

Ross School of Business at the University of Michigan

Independent Study Project Report

TERM : Fall 1996

COURSE : CIS 750

PROFESSOR : David Blair

STUDENT : Suresh Jayaraman

TITLE : Object Relational Database Management Systems and Applications

in Document Retrieval

THE UNIVERSITY OF MICHIGAN
SCHOOL OF BUSINESS

Object Relational Data Base Management Systems
and Applications in Document Retrieval

by

Suresh Jayaraman

A research paper submitted in fulfillment of the requirements for three credits,
GRADUATE INDEPENDENT RESEARCH PROJECT Fall Term 1996

Professor David Blair, Faculty Supervisor.

1

2

Object Relational Data Base Management Systems
and Applications in Document Retrieval

Table of Contents

1. Executive Summary 4

2. Evolution of DBMS architectures 5

2.1. Traditional File Management Systems 5

2.2. Classical Data Base Management Systems 7

3. Object-Oriented Technology 10

4. The Evolution of ODBMS 12

4.1. The ODBMS Market 13

4.2. Limitations of ODBMS 14

4.3. Approaches to ORDBMS 15
4.3.1. Object~to~Relational Mapping 15

4.3.2. Hybrid Databases (Universal Servers) 16

5. A Framework for Classifying DBMS 17

6. The Business Case for ORDBMS 24

7. Business Benefits of ORDBMS 26

8. ORDBMS for Text and Document Retrieval 27

8.1. Text Retrieval with Informix ORDBMS 27

8.2. Sample Text Searches 29

9. Picking the Right Universal Server 32

10. Conclusions 33

11. References 34

3

1. Executive Summary

So elegant is the relational database management system (RDBMS) model that it has
survived for 20 years, focusing on simple types of data: integers, scientific floating point,
character strings, date/time and money. However, the business world is not nearly as
simplistic as it once was. The World Wide Web is driving consumer demand for richer
style of interaction. Gone are the days of command-line interfaces. Users want color,
sound, animation, intuitive navigation. This has pushed the RDBMS model beyond its
20-year-old design capabilities. The need for data management solutions accessing
complex data - in data warehouses, web pages and documents or competitive-
advantage applications - is exploding. And if RDBMSs have one drawback, it is that
they do not handle highly complex information well.

During the past decade, object-oriented technology has found its way into
programming languages, user interfaces, databases, operating systems, expert systems,
etc. Products labeled as object-oriented database systems have been on the market for
several years and claim to handle complex information much better than traditional
RDBMS. Due to vast amount of investment in RDBMS technology and the difficulty in
adopting the object paradigm, object databases have lagged relational databases in
acceptance considerably. The worldwide market for object databases is 100 times
smaller than that for relational databases.

) The RDBMS vendors cannot, however, ignore the tremendous demand for managing
complex information. The challenge facing RDBMSs is a key feature known as
extensibility. The extension of the existing relational products or models is referred to
as the Object-Relational (OR) or extended-relational (ER) DBMS. Looking to guard their
flanks, they are incorporating pieces of object technology into their own engines in the
form of Universal Servers. The Universal Server will be one of the most significant
advances in the RDBMS technology over the next decade 7.

This study explores this revolution in the database management software industry and
the related benefits to Information Systems (IS) . It also discusses various business
applications that will benefit from the new technology, including document/text
management. This report should help an IS manager understand and evaluate the
ORDBMS technology and products and their suitability for IS solutions.

4

2. Evolution of DBMS architectures 18

A database system is essentially nothing more than a computerized record-keeping
system. The database itself can be regarded as a kind of electronic filing cabinet; in
other words, it is a repository for a collection of computerized data files allowing the
users to retrieve and maintain information in various forms.

DBMS have evolved from a simple file based approach to object oriented approach in
the last three decades. A key notion of DBMS is to provide data structures that model
real world relationships. The data structures that provide the relationships fall into the
following models:

1. Traditional File Management Systems
2. Classical Data Base Management Systems

• Hierarchical
• Network (CODASYL)
• Relational

3. Object-Oriented
4. Extended/Object-Relational (in the future)

2.1. Traditional File Management Systems 9

This is the simplest structure for a DBMS system. This system uses a sequential
or a random access file and allows the reading or writing of one record at a time.
Random (direct or indexed) access increases performance over sequential
processing by providing access to only those records that are required to
accomplish a specific objective.

To illustrate how these files might work, Figure 1 shows an employee file
implemented under sequential, direct access, and indexed file structures. Note
the three-digit employee id (emp_id) field in each example.

In studying the example, note also the effect of not having an employee with an
id of "102". In Figure 1(a), the file is sorted by emp_id, and the employee record
for 102 is simply missing. Figure 1(b), however, is based on a direct access
scheme that equates the emp_id to the record number to be accessed. Therefore,
record number 102 exists in the file, but is unused at this time as indicated by
having a "zero" value stored in the emp_id field.

Finally, Figure 1(c) shows these same data stored in an indexed file structure.
Note how the system maintains a key for each record in an index component of
the file, which is linked to the corresponding data component. Here, as in a
sequential file, only records for active employees appear.

5

Such forms of file structures have several important things in common. First, all
records within a given file "look alike"; that is , the same fields exist at the same
location or offset within each record. In addition, the same fields exist at the
same location or offset within each record.

As a result even minor changes in record layout require changes to every
application program that accesses the file. In addition, relationships across files
must be embedded within application logic. The advantages and disadvantages
of file management systems are summarized in Figure 2.

Figure 2

Traditional File Management Systems

Advantages
• Easy to create and simple to use
• Require minimal overhead to access and use

Disadvantages
• Changes in structure or content require simultaneous

changes to all application programs
• Relationships across files must be embedded within

application logic
• Encourage the proliferation of redundant data

In addition, the file descriptions are explicitly declared in each application
program. In each case, the program must issue I / O commands directly to the
appropriate system access method for all read/write requests, using the required
format for the command desired.

2.2. Classical Data Base Management Systems 9

The three classical types of data base management systems are hierarchical,
network, and relational. As illustrated in Figure 3(a), a hierarchical system has
the general shape or appearance of an organizational chart. A node on the chart,
representing a particular record type, is subordinate to only one record at the
next highest level just as, on an organizational chart, an employee reports to only
one boss. This kind of structure is often referred to as an "inverted tree", with
the top-most record referred to as the "root".

Figure 3

The Three Types of Classical Data Base Systems

(b) A Network System

(c) A Relational System

Denotes
Relationship
Based on
Data Content

7

As shown in Figure 3(b), a network structure is somewhat similar, but has one
major difference. Subordinate record types, depicted by arrows on the network
diagram, may participate in as many subordinate relationships as desired.
Therefore, a much more complex diagram may be used to represent the structure
of the data base. Networks provide more flexibility than a simple hierarchical
system in the data relationship that may be maintained.

Finally, a relational data base consists of a collection of simple files or tables,
each of which has no structural or physical connection such as those typically
used in hierarchical or network systems, as shown in Figure 3(c). The various
records possess the interrelationships as depicted by a network-like diagram,
but these relationships are based on the data content of the records involved, not
by pointer chains or other types of structural connection techniques.

Figure 4 illustrates how a data base containing employee, weekly deduction, and
payroll summary records might look under each of these types of data base
management systems.

Figure 4

Hierarchical, Network, and Relational Representations
of an Employee Payroll Data Base

(b) Network

Weekly Deduction Payroll Summary

8

In each case, ignoring internal limits of data set size for the sake of discussion,
there can be as many occurrences of any record type as needed. In each case, as
records are or added or deleted, the DBMS maintains any relationships between
and across these records.

The relative advantages and disadvantages of each system are shown in Table 1.

Table 1

DBMS Tradeoff Matrix1

[DBMS

Hierarchical

Network

Relational

Example

IBM's IMS

Computer
Associates'
IDMS

DB2
Informix
Oracle
Sybase

Advantages

• Well established technology
• Fast response times

• Can model more complex
structures than hierarchical (ex.
"many-to-many" relations)

• Can answer more complex
queries

• Relational theory provides more
formal basis for design

• No practical limit for data
structure complexity

• Data structures are dynamic
rather than static

• Supports ad hoc queries (Implicit
relations)

• Build on known user ability (to
read tables)

• Design choice for new
Information Systems

• New versions take advantage of
parallel hardware architectures

Disadvantages

• Not all data
structures are
hierarchical

• Cannot model
"many-to-many"
relations

• Hard to change
database design

• Access programs can
be very complex

• All query types must
be known before
design

• Generally slower than
hierarchical or
network systems for
predictable data
structures

• Not suitable for
managing complex
data (text, video,
time-series etc.)

9

3. Object-Oriented Technology 3, 6

Relational databases store data in tables that have to be joined together to answer
complex queries. Object oriented database management systems (ODBMS) link
complicated data structures as more easily accessible objects. Object-based software
also can handle multimedia data such as video and audio. Relational databases
typically reduce everything to numbers and characters. To understand the object-
oriented approach let us look at a few key concepts.

Objects combine
procedures and data

Objects provide high
level data structures

Objects

The basic unit organization in the object-oriented approach is
the object. An object is a software "packet" containing a
collection of related data elements and a set of procedures,
called methods, for operating on these elements. The data
within an object can be accessed only by the object's methods,
which handle all the routine tasks of reporting current values,
storing new values, or performing calculations. This
arrangement, called encapsulation, protects data from
corruption by other objects and hides low-level
implementation details from the rest of the system.

Once defined, new types of objects can be used as basic data
types within a program in the same way as the built-in data
types that handle numbers, dates, and other elementary kinds
of information. This ability to create new, high-level data
structures on demand and use them in subsequent
programming is called data abstraction. Data abstraction is
central to the object-oriented approach because it allows
programmers to think in terms of the problems they are
solving rather than the data types of the language.

Objects communicate
through messages

Messages

Objects communicate with one another through messages. A
message is simply the name of a receiving object together with
the name of one of its methods. A message is a request for the
receiving object to carry out the indicated methods and return
the result of that action.

10

different objects

The same message can be Any number of objects can include the same method, and each
handled differently by can implement it according to its own unique needs. That

allows any given message to be sent to many different objects
without worrying about how the message will be handled or
even knowing what kind of object will receive it. The ability to
hide implementation details behind a common message
interface is known as polymorphism. Polymorphism makes
the object-oriented approach very flexible because it allows
new kinds of objects to be added to a completed system
without rewriting existing procedures.

Classes

Classes describe the
properties of objects

This is an efficient
arrangement

Classes can inherit
characteristics

Class hierarchies allow
classes to be defined
efficiently

Object-oriented programming supports the repeated use of
common object types through the use of classes. A class is a
general prototype which describes the characteristics of similar
objects. The objects belonging to a particular class are said to
be instances of that class.

Classes allow objects to be defined in a very efficient manner.
The methods and variables for a class are defined only once, in
the class definition, without repeating them in every instance
of that class. The instances contain only the actual values of
the variables.

Although it is possible to define classes independently of each
other, classes are usually defined as special cases, or
subclasses, of each other. Through a process called
inheritance, all the subclasses for a given class can make use of
the methods and variables of that class. Inheritance increases
the efficiency of the class mechanism even further: behavior
that's characteristic of larger groups of objects is programmed
only once, in the definition of the higher-level class, and the
subclasses merely add to or modify that behavior as required
for their special cases.

Subclasses may be nested to any degree, and inheritance will
accumulate down through all the levels. The resulting treelike
structure is known as class hierarchy. Some languages allow a
class to inherit properties from more than one superclass, a
feature known as multiple inheritance. This feature
complicates matters by creating multiple overlapping
hierarchies, but it permits much more flexible relationships.

11

4. The Evolution of ODBMS 2

Object databases began arriving in the late 1980s to compete against relational
databases. Object databases could store complex data types. In 1989, a group of
representatives from ODBMS vendors produced 'The Object-Oriented Database System
Manifesto/11 This paper attempted to define exactly what constituted (or should
constitute) an object database. The paper was quickly followed by a response from a
different set of database thinkers, led by Michael Stonebraker, entitled "The Third-
Generation Database Manifesto 12" This paper formed much of the intellectual basis for
the ERDBMS/ORDBMS efforts. The manifestos capture academic positions that were
taken in the mid-to-late 1980s by researchers seeking to progress from the relational
model.

Table 2

Comparison of Object and Object/Extended-Relational Manifestos

OO Database System Manifesto

Support for complex objects

Unique object identity

Support for encapsulation

Support for class structure

Support for inheritance

Support for polymorphism

Computational completeness

Support for extensibility

1 ORDBMS/ERDBMS Manifesto 1

Support for complex objects (array,
sequence, record, set, union as types)

Object identity only if there is no unique
key

Support for encapsulation

Support for class structure

Support for inheritance

No specific reference

Support for SQL

Support for extensibility

In their time, the two manifestos (and other papers) attracted attention and framed the
debate about what a database should be fundamentally about. Table 2 compares some
important qualities highlighted by the two manifestos. What is startling is not so much
the differences, but the similarities. Support for complex objects, encapsulation, class
structure, inheritance, and extensibility are not in dispute. Thus, the basic set of ideas
presented by the ODBMS side is not in dispute - only how to achieve them in a
database.

12

Other factors are perhaps more important in separating the two approaches. Most object
databases have become persistence mechanisms for applications built with object-
oriented languages. They have close ties to Smalltalk, C++, and now Sim Microsystems'
Java. The ODBMS products support access to the objects and moving from one object to
another by traversing pointers or other references. Therefore, object databases are good
at storing part /subpart hierarchies. Objects will typically be stored inside container
classes (such as sets, lists, and bags) that can, of course, be nested.

Customer such as Sprint Corp., Lehmen Brothers and Time, Inc. are using
ODBMS technology for specialized applications. Sprint Corp. is testing the
object waters by off-loading a small piece of its commercial long-distance
customer service application from a mainframe database to Versanti software.
Wanting to off-load queries on stock trades from its main database servers,
Lehmen Brothers is deploying small object databases on individual PCs as local
caches for trading records. Time Inc/s New Media unit uses Object Design's
ObjectStore database for personalized news service. Major ODBMS vendors
and their target markets are shown in Table 3.

13

4.2. Limitations of ODBMS 13

Current ODBMS products lack the features that users of database systems have
become accustomed to, and therefore, have come to expect. The missing features
include a full non-procedural query language, automatic query optimization and
processing, automatic concurrency control, authorization, dynamic schema
changes, and parameterized performance tuning.

• Most of the OODBs suffer from the lack of query facilities. Nested
subqueries, set queries (union, intersection, difference), aggregation
functions and group by, and even joins of multiple classes, etc. These
facilities are all fully supported by RDBMSs. Though these products allow
users to create a flexible database schema and populate the database with
many instances, they provide neither a powerful enough means of retrieving
objects from the database nor a means to share objects with other users in a
controlled way.

• Some of the current OODBs require the user to explicitly set and release
locks. Relational Data Bases automatically set and release locks in processing
query and update statements issued by users.

• Most OODBs do not support authorization. RDBMSs support
authorization; that is, they allow users to either grant and revoke privileges
to read or change the data they created to other users or change the
definition of the relations they created to other users.

® Most of the current OODBs allow new classes to be added to the database,
but they do not allow any additional changes to the database schema, such
as adding a new attribute or method to a class, adding or dropping a new
superclass to a class, or dropping a class. Using the ALTER command,

14

RDBMSs allow the user to dynamically change the database schema to add
or drop a column in a relation or to drop a relation.

• Most of the OODBs offer a limited capability for parameterized
performance tuning. Relational Data Bases allow the installation to tune
system performance by providing a large number of parameters that can be
set by the system administrator. The parameters include the number of
memory buffers, the amount of free space reserved per data page for future
insertions of data, and so forth.

Due to the limitations mentioned above, most of the relational and object-
oriented database system products will require major enhancements.
Vendors such as Informix (Universal Server) and Oracle (Universal Server,
Oracle 8) that reengineer and rewrite the products from scratch will be in a
leadership position.

4.3. Approaches to ORDBMS

Because relational databases are primarily content-addressable, you don't need
to know how to find a record in a database, only how to describe it. However,
using a traditional relational database, you will, for example, have difficulty
selecting a set of photographs depicting a sunset taken in a given town. A
relational database has no easy means of accessing a photograph's content even
though it can record the name of the town. The O/ERDBMS products are
designed to bring relational's content-addressibility to complex objects—as well
as, usually, some form of pointer-chasing. A number of ODBMS products allow
some form of content-addressibility: The key difference with an O/ERDBMS is
that it expresses content-addressibility as an extension to SQL.

4.3.1. Object-to-Relational Mapping10

Object-to-Relational mapping is an approach pursued by vendors such
as Persistence Software, Enterprise Object Framework from NeXT
computer, and Dbtools.h++ from Rogue Wave Software. Object-to-
relational mapping mechanisms let you link the properties of a relational
database. (See Figure 6). This displays the relational database as
persistent objects inside the development environment. Usually this
means making a connection between a data element that exists in an
object and a data element that exists in a relational database.

Usually this means making a connection between a data element that
exists in an object and a data element that exists in a relational database.

15

Figure 6

Object-to-Relational Mapping Mechanism
Relational Tables

You can map a single object, directly to a single table, several tables to an
object, or link several objects to a single table. Once the mapping process
is complete, any data modified in a mapped object will automatically
modify any linked tabs or tables.

At the heart of this mechanism is the relational wrapper, the layer that
sits between the objects and the database. The relational wrapper detects
a change in the contents of an object and automatically generates SQL to
make the changes in the linked relational database. At the same time it
also detects changes to the relational database and moves that
information back to both the developer and the end users.

Additional layers in the object-to-relational wrapper approach has
performance impact, especially in database intensive On Line
Transaction Processing (OLTP) applications. This makes, for example,
many Smalltalk tools that use relational databases less desirable in
environments for which performance is a critical success factor.

43.2 . Hybrid Databases (Universal Servers)

The big relational database vendors such as Informix, Oracle, and Sybase
have caught on to the object trend. There is a movement afoot among
these vendors to build OO database capabilities into traditional relational
databases. Such databases are known as hybrid databases or Universal

16

Client Application

Servers. Hybrid databases are sold by a few small companies such as
Illustra (now owned by Informix), OmniScience, and UniSQL. These
databases store information using OO or relational models, and they let
developers access the data using either method.

Hybrid databases can appear as both relational and OO databases,
depending on the needs of the application. For example, OO databases
are naturally better at storing complex data structures and binary
information such as images, audio files, Web content, or even videos. To
store the same type of content within a relational database, one may have
to rely on the database's ability to handle binary large objects (BLOBs).
In the relational world, BLOBs are opaque, meaning that information
inside the BLOB is invisible to the database engine. OO databases solve
this problem.

ORDBMSs such as Informix's Illustra attempts to offer the best of both
worlds. It supports OO management of rich (complex) data types, but at
the same time provides an efficient query language based on extensions
to industry-standard SQL. Its support for inheritance speeds application
development. Object extensions, called DataBlade modules, plug
intelligence into Illustra for specific kinds of data, extending the SQL
language with tailor-made functions and allowing Illustra to manage the
data required by specific applications. The DataBlade modules can even
include new access methods such as D-Tree for text retrieval.

5. A Framework for Classifying DBMS 5

The previous sections discussed the evolution of data base management systems. They
do not, however, put the DBMS from both technical and marketplace perspectives.
Stonebraker5 introduced a framework to help classify business applications that require
DBMS. He presents a classification of the applications that require DBMS technology to
show where Relational DBMS, Object-oriented DBMS and Object-Relational DBMS fit.
The purpose is to indicate the kinds of problems each kind of DBMS solves. He
suggests that "one size does not fit all"; i.e. there is no DBMS that solves all the
applications we encounter.

The classification scheme makes use of the two by two matrix indicated in Figure 7. It
shows a horizontal axis with very simple data to the left and very complex data to the
right. In general, the complexity of the data that an application must contend with can
vary between these two extremes in a continuous fashion.

17

Figure 7

A Classification of DBMS Applications

Simple Data Complex Data

However, for simplicity, it assumes there are only two discrete possibilities, namely
simple data and complex data. Similarly, on the vertical axis differentiates whether the
application requires a query capability. This can vary between "never" and "always".
Again, there is a continuum between the two extremes; however, for simplicity it
assumes there are only two discrete possibilities. These are respectively "query" and "no
query".

A user can examine an application and then place it in one of the four boxes in Figure 7
depending on its characteristics. In order to illustrate this classification process, an
application in each of these four boxes is explored. In the process of discussing each
application, the requirements that each has of a DBMS is considered and a natural
choice of data manager for each of the four applications will be examined.

Lower Left Corner

Consider a standard text processing system such as Word for
Windows, Framemaker, Word Perfect, vi, or emacs. All
allow the user to open a file by name and manipulate its
contents. At intervals, the object is saved to disk storage.
Finally, when the user is finished he can close the file,
thereby causing the virtual memory copy to be stored back to
the file system

The only query made by a text editor is "get file", and the only update is "put file". As
such, this qualifies as a "no query" application, and a text editor has no use for SQL. In
addition, a text editor is satisfied with the data model presented by the file system,
namely as an arbitrary length sequence of characters. As such, this is a "no query —
simple data" application and fits in the lower left hand corner of our two by two matrix.

Simple Complex
Data Data

18

The bottom line is simple. If you have an application in the lower left hand corner of
Figure 7, then you should deploy it on top of the file system provided with your
computer.

19

control flow logic. Such tool kits are called fourth generation languages (4GL).
Example 4GL include Powerbuilder from Sybase, Windows/4GL from Computer
Associates, or SQL-forms from Oracle.

Performance: Much of the business data processing marketplace entails so-called
transaction processing. Here, many simultaneous users submit requests for DBMS
services from client terminals or PCs. This has led to the notion of two phase locking
which ensures so-called serializiability. In addition, there is an absolute requirement to
never lose the user's data, regardless of what kind of failure might have occurred.
Together, these requirements provide transaction management; i.e. user queries and
updates are grouped into units of work called transactions. Each transaction is atomic
(i.e. it either happens completely or not at all), serializable (i.e. appears to have
happened before or after all other parallel transactions) and durable (once committed,
its effect can never be lost).

Security: Since users put sensitive data, such as salaries, into business data processing
data bases, there is a stringent requirement for DBMS security.

Business data processing is a large and demanding market. Vendors have their hands
full with the following kinds of tasks:

• run well on shared memory multiprocessors
• interface to every transaction monitor under the sun
• run on every hardware platform known to man
• provide a gateway to all the other vendor's DBMS
• provide parallel execution of user queries
• solve the "32 bit barrier", i.e. run well on very large data bases
• provide "7 times 24", i.e. never require taking the database off-line for maintenance

As such, the Relational DBMS vendors have large development staffs busily improving
their products in all of these areas.

Lower Right Hand Corner

Consider a simple application which fits in the lower right
hand corner. Suppose the user is the facilities planner for a
company that has an "open floor plan", i.e. nobody gets an
office. Hence, all employees are arranged into cubicles, with
partitions separating them. In such a company, departments
grow and shrink and employees get hired and quit. Over
time, the arrangement of employees on the physical real
estate of the building becomes suboptimal, and a global
rearrangement of space is warranted.

This "garbage collection" of free space and concurrent rearrangement of employees is
our target application. The database for this application can be expressed in the
following SQL commands:

Simple Complex
Data Data

20

Upper Right Hand Corner

22

23

image to see if they have orange at the top. The net result of the query is the one desired
by the client.

Obviously, this application entails "query mostly" on complex data. As such, it is an
example of an upper right corner application. Such DBMS that support a dialect of SQL-
3, that include non-traditional tools, and which optimize for complex decision support
SQL-3 queries, are termed as Object-Relational (OR) or Extended-Relational (ER) DBMS.
They are relational in nature because they support SQL; they are object-oriented in
nature because they support complex data. In essence they are a marriage of the SQL
from the relational world and the modeling primitives from the object world. Vendors
of Object-Relational DBMS include Illustra, UNISQL, and Hewlett-Packard (with their
Odaptor for Allbase and more recently for Oracle).

6. The Business Case for ORDBMS 7

As explained above, there are three different kinds of DBMS, each with its own focus on
a particular segment of marketplace. These segments require very different query
languages and tools, and are optimized with different kinds of engine enhancements.
Moreover, the requirements for security differ among the segments. In effect, each kind
of engine has carefully "scoped out" a segment of the marketplace and then optimized
for that segment.

In summary, classify your problem into one of the four quadrants, and then use a DBMS
optimized for the quadrant. This advice is summarized in Figure 8.

Figure 8

A Classification of DBMS Applications

Further examination of the above classification reveals relative market share of each of
the segments. The relational market is about $8 billion per year, while the object-
oriented database market is a factor of 100 smaller. Stonebraker 5 believes that the
growth rate of both markets is substantial, and expects their relative sizes in 10 years to
approximately preserve the factor of 100 difference, as illustrated in Figure 9. Figure 9

24

also shows the expected size of the object-relational market is 50% larger than the
relational market by the year 2005. He cites two forces that will cause the object-
relational market to dominate, generating the "next great wave":

Figure 9

Relative Size of DBMS Markets in Year 2005 5

Query

No
Query

Relational DBMS
100

File System

Object-Relational DBMS
150

Object-Oriented DBMS
1

Simple Data Complex Data

Force 1: Computerization of New Multimedia Applications

Users are computerizing complex data at an astonishing rate. As described above, the
DWR application is scanning data not currently in electronic form. It is estimated that
85% of the. world's useful information is not in electronic form. As significant amounts
of this data are captured, they will generate a huge market for primarily upper-right
quadrant applications. The World Wide Web, which was virtually non-existent three
years ago, is one example of an explosive new market that will be query oriented on
complex data. A second example where rapid growth is occurring is digital film. Over
the next decade conventional film may well disappear as a storage medium for data.
This will occur at the high end in medical devices, such as X-ray and ultrasound
systems, as well as low end home photography.

Force 2: Business Data Processing Applications

A growing need for decision support queries on complex data, hastened by rapidly
declining costs in hardware, will cause upper-left quadrant applications to move to the
upper-right. A typical application could be for an insurance company that wants to add
a diagram of each accident site, the scanned image of the police report, the picture of the
dented car etc. All of this new data can be easily handled by an ORDBMS.

25

7. Business Benefits of ORDBMS 7

Neither the network databases that first addressed the task of data management, nor the
relational databases that superseded them were properly able to manage data much
more complex than numeric and character data. However there is a wide variety of
data that software can usefully manipulate which falls far outside the limited range of
character and numeric data.

For example, "What are the 13-week average sales for our top five profitable products ?"
Business managers asking this simple question do not know that to implement it, an
RDBMS programmer must churn out and test several pages of SQL code to first
calculate the profitability of products, then rank them by profitability, and then
calculate the 13-week average sales. Nor do they realize that the query must be
reworked the following week. The 13-week average changes every week, but because
the RDBMS does not understand time series, moving averages or ranking, the
programmer must force-feed it with a program embodying these "complex data types/7

Table 4

Business Opportunities for ORDBMS (Universal Servers)

Source: Aberdeen Group, 1996

26

RDBMS vendors are planning to offer OO features in their future releases of products
termed "Universal Servers'7. The long-term benefits of Universal Servers will be
significant, since they will apply to commercial applications in nearly all industries. For
example, exploding bill-of-materials and calculating economic order quantities are
difficult tasks today with RDBMSs. But with Universal Servers with OO extensions,
they will be relatively straight forward, allowing more effective just-in-time resource
planning.

Enterprises will also be able to query their videotape records and onsite-camera video
feeds for particular patterns. For example, video camera monitoring an assembly line
can feed video data into an ORDBMS that can detect anomalies such as defects and
trigger corrective action, thus improving product quality at lower cost.

Table 4 lists examples of business opportunities that could benefit from ORDBMS (soon
to be offered as Universal Servers by leading RDBMS vendors). In the next section
Text and Document retrieval applications of ORDBMS are examined in depth.

8. ORDBMS for Text and Document Retrieval

An area where relational databases have not been able to make much of a contribution
to data storage is in the area of text. Text is by its nature contextual and cannot be easily
represented in relational tables. It is, in a strange way, multi-dimensional. A given
sentence within a paragraph can only be understood within the context of the
paragraph, similarly the paragraph falls within the context of the chapter and so forth.
However it is often useful to be able to skip from one part of a book to another. It is
often useful to be able to do proximity searches, such as retrieving all paragraphs where
the words 'database' and 'API' occur together. You could also wish to retrieve all
paragraphs where they occurred separately. This is, in effect, a kind of two dimensional
search.

Such capabilities have long been the domain of niche text database products and hence
there has been difficulty in integrating access to such information with access to other
data. Several RDBMS vendors have announced plans for supporting these capabilities.
Oracle has announced the Oracle7 Release 7.3 ConText Option which is an add-on to
their base RDBMS server. Informix has taken a different approach by including the
Verity topic®SEARCH DataBlade® with their Universal Server.

The rest of this section deals with Informix's approach to text searching capabilities.

8.1. Text Retrieval with Informix ORDBMS

Traditional text and document retrieval engines are based on proprietary
technology. Relational databases do offer clear advantages in ad hoc query
processing over nonrelational systems and ad hoc inquiry is essential to effective
information retrieval14. The Informix Universal Server combines the best of the

27

Create DataBlade Index. The following statement creates a Verity index on
the document column, enabling the use of text searching functions:

28

29

Select documents that include the word "image" ranked in the order of
decreasing relevance

Select list of words starting wi th "data" from the W e b DataBlade
document:

The above examples illustrate only the approach taken by an ORDBMS model for text
and document retrieval. There are many more capabilities offered by other third-party
text management DataBlade modules. Some of these are shown in Table 5.

Table 5

Text based DataBlade Comparisons

I Verity Text
DataBlade
from Verity Inc.

PLS Text DataBlade
j from Personal Library
1 Software Inc.

Excalibur Text
DataBlade
from Excalibur
Technologies
Corporation

• Search-term stemming
• Relevance ranking
• Natural language searching
• Proximity searching (phrases or words "near" each

other)
• Fuzzy searching
• Supports a wide range of formats (MS-Word,

PowerPoint, Excel, HTML, SGML)
• Add-on DataBlades to include functionality in Verity

topicSEARCH product

• Relevance ranking
• Concept searching
• Natural language searching
• Wildcard searches
• Proximity searching
• Supports a wide range of formats (as in Verity)

• Performs neural-net searching. This means you can
teach the engine that certain words or phrases have a
relevance by correcting the output of searches. This
enables the software to learn that seemingly unrelated
words or phrases have conceptual relevance.

• Phonetic searching (similar to fuzzy searching from
Verity and PLS)

• Supports wide variety of documents

31

9. Picking the Right Universal Server 7

The Aberdeen Group recommends several yardsticks for determining how well RDBMS
vendors have implemented Universal Server Technology. The two factors to consider
are 1) Degree of extensibility/flexibility and 2) Integration of Universal Server
technology with the main components of the core RDBMS engine. Table 6 provides a
checklist for the IS manager .

Table 6

The IS Buyer's Universal Server Checklist

Major Universal Server Players

With its acquisition of Illustra, Informix appears to be the leader in Universal Server
technology. Full integration between its scalable Informix-Online architecture with
Illustra DataBlade modules is scheduled for 4Q1996.

Oracle has folded its Video Server, ConText and Spatial Data options into Oracle 7.3,
their version of the Universal Server. Each component is a distinct database server. It
is neither fully integrated with Oracle7 nor highly extensible. For more extensive
integration and user-driven extensibility, customer will have to wait for the company's
"object" release, Oracle 8.0, in 1997.

32

IBM's DB2 Common Server (for OS/2 and Unix) offers functions to access parts of a
data type, as well as the ability to insert a data type too large for main memory into the
database. User defined datatypes and functions are supported through Relational
Database Extenders. These extenders will support fingerprint analysis and querying by
SQL of image content (color, shape or pattern).

Computer Associates7 dual-database strategy include CA-Ingres and Jasmine, an
OODBMS with a multimedia- and Internet-enabled toolset. CA has no plans to combine
the two or otherwise offer Universal Server functionality.

Neither Microsoft nor Sybase yet offer support for complex data types, although Sybase
has announced that, to allow independent software vendors to link snap-in complex
data types with SQL Server System 11, it will provide an Adaptive Server combined
with its ObjectConnect middleware.

10. Conclusions

What will move relational databases into the next millennium are the simplicity of the
relational model, the performance, and the number of existing systems that leverage the
services of relational database engines. Relational databases are easier to design and
understand than other database models such as the OO, hierarchical, and multi­
dimensional database models.

As the demand for OO databases rises and the popularity of RDBMS remains,
developers will continue to seek a quick fix via object-to-relational translation layers.
This method offers the benefits of object orientation to new systems while retaining the
information inside the legacy database. In the long term, the movement toward
relational and OO data mixing (a.k.a. ORDBMS) will occur at the back end in the form
of Universal Servers. Universal servers offer a choice as to how to present data to
application. These databases will support legacy applications using traditional
procedural and relational access methods, and they will support OO features at the
same time. Enterprises can gain strategic advantage by using this technology for deeper
data mining, better text and document management, multimedia and Internet and
Intranet architectures, and adding complex-mathematics and data manipulation
features to current customer-interface and back-office systems.

Long-term benefits, however, are likely to come from innovative functional or
vertical-industry applications. To succeed in these, users should start learning the ropes
in such areas as design, administration and scaling performance. IS managers should
choose a Universal Server wisely, target strategic opportunities proactively, and begin
planning and prototyping implementations.

33

11. References

1. David C. Blair, CIS-577 Class Notes 1996, University of Michigan Business School

2. Mike Norman, Robin Bloor, The 1996 Object/Relational Summit: Recommended Reading,

http://www.dbsummit.com/reading.htm

3. David A. Taylor, Object Oriented Technology, A Manager's Guide, Addison-Wesley Publishing

Company, 1990

4. The Web Changes Everything, Marketing Material, http://www.ilustra.com

5. Michael Stonebraker, Object-Relational DBMS - The Next Great Wave, Morgan Kaufmann

Publishers, Inc., 1996

6. Craig Stedman, Object Databases Lag, Computerworld, August 19,1996 pp. 43

7. Peter Kastner and Wayne T. Kernochan, Universal Servers - RDBMS Technology for the Next

Decade, Special Advertising Supplement, Aberdeen Group, August 19,1996

8. C. J. Date, An Introduction to Database Systems - Sixth Edition, Addison Wesley, 1995

9. Rex Hogan, A practical Guide to Data Base Design, Prentice-Hall, Inc., 1990

10. David S. Linthicum, Objects Meet Data, DBMS, September 1996

11. Atkinson, M., et al., 'The Object-Oriented Database Manifesto/ Proceedings of the First

International Conference on Deductive and Object-Oriented Databases. Kyoto, Japan, 1989.

New York: Elsevier Science, 1990

12. Stonebraker, M., et al., "Third-Generation Database System Manifesto/ ACM SIGMOD Record.

19(3), September 1990

13. Won Kim, Object-Relational Database Technology Whitepaper, UNISQL Corp.,

http://www.unisql.com/technology/papers/kim/whtpaper.html

14. David C. Blair, An Extended Relational Model, Information Processing & Management, Vol. 24,

No.3,1988

15. ILLUSTRA Verity Text Search DataBlade Module - User's Guide, Informix Software 1996

34

http://www.dbsummit.com/reading.htm
http://www.ilustra.com
http://www.unisql.com/technology/papers/kim/whtpaper.html

