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This paper describes a system for modeling human task-level intent through the use of 

Markov Decision Processes (MDPs).  To maintain safety and efficiency during physically-

proximal human-robot collaboration, it is necessary for both human and robot to 

communicate or otherwise deconflict physical actions.  Human-state aware robot intelligence 

is necessary to facilitate this.  However, physical action deconfliction without explicit 

communication requires a robot to estimate a human (or robotic) companion’s current 

action(s) and goal priorities, and then use this information to predict their intended future 

action sequence.  Models tailored to a particular human can also enable online human intent 

prediction.  We call the former a ‘simulated human’ model – one that is non-specific and 

generalized to statistical norms of human reaction obtained from human subject testing.  

The latter we call a ‘human matching’ model – one that attempts to produce the same output 

as a particular human subject, requiring online learning for improved accuracy.  We 

propose the creation of ‘simulated human’ and ‘human matching’ models in this manuscript 

as a means for a robot to intelligently predict a human companion’s intended future actions.  

We develop a Human Intent Prediction (HIP) system, which can model human choice, to 

satisfy these needs.  This system, when given a time history of previous actions as input, 

predicts the most likely action a human agent will next make to a robot’s task scheduling 

system.  Our HIP system is applied to an intra-vehicle activity (IVA) space robotics 

application.  We use data from preliminary human subject testing to formulate and populate 

our models in an offline learning process that illustrates how the models can adapt to better 

predict intent as new training data is incorporated. 

Nomenclature 

γi, ϕi, φi, αi
j, 
βi

j 
= known constants for all i and j 

A  = set of actions for the MDP, { }1,2,...,
a

A n=  

A
i
  = history of recently executed actions in state i, { }1 2

, ,..., ,
h

i i i i i

n k
A a a a a A= ∈ . 

Bz,k  = ( 1| , , )j i i

z k
p g s F a= , the probability of a goal objective j

zg  completing by execution of the action 

ak and having high-priority interruptive goal flags F
i
 in state s

i
  

F
i
  = set of binary flags for high-priority interruptive goal states (on/off) in state i, { }i

n

iii

f
fffF ,...,, 21=  

G
i
  = set of binary flags indicating goal status (complete/incomplete) in state i, { }i

n

iii

g
gggG ,...,, 21=  

Ht, t+T  = recorded time history of human actions from the last change in model policy 

Pz  = ( 1 | )j i

z
p g A= , the probability of a goal objective j

zg  completing given an action history i
A  

Pz,x  = ( 1 | , )j i

z x
p g A a= , the probability of goal objective j

zg  being or becoming 1 (completed) due to 

occurrences of action xa  in action history i
A  of state is  

R(s
i
)  = reward function for state s

i
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S  = set of MDP states { }1 2, ,..., sn
S s s s= , where { }, ,

i i i i
s G A F=  

T(s
i
, ak, s

j
)  = ( )| ,

j i

k
p s s a , probability of transitioning from state s

i
 to s

j
 by executing action ak 

I. Introduction 

UMAN subject testing has always been the gold standard for determining the operational characteristics of any 

system that requires human participation or interaction.  However, computer simulation prior to extensive 

human subject testing is useful for running a high volume of repetitive tests without bias, exercising boundary cases 

without online risk to human actors, and various other advantages, at a greater rate in a shorter amount of time and 

for less monetary cost than human subject testing.  Unfortunately, computer models generally only capture what we 

believe to be the most relevant features of the problem space we are attempting to define – in this case, human-robot 

interaction in space – and, as we cannot capture all elements of the real system, this incompleteness means that 

simulation is not a complete replacement for human subject testing.  Yet, if we can create models populated with 

numerical parameters that have a basis in reality, then those simulations could be refined to be “good enough” to 

capture the most salient performance results and further refine our algorithms and procedures.  Thus, a simulated 

system can be a useful evaluation tool on the road to system validation, especially to identify trouble areas and 

boundary cases that should be evaluated during later human subject testing in a physical environment, so long as one 

is careful to make those models as realistic as necessary to capture those problematic and failure cases.  Use of 

preliminary test data to initially structure and populate offline-computed models is one method to do so. 

There are many challenges that must be surmounted before intelligent robotic systems capable of supporting 

semi- and fully-autonomous human-robot interaction (HRI) mission operations are ready for on-orbit deployment.  

However, extensive testing tends to be long, costly, and does not cover the entire possible operational range of 

human interaction, especially for space environments, which are difficult to test on the ground even with carefully-

constructed underwater testing scenarios.  We believe that ground-based human subject testing can help advance the 

theory of HRI even in experimental settings;  simple tests using common, familiar tasks such as eating food, 

drinking liquids, and simple computation are equally compelling across differing-gravity environments.  Simulation 

studies using a computer model of human actions in an HRI context, which we call human intent prediction (HIP), 

could also help in the validation of the robotic decision-making algorithms used in HRI systems.  Being a computer 

model, for HIP to be able to be useful tool requires that the space environment be well-characterized.  The 

interaction scenario must also allow the specification of a “closed” (complete) action set as well as the specification 

of factors that lead the human to his/her choice of actions in this closed action set.  Luckily, some space 

environments meet these constraints.  Human subject testing on Earth is a valuable means to obtain model 

parameters for an HIP system for characterizing human behaviors in space, and learning will allow a decision-

making system to adapt to a new space environment. 

In order for a robot to be able to reason about a human and then make informed decisions about its own motion, 

however, it must first identify the human in the workspace, most commonly from visual data such as time-sequenced 

video imagery.  Human action recognition – the process of sensing and determining a human’s current state from 

observing their motion (in other words, the action they are taking) – is a difficult but solvable problem.  Prior work 

has shown that this is possible using methods such as template matching and state-space models, the latter of which 

use a Hidden Markov Model (HMM) to identify gestures in real-time, a process also sometimes called “intention 

recognition”.
1-7

  Newer work in this area defines real-time techniques for 3D decomposition and reconstruction of 

explicit geometric poses and motion using regression methods,
8
 as well as classification methods

9
 for action 

recognition,
9
 for which modified or expanded HMM methods may still be applied.  With speed and computational 

increases in computing technology, HMM’s use 3D pose information directly as their input.
9
  Looking at these 

techniques more broadly, they supply not just the current state of the human, but also the known action state-space 

for the human.  This information can be utilized by other decision-making algorithms. 

For HRI, humans are generally treated as having random, unpredictable behaviors due to the uncertainty inherent 

in the human-sensing problem.  However, humans generally act as rational agents, a precept that can be exploited 

given sufficient models of the human decision-making process.   The action-state space at a cognitive level also 

tends to be reduced, when compared to the vast number of slightly varying pose trajectories that could be bundled 

together and considered the same motion, with only minimal changes in joint space, let alone larger deviations in 

motion that may be necessary for obstacle avoidance.  Interestingly, though there has been a great deal of research 

done in human motion classification, there has not been much work done yet at a higher level that uses the output of 

these processes to predict the next most likely human action.  There are two recent works that use Partially-

Observable Markov Decision Processes (POMDP’s) for this purpose.  The first paper computes the current task 
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from observations of the human’s actions given no explicit communication, but only shows results for a real 

physical case where the human has only two possible mission tasks to choose between.
10

  The second paper also 

talks about a robot with a shared mission but without explicit communication and differing goals, and tests the 

accuracy of using extended MDP’s to predict a human in simulation with two different simulated human policies, 

random-choice and closest-first.  Results were encouraging when the simulated human’s policy was not completely 

random and help motivate our choice of an MDP process for our work.
11

  Neither paper addresses both using human 

subject experiment data to populate the models and multiple mission tasks, as we do. 

A third paper
12

 discusses the use of a POMDP by a slaved robotic system using explicit communication with a 

human to determine the next task it should accomplish;  this system uses the POMDP to determine the task that the 

robot should perform next with strongest-belief of the human’s preferences, and identifies when its own model of 

human preferences does not seem to match the observed human actions and it must explicitly request new 

information from the human.  In our setup we allow the human to explicitly communicate their own task and state 

information to the robot when they like, but without prompting from the robot such that implicit communication is 

the default.  However, we also assume that we do not need explicit communication from the human, and that the 

accuracy and reliability of such information, as well as the data conversion to a similar MDP state form, would be 

determined outside of our MDP framework as part of the sensory process – we only need to update the current 

MDP-determined policy with a new policy when the human preferences seem to have deviated far enough to require 

an update.  Another paper
13

 uses HMM’s in a POMDP used to filter human dialog and human activity.  Their paper 

focuses more on continued human direction of the slaved robot than collaboration where both robot and human are 

performing tasks with sporadic communication.  Their setup uses agent actions as states and actions in what they 

call a “human activity recognition filter,” but it takes human gestural actions as the state set, with the output being 

the robot’s next explicitly-directed action, rather than acting as a pure human prediction module in the course of the 

robot making its own decisions as we intend. 

In this paper, we define an “action” as a subtask (or subgoal) that may require multiple motions and 

manipulations to complete, and is short enough that we can assume that it will complete without interruption, but 

that would be considered a complete task at the cognitive layer.  Mapping a sequence of actions to a larger task (or 

goal) requires knowledge of the sequence of events, which we assume to be more loose to allow for less constraints 

in the next sequence.  For example, removing a panel would be considered a ‘larger task’ left to the scheduler to 

identify, while actions (subtasks) would include retrieving a screwdriver (for panel operation), removing a screw 

(one of four) (at a panel location), replacing a screwdriver back in a toolbox, moving a panel to the side, and so 

forth.  Many of these actions could be considered more general, and further context would be determined by the 

scheduling process.  However, the act of retrieving a screwdriver followed by the act of removing a screw at a panel 

location would indicate a higher probability that the next action would be to remove another screw at a panel 

location, rather than replacement of the screwdriver in the toolbox.  As time-sequencing is an important part of this, 

we use a stochastic process – explicitly, an MDP – in order to compute this next most likely action. 

The goal of this paper is build a decision-making scheme to predict the next intended action of a human, given a 

known history of actions, with a high degree of accuracy.  The framework presented here could ultimately be used 

by a robot in for automated scheduling of activities in a physically-proximal human-robot collaboration 

environment.  We assume that the human’s actions and their decision-making process leading to the selection of 

actions (their goal-objectives) are fully-observable, which allows us to use an MDP rather than a POMDP for 

computational tractability.  As our domain is a space environment, the assumption of full observability is valid 

because the human astronaut is operating in a highly-rehearsed HRI scenario such as satellite servicing.  This is a 

good first step towards being able to deal with a more complicated partially-observable situation where we relax that 

assumption.  For now, we are more interested in being able to use this model to evaluate HRI robot task-scheduling 

methods.  This would necessarily assume known inputs, either through environmental sensing or through the explicit 

selection of simulation test case studies.  The inclusion of partially-observable states under these circumstances 

would be counter-productive.  Previous ground-based testing has provided evidence that in cases where the closed-

world assumption holds, human-robot collaboration will be more efficient when explicit communication is not used.  

Explicit communication, via speech, gestures, or similar methods, requires a mandatory minimum workload for 

humans
14

 while implicit communication, via passive visual and audible observation of physical motions, can be 

exploited for useful information with the benefit of requiring no additional overhead from a collaborating human.  

For a ‘human matching’ model attempting to predict a particular human’s next action(s), we use implicit 

communication – passive visual sensing of physical motion and gaze – as the primary source of sensory information 

to estimate and determine a human’s ongoing action responses.  Explicit communication is not required, and not 

exploited nearly so much as the data extracted from implicit communication, but for completeness we include a 
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mechanism that allows infrequent, sporadic verbal informational updates from the human to be taken into account in 

the learning and update process after evaluation and filtering. 

We explain our motivating example – the prediction of a human’s motion in a workspace shared with a robotic 

agent in a space environment:  an astronaut on IVA inside a pressurized spacecraft, sitting in front of a computer 

console with food and drink nearby so they may keep up their energy level as they work on computer tasks and keep 

an eye on a nearby experiment that may require some upkeep.  This environment lends itself well to human intent 

prediction (HIP), as the motion prediction element complexity is reduced due to physical constraints imposed by the 

seating device to secure the human in space in zero-g.  This is not as restrictive as an on-orbit EVA where a 

spacesuit is required, nor would tasks require as much time or energy expenditure for the human to complete.  

However, we still believe it a good assumption that random or otherwise unmodeled motions and actions that do not 

contribute to task completion will not occur in the IVA case, similar to the EVA case.  We then discuss an analogue 

ground-based environment:  a laboratory experimental setting that captures similar related motion-primitives to 

those one would expect in the primary example case.  Note that we assume the robot using the MDP takes no actions 

that would influence the human directly;  hence we assume that there is no feedback where the human might be 

reasoning about the robot’s actions as part of their own goal-scheduling or task-based planning process.  This 

assumption simplifies our model but later must be relaxed to include the impact of robot actions on human intent. 

Below, we formulate the human intent prediction (HIP) problem, describe the solution approach using an MDP 

formulation, and present a series of case studies. 

II. Problem Statement 

Efficient operation of a collaborative human-robot team requires that the robot be capable of predicting a human 

companion’s intent.  We hypothesize that a robot can predict companion intent by first identifying actions based on 

observations rather than relying on explicit communication, then recognizing those observed actions as part of a 

sequence.  Structured action sequences would be expected to be known for applications such as human-robot 

collaboration on EVA.  Intent prediction is also possible for IVA collaboration, where action sequences are less 

certain but long-term observation of a human companion’s behavior can inform prediction of action sequences. 

We make the closed-world assumption, and assume that it is valid.  We assume perfect observation of human 

action, enabling us to assume full observability, and we assume the robot has sufficient memory to store an n-action 

history where n is finite but potentially large.  We assume that human subject data exists for learning model 

parameters, or that a process exists for observing the human to iteratively improve parameter estimates.  We assume 

for the ‘human matching’ model that, prior to the start of HRI, we have a pre-existing initial baseline model of 

human preferences and uncertainties in performing the most preferred action and an online database of similar MDP 

policies to search. 

Under these assumptions, we present a framework to exploit the human action models in a manner that enables 

the robot to predict a companion’s next action without explicit communication.   For this purpose, we use the MDP 

to generate an optimal policy for human intent prediction with respect to the current known human preferences and 

activities, which is also optimal (having a high level of accuracy in its output) under the constraint of real-time 

operation, given a known history of human actions and goal-objectives as input.  To accurately predict the next 

action of a specific human, we update the choice of model parameters used through learning logic procedures that 

evaluate observed behaviors using implicitly communicated human action (state) data. 

III. Solution Architecture 

Figure 1 shows our architecture for human intent prediction (HIP).  A Markov Decision Process (MDP) is the 

central decision-making algorithm with collaboration-based parameter learning used to improve the MDP model. 

Policy Update

Jump 

Update

Hybrid System

Communicated

Intent

Current Policy

Learning 

Logic

MDP Policy 

Calculation

Timer

Parameters

Predicted

Intent

Updated Policy

ExecutorHuman

State

HistoryHuman

Observation

 
Figure 1: Markov Decision Process for this implementation 
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This architecture is proposed to predict human intent in the context of a human-robot collaboration application. 

Intent prediction is based on a dynamic model of human preferences and observations of recent human action 

sequences.  The policy executes to determine the human’s intent, cast as the next action the human is most likely to 

execute.  To predict the next action, an updated human state is sensed from the environment, and that human’s 

known goal-objectives and previous actions are given to the MDP model policy.  Use of the MDP requires the 

Markov Assumption, that is, independence of future state from past state.  However, an abbreviated state history 

captured within the current state can be used when some past history is required.  In our case, as each objective may 

require multiple actions for completion, knowledge of the past na actions can help clarify which objective is 

currently active and which action in the objective-completion sequence might be next.  na is considered a critical 

parameter to select for a given domain.  Environmental information is included in the form of sensed events that are 

folded into the human’s goal/objectives prior to inclusion in the MDP state vector.  This information is necessary for 

the human to make decisions about motivations that have external and internal consequences.  For now, we assume 

the human senses all events as soon as they occur and their goal objectives will immediately change accordingly;  

this means that we currently do not include models of distraction, nor probabilities of sufficient attention and correct 

identification of environmental events given occlusion or fatigue. 

We first seed the MDP with a model of human preferences based on parameters obtained from the offline 

processing of human subject data – this is what we call a ‘simulated human’ model.  For real-time use we must 

account for possible drift in human preference over time because of the simplicity of the model used.  We account 

for inaccuracies in the initial model by periodically improving our model of human preferences in real-time.  The 

iterative, online adaptation of the MDP process occurs through a learning process similar to the one described in 

Ref. 15 that tracks a history of the human’s action-task state.  This learning process can also allow the utilization of 

filtered human-intent information obtained through sporadic unprompted explicit communication from the human 

collaborator.
12

  However, we assume that any such information is preprocessed into the sensed input human state.  

This is what we call a ‘human matching’ model. 

Because of the complexity and variability of human cognition, we do not try to create a single “most efficient” or 

“most complete” model.  Rather, we attempt to find a model that will best match an observed set of human actions 

under differing circumstances – a range of environmental and human states within a partially-restricted setting.  We 

also assume in our current and past work that any robot sharing the human’s workspace can act intelligently enough 

to be unobtrusive:  that the human can ignore the robot while they work cooperatively, rather than collaboratively, 

so there is no need to include robot state in the human’s model.  In the best case, the observed time history of human 

goal-objectives and actions that we use to learn the model parameters will span a sufficiently large cross-section of 

the full set of possible interactions such that we can obtain the ‘best fitting’ policy. 

We use a Markov Decision Process to generate a human intent prediction policy because it can handle 

uncertainty in models, so long as data is observable, and the robot can use a pre-determined policy for choosing the 

best action based on observation of the current human activity as well as prediction of the human’s next action. 

We define a discrete time stochastic dynamic programming (SDP) problem – also known as a Markov Decision 

Process (MDP) – as:
16-17

 

 MDP = {T, S, As, pt(s
j
|s

i
,ak), rt(s

i
, ak)} � πt(s

i
) (1) 

 MDP = {S, A, T(s
i
,ak,s

j
), R(s

i
)} � π(s

i
) (2) 

where T is the set of decision epochs, times t at which decisions are made; S denotes the set of states s
i
; A (and As) 

denotes the set of available (or allowable) actions ak; R(s
i
) is the set of state dependent rewards, with rt(s

i
,ak) 

denoting the specific reward for performing an action ak at a state s
i
 for epoch t; and T(s

i
,ak,s

j
) is the set of all 

possible combinations of transition probabilities pt(s
j
|s

i
,ak) that indicate the probability of a state s

j
 occurring as an 

outcome, given an action ak when executed from a state s
i
.  MDP’s do not have a separate cost function C, only a 

reward function.  We can pose costs as ‘rewards with negative utility’ without losing functionality.  We assume that 

the optimal policy π(s
i
), of the optimal action set ak for each potentially reachable state in S, is consistent across all 

time epochs T, such that the MDP policy is  time-invariant. 

As this is an infinite horizon case, for policy calculation we use the standard Gauss-Seidel value iteration 

algorithm to evaluate a set of reward values for a given MDP model, for a particular convergence rate.  A timer 

input is used to control when an updated policy is calculated and transmitted to the MDP block. 
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IV. MDP Formulation for Human-Intent Prediction 

We formulate the HIP problem as follows: 

 

{ }
{ }
{ } { } { }
{ } { } { }
{ } { } { }ha

i

k

i

n

iii

f

i

k

i

n

iii

g

i

k

i

n

iii

iiii

n

nknAAaaaaA

nkffffF

nkggggG

FAGs

sssS

h

f

g

s

,..,1,,...,2,1,,,...,,

,...,1,1,0,,...,,

,..,1,1,0,,...,,

,,

,...,,

21

21

21

21

==∈=

=∈=

=∈=

=

=

 (3) 

Every state s
i
 given to the MDP is assumed to be observable.  Each state s

i
 in S includes variables denoting:  the 

human’s low-priority mission goal states G
i
, which can be inferred from sensed human actions); actions A

i
, the 

abbreviated past history of nh actions that are in the set of possible human actions A; and the high-priority 

interruptive goal states F
i
, changes in the human’s workspace that are activated by sensed events and override 

mission goals.  We discretize values to reduce model complexity:  goals states are either false (0) or true (1), and the 

set of actions A has cardinality na with symbolic actions mapped to natural numbers [1 na].  The human’s 

internalized goal objectives 
i

kg  and i

kf  – the goals that the human attempts to satisfy via action-choice at any given 

moment – are assumed to be independent from each other:  they cannot be further simplified or combined, and the 

human can only attempt to fulfill one high-priority goal-objective at a time.  Low priority goals, however, may be 

satisfied in groups, depending on the impact of the action chosen.  
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 (4) 

As shown in Eq. (3), we assume that each goal-objective can be completed by a particular action or ordered set of 

actions that the human must perform to satisfy that goal objective.  This ordered set is an n-tuple (action) sequence, 

where n=pk  is the number of actions corresponding to completing a goal.  Some goals may have many satisficing 

action-sequences, if the actions do not need to be completed in a strict order with no interruptions in sequence.  Goal 

objective activation is assumed to occur external to the MDP model.  The value of nh is consistent for each model 

and chosen or otherwise optimized offline.  We utilize information about goal satisficing action sequences to 

simplify the transition probability tensor, by setting impossible state transitions to zero probability. 

 ( ) ( ) ( )∑∑∑
===

−+=
ffg n

j

i

jj

n

j

i

jj

n

j

ii

jji frfrAgrsR
1

3

1

2

1

1 ,)( ϕφγ  (5) 

The reward function R(si) for each state given in Eq. (4) is based on fulfillment of recurrent objectives of the 

human. We assume that the weighting variables – rewards �� and jφ , and the costs jϕ  – are constant for a given 

MDP policy.  We test weights in the range of [0 1] with a change in weight of 25.0=∆ .  We generally assume that 

the set A is a superset of human actions that allow for the possibility of fulfilling each modeled goal objective, when 

the proper action-sequence is performed.  We also assume that the human tries to respond rationally based on known 

mission objectives to be completed.  We define ��, ��, �� ∈ {0,1}, such that the value of completion is transparent and 

directly proportional to the weights.  Also, from Eq. (3), i

kg  and i
f1  are discrete-valued variables, where a value of 

1 implies the goal-objective has been satisfied, while 0 indicates that the goal-objective has not yet been achieved or 

the high-priority interruptive goal state is in a non-optimal state.  This means that reward is only given once an 

objective is met;  there is no reward for partial success.   

For the HIP formulation, function r1 calculates how close a human is to achieving an objective based on the last 

nh actions.   Because we assume i

kg  and i
f1  are known sensed states, r1 is independent of A

i
 in our formulation.  It is 

implied that when the model transitions to a new state s
j
, the goals and the action history in s

i
 are also updated inside 

the transition equation.  The weighting of r1 determines the importance of completing that goal-objective.  The 
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weighting of function r2 expresses a reward associated with the high-priority event being handled, while the 

weighting of function r3 expresses a cost associated with not completing or dealing with a high-priority event flag as 

soon as possible.  This is our way of allowing the formulation to treat some or all of the higher-priority interruptive 

goals as overriding goals that must be dealt with – if the cost weight is high enough relative to the values of ��, it can 

further stratify the goal-objectives.  This does however effectively create an offset in the reward calculation.  The 

reward functions are based on the normal or expected behavior of the human –a baseline of average behavior over a 

large number of experiments. 
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 (6) 

The HIP MDP transition probability function or tensor in Eq. (6) represents the probability that a human will 

transition to a state s
j
, when performing an action ak in a particular state s

i
.  From the formulation of states, actions, 

and reward function, an expected action for a human can be calculated, but as the human is not wholly-rational, they 

are not guaranteed to always stick to its expected behavior.  The selection of internal structure must then implicitly 

allow for a possibility of deviation of the human behavior from an otherwise-expected action – the optimal behavior 

that would give the “most efficient outcome”.  In the above equation, 
*

1 k

j

n

i

n aaa
hh

==+   would be the expected 

optimal behavior.  We generally handle the unmodeled vectors that could lead to this deviant behavior by allowing a 

“non-optimal” choice of parameters that maximizes matching the human’s sensed response – the subjective choice 

they made – rather than an objective “best” choice of action behavior given a state s
i
, considered optimal within the 

simpler computational model.  The function T does not have to be analytic, though ours is, and that ns is the total 

number of possible state combinations, fag nn

h

n

s nn 2**2=  with 4=hn  history states for our chosen baseline 

scenario. 

As mentioned earlier, we solve for an MDP policy using the standard Gauss-Seidel value iteration algorithm to 

evaluate a set of reward values for the given model, with discount factor 0.95 and an error bound of 1*10
-5

. 

V. Case Study:  Space HRI Domain Formulation 

In this paper, we use a simple domain model that will be familiar to most readers:  eating, drinking, interacting 

with a computer, augmented by pushing buttons in time-critical circumstances.  These tasks would be required for 

astronauts in space as well as for humans on Earth, and we have conducted previous human subject experiments that 

confirm HRI is feasible for this scenario.
18

  We hypothesize that our basic simulation and experimental results will 

translate to models of humans performing similar activities in IVA in space.  In our previous work,
18

 we constructed 

experiments in which the human was seated in a chair next to a robotic manipulator arm, and could eat chips, drink 

soda, solve math problems, or press buttons.  The human was asked to type solutions to simple arithmetic problems 

as quickly and efficiently as possible while not overly concerning themselves with the robot’s motion, and the 

human test subject was also asked to eat or drink at times, with food on their left and drink on their right.  High-

priority overriding goals –button-pressing tasks – were indicated to be necessary via messages displayed on the 

same monitor that displayed the math-problem solution input, and the human subject could not continue to input 

solutions to the math work until the indicated button was ‘pushed off’.  No more than one overriding goal was given 

at a time. 

In our first-cut model of the human, we define the baseline problem to include a sporadic need to press only one 

button.  This initially simplifies the human choice preference to be between just hunger/thirst/math versus button-

pushing, with the latter objective able to override all other operations, depending on the parameters used in our 

reward and transition probability function formulation. 

We therefore choose the following domain representation as given in Eq. (7): 
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Tables 1 and 2 describe the human’s actions, goals, and fault status used for our domain.  We do not explicitly 

differentiate between physical and mental tasks in our MDP representation, mixing action such as computer work 

(math) with eating, drinking, and button pushing. 

The equations that make up the domain-specific transition probabilities are given in Eq. (8) and Eq. (9): 

 

{ } { }

z

x

n

x

x

ii

j

ij

zz

n

y

y

x

n

y

x

i

y

y

x

x

ij

zxz

g

n

xxx

n

aAgp

AgpPgenerally

aa

aAgpP

nx

z
x

h

h

h

∑

∑

∑

=

=

=

=

===

==

===

==

1

1

1

,

1

),|1(

)|1(,

)(*

),|1(

,...,1,,...,

α

α

ααα

 (8)

 

xα
 
is a vector of weights that define the impact of an action xa  in the action history on a probabilistic change in 

state, given how far back in time it occurred.  For instance,
 xα  = [0 0 0 1] would give weight to only the most recent 

action, while
 xα  = [4 3 2 1] would associate more distant actions in the history as having greater impact than more 

current actions.  Also, when all the terms of xα  are nonzero, a history with many actions ax actions would imply 

that it is more likely that the associated goal objective will transition if the choice of next action ak is the same as ax.  

For instance, it is more likely that the person will transition to a state of no-hunger if they have eaten many times 

before and they choose to eat again, than if they had not eaten multiple times in the past.  We restrict values for xα  

to be within the range of whole numbers [0 nh], allowing for a straight-ranking of history terms, or for a relative 

weighting if the weights are repeated.  ),|1(, x

ij

zxz aAgpP ==  is defined as the probability of goal objective j

zg  

being or becoming 1 (completed) due to occurrences of action xa  in action history i
A  of state is .  We define zP , 

the probability of a goal objective j

zg  completing given an action history i
A , explicitly because some goals may be 

influenced by z

xn  multiple actions.  For instance, sometimes people feel hunger when they are actually thirsty, so 

under these circumstances, both a hunger-fulfilling action and a thirst-fulfilling action may have an impact on 

reducing a feeling of hunger (completing the hunger objective).  z

xn  may vary for different goal objectives z, and Pz 

may differ depending on dependencies, e.g., problem-specific multiplicative terms. 

Table 1. Domain Representation of actions  

Discrete Value Corresponding Action 

1 eat_chips 

2 drink_soda 

3 computer_work 

4 push_button 

5 no_op 

 

Table 2. Domain Representation of goal-objectives 

Goal 

Obj. 

Discrete Value Corresponding Action 

false true 

 0 1 ?hunger? 

 0 1 ?thirst? 

 0 1 ?work_motivation? 

 0 1 ?button_1_inactive? 
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The variable qβ  is a group of weights that define the probability that the human choosing action ak for their next 

action will result in a goal-objective j

zg  being/becoming 1 (completed) due to that action.  Being a probability, we 

set each qβ  to be in the range [0 1] with a change in weight of 0.25.  q is dependent upon which possibility of 

transition is being tested (see Table 3 below).  To simplify our model, we reduce the number of weighting terms to 

nb per high-priority event, with k

Tn  is the number of possibilities of transition for a particular action ak.  We then 

define nb to be the number of possibilities of transition minus the number of actions;  we can subtract na because for 

every action ak we can calculate the k

Tn ’the probabilistic outcome for that action from the other k

Tn -1 terms, as all 

probabilistic outcomes for an action must sum to 1.  The impact of Bz,k is dependent on the high-priority interruptive 

goal states.  If a high-priority interrupt flag is not set, then the probability Bz,k of a choice of action ak completing a 

low-priority goal is added to the transition probability; otherwise, it is not included because he probability of 

completing a low-priority goal when a high-priority goal exists is 0.  The divisions performed in Eq. (8) and Eq. (9) 

normalize terms to ensure probability values between zero and one. 

As described above, the transition probability is dependent upon the past action history A
i
 and the predicted next 

action choice of the human ak.  There are no explicit mappings between a goal state and an action-choice, but the 

probabilities are constrained to the known valid action-choices for goal-completion to simplify the number of 

parameters to optimize.  By leveraging this information, we do not need to specify the full tensor, thereby reducing 

the computational complexity.  For our domain, we have bn =10 possibilities: 

 

Note that we only have five 1

qβ  instead of seven because the push_button and no_op actions have only one 

transition possibility each – if a person intends to perform either of these actions, they will perform that action with 

probability 1. 

As an example, we define some of our probabilities in this formulation as: 

Table 3. Possible Outcomes of Action-Choices  

Action 

choice 
Possible changes in state when action  is applied 

(0=false, 1=true; goal states ‘and’ed together across columns of a row; blank cell=“no change”) 

, s
i
 � s

j
 

?hunger? 

, s
i
 � s

j
 

?thirst? 

, s
i
 � s

j
 

?work_motivation? 

 , s
i
 � s

j
 

?button_1_inactive? 

influencing 

 (q=?) 

eat chip 

(ak=1, =2) 

0�1    1 

0�0 or 1�1    1 (indirect) 

drink soda 

(ak=2, =4) 

0�1 (0�0 or 1�1)   2 

(0�0 or 1�1) 0�1   3 

0�1 0�1   4 

0�0 or 1�1 0�0 or 1�1   2,3,4 (indirect) 

solve math 

(ak=3, =2) 

  0�1  5 

  0�0 or 1�1  5 (indirect) 

push button 

(ak=4) 

   0�1 n/a 

(p(f1
j
=1|a4)=1) 

no-op 

(ak=5) 

    n/a 

(p(s
j
=s

i
|a5)=1) 
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• Probability of eat=1 given chips action:  
2

)1(
2

)(

),|1(
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1

2,11,1
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ij

f
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asgp
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• Probability of eat=1 & drink=1 given drink action:  
2

)1(
2

)(*

),|1&1(
1

1

4

2,11,12,2

221

i

ijj

f
PPP

asggp

−+
+

===

β
 

The “drink” probability is slightly more complex than other probability computations because we have four 

possible changes in state due to the minor coupling of the drink action influence on the combined state (on both the 

hunger and thirst objectives), as discussed earlier.  The P2,2 term is multiplicative over the additive term (P1,1 + 

P1,2)/2 because we assume the objectives thirst and hunger are conditionally independent from each other. 

As shown, our state-space model includes an action history as well as attributes describing sensed events.  By 

reduce the mapping of objectives directly to actions as shown in Eq. (4), we are effectively tracking action-

completion as our state.  This also reduces the complexity of our representation. 

While this Earth-based experiment may be simple, it has direct analogs to a possible IVA environment.  Many 

internal on-orbit operations are done at a computer workstation, and when deadlines are short an astronaut may eat 

or drink at the same time as they complete other work.  The button-pushing task is an interruptive task that needs 

minimal upkeep time intermittently – such as checking up on a science experiment that sets off an alarm on a 

schedule the astronaut is not necessarily tracking, being concerned with their own main work.  This also has 

parallels with on-orbit EVA space-repair at a satellite electronics panel:  ‘chip eating’ is a retrieval action, such as 

consumables that may need to be used to fix internal electronics;  ‘soda drinking’ is a pick-and-place action, such as 

the retrieval, use, and stowing of a screwdriver;  ‘math problems’ are a highly cognitive-stressing action, such as 

troubleshooting problems inside the panel mainly by visual inspection;  and ‘button pushing’ is a task of overriding 

importance, such as a time-critical task like noticing and grabbing a toolkit before it floats away. 

A. Learning Logic 

For the ‘human-matching’ model, our policy must be updated to best represent the human.  This need could be 

due to our original Earth-based model not quite matching the human’s reaction in a space-based case, or because the 

human’s preferences shift over time as they operate, due to unmodeled changes in their own mental state or the 

environment.  Instead of reformulating the entire problem, however, we choose to update the model as divergences 

are recorded.  In this manner, we view the problem as one of determining the “best matching” policy over multiple 

epochs, without knowing the timespan each policy will cover.  Although this introduces lag, we assume in this work 

that the system will notice lag-induced divergences before they become problematic.  To create and update our 

‘human matching’ model, we include a policy update procedure (see Fig. 1) that may learn new or evolving 

parameters that describe the human, or otherwise replace the model policy being used for the real-time human 

prediction with a better policy.  For this purpose, we use what we call a “Multiple-Model Learning Method” similar 

to what the dynamic systems literature calls “Multiple-Model Fault Diagnosis.”
19

  In fault detection, multiple 

dynamics models are used and compared to detect which of the models matches best with the observed dynamics of 

the system.  Similarly, we compare the output of multiple MDP policies to the evolution of states and action-

sequences observed.  To evaluate which policy is the best match, we use a reward function with weighted terms to 

score each candidate MDP policy, and pick the highest-scoring candidate for our new “best matching” policy, akin 

to a maximum likelihood approach.  We assume the Markov property, in that we can discard previous state data in 

the time history that we perceive as no longer useful. 

First, human subject testing is performed to obtain the human reaction data necessary to populate the baseline 

‘simulated human’ model.  The test environment would generally be an Earth-based setup, which would have an 

analog to the space IVA case.  Then, during real-time operations, a time history of human states St,t+T and actions 

Ht,t+T is recorded from the last change in model policy used, and the accuracy of each of the current and available 

model policies is evaluated through comparison of the policy output to the actual human state and action-sequences 

being observed.  Models are rated given a weighted average of the accuracy of results calculated using Eq. (10), 

which takes into account the number of matching transitions in a state-action chain and the number of times an 

output action from the model matched the observed action.  The final best model is chosen from the highest scoring 

of these.  This model updating procedure is our ‘human matching’ model.  Because human subject experiments to 

validate this process were not possible before this paper was published, the results presented below use simulations 

of human behaviors only. 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
24

45
 



 

 

American Institute of Aeronautics and Astronautics 
 

 

11 

 

{ } { }

)),,((maxarg

))((*))),,(max(arg(*),,(

,,...,,,,,...,,

,,

**

2

1

111,,

11,11,

1

kTttTtt
MDPMDP

Tt

ti

ttk

Tt

ti

ttttk
Ss

kTttTtt

TtTtttTttTtTtttTtt

MDPSHscoreMDP

aswssasTwMDPSHscore

aaaaHssssS

k

t

++
∈

+

=

−+

=

++
∈

++

+−++++−+++

=←

==+===

==

∑∑
+

π

π  (10)

 
VI. Simulation Results 

A. Evaluation of MDP Formulation – Impact of Reward Function Weights on Policy 

We evaluate the MDP formulation by varying parameter values for the weightings of two goals at a time in a 

preliminary analysis of the resulting action-choices codified in the policy output before conducting a full Pareto 

frontier analysis.
20-22

  We target these analyses to explicitly compare the tradeoff between different types of goal 

interdependencies in the equations:  two independent goals (chips and math), two partially-dependent goals (chips 

and soda), and low-priority versus high-priority goals (chips and button-push).  We then revisit the first two cases 

using ‘common sense’ parameter choices for weights not being directly compared, to see if the use of nonzero terms 

for the weights of lesser-focus has any great effect.  We give a summary of our conclusions in Table 4.  The alpha 

and beta parameter values chosen for the analysis were ‘common sense’ values given a lack of statistically-

significant human subject experiment data. 

 
Generally, when looking at the individual actions without taking into account state correspondence, when 

comparing policies between MDP’s with similar parameter sets when there are tradeoffs in weightings between the 

two reward objectives, there are few, if any, times where the percentage of an action choice ak – the absolute number 

of times ak is chosen by the policy divided by the number of all possible states – has global maxima and minima.  

We usually consistently see the highest or lowest percentage of action choice for the actions at the boundary cases in 

Table 4 –  the ‘edges’ where the reward terms are rewarding only one of the two objectives.  We see similar when 

comparing the ratio of action choices for the policies for actions which have an impact on those objective terms 

whose weights were subject to a tradeoff.  Overall, the drink action a2 tends to have middling action-choice 

percentage even when the drink reward is 0, as in MDP2, and is a higher percentage choice than eating when 1γ
 
is 

not 0, due to the impact of the drink act a2 on the eat goal g1
i
.  The choice of no-op action a5 is significantly lower 

for the MDP5 and MDP6 cases, due to all other actions having a nonzero reward, also as expected.  It is notable that 

the action choices seem consistent and do not tend to jump largely when comparing policy outcomes to other 

policies with ‘similar’ weightings (within the delta value variance), so that it is feasible for these policies to have 

Table 4. Parameter values for MDP Evaluation (single number constant and/or ranges) 

nh=4 α1 = [1 2 3 4], α2 = [1 2 3 4], α3 = [1 2 3 4], 

β1 = 0.25, β2 = 0.25, β3 = 0.75, β4 = 0.25, β5 = 0.75, 

 

Comments on percentage of 

action choice for each action, per 

policy 

 

eat 

reward 

 

drink 

reward 

 

math 

reward 

 

button 

reward 

 

button 

cost 

 
value 

variance 

MDP1 [0 1] 0 [0 1] 0 0 0.25 a3 and a4 picked about as often, 

then a1 and a5, then a2 

MDP2 [0 1] [0 1] 0 0 0 0.25 a2 and a4 picked about as often, 

then a1 and a5, then a3 

MDP3 [0 1] 0 0 [0 1] 0 0.25 high percentage of a4 action 

choice, then a1, then others 

MDP4 [0 1] 0 0 0 [0 1] 0.25 high percentage of a4 action 

choice, slightly lower at boundary 

where =0 than MDP3 

MDP5 [0 1]  [0 1] 1 1 0.25 a2 choice generally less often than 

in MDP6 

MDP6 [0 1] [0 1] 0.75 1 1 0.25 more even balance between 

percentage of a1 and a2 action 

choices, a3 and a4 choices 

consistently high due to reward D
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their terms updated without drastic changes to the parameters, or that a policy could be refined by searching over a 

‘nearby’ range of parameter solutions using a finer mesh (smaller delta) for a closer-fitting solution. 

B. Evaluation of MDP Formulation – Impact of Length of History on Policy 
As discussed above, the number of parameters in the time history nh must go back in time sufficiently far that we 

can assume the Markov property for our formulation.  In this context, we define ‘instability’ to be a lack of 

sufficient history states, and ‘stability’ to be the opposite.  This can be thought to be similar to the idea of stability in 

dynamics and controls, in that when the MDP is ‘stable’, the policy does not have sudden odd fluctuations in action-

choice when compared to the state and action history we are trying to match.  An indication of ‘instability’ could be 

a policy whose action outputs are seen to diverge quickly and frequently from the observed history when used in the 

learning logic process, even when the internal parameters for alpha and beta and the reward weights are known to be 

good.  (The other possibility could be that the structure of the MDP may not match, but we will assume this not to be 

an issue in this work.) 

In simulation, however, we do not attempt to compare policies using an evaluatory approach similar to Eq. (10), 

because attempting to examine how policies with differing values of nh explicitly match their action choice outputs 

against each other is nontrivial when the number of states differs between policies.  There is no good way to decide 

whether the action given for a state with a certain G
i
 and F

i
 with  A

i
=[1] for a nh=1 policy matches the action for a 

policy with differing nh, since there will be multiple similar states with the same G
i
 and F

i
 but with different 

histories – for instance, with nh=5, A
i
=[1] could potentially match to A

i
=[1 1 1 1 1], or [2 1 1 1 1], or [5 2 3 5 1], and 

so forth.  Instead, we evaluate ‘instability’ in comparisons similar to the analysis performed above to evaluate the 

reward weightings.  Table 5 gives an overview of the cases tested.  We test these histories over the ranges of 

weightings given in Table 4. 

 
To look for instability, we first compute the percentage of an action choice ak for each policy, then compare the 

differences between each series of MDP# policies for { }5,4,3,2,1∈hn , when the β parameters and the set of weights 

for R are kept constant and only the xα
 
and nh differ.  Doing this, we see that when comparing MDP’s with a 

history of nh=1 – with only the current action known at any point in time, effectively no history – to other nh choices, 

we see significant jumps in the percentage of action choice per policy for every action and weighting across the 

board, especially at the ‘edges’ where one of the γ =0.  We also see similar large jumps for the ratios of action 

choice, but only at the ‘edges’ where one of the γ =0.  For the nh=2 to nh=5 comparisons, the action choices and 

ratios are generally far more stable, with no standing out trends.  It should be noted that even for the more ‘stable’ 

Table 5. Parameter values for History Length on Performance Comparison 

β’s and weights 

for R are both used 

as (MDP#) given 

in Table 4 

Values for  

(see Eqn. 8 for  usage)  

with  oldest in history,  newest 

Comments on percentage of action 

choice for each action, per policy 

nh=1 nh=2 nh=3 nh=4 nh=5 

MDP1 (eat, math) 

newest actions 

most important 

(case 1) 

[4] [3 4] [2 3 4] [1 2 3 4] [0 1 2 3 4] a2 choice has a large jump from 

never being chosen with no history 

to being chosen frequently with a 

history;  a5 does the reverse, from 

being chosen >50% of the time, to 

usually ~20% or less; a2 and a5 

change is minimal otherwise 

a1, a3, a4 change minimal 

fairly stable for nh=2 to nh=5 

MDP1 (eat, math) 

oldest actions 

most important 

(case 2) 

[1] [2 1] [3 2 1] [4 3 2 1] [5 4 3 2 1] a2 choice has similar jumps as above;  

similar large dropoff for a5; 

a1, a3, a4 change minimal 

fairly stable for nh=2 to nh=5 

MDP1 (eat, math) 

all actions given 

equal importance 

(case 3) 

[2] [2 2] [2 2 2] [2 2 2 2] [2 2 2 2 2] a2 choice has similar jumps as above;  

similar large dropoff for a5; 

a1, a3, a4 change minimal 

fairly stable for nh=2 to nh=5 
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MDP policies, for MDP formulations with the same parameters excepting xα
 
and nh, changes in percentage of 

action choice are not always consistent in direction;  for instance, from nh=2 to nh=3 the number of action choices or 

ratio of choices might be increasing, while from nh=3 to nh=4 it may decrease.  However, generally there are larger 

jumps between the nh=1 versus nh=5 and nh=4 versus nh=5 comparisons for case 2 than the other neighboring nh 

comparisons;  this is not seen with case 1 or case 3, which instead see similar large jumps between nh=1 and all other 

nh values. 

The main tradeoff that will result in a marked difference in effect, as seen here, is a choice of action history or no 

action history:  if an action history is needed but only the most recent action is remembered, the model will not 

match well, and vice-versa.  If an action history is needed (nh>1) but more or less terms are necessary (with nh>1 

still) then in this formulation the MDP policies look to be more forgiving. 

C. ‘Human Matching’ Model – Learning Logic Update Process 

For the ‘simulated human’ model, we used general observations obtained during the human subject testing in 

order to choose the initial parameters for a guess at an (unverified through experimentation) ‘best model’ for our 

MDP formulation.  To extend this to the ‘human matching’ model, we create our database from a range of delta-

offsets from the chosen ‘simulated human’ model parameters, solve for the optimal policies for those parameter sets, 

and then use the learning logic selection process to choose the parameters for our updated model.  We use a process 

inspired by Ref. 15 to do so, but because our application differs – we predict a human’s state, while they are creating 

an adaptive controller to drive a system – we cannot make the same assumptions – in part due to our smaller dataset 

size, as the observed human may never transition to all available states necessary for model validation, among other 

factors – thus we cannot claim that this process is ‘truly optimal’ or that it will definitely converge.  Mathematical 

proofs that explore the possible level of optimality and accuracy (performance) of a solution using our modified 

method will be explored in future work.  Initial simulation results comparing the scores of various MDPs inside the 

learning logic with the observed actions of the human are positive.  In our procedure, a “score” is the measure of 

agreement of human actions in our learning data set with an MDP, as given in Eq. (10).  For simplicity, we choose 

w1=0 and w2=1, so that an MDP with a particular set of parameters gets an increment of 1 in its score every time its 

policy-determined action choice from an input state matches with the action in the dataset.  Below, our dataset for 

comparison is obtained by running a ‘simulated human’ model, as we did not have a statistically-significant set of 

human subject experiment data for use at the time this paper was published. 

To start, we carried out three phases of simulation where each phase consists of 250 actions.  We seeded the 

process with an ‘ideal’ MDP, which we call MDP2, to supply initial states and output actions for which the process 

attempted to converge to a best solution, given a set of MDP’s to score.  In our first phase, the robot predicted 

actions of the human with an incorrect policy from MDP1.  In the second phase, the robot policy was updated by the 

learning logic, selected based on the maximum score supplied using Eq. 10.  In the third phase, MDP of the robot 

was once again checked by the learning logic process, but the policy was not changed, as the best fitting policy had 

already been selected.  Table 7 shows parameter values for MDP’s used in the learning logic.  Table 8 shows 

accuracy of prediction of human actions by the robot in three phases of operation.  Figure 2 shows how the scores 

evolved during the three phases of simulation. 

 

 

Table 7. Parameter values for MDPs in Learning Logic 

MDP1 (initial MDP of the robot) α1 = [1 2 3 4], α2 = [1 2 2 4], α3 = [1 3 2 4] 

β1 = 0.3, β2 = 0.2, β3 = 0.7, β4 = 0.1, β5 = 0.8 

MDP2 α1 = [1 2 3 4], α2 = [4 2 2 4], α3 = [1 2 3 4] 

β1 = 0.2, β2 = 0.5, β3 = 0.1, β4 = 0.6, β5 = 0.95 

MDP3 α1 = [1 1 2 4], α2 = [4 2 1 4], α3 = [1 2 2 4] 

β1 = 0.4, β2 = 0.3, β3 = 0.1, β4 = 0.5, β5 = 0.9 

 

Table 8. Prediction Results 

Phase # of actions 

performed 

# of correct 

predictions 

%age of correct 

predictions 

MDP of the robot 

Phase1 250 235 94% MDP1 

Phase2 250 250 100% MDP2 

Phase3 250 250 100% MDP2 

 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
24

45
 



 

 

American Institute of Aeronautics and Astronautics 
 

 

14 

 
For this ‘human matching’ model, we did not learn the initial ‘simulated human’ model or ‘human matching’ 

model against statistically significant human subject data.  Extracting the model parameters directly from human 

subject data is a nontrivial process, and not in the scope of this paper.  Extracting the data for ‘human matching’ is 

not trivial, but could be done by conducting human subject experiments, and then action-matching trajectories in the 

video to the discrete actions in the MDP model and discerning the human’s recorded goal-objective states during 

offline processing of the experimental data. 

We believe that this initial work can give a ‘realistic’ simulated human for general testing of HRI robotic 

scheduling algorithms.  Whether this system will be able to learn and predict the actions of a specific human in real-

time well enough to give “accurate-enough” useful predictions is unclear at this time, as the level of accuracy 

necessary for those predictions is dependent on the robustness and stability of the scheduling process in which it is 

being used, as well as the reaction time necessary for HRI operational safety.  This will be explored in future work. 

VII. Conclusions and Future Work 

We have presented a Markov Decision Process (MDP) based framework for predicting human (astronaut) intent 

during a space mission.  This framework is intended to be used by a robotic manipulator arm that is trying to 

perform its tasks without disturbing or endangering the human astronaut.  Our framework contains a learning logic 

procedure that tries to learn the ‘best fit’ model of the human in terms of their fully-observable goal-objectives and 

action-choices.  Learning has been based on the comparison of the observed actions of the human with a built-in 

offline-calculated set of model policies and controlled, timed updates to the MDP model parameters and policy.  We 

have presented some initial simulation results where we evaluate policies developed from the model formulation, in 

order to better understand the characteristics of the ‘simulated human’ model.  We have also seen that the ‘human 

matching’ model prediction is shown to be quite accurate on the considered models, but we are still working to 

establish guarantees about the success of prediction with human subject data.  We expect that the accuracy of the 

HIP system’s predictions will be “good enough” to be useful for real-time task scheduling for a robot.  Future work 

will involve the incorporation of this system into a larger scheduling implementation for a manipulator in a real-time 

physically-proximal human-robot collaboration setting.  A ground-based example related to IVA is explored in this 

paper, but it is assumed that, with the inclusion of a total HRI system including this component, once astronauts 

become comfortable working side-by-side with robots (e.g., on space station), they will be much more ready to also 

accept them as companions on EVA.  This experimental setting may necessitate the addition of state information 

about the robot(s) sharing the physical workspace to the goal-objective states of the human in the HIP model, if we 

wish to allow not just interaction, but also collaboration. 

Future work could also involve extension of the MDP to a POMDP formulation.  We avoided much model 

complexity here by assuming that the human goal-objectives could be directly sensed;  if were using internal, hidden 

states of the human (such as hunger, thirst, work-motivation), we would have uncertainty in the input state of the 

human as part of the MDP process.  In a more complex formulation, we would also want to include ‘reduction of 

fatigue’ as a goal-objective and “rest”/no-op would have a more intricate effect by reducing fatigue;  the fatigue 

state could also have an impact on the transition probabilities for other actions, due to loss of concentration and 

 
Figure 2. MDP Score2 during Phase 1 
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other associated effects.  We also decoupled the time history of actions from the transition and rewards processes 

somewhat – if there was a partial or full match between an action-chain describing an objective and the memory of 

actions in the input state, it would seem more likely for a particular state change in that objective to occur.  Taking 

this into account would argue for making the objectives not Boolean values, but rather estimates of percent-

completion;  the impact of an addition of this level of complexity could be explored, along with a comparison of the 

relative accuracy of the new more-generalized model versus this basic MDP formulation.  We also did not discuss 

how these discrete, generalized actions are identified;  we assumed it would be via another process from a trajectory 

of sensed dynamic state estimations, or, less-abstractly, a time-history of bundled physical poses, but the exact 

details of integrating such a process, and the accuracy of the results, would be substantial work. 
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