRNAs remains free, thus contributing to a 

large background in our live and fixed cell experiments. Between 1 and 2 h, most 

miRNAs have assembled into miRISC-mRNA complexes, thereby depleting the free 

miRNA population. This assembly leads to relatively slowly diffusing complexes in 
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living cells and a corresponding decrease in the population of single miRNAs containing 

particles in fixed cells. Still later, miRNAs mediate mRNA degradation via association 

with PBs, eventually releasing miRISC complexes to possibly elicit further rounds of 

repression, which is represented by a relative increase in the mobility of miRNA particles 

in living cells and an increase in the population of monomeric miRNAs in fixed cells (Fig 

B.5). Consistent with this model, cells microinjected with the artificial cxcr4 miRNA, 

which is predicted to find 10-fold fewer mRNA target molecules in a HeLa cell, do not 

show these time dependent changes in the fractions of single and multiple miRNA 

containing particles (Fig B.4.E; since the decrease in monomeric miRNAs is expected to 

be ~10-fold smaller for cxcr4 than let-7-a1, it becomes indiscernible in our experiments 

with an estimated standard deviation about the mean of ~5-10%). By contrast, when 

cxcr4 was co-microinjected with ~3,000 specific mRNA target molecules, miRNA 

assembly adopted again two kinetically distinct phases (with rate constants of 1.14 ± 0.12 

h^-1 and 0.30 ± 0.07 h^-1; Fig B.4.E and Supplementary Fig B.S.7.A-B). Additionally, 

and as expected from our model, miRNAs shifted towards multimeric assemblies when 

we found them co-localized with target mRNA, but were more monomeric in the absence 

of a co-localized target (Supplementary Fig B.S.7.C). Taken together, we find strong 

evidence for mRNA dependent miRNA assembly.  

In summary, in iSHiRLoC we have developed a broadly applicable method that 

visualizes both diffusive properties and assembly states of functional small non-coding 

RNAs in cultured cells. We find that miRNAs exhibit different types of Brownian 

diffusion in live HeLa cells with (at least) two widely ranging Gaussian distributions of 

diffusion coefficients, representing two complexes of distinct molecular mass, consistent 

with messenger RNPs and PBs. Stepwise photobleaching revealed that the largest 

fraction of these particles contains single fluorophore labeled miRNA molecules. A still 

significant fraction of particles, however, contains multiple miRNA molecules, strongly 

invoking the formation of higher-order miRNA complexes either assembled on mRNA 

targets or associated with PBs. Time dependent changes in diffusion and assembly of 

miRNAs were observed, supporting the model in Fig B.5, featuring two kinetically 

distinct processes wherein miRNAs first assemble into large RNPs (such as a miRISC 

bound to an mRNA or PB), then are released from these complexes. In the future, 
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iSHiRLoC can be extended by multicolor imaging295 to co-track a miRNA with its 

corresponding target mRNA, RISC or PB proteins and map the dynamic interaction 

network of RNA silencing, with the ultimate goal of understanding its mechanism 

through single molecule systems biology. 
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Figure B1. Effect of fluorophore modification and microinjection on miRNA 
function. (A) Luciferase reporter assays of HeLa cells co-transfected with luciferase 
reporter plasmids bearing the wild-type (wt) or a mutant (mut) 3`UTR of mouse 
HMGA2, and either a negative control siRNA (neg ctrl), wild-type let-7-a1 (wt miRNA) 
or mutant let-7-a1 (mut miRNA) miRNA. An siRNA, Siluc2, was used as a positive 
control for repression. Renilla luciferase activity was used for internal normalization of 
firefly luciferase activity within each sample. All samples were normalized with respect 
to negative control (a). Results presented are from four replicates. Error bars, standard 
deviations. (B) Representative images of GFP fluorescence (top) and mCherry 
fluorescence (bottom) in cells co-injected with an mCherry reporter plasmid, a GFP 
control plasmid and, either the wild-type (WT) or mutant let-7-a1 (MUT) miRNA are 
shown. Scale bar, 20 µm. (C) Quantification of mCherry fluorescence relative to GFP 
fluorescence from panel B, normalized with respect to the WT sample (N = 3 
independent trials, 50 cells per group). Error bars, standard error of the mean. 
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Figure B.2. Single molecule high-resolution localization and tracking of miRNAs 
diffusing in living HeLa cells. Pseudo-colored images of cells microinjected with (A) 
let-7-a1-Cy3, (left, cytoplasmic injection; right, nuclear injection) imaged 4 h after 
microinjection and (B) let-7-a1-Cy5 imaged 2 h after microinjection, showing distinct 
particles containing miRNAs. Dashed and dotted lines indicate nuclear and cellular 
boundaries, respectively. Scale bar, 10 µm. Different types of diffusive motions exhibited 
by (C) let-7-a1-Cy3 and (D) let-7-a1-Cy5 miRNAs. Scale bars, 0.5 µm. (E) MSD plots of 
the let-7-a1-Cy3 particles shown in panel C. Data were fit with equations representing 
biased (iv), corralled (ii), fast (iii) and very slow (i) Brownian diffusion. Diffusion 
coefficients as derived from the fits are: D(i) = 0.0001 µm2/s; D(ii) = 0.06 µm2/s (corral 
radius = 0.52 µm); D(iii) = 0.062 µm2/s; and D(iv) = 0.16 µm2/s (average velocity = 0.46 
µm/s). (F) Distribution of diffusion coefficients calculated from individual MSD plots of 
let-7-a1-Cy3 particles assuming Brownian diffusion. Cells were imaged 4 h after 
microinjection (N = 4 cells, Supplementary Table B.S.1). The gray shaded region 
represents diffusion coefficients of particles that are increasingly lost due to our limited 
time resolution of tracking. (G) Distribution of diffusion coefficients of let-7-a1-Cy5 at 
different time points after microinjection. Dotted lines represent demarcations of fast and 
slow particles to guide the eye, estimated based on segregation of the two Gaussian 
distributions 2 h after microinjection. Histograms represent data from multiple cells (N = 
4, 4, 6 cells for data points corresponding to 2 h, 4 h and 8h, Supplementary Table 
B.S.1). Gray shaded region, as in (F). 
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Figure B.3. Co-localization of microinjected miRNAs with PBs and cognate mRNA 
targets. (A) miRNA-PB co-localization. DIC (left) and pseudo-colored images depicting 
the co-localization (overlay, right) of ectopically expressed EGFP tagged Dcp1a, a 
component of PBs (green), and microinjected let-7-a1-Cy5 miRNA (red). Wide-field epi-
illumination was used to visualize these cells. Arrows show representative foci containing 
both Dcp1a and miRNA. Scale bar, 10 µm. (B) Schematic of a GFP labeled mRNA (top) 
based on the MS2-MS2 coat protein (MCP) mRNA labeling system [16]. (C) miRNA-
mRNA co-localization. Left, composite image of GFP (green) and Cy5 (red) channels 
from a representative cell expressing the mutant-mRNA-EGFP and mutant let-7-a1-Cy5 
miRNA. Yellow particles indicate co-localization. Scale bar = 5 µm. Center, co-
localization map representing independent miRNA (red) and mRNA (GFP) particles, and 
either perfectly co-localized (yellow) or adjacent miRNA-mRNA localizations with an 
inter-particle center-center distance less than the lateral resolution limit of the image 
(cyan and magenta). Right, zoomed view of the region in the preceding images marked 
by a white box. Yellow circles indicate co-localized spots. Scale bar = 1 µm. (D) Fraction 
of specific or non-specific miRNA co-localizing with mRNA-EGFP. Cells were injected 
with the MS2/MCP plasmids and either mutant (specific; circle) or wild-type (non-
specific; square) let-7-a1. To test for the contribution of background fluorescence, control 
cells were injected with mutant let-7-a1 and MCP plasmid without the MS2-mRNA 
expression plasmid (specific; triangle). Data points within each group and their associated 
means (dashed lines) are shown (N = 2 cells for each group). 
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Figure B.4. Counting of single miRNA molecules in fixed HeLa cells. (A) A pseudo-
colored (background corrected) image of a formaldehyde-fixed HeLa cell showing the 
intracellular distribution of miRNAs 2 h after microinjection. Dashed and dotted lines 
indicate nuclear and cellular boundaries, respectively. Scale bar, 10 µm. (B) Sets of 
frames showing photobleaching of two different miRNA particles over the indicated 
time. The locations of the particles are labeled in panel A. Scale bar, 300 nm. (C) 
Representative stepwise photobleaching traces of individual miRNA particles within the 
cell shown in panel A. For some traces, the number of steps could not accurately be 
determined. These traces were further classified as either non-determinable multimer 
with indistinct steps (NM1); non-determinable multimer with initial peak intensity 
exceeding that expected from up to 7 fluorophores based on an average intensity of ~250 
arbitrary units (A.U.) per fluorophore bleaching step (NM2); or non-determinable as 
either monomer or multimer due to large fluctuations in intensity and rapid (< 3 frames) 
photobleaching (ND). (D) Distribution of miRNA photobleaching steps observed 2 h 
after microinjection (N = 4, Supplementary Table B.S.1). Error bars, standard deviation. 
(E) Change in the fraction of monomers (particles undergoing a single step of 
photobleaching, dotted line) and multimers (particles that bleach in two or more steps, 
solid line) over time for let-7-a1 (black), cxcr4 (gray) and cxcr4 miRNAs co-
microinjected with specific mRNA targets (dark gray, Supplementary Fig B.S.7A,B), 
respectively. Each data point is derived from multiple cells (nlet-7-a1 = 4, 4, 3, 4, 8 cells; 
ncxcr4 = 5, 5, 5, 7, 9 cells; and ncxcr4 + mRNA = 4, 4, 4, 6 and 8 for 1 h, 2 h, 4 h, 8 h 
and 32 h, respectively; Supplementary Table B.S.1). Error bars, standard deviation. The 
relative changes marked by asterisk are statistically significant with greater than 95% 
confidence based on a paired t-test (p = 0.034). 
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Figure B.5. Model illustrating intracellular miRNA assembly as derived from our 
data. miRNAs assemble into miRISC complexes that bind translationally active mRNA 
targets to form large RNPs, associate with PBs, and are finally released upon PB-
mediated mRNA degradation to potentially engage in multiple turnover of targets. The 
indicated timeframes were derived from the kinetics measured in the current study for let-
7-a1. 
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Supplementary Figure B.S.1 Precision and signal intensity of live cell imaging, and 
cxcr4 control experiments. (A) Precision of single particle localization. Histogram 
depicting the displacement of formaldehyde-fixed let-7-a1-Cy5 particles about their 
origin (N = 100 randomly selected particles). The location of each particle was tracked 
over time until it photobleached. The histogram was fit with a Gaussian function, which 
resulted in a mean of ~30 nm and a standard deviation of ~50 nm. Large jumps (>100 
nm) were observed only when there were large fluctuations of intensity. Localization 
precision of immobilized beads (inset) was ~4 nm, largely owing to their higher signal-
to-noise ratio (N = 100 randomly selected particles). (B) Signal intensities of particles 
undergoing diffusion in living cells. Intensity time trajectories of let-7-a1-Cy3 (green) 
and let-7-a1-Cy5 (red) particles are shown. Trajectories of both mobile and static 
particles are shown, as indicated in each trajectory. A significant proportion of particles 
had a relatively constant intensity during diffusion before disappearing. We infrequently 
observed large fluctuations in intensity as a particle was diffusing, possibly due to 
diffusion in the axial dimension (z-axis). We also occasionally observed stepwise 
changes in intensity of static particles, possibly due to photobleaching (see, for example, 
second trajectory from the top on the left side). (C-E) Intracellular diffusion of cxcr4 
miRNA, with (C) DIC image and (D) the corresponding pseudocolored image of a cell 
microinjected with cxcr4-Cy3 and imaged 4 h after injection. Scale bar, 10 µm. (E) 
Distribution of diffusion coefficients calculated from individual MSD plots of cxcr4-Cy3. 
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We observed two major Gaussian distributions, with different fractional abundance but 
average diffusion coefficients similar to those obtained with let-7-a1-Cy3. 
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Supplementary Figure B.S.2. Tracking the diffusion of individual PBs in live HeLa 
cells. (A) Representative PBs demonstrating confined (i) and Brownian motion (ii). (B) 
MSD over time of the particles in A. Diffusion coefficients calculated from the plot were 
D(i) = 0.0007 µm2/s and D(ii) = 0.026 µm2/s. (C) Distribution of diffusion coefficients 
of Dcp1a foci in live HeLa cells (N = 15 cells, 192 particles). The distribution bears 
strong resemblance to the slowly diffusing miRNA population (Fig 2F, G). 

z 
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Supplementary Figure B.S.3. Live cell images after incubation for varying amounts of 
time after microinjection. (A) Representative images of cells incubated for 5 min to 32 h 
after microinjection, as indicated. Dashed and dotted lines indicate nuclear and cellular 
boundaries, respectively. Scale bar, 10 µm. (B) Analysis of background intensity and 
average number of nine-consecutive-frame localizations. The relative average 
background intensity (black, solid), which reflects blurred, rapidly diffusing particles, 
was calculated for each time point and the resultant curve fitted with a single-exponential 
decay function, yielding a rate constant of 0.82 ± 0.18 h-1. The highest background 
intensity was found at the earliest time point and continually decreased, consistent with 
the notion that miRNAs increasingly assemble into large, slowly diffusing, and thus less 
blurred (at a time resolution of 100 ms) RNPs over this time frame. To quantify assembly 
further, we determined the average number of particles at each time point that were 
visible for at least nine consecutive video frames (grey, dashed), a lower bound we used 
for our diffusion coefficient calculation.  The data fit well with a double-exponential 
function with a rapid-rise phase characterized by a rate constant of 1.18 ± 0.62 h-1, 
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indicating assembly of miRNAs into larger RNPs (especially over the first 2 h of 
observation), and a slower decrease phase with a rate constant of 0.34 ± 0.13 h-1, 
indicating an increase in RNP mobility over a longer time frame (2 h – 32 h). These 
kinetically distinct processes and their rate constants are similar to those obtained in our 
fixed-cell photobleaching analysis (1.18 ± 0.18 h-1, 0.14 ± 0.08 h-1  and Fig. 4E, black 
lines), further supporting our model that a relatively rapid initial assembly of miRNAs 
into large RNPs is followed by slow disassembly at later times. Error bars, standard error 
of the mean (N = 4, 4, 4, 6, 4 cells for 1, 2, 4, 8, 32 h samples respectively). 
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Supplementary Figure B.S.4. Relative deviation (RD) analysis of diffusion 
coefficients over time. Histograms depict the distribution of RD values at different times 
after let-7-a1-Cy5 microinjection (2 h, 4 h and 8 h, as indicated). RD values were 
calculated using MSD values corresponding to the sixth localization point and diffusion 
coefficients extracted from the first three points of the MSD time course. Although the 
distributions differ slightly, there is no significant increase in the fraction of higher RD 
values which, if present, would predict an increase in the fraction of particles undergoing 
directed motion (N = 4 cells for each, Supplementary Table 1). 
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Supplementary Figure B.S.5. Stepwise photobleaching in fixed cells. (A) Additional 
examples of stepwise photobleaching traces. (B-D) Control experiments. (B) Pseudo-
colored, background subtracted image of cell microinjected with double-stranded DNA 
probe MS2 labeled with ~3.45 Cy5s per molecule. Outlines of the cell (dotted) and its 
nucleus (dashed) are also shown. Scale bar, 10 µm. (C) Types of photobleaching 
observed from experiment in B. (D) Distribution of photobleaching steps for MS2-Cy5 
injections (N = 3 cells, 702 particles). Error bars, standard deviation. (E) Comparison of 
fluorescence intensities of Cy5-labeled miRNA-containing particles between living 
(grey) and fixed cells (black), imaged 2 h after microinjection. Only diffusing particles 
visible in live cells for 9 frames or longer were included in the analysis. The intensity 
observed in the first frame of each video (100 ms exposure time) was used to create this 
histogram (N = 4 cells each). 
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Supplementary Figure B.S.6. Representative images and resulting stepwise 
photobleaching distributions from fixed cells incubated for various amounts of time 
after microinjection. Shown are (from left to right) DIC, pseudo-colored, pseudo-
colored/background-subtracted images and photobleaching step distributions of cells 
injected with let-7-a1-Cy5 and fluorescein dextran. Images and distributions were taken 
from cells fixed (A) 20 min, (B) 1 h, (C) 2 h, (D) 4 h, (E) 8 h and (F) 32 h after 
microinjection (nB-F = 5, 4, 3, 4, 8 cells and 1,125, 1,509, 940, 1,168, 688 particles 
respectively). Error bars, standard deviation. Scale bar, 10 µm. The background was very 
high in cells incubated for 20 min after microinjection, thus it was practically impossible 
to locate single molecules.  
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Supplementary Figure B.S.7. miRNAs assembly is mRNA dependent. (A) Schematic of 
5’ capped (black dot) and 3’ poly-A tailed mRNAs. RL mRNA (top) is a negative control 
that contains only the coding sequence of renilla luciferase. RL-cxcr4-6x mRNA 
(bottom) is the target that contains the same renilla luciferase coding sequence plus six 
cxcr4 binding sites as indicated in the magnified view. (B) Distribution of monomers and 
multimers in cells that were microinjected with cxcr4 miRNA and no mRNA, with cxcr4 
miRNA and RL mRNA, or with cxcr4 miRNA and RL-cxcr4-6x mRNA. The inset shows 
the distribution further divided into one, two and three or more photobleaching steps in 
these samples. Even though a significant increase in the number of multimers was 
observed upon co-microinjection of cxcr4 miRNA with its target RL-cxcr4-6x mRNA, a 
specific enrichment of particles bearing six miRNAs was not seen, suggesting sub-
stoichiometric binding of miRNAs to target mRNA binding sites. Error bars, standard 
deviation (N = 4 cells for each of the samples). (C) Distribution of monomers and 
multimers of mutant let-7-a1 miRNA non-colocalized (independent) or colocalized with 
MS2-GFP tagged target mRNAs (see Fig 3B, C). The coordinates of stepwise-
photobleached particles in the mut-let-7-Cy5 channel were mapped to the mut-mRNA-
EGFP channel to assess the extent of colocalization. N = 2 cells containing a total of 60 
independent and 16 colocalized let-7-a1 particles. Data points within each group are 
explicitly shown (grey circles, monomers; black squares, multimers) in addition to their 
mean values (grey dotted line, monomers; black dotted line, multimers). The statistical 
variation within each group was minimal between replicates
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