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ABSTRACT: Prioritization is the process whereby a set of possible candidate genes or SNPs is ranked so that the most
promising can be taken forward into further studies. In a genome-wide association study, prioritization is usually based on the
P-values alone, but researchers sometimes take account of external annotation information about the SNPs such as whether
the SNP lies close to a good candidate gene. Using external information in this way is inherently subjective and is often not
formalized, making the analysis difficult to reproduce. Building on previous work that has identified 14 important types of
external information, we present an approximate Bayesian analysis that produces an estimate of the probability of association.
The calculation combines four sources of information: the genome-wide data, SNP information derived from bioinformatics
databases, empirical SNP weights, and the researchers’ subjective prior opinions. The calculation is fast enough that it can
be applied to millions of SNPS and although it does rely on subjective judgments, those judgments are made explicit so that
the final SNP selection can be reproduced. We show that the resulting probability of association is intuitively more appealing
than the P-value because it is easier to interpret and it makes allowance for the power of the study. We illustrate the use
of the probability of association for SNP prioritization by applying it to a meta-analysis of kidney function genome-wide
association studies and demonstrate that SNP selection performs better using the probability of association compared with
P-values alone.
Genet Epidemiol 37:214–221, 2013. C© 2012 Wiley Periodicals, Inc.
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Introduction

Prioritization is the process whereby a set of possible can-
didate genes or SNPs is ranked so that the most promising
can be taken forward into further studies. Usually priori-
tization is based exclusively on P-values, but it is possible
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to supplement P-values with external information extracted
from bioinformatics databases on features thought to identify
those genes or SNPs that are likely to be associated with the
disease or trait under study. Recently, Gögele et al. surveyed
the methods used by researchers meta-analyzing genome-
wide association studies (GWAS) and found that just over
three-quarters of the meta-analyses selected the SNPs to be
sent for replication based entirely on their P-values [Gögele
et al., 2012]. The remaining quarter of the studies also took
into account biological factors that the researchers believed
would improve the chance that the SNP would turn out to
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have a genuine effect; for instance, some used information
on whether or not the SNP is close to a good candidate gene.
However, this external information was used in diverse and
largely unstructured ways.

The use of external biological information for selecting
good candidate SNPs is intuitively sensible but it is not obvi-
ous how best to combine this information with the statistical
evidence from the GWAS itself. This leaves us with difficult
questions, such as, is there a better chance of replicating a
SNP with a P-value of 10–6 that lies in a gene desert, or one
with a P-value of 10–5 that lies in or near a candidate gene? A
full answer to this question would require a Bayesian analysis
in which the researchers carefully quantified the biological
information in the form of prior distributions for each SNP.
This ideal Bayesian analysis would be hard to implement on a
large scale, partly because of the difficulty of specifying all of
the priors and partly because of the time needed to perform
the Bayesian calculations on large numbers of variants.

In a companion paper, Minelli et al. describe the use of
experts’ opinions and empirical evidence to estimate the rel-
ative importance of 14 types of SNP or gene information
that can be extracted from bioinformatics databases [Minelli
et al., 2013]. This work provides weights that can be used to
combine the various types of external information into a sin-
gle measure of the relative probability that a SNP is associated
with the disease or trait. Here we consider a fast, approximate
Bayesian analysis that combines those prior relative proba-
bilities with the data from a GWAS to calculate the posterior
probabilities of association.

The proposed method for calculating the probability of as-
sociation allows us to combine GWAS data with information
from bioinformatics databases in a coherent and reproducible
way. We show that the probability of association has many
advantages when compared with the P-value; it is more easily
understood, it takes account of the power of the study and
it can incorporate expert knowledge and nonexperimental
information about the variant. Our work is illustrated by
an application to actual data from a meta-analysis of GWAS
of kidney function in which the probability of association
based on prior information extracted from bioinformatics
databases outperforms the P-value when it is used to rank
SNPs for future investigation.

Methods

We used an approximate Bayesian analysis, closely related
to a previously reported modified form of the False Posi-
tive Report Probability (FPRP), to combine prior knowledge
with GWA statistical evidence. The FPRP was suggested by
Wacholder et al. as an aid to interpreting P-values in studies
that involve a large number of significance tests [Wacholder
et al., 2004]. The motivation for this approach lays in the com-
mon observation that many statistically significant findings
in epidemiological studies are never replicated and eventually
become accepted as false positives. Wacholder et al. argued
that the FPRP measures the probability that a significant
finding will eventually turn out to have been due to chance

and described how the FPRP depends on three quantities:
the P-value, the power of the test, and the fraction of tested
null hypotheses that are actually null. Tests with an FPRP
less than some preset threshold, such as 50%, are considered
noteworthy and thus are candidates for further investigation.

The method for calculating the FPRP assumes that the
underlying size of the effect is either zero (null hypothesis,
H0) or some specified alternative HA with effect size TA, and
that variation about those values is due entirely to sampling.
If zα is the critical value for a one-tailed test, then, for a test
statistic, T, the significance level is α = P (T > zα|H0), and
1 – β = P (T > zα|HA) represents the power. Assuming that a
proportion π of tests are performed for which the alternative
is true, the probability that H0 is true given that the test is
significant is,

FPRP = P (H0 | T > zα) = α(1 – π)/[α(1 – π) + (1 – β)π]

For the purposes of a replication study, it is more natural
to talk in terms of the probability that a significant SNP is
truly positive, or, put another way, the chance that it would
replicate in an ideal (very large) replication study with a strict
criterion for declaring replication. This probability is P (HA|T
> zα) or 1-FPRP.

The FPRP has been criticized for two main reasons, [Lucke,
2009 and Thomas and Clayton, 2004]. First, the formula for
the FPRP was thought to be an oversimplification because
it is based on a choice between two completely specified
hypotheses. However, Thomas and Clayton acknowledged
that in practice the inaccuracies caused by this simplification
are likely to be small. Second, when evaluating the results of
a study, we know not only whether a test is significant or not,
but also the actual P-value, and once the P-value is known
the calculation of the FPRP is no longer appropriate. Care is
needed in moving from statements about the class of all tests
with, say, a P-value below 0.01, to statements about a specific
test that has a P-value of exactly 0.01. Power, and hence the
FPRP, is directly relevant to the former, but not the latter.

A joint analysis of the Wellcome Trust Case-Control Con-
sortium study of Coronary Artery Disease and the German
Myocardial Infarction Study addressed these objections to
the FPRP by modifying it for use with a specific known
P-value [Samani et al., 2007]. That modification produced
an approximate Bayesian analysis against a fixed alternative
hypothesis, but, as we will see, further modifications can be
used to investigate more flexible alternatives. The modified
version of the FPRP depends on a prior assessment of the
probability,πi, that the ith SNP is associated with the outcome.
Assuming that under the null hypothesis of no association,
the distribution of the effect size estimate is approximately
normal, the probability of association, Ai, associated with a
one-tailed test is,

Ai = P (HA | P – value = α) = P (HA | Ti = zα)

= πiϕ(Ti ; TA , σi)/[(1 – πi)ϕ(Ti ; 0, σi) + πiϕ(Ti ; TA , σi)]

where Ti is the observed effect size and ϕ(y;m,s) represents
the density function of the normal distribution with mean m
and SD s evaluated at y, and σi is the SE of the estimate of
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effect size for that SNP. Effectively, this formula replaces the
tail areas in the FPRP with likelihood ratios. Importantly, the
interpretation also changes and Ai represents the probability
of association given the actual experimental data on that SNP.

The calculation of the probability of association, Ai, de-
pends on the researcher specifying a guess at TA, the effect
size if the SNP is associated. Specifying this quantity can be
difficult and giving the wrong value could potentially cause
the analysis to overlook an important SNP. It is both easier
and more realistic to say that the anticipated effect size under
the alternative hypothesis is in a range, such as, TA is nor-
mally distributed with mean μA and SD σA, in which case the
one-tailed Ai becomes,

πiϕ
(
Ti ; μA,

√(
σ2

i + σ2
A

))/

× [
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When we do not know in advance whether the chosen
effect allele will increase or decrease the outcome measure,
it would be natural to use a two-tailed procedure. Provided
that we believe in advance of seeing the data that the effect of
a particular SNP is equally likely to be positive or negative,
then the formula for calculating Ai becomes,
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This measure of the probability of association is a very close
approximation to the posterior mean of a Bayesian analysis
of the effect size using a mixture prior in which a large pro-
portion of SNPs show no association with the disease or trait
under study, although the remainder are equally likely to
show a harmful effect as a protective effect. The association
probability is similar to Wakefield’s Bayesian False Discovery
Probability (BFDP), which is also an extension of the FPRP
that approximates a Bayesian analysis, although Wakefield
used different priors [Wakefield, 2007]. We demonstrate the
equivalence of our approximation and its Bayesian equivalent
in the Supporting Materials and show how extra information
can be obtained if the full Bayesian analysis is performed.
However, Bayesian analyses are often time consuming to per-
form so we recommend that Ai be calculated for all SNPs and
that the full Bayesian analysis be reserved for the top ranked
SNPs.

Results

Hypothetical Data

To illustrate the use of the probability of association, we
will first consider a hypothetical GWAS for a binary trait that
recruits 2,000 cases and 2,000 controls. In such a study, a SNP
with a minor allele frequency (MAF) of 0.25 in controls would
have an SE for the allelic log odds ratio of about σ = 0.052.
This SE is not much affected by small changes in the allele
frequency. The bottom part of Table 1 shows the probability

Table 1. Probabilities of association expressed as percentage
for a range of P-values and prior probabilities of association.
The calculations are for a SNP with an MAF of 0.25 and an
anticipated log odds ratio of about 0.15 (OR ≈ 1.16)

P-value

πi 10–5 10–6 10–7 5 × 10–8

1,000 cases and 1,000 controls
1/10,000 7.0 21.5 48.7 57.8
1/5,000 27.3 57.8 82.6 87.3
1/1,000 42.9 73.2 90.5 93.2
1/500 79.1 93.2 97.9 98.6
1/100 88.4 96.5 99.0 99.3

2,000 cases and 2,000 controls
1/10,000 22.2 61.6 89.5 93.4
1/5,000 58.8 88.9 97.7 98.6
1/1,000 74.1 94.1 98.8 99.3
1/500 93.5 98.8 99.9 99.9
1/100 96.7 99.4 99.9 99.9

of association for such a SNP over a range of P-values and
prior beliefs, π. In this example, our prior assessment of the
likely effect size was that the log odds ratio for the associated
SNPs can be described by a normal distribution with mean
μA = 0.15 and SD σA = 0.05. This implies that we anticipate
that 95% of associated SNPs will have odds ratios, or their
inverses, between 1.05 and 1.28. The variation in P-values
arises because observed effect sizes will vary even if SNPs are
drawn from a common prior.

Often SNPs are sent to replication with P-values of 10–5 or
even less significant and we can see from the results in Table 1
that, were there little prior biological reason to make us sup-
pose that this SNP is associated with the outcome, and, say,
we believed in advance that only 1/10,000 of such SNPs is
associated, then the probability of association in a very large
replication study would only be 22%. However, if our bio-
logical knowledge were such that the SNP fell into a class for
which we believed that 1/1,000 were associated, then for the
same P-value we would expect that 74% of such SNPs would
eventually replicate. Table 1 also shows that under these con-
ditions we would expect that a SNP with a prior probability
of 1/1,000 and a P-value of 10–5 would be slightly more likely
to be associated than a SNP with a P-value of 10–6 and a prior
probability of 1/10,000.

The top half of Table 1 shows the corresponding association
probabilities for a smaller study of 1,000 cases and 1,000
controls. In such a study, a SNP with an MAF of 0.25 would
have an SE of σ = 0.075. A similar SE would be found for a SNP
in the larger study if it had an MAF of about 0.10. So the upper
part of the table applies equally to a SNP with an MAF of 0.25
in the smaller study or a SNP with an MAF of 0.10 in the larger
study. Here we see that, in lower powered studies, findings are
less likely to replicate even when they have the same P-value
as in better powered studies. In the lower powered study, a
SNP with little supporting biological justification and a prior
probability of 1/10,000 has only a 58% chance of replicating
even when it reaches genome-wide significance (5 × 10–8).
This illustrates the danger of overinterpreting a genome-wide
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significant P-value when the study is small and prior belief is
weak.

An important consideration when interpreting the results
in Table 1 is that we have not changed the expected effect
size of the SNP, that is, throughout the table we assume an
anticipated log odds ratio of around 0.15 (OR ≈ 1.16). When
a low-frequency variant, or a common variant in a smaller
study, reaches genome-wide significance, it must be that the
observed log odds ratio was quite large, probably larger than
the anticipated value used to create Table 1. This analysis
treats such large observed effects with suspicion and asks only
if they are more likely to have been generated by an unasso-
ciated SNP or one with an effect size of about 0.15. Had we,
for instance, anticipated that rare SNPs will have larger ef-
fects [Manolio et al., 2009], then the association probabilities
would have to be recalculated.

Setting Prior Probabilities Using SNP Characteristics

Minelli et al. [2013] created a training set of SNPs con-
firmed by replication as being related to one of seven diseases
together with matched sets of 1,000 randomly selected con-
trol SNPs. Each of the 223 disease related and 7,000 control
SNPs was then classified for the presence or absence of the 14
SNP characteristics listed in Table 2. Question 10 was omitted
from the original list of 15 questions because of the lack of
availability of usable evidence concerning linkage studies. A
logistic regression model was used to represent the log odds
of being a disease-associated SNP in terms of disease group
and all of the characteristics, Qk, k = 1 . . . 14.

Log odds of association in the training set

=

7∑
j =1

αj diseasej +

14∑
k=1

βkQ k (1)

The estimated log odds ratios, β̂, and the corresponding
odds ratios are given in Table 2. For the training data set,
the model has a pseudo-R2 of 21%. The coefficients are esti-
mated under the assumption that the importance of a SNP
characteristic does not depend on the disease under study.

The log odds ratios provide a set of weights for predicting
disease association from SNP characteristics. These log odds
ratios are similar to the independent empirical estimates for
the characteristics given by Minelli et al., except that those es-
timates were obtained by examining each SNP characteristic
separately.

Using our weights, β, we can estimate the relative probabil-
ity that a SNP is disease associated with the outcome given its
SNP characteristics, but as the training set has a case-control
design, it cannot give the constant in the linear predictor
needed to give the absolute probability of disease association
for a given SNP. Suppose that we wish to assess the prior
probability of association for each member of a test set of
SNPs. That is we need to estimate μ in the linear predictor,

Estimated log odds of association for test SNP i

= μ̂ +

14∑
k=1

β̂kQ ik

To estimate μ, we make a subjective estimate of the propor-
tion of all SNPs in the test set that are related to the disease
and then use the characteristics of the test SNPs in a simple
search algorithm to find an estimate of μ such that it correctly
predicts the subjectively anticipated proportion of associated
SNPs.

The method for predicting a SNP’s prior probability of
association can be used with any set of characteristics and
weights,β. In particular, we investigated in sensitivity analyses
the use of weights based on either independent empirical
estimates or expert opinion as reported by Minelli et al., as
well as weights based on empirical estimates for a reduced set
of the seven most informative questions, obtained through a
stepwise procedure to eliminate SNP characteristics that do
not contribute to the modeling of the training set (Table 2).

Illustrative Example: A GWAS of Kidney Function

If we have prior biological evidence that is actually predic-
tive of SNPs that are associated with the outcome, then it must
be better to use that information than to ignore it. The open

Table 2. Log odds ratio (OR) and SE used when calculating the relative probability of true association based on SNP characteristics
calculated from the training set constructed by Minelli et al. [2013]. Stepwise selection was performed using a forward criterion that
added characteristics that were significant at the 5% level

External information Log OR (SE) OR Stepwise log OR (SE)

Q1: SNP in transcribed but not translated region – 0.60 (0.22) 0.55 – 0.60 (0.19)
Q2: SNP in a translated region that does not change the amino acid – 1.19 (0.87) 0.31
Q3: SNP changes the amino acid but not in a functional domain 0.30 (0.62) 1.35
Q4: SNP in a functional protein domain 0.53 (0.68) 1.70
Q5: SNP in a regulatory region that is not transcribed – 0.06 (0.42) 0.94
Q6: SNP in a transcribed regulatory region 0.52 (0.26) 1.67 0.50 (0.25)
Q7: SNP in a genomic region conserved in vertebrates 0.90 (0.39) 2.46 0.87 (0.32)
Q8: SNP in a gene (±5 kb) investigated with this phenotype in >1 study 3.44 (0.24) 31.15 3.38 (0.22)
Q9: SNP in a gene (±5 kb) investigated with this phenotype in one study 1.51 (0.30) 4.54 1.51 (0.30)
Q11: SNP in a locus close to other SNPs investigated with this phenotype 0.96 (0.22) 2.61 0.97 (0.22)
Q12: SNP in a gene (±5 kb) associated with the phenotype in mouse models 0.04 (1.11) 1.04
Q13: SNP in a gene (±5 kb) expressed in tissue relevant to the phenotype 0.86 (0.26) 2.35 0.87 (0.26)
Q14: SNP in a gene (±5 kb) encoding a protein in a pathway relevant to the phenotype – 0.40 (0.22) 0.67
Q15: SNP in a gene (±5 kb) with protein–protein interactions relevant to the phenotype 0.23 (0.19) 1.25
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questions are whether the model that underlies our calcula-
tion of the probability of association is sufficient to capture
the way that P-values and biological knowledge should be
combined and specifically whether the priors could be so
misleading that it would be more sensible to rely on the P-
values alone. To investigate this, we performed a study using
data from a GWA investigation of kidney function from the
CKDGen consortium [Köttgen et al., 2010], combining their
data with relative probabilities based on the work of Minelli
et al. [2013].

The glomerular filtration rate (GFR) is a measure of kid-
ney function and has been studied in many GWA and linkage
studies. The CKDGen data used here relate to GFR estimated
from serum creatinine (eGFR-crea) and are based on a meta-
analysis of 67,093 subjects from 20 studies [Köttgen et al.,
2010]. This meta-analysis confirmed the top 28 regions as
being truly associated, although presumably there are other
associated regions with smaller effects that were not repli-
cated. We compared the published results from the final
meta-analysis with the findings of the 10 smallest studies
of eGFR-crea from the same consortium that together had a
total sample size of 9,434 subjects. Our interest was in seeing
how well this discovery sample would predict the final results
of the full meta-analysis and whether this performance would
be improved by the inclusion of information about the SNP
characteristics.

We took the top 100,000 SNPs from the meta-analysis of
9,434 subjects and used a bioinformatics tool to obtain an-
swers to the 14 questions suggested by Minelli et al. [2013].
These questions and the weights used to combine them are
summarized in Table 2. The weights enable us to calculate
the relative probabilities of association, but to use them in
the calculations, they need to be turned into SNP-specific
prior probabilities of association and this requires us to spec-
ify our beliefs about the proportion of the 100,000 SNPs that
are truly associated with kidney function. On top of this, we
must specify the average and SD of the anticipated effect size
among the associated SNPs. We based these subjective priors
on information taken from an earlier publication and as-
sessed their impact on the final SNP selection in a sensitivity
analysis. In setting these priors, it is important to allow for
the potential impact of the winner’s curse that will tend to
exaggerate the effect sizes in discovery samples from previous
studies [Zollner and Pritchard, 2007].

Köttgen et al. report summary data for eGFR-crea in six
populations and these all had means of about 80 ml/min/
1.73 m2 and SDs of about 20 ml/min/1.73 m2 [Köttgen et al.,
2009]. The analysis of eGFR-crea is usually conducted on a
log scale in order to remove the effects of skewness, and on
this scale, the variance will be about 0.0625 (202/802). They
identified four loci that together explained about 0.7% of
the phenotypic variance. So we might anticipate that typical
associated loci will each explain say 0.1% to 0.2% of the
variance and 0.1% would correspond to a variance of 6.25 ×
10–5. A SNP with an allele frequency, f, that is scored 0,1,2
will have a variance of 2f(1 – f) and the variance explained
by that SNP will be approximately 2 β2 f(1 – f), where β is
the regression slope. Assuming an allele frequency of 0.25

and equating this variance to the anticipated figure of 6.25 ×
10–5 allows us to calculate the expected slope, which is 0.013,
corresponding to a 1.3% rise in eGFR-crea per risk allele.
After making a range of similar calculations based on slightly
different assumptions, we decided to adopt a normal prior
for the regression slopes among associated SNPs that had a
mean of 0.015 and an SD of 0.005.

We chose to suppose that 1/1,000 of the top 100,000 SNPs
is truly associated. This would suggest 100 associated SNPs,
corresponding to a smaller number of associated loci because
of linkage disequilibrium. As with all priors, the anticipated
proportion of associated SNPs needs to be selected without
reference to the experimental data that is to be analyzed.

In order to make the findings clearer by limiting the impact
of linkage disequilibrium, the 100,000 SNPs were pruned by
dividing them into regions separated by at least 50 k base-
pairs. This gave just under 10,000 regions containing an aver-
age of ten SNPs, and we assumed that our priors apply equally
to these pruned data. From within each region, the best SNP
(according to either P-value or probability of association)
was selected and these top SNPs were ranked. The rank in the
final meta-analysis was based on the best final P-values over
the same regions.

Table 3 shows the result of selecting the best region ac-
cording to discovery P-value alone and contrasts them with
results for selection based on the probability of association.
The shaded cells of Table 3 show that had the top 50 re-
gions from the discovery sample been sent to replication,
using the P-value alone, only one of the eventual top ten
regions would have been included, although basing the se-
lection on the probability of association would have included
six of the eventual top ten regions. In general, it is notice-
able that in small studies of weak effects, P-values alone do
not provide a particularly reliable guide to which SNPs will
eventually replicate, but that using prior information does
improve performance. Results concerning the association of
the individual SNPs (rather than regions) can be found in the
Supporting Materials, Table S1.

Table 3. Number of regions falling in each category of rank
comparing (A) P-value alone; (B) probability of association of a
discovery sample of 9,434 subjects against the same regions in a
meta-analysis of 67,093 subjects (final rank)

Discovery rank (P-values alone)

Final rank 1–10 11–50 51–100 100+

(A)
1–10 0 1 0 9
11–50 1 1 0 37
51–100 0 1 2 47
100+ 9 37 48 9,279

Discovery rank (probability of association)

Final rank 1–10 11–50 51–100 100+

(B)
1–10 2 4 1 3
11–50 2 0 1 36
51–100 0 2 2 46
100+ 6 34 46 9,287
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In Table 3, it can be seen that two regions from the even-
tual top ten are not identified by P-value alone but are in
the two ten regions when ranked by the probability of as-
sociation. These correspond to 15q21.1 and 16p12.3 both
of which were reported by Köttgen as known loci [Köttgen
et al., 2010]. These regions would only have been ranked as
the 30th and 172nd most promising based on the best re-
gional P-values from the smaller discovery study of 9,434
subjects. However, within 15q21.1, there was a SNP with
characteristics 8, 11, 13, 14, and 15 (defined in Table 2), this
gave it a prior probability of association of 0.07 that when
combined with its P-value of 2.7 × 10–5 produced an associ-
ation probability of 0.97. Similarly, in 16p12.3 region, there
was a SNP with characteristics 8, 11, and 13 that gave it a
prior of 0.08 and combining this with its P-value of 2.2 ×
10–4 produced an association probability of 0.96. It is clear
from the weight given to characteristic 8, which identifies
SNPs close to genes that had previously been investigated
in association with this phenotype in more than one study,
that the priors will be heavily influenced by known or well-
investigated genes. Although this example illustrates that the
association probability works in principle, the usefulness of
the technique for discovering new regions will depend on the
ability to identify SNP characteristics that are less dependent
on previously confirmed associations.

In the Supporting Materials, we show the effect of the dis-
covery sample size by repeating this experiment with smaller
and then larger discovery samples. The results (Supporting
Materials Tables S2 and S3) are broadly similar, with larger
discovery samples identifying more replicating regions but
benefiting relatively less from the information on SNP char-
acteristics. Minelli et al. suggest, that for outcomes that have
not been studied thoroughly in the past, independent weights
might also be considered, that is weights based on each char-
acteristic considered separately. In a further sensitivity analy-
sis, we looked at the effects of using such independent weights
(Supporting Materials Tables S4 and S5). Although the results
were quite similar, neither the independent empirical weights,
nor the independent weights based on expert opinion, per-
formed quite as well as the weights from the joint logistic
regression given in Table 2. The weights based on stepwise
selection of the most important seven questions gave results
very similar to those for the full set of 14 questions.

Other researchers might take a different view of the priors,
which would lead them to different beliefs in the probabilities
of association, so it is important to conduct a sensitivity anal-
ysis for one’s choices of prior and such an analysis is included
in the Supporting Materials as Table S7. The results are not
changed greatly by making π five times larger or five times
smaller, by increasing or decreasing the mean anticipated ef-
fect size by a third or by increasing or decreasing the SD by
50%.

Finally, we were concerned that our example might artifi-
cially exaggerate the impact of the prior evidence. Questions
8 and 9 from Minelli et al. assess whether a SNP is in a
previously identified gene [Minelli et al., 2013]. In our GFR
example, it is likely that some of the data that went into the
final meta-analysis had previously been published elsewhere,

so it might have been picked up in the database searches for
this question [Minelli et al., 2013]. We repeated the analy-
sis excluding papers based on studies subsequently included
in the final meta-analysis, but found that the results were
identical to those in Table 3.

Full Bayesian Analysis

The association probabilities in Table 1 are very close to
those that would be obtained from a full Bayesian analy-
sis in which the observed effect size for a given SNP is as-
sumed to have been drawn from a mixture of three distri-
butions centered at 0 and ±μ with probabilities 1 – πi, πi/2,
and πi/2, and for which the value μ is itself drawn from a
normal distribution with known mean μA and SD σA. The
OpenBUGS (http://www.openbugs.info/w/FrontPage) code
for fitting this Bayesian model is given in the Supporting
Materials along with the results corresponding to those in
Table 1 (Supporting Materials Table S8). The full Bayesian
analysis for this table took 8 min to complete in OpenBUGS,
meaning that the full analysis would be extremely time con-
suming if applied to an entire GWAS. The posterior means
from the full Bayesian analysis are almost identical to the
estimates shown in Table 1, so the probability of association
using the formula given at the start of this section can be
thought of as an approximation to the posterior mean from
a full Bayesian analysis.

The type of prior used for the effect size is a form of the so-
called spike-and-slab prior that has a long history in Bayesian
variable selection [Mitchell and Beauchamp, 1988], although
the prior probability, πi, that the SNP is associated can be
derived from the SNP characteristics in the same way that it
was for the approximation.

It is possible to generalize the Bayesian model. For instance,
if we were uncertain about the prior assessment of being
associated, we might decide to replace the fixed value πi with a
distribution. If the priors come from the SNP characteristics,
then the prior distribution might be chosen to reflect the
uncertainty in the prediction resulting from the training set
and from the subjective assessment of the overall proportion
of associated SNP is the test set.

The association probability calculated by the Bayesian mix-
ture model or by our approximation Ai would apply to the
results of an idealized replication study with very high power.
However, we could use the results of the full Bayesian analysis
to answer questions concerning the power in a study of finite
size. First, we could estimate the SE that would be obtained
in the replication study of a given size, for instance, a repli-
cation sample that is the same size as the discovery would be
expected to have the same SE. Then, during the MCMC run,
we could take the simulated values of μ when the effect is
nonzero and simulate a new observed effect from a normal
distribution with mean μ and that SE, although when the ef-
fect size is simulated to be zero, we could sample the observed
effect from a zero-centered normal distribution with that
SE. These simulated replication values could then be com-
pared with whatever criterion for replication the user wished
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in order to estimate the power for that sized replication
study.

To illustrate the power calculation, we used the example
of a SNP with an observed effect size of 1.30 and an SE of
0.0594 (giving a P-value of 1 × 10–5) and π = 0.001. We
used the results of the full Bayesian analysis of length 20,000
based on the code given in the Supplement and simulated a
random study result for each item in the chain. That is, the
measured study value of the logOR was randomly generated
to be either N (μ,0.05942) or N (0,0.05942). Assuming that
replication is declared when a study finds abs(logOR*/0.0594)
> 1.96 then for the zero-centered simulations, the power was
4.6% (close to the nominal 5%) and for the nonzero-centered
simulations, the power was 84.6%. In order to allow for our
uncertainty about whether the SNP is truly associated or not,
we can use all 20,000 simulations and find that we satisfy the
replication criterion 57.2% of the time. This contrasts with
the association probability of 65.5% and reflects the extra
error that comes from relying on the results of a finite-sized
replication study.

Discussion

A P-value summarizes the sampling distribution of the ex-
perimental data assuming that the variant is not associated
with the disease or trait under study. In contrast, the proba-
bility of association is more directly relevant to prioritization
because it describes the probability of true association given
the experimental data. Perhaps because it is not directly rele-
vant to assessing association, the P-value is widely misinter-
preted and has frequently been criticized [Goodman, 2007;
Thompson, 1998]. On top of its theoretical advantages, the
probability of association also has very practical advantages
because it can incorporate prior knowledge, and genetics is
a field of study in which there is an ever-expanding resource
of publicly available data that could be taken into account
when analyzing an experiment. We show how the inclusion
of prior knowledge using an approximate Bayesian analysis
can improve SNP prioritization and increase the success of
replication, particularly when the discovery sample is small.
Despite current international efforts to pool GWA data across
a large number of studies, limited discovery sample size is still
a critical issue for rarer disease outcomes or phenotypes that
are difficult to measure.

We chose to base our priors on information extracted from
bioinformatics databases and combined in the way advocated
by Minelli et al., but the method of analysis could be adapted
to work with other types of external information provided
that they can be converted onto the scale of the relative prob-
ability of association [Minelli et al., 2013]. The success of
this type of analysis will depend critically on our ability to
identify SNP characteristics that are truly informative. Can-
tor et al. considered three forms of prioritization based on
meta-analysis, interaction, and pathways, and each of these
sources could also be adapted to inform our priors [Cantor
et al., 2010]. We show that when prior information is used
wisely, the probability of association will outperform the P-

value in SNP prioritization. Indeed, the gain from using the
probability of association proved to be quite robust to the
exact specification of the priors.

The existing literature on prioritization is dominated by al-
gorithms that seek to use the external information separately
from the experimental data in a two-stage process, that is the
experimental data are used to create a short list of candidates
and the data from the bioinformatics databases are then used
to prioritize within that list [Moreau and Tranchevent, 2012].
However, some methods have previously been proposed that
have sought to combine the two stages. Some, such as Saccone
et al. [2008, 2010], used the external information to define ad
hoc weights that are then applied to the P-values, but others
have used the Bayesian approach in order to combine the two
types of evidence in a more theoretically grounded way. Frid-
ley et al. [2011] used a latent variable model in which the same
SNP-specific unmeasured variable acts as a predictor for the
experimental results such as the effect size and the P-value
and for the SNP characteristics. Several of the Bayesian meth-
ods have used a hierarchical structure in which all SNPs are
analyzed together as if they were each drawn from the higher
level distribution. The full set of SNPs can then be used to
learn about the shape of this distribution. In the context of
our method, this would be the equivalent of using the full
set of SNPs to inform the choice of the average effect size in
SNPs that show an association, or to inform the proportion
of associated SNPs that show a positive effect as opposed to
a negative one, or even to inform the weights used to com-
bine the data from the bioinformatics databases. Although
this refinement is perfectly possible within the context of a
full Bayesian analysis, it is computationally very demanding.
Lewinger et al. used a hierarchical model for the noncen-
trality parameter of the chi-squared statistic used to test for
association in the experimental data [Lewinger et al., 2007],
although combining external information via a logistic func-
tion in a similar way to Minelli et al. [2013]. Chen and Witte
also used a hierarchical model but instead placed the higher
level distribution over the effect size in such a way that the
higher level distribution could depend on external informa-
tion [Chen and Witte, 2007]. There are undoubted advan-
tages in these more comprehensive approaches, but perhaps
their complexity inhibits their wider adoption and there may
be some advantages in the simpler calculations that we pro-
pose. It would be possible to adapt our approach in a similar
way; if all SNPs were analyzed in the same Bayesian analysis,
the results could then be used to update the parameters of the
distribution of effects size and even to learn whether SNPs
are equally likely to have a positive or negative effect.

Wakefield [2007] proposed a Bayesian version of the FPRP
which he called the Bayesian false-discovery probability
(BFDP). The BFDP is defined for binary outcomes in which
the prior on the effect size, that is the log odds ratio, is taken to
be a zero-centered normal distribution. Under this model, an
approximate Bayes factor is derived for comparing the mod-
els in which the SNP is either associated or unassociated with
the disease, and then from that Bayes factor and the prior
probability of association one can derive an expression for
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the probability of a false discovery. This approach is similar
to our own, differing primarily in our use of a spike-and-
slab prior and our use of training data to inform the prior
probability of association.

Bayesian methods have become increasingly popular in ge-
netics [Stephens and Balding, 2009]. Often, however, these
Bayesian analyses either do not discuss the specification of
the priors, or they use noninformative priors so as to allow
the results to depend mostly on the data. In selecting SNPs
for replication, we have used informative priors and shown
that this can improve selection. The specification of such
informative priors is an important part of the analysis and
must be undertaken with great care. It is also important that
a sensitivity analyses is performed to investigate whether the
SNP selection would be materially altered by small changes
in the priors. Researchers who are cautious of using informa-
tive priors can take comfort from the fact that the ultimate
judgment about association will be based on the data from
the follow-up or replication study, and they might consider
that formally stating their prior beliefs is preferable to the
informal way that external information is sometimes used
when selecting SNPs for replication [Gögele et al., 2012].
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