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SUMMARY

Over the last decade, the adjoint method has been consolidated as one of the most versatile and successful
tools for aerodynamic design. It has become a research area on its own, spawning a large variety of
applications and a prolific literature. Yet, some relevant aspects of the method remain relatively less explored
in the literature. Such is the case with the adjoint boundary problem. In particular for Euler flows, both
fluid dynamic and adjoint equations entail complementary Riemann problems, and these yield boundary
conditions that are fully consistent with well-posedness. In the literature, this approach has been pursued
solely in terms of Riemann variables. This work formulates the adjoint boundary problem so as to correspond
precisely to that imposed on the flow, as it is given in terms of primitive variables. Test results have shown
to be in agreement with the traditional approach for external flow problems. Copyright © 2012 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The problem of inverse aerodynamic design was first considered by Lighthill, in 1945, and the
investigation was limited to airfoils in incompressible potential flows [1]. The interest in the topic
has grown ever since, following closely on the progresses in computational resources and numerical
methods for flow simulation. Over the years, a variety of methods have been proposed to tackle the
problems of aerodynamic optimization and inverse design.

The adjoint method has played a prominent role in that context, for a number of reasons. Among
them, one could cite the great flexibility it offers with regard to the flow-physics model and to the
definition of objective functionals. Originally proposed by Pirronneau [2–4] for elliptic problems,
it was later extended to transonic flows by Jameson [1]. Since then, it has become the subject of
extensive research activity [5–14] and spawned a wide variety of applications, ranging from nuclear
reactor thermo-hydraulics to atmospheric sciences [15, 16]. In aerodynamics, the developments of
the adjoint method encompass design applications regarding internal and external flows [17–22]
and, more recently, unsteady flows [23–26].

To put matters into perspective, objective functionals of general interest in aerodynamics depend
on flow variables and on the shape and location of the boundaries [27, 28]. These, in turn, are
controlled by a set of design parameters. For all practical purposes, the set is assumed to be finite.
Under these circumstances, a natural means of estimating the sensitivity of that functional to changes
in flow geometry would be to perturb each design parameter individually and then to compute the
sensitivity gradient by finite differences.
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The procedure clearly requires a converged flow solution for each parameter variation. As the
number of design parameters increases, so does the number of solutions, and the computational
cost is bound to become prohibitive. Alternatively, by imposing the equations that govern the
flow as constraints to the optimization problem, one precludes unrealizable solutions. That, in
turn, eliminates the need for additional flow simulations. Therein lies the essence of the adjoint
method. As a result of the simplification, the method offers an extremely attractive capability,
which is to compute sensitivity gradients at a cost that is largely independent of the number of
design parameters.

The formulation of the adjoint problem has evolved into two distinct approaches: discrete and
continuous. In the former, a discrete adjoint operator is obtained on the basis of already discretized
flow governing equations. Whereas in the latter case, the adjoint equations are derived analytically
from the equations that govern the flow. Comparisons between the two approaches have also been
drawn in the literature [28–30], and they do not seem to indicate any sizable differences between
them in terms of optimization effectiveness.

On the other hand, the continuous formulation offers a clear insight into the nature of the adjoint
problem [31]. To gain access to it, Giles and Pierce [31–34] have conducted a thorough investigation
of the mathematical properties of adjoint equations in the continuous form. Of particular interest to
our purposes, in reference [31], the authors explore the hyperbolic character of the Euler and their
adjoint equations to ensure both problems are well posed. They cast them in terms of Riemann
variables, and make use of the fact that flow and adjoint characteristic velocities have opposite
signs. That gives the boundary problems a complementary character, thus paving the way to make
the adjoint equations well posed.

Yet, there is one aspect of the procedure that deserves further consideration: the results have been
entirely derived in terms of Riemann variables. Although that does suit the main purpose of proving
the flow and adjoint boundary problems are complementary, it does not correspond directly to the
way boundary conditions are usually specified, for that is most often carried out in terms of primitive
variables instead. To obtain these from the original expressions, it would require the corresponding
Riemann variables to be integrated, and that cannot be carried out in closed form for all cases of
interest [35].

This work proposes a means of circumventing the difficulty. It makes use of the fact that the
boundary problems are complementary and of Riemann equations as well. But it combines them
with the idea that the bilinear concomitant the adjoint problem entails is an inner product between
physical variations and adjoint variables [15]. The product is computed over the domain boundary,
where any physical variation is governed by flow boundary conditions.

In essence, boundary conditions determine which physical variations are realizable. Then, the
need to drive the bilinear concomitant to zero is seen as an orthogonality condition. That is, the
adjoint variables define a vector in state space, which must be orthogonal to any realizable variation
of the flow physics. The rationale is analogous to that behind the principle of virtual work, in that
the adjoint vector plays the part of a generalized constraint force, which should be normal to any
acceptable virtual displacement of the system. The approach is shown to be fully consistent with
the requirements for well-posedness of the adjoint equation, as they are determined by the Riemann
problem [36–38].

A comparison between this approach and that by Giles and Pierce [31] is drawn in the following
section in terms of the resultant equations. It shows that although the former yields a bit more
complex algebraic expressions, it does share with the latter in the linearity of the adjoint boundary
conditions, as it is expected to. Test results validate the proposed approach in applications of inverse
aerodynamic design.

2. THE VARIATIONAL PROBLEM

As was mentioned earlier, the objective functionals of interest in aerodynamics depend on the flow
variables and on the geometry of the boundaries. In principle, these functionals could either be
volume integrals over the flow domain or surface integrals over a boundary such as the body surface,
for instance. The latter case is of special relevance to us, for it includes a variety of aerodynamic

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:1297–1321
DOI: 10.1002/fld



CHARACTERISTICS-BASED ADJOINT BOUNDARY CONDITIONS 1299

measures of merit, ranging from force coefficients to inverse design. A fairly general representation
of these functionals would be

Io D

Z
Bw

g .V/ dS (1)

where Bw stands for the body surface, a function of space coordinates that is fully specified by a
finite set of parameters Bw ) S.�j I ak/. The quantity g.V/ represents a scalar function of the
flow variables V D .�,ui ,p/T—which can naturally be put in terms of the conservative variables
QD .�, �ui , e/T as well.

A relevant problem would be to find out a surface geometry that leads to a minimum of Io under
given flow conditions. In the framework of the adjoint method, it implies evaluating the sensitivity
of Io to changes in the control parameters ak . To first order, that can be estimated by the sensitivity
gradient @Io=@ak .

Parameter variations clearly cause the body surface to change, thereby perturbing the flow field
as well, ıak) ıS ) ıQ. A convenient means of separating physical from geometric variations is
to define a spatial transformation, whereby the body surface is mapped onto a constant coordinate
plane. It also simplifies the variational problem considerably, in that the domains of integration
remain fixed in transformed space [39]. All that change in the process are the transformation
operators and the metrics of the latter.

To that end, we take the physical space to be represented by Cartesian coordinates xi
0

, and the
transformed space by generalized coordinates �k—to distinguish between the two systems, all tensor
elements in Cartesian coordinates will hereafter be designated by primed indices, and unprimed
indices are reserved for generalized elements. The transformation operator and its inverse are defined
by, respectively,

ˇ) ˇi
0

j D
@xi
0

@�j
; ˇ�1) ˇ

j
i 0 D

@�j

@xi
0 (2)

The transformation Jacobian is J D det.ˇi
0

j /, and it is assumed to be independent of time. It is
also understood that J should not go to zero nor change its sign anywhere in D. In this context, the
first variation of the objective functional (1) is given by

ıIo D

Z
Bw

@g

@V
@V
@Q

ıQ

ˇ̌̌
ˇdS 0dS

ˇ̌̌
ˇ dS C

Z
Bw

g ı

ˇ̌̌
ˇdS 0dS

ˇ̌̌
ˇ dS (3)

where dS 0 and dS represent area elements in Cartesian and generalized coordinates, respectively.
Equation(3) naturally involves physical and geometric variations. The latter term in it can usually
be derived from S.� i I ak/ analytically, whereas the former is hardly ever known in closed form. In
effect, it is the presence of that term in ıIo that gives rise to the need for additional flow simulations.

In order to circumvent such need, one imposes the fluid mechanics equations as constraints on
the variational problem. They play the essential role of realizability conditions, which all physical
variations ıQ must satisfy. In the present case, we pick the Euler equations, which are given in
Cartesian coordinates by

@Q˛

@t
C
@f k

0

˛

@xk
0
D 0 (4)

where Greek subscripts range from 1 to 5, indicating coordinates in state space: 1 refers to continuity,
2–4 to linear momentum and 5 to the energy equation. The state Q˛ and flux f k

0

˛ vectors are
defined as
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In particular for the momentum equations, there is a relation between the superscript i 0 and the
subscript ˛: i 0 D ˛ � 1 for 26 ˛ 6 4. The symbol e represents total energy, e D �.ei C u � u=2/, ei
denotes the specific internal energy and the gi

0j 0 stands for the metric tensor, which is the identity
matrix in Cartesian coordinates. The set is closed by the ideal gas relation between pressure and
internal energy

p D �ei .� � 1/ (6)

The Euler equations in transformed space are obtained by a simple application of the ˇ

operators [40]:

J
@Q˛

@t
C Jˇki 0

@f i
0

˛

@�k
D 0

@ .JQ˛/

@t
C
@F k˛

@�k
D 0

(7)

A tensorial identity [41] is crucial to derive their latter form, and it is also implied in the definition
of generalized flux vectors F k˛ ,

@
�
Jˇki 0

�
@�k

D 0 ) F k˛ D Jˇ
k
i 0f

i 0

˛ (8)

Generalized flux-Jacobian matrices are then defined on the basis of Equation (8)

C k˛ˇ D Jˇ
k
i 0
@f i
0

˛

@Qˇ

D Jˇki 0A
i 0

˛ˇ (9)

and they lead to the following form of the generalized Euler equations

@Q˛

@t
C
C k
˛ˇ

J

@Qˇ

@�k
D 0 (10)

Either in this form, or as it appears in (7), the Euler equations can be imposed on the variational
problem as realizability constraints.

In the applications that are considered here, one is mostly interested in steady flow conditions.
Therefore, the steady form of (7) is imposed on (1) as a non-holonomic constraint in transformed
space. The procedure leads to an augmented functional, which is given by

I D

Z
Bw

g .V/

ˇ̌̌
ˇdS 0dS

ˇ̌̌
ˇ dS

„ ƒ‚ …
Io

C

Z
D

‰˛
@F k˛

@�k
dV

„ ƒ‚ …
Ic

(11)

Here, the Ic indicates the constraint functional, which is a volume integral over the flow domain,
D, as a whole. It is understood that the ratio between Cartesian and generalized volume elements
is given by transformation Jacobian itself, dV 0=dV D J . The vector ‰˛ represents Lagrange
multipliers, and it is of the same dimension as the state vector Q˛ .

The first variation of Io is already given in (3), whereas that of Ic must still be computed. It
involves the variation of the constraint equation, which is given by

@

@�k

�
ıF k˛

�
D 0 (12)

The generalized flux variation is obtained by combining Equations (8) and (9), and the
procedure yields
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It is worth noting that the first term on the right-hand side (RHS) of (13) can be regarded as the
physical part of the flux variation, whereas the second one represents the geometric part.

The first variation of Ic is a direct result of Equation (12), and it can be further simplified by
making use of Gauss’ theorem.

ıIc D

Z
D

‰˛
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@�k
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˛ nk dS �
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(14)

where the symbol @D indicates the whole boundary of the flow domain, which includes the body
surface .Bw/, the far field .B1/ and cut planes .Bcp/. In effect, the surface integral in Equation (14)
defines the bilinear concomitant of the problem in its most general form. The term nk represents a
normal unit vector that points outward from the flow domain.

Naturally, the variation of the augmented functional (11) is given by the sum of Equations (3) and
(14): ıI D ıIoC ıIc . On adding them up and on separating the surface integrals according to each
boundary, one obtains
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k
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3
75
cp�

cpC

(15)

Here, the square brackets imply that the flux variations are integrated over both sides of each cut
plane Bcp . Owing to the fact that the normal has opposite orientation on each side, any cut plane
yields a difference between two similar integrals, one over each side. Moreover, the fluxes should
be continuous through the cut planes to be physically realizable, and the same must hold for their
variations. Under these circumstances, one can eliminate that term from Equation (15) by simply
imposing periodic boundary conditions on the adjoint variables at the cut planes,

‰˛
ˇ̌
cpC
D‰˛

ˇ̌
cp�

(16)

It requires that the ‰˛ and all of their derivatives be continuous through Bcp .
Another condition for physical realizability implies that the normal velocity at the solid walls

should be zero, u � n D 0. That requirement constrains the flux vector normal to Bw , and it should
also hold for its first variation.

F k˛ nk
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A

and on assuming that wall is mapped onto a constant coordinate plane, say Bw ) �2 D 0, one can
write

‰˛ıF
k
˛ nk

ˇ̌̌
ˇ
�2D0

D ıp
�
‰.i 0C1/Jˇ

2
i 0n2

�
C p

�
‰.i 0C1/ı

�
Jˇ2i 0

�
n2
�

(17)

where use was made of the relation ˛ D i 0 C 1, which holds for the momentum equations and
was mentioned in regard to Equation (5). It is also implied that the metric tensor coincides with the
identity matrix in the Cartesian system.
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On substituting Equations (16) and (17) for the corresponding terms in Equation (15), and on
replacing the flux variation by Equation (13), one obtains the final expression for ıI

ıI D

Z
Bw
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ˇdS 0dS
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(18)

Here, it has been assumed that the far-field boundary is also mapped onto a constant coordinate
plane, B1) �2 D 1. A separation between physical and geometric variations is easily noticed in
Equation (18). The first three terms, (a), (b) and (c), belong in the former group. They give rise to
the adjoint problem, which is constructed with the specific purpose of eliminating them from the
total variation, ıI . The remaining three integrals, (d), (e) and (f), involve only geometric variations,
and they can be carried over into the sensitivity gradient as they are [36]. However, Jameson and
Sangho [41] have proposed a further simplification to the gradient expression. They have shown that
one can use the reduced form
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�
ˇ
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²
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ˇ̌̌
ˇdS 0dS

ˇ̌̌
ˇC p �‰.i 0C1/ı �Jˇ2i 0�n2�

³
dS

„ ƒ‚ …
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(19)

Quite different from (18), in Equation (19), the sensitivity gradient amounts to just two integrals
over the body surfaceBw . The gradient integrals over D andB1 from the former equation have been
removed, but an additional variation term, ıQ�

ˇ
, has appeared in their stead. It refers to variations

in the state variables that are owed to mesh movement ı�k alone, at a fixed boundary configuration
[41]. Despite their particular cause, ı�k , they are of the same nature as the original ıQˇ , in that
they must also satisfy the Euler equations. For simplicity, the symbol ıQˇ will be used to denote
the difference: ıQˇ D ıQˇ � ıQ

�
ˇ

.

3. THE ADJOINT EULER EQUATION

The goal of removing all physical variations from the expression of ıI implies that the first three
operators in Equation (19) should vanish. The conditions under which that can be accomplished
define the adjoint problem, as was mentioned previously.
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For that purpose, term (c) can be regarded as an inner product between ıQˇ and a differential
operator, which is applied to ‰˛ . Because all physical variations must be realizable, but they are
otherwise arbitrary, it follows that the only means of eliminating the product is to require that the
term involving ‰˛ be identically zero over D as a whole. The procedure gives rise to the adjoint
equation in steady form.

It is not difficult to notice a similarity between the differential operator in term (c), Equation (19),
and the steady form of the Euler equations (10). In principle, that enables one to formulate the
adjoint problem in a way that is similar to the flow problem.

It is well known that the Euler equations hyperbolic character is what ultimately determines their
boundary problem. It also sets the conditions for their being well posed. On having the adjoint
equation share in the same character, one may extend the similarity to the adjoint boundary problem
as well. That can be accomplished by simply postulating that ‰˛ depends on time in a way that is
similar to Qˇ . This step leads to the following adjoint partial differential equations (PDEs):

@‰˛

@t
�
C k
ˇ˛

J

@
�
J‰ˇ

�
@�k

D 0 (20)

@Q˛

@t
C
C k
˛ˇ

J

@Qˇ

@�k
D 0 (21)

which are paired with the flow governing equations (21) for comparison. It is worth noting here that
the flux Jacobian matrix is transposed in the adjoint equations (20). One may also add that, despite
their appearance, the adjoint equations are not in divergence form. For simplicity, then, one can
redefine the adjoint variable so as to take in the transformation Jacobian,  ˛ � J‰˛ . It lends the
adjoint equations the following form:

@ ˛

@t
�C kˇ˛

@ ˇ

@�k
D 0

@ 

@t
�
�
CT � r

�
 D 0 (22)

where the symbolic notation has been introduced for future convenience.
Clearly, one is only interested in the steady-state solution to Equation (22), for that solution alone

drives term (c) in Equation (19) to zero. The point in casting the adjoint PDEs in this form is that not
only do they share in the hyperbolic character of the Euler equations, but they also have the same
characteristics. Their major difference lies in the sign reversal of the adjoint characteristic veloci-
ties. Quite distinct from the Euler equations, although, the adjoint PDEs are linear, because the flux
Jacobian matrices do not depend on  ˛ .

Both features, linearity and hyperbolicity, form the basis of the adjoint boundary problem.
Nonetheless, the boundary conditions should fulfill two requirements: they must rid the sensitivity
gradient (19) of physical variations and they must also be consistent with the well-posedness of the
adjoint equations (22). As will be shown next, the sign reversal of the adjoint characteristics plays a
crucial role in ensuring that the aforementioned requirements are met.

3.1. Adjoint boundary conditions

At least in part, the adjoint boundary problem was approached in Section 2 with regard to the cut
planes. The need to drive the last term in Equation (15) to zero, by itself, would only require that
 ˛ be continuous through the cut plane. Yet, to be consistent with the well-posedness of the adjoint
PDEs, one must impose continuity up to first order derivatives—given that the cut plane should not
coincide with any characteristic surface [42]—hence, the reason for imposing periodic boundary
conditions through Equation (16).

With respect to solid walls, Equation (17) represents a realizability constraint. The fact that the
wall is impermeable implies that the normal velocity and its variation should both be zero. When it
is introduced in the expression for ıI , (18)–(19), it gives rise to an integral (a) over Bw , which is
also related to the objective functional, through the derivative @g=@Qˇ .
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The need to drive that integral to zero, while accounting for the fact that ıQˇ is arbitrary (albeit
realizable), leads to a single wall boundary condition. It can be cast in an alternative form that suits
best our purposes by making use of the chain rule in state space [36] and by substituting  ˛ for the
corresponding product.

‰.i 0C1/Jˇ
2
i 0n2 D  .i 0C1/ni 0

ˇ̌̌
ˇ
Bw

D
@g

@p

ˇ̌̌
ˇdS 0dS

ˇ̌̌
ˇ (23)

A contraction between the normal and the transformation operator leads to the Cartesian form of
the result.

In effect, the situation is similar to the Euler flow, where one can only impose one condition at
the wall—that is, zero normal velocity. It could be added that a single wall boundary condition is
also consistent with well-posedness, for it is widely known that only one characteristic enters the
flow domain through the wall, which implies that a single condition can be specified there. The
outgoing characteristic gives rise to the relation between the normal component of the pressure
gradient and the centripetal force term [35, 36] and establishes pressure as the only dependent flow
variable to be strictly required at the wall. All the remaining variables are extrapolated from the flow
solution [35, 43].

In principle, the same should hold for the adjoint variables, because they share the same char-
acteristics as the flow, except for the sign reversal. The problem with extrapolating the remaining
adjoint variables at the wall is that they have no underlying physics as the flow variables do. As a
result, a few different extrapolation schemes have been discussed in the literature, and, among them
we have picked one proposed by Reuther [40]. This scheme will be presented in detail as follows
for the 2D test cases.

Functional (b) in Equation (19) is the part of the bilinear concomitant in (14) that corresponds
to an integral over the far-field boundary B1. There, one recognizes in the term .C 2

˛ˇ
ıQˇn

2/ the
physical part of the flux variation, from Equation (13), in the normal direction to B1. On account-
ing for this, that integral may as well be seen as an inner product between the ‰˛ and physical
variations of the flux that crosses the far-field boundary. On pursuing a similar approach to what is
outlined previously, the idea is, first, to constrain the ıQˇ to the locus of realizable variations, as
is determined by the corresponding flow boundary conditions. Then, by assigning zero value to the
inner product, one imposes on  ˛ the condition that they should be normal to all admissible virtual
displacements of the flux vector at the far-field boundary.Z
B1

‰˛C
2
˛ˇ ıQˇn2dS D

Z
B1

 ˛ˇ
2
i 0A

i 0

˛ˇ ıQˇn2dS D 0 )  ˛

�
Ai
0

˛ˇni 0
�
ıQˇ

ˇ̌̌
B1
D 0 (24)

Here, the definitions of  ˛ and Equation (9) have been used to pass from the first to the second
form. Use was also made of the fact that, once it has been constrained to be realizable, the ıQˇ

should also be deemed arbitrary—hence, the need for the last equation. In any case, the procedure
is better illustrated with the simple example of supersonic flow [38].

At a supersonic inflow section, all flow characteristics enter the domain. It implies that all flow
variables are fixed at that boundary and, thus, their variations are identically zero, ıQˇ D 0. Because
the adjoint characteristics run in the opposite direction, they all leave the domain. As a result, no
boundary conditions should be imposed on the  ˛ there. For well-posedness, their values should be
determined as part of the adjoint solution instead. However, the fact that ıQˇ is zero ensures that
the inner product (24) vanishes at that boundary. Hence, the orthogonality condition holds for any
vector  ˛ .

The exact opposite occurs at a supersonic outflow section. There, all of the flow characteristics
leave the domain, whereas the adjoint ones enter it. For the flow, it implies that no boundary
conditions should be imposed, and the physical variations ıQˇ are free. On the other hand, the
incoming adjoint characteristics require that all  ˛ be prescribed there, for well-posedness. In
principle, the only means of ensuring that orthogonality (24) holds is to impose homogeneous
boundary conditions on the adjoint variables there,  ˛ D 0. This is the only situation where
homogeneous boundary conditions are strictly required.
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Boundary conditions for subsonic flow need more careful consideration, for, in that case, the
characteristics run both ways, in and out of the flow domain. Then, the admissible flux variations
at the boundaries are only partially constrained. Yet, the procedure remains the same: first, one
evaluates the realizable ıQˇ in each case and then finds out the orthogonal  ˛ thereof.

As it has been appropriately discussed by Giles and Pierce [31], the sign reversal of the adjoint
characteristics plays a crucial role in ensuring that the equations are well posed. In the context of a
Riemann problem, characteristics that enter the domain convey Cauchy data from the boundaries to
the solution, whereas those that leave it feed information back from the latter to the former. Hence,
to each domain incoming characteristic there must correspond a boundary condition. Conversely,
each outgoing characteristic implies that some variation must be allowed for at the boundary.

In a sense, the state variables can be seen as degrees of freedom (DOFs) of the boundary problem.
Naturally, their number corresponds to the dimension N of the state space: N D 5 for 3D flows and
N D 4 in 2D problems. In this context, each boundary condition constrains one DOF at the bound-
ary, whereas each outgoing characteristic corresponds to a DOF that is preserved. The scheme holds
for both problems, the Euler flow and its adjoint. However, in view of the sign reversal, to each DOF
that is constrained for the flow at a boundary, there corresponds one that is left for the adjoint, and
vice versa.

The contribution of this paper is to combine these ideas with a condition of orthogonality,
which comes from Equation (24). With regard to the variational problem, the boundary conditions
constrain the ıQˇ to a locus of realizability in state space, where they can effectively be
deemed realizable and arbitrary. Within that locus, all virtual displacements are admissible and,
by introducing them into Equation (24), one can work out the  ˛ that are normal to the locus. The
resulting adjoint vector is compatible with all admissible variations at that boundary.

As will be shown, for each DOF that is constrained in a fluid boundary condition, the inner
product (24) preserves one DOF in the corresponding adjoint boundary condition. As a result of the
symmetry, the balance between constrained and preserved DOFs agrees with the balance between
adjoint characteristics that enter or leave the domain. It implies that there will be as many adjoint
boundary conditions that satisfy (24), as there will be adjoint characteristics that run into the domain.
The number of remaining DOFs will, likewise, be the same as that of outgoing characteristics. Under
these conditions, one is able to remove the far-field integral (b) from the sensitivity gradient (19)
and also to be consistent with the well-posedness of the adjoint problem.

Before proceeding with the derivation of boundary conditions, however, it is important to note
that the adjoint equations (22) are generalized in either form. Therefore, they must hold in any coor-
dinate system and, in particular, in the Cartesian. The same applies to the periodic condition that is
imposed on cut planes (16). On the other hand, the wall (23) and far-field (24) boundary conditions
have been written for a specific system, where both boundaries are mapped onto constant coordinate
planes: Bw ) �2 D 0 and B1) �2 D 1, respectively. However, they can also be put in Cartesian
coordinates, as those equations show.

That opens up the possibility of solving the adjoint problem in the Cartesian system and, thus, to
dispense with the coordinate transformation altogether. It all hinges upon one’s ability to compute
the metric variations ı.Jˇ2i 0/ that appear in the sensitivity gradient (19) without having to resort
to the transformation explicitly. If that is accomplished, then the transformation has fulfilled its
prime objective, which was to simplify the derivation, and can be discarded. As it turns out,
in 2D applications, one can indeed evaluate those terms at the contour Bw without actually
computing the transformation. The procedure will be discussed at length in Section 5.3 after the
boundary conditions.

4. 2D EULER FLOW, ADJOINT EQUATIONS AND BOUNDARY CONDITIONS

In view of what was discussed earlier, the adjoint problem will be entirely constructed and solved
in Cartesian coordinates. For 2D cases, the Greek subscripts range from 1 to 4, where 1 refers
to continuity, 2 and 3 to linear momentum and 4 to energy, whereas the Latin indices refer to
the two dimensions in physical space—for simplicity, we designate them as x1

0

D x , x2
0

D y.
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The corresponding flux Jacobian matrices are denoted by A1
0

D A and A2
0

D B, respectively.
Under these circumstances, the adjoint equations become

@ ˛

@t
�Aˇ˛

 ˇ

@x
�Bˇ˛

 ˇ

@y
D 0 (25)

For simplicity, the flux Jacobian vector [35] Ai
0

ˇ˛
is also assigned a symbolic notation, Ai

0

ˇ˛
)

A
T
D .AT , BT /.

It is widely known that the flux Jacobian matrices have complete eigensystems and that they can
be diagonalized upon their being associated with a given direction [35, 43]. The normal direction
to a boundary is of particular interest, in that regard, for the characteristics associated with it are
responsible for all the exchange of information across that boundary. For a general treatment of
such boundaries, we pick an arbitrary direction, as defined by the unit vector kD .kx , ky/T , and the
corresponding Jacobian matrix is given by the dot product

�A
T
� kD�kxAT � kyBT (26)

where the minus sign and the transposition, which appear in Equation (25), have been retained for
future convenience. The similarity transformation that diagonalizes the resulting matrix yields

�ƒD�PT
�

A
T
� k
� �

P�1
�T

D

0
B@
�.kxuC kyv/ 0 0 0

0 �.kxuC kyv/ 0 0

0 0 �.kxuC kyvC c/ 0

0 0 0 �.kxuC kyv � c/

1
CA (27)

which are obviously the same eigenvalues of the Euler equations but for the sign reversal. Also
associated with the direction k, the similarity transformation operators are given by [35]

PT D

0
BBBBBB@

1 u v u2Cv2

2

0 �ky ��kx �
�
uky � vkx

�
�
2c

�.ckxCu/
2c

�.ckyCv/
2c

�
2

�
c
��1
C ukx C vky C

u2Cv2

2c

�
�
2c

�.v�ckx/
2c

�.v�cky/
2c

�
2

�
c
��1
� ukx � vky C

u2Cv2

2c

�

1
CCCCCCA (28)

�
P�1

�T
D

0
BBBBBB@

1�
.��1/.u2Cv2/

2c2
vkx�uky

�

.��1/.u2Cv2/�2c.ukxCvky/
2�c

.��1/.u2Cv2/C2c.ukxCvky/
2�c

.��1/u

c2
1
�
ky

ckx�.��1/u
�c

�ckx�.��1/u
�c

.��1/v

c2
�1
�
kx

cky�.��1/v

�c

�cky�.��1/v

�c

� .��1/
c2

0 ��1
�c

��1
�c

1
CCCCCCA

(29)
respectively.

Although the adjoint PDEs cannot be fully diagonalized, one can obtain their characteristic form
by left multiplying Equation (25) through by PT . It leads to the expression

PT
@ 

@t
� PTAT

�
P�1

�T
PT
@ 

@x
� PTBT

�
P�1

�T
PT
@ 

@y
D 0 (30)

Here, it may be added that the product .PT ı / defines adjoint Riemann differentials.
Accordingly, on computing the matrix products in Equation (30), one obtains a set of Riemann’s
equations, or characteristics, of the form
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NX
ˇD1

Kt˛ˇ
@ ˇ

@t
D

NX
ˇD1

Kx˛ˇ
@ ˇ

@x
C

NX
ˇD1

K
y

˛ˇ

@ ˇ

@y
(31)

where N D 4 in the 2D cases and the coefficients Kt
˛ˇ

, Kx
˛ˇ

and Ky
˛ˇ

are listed in Table I.

Table I. Coefficients.

Coef. Value Coef. Value

Kt11 1 Kx31 � .uC kxc/

Kt12 u Kx32

h
�c2k2y C � .uC kxc/

2
i

Kt13 v Kx33 �
�
�c2kxky � � .uC kxc/

�
vC kyc

��
Kt14

.u2Cv2/
2 Kx34 �

h
�c2ky

�
kxv � kyu

�
C

��2 .uC kxc/
�
u2C v2

�
C

��c .uC kxc/
�
kxuC kyv

�
� �c2.uCkxc/

��1

i
Kt21 0 Kx41 � .u� kxc/

Kt22 �ky Kx42

h
�c2k2y C � .u� kxc/

2
i

Kt23 ��kx Kx43 �
�
�c2kxky � � .u� kxc/

�
v � kyc

��
Kt24 �

�
kyu� kxv

�
Kx44

h
�c2ky

�
kxv � kyu

�
C

C�2 .u� kxc/
�
u2C v2

�
C

� �c .u� kxc/
�
kxuC kyv

�
C �c2.u�kxc/

��1

i
Kt31 � K

y
11 v

Kt32 � .uC kxc/ K
y
12 uv

Kt33 �
�
vC kyc

�
K
y
13 v2

Kt34

h
�c2

��1 C �c
�
kxuC kyv

�
C K

y
14

v.u2Cv2/
2

C�2
�
u2C v2

� i
Kt41 � K

y
21 ��kx

Kt42 � .u� kxc/ K
y
22 ��

�
kxu� kyv

�
Kt43 �

�
v � kyc

�
K
y
23 �2�kxv

Kt44

h
�c2

��1 � �c
�
kxuC kyv

�
C K

y
24

�
�kyuv �

�kx.u2C3v2/
2 � �c2kx

��1

	
C�2

�
u2C v2

� i
Kx11 u K

y
31 �

�
vC kyc

�
Kx12 u2 K

y
32 �

�
�c2kxky � � .uC kxc/

�
vC kyc

��
Kx13 uv K

y
33

h
�c2k2x C �

�
vC kyc

�2i
Kx14

u.u2Cv2/
2 K

y
34 �

�
�c2kx

�
kyu� kxv

�
�
�c2.vCkyc/

��1 C

��c
�
vC kyc

� �
kxuC kyv

�
C

� �
2

�
vC kyc

� �
u2C v2

� 	
Kx21 �ky K

y
41 �

�
v � kyc

�
Kx22 2�kyu K

y
42 �

�
�c2kxky C � .u� kxc/

�
v � kyc

��
Kx23 ��

�
kxu� kyv

�
K
y
43

h
�c2k2x � �

�
v � kyc

�2i
Kx24 �

�
�kxuv �

�ky.3u2Cv2/
2 �

�c2ky
��1

	
K
y
44 �

�
�c2kx

�
kyu� kxv

�
�
�c2.v�kyc/

��1 C

C�c
�
v � kyc

� �
kxuC kyv

�
C

� �
2

�
v � kyc

� �
u2C v2

� 	
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Just as the original equation (25), the set (31) is linear. Only, the coefficients are given by less
familiar algebraic expressions. Different from the former, however, each one of the preceding
equations .˛/ is intrinsically associated with a specific characteristic velocity, as given by the matrix
ƒ in Equation (27). Ultimately, on choosing the vector k normal to the domain boundaries, those
velocities determine which of the adjoint characteristics enter or leave the flow domain. Therefore,
they are essential to set up the conditions at each boundary.

As was discussed in Section 3.1, the domain incoming characteristics are replaced by boundary
conditions, whereas the outgoing ones feed domain information back to the boundary, thus
completing the Riemann problem. The equations that represent the latter are picked out from (31)
for each case.

Next, the topic is considered at length for each of the boundaries.

4.1. Solid wall

The 2D contour of the body can be specified as a level curve, such as �.x,y/ D 0, in a plane
mapping of type .x,y/• .� , �/. Alternatively, it can be cast in parametric form as

�.x,y/D 0 ,

²
x D x.� , 0/
y D y.� , 0/

(32)

In the first case, the normal unit vector can be obtained by simply making n D r�= k r� k.
The corresponding expression for the second case may be derived from the first by means of the
relations‡ �,x D �y,�=J and �,y D x,�=J , which are obtained on inverting the operator ˇij 0 to

compute ˇi
0

k
. As a result, the normal vector becomes

nj 0)



kx
ky

�
D

1q
�2,x C �

2
,y



�,x

�,y

�
D

1q
x2,� C y

2
,�



�y,�

x,�

�
(33)

in the Cartesian system. The term that multiplies the vector on the RHS can be recognized to be an
element of the metric tensor gij in transformed space: g11 D x2,� Cy

2
,� . In any case, the result yields

a fairly simple expression for the vector covariant components in the transformed plane.

ni D nj 0ˇ
j 0

i D
1
p
g11



0

J

�
(34)

Before proceeding with the derivation, it should be noted that both n and the metric term g11 can
be evaluated at the wall solely on the basis of the parametric representation of the contour.

The wall boundary condition is given by Equation (23). It depends on the specification of a metric
term, namely the area element ratio jdS 0=dS j. In parametric form (32), one has dS D d� . Besides,
dS 0 and dS are clearly parallel: dS 0 k dS . However, the ratio between the two of them comes from
the arc length element [44, 45]ˇ̌̌

ˇdS 0dS

ˇ̌̌
ˇ dS D

ˇ̌̌
ˇdS 0d�

ˇ̌̌
ˇd� D

s
1C



dy

dx

�2
Bw

x,�d� D
q
x2,� C y

2
,� d� D

p
g11 d� (35)

Hence, the solid wall boundary condition simply becomes

kx 2C ky 3 D
@g

@p

p
g11 (36)

As was discussed previously, the adjoint solution is computed on the basis of a stationary flow
field. Therefore, by differentiating Equation (36) with respect to time, one obtains

kx
@ 2

@t
C ky

@ 3

@t
D 0 (37)

‡A shorthand notation is used here to denote partial derivatives of metric terms . /,� D @. /=@� and . /,x D @. /=@x.
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This expression is used next to simplify the equation of the characteristic that leaves the domain
through the solid wall boundary.

The normal velocity vanishes identically at the wall .kxu C kyv D 0/, which implies that the
first two characteristic velocities in Equation (27) are zero. They cannot transfer any Cauchy data
across that boundary. On the other hand, the third and fourth ones become �c andCc, respectively.
Therefore, the third characteristic leaves the domain, while the fourth one enters it. In view of these
results, the third characteristic equation in (31) should be solved for the adjoint variables at the wall,
whereas the fourth one should be replaced by condition (36). Two DOFs still remain because of the
first and second characteristics. In principle, then, these should be extrapolated from the domain.

On taking the third characteristic from (31) and factoring the zero normal velocity in it, as well
as Equation (37), one obtains a simplified form of the equation that should be solved for the  k at
the wall. The equation reads

@ 1

@t
C u

@ 2

@t
C v

@ 3

@t
C ho

@ 4

@t
D
�
vC kyc

� @ 1
@y
C
h
c2k2y C .ckx C u/

2
i @ 2
@x
C

�
�
c2kxky � .ckx C u/

�
cky C v

�� 
@ 2
@y
C
@ 3

@x

�
C

C .uC kxc/
@ 1

@x
C
h
c2k2x C

�
cky C v

�2i @ 3
@y
C

�
�
c2ky

�
kxv � kyu

�
� .uC kxc/ ho

� @ 4
@x
C

�
�
c2kx

�
kyu� kxv

�
�
�
vC kyc

�
ho
� @ 4
@y

(38)

where the symbol ho stands for the specific stagnation enthalpy.
Equations (38) and (36) represent all the Cauchy data that cross the solid wall. Together, they

should form the set of Riemann equations at that boundary. The problem with that set is the presence
of all four adjoint variables in Equation (38). Had the simplified characteristic equation been rid
of  1 and  4, then one would have a closed set to solve for  2 and  3. In that case,  1 and
 4 would not be part of the Cauchy problem at the wall, and thus, they would be determined
by numerical extrapolation alone. The situation would then be similar to the corresponding flow
boundary problem.

As it stands, however, the set cannot be solved for the  k at the wall. Instead, one must rely on
Equation (36) and an extrapolation scheme. In that regard, the aforementioned Reuther’s [40]
scheme suits our applications very well. It adopts zero-order extrapolations for  1 and  4 and
divides (36) into two conditions between  2 and  3 so that their sum recovers the original equation.
On representing ghost cells values by  �

k
and the corresponding values in domain neighboring cells

by  C
k

, the equations read8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

 �1 D  
C
1

 �2 D  
C
2 C

2kx
k2xCk

2
y

�
@g
@p

p
g11 � kx‰

C
2 � ky‰

C
3

�
 �3 D  

C
3 C

2ky

k2xCk
2
y

�
@g
@p

p
g11 � kx‰

C
2 � ky‰

C
3

�
 �4 D  

C
4

(39)

where the condition (36) is met at the wall boundary in terms of the average

kx

�
 �2 C 

C
2

�
2

C ky

�
 �3 C 

C
3

�
2

D
@g

@p

p
g11 (40)

This scheme has been amply verified in the literature and by ourselves [36, 46]. It has shown to
lead to estimates of the sensitivity gradient that are close to those obtained by finite differences,
within reasonable accuracy levels [40]. Therefore, it is fully consistent with what is expected of the
adjoint method.
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4.2. Inflow

At a subsonic inflow boundary, there is only one adjoint characteristic that enters the domain. By
taking n to point inward, it will be the one that is associated with the eigenvalue �.u � n � c/ in
Equation (27), that is, the fourth PDE in (31). Hence, that equation must be replaced by a boundary
condition, which should come from Equation (24), as a requirement of realizability

 ˛

�
Ai
0

˛ˇni 0
�
ıQˇ

ˇ̌̌
ˇ
B1

D 0 (41)

Together with the first three PDEs from set (31), this condition forms the Riemann problem at that
boundary. In order to fully specify it, one must first find out which virtual displacements ıQˇ are
admissible there.

At a subsonic entrance, the flow boundary conditions require that the velocity direction � , along
with the stagnation pressure po and temperature To, be prescribed. It clearly implies that the
corresponding variations are null: ı� D ıpo D ıTo D 0. In terms of state variables Qˇ , these
quantities are given by8̂̂̂

<̂
ˆ̂̂̂:

tan.�/D Q3
Q2

To D .��1/

2�RQ2
1

�
2�Q1Q4 � .� � 1/

�
Q2
2 CQ

2
3

��
po D

.��1/Œ2Q1Q4�.Q22CQ
2
3/�

2Q1

²
1C

.Q22CQ
2
3/

�Œ2Q1Q4�.Q22CQ
2
3/�

³ �
.��1/

(42)

By computing ı� , ıpo and ıTo in terms of the variations ıQˇ , and by equating them to zero, one
obtains a linear set of three equations. Here, it must be recalled that ıQˇ and ıQˇ are equivalent
with regard to realizability. Then on replacing the former by the latter, one can solve the set for
three of them in terms of the fourth one. Whichever variation is chosen as the independent one, the
resulting expressions will represent the locus of realizability in state space. For instance, on picking
ıQ1 to be independent, the procedure yields

ıQˇ )

0
BBBB@

1
u
2

h
2� � C �2 � 2et .��1/�

.u2Cv2/

i
v
2

h
2� � C �2 � 2et .��1/�

.u2Cv2/

i
1
2

�
�2et .� � 2/� C .� � 1/

2.u2C v2/
�

1
CCCCA ıQ1 (43)

Then, on substituting vector (43) for the corresponding term in Equation (41), one obtains
the equation

ıQ1

´
 1

�
2� � C �2 �

2�et .� � 1/

u2C v2

	 �
kxuC kyv

�
2

C 2

"�
2� � C �2

�
kxu

2

2
C

C
2
�
1� � C �2

�
kyuv � .� � 1/ �kxv

2

2
�
2�et .� � 1/

�
2kyuvC kx

�
u2 � v2

��
2 .u2C v2/

#
C

C 3

"
�� .� � 1/ kyu

4C 2kyu
2v2C 2

�
1� � C �2

�
kx
�
u3vC uv3

�
C

2 .u2C v2/
C

C

�
2� � C �2

�
kyv

4C 2�et .� � 1/
�
ky
�
u2 � v2

�
� 2kxuv

�
2 .u2C v2/

#
C

� 4

"�
kxuC kyv

� �
.� � 1/

�
u2C v2

�� ��
2� � C �2

� �
u2C v2

�
� 2�et .� � 1/

�
4 .u2C v2/

C

�

�
kxuC kyv

�
2�et

��
2� � C �2

� �
u2C v2

�
� 2�et .� � 1/

�
4 .u2C v2/

#μ
D 0

(44)
where the  ˛ have been collected for clarity.
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In the preceding equation, ıQ1 is realizable, but it is otherwise arbitrary. Therefore, the only
means for one to drive Equation (44) to zero is to require its coefficient, that is, the term within
braces, to vanish identically. That leads to a single linear equation, which involves all four  ˛ . It
can be written in a simplified form as

C1 1CC2 2CC3 3CC4 4 D 0 (45)

where the coefficients are given by

8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂:

C1 D
h
2� � C �2 � 2�et .��1/

u2Cv2

i
.kxuCkyv/

2

C2 D
.2��C�2/kxu2C2.1��C�2/kyuv

2
� .��1/�kxv

2

2
�
2�et .��1/Œ2kyuvCkx.u2�v2/�

2.u2Cv2/

C3 D
��.��1/kyu

4C2kyu
2v2

2.u2Cv2/
C
2.1��C�2/kx.u3vCuv3/C.2��C�2/kyv4C2�et .��1/Œky.u2�v2/�2kxuv�

2.u2Cv2/

C4 D�
.kxuCkyv/Œ.��1/.u2Cv2/�2�et �Œ.2��C�2/.u2Cv2/�2�et .��1/�

4.u2Cv2/
(46)

Equation (45) is the boundary condition to be imposed on the adjoint variables, and it may also
be seen as a compatibility relation they should meet at the inflow boundary. Here again, because the
adjoint problem is based on a stationary flow solution, the coefficients in (46) are independent of
time. Therefore, Equation (45) remains valid when the  ˛ are differentiated with respect to time.
Then, on joining it with the first three characteristic equations from (31), one obtains the complete
linear set for the corresponding Riemann problem.8̂̂̂

ˆ̂̂<
ˆ̂̂̂̂̂
:

Kt11
@ 1
@t
CKt12

@ 2
@t
CKt13

@ 3
@t
CKt14

@ 4
@t
DR1

Kt21
@ 1
@t
CKt22

@ 2
@t
CKt23

@ 3
@t
CKt24

@ 4
@t
DR2

Kt31
@ 1
@t
CKt32

@ 2
@t
CKt33

@ 3
@t
CKt34

@ 4
@t
DR3

C1
@ 1
@t
C C2

@ 2
@t
C C3

@ 3
@t
C C4

@ 4
@t
D 0

(47)

where the spacial derivatives from the RHS of (31) have all been collected up in the R˛ terms. The
resulting set is amenable to numerical integration by explicit time stepping.

With regard to the discussion on boundary conditions, back in Section 3.1, it is worth noting
that, for each one of the three DOFs that are constrained in the flow problem, a corresponding DOF
is preserved in the adjoint problem. That symmetry agrees exactly with the balance between the
domain incoming and outgoing characteristics for both problems.

4.3. Outflow

In the case of an outflow boundary, the adjoint problem has three domain incoming characteristics.
They are the ones that correspond to the first two and the fourth eigenvalues in (27), and their
equations in (31) must be replaced by boundary conditions. Hence, it is only the characteristic
associated with �.u � nC c/ that needs actually be solved.

Three boundary conditions are required from Equation (24), or from (41) for that matter. Just
as in the previous case, these conditions should come as a result of realizability constraints
that are imposed on ıQ˛ . In the applications of interest here, the static pressure is the only
quantity that is fixed at an outflow boundary. On casting it in terms of the state variables,
it yields

p D .� � 1/

 
Q4 �

�
Q2
2 CQ

2
3

�
2Q1

!
(48)
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By computing its first variation and setting it at zero .ıp D 0/, and on recalling that, as far as
realizability is concerned, ıQ˛, ıQ˛ , one obtains

ıQ4 D uıQ2C vıQ3 �

�
u2C v2

�
2

ıQ1 (49)

which preserves three DOFs: ıQ1, ıQ2 and ıQ3.
Equation (49) represents the locus of realizable variations for the outflow boundary. Again, on

substituting it for the corresponding variations in Equation (41), it leads to

ıQ1

´�
kxuC kyv

�
.�u 2 � v 3/C

�
kxuC kyv

�
2

 4
�
.� � 2/

�
u2C v2

�
� 2�et

�μ
C

C ıQ2

´
kx . 1C v 3/C 2

�
uC kxuC kyv

�
C

C  4

"
kx�et C u

�
kxuC kyv

�
C
.� � 1/ kx

�
u2C v2

�
2

#μ
C

C ıQ3

´
ky . 1C u 2/C 3

�
vC kxuC kyv

�
C

C  4

"
ky�et C v

�
kxuC kyv

�
�
.� � 1/ ky

�
u2C v2

�
2

#μ
D 0

(50)

Naturally, the ıQ1, ıQ2 and ıQ3 are arbitrary, albeit realizable. Therefore, the only means of
driving Equation (50) to zero is to require their coefficients to vanish identically. That leads to three
boundary conditions, involving all four  ˛ . They can be written in a simplified form as8̂̂̂

ˆ̂<
ˆ̂̂̂̂:

 1 D
1
2

�
2et� � .� � 1/

�
u2C v2

��
 4 D C1 4

 2 D

�
�2et�kxC.��2/kxu

2�2kyuvC�kxv
2

2.kxuCkyv/

	
 4 D C2 4

 3 D

�
�2et�kyC.��2/kyv

2�2kxuvC�kyu
2

2.kxuCkyv/

	
 4 D C3 4

(51)

Just as in the previous case, all of the previous coefficients are based on a steady flow solution,
and thus, they are independent of time. As a result, these equations still hold when the  ˛ are
differentiated with respect to time.

The complete set for the Riemann problem at the outflow boundary is then obtained by assembling
(51) with the equation of the third characteristic from (31)8̂̂̂

ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

@ 1
@t
�C1

@ 4
@t

D 0

@ 2
@t
�C2

@ 4
@t

D 0

@ 3
@t
�C3

@ 4
@t

D 0 
3P

ˇD1

Kt
3ˇ
Cˇ C Kt34

!
@ 4
@t
DR3

(52)

Similar to the previous case, the spacial derivatives in the RHS of the third equation from (31) have
been collected up in the R3 term. The resulting set is also amenable to numerical integration by
explicit time stepping.

With respect to the relation between the flow and adjoint boundary conditions, from Section 3.1,
the situation here is similar to the previous case too, for a single DOF is constrained in the flow
problem and a single DOF is preserved in the adjoint. Here again, the symmetry agrees exactly with
the balance between the domain incoming and outgoing characteristics for both problems.
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5. ON COMPARING THE TWO APPROACHES

A comparison between the previous treatment of the boundary problem and that by Giles and
Pierce [31] would be instructive. In the cases of solid walls and of permeable boundaries in super-
sonic flow, both approaches lead to the same expressions. However, the differences are rather
significant for permeable boundaries in subsonic flow. For them, a comparison is drawn on the basis
of the linearized form of the boundary conditions, Equations (43), (45), (49) and (51). To derive
the corresponding expressions from those authors’ work, we present a brief account of the relevant
material—the reader is referred to the original paper [31] for further details.

In their approach, the linearized flow equations and the objective functional, which constitute the
so-called primal problem, are cast in the form8̂̂̂

<
ˆ̂̂:

ıI D
�
g, ıQ

�
D
C
�
h, CıQ

�
@D

LıQD f in D

BıQD e on @D

(53)

where the terms in parentheses in the first equation represent inner products—the first one is an
integral over the flow domain and the second an integral over its boundary. The symbols L and
B stand for linearized operators of the flow equations and boundary conditions, respectively. The
adjoint or dual problem, in turn, is then given by8<

:
ıI D .‰,f /D C .C

�‰, e/@D
L�‰ D g in D

B�‰ D h on @D

(54)

here, the symbols L� and B� represent the adjoint equations and their boundary conditions,
respectively.

The equivalence between the two forms of the variation ıI hinges upon a decomposition of
the bilinear concomitant from Equation (14). To be more specific, it only concerns the physical
part of the flux variation in Equation (13), which is then written in terms of the flux Jacobian
matrix associated with the normal direction to @D, as it appears in Equation (24). The proposed
decomposition is as follows:Z

@D

‰T
h
A�

�
B�
�T

CC
�
C�
�T

B
i
ıQ dS D 0 (55)

Because ıQ is arbitrary, the nullity of the integral can only be ensured by driving the expression
within square brackets to zero. That, in turn, can be achieved by defining the matrix operators T and
T� and by computing their product in the form

T�



B
C

�
I T� �



�C�

B�

�
) AD

�
T�
�T

T (56)

These matrix operators can also be cast in terms of characteristic (Riemann) variables by means of
the same similarity transformation that diagonalizes A

Tc DTP
T�Tc DP�1T�T

³
) ƒD

�
T�c
�T

Tc ) Tc D



Bc
Cc

�
I T�c D



�C�c
B�c

�
(57)

The preceding procedure puts the boundary operators themselves in terms of characteristic
variables through Bc and B�c , which is precisely the way they are presented in [31]. Hence, one
can make use of the inverse similarity transformation to recover the corresponding conservative
forms. That is carried out as follows for the purpose of comparing linearized boundary conditions.
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5.1. Inflow

At a subsonic inflow boundary, the boundary operators of the primal problem are given by [31] in
terms of characteristic variables:

Bc D

0
@ 0 1 0 0

0 0 1 0

0 0 0 1

1
A

Cc D . 1 0 0 0 /

9>>=
>>;Tc D

0
B@
0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1
CA (58)

The inverse similarity transformation leads to

TD

0
BBBBB@

kxv�kyu

�

ky
�

�kx
�

0

.��1/u�u�2ck�u
2c�

ckx�.��1/u
c�

cky�.��1/v

c�
.��1/
c�

.��1/u�uC2ck�u
2c�

� .��1/uCckx
c�

�
.��1/vCky

c�
.��1/
c�

2c2�.��1/u�u
2c2

.��1/u

c2
.��1/v

c2
� .��1/

c2

1
CCCCCA (59)

which gives rise to the corresponding variational form of the inflow boundary conditions

ıQˇ )
�
1,u, v,

u � u
2

�T
ıQ1 (60)

on the basis of the definition of T, from Equation (56). The preceding expression is quite distinct
from Equation (43). Even though it is also simpler, it cannot be said to be the variational counterpart
to fixed values of � ,Po and To, as is the case of the latter. It must then be associated with a different
set of boundary conditions.

On the other hand, the adjoint boundary operators are also given in characteristic form by [31]

T�c D

0
B@

0 �2 0 0

0 0 �3 0

0 0 0 �4
�1 0 0 0

1
CA
8̂̂<
ˆ̂:

C�c D

0
@ 0 ��2 0 0

0 0 ��3 0

0 0 0 ��4

1
A

B�c D . �1 0 0 0 /

(61)

Whence, the inverse similarity transformation yields the matrix

T� D

0
BBBBBB@

0 ky�k � u �kx�k � u �
�
kyu� kxv

�
k � u

�k�u
2c

�.ckxCu/k�u
2c

�.ckyCv/k�u
2c

�k�u
2

�
c

.��1/
C u�u

2c
C k � u

�
�.k�u�c/
2c

�.u�ckx/.k�u�c/
2c

�.v�cky/.k�u�c/
2c

�.k�u�c/
2

�
c

.��1/
C u�u

2c
� k � u

�
cC k � u u .k � uC c/ v .k � uC c/ .k�uCc/u�u

2

1
CCCCCCA (62)

and the definition of T�, in Equation (56), leads to the following adjoint boundary condition

 1C u 2C v 3C
u � u
2
 4 D 0 (63)

The preceding expression is, again, quite different from Equations (45)–(46), and it is much simpler,
indeed. However, it is strictly associated with the linearized (60) and its corresponding flow
boundary condition. Hence, it also differs from the former equations, in that it is not connected
with the physical conditions from (42)–(43).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:1297–1321
DOI: 10.1002/fld



CHARACTERISTICS-BASED ADJOINT BOUNDARY CONDITIONS 1315

5.2. Outflow

At a subsonic outflow boundary, the boundary operators of the primal problem are given, in terms
of characteristic variables, by [31]

Bc D . 0 0 0 1 /

Cc D

0
@ 1 0 0 0

0 1 0 0

0 0 1 0

1
A
9>>=
>>;Tc D

0
B@
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1
CA (64)

and the inverse similarity transformation yields the matrix operator

TD

0
BBBBBB@

.��1/u�uC2ck�u
2c�

� .��1/uCkxc
c�

�
.��1/vCkyc

c�
.��1/
c�

2c2�.��1/u�u
2c2

.��1/u

c2
.��1/v

c2
� .��1/

c2

.kxv�kyu/
�

ky
�

�kx
�

0

.��1/u�u�2ck�u
2c�

kxc�.��1/u
c�

kyc�.��1/v

c�
.��1/
c�

1
CCCCCCA (65)

which, in turn, leads to a single outflow boundary condition

ıQ4 D�



ck � u
.� � 1/

C
u � u
2

�
ıQ1C



ckx

.� � 1/
C u

�
ıQ2C



cky

.� � 1/
C v

�
ıQ3 (66)

Surprisingly, the preceding expression is not entirely dissimilar to Equation (49), although it does
have extra terms for its coefficients. In any case, the same remark that was made regarding (60) is in
order here. That is, owing to its differences, Equation (66) must be associated with flow boundary
conditions other than the fixed pressure from Equation (48).

The adjoint outflow boundary conditions, in turn, are given in characteristic form by [31]

T�c D

0
B@

0 0 0 �4
�1 0 0 0

0 �2 0 0

0 0 �3 0

1
CA
8̂̂<
ˆ̂:

B�c D

0
@ �1 0 0 0

0 �2 0 0

0 0 �3 0

1
A

C�c D . 0 0 0 ��4 /

(67)

which leads to the corresponding operator T�,

T� D

0
BBBBBB@

�.k�u�c/
2c

�.u�ckx/.k�u�c/
2c

�.v�cky/.k�u�c/
2c

�.k�u�c/
2

�
c

.��1/
C u�u

2c
� k � u

�
cC k � u u .cC k � u/ v .cC k � u/ 1

2
u � u .cC k � u/

0 ky�k � u �kx�k � u �
�
kyu� kxv

�
k � u

�k�u
2c

�.ckxCu/k�u
2c

�.ckyCv/k�u
2c

�k�u
2

�
c

.��1/
C u�u

2c
C k � u

�

1
CCCCCCA (68)

and the adjoint boundary conditions:8̂̂̂
<̂
ˆ̂̂̂:
 1 D

�
ck�u
.��1/

C u�u
2

�
 4

 2 D�
�
ckx
.��1/

C u
�
 4

 3 D�
�
cky
.��1/

C v
�
 4

(69)

As expected, the preceding set differs considerably from Equation (51). Besides, it is strictly
associated with its linearized counterpart (66) and the corresponding flow boundary condition.
Hence, it is not connected with Equation (48).
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5.3. Adjoint gradient

The original expression for the adjoint gradient in reduced form comes from Equation (19), and it
amounts to the last two surface integrals,

ıI D

Z
Bw

‰˛

h
ı
�
Jˇ2i 0

�
f i
0

˛ CC
2
˛ˇ ıQ

�
ˇ

i
n2d� C

Z
Bw

²
gı

ˇ̌̌
ˇdS 0d�

ˇ̌̌
ˇC p �‰.i 0C1/ı �Jˇ2i 0�n2�

³
d� (70)

The covariant component n2 of the normal vector in transformed space is given in Equation (34),
whereas the metric variation terms can be easily derived from Equation (35), with the aid of
the aforementioned inversion relations �,x D �y,�=J and �,y D x,�=J , and on recalling that
g11 D x

2
,� C y

2
,� ,

ı
�
Jˇ2i 0

�
n2 D

J
p
g11

®
ı .J�,x/ , ı

�
J�,y

�¯
D

J
p
g11

®
�ı
�
y,�

�
, ı
�
x,�

�¯
(71)

ı

ˇ̌̌
ˇdS 0d�

ˇ̌̌
ˇD ı �pg11�D x,�ı

�
x,�

�
C y,�ı

�
y,�

�
p
g11

(72)

From Equation (35), one can also obtain the relation d� D dS 0=
p
g11. Then, on substituting

these results for their counterparts in Equation (70), it yields the final form of the sensitivity
gradient integral:

ıI D

Z
Bw

h�
 ˛f

20

˛ C 3pC gx,�

�
ı
�
x,�

�
�
�
 ˛f

10

˛ C 2p � gy,�

�
ı
�
y,�

�i dS 0
g11
C

C

Z
Bw

 ˛

�
x,�A

20

˛ˇ � y,�A
10

˛ˇ

�
ıQ�ˇ

dS 0

g11
(73)

All of the metric terms in Equation (73) can be evaluated on the contour of the body solely on the
basis of its parametric representation (32). Therefore, it proves the point that was made at the end
of Section 3.1 to the effect that the adjoint and the optimization problems can both be solved in the
physical space entirely. The mapping has fulfilled its objective in the derivation, making it simpler,
and it may be dispensed with then. Under these conditions, one may simply make use of Cartesian
coordinates and unstructured meshes, thus affording greater flexibility with regard to geometries.
This is the approach that has been adopted in the reminder of the paper.

6. RESULTS

In order to validate the previous treatment of adjoint boundary conditions, it would be instructive
to pursue a two-steps procedure. First, the idea is to check whether it leads to correct results in
a complete application. It may well be an inverse design application, where the target geometry
is known beforehand, as it was carried out in a previous paper [38]. Then, one ought to compare
adjoint solutions that this treatment yields to those that are obtained under homogeneous boundary
conditions at the far field. An usual definition of objective functional for inverse design applications
is given by the mean square error of the actual pressure distribution p with respect to a target
distribution pd ,

I D
1

2

Z
Bw

.p � pd /
2 ds (74)

The target pressure distribution pd in the validation test has been obtained from the flow solution
around a known geometry on making use of the same flow solver and geometry representation.
The procedure ensures that not only is the target realizable but it is also attainable within the
current framework.
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Flow and adjoint solutions alike were computed on unstructured meshes with triangular elements.
The far-field boundary is placed over 50 chord lengths away from the airfoil surface. All
geometries have been represented by the class-shape function transformation parameterization
[47, 48]. Numerical simulations for the adjoint and flow equations have been run with a cell-
centered finite volume method by using the second-order five-step Runge–Kutta time-stepping
scheme [49].

For simplicity, the steepest descent method was adopted as the optimization procedure. The
inverse design loop consists of the following sequence: mesh generation for a given geometry,
flow simulation, adjoint solution, evaluation of sensitivity gradient and gradient-based changes to
geometry. The cycles are repeated until a local extremum of (74) is reached within a prescribed
accuracy level.

A test case is presented next, where the initial geometry is a RAE 2822 at M1 D 0.75 and an
angle of attack of ˛ D 0ı. The target pd corresponds to that of a NACA 0012 under the same flow
conditions. Figure 1 shows the initial and final geometries with corresponding pressure distributions.

As the previous results show, the characteristics-based boundary conditions work properly, for
the target geometry has been successfully recovered in the process: the differences between them
remain below 3.5 � 10�3. As was discussed previously, the sensitivity gradient computation here
makes use of the reduced expression from Equation (73). Therefore, it only requires the adjoint
solution on the airfoil contour. Figures 2 and 3 depict these solutions, as they appear at the end of
the first cycle, for the upper and lower sides of the airfoil, respectively. The right side of each fig-
ure shows characteristics-based results, whereas the left side depicts results from the homogeneous
boundary conditions in each case.
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Figure 1. Mach 0.75 and ˛ D 0ı. Left, geometries. Right, Cp . Red dash lines, original curves; green dotted
lines, final results; blue solid lines, target profiles; black dash–dot, C�p .
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Figure 2. Airfoil upper side adjoint solution. Left, homogeneous boundary conditions. Right,
characteristics-based boundary conditions. Red solid line,  1; black dashed line,  2; blue dotted line,  3;

green dash–dot,  4.
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Figure 3. Airfoil lower side adjoint solution. Left, homogeneous boundary conditions. Right, characteristics-
based boundary conditions. Red solid line,  1; black dashed line,  2; blue dotted line,  3; green

dash–dot,  4.

The solutions have essentially the same character over the whole airfoil contour. They even share
the same discontinuity at the trailing edge. However, there is a small, yet significant, difference
between them. In all points other than in the immediate neighborhood of the singularity, the differ-
ence remains below 8�10�3. That value is higher than the maximum residue of the adjoint solutions
.7�10�5/, hence its significance. On the other hand, that value is apparently too small to cause any
noticeable differences between the two approaches in the estimates of the sensitivity gradient. In
any case, the evidence suggests that further tests be devised to ascertain the influence the distance
from the far-field boundary has on the adjoint solution at the contour.

Quite a different outcome is obtained for internal flows, where one does not usually have the
freedom to choose the position of permeable boundaries at will. In most cases, the proximity of those
boundaries makes the full characteristics approach a necessity. In order to illustrate the problem,
we have computed adjoint solutions for an internal flow case by imposing homogenous and full
characteristics conditions on the inflow and outflow boundaries. The same objective functional (74)
was used, but the sole purpose was to solve the adjoint equations. After all, the reduced gradient
form would not suit this case.

The set-up for the test is presented in Figure 4. The left side depicts initial and target geometries,
while the respective Cp distributions are shown on the right side—the latter are based on the nozzle
length. Figure 5 presents the adjoint solutions at the nozzle surface. The results for homogeneous
boundary conditions are on the left side, whereas those on the right side represent the full
characteristics approach.
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Figure 4. Mach 0.7. Left, geometries. Right, Cp . Red dashed line, original curves; blue solid line, target
profiles; black dash–dot, C�p .
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Figure 5. Left, homogeneous boundary conditions. Right, characteristics-based boundary conditions. Red
solid line,  1; black dashed line,  2; blue dotted line,  3; green dash–dot,  4.

As can be seen, the differences between the solutions are quite significant, even in terms of general
character. Moreover, the homogenous conditions have led to discontinuities at the boundaries, which
could only be negotiated by the solver at the cost of a substantial increase in artificial dissipation.

7. CONCLUSIONS

The primary purpose of this work has been to investigate the adjoint boundary problem on the basis
of its similarity to the corresponding flow problem. The idea was to make use of that similarity
and of the particular form of the bilinear concomitant to ensure the well-posedness of the adjoint
equations. To that end, two aspects of the problem have been considered at length:

First, both Euler and their adjoint equations are hyperbolic, and their characteristic velocities
have the same magnitudes but opposite signs. These properties lend the primal and dual Riemann
problems a complementary character, which has been thoroughly investigated by Giles and Pierce
in their seminal work on the topic. In fact, that complementarity is what enables one to make the
adjoint equations well posed while also eliminating all physical variations from the augmented
variational problem.

The second aspect specifically concerns the bilinear concomitant. It is well known that its particu-
lar form can be seen as an inner product between physical variations and adjoint variables, which is
computed at the boundaries of the flow domain. The proposed approach combines this interpretation
with the idea that flow boundary conditions constrain physical variations to a locus of realizability
in state space. Hence, the need to drive the bilinear concomitant to zero is tantamount to requiring
that the vector of adjoint variables be orthogonal to all realizable variations. The rationale behind
the procedure is analogous to the principle of virtual work in that, as a constraint force, the adjoint
vector must be normal to all feasible displacements of the system. The expressions this procedure
yields have been termed compatibility conditions.

The algebra has been shown to yield a balance between the compatibility conditions and the
corresponding number of domain incoming characteristics. Therefore, one is able to put together
a complete set of adjoint Riemann equations for each permeable boundary. The end result is a set
of boundary conditions that is entirely similar to those that render the Euler equations well posed.
The solid wall is the sole exception, because it entails only one domain incoming characteristic for
each problem, flow and adjoint. As Giles and Pierce point out, the flux Jacobian matrix associated
with the normal direction to the wall becomes singular. Hence, the adjoint Riemann set becomes
indeterminate, and one must rely on the numerical extrapolation schemes.

A series of validation tests was devised to verify the proposed approach. For external flows,
the results show good agreement with the conventional homogeneous far-field conditions for the
adjoint problem. Nonetheless, there are small, yet apparently significant, differences between the
two. Further tests are required to ascertain the influence the position of the far-field boundary
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exerts on the overall solution. As for internal flows, test results have shown the full-characteristics
conditions to yield smooth solutions in the neighborhood of permeable boundaries, as opposed to
the discontinuities that result from the homogeneous ones. That piece of evidence, along with an
analogy with the flow physics, seems to indicate that the latter treatment of the boundary problem
is inappropriate.

Given its central role in the theory, it should be stressed that the bilinear concomitant effectively
connects flow and adjoint boundary problems. As the name implies, it consists of bilinear products
between physical variations and adjoint variables, where the former are constrained by flow physics.
Hence, the need to drive it to zero, while preserving well-posedness, does limit the possibilities of
boundary conditions one can impose on the adjoint equations. The connection also implies that there
must be a precise correspondence between flow and adjoint solutions in terms of the boundary con-
ditions they meet, for that is the only means of ensuring that the bilinear concomitant vanishes for
arbitrary physical variations.

The only exception to the rule seems to be the imposition of homogeneous adjoint boundary
conditions at the far field, for obvious reasons. Although they may represent an over-specification on
purely mathematical grounds, they are often a perfectly valid approximation to the characteristics-
based formulation. Such appears to be the case with so many applications in external flows, where
that boundary is suitably placed far enough from the body as to ensure all flow-field perturbations
die away before they ever reach it.
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